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Cellular/Molecular

SIRT1 Mediates Depression-Like Behaviors in the Nucleus
Accumbens

Hee-Dae Kim,' “Jennifer Hesterman,' “Tanessa Call,' “Samantha Magazu,' Elizabeth Keeley,> “Kristyna Armenta,'
Hope Kronman,” Rachael L. Neve,® “EricJ. Nestler,”> and “Deveroux Ferguson'
Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona 85004, 2Fishberg Department of Neuroscience
and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and *Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Depression is a recurring and life-threatening illness that affects up to 120 million people worldwide. In the present study, we show that
chronic social defeat stress, an ethologically validated model of depression in mice, increases SIRT1 levels in the nucleus accumbens
(NAc), akey brain reward region. Increases in SIRT1, a well characterized class III histone deacetylase, after chronic social defeat suggest
a role for this enzyme in mediating depression-like behaviors. When resveratrol, a pharmacological activator of SIRT1, was directly
infused bilaterally into the NAc, we observed an increase in depression- and anxiety-like behaviors. Conversely, intra-NAc infusions of
EX-527,a SIRT1 antagonist, reduced these behaviors; EX-527 also reduced acute stress responses in stress-naive mice. Next, we increased
SIRT1 levels directly in NAc by use of viral-mediated gene transfer and observed an increase in depressive- and anxiety-like behaviors
when mice were assessed in the open-field, elevated-plus-maze, and forced swim tests. Using a Cre-inducible viral vector system to
overexpress SIRT1 selectively in dopamine D1 or D2 subpopulations of medium spiny neurons (MSNs) in the NAc, we found that SIRT1
promotes depressive-like behaviors only when overexpressed in D1 MSNs, with no effect seen in D2 MSNs. Conversely, selective ablation
of SIRT1 in the NAc using viral-Cre in floxed SirtI mice resulted in decreased depression- and anxiety-like behaviors. Together, these
results demonstrate that SIRT1 plays an essential role in the NAc in regulating mood-related behavioral abnormalities and identifies a
novel signaling pathway for the development of innovative antidepressants to treat major depressive disorders.
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In this study, we demonstrate a pivotal role for SIRT1 in anxiety- and depression-like behaviors in the nucleus accumbens (NAc),
akeybrain reward region. We show that stress stably induces SIRT1 expression in this brain region and that altering SIRT1 activity
using a pharmacological or genetic approach regulates anxiety- and depression-like behaviors. These results suggest that SIRT1
plays an essential role in regulating mood-related behaviors and introduces a novel signaling pathway for the development of
innovative antidepressants to treat depression and other stress-related disorders. A recent groundbreaking publication by the
CONVERGE Consortium (2015) identified a reproducible association of the SIRTI locus with major depression in humans.
Therefore, our results are timely and have significant translational relevance. j
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Bagot et al., 2016), a key brain reward region (Nestler et al., 2002;
Sesack and Grace, 2010). The NAc is most often associated with
the rewarding and motivational effects of food, sex, and drugs of
abuse (Nestler et al., 2002). Given the prominence of anhedonia,
reduced motivation, and decreased energy levels in most individ-
uals with depression, the NAc is thought to contribute impor-
tantly to the symptomatology of the syndrome (Tremblay et al.,
2005; Krishnan and Nestler, 2008; Covington et al., 2010).

A recent groundbreaking human genetics study revealed Sirt1
as one of the first two genes successfully linked to MDD in a
genome-wide investigation (CONVERGE Consortium, 2015).
SIRT1, a member of the sirtuin family, is characterized as a class
III histone deacetylase (HDAC), which regulates the acetylation
state of histones and nonhistone proteins (Vaquero et al., 2007)
and thereby influences gene expression and cellular physiology
(Sassone-Corsi, 2012). SIRT1 has been implicated in a range of
physiological processes, including cell differentiation, apopto-
sis, autophagy, development, cancer metabolism, and circadian
rhythms (Yang et al., 2007; Kwon and Ott, 2008; Lee et al., 2008;
Nakahata et al., 2009; Ramadori and Coppari, 2011; Ramadori et
al., 2011; Tonkin et al., 2012). Recent data from our group and
others have begun to elucidate a novel role for SIRT1 in higher-
order brain functions such as drug addiction (Renthal et al., 2009;
Ferguson et al., 2013; Ferguson et al., 2015), circadian rhythmic-
ity (Asher et al., 2008; Chang and Guarente, 2013), endocrine
regulation (Cohen et al., 2009; Ramadori et al., 2011), and syn-
aptic plasticity (Gao et al., 2010; Michan et al., 2010).

In the present study, using both pharmacological and viral-
vector-transgenic approaches, we demonstrate that chronic social
defeat stress induces SIRT1 expression in the NAc and that SIRT1
induction in this region promotes depression- and anxiety-like be-
haviors. These findings suggest an important role for SIRT1 acting in
the NAc in regulating mood disorders and present a novel path
forward for the development of a new class of antidepressants tar-
geting the sirtuin-signaling pathway.

Materials and Methods

Animals. Male C57BL/6] mice (7-9 weeks old) were obtained from The
Jackson Laboratory and housed on a 12 h light/dark cycle with ad libitum
access to food and water. Male CD1 retired breeder mice (9—13 months
old) were obtained from Charles River Laboratories. Mice acclimated to
the facility for 1 week before any experimentation. D1-Cre hemizygote
(line FK150) or D2-Cre hemizygote (line ER44) BAC transgenic mice
from GENSAT (Gong et al., 2007; Gerfen et al., 2013) on a C57BL/6]
background were used for some behavioral experiments. To induce de-
letion of the SirtI transcript in the NAc, we used mutant mice homozy-
gous for a floxed SirtI allele, which are fully backcrossed onto C57BL/6]
and have been described in detail previously (Li et al., 2007). Mice be-
tween the ages of 8 and 10 weeks were injected sterotaxically into the NAc
with any of several viral vectors (see below). All animal procedures were
approved by the Mount Sinai School of Medicine and the University of
Arizona Medical School Institutional Animal Care and Use Committees.

Chronic social defeat stress. Social defeat stress was performed accord-
ing to previously published protocols (Krishnan et al., 2007). Test mice
were exposed to an unfamiliar and aggressive male CD1 retired breeder
mouse for 10 min/d for up to 10 d. After direct interaction with the CD1
aggressor, animals were placed in an adjacent compartment of the same
cage for the next 24 h with sensory, but not physical, contact. Control
animals were housed in equivalent cages but with members of the same
strain. Twenty-four hours after the last social defeat, animals were as-
sayed on the social interaction test and sorted into either susceptible or
unsusceptible (resilient) phenotypes based on interaction scores (Krish-
nan et al., 2007). Briefly, for the social interaction test in the first 2.5 min
trial (“target absent”), the test mouse was allowed to explore freely a
square-shaped open-field arena (44 X 44 cm) possessing an empty wire-
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mesh cage (10 X 6 cm) apposed to one side. During the second 2.5 min
trial (“target present”), the mouse was reintroduced into this arena
now containing an unfamiliar CD1 mouse within the smaller cage. Etho-
Vision video-tracking software (Noldus) was used to measure time spent
in the “interaction zone” (14 X 26 cm). In some experiments, we used a
submaximal social defeat procedure in which mice were subjected to
repeated defeat episodes over 1 d. Animals were placed into the CD1
aggressor’s cage for 5 min, followed by a 15 min break. This was repeated
two further times with different CD1 aggressors. This submaximal defeat
procedure has been used by our group to test whether an experimental
manipulation might potentiate an animal’s susceptibility to defeat stress
(Krishnan et al., 2007).

Open-field test. Open-field assessments, which are thought to reflect
anxiety-related behavior, were conducted in arenas similar to those used
for the social interaction tests (without small cage enclosures). Etho
Vision video-tracking-based methods (Noldus) were used to record the
distance traveled and the time spent in the open arena and a delineated
“center zone.”

Elevated-plus maze test. The elevated-plus maze test, an assay of
anxiety-like behavior, consisted of two opposite open arms (60 X 15 cm)
and two enclosed arms (60 X 15 cm, surrounded by a 15 cm-high black
wall) elevated 75 cm from the ground. Animals were placed at the center
of the maze for each individual trial lasting 5 min. The number of entries
and the time spent in open arms were measured, in addition to the
number of entries in enclosed arms.

Forced swim test. The forced swim test, which measures acute stress
responses, was performed as described previously (Krishnan et al., 2007).
Animals were placed in a 4 L beaker containing 3 L of water at a temper-
ature of 25 = 1°C. Tracking was performed with EthoVision for a period
of 5 min. The experiment was performed under red light. Animals were
analyzed for the amount of time spent mobile versus immobile.

Sucrose preference test. To assess natural reward using the sucrose pref-
erence test, 50 ml tubes containing stoppers fitted with ballpoint sipper
tubes were filled with solutions containing either 1% sucrose diluted in
drinking water or drinking water alone. The weights of solutions were
recorded and the position of the tubes was interchanged daily to elimi-
nate side bias. Sucrose preference was calculated as a percentage of su-
crose intake over total fluid volume consumed and averaged over 3 d of
testing.

Immunoblotting. Immunoblotting was performed using standard pro-
cedures on NAc punch dissections from individual animals (Ferguson et
al., 2013). Briefly, frozen NAc tissue was homogenized in 30 ul of ho-
mogenization buffer containing 320 mM sucrose, 5 mM HEPES buffer,
1% SDS, phosphatase inhibitor cocktails I and II (Sigma-Aldrich), and
protease inhibitors (Roche) with an ultrasonic processor (Cole Parmer).
Next, 10-30 ug of protein as loaded onto 4-15% gradient Tris-HCI
polyacrylamide gels for electrophoresis fractionation (Bio-Rad). Pro-
teins were transferred to nitrocellulose membranes, blocked with 5%
(w/v) BSA, and incubated overnight at 4°C with primary antibodies in
5% BSA. After thorough washing with TBS plus 0.1% Tween 20, mem-
branes were incubated with secondary antibodies (1:40,000—1:60,000)
dissolved in 5% BSA blocking buffer for 1 h at room temperature. Final
blots were developed by chemiluminescence analysis using supersignal
dura ECL (Pierce Biotechnology). Images were quantified using densi-
tometry with ImageJ and samples were normalized using GAPDH or
B-tubulin, which were not affected by social defeat stress.

Immunohistochemistry. Mice were given a lethal dose of Euthasol
(Virbac) and then perfused sequentially with PBS and 4% paraformalde-
hyde. Brains were postfixed in 4% paraformaldehyde overnight and
cryoprotected in 30% sucrose solution at 4°C. After equilibration in the
sucrose solution, brains were sectioned at 30 um on a sliding block
microtome (American Optical). Free-floating sections were washed with
PBS and then blocked (3% donkey serum, 0.1% Triton X-100 in PBS).
The primary antibody anti-SIRT1 (rabbit polyclonal, 1:500; Cell Signal-
ing Technology) was applied overnight at 4°C with constant agitation.
After the overnight incubation, sections were incubated with the appro-
priate secondary antibodies conjugated with fluorescent dyes (Alexa
Fluor 488, Alexa Fluor 555, and Cy5; Invitrogen) for 2 h at room tem-
perature. Next, the sections were washed, mounted with Vectashield
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containing DAPI (Vector Laboratories), and analyzed using confocal
microscopy at various magnifications (LSM710; Carl Zeiss).

SIRTI activity assay. SIRT1 enzymatic activity was measured using a
fluorescent assay kit (Cayman) according to the manufacturer’s instruc-
tions. Briefly, tissue samples were sonicated in RIPA buffer (0.7% Na-
deoxycholate, 0.5 m LiCl, 50 mm HEPES-KOH, pH 7.6, 1% NP-40, 1 mm
EDTA) and 5 pul (1 pg/pl) of lysates were mixed with assay buffer (30 ul)
and substrate (15 ul) and incubated for 45 min at room temperature with
shaking. Then, developing solution (50 ul) was added and incubated for
30 min. Fluorescence was measured with a microplate reader (excitation:
360 nm, emission: 465 nm; SaFire 2, Tecan).

Viral-mediated gene transfer. Mice were anesthetized with a ketamine/
xylazine mixture (ketamine 100 mg/kg and xylazine 10 mg/kg) and pre-
pared for stereotaxic surgery. Thirty-three-gauge syringe needles
(Hamilton) were used to infuse 0.5 ul of virus bilaterally into NAcata 10°
angle at a rate of 0.1 pl/min at 1.6 mm anteroposterior, 1.5 mm lateral,
and 4.4 mm dorsoventral from bregma. We used bicistronic p1005 HSV
(herpes simplex virus) vectors expressing green fluorescent protein
(GFP) alone or GFP plus the target gene of interest. In this system, GFP
expression is driven by a cytomegalovirus promoter, whereas the gene of
interest is driven by the IE4/5 promoter (Ferguson et al., 2013). In some
experiments, we used HSV vectors that express their transgene in a Cre-
dependent manner (Grueter et al., 2013; Dias et al., 2014). We also used
adeno-associated virus (AAV) vectors (serotype 2) expressing GFP or
Cre-GFP (Berton et al., 2006). Animals receiving viral injections were
allowed to recover for at least 3 d after HSV delivery or 2 weeks after AAV
delivery. Viral injection sites were verified by confirming the GFP signal
in the NAc slices using a fluorescence-dissecting microscope.

RNA isolation and PCR. Bilateral 14-gauge punch dissections of NAc,
hippocampus, and medial prefrontal cortex were obtained from 1-mm-
thick coronal brain sections and frozen immediately on dry ice. Dissec-
tions were thawed and processed in TRIzol (Invitrogen) according to the
manufacturer’s guidelines. RNA was isolated and purified using RNeasy
Micro columns (QIAGEN). We confirmed the purity of our samples by
spectroscopy at 260/280 and 260/230 1.8. RNA was reverse transcribed to
¢DNA using iScript Kit (Bio-Rad). cDNA was quantified by qPCR using
SYBR green. gPCR was performed using an Applied Biosystems 7500
system. Reactions were run in triplicate and analyzed using the Delta
Delta Ct method (Livak and Schmittgen, 2001) with GAPDH as a nor-
malization control, which was not affected by social defeat stress.

ChIP. ChIP was performed as described previously (Ferguson et al.,
2015) with minor modifications. Briefly, for each ChIP, anterior and
posterior bilateral 14-gauge NAc punches were pooled (5 animals, 20
NAc punches per sample). Punches were fixed for 10 min with 1% form-
aldehyde and then quenched with 2 M glycine for 5 min. Samples were
homogenized using a desktop sonicator at low settings (amplitude 40%)
2 times for 7 s on ice. Next, samples were sheered using a Diogenode
Bioruptor XL at 4°C at high sonication intensity for 30 s on/30 s off for 15
min, followed by 5 min of rest and an additional 10 min of sonication.
Fragment size range of 250—1000 bp was verified with an Agilent bioana-
lyzer. Before sonication of samples, magnetic sheep anti-rabbit or
anti-mouse beads (Invitrogen) were prepared with the respective anti-
body of interest at 4°C overnight on a rotator. After washing of the
magnetic bead/antibody complex, 7.5 mg was added to 400 ul of sheared
chromatin for histone ChIP for 16 h at 4°C (H3K4me3, H3K9me2, and
H3K9me3); a normal IgG control was performed to test for nonspecific
binding; 80 ul of each sample of sheared chromatin was used as input
controls. Samples were washed with RIPA and Tris-EDTA buffers. Re-
verse cross-linking was performed at 65°C overnight and proteins were
removed with proteinase K (Invitrogen). DNA was purified usinga DNA
purification kit (QIAGEN). qPCR analysis for ChIP was performed using
an Applied Biosystems 7500 system. Data were normalized with input
controls and Gapdh values.

Osmotic minipump infusions. Surgery was performed as described pre-
viously (Covington et al., 2009). Briefly, animals were anesthetized with a
combination of ketamine (100 mg/kg) and xylazine (10 mg/kg) and sur-
gically implanted with two subcutaneous Alzet minipumps (model 1002;
Durect) and guide cannulae (Plastics One) targeting the NAc bilaterally.
One day before surgery, cannulae (28 gauge stainless steel) were filled
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with resveratrol (0.1 or 0.2 ug/d), EX-527 (0.5 or 1.0 ng/d), or 0.4%
dimethyl sulfoxide (i.e., vehicle) and each pedestal within the assembly
was affixed separately via vinyl tubing to a minipump, each loaded with
drug or vehicle. The minipumps were activated on the evening before
surgery (by incubating them in sterile saline at 37°C) to initiate a contin-
uous delivery at 0.25 ul/h over 14 d. On the day of surgery, the pumps
were implanted in the backs of the mice through small incisions at the
base of the neck. Cannulae targeting the NAc according to bregma (an-
teroposterior, 1.5; mediolateral, 1.0; dorsoventral, 4.5 mm) were perma-
nently fixed to the skull with Loctite skull adhesive (Henkel). The
coordinates used for minipump surgeries were slightly different from
those used for viral vector infusions to account for the hardware that is
attached to the skull in the former. Cannulae, tubing, and minipumps
were all secured under the skin using Vetbond tissue adhesive (3M) and
two staples. Mice were carefully monitored after the surgery. All behav-
ioral tests were conducted after a 14 d infusion of each drug.

Cannulation surgery. To assess the effects of resveratrol or EX-527 (0.5
mM) on social-stress-induced changes in anxiety and despair-like behav-
iors, we implanted bilateral cannulae (anteroposterior, 1.5; mediolateral,
1.0; dorsoventral, 4.5 mm) targeting the NAc of susceptible mice. One
week after surgery, mice were infused with drug or vehicle 30 min before
social interaction behavior, open-field, and elevated-plus maze tests.

Statistical analysis. One-way ANOVAs were performed to determine
significance for conditions in which there were more than two groups or
two factors. Unpaired Student’s ¢ test with a two-tailed p-value were used
for other comparisons including qPCR and Western blotting. Statistical
analysis was performed using Prism 5.0 (GraphPad). All values included
in the figure legends represent means = SEM.

Results

Chronic social defeat stress induces SIRT1 expression in

the NAc

As a first step in studying the role of SIRT1 in depression- and
anxiety-like behaviors, we subjected C57BL/6] male mice to
chronic social defeat stress. The mice were classified as suscepti-
ble or resilient based on their social interaction time (Fig. 1A-C),
a highly reliable indicator of depressive-like behaviors (Krishnan
et al., 2007). Next, using real-time PCR, we measured Sirtl
mRNA expression either 48 h or 10 d after the last defeat episode
in several brain regions implicated in depression and anxiety,
including the NAc, hippocampus, and medial prefrontal cortex
(mPFC; Nestler et al., 2002; Holmes and Wellman, 2009). We
observed that chronic social defeat stress induces Sirt] mRNA
levels in the NAc of susceptible mice 48 h after the last social
defeat (F, 9y = 9.75, p = 0.001), with no changes seen in resilient
mice (Fig. 1D), and decreases Sirt] expression in the hippocam-
pus of susceptible mice (Fig. 1D; F, ,,) = 6.33, p = 0.007), with
no changes seen in mPFC. In addition, when mRNA was assessed
10 d after social defeat, we observed persistent elevation of Sirt]
expression in the NAc of susceptible mice (F(, 5 = 5.99, p =
0.01) and elevation in the mPFC of resilient mice (F, ,,, = 21.89,
p = 0.001; Fig. 1E), suggesting stable changes in Sirt] transcrip-
tional regulation in these two brain regions. In contrast, we did
not observe an increase in Sirt] mRNA levels in the NAc after
submaximal defeat (Fig. 1F), indicating the need for chronic
stress for induction of Sirtl. We also did not observe changes in
the expression of other sirtuin family members (Sirt2-7) in the
NAc after chronic social defeat stress. The induction of Sirtl
mRNA in the NAc at the 48 h time point was paralleled by in-
creased SIRT1 protein expression in this brain region of suscep-
tible mice (Fig. 1G; F, 15y = 4.13, p = 0.03), with no differences
observed in resilient mice. We further investigated histone
modifications at the Sirt] promoter to reveal the mechanism of
elevated expression of Sirt] using ChIP assays in the NAc (Fig.
1J-0). We observed a significant increase of a transcriptionally
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Figure 1.  Chronicsocial defeat stress induces SIRT1 expression in the NAc. A, Schematic of social defeat (SD) and social interaction (SI) test. Mice were subjected to SD stress for 10 d. On day 11,
mice were tested on Sland classified into susceptible and resilient social defeat subgroups. B, Heat map of Sl test and representative data for control, susceptible, and resilient mice. C, Sl data showing
decreased social interaction in susceptible but not resilient mice (n = 10-12). D, qPCR analysis 48 h after SD reveals increased levels of Sirt7 mRNA in the NAc (Figure legend continues.)
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Figure 2.

Systemic injection of resveratrol does not change anxiety and depression-like behavior. A-D, Systemic injection of the sirtuin activator resveratrol for 14 d (10 or 20 mg/kg, i.p.) does

not change baseline behavior on the open-field (A), elevated-plus maze (B), sucrose preference (C), or forced swim tests (D) (n = 5). E-1, Submaximal defeat does not change the behavioral
outcomesand social interactions between groups (n = 5).J, K, Sirt1 deacetylase activity was measured in the NAc (J) and hippocampus (K) tissues from baseline groups (n = 5). Data are represented

as the mean == SEM.

active histone modification, trimethylated lysine 4 of histone H3
(H3K4me3), at the transcription start site (TSS) of the SirtI pro-
moter in susceptible mice, but not in the resilient group (Fig. 1K;
F56) = 10.66, p = 0.011). Repressive histone markers (dimethy-
lated and trimethylated lysine 9 of H3; H3K9me2 and H3K9me3)
were not changed significantly at Sirtl promoter regions among
the control, susceptible, and resilient groups (Fig. 1L-0). To-
gether, these data demonstrate that exposure to chronic stress
causes the prolonged induction of SIRT1 in the NAc of suscepti-
ble mice only.

Pharmacological activation of sirtuins increases depression-
and anxiety-like behaviors

We next investigated whether pharmacological activation of
sirtuins by resveratrol, a well characterized albeit nonspecific sir-
tuin activator (Sinclair and Guarente, 2014), alters depression-
and anxiety-like behavior. Mice were tested on the open-field,
elevated-plus maze, sucrose preference, and forced swim tests.
Resveratrol was given as daily intraperitoneal injections for 14 d
at 10 or 20 mg/kg. We did not observe changes in any of these

<«

(Figure legend continued.)  (n = 7-8) and decreased levels in hippocampus (Hippo; n = 8) of
susceptible mice, with no changes in the mPFC. E, Persistent elevations of Sirt7 mRNA levels in
the NAc (n = 6) 10 d after SD and increases in the mPFC (n = 8) without changes in the Hippo.
F, Acute submaximal defeat stress does not alter Sirt7 mRNA levels in the NAc. G-/, Western blot
analysis reveals increased SIRT1 protein in the NAc 48 h after SD (G), but not in the Hippo (H),
and mPFC (/) (n = 6-38). J-0, ChIP assay revealing increased gene activation markers
(H3K4me3; n = 3) onthe (K) TSS of Sirt7 promoter in susceptible mice, but not on the upstream
promoter region (J), whereas there are no changes between groups in repressive markers
(H3K9me2 and H3K9me3; n = 3).*p << 0.05, **p << 0.01 compared with control group; ##p <
0.01 compared with susceptible group. Data are represented as the mean = SEM.

behaviors after systemic injection of resveratrol (Fig. 2A-D). In
addition, systemic resveratrol administration had no effect on
the susceptibility of mice exposed to submaximal defeat stress
(Fig. 2E-I). When we assessed Sirt1 activity in the NAc and hip-
pocampus of baseline groups after behavioral tests, no significant
changes were detected in any of the groups (Fig. 2J,K). However,
when resveratrol was infused directly into the NAc bilaterally
via osmotic minipumps for 14 d, we observed an increase in
depression- and anxiety-like behaviors (Fig. 3B—D) without de-
tectable changes in exploratory behaviors (Fig. 3E-H ). Figure 3A
illustrates intra-NAc infusion timeline, validation of cannula
placement, and the SIRT1 activity assay showing increased SIRT1
deacetylase activity in the NAc tissue infused locally with either
low (0.1 wg/d) or high (0.2 ug/d; F, 15) = 111.4,p < 0.001) doses
of resveratrol. Resveratrol infusions (0.2 ug/d) into the NAc de-
creased time spent in the center of the open field (Fig. 3B; F(, 53, =
6.93, p = 0.004) and on the open arm of the elevated-plus maze
(Fig. 3G F, 5,y = 4.41, p = 0.02). In addition, intra-NAc resvera-
trol decreased sucrose preference (Fig. 3D; F(, ;) = 3.64, p =
0.04). Together, these findings suggest that elevated SIRT1
activity in the NAc increases depression- and anxiety-like
behaviors.

Pharmacological inhibition of SIRT1 in the NAc decreases
depression- and anxiety-like behaviors

Next, we investigated whether pharmacological blockade of
SIRT1 signaling via a SIRT1-specific inhibitor, EX-527, produces
antidepressant and anxiolytic effects in several behavioral assays.
EX-527 was infused bilaterally into the NAc via osmotic mini-
pumps at a dose of 0.5 or 1.0 ug/d for 14 d (Fig. 3I-K). Such
EX-527 infusions decreased SIRT1 deacetylase activity in this
brain region (F, 5, = 11.78, p < 0.001), but did not elicit alter-
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Figure3. Pharmacological modulation of SIRT1 activity in the NAc regulates anxiety and depression-like behavior bidirectionally. 4, Schematic of experimental design. Mice were implanted with

osmotic minipumps filled with resveratrol (0.1 g/d or 0.2 eg/d) or the SIRT1 antagonist EX-527 (0.5 wg/d or 1.0 wwg/d) targeting the NAc for 14 d and tested on a battery of behavioral tasks on
days 15—18, followed by tissue collection. SIRT1 catalytic assay shows increased SIRT1 deacetylase activity in the NAc of mice infused with resveratrol (n = 7) and decreased SIRT1 deacetylase activity
in the NAc of mice infused with EX-527 (n = 6). B-H, Sustained intra-NAc infusion of resveratrol at 0.2 pg/d results in decreased time in the center of an open field (n = 8 -9; B), decreases time
in the open arms of an elevated-plus maze (n = 6-10; €), and decreased sucrose preference (n = 6—7; D) without changes in exploratory behaviors (E-H). I-0, (Figure legend continues.)
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SIRT1 overexpression in the NAc promotes depressive- and anxiety-like behaviors. A, Schematicillustrating HSV targeting and expression profile in the NAc. HSV vectors begin to express

1d after infusion and mediated increased expression until day 4, after which time expression dissipates, consistent with previous studies (Barrot et al., 2002). B—D, Overexpression of SIRT1in the
NAcincreases depression- and anxiety-like behaviors, as measured by decreased time spent exploring the center of an open field (n = 7; B) and open arms of an elevated-plus maze (n = 7-10; ()
and increase immobility time in the forced swim test (n = 9-10; D). E, Schematic of expression profile of HSV and submaximal defeat procedure. F—H, Submaximal defeat decreased social
interaction (n = 9—13; F), time in center of an open field ( = 10; G), and time in the open arms of an elevated-plus maze (n = 10; H). *p << 0.05. Data are represented as the mean = SEM.

ations in exploratory behaviors (Fig. 3L-O). In stress-naive mice,
such infusions also increased the time spent in the center of an
open field (Fig. 31; F(, 5,, = 4.54, p = 0.01), with no changes seen
in the elevated-plus maze (Fig. 3]). We then tested the ability of
SIRT1 inhibition to block behavioral abnormalities observed af-
ter chronic social defeat stress (Fig. 3P). We found that intra-NAc
infusions of EX-527 30 min before behavioral testing blocks
defeat-induced increases in anxiety-like behaviors on the open
field (Fig. 3Q; unpaired ¢ test, ¢(,,) = 2.39, p = 0.03) and elevated-
plus maze (Fig. 3R; unpaired t test, t,,) = 2.18, p = 0.04) com-
pared with vehicle. In addition, EX-527 infusions into NAc
blocked the effects of social defeat stress on social avoidance be-
havior (Fig. 3S; unpaired t test, t,,, = 2.50, p = 0.02). These
studies demonstrate that infusions of a SIRT1 inhibitor into the
NACc attenuate depression- and anxiety-like behaviors.

HSV-SIRT1 overexpression increases baseline anxiety-like
and acute stress behaviors

To complement these pharmacological data, we increased SIRT1
levels directly in the NAc neurons by injecting an HSV vector ex-
pressing SIRT1 as well as GFP (HSV-SIRT1) into this region of wild-
type C57BL/6] male mice (Fig. 4A). Control mice were injected with
an HSV vector that expresses GFP alone (Fig. 4A). Animals were
examined 3 d after HSV injection in the open-field procedure, which
revealed increased anxiety-like behavior, as indicated by decreased
time spent exploring the center of the field (Fig. 4B; unpaired t test,
ta2) = 2.7, p = 0.02). These effects were not associated with changes

<«

(Figure legend continued.) ~ Sustained intra-NAc infusion of EX-527 at 0.5 .g/d results in
increased center time on an open field (n = 13; /) and no changes in exploratory behaviors
(L-0). P--S, Effects of EX-527 infusions on the development of stress-induced depression- and
anxiety-like behaviors. EX-527 infusions block stress induced depression- and anxiety-like
symptoms as reflected by increased social interaction time (n = 6—7; §) and increased time in
the center of an open field (7 = 7; Q) and open arms of an elevated-plus maze (n = 6—8; R).
#p < 0.09, *p < 0.05, **p << 0.01. Data are represented as the mean = SEM.

in other performance variables such as velocity and total distance
traveled (data not shown). Similarly, mice expressing HSV-SIRT1
displayed a decrease in time spent exploring the open arm of the
elevated-plus maze (Fig. 4C; unpaired ¢ test, 5, = 2.2, p = 0.04). In
the forced swim test, increased SIRT1 levels in the NAc increased
immobility time (Fig. 4D; unpaired ¢ test, t,,, = 2.2, p = 0.03)
typically interpreted as a prodepressive-like phenotype. These results
suggest that SIRT1 increases baseline anxiety-like behavior and acute
stress responses directly when overexpressed in the NAc of wild-type
mice.

SIRT1 overexpression in the NAc increases vulnerability to
stress-induced depression- and anxiety-like behaviors

We next subjected mice infused intra-NAc with HSV-GFP or
HSV-SIRT1 to a submaximal defeat stress protocol, which con-
sists of 3 5 min defeat episodes interspersed by 15 min rest periods
3 d after HSV surgery (Fig. 4E); this subthreshold social defeat
protocol does not induce social avoidance in normal mice and is
used to reveal potential prosusceptible effects of experimental
manipulations (Krishnan et al., 2007, 2008). Social interaction
testing conducted 24 h later revealed that mice expressing HSV-
SIRT1 exhibited decreased interaction with a social target, which
represents a prodepression-like response compared with HSV-
GFP controls (Fig. 4F; unpaired ¢ test, £,y = 2.4, p = 0.02). In
addition, mice expressing HSV-SIRT1 displayed an increase in
anxiety-like behaviors when studied in an open field (Fig. 4G;
unpaired ¢ test, ¢4, = 1.9, p = 0.03) or elevated-plus maze (Fig.
4H; unpaired t test, t,;) = 1.6, p = 0.05). No changes were
observed in other performance variables. These results suggest
that SIRT1 in the NAc promotes stress-induced depression- and
anxiety-like behaviors.

SIRT1 ablation in the NAc decreases depression- and
anxiety-like behaviors

In a complementary study, to determine whether SIRT1 knock-
down decreases depression- and anxiety-like behavior, we in-
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SIRT1 ablation in the NAc induces antidepressant- and anxiolytic-like responses. A, Schematic representing the floxed exon 4 of the Sirt7 gene that, in the presence of Cre

recombinase, is excised, resulting in nonfunctional SIRT1 protein. B, Inmunohistochemistry showing the knock-down of SIRTT expression in the NAc of floxed Sirt7 mice injected
intra-NAc with AAV-Cre (n = 5—6). C—F, SIRT1 knock-down from NAc with AAV-Cre decreases basal anxiety-like behavior as reflected by an increase in center time of an open field (n =
11-14; 0). G-K, SIRTT knock-down from NAc also produces antidepressant like responses as reflected by an increase in social interaction time (n = 10; G). #p < 0.09, *p << 0.05. Data

are represented as the mean = SEM.

fused an AAV vector expressing Cre recombinase plus GFP or
GFP alone specifically into NAc of mice homozygous for a
loxP-flanked Sirt1 gene (Li et al., 2007). Eighteen days after AAV
injection (when transgene expression is maximal), SIRT1 knock-
down was confirmed by immunohistochemistry (Fig. 5B), which
revealed a significant decrease in SIRT1 immunofluorescence in-
tensity in the NAc of mice infused with AAV-Cre (unpaired ¢ test,
ty = —2.7, p = 0.02). Using this approach, we observed that
animals expressing AAV-Cre showed increased time spent in the
center of an open field (Fig. 5C; unpaired ¢ test, ¢,3) = 2.4, p =
0.02) indicative of a decrease in anxiety-like behavior. In addi-
tion, after defeat stress, mice with ablation of the Sirt1 gene in the
NAc showed an antidepressant-like phenotype, as illustrated by
an increase in social interaction time (Fig. 5G; unpaired ¢ test,
tag) = 2.3, p = 0.03). These results suggest that decreasing SIRT1
levels in the NAc produces antidepressant- and anxiolytic-like
effects.

SIRT1 regulation of depression- and anxiety-like behaviors is

cell-type specific in the NAc

To better understand the mechanism by which increased
SIRT1 function in the NAc promotes depression- and anxiety-
like behavioral responses, we overexpressed SIRT1 selectively
in either of the two major neuronal cell types in the NAc,
MSNs that express predominantly either the D1 or D2 dopa-
mine receptor. We achieved this by generating HSV vectors
that express SIRT1 (HSV-LS1L-SIRT1) or EYPF (HSV-LSIL-
EYPF) in a Cre-dependent manner and injected the vectors

into the NAc of D1-Cre or D2-Cre mice (Fig. 6A,B). Immu-
nostaining confirmed Cre-dependent overexpression of
SIRTI in the NAc of both Cre lines and significant increases
of SIRT1 expression levels at the injection sites of HSV-LS1L-
SIRT1 (Fig. 6B; unpaired ¢ test, ¢4 = 9.5, p = 0.00001). We
then performed a series of behavioral studies to measure
depression- and anxiety-like behaviors in D1-Cre or D2-Cre
mice expressing HSV-LSIL-SIRT1 or HSV-LSIL-EYPF. In
D1-Cre mice infused with HSV-LS1L-SIRT1, we observed a
significant decrease in time spent in the center of an open field
(Fig. 6C; unpaired ¢ test, t,,) = —2.6, p = 0.02), increased
immobility time (Fig. 6E; unpaired ¢ test, t,,y = 2.8, p = 0.01)
in the forced swim test, and decreased sucrose preference (Fig.
6F; unpaired ¢ test, t,) = —2.4, p = 0.04) relative to HSV-
LSIL-EYPF controls. In addition, after submaximal defeat
stress, we observed an increase in anxiety-like behavior in
mice overexpressing SIRT1 selectively in DI MSNs, as re-

flected by a decrease in time spent exploring the center of an
open field (Fig. 6H; unpaired ¢ test, ;o) = —2.6, p = 0.02) and
strong trend toward decreased time spent exploring the open
arms of an elevated-plus maze (Fig. 6I; unpaired t test, ¢y, =

—2.1,p = 0.06). Moreover, we observed a strong trend toward

an increase in depression-like behaviors, as reflected by a de-

crease in social interaction time (Fig. 6G; unpaired t test,

toy = —2.1, p = 0.06). In contrast, we did not observe any
changes in behavioral responses when SIRT1 was overex-

pressed selectively in D2 MSNs. These results suggest that
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surrounds the stop cassette between the IE 4/5 promoter-driven TSS and sequence encoding SIRT1, followed by a constitutive CMV promoter-driven GFP. B, Cells that express Cre recombinase
(green) delete the stop sequence, allowing the IE 4/5 promoter to drive ectopic expression of SIRT1 (red; n = 5). (—F, Cell-type-specific overexpression of SIRT1 in D1 MSNs increases baseline
depression- and anxiety-like behaviors as measured by decreased time spent in the center of an open field (n = 9—-10; €), increased immobility time in the forced swim test (n = 9-10; E), and
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*p < 0.05, ***p < 0.001 Data are represented as the mean == SEM.

SIRT1 produces its prodepression and anxiety-like effects via
actions in D1 MSNGs.

Discussion

Chronic stress induces Sirt1 expression in the NAc of
susceptible mice

Our results demonstrate that SIRT1, a class IIl HDAC, regulates
depression- and anxiety-like behaviors via actions in the NAc. We
show that chronic social defeat stress stably induces SIRT1 ex-
pression in the NAc, characterized by elevations of SIRT1 48 h
and 10 d after exposure to the last defeat episode. Elevations in
Sirt] mRNA levels were specific to chronic stress because an acute
social defeat episode did not alter Sirt] expression. Moreover, we
revealed that the increased Sirt] expression likely reflects tran-
scriptional activation because it accompanies an active histone
modification (H3K4me3) at the TSS of the Sirt] promoter. Inter-
estingly, whereas we observed increases in Sirt] mRNA levels in
the NAc, there was a concomitant decline in SirtI expression
in the hippocampus at the 48 h time point. This opposite expres-
sion of Sirt1 in the NAc versus the hippocampus is consistent with
other studies showing opposing regulation of several other
signaling pathways (e.g., BDNF-TrkB signaling, CREB, and
HDACS5) between these two brain regions in animal models of
depression (Nestler et al., 2002; Tsankova et al., 2006; Renthal et
al., 2007).

Several studies have shown decreased activity in the NAc, in-
ferred from brain-imaging findings, of patients suffering from
MDD (Drevets et al., 1992; Mayberg et al., 2000), which is
thought to correspond to a decreased ability to experience plea-
sure or reward. We hypothesize that SIRT1, acting as a transcrip-

tional repressor, contributes to the observed decrease in the
NACc activity observed in these patients. Previous ChIP-seq and
RNA-seq data have established SIRT1’s role as a transcriptional
repressor in the NAc (Ferguson et al., 2015). Further studies are
now needed to identify the target genes for SIRT1 that mediate its
functional effects.

Upregulation of SIRT1 in the NAc increases susceptibility

We also present compelling evidence that the lasting induction of
SIRT1 expression in the NAc after chronic social defeat stress con-
tributes to the persistent behavioral abnormalities observed under
these conditions. We show that altering SIRT1 activity using a phar-
macological or genetic approach controls depression- and anxiety-
like behaviors bidirectionally. We demonstrated that infusion of the
nonspecific sirtuin agonist resveratrol promotes depression- and
anxiety-like behavioral deficits, whereas inhibition of SIRT1 with a
more selective antagonist, EX-527 (Gertz et al., 2013), induces anti-
depressant- and anxiolytic-like responses. We did not observe
changes in baseline behaviors when resveratrol was injected system-
ically for 14 days, which is consistent with an earlier study (Liu et al.,
2014). However, another study showed antidepressant-like effects of
systemic resveratrol (Hurley et al., 2014). These conflicting results
may be due to differences in dose of resveratrol, duration of admin-
istration, and rodent model used.

To complement the pharmacological approach, we used overex-
pressed SIRT1 in the NAc using HSV vectors or, conversely, reduced
SIRT1 levels using AAV-Cre in floxed Sirt1 mice (Liet al., 2007). We
show that overexpression of SIRT1 in the NAc increases baseline
depression- and anxiety-like behaviors and renders mice more sus-
ceptible to submaximal social defeat. In contrast, local knock-down
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of SIRT1 in the NAc produced antidepressant- and anxiolytic-like
effects. In addition, we targeted the overexpression of SIRT1 to se-
lective cell types in the NAc, D1 MSNs or D2-MSNs, and show that
increased depression- and anxiety-like behaviors are driven specifi-
cally by D1 MSNs, with no changes observed when SIRT1 was over-
expressed in D2 MSNs.

Consistent with the present findings, a recent study showed
that global decreases of SIRT1 using brain-specific SIRT1 knock-
out mice, which have the catalytic domain of SIRT1 (exon 4)
deleted throughout the nervous system (Cohen et al., 2009), also
results in reduced baseline anxiety-like behaviors and increased
resilience to social defeat stress (Libert et al., 2011). In contrast,
SIRT1-overexpressing mice (Bordone et al., 2007), which have
twofold higher SIRT1 levels as control mice, displayed increased
susceptibility to anxiety- and depression-related responses (Lib-
ert et al., 2011). In addition, a chronic variable stress model of
depression in rats showed a correspondence between increased
sirtuin activity and prodepressive- and anxiety-like behaviors,
results consistent with our findings (Ferland et al., 2013).

Cell-type-specific actions of SIRT1 modulate depression- and
anxiety-like behaviors

What is not understood is how SIRT1 influences depression- and
anxiety-like behaviors in a cell- and circuit-specific manner. The
present study addresses this important question for the first time
and demonstrates a cell-type-specific role of SIRT1 in the regu-
lation of these behavioral abnormalities in the NAc. We show that
the cell-type-specific overexpression of SIRT1 in D1, but not in
D2, MSNs promotes depressive- and anxiety-like behaviors and
hypothesize that SIRT1 acts as a transcriptional repressor in the
D1 pathway, thereby decreasing the ability to experience reward.
Itis currently believed that activation of D1-MSNs produces pos-
itive rewarding behavior, whereas activation of D2 MSNs leads to
aversive behaviors (Maia and Frank, 2011; Freeze et al., 2013).
Recent optogenetic studies support this notion (Lobo et al., 2010;
Koo et al., 2014; Francis et al., 2015). We thus hypothesize that
increases in SIRT1-mediated transcriptional repression leads to
decreases in the activity of the D1 pathway. For example, after
restraint stress, anhedonia-like behavior is mediated by decreases
in excitatory synaptic strength of NAc D1 MSNs, with no changes
in D2 MSNs (Lim et al., 2012). In addition, after chronic social
defeat stress, susceptible mice have decreased excitatory inputs
into D1, but not D2, MSNs and chronic chemogenetic attenua-
tion of D1 MSNs induced depressive-like behaviors in mice that
were previously resilient (Francis et al., 2015).

Previously, we reported that SIRT1 overexpression in the
NAc, which suppresses natural reward in the present study, en-
hances cocaine and morphine reward (Ferguson etal., 2013). The
explanation for this paradox is not known. One possibility is that
SIRT1 exerts different effects in D1 versus D2 MSNs, as noted
above. Moreover, a review of the literature shows a highly com-
plex relationship between the effect of molecular manipulations
in the NAc on stress- versus addiction-related outcomes: a given
manipulation that enhances drug reward can promote, reduce, or
have no effect on depression- and anxiety-like behaviors and vice
versa (Russo and Nestler, 2013). Further work is needed to ad-
dress this complexity.

BDNF pathway is a putative target of SIRT1 signaling in

the NAc

SIRT1 may regulate depressive-like symptoms through the
BDNF signaling pathway. Direct evidence for a SIRT1-BDNF
interaction comes from a recent study (Ferguson et al., 2013)
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demonstrating that SIRT1 overexpression increases Bdnf expres-
sion in the NAc and a ChIP-seq analysis revealing that the Bdnf
gene is a downstream transcriptional target of SIRT1 (Ferguson
et al., 2015). Moreover, SIRT1 has been found to act through a
disinhibitory pathway to regulate the expression of BDNF by
inhibiting miR-134, which downregulates BDNF levels (Gao et
al., 2010). Several studies have established that chronic social
defeat stress increases BDNF signaling in the VTA-NAc mesolim-
bic pathway, thereby promoting susceptibility to stress-induced
behavioral deficits (Berton et al., 2006; Krishnan et al., 2007;
Walsh et al., 2014; Koo et al., 2016). Interestingly, postmortem
tissue from depressed patients shows elevated levels of BDNF
in the NAc (Krishnan et al., 2007). Together, these studies suggest
that SIRT1 is a key regulator of BDNF signaling, which in turn is
linked to depression (Berton et al., 2006; Krishnan et al., 2007).
Additional studies will be required to confirm conclusively the
SIRT1-BDNF signaling pathway in our model of depression.

Translational importance of Sirtl regulation in

human depression

Arecent publication by the CONVERGE Consortium identified a
reproducible association of the SIRTI locus in Han Chinese with
MDD (CONVERGE Consortium, 2015). This is the first report of
a genetic linkage with MDD that achieves genome-wide signifi-
cance. Therefore, our results that SIRT1 functions in the NAc to
regulate depression- and anxiety-like behaviors are of significant
translational importance and reveal a novel path forward for the
development of therapeutic targets for depression. Additional
support for the translational significance of our findings comes
from Libert et al. (2011), who identified SNPs (rs10997870) in the
SIRT1 gene associated with risk of anxiety (panic disorder and
social phobias) in humans. These findings were also replicated
using samples from the Virginia Adult Twin Study of Psychiatric
and Substance Use Disorders (VATSPSUD), which consists of
9000 adult Caucasian twins (Kendler et al., 2001). An indepen-
dent study of Japanese subjects also found a significant associa-
tion between another SIRTI SNP (rs10997875) and MDD (Kishi
et al., 2010). Importantly, the finding that chronic social defeat
stress increases SIRT1 levels in the NAc and that two of the most
frequent genetic variations in the N terminus (S14P and P37L)
increase SIRT1 protein activity (Libert et al., 2011) support the
translational relevance of the social defeat procedure and its con-
struct validity. Together, these results suggest that SIRT1 plays an
essential role in regulating depression- and anxiety-related be-
haviors and introduces a novel signaling pathway for the devel-
opment of innovative antidepressants to treat MDD.
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