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Abstract

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy of
childhood and affects 1 in 3600 male births. The disease is caused by mutations in
the dystrophin gene leading to progressive muscle weakness which ultimately results
in death due to respiratory and cardiac failure. Accurate, practical, and painless
tests to diagnose DMD and measure disease progression are needed in order to test
the effectiveness of new therapies. Current clinical outcome measures such as the six-
minute walk test and North Star Ambulatory Assessment (NSAA) can be subjective
and limited by the patient's degree of effort and cannot be accurately performed in
the very young or severely affected older patients. We propose the use of image-based
biomarkers with suitable machine learning algorithms instead. We find that force-
controlled (precise acquisition at a certain force) and force-correlated (acquisition
over a force sweep) ultrasound helps to reduce variability in the imaging process.
We show that there is a high degree of inter-operator and intra-operator reliability
with this integrated hardware-software setup. We also discuss how other imaging
biomarkers, segmentation algorithms to target specific subregions, and better machine
learning techniques may provide a boost to the performance reported. Optimizing the
ultrasound image acquisition process by maximizing the peak discriminatory power of
the images vis-A-vis force applied at the contact force is also discussed. The techniques
presented here have the potential for providing a reliable and non-invasive method to
discriminate, and eventually track the progression of DMD in patients.

Thesis Supervisor: Brian W. Anthony
Title: Principal Research Scientist, Department of Mechanical Engineering

3



4



Acknowledgments

I would like to thank my advisor, Dr. Brian W. Anthony, for his guidance, and

mentorship. Brian's kindness, patience, and inspiration has been invaluable to me.

I would like to thank Matthew W. Gilbertson, whose fantastic force-controlled

probe was used for this research. I received extraordinary support from our collabo-

rators at Beth Israel Deaconess Medical Center - Dr. Seward Rutkove, Dr Jim Wu,

Irina Shkylar, and Adam Pacheck. I would also like to thank Dr. Anthony Samir and

Dr. Manish Dhyani from Massachusetts General Hospial. I owe a lot to the help I

received from Shih-Yu Sun, Aaron Zakrzewski, Ina Kundu, Kristi Oki, John Haeseon

Lee and Kai E. Thomenius for their support. I am indebted to Aaron Dentinger from

GE Research for his help.

I would like to thank Arun Mallya for his support through this time. I am very

grateful to Shaily Jaisinghani for her presence in my life. I would like to thank my

parents, Suryanarayana and Suseela, and my brother Harsha. They infuse the fun in

my life away from work.

5



6



Contents

1 Introduction 15

1.1 Related Work .............................. . 15

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background 19

2.1 Duchenne Muscular Dystrophy . . . . . . . . . . . . . . . . . . . . . 19

2.2 Quantitative Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Imaging Biomarkers 25

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Patient selection . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Ultrasound Examinations . . . . . . . . . . . . . . . . . . . . 28

3.2.3 US Image and Data Analysis . . . . . . . . . . . . . . . . . . 28

3.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Patient Demographics . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 US Image and Data Analysis . . . . . . . . . . . . . . . . . . 31

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



4 Force-controlled Ultrasound 37

4.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 M ethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Statistical Sieving . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Force-correlated Ultrasound 49

5.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 M ethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Image Set Selection . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Diagnostic Fidelity Enhancement . . . . . . . . . . . . . . . . 53

5.2.4 Biomarker Quantification . . . . . . . . . . . . . . . . . . . . . 55

5.2.5 Clustering.. .... . . .. .. ... . . . . . . ..- -55

5.2.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Clinical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 61

6.1 Contributions . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 62

6.2 Future work . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Imaging Biomarkers . . . . . . . . . . . . . . . . . . . . . . . 63

8



6.2.2 Optimal Ultrasound Image Acquisition . . . . . . . . . . . . . 65

6.2.3 Progression Tracking . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.5 Better Learning Methods . . . . . . . . . . . . . . . . . . . . . 70

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9



10



List of Figures

2-1 Ultrasound B-Mode image and edge threshold-detected images for a

DMD subject (A,C) and Control subject (B,D) respectively. ..... 20

2-2 Photos of our force-controlling system. The force controlled ultrasound

system. Images courtesy Matthew W. Gilbertson. . . . . . . . . . . . 23

3-1 Edge detection analysis of gray scale ultrasound image for a Control

and a DMD subject. The above edges are depicted at a sensitivity

threshold of 0.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-2 Muscle tracing and region of interest used in analysis. (a) Gray scale

US image of the quadriceps muscles in a 6 year old control patient. (b)

Overlay represents the traced muscle area (white line) excluding the

subcutaneous tissue/skin, bone, and deeper tissues. Dotted line and

double arrows denote the upper 1/3 of the muscle area used for analysis. 29

3-3 Binary edge detection images at different thresholds. Ultrasound im-

ages of the quadriceps muscles in DMD (a) and control subjects (f).

The corresponding binary ED images detected at sensitivity thresh-

olds of 0.05 (b and g), 0.1 (c and h), 0.2 (d and i), and 0.4 (e and j)

are shown. More edges are detected at the lower thresholds than the

higher thresholds. The sensitivity threshold of 0.05 provided the best

discrimination between DMD and controls. . . . . . . . . . . . . . . 30

4-1 Ultrasound B-Mode image and edge threshold-detected images . . . . 38

11



4-2 The force-controlled ultrasound probe maintains a programmable con-

tact force between probe and patient and is used to capture images

at a repeatable 2 N of contact force. An LED bar graph positioned

near the top of the probe depicts the position of the probe and helps

the user keep the device centered within its range of motion. Image

courtesy Matthew W. Gilbertson. . . . . . . . . . . . . . . . . . . . . 40

4-3 In this figure, ultrasound scans from DMD (a), and control (b) sub-

jects are shown with their corresponding binary maps ((c) and (d)

respectively) generated via the Canny edge detection algorithm at a

threshold of 0.20. It can be easily seen that when the edges are counted

and normalized by area, (d) is expected to have a higher number than

(c). We take advantage of this behavior. . . . . . . . . . . . . . . . . 41

4-4 Illustration of a decision tree for the two classes of DMD and Controls

based on the edge detection parameter for a particular muscle group.

This was visualized in MATLAB. . . . . . . . . . . . . . . . . . . . . 42

4-5 This graph shows the number of statistically significant parameters

at different levels of significance for each muscle-group. The Quadri-

ceps and Biceps tend to show relatively higher number of significant

parameters consistently at multiple levels of significance. . . . . . . . 44

4-6 In this bar chart, we see all four performance metrics for the mus-

cle groups Biceps(B), Deltoids (D), Forearm(F), Medial Gastrocne-

mius(MG), Quadriceps(Q) and Tibialis Anterior(TA). . . . . . . . . . 45

4-7 Trends for Accuracy, Precision, Sensitivity and Specificity for different

depths of the im ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5-1 (a) Ultrasound scans of the Quadriceps muscle in a subject from the

control group (b) The same muscle in a subject with Duchenne Muscu-

lar Dystrophy (DMD). DMD-affected muscles exhibit high fat infiltration. 50

5-2 The force-controlled ultrasound probe. Device visualization courtesy

M atthew W . Gilbertson. . . . . . . . . . . . . . . . . . . . . . . . . . 52

12



5-3 Box filter applied to the original image (a) to obtain (b). Multi-scale

box-filter image stack from a single frame (c). Pixel-wise standard

deviation image of the multiscale stack (d), an example of a control

subject EF B-Mode, and (e) which is a DMD subject. (c), (d) and

(e) are shown in color to better highlight the enhancement of discrim-

inating features and suppression of irrelevant textures with respect to

DM D and Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5-4 Adjusted Rand Indices (ARIs) of the four variations . . . . . . . . . . 57

6-1 Example of smarter edges, with appropriate morphological operations

to discretize and clarify. . . . . . . . . . . . . . . . . . . . . . . . . . 64

6-2 Statistically significant edge thresholds (out of 99) at different forces

for Biceps and Quadriceps. Multiple levels of significance are shown. . 66

6-3 Statistically significant edge thresholds (out of 99) at different forces

for Deltoid and Medial Gastrocnemius. Multiple levels of significance

are show n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6-4 Image-based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 69

6-5 Hypothesis for inferring muscle thickness on Quadriceps, given Image-

based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6-6 Force-axis Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 72

13



14



Chapter 1

Introduction

Ultrasound is a versatile imaging modality. While freehand ability imparts a degree

of convenience, sonographer and patient motion-induced image variability serves as

a hindrance to developing standardized diagnostic applications. One of the applica-

tions that we foresee is the use of ultrasound to assess and track Duchenne Muscular

Dystrophy (DMD), and other muscular disorders. DMD is a life-threatening disease

that affects male children. It is caused by a genetic mutation, which generates a

complex sequence of events in muscle cells, which eventually undergo fibrosis and are

replaced by adipose and connective tissue. This results in fatty infiltrations in muscle

and eventual death. DMD is evaluated today by using tests like the six-minute walk

[26] test, which can easily be confounded by other factors such as the mood of the

child, recent sleep, medicine and diet. Therefore, there is a need to develop a non-

invasive, highly reliable, and repeatable method by which DMD can be quantitatively

evaluated. This would be of enormous interest to the study of DMD-related drugs

where measurement of drug efficiency for a particular patient, or set of patients, can

be characterized in a less-confounding way.

1.1 Related Work

Characterized by progressive disability leading to death, Duchenne Muscular Dys-

trophy (DMD) remains one of the most common and devastating neuromuscular
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disorders of childhood [11]. Although a variety of promising new treatment strategies

are in development, outcome measures for clinical trials remain limited for the most

part to a set of functional measures, such as the six-minute walk test (6MWT), a

measure of the distance that a patient can quickly walk in a period of 6 minutes 110].

Clinical measures that provide high repeatability and sensitivity while still correlat-

ing strongly to disease status would find wider use; quantitative ultrasound (QUS)

with image-based biomarkers is a technique that could potentially serve in this role

[36, 19]. In comparison to traditional QUS techniques where echointensity of the

muscle is quantified, we propose the use of image-based biomarkers in tandem with

machine learning techniques to quantitatively assess DMD.

We use special force-controlled hardware developed in our group 112]. In current

clinical practice, a suitable ultrasound image is acquired by the sonographer based on

qualitative assessment of the image. The acquired image, deemed to be sufficiently

suitable for further analysis, is often discriminatory in terms of it's acquisition po-

sition, contact force, and orientation, among different sonographers. This is often a

variation accountable to training and experience. Instead, the force-controlled hard-

ware we use for all the clinical data acquisitions performed for this thesis allowed

for ultrasound image acquisition at a consistent force, or force sweep pattern. This

eliminates the influence of the sonographer in terms of acquisition and provides for a

quantitatively reliable and deterministic acquisition process.

1.2 Contributions

In this thesis, the clinical utility of force-controlled acquisition of ultrasound images

is studied. We study this in the context of Duchenne Muscular Dystrophy.

The contributions include:

* Evaluation of imaging biomarkers that are of relevance to Duchenne Muscular

Dystrophy.

" Novel frameworks to study the utility of ultrasound images acquired at pre-

16



cise forces and across a force sweep for rapid and automated discrimination of

Duchenne Muscular Dystrophy

* Analysis of results from a clinical study using these frameworks.

" Discussion of extensions to our work in five directions that could be of signifi-

cant potential for tracking progression of muscle disorders. This includes using

other types of imaging biomarkers, optimizing the ultrasound image acquisition

in terms of maximizing the discriminatory power of the images acquired, pro-

gression tracking, targeting specific regions by segmenting out images prior to

our frameworks and using better machine learning techniques.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

" In Chapter 2, we discuss the background of our work. This includes a dis-

cussion of the three topics at which this work intersects - Duchenne Muscular

Dystrophy, Quantitative Ultrasound and novel controlled-acquisition hardware

for Ultrasound developed in our group.

" In Chapter 3, we introduce imaging biomarkers, and develop a methodology to

analyze the relevance of a particular imaging biomarker (edge count). We also

discuss variance maps, as an imaging biomarker.

" In Chapter 4, we describe our system for force-controlled ultrasound acquisition.

The performance of this system for force-controlled clinical ultrasound imaging

is analyzed.

* In Chapter 5, we describe our algorithms for force-correlated ultrasound image

analysis. We utilize a set of ultrasound images acquired across a range of forces,

for clinical analysis. Clinical results are presented.

* In Chapter 6, we discuss our learnings and insights, as well as opportunities for

future work. We describe future work that should be explored in five directions.

17
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Chapter 2

Background

In this chapter, we briefly review prior research relevant to our thesis. Specifically, we

focus on material relevant to Duchenne Muscular Dystrophy, Quantitative Ultrasound

and our in-house force-controlled probe hardware.

2.1 Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is one of the most common muscular dystrophy

of childhood. It affects nearly 1 in 3600 male births 1111. The disease is caused

by mutations in the dystrophin gene leading to progressive muscle weakness which

ultimately results in death due to respiratory and cardiac failure [16, 5J. Accurate,

practical, and painless tests to diagnose DMD and measure disease progression are

needed in order to test the effectiveness of new therapies [7]. Current clinical outcome

measures such as the six-minute walk test and North Star Ambulatory Assessment

(NSAA) can be subjective and limited by the patient's degree of effort and cannot be

accurately performed in the very young or severely affected older patients [25, 24, 261.

In Fig. 2-1, we show the ultrasound images of a DMD subject in (A) and a

control subject in (B) respectively. The corresponding images identified by an imaging

biomarker, the edge detection method, are shown in (C) and (D). In all the images,

the subcutaneous fat, and the muscle are highlighted in green and red polygonal

annotations respectively. For the control subject, we are able to identify the bone as

19



A C

DMD

D

B

Normal

Figure 2-1: Ultrasound B-Mode image and edge threshold-detected images for a DMD

subject (A,C) and Control subject (B,D) respectively.
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well, which is highlighted in the blue polygonal region. Note that we can't see the

bone in the DMD subject.

2.2 Quantitative Ultrasound

Ultrasound is one of the most popular non-invasive imaging modalities. However,

unlike CT or MRI, ultrasound probe contact force deforms tissue and alters image

appearance. Sonographer experience is known to be a critical factor for improving

diagnosis capability. Techniques such as elastography have taken advantage of pre-

and post-compression behavior to evaluate properties of tissues, and their diagnostic

uses [27].

Quantitative ultrasound (QUS), assisted by image-based biomarkers, could be a

painless, easy to use, and reliable test that is not affected by patient effort. Recent

studies have shown that gray scale luminosity (GSL) can distinguish diseased from

healthy muscle in several childhood neuromuscular disorders [35, 36, 19, 3, 41. In many

neuromuscular disorders, including DMD, intramuscular fibrosis and fatty infiltration

occurs and will increase the echointensity of the muscle on gray scale ultrasound im-

ages [291. The echointensity of the muscle can be quantified using many commercially

available software programs which convert the ultrasound image into a distribution

of gray scale values. Patients with DMD will have higher muscle echointensity when

compared to normal controls.

However, the current approach of QUS in using the gray scale luminosity (GSL)

has certain drawbacks. For example, the GSL is known to vary with the manufacturer

of the ultrasound, and with the settings at which the ultrasound image was acquired

(gain, etc.). In literature, certain approaches to deal with this, such as calibration the

back scatter [36], have been discussed. The approach pursued in this thesis, that of

imaging biomarkers, should be viewed as pursuing the same goal in a complementary

manner, in that, the imaging biomarker is intended to provide a robust and settings-

invariant assessment of the image.

21



2.3 Hardware

All ultrasound examinations were performed with a portable Terason t3000 system

(Teratech Inc., Burlington, MA) with a 10 MHz probe. This probe was equipped

with the controlled-acquisition hardware developed by Gilbertson [12]. This device

is a handheld electro-mechanically actuated ultrasound probe, capable of applying a

programmable force to the contact surface. The programmable force may be a con-

stant force, which the device achieves by adjusting for the operator's hand movement,

or a force sweep across a force range. In later chapters, we will continue to further

describe the operation of this device, as relevant to the line of inquiry being pursued.

In Fig. 2-2, we show Gilbertson's [12] force controlled acquisition setup in (a) and

the force controlling device in (b).

2.4 Summary

In this chapter, we briefly reviewed relevant prior research on Duchenne Muscular

Dystrophy and Quantitative Ultrasound techniques for disease assessment. We also

introduced the handheld force-controlled acquisition hardware.
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(a) The force controlled acquisition setup

Timing belt

Ballscrew

Limit
switChes

Ultrasound I
probe -

(b) The probe system. The force-controlling device is shown here without the

ultrasound probe or protective cover.

Figure 2-2: Photos of our force-controlling system. The force controlled ultrasound

system. Images courtesy Matthew W. Gilbertson.
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Chapter 3

Imaging Biomarkers

In this chapter, we discuss ultrasound imaging biomarkers, and study one specifically,

based on edge detection and enumeration, that we use in further chapters.

3.1 Motivation

The increased echogenicity of DMD muscle tends to obscure muscle fascia structure.

Therefore, we would like to investigate the utility of edge detection image analysis to

assess patients with Duchenne muscular dystrophy (DMD).

Edge detection (ED) is an image processing tool which can highlight textural and

high frequency intensity changes within an image (Fig. 3-1). Pixel boundaries where

the image brightness changes abruptly are edges. Edges within an image can be

used to highlight the boundaries in an image using an algorithm developed by Canny

[9]. By adjusting the threshold for the detection of edges, one can assess textural

differences across different size structures within the image. Lower Canny threshold

distinguish small structural differences whereas higher thresholds distinguish larger

structures. In skeletal muscle, fibrous tissue is present within the muscle and between

muscles forming intramuscular and intermuscular septa, respectively. As the muscle

becomes impacted by DMD, the echogenic septa become more difficult to visualize as

the entire muscle becomes more echogenic due to fibrosis and fatty infiltration [29].

The increase in muscle echogenicity will cause the normal structural pattern of the
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muscle to become less discernible and should be quantifiable by an increase in the

number of edges in the ultrasound image.

In Fig. 3-1, we show the edge detection analysis of typical gray scale ultrasound

images from a control and a DMD subject. In (a), we see the gray scale ultrasound

image of the quadriceps muscle control subject and in (b), we see a binary image using

edge detection Canny analysis of (a). (c) and (d) are the gray scale US image of the

quadriceps muscle in a DMD subject and the corresponding binary edge detection

image. We note that the echogenic intermuscular and intramuscular septa on the gray

scale image appear as bright lines and curves on the binary image. There is also a

difference in the edges (corresponding to underlying muscular fascia and other image

features) that are visible at a particular threshold for each of the subgroups.

It is our hypothesis that patients with DMD with have significantly more edges

in their muscles when compared to normal boys due to increase muscle echogenicity

and poorer visualization of the muscle septa. This is because of the higher frequency

of grayscale echogenicity variation in the DMD patients as compared to the control

subjects. The purpose of this study is to investigate the ability of quantitative ultra-

sound, using edge detection analysis, to distinguish patients with Duchenne muscular

dystrophy (DMD) from normal subjects in the hope that it could serve as a useful

measure of disease status and the effect of therapy.

3.2 Methodology

3.2.1 Patient selection

The institutional review board of Boston Children's Hospital approved this prospec-

tive study. Informed written consent and verbal assent were obtained, respectively,

from parents and children. Boys with DMD were recruited and enrolled in the study

through a neuromuscular disorders clinic. They had genetic mutations and clinical

presentation consistent with DMD. Boys with DMD were excluded if they were in-

volved in an ongoing clinical therapeutic trial or if they had another neuromuscular

26



(a) (b)

(c) (d)

Figure 3-1: Edge detection analysis of gray scale ultrasound image for a Control and

a DMD subject. The above edges are depicted at a sensitivity threshold of 0.40.
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or other medical condition that substantially impacted health. Healthy subjects were

recruited by advertisement and via family members and did not have a history of

neuromuscular disease or other disease that would substantially impact health.

3.2.2 Ultrasound Examinations

Transverse US images of six muscles (biceps brachii, deltoid, wrist flexors, quadriceps,

tibialis anterior and medial gastrocnemius) on the patient's dominant side were ob-

tained. Dominance was determined by asking the child or parent; and when unknown,

the child was given a ball to throw in order to assess his dominant side. US settings

(gain, compression, time gain compensation, and depth) were kept constant for all

image acquisitions similar to past studies [35, 37, 30]. Research assistants, trained

by a musculoskeletal radiologist, obtained all US images. US images were obtained

with the subject seated with the knee bent at 900 and the arm extended at mid-chest

height with the elbow straight and supported by the examiner or a pillow.

3.2.3 US Image and Data Analysis

US images were exported from the Terason software to MATLAB as tagged image file

format files. The muscle of interest was outlined using a polygonal-region tracing tool

by a single musculoskeletal radiologist. The area of the muscle, measured in number

of pixels, was calculated from the traced image. The pixel pitch was held constant by

choosing the same physical parameters for image length and width during acquisition.

Only the upper one third of the traced muscle area was used for analysis (Fig. 3-2),

as described by Jansen et al. 119], since there is attenuation of sound waves in the

deeper tissue making analysis of deeper structures in the image less reliable. Edge

detection (ED) values were quantified by using the Canny edge detection algorithm

[9] on MATLAB. The Canny edge detection algorithm detects edges in the image,

and produces a binary map of the edges. The number of edges, measured in edge

pixels highlighted by the Canny edge detection algorithm, present in each muscle

region (upper one third) was then divided by the number of pixels in that same area
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(a) (b)

Figure 3-2: Muscle tracing and region of interest used in analysis. (a) Gray scale US

image of the quadriceps muscles in a 6 year old control patient. (b) Overlay represents

the traced muscle area (white line) excluding the subcutaneous tissue/skin, bone, and

deeper tissues. Dotted line and double arrows denote the upper 1/3 of the muscle

area used for analysis.

of muscle to arrive at the ED value (unitless value). This gives a normalized measure

of the number of edges in the muscle region being evaluated.

The ED values for all six muscle groups were determined at multiple thresholds

of sensitivity using the Canny algorithm. The optimal threshold to distinguish DMD

from normal was also determined. The detector takes a threshold parameter for

sensitivity, which can vary from 0.01 to 0.99. We generated a Canny binary map

for 99 thresholds between 0.01 to 0.99 at 0.01 intervals (Fig. 3-3). This allows us

to capture the number of edges detected per muscle area, and the behavior of each

muscle as a function of edge thresholds.

29



(b) (c)

(g) (h)

(d) (e)

(i) (j)

Figure 3-3: Binary edge detection images at different thresholds. Ultrasound images

of the quadriceps muscles in DMD (a) and control subjects (f). The corresponding
binary ED images detected at sensitivity thresholds of 0.05 (b and g), 0.1 (c and h),
0.2 (d and i), and 0.4 (e and j) are shown. More edges are detected at the lower

thresholds than the higher thresholds. The sensitivity threshold of 0.05 provided the

best discrimination between DMD and controls.
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3.2.4 Statistical Analysis

The receiver operating curve (ROC) was constructed by plotting the true positive

rate against the false positive rate for various thresholds. The area under the receiver

operating curve (AUC) values of ED thresholds were generated for each muscle and the

average of all six muscles using MedCal. Mann-Whitney test was used to determine

differences in edge detection values between DMD boys and normal subjects with a

p-value of 0.05 considered significant.

3.3 Results

We now discuss the results of our investigation into the Edge Detection (ED) biomarker.

3.3.1 Patient Demographics

The average age of the DMD group was 8.8 years (range 3.0-14.3 years) and 8.7 years

(range 3.4-13.5 years) for the control group. Of the 19 boys with DMD, 9 were on

corticosteroid therapy and 11 were in the 4-10 age group. Of the 21 controls 12 were

in the 4-10 age group.

3.3.2 US Image and Data Analysis

For edge detection, amongst the 99 Canny sensitivity thresholds tested (0.01-0.99),

a Canny sensitivity threshold of 0.05, was the optimal threshold to distinguish DMD

patients from normal. We define the optimal threshold as the one that maximizes

the difference between the two subject groups. Thus, this threshold was used for all

subsequent analyses. Using the average of the 6 muscles, edge detection was excellent

at distinguishing DMD from normal with an AUC=0.96. For the individual muscles,

edge detection was best at distinguishing DMD from normal in the gastrocnemius

(AUC=0.97) and poorest in the anterior tibialis (AUC=0.80), as listed in the table

below.
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Muscle ED (Control) ED (DMD) AUC 95% CI Std. Err p-value
Biceps United 0.213 0.234 0.91 0.78-0.98 0.048 <0.0001
Deltoid 0.207 0.223 0.86 0.71-0.95 0.072 <0.0001
Wrist flexors 0.204 0.223 0.92 0.78-0.98 0.051 <0.0001
Quadriceps 0.215 0.231 0.92 0.79-0.98 0.055 <0.0001
Gastrocnemius 0.207 0.234 0.97 0.86-1.00 0.020 <0.0001
Tibialis Anterior 0.212 0.226 0.80 0.64-0.91 0.074 <0.0001
All 6 muscles 0.210 0.228 0.96 0.84-1.00 0.029 <0.0001

For each of the 6 muscles, there were more edges detected in the DMD group when

compared to normal controls. This was also true when all 6 muscle groups were

averaged together: DMD had an ED value = 0.228, while normal boys had an ED

value = 0.210, p<0.0001.

3.4 Discussion

There is a need for accurate biomarkers capable of measuring disease progression

over time and evaluating drug efficacy [8]. In this prospective study, our results

suggest that quantitative ultrasound analysis using edge detection is a potentially

useful biomarker as this technique was capable of distinguishing between boys with

DMD and controls with high accuracy. In this study, we found, as hypothesized,

that the muscle of patients with DMD had more edges on the US images when

compared to controls. With disease progression, the muscles in DMD patients become

infiltrated with echogenic fibrous tissue and fat which obscures the similarly echogenic

intramuscular and intermuscular septa [29].

Edge detection is a fundamental technique in the field of image processing and has

been in use for decades, especially for feature detection; however, its use in medicine

is relatively limited 19, 38, 131. Edge detection has been used effectively in clinical

medicine to assess the size of cardiac chambers, prostate gland size, and intima-media

thickness in blood vessels from ultrasound images 138, 1, 14, 23, 28]. Abrupt edge

changes may indicate the boundaries of anatomic structures and are used to determine

their area or volume.

Edge detection can also assess textural variations within the object. It is this
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value that we believe is most advantageous when analyzing ultrasound images of

muscles. By using edge detection, we were able to distinguish DMD patients from

normal similar to other quantitative ultrasound studies which have relied primarily on

variations in muscle echointensity [19, 37, 301. In these echointensity studies, a region

of interest (ROI) box is placed inside the muscle, or tracing of the muscle of interest is

performed and gray scale echointensity values are generated 119, 37, 30]. In general,

diseased muscle has higher echointensity than normal muscle due to deposition of

fibrous tissue and fat, and this has been shown to occur for a variety of diseases

including DMD [35, 19, 33]. It is unclear if the increase in edges seen on this study

and increase echointensity values seen in past studies of DMD patients are detecting

corresponding structural changes in the muscle.

Edge detection has the ability to selectively evaluate different components of mus-

cle which is not entirely possible with echointensity analysis. In edge detection, lower

Canny sensitivity thresholds correspond to edges of smaller dimensions (length) and

are more representative of smaller components of muscle such as the muscle fasci-

cles and intramuscular septa, whereas the higher sensitivity thresholds correspond to

longer edge dimensions and larger structures such as the intermuscular fascia. By

adjusting sensitivity thresholds, one can assess differences in the various structural

components of the muscle. In this study, edge detection was best at the lower Canny

thresholds for distinguishing DMD from normal patients, suggesting that the muscle

changes can be attributed to the smaller-sized edges and therefore the small compo-

nents of muscle.

Edge detection analysis was able to distinguish between DMD and controls for each

of the six muscles and with the average of the 6 muscles. Moreover, edge detection

performed best when evaluating the gastrocnemius. This result is supported by past

imaging studies using CT and MRI which have shown that muscle atrophy with

fatty infiltration is most pronounced in the posterior as opposed to the anterior calf

muscles [32, 34, 2]. In fact, the anterior compartment muscles are often normal on

imaging even with long-standing disease [2, 34]. Clinically, calf pseudohypertrophy

is a characteristic finding in DMD, where despite circumferential enlargement of the
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calf from fat deposition, muscle weakness is present [7].

A few limitations deserve mention. First, this is a cross-sectional study and the

sample size is small with roughly 20 patients. Future longitudinal studies with larger

number of subjects will assess if edge detection has the ability to monitor disease

progression and efficacy of therapies. Another limitation is the inability to change

US parameters during image acquisition. Altering the depth, gain, or focus could

affect the appearance of the final image and the number of edges present. However,

the settings were identical for all muscles and patients and this technique has been

shown to be effective for several neuromuscular disorders and research groups [35, 19,

30, 29, 19]. Using raw frequency or backscatter data could potentially correct for this

issue [36, 33].

In conclusion, quantitative ultrasound using edge detection analysis was able to

distinguish patients with DMD from healthy controls with excellent accuracy. Future

studies are needed to determine if ED by itself or in combination with other tests can

improve the assessment of disease progression or drug efficacy.

3.5 Summary

Following institutional IRB-approval, ultrasound exams with fixed technical param-

eters were performed unilaterally in 6 muscle groups (biceps, deltoid, wrist flexors,

quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and

21 age-matched controls. The muscles of interest were outlined using a tracing tool

(MATLAB), and the upper one-third of the muscle was used for analysis. Edge detec-

tion (ED) values for each muscle were quantified by using the Canny edge detection

algorithm and then normalizing the number of edge pixels to the area of the muscle.

The ED values were extracted at multiple thresholds of sensitivity using the Canny

algorithm to determine the optimal threshold (0.01-0.99) to distinguish DMD from

normal. Area under the receiver operating curve (AUC) values were generated for

each muscle and averaged across the six muscles.

The average age of the DMD group was 8.8 years (range 3.0-14.3y) and 8.7 years
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(range 3.4-13.5y) for the control group. For edge detection, a Canny threshold of

0.05 provided the best discrimination between DMD and controls (AUC of 0.96; 95%

CI 0.84-1.00). Using a Mann-Whitney test, ED values were significantly different

between boys with DMD and controls (p<0.0001).

Quantitative ultrasound using edge detection can distinguish patients with DMD

from healthy controls at low Canny thresholds where discrimination of small struc-

tures is best. ED by itself or in combination with other tests has the potential to

serve as a useful biomarker of disease progression and the effect of therapy.
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Chapter 4

Force-controlled Ultrasound

In this chapter, we discuss a technique for quantitative discrimination of Duchenne

Muscular Dystrophy (DMD). Our ultrasound image data is generated with a novel

force-controlled ultrasound acquisition system 1121 that allows precise ultrasound im-

age acquisition at a predetermined force. We use the texture of ultrasound images,

as calculated by the Canny edge detector, as the input image feature for our analysis

algorithm. After statistically sieving (selecting only those that pass through our sta-

tistical filters) through the edge detection parameters on our training set, we identify

the set of parameters significant within a threshold. Decision trees are then trained on

these significant parameters over a training dataset with cross-validation, and evalu-

ated on accuracy, precision, selectivity and sensitivity on a separate test dataset. We

discuss the performance of our system, by muscle groups, on data collected with our

device in a clinical study. Using depth of the image as a region of interest selection

mechanism, we evaluate the extent to which the performance of our system is robust

to image depth. Our results support that automated assessment of Duchenne Mus-

cular Dystrophy using force-controlled ultrasound image acquisition is possible in a

reliable and robust manner.
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(a) (b) (c)

Figure 4-1: Ultrasound B-Mode image and edge threshold-detected images

4.1 Motivation

Gilbertson 1121 developed a force-controlled probe that allows with reliable ultrasound

image acquisition with low variability. We propose a method wherein we use this

device that is capable of measuring the contact force applied with the ultrasound

probe, and capturing the ultrasound image at a predetermined force to a high degree

of precision. The device also measures the angle of contact, so that the image is

captured perpendicular to the long axis of the limb or skin surface. Using edge-

features related to the image texture(see Fig. 4-1), we train decision trees and test

its performance on a variety of performance measures. All data for this study was

collected using this controlled-force system.

In Fig 4-1, we show an ultrasound image (a), with the corresponding edges de-

tected at two thresholds, 0.25 (b) and 0.5 (c). As can be seen, only the longer/more

significant edges remain consistently visible at the higher threshold in (c). We use

the information captured at each threshold, as well as across multiple edge detection

thresholds to assess DMD.

4.2 Methodology

In this section, we briefly describe our data acquisition method, the image features

on which we chose to train, the decision tree classifier that we use, and the metrics
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with which we analyze system performance.

4.2.1 Data Acquisition

All ultrasound images were captured at 2 Newtons (N) of contact force using the

force-controlled ultrasound probe [121. We chose 2 Newtons as it is a typical contact

force experienced in regular clinical study. The device, which is grasped by the user

and placed in contact with the patient (Fig. 4-2), linearly actuates an ultrasound

probe to maintain a programmable probe contact force between the user's hand and

the patient, and accommodates up to 6 cm of relative motion. In this study, the

contact force was maintained at 2.0 N with an accuracy of 0.1N.

4.2.2 Edge Detection

We chose the Canny edge detector as the feature for the ultrasound images [9]. The

Canny edge detection algorithm detects edges in the image, and produces a binary

map of the edges (see Fig. 4-3). The detector takes a threshold parameter for sensi-

tivity, which can vary from 0.01 to 0.99. We generate the Canny binary map for 99

thresholds from 0.01 to 0.99 at 0.01 intervals. This allows us to evaluate not only the

number of edges detected per image, and the behavior of the image as a function of

edge thresholds.

The edges detected in each image via the Canny binary map are then normalized

by dividing the sum of pixels identified as part of an edge by the total size of the

image in pixels. This gives us a normalized measure of the edges detected in the

image.

4.2.3 Statistical Sieving

In order to down select from the 99 edge detection parameters, we perform a two-

sample two-tailed t-test with unequal variance. In our results, we discuss the number

of parameters that we found significant at different levels of significance. But the
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LJ
Contact force

Figure 4-2: The force-controlled ultrasound probe maintains a programmable contact

force between probe and patient and is used to capture images at a repeatable 2 N

of contact force. An LED bar graph positioned near the top of the probe depicts the

position of the probe and helps the user keep the device centered within its range of

motion. Image courtesy Matthew W. Gilbertson.
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(a) (b) (c) (d)

Figure 4-3: In this figure, ultrasound scans from DMD (a), and control (b) subjects

are shown with their corresponding binary maps ((c) and (d) respectively) generated

via the Canny edge detection algorithm at a threshold of 0.20. It can be easily seen

that when the edges are counted and normalized by area, (d) is expected to have a

higher number than (c). We take advantage of this behavior.

rest of our system was run with the parameters determined to be significant with a

p-value < 0.10.

4.2.4 Decision Tree

We use the decision tree algorithm to train on our training set with 3-fold cross-

validation [6]. The best split in the tree is computed via exact search, as the number

of classes is just 2 (DMD and controls). The splitting criterion used was the Gini's

Diversity Index, which is given by,

1 - Ep(i)

for each node. Here p(i) represents the observed fraction of classes reaching the

particular node, while the summation occurs over the set of classes at the node (DMD,

Control).

Decision trees have the ability to be easy to understand and visualize. Therefore,

it is possible for a clinician to observe the actual methodology by which our system

has used the image features to reach the conclusion. In Fig. 4-4, we depict a particular

decision tree generated for one of the muscle groups for illustration.
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Figure 4-4: Illustration of a decision tree for the two classes of DMD and Controls

based on the edge detection parameter for a particular muscle group. This was

visualized in MATLAB.

4.2.5 Performance Analysis

The decision trees were trained on a training set. They were evaluated on a separate

test set, on four major parameters, viz., accuracy, precision, sensitivity, and specificity.

In addition, we also evaluated the robustness of our choice of using the entire image

instead of a selective region-of-interest. We discuss this further below, including the

composition of the training and test sets.

4.3 Results and Discussions

4.3.1 Clinical Data

This clinical study was approved by the Children's Hospital Boston Institutional

Review Board. All parents/subjects were required to give signed informed consent

and assent. During each visit, ultrasound images were taken precisely at 2N on six

muscle groups, viz., Quadriceps (Q), Biceps (B), Deltoids (D), Forearm (F), Tibialis

Anterior (TA) and the Medial Gastrocnemius (MG).

The BOSTON 1 dataset for this work consists of a training set and a test set.

The dataset was organized from the clinical study with the following goals in mind.
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No individual repeats within the training set, i.e., one visit per individual. The same

rule applied to the test set. The same individual could appear in both the training

and test set, provided each of them was based on data collected from different visits.

This ensured that there were variations induced by the uncertainty in absolute spatial

positioning of the probe by the operator on the muscle group, as well as the changes

due to time. Due to the nature and size of collected data and available patients,

this scheme allowed us to maximize the temporal variation between the training and

test datasets, while introducing in the training set as high a degree of individuals

not present in the test. This reduced the chances of overfitting by individual type as

much as possible under the constraints of limited data.

The training set consists of 40 unique individuals, with 18 from the DMD group

and 22 from the control group. The test set consists of 10 DMD subjects and 17

control subjects.

4.3.2 Results

We now discuss the results of this system in assessing DMD. For brevity, we will refer

to the muscles by their abbreviated name.

First, we evaluated the number of significant parameters (99 from 0.01 to 0.99 at

0.01 intervals) for Canny edge detection on the training set. We evaluated this on

a per-muscle group basis. The various levels of significance considered were 0.0001,

0.001, 0.01, 0.05 and 0.1. From Fig. 4-5, we noted that Quadriceps and Biceps showed

relatively higher number of significant parameters at multiple levels of significance.

We have used the set of parameters with a p-value below the level of significance of

0.1 as input to the decision tree.

Decision trees were constructed on these chosen statistically relevant parameters

on the training set, and then evaluated by the performance measures over the test set.

We note that the ultrasound image capture being automated via force-control by the

hardware device, these performance measures represent an assessment of DMD which

reduces human induced variability. Our results are depicted in Fig. 4-6. Accuracy

represents the proportion of predictions on the test set that were correct based on
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Figure 4-5: This graph shows the number of statistically significant parameters at

different levels of significance for each muscle-group. The Quadriceps and Biceps tend

to show relatively higher number of significant parameters consistently at multiple

levels of significance.
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Figure 4-6: In this bar chart, we see all four performance metrics for the muscle groups

Biceps(B), Deltoids (D), Forearm(F), Medial Gastrocnemius(MG), Quadriceps(Q)

and Tibialis Anterior(TA).

known patient labels. The overall accuracy values for Q, TA, MG, F, D are high at

0.85-0.93, with B being slightly lower at 0.74.

Precision represents the proportion of positive DMD predictions that are correct

among the study subjects eventually predicted as positive DMD. For our test set,

we note that MG and D reported 1.0 on this metric, with the rest being Q(0.75),

TA(0.88), F(0.8) and B(0.71). We observe that for the given image feature (edge

detection), MG and D appear to be highly discriminating towards DMD, although

the rest of them perform well in an absolute sense as well. This implies that if a

prediction that a certain subject was DMD were to be made by using different muscle

groups with our system, MG and D would have the highest reliability.

Sensitivity denotes the proportion of positive DMD labeled subjects who were

predicted as positive among the actually positive DMD population. We noted sensi-

tivities of Q(0.90), F(0.80), D(0.80), MG (0.70), B (0.50) and TA(0.70). This implies

that if a study subject has DMD, the most reliable muscle groups to be used with our

system for DMD assessment are Q followed by F, D and TA. Note that all the values

are high in an absolute sense, but we seek to continue differentiating among them.
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(a) Accuracy (b) Precision

(c) Sensitivity (d) Specificity

Figure 4-7: Trends for Accuracy, Precision, Sensitivity and Specificity for different

depths of the images.

Specificity refers to the proportion of Control (negative) labeled subjects that

were predicted as Control (negative). This refers to the behavior of our system with

regard to the control subjects by muscle groups. We observed the specificities to be

D(1.00), MG(1.OO), TA(0.94), B(O.88),F(O.88) and Q(0.82). Therefore, D and MG

are exceptionally good at predicting control subjects as controls, with the rest closely

following behind.

We also evaluated how these measures would be affected by considering sub-regions

of the image. To do this, we consider depth as an approximation for regions-of-interest

at different parts of the image. Typically, the images contain a subcutaneous fat

layer followed by muscle, and then the bone. Accuracy, Precision, Sensitivity and
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Specificity were then plotted by depth-in-pixels for each of the muscle groups.

In Fig. 4-7, we see the trend for accuracy and other metrics, if our system could

only view the top x pixels of the ultrasound images. We see that in general, by

considering the entire image, we are not losing out on performance in any muscle

group. The results were smoothened by a moving window of 20 pixels, roughly 5% of

the total depth of roughly 400 pixels. Other performance metrics behaved similarly.

We found that considering the entire image did not appear to hinder the performance

metrics in any significant way. We care about our choice of choosing the entire image

because it disassociates the need to perform segmentation and specific targeting - only

as long as our trends are as described above, i.e., trends that are dependent primarily

on the relevant parts of the image such as the subcutaneous fat and the muscle.

4.4 Summary

We presented a system that provides for precise acquisition of ultrasound images based

on pre-determined contact force values, and uses such standardized images to assess

DMD in patients. We note that our performance measures reflect the performance of

our system with just one textural feature, that of edge detection. Using other features

would be expected to show different behavior among these performance measures

towards the various muscle groups. This system could be used with the appropriate

muscle group choices in order to further tune the system. Many of the measures show

relatively high values that could be used to reliably classify DMD vs. non-DMD in

a patient. In the future, similar methods may be used to promote ultrasound as a

quantitative non-invasive tool for not only classifying DMD vs. non-DMD but also

tracking its progression over time.
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Chapter 5

Force-correlated Ultrasound

In this chapter, we propose a new modality for automated diagnostic assessment

of tissues in the context of Duchenne Muscular Dystrophy (DMD). In this force-

correlated ultrasound imaging method, we first perform an automated extraction of

a multitude of ultrasound images captured across a range of contact forces - a force

video, or a force sweep. These images are then processed to enhance the diagnostic

fidelity of the image with regard to DMD. We use a variance map, which computes

the pixel-wise standard deviation image for a multiscale stack generated from each

image. Using a biomarker quantification scheme of mean gray scale level (GSL) on

the enhanced fidelity force-correlated ultrasound images, k-means clustering is then

performed to discriminate the DMD subjects from the control subjects. We present

our results on the use of these techniques in the diagnostic assessment of DMD on

data gathered from a clinical study with our system.

5.1 Motivation

Our method takes advantage of spatial and force-related variations in the tissue ul-

trasound that we believe to be indicative of DMD or it's absence. Ultrasound images

from healthy and DMD subjects are shown in Fig. 5-1.
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(a) (b)

Figure 5-1: (a) Ultrasound scans of the Quadriceps muscle in a subject from the
control group (b) The same muscle in a subject with Duchenne Muscular Dystrophy
(DMD). DMD-affected muscles exhibit high fat infiltration.
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5.2 Methodology

Our method takes advantage of novel hardware that acquires force-correlated ultra-

sound images, in tandem with mechanisms to enhance diagnostic fidelity with re-

gard to various medical conditions like DMD. This could eventually aid in increasing

the diagnostic capability, cross-operator consistency and cross-temporal reliability of

quantitative measures extracted from free-hand ultrasound images.

5.2.1 Data Acquisition

Ultrasound images are acquired as a function of contact force using the force-controlled

ultrasound probe developed by our group [12], shown in Fig 4-2. The device, grasped

by the user, actuates the probe to maintain a programmable contact force between

probe and patient and accommodates up to 6 cm of relative motion.

To acquire images, the user first grasps the blue probe handle and places the face

of ultrasound probe in contact with the tissue. The user manually adjusts the angle

of orientation of the device to ensure that it is normal to the surface of the tissue and

imaging the transverse plane. When the device is properly oriented, the user holds

the orientation angle steady and clicks a button to execute the force sweep. During

the 8-second force sweep, the contact force varies linearly from 1.5 N to 10 N to 1.5

N while ultrasound images are recorded at a rate of 10 frames/second.

Due to the slow speed of compression with respect to the dynamics of tissue

motion, it is assumed that the tissue is imaged quasi-statically. As the force varies,

ultrasound images are recorded synchronously with the contact force and time. This

technique enables the acquisition of ultrasound images as a function of contact force.

5.2.2 Image Set Selection

We select a uniformly force-distributed set of images during the force sweep in order

to compare force sweeps irrespective of how the ultrasound imaging hardware may

vary frame rates in response to internal settings. We collate the data points within

the force sweep of 1.5 N to ION at 1.25N to 10.25N at 0.5N intervals. Images are
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Figure 5-2: The force-controlled ultrasound probe.
Matthew W. Gilbertson.

Device visualization courtesy
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corrected to a new discretized force index at the intervals described, based on which

of the set of available points are closest.

5.2.3 Diagnostic Fidelity Enhancement

Typically, a radiologist would choose an appropriate image within a scan, and mark a

region of interest. The native ultrasound images obtained are not tuned to highlight

features indicative of DMD. Here, we take a different approach, depicted in Fig 5-3.

We first apply a box filter to the original frame (a) to obtain (b). By doing this at

multiple scales we obtain a stack of multiscale images for a single frame as in (c).

We then compute the pixel-wise standard deviation image of the multiscale stack to

obtain (d), an example of a control subject EF B-Mode, and (e) which is a DMD

subject. This approach is intended to enhance the fidelity of the image with respect

to DMD. This is necessary as it is not feasible to obtain human annotations of all the

images at multiple forces in practice.

We now describe the design of our diagnostic fidelity enhancement measure for

DMD in more detail. We use a multi-scale approach to condense and capture the

spatial variation in echogenicity throughout the entire image. To do this, we apply a

low-pass box filter of size N x N, with each element equal to (N N). We apply this

filter for N = 3,5,7...99,101, i.e., a total of 50 multi-scale images. N was chosen based

on visual inspection of the feature blurring across our dataset for different filter sizes.

In Fig 5-3, (b) shows a similarly filtered image generated using (a), while (c) shows

an entire multiscale stack.

This stack of multiscale images is then condensed by taking the pixel-wise stan-

dard deviation, resulting in a single image that highlights the most spatially variant

subregions of an image. This produces images similar to (d) and (e) in Fig 5-3, for

healthy controls and DMD subjects, respectively. We refer to this method, which we

apply to each image in the force sweep, as the variance map.

The design of our diagnostic fidelity measure was based on the nature of images

obtained from the control subjects and the DMD subjects, and their differences.

Firstly, there appears to be a greater spatial variation in echogenicity across the

53
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(c)

Figure 5-3: Box filter applied to the original image (a) to obtain (b). Multi-scale

box-filter image stack from a single frame (c). Pixel-wise standard deviation image

of the multiscale stack (d), an example of a control subject EF B-Mode, and (e)

which is a DMD subject. (c), (d) and (e) are shown in color to better highlight the

enhancement of discriminating features and suppression of irrelevant textures with

respect to DMD and Controls.
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control subjects. As a result, the visibility of various fascia is lower for DMD in

general. The second aspect relates to the ultrasound attenuation at the bottom

half of the image, where a bone is typically expected. While the etiology of DMD

relates to the muscle, it is clear that our mechanism of observation, i.e., ultrasound,

is affected by it in such a way that differentiating features can be seen in the lower

part of the image due to attenuation. Therefore, we chose to incorporate this as a

feature by considering the whole image as indicative of DMD, rather than drawing

regions-of-interest for each image in the force sweep for only the muscle region.

5.2.4 Biomarker Quantification

While the diagnostic fidelity enhancement step for the variance map generation pro-

duces an image, we still need a way to reduce this variance map to a number in order

to simplify our next steps. We choose the mean gray scale luminosity (intensity) or

GSL of the variance map as the biomarker quantification method. When applied to

images produced by the variance map, we call this the Enhanced Fidelity B-Mode or

EFB-Mode version of the mean GSL, in comparison to the normal B-Mode version.

5.2.5 Clustering

Given a set of force sweeps of various muscles across many patients, we want to

cluster them accurately into their respective labels of DMD or Control. We choose

the k-means algorithm with 2 centers for clustering. The distance metric for the k-

means algorithm was chosen as the Manhattan distance metric. Given two points X

= (X 1 , X 2 , ... XN) and Y (Y1, Y2, ... YN), the Manhattan distance metric between X

and Y is defined as,

N

d(XY)= JXi --Y|

When this clustering is applied to the force-sweep data as quantified by the biomarker

quantification method above, we refer to it as force-correlated version of our frame-

work. We choose the mean of the biomarker quantification method across all the
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images in the force sweep from 1N-10.5N as the ground truth. We call this the

force-independent version.

5.2.6 Performance Analysis

We evaluated the performance of our system for the force-correlated and force-independent

versions, with both B-Mode and the EFB-Mode processed images. We quantified the

performance of our clustering using the Adjusted Rand Index (ARI) that is corrected-

for-chance [18]. This measure has an expected value of 0 for random clusters, and a

maximum value of 1 for completely identical clusters. It can also have a value from

0 to -1, indicating worse results for the clustering in comparison to randomized clus-

tering. All evaluations of our system were performed on individual muscle groups to

quantify muscle-specific effects.

5.3 Results and Discussion

5.3.1 Clinical Study

The clinical study was approved by the Children's Hospital Boston Institutional Re-

view Board, and all parents/subjects were required to give signed informed consent

and assent. The BOSTON I dataset comprises the force-correlated ultrasound images

collected using our device on 18 DMD and 22 Control subjects. Only one visit per

patient was recorded in this dataset. Each visit comprised 9 scans using our device

on 6 muscle groups, viz., Quadriceps (Q), Biceps (B), Deltoids (DEL), Forearm (F),

Tibialis Anterior (TA) and the Medial Gastrocnemius (MG). The Quadriceps and

Biceps also had inter-rater measurements (Q1 and Q3, B1 and B3), while the Biceps

had an intra-rater measurement as well (B1 and B2).

5.3.2 Results

The results are shown in Fig. 5-4. For brevity, we will refer to the muscles by

their abbreviated names defined above. The performance of the above system was
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Figure 5-4: Adjusted Rand Indices (ARIs) of the four variations

measured using the corrected-for-chance ARI performance metric described. The

independent of force ARI on the normal B-Mode data performs similar to random

clustering. The force-correlated ARI on the normal B-Mode performs slightly better

(Q3,B1,B3,F,TA,MG), although the improvements are exceptionally significant.

The impact of the diagnostic fidelity enhancement via variance maps can be seen

in comparing the independent of force ARI on the Enhanced Fidelity B-Mode (EFB-

Mode) data. Consistent increases in the ARI are seen for Q (0.25), B(0.17), F(0.35),

TA(0.43), and MG(0.35). The inter-rater errors for Q and B in this case were 0.10

and 0.05. The intra-rater error for B was 0.18. This is further boosted to the highest

values for each muscle group (except D) by the force-correlated ARI on the EFB-

Mode data. Compared to the force-independent ARI on EFB-Mode data that were

hitherto the highest, ARI increases were seen in Q (0.24), B (0.33), F(0.21),MG(0.13)

and a very minor increase in TA. The overall ARIs were the highest for all muscles

except D for the force-correlated on EFB-Mode case with Q(0.48), B(0.61), F(0.55),

TA(0.41) and MG(0.48).
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In Fig. 5-4, the Adjusted Rand Indices (ARIs) of the four variations of our system

are shown, summarizing the impact of introducing DMD-specific diagnostic fidelity

enhancement via variance maps, and the effect of force-correlated ultrasound imaging

vis-A-vis independent of force imaging that was computed as the mean value of the

biomarker quantification method (mean echogenicity) over the range of forces. The

sources of variation in these values can only be due to the choices of initial cluster

centers during the clustering. Due to selecting the best performing cluster among 5 in-

ternal replicates during each k-means clustering run, we noted deterministic behavior

on our dataset for our system.

Consistency also improved with force-correlation, with the inter-rater error for Q
being 0.00041. Inter-rater error for B rose to 0.16 from 0.05. The intra-rater error for

B was 0.00043. To summarize, exceptionally low inter-rater error on Q and intra-rater

error for B were seen for force-correlation on EFB-Mode data. But, the inter-rater

error on B increased from 0.05 to 0.16 from independent of force to force-correlated

ARIs on EFB-Mode. We believe this may be because the current system does not

provide for a consistent localization in 3D on the patient's limb. Nevertheless, a very

low inter-rater error on Q and intra-rater error for B were obtained. This should also

be seen in the context of all the 3 B ARIs for force-correlated EFB-Mode being the

highest of all the four versions considered.

The Deltoids muscle received almost no performance boost by using either EFB-

Mode or force-correlation. This could be a limitation ot our setup in its present form,

as the same diagnostic fidelity enhancement measure or the biomarker quantification

method may not work for all muscle groups. We suspect that size and geometry

issues impact the practical use on the Deltoid muscle for small children by affecting

the extent of usable ultrasound image within the full frame obtained.

5.4 Summary

This study investigated the potential for force-correlated ultrasound imaging to enable

automated assessment of tissues in subjects with Duchenne Muscular Dystrophy. We
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observed excellent classification improvements due to force-correlation for all muscles

except Deltoids. Our system does not require training data, and can achieve good

and consistent performance thanks to the performance boosts of DMD-specific fidelity

enhancement and the force-correlated imaging. We believe this system holds potential

for enhancing the use of Quantitative Ultrasound (QUS) as a candidate for the non-

invasive measure of DMD progression, with high reliability and consistency across

operators and over time.
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Chapter 6

Conclusion

In this chapter, we review our contributions as well as provide more preliminary

results that gives a context for the importance of this work. Hopefully, these lines of

inquiry will be among those explored to continue this work in future.

We begin by reviewing the contributions so far, and then discuss five lines of

inquiry that are of interest. Specifically, these are summarized below (and discussed

further in this chapter):

* Imaging biomarkers. It would be of interest to evaluate the space of imaging

biomarkers more exhaustively to find those that might perform better than

those we considered in this thesis (to a reasonable degree of performance for

DMD). Also, it is of interest to map out the optimal imaging biomarkers for each

condition to which this (and future) automated discrimination and progression

tracking frameworks are applied to.

e Optimal Ultrasound Image Acquisition. We present our preliminary re-

sults on which forces are appropriate for maximizing the discriminatory power

of an imaging biomarker. This could be of great potential in providing signifi-

cant cost benefits by reducing clinical time required to conduct a study, while

retaining and/or improving performance of any automated framework.

* Progression Tracking. Being the first of its kind so far, in this thesis, we

have chosen to focus on discriminatory frameworks that would be suitable for
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diagnosis. We discuss some of the challenges with progression tracking.

" Segmentation. Throughout the entirety of this work, we have chosen to sim-

plify the imaging biomarker sub-component by considering only biomarkers that

can be applied to the entire ultrasound image while simultaneously showing

maximal discriminatory performance given the rest of the framework. An al-

ternate method would be to segment the image into subcutaneous fat, muscle

and bone - and then hopefully use the additional information to target multiple

imaging biomarkers simultaneously to better effect. We discuss a few ways we

have tried in this direction.

" Machine Learning. We note that the results we have obtained are a lower

bound given the simplicity of the machine learning methods we have used. Based

on clinical feedback that a black box approach was not preferable, we have

chosen the decision tree and k-means clustering algorithms to show that there

is a respectable value addition by controlled ultrasound acquisition despite the

simplicity of our machine learning methods.

We now summarize the thesis, and then discuss each of the above preliminary

results further to illuminate possible avenues of future work.

6.1 Contributions

We have examined the clinical utility of force-controlled acquisition of ultrasound

images for Duchenne Muscular Dystrophy.

The contributions include:

* Evaluation of imaging biomarkers that are of relevance to Duchenne Muscular

Dystrophy, such as edge detection and variance maps.

" Novel frameworks to study the utility of ultrasound images acquired at precise

forces and across a force sweep, for rapid and automated discrimination of

Duchenne Muscular Dystrophy
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* Analysis of results from a clinical study using these frameworks.

* Discussion of extensions to our work in five directions that could be of signifi-

cant potential for tracking progression of muscle disorders. This includes using

other types of imaging biomarkers, optimizing the ultrasound image acquisition

in terms of maximizing the discriminatory power of the images acquired, pro-

gression tracking, targeting specific regions by segmenting out images prior to

our frameworks and using better machine learning techniques.

6.2 Future work

There is good potential for the direction of this work. In particular, we describe

our work in five extensions to the current work that would be good candidates for

extensive exploration in future.

6.2.1 Imaging Biomarkers

Within this thesis, we limited ourself to two imaging biomarkers - Canny edge de-

tection and variance maps - that we found by manually searching for those that had

reasonable performance with the Duchenne Muscular Dystrophy ultrasound image

datasets. A more exhaustive search for better imaging biomarkers as well as motion-

estimation based methods for the force-dependent ultrasound image data would be

of great potential.

In Fig 6-1, we show ultrasound images of Duchenne Muscular Dystrophy and

control group subjects in (a) and (b). In (b) and (c), we show the corresponding

phase congruency feature detected images [22], which is known to be illumination

and contrast-invariant. This would detect features at all phase angles instead of solely

based on gradients at perpendicular cutoffs. This can be discretized and clarified by

simple morphological closing and opening operations to result in (e) and (f), which

could potentially serve as one of the alternate imaging biomarkers to explore.

63



(a) (b)

(c) (d)

(e) ()

Figure 6-1: Example of smarter edges, with appropriate morphological operations to

discretize and clarify.
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6.2.2 Optimal Ultrasound Image Acquisition

Given the ability to acquire ultrasound images at precise forces, it is useful to ask

the question - what forces are optimal for discriminating ability between the control

group and the Duchenne Muscular Dystrophy group. Indeed, this appears to be a

useful direction of inquiry based on our preliminary results that we discuss here.

We considered the images acquired at different forces as distinct sets, and pro-

cessed these through 99 thresholds of the Canny edge detection algorithm from 0.01

to 0.99 at intervals of 0.01. We then evaluated how many of these, at each force, were

found to be powerful enough to be discriminating between the control group and the

Duchenne Muscular Dystrophy subject group. We also attempted to measure the

power of discrimination via the p-value of the t-test used for the discrimination.

In Fig 6-2, we show this characteristic discriminatory power that varies with force,

for Biceps and Quadriceps. Note that there is a lull in the discriminatory power,

consistent across all levels of significance, between 3N and 4N for Biceps. There is

a similar lull in discriminatory power between 4N and 5N for the Quadriceps, which

is more pronounced only for the three most stringent levels of significance. There is

also a clear peak discriminatory power at 6N for Biceps. For Quadriceps, the peak

discriminatory power is at 6N for the two most stringent levels of significance and

at 2N-3N for the remaining levels of significance. We are not very sure as to the

physiological origins of this peak discriminatory power with respect to force, based

on interactions with our clinical partners.

In Fig 6-3, we examine this behavior, characteristic of Deltoids and Medial Gas-

trocnemius. The deltoids have a lull in 4N-5N and the Medial Gastrocnemius has

two lulls at 3N and at 6N. Peak discriminatory power for the Deltoid is in the lower

range of the force sweep of 2N-3N, quite unlike the other muscle groups. The peak

discriminatory power for the Medial Gastrocnemius is at 5N.

The significance of this kind of finding about the nature of discriminatory power of

ultrasound images is enormous. Firstly, this will allow us to identify the appropriate

force for maximizing utility and throughput (by reducing time required) for clinical
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Figure 6-2: Statistically significant edge thresholds (out of 99) at different forces for

Biceps and Quadriceps. Multiple levels of significance are shown.
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data acquisition. Secondly, this tells us something about the inter-dependent behavior

of a particular imaging biomarker and a muscle group. With more continuous data

and extensive analysis, a complete characterization can be made leading to practical

cost control for clinical trials and other purposes.

6.2.3 Progression Tracking

Progression tracking is of great value to the DMD case study. It allows for observing

discriminating behavior between the DMD subjects and the control subjects with

variance in age, and over a period of time. By also subjecting a part of the study

group to a potential clinical drug, the impact of the drug can be quantified. We did try

a heuristic approach where a selected feature set was chosen among the many possible

feature vectors for the ultrasound image dataset, and did a PCA to form a cluster of

the two groups showing differential behavior with age. However, we were limited by

the fact that subspace selection continued to be an issue, with the dimension of the

feature vectors necessarily required to be smaller than the dimension of the dataset

(number of DMD and Control subjects) due to the PCA algorithm. We discuss a

possible solution with the HOSVD algorithm below.

6.2.4 Segmentation

We made the possible argument for segmenting the image in the beginning of the

chapter. We examined two ways of doing the segmentation, given our controlled-

acquisition of ultrasound image data. The first is to segment each image, as one

would do in any other method. The second method is to segment along the time-axis

of our controlled-acquisition image sequence. This is something that wouldn't be

possible in any traditional sonographer-based acquisition.

In the first way, we take each image and try to segment it. For example, in Fig

6-4, (a) represents a simple straight line segmentation of the subcutaneous fat. (b),

implemented via a seed-based region growing algorithm, represents a more naturally

identifiable segmentation.
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Figure 6-3: Statistically significant edge thresholds (out of 99) at different forces for

Deltoid and Medial Gastrocnemius. Multiple levels of significance are shown.
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(a) Straight Line Segmentation

(b) Region-Growing Algorithm

Figure 6-4: Image-based Segmentation
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A good use of such a segmentation in our context would be if we could measure

the thickness of the muscle indirectly from the location of the bone tip and the

subcutaneous fat thickness. By measuring the variation in this muscle thickness with

force, we could get a proxy measure of the elasticity of the muscle tissue. Given that

Duchenne Muscular Dystrophy slowly introduces fat into the muscle tissue, this could

be a potential way to capture that information and use it in our framework.

We illustrate this hypothesis in Fig 6-5. Note that the measurements described

above are more similar for a control subject across visits, than in comparison to a

completely different control subject.

In Fig 6-6, we visualize the force volumes acquired along the force-axis. This is

better than viewing a video along time-axis, because these are equispaced along the

force axis. Since these are viewed from the side, we can see the way the bone moves

with a reduction in force for control subjects in (b). This could therefore be used

for measuring the change in muscle thickness. Unfortunately, in (a) we cannot see

the bone for the Duchenne Muscular Dystrophy patient. This is the case for most

of the DMD patients. Therefore, it is our opinion that segmentation cannot be used

to measure the change in muscle thickness (or other DMD specific properties, which

affect only the muscle), and consequently infer properties of the muscle in our context.

6.2.5 Better Learning Methods

While our clinical feedback was against a black box approach, there is still potential for

better performance than the baseline performances we have reported here. Given that

the baseline performances validate the utility of controlled-acquisition ultrasound,

there is immense potential for the possibilities with better methods.

In this thesis, we have been trying to examine the utility of having controlled ac-

quisition in ultrasound [21, 20]. This implies measuring the force, during the operation

of clinical ultrasound data acquisition, and examining the utility of this additional

knowledge. In order to extend it to tracking the progression of these disease condi-

tions over time, we found that it was useful to specifically learn how to handle data

that is organized by more than one dimension or type. This is a common need across
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Figure 6-5: Hypothesis for inferring muscle
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(a) A DMD subject, the same subject
subject.

after 6 months and a different DMD

(b) A control subject, the same muscle scanned again for the same subject

in the same visit, and a different control subject

Figure 6-6: Force-axis Segmentation
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many problems, and a good representation we want to try is a third-order tensor

(three dimensional array).

Tensor space representations for image sets have been found to be be computa-

tionally efficient compared to other similar methods [151. For example, Higher Order

SVD (HOSVD) was used, with good computational performance, for the classification

of handwritten digits, a standard problem in pattern recognition [311. Representation

is precise, with the training set of m number of handwritten digit images, each of size

n x n, being represented as a tensor A E R" .

Recently, it was proven that Higher Order Singular Value Decomposition does

both simultaneous subspace selection and K-means clustering, with a reasonable and

a comparable accuracy to, among other things, a PCA-K-means approach [171. There-

fore, these might be good areas for prospective study.

6.3 Summary

Controlled acquisition of ultrasound has a large amount of untapped potential. As

seen in this thesis, it can bring a great degree of cross-sonographer and cross-temporal

reliability, reduce costs by speeding up acquisition thanks to fast and specifically

force-targeted acquisition, and best of all, provide the potential for automation/near-

automation of diagnosis and progression tracking. We look forward to seeing it in

additional clinical applications in the near future.
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