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Master of Science in Computation for Design and Optimization

Abstract

This thesis examines two problems concerning the secure and reliable operation of

the electric power grid. The first part studies the distributed operation of the electric

power grid using the power flow problem, which is vital to the operation of the grid.

The power flow problem is a feasibility problem for finding an assignment of complex

bus voltages that satisfies the power flow equations and is within operational and

safety limits. For reliability and privacy reasons, it is desirable to solve the power

flow problem in a distributed manner. Two novel distributed algorithms are presented

for solving convex feasibility problems for networks based on the Method of Alter-

nating Projections (MAP) and the Projected Consensus algorithm. These algorithms

distribute computation among the nodes of the network and do not require any form

of central coordination. The original problem is equivalently split into small local

sub-problems, which are coordinated locally via a thin communication protocol. Al-

though the power flow problem is non-convex, the new algorithms are demonstrated

to be powerful heuristics using IEEE test beds. Quadratically Constrained Quadratic

Programs (QCQP), which occur in the projection sub-problems, are studied and

methods for solving them efficiently are developed. The second part addresses the

robustness and resiliency of state estimation algorithms for cyber-physical systems.

The operation of the electric power grid is modeled as a dynamical system that is

supported by numerous feedback control mechanisms, which depend heavily on state

estimation algorithms. The electric power grid is constantly under attack and, if

left unchecked, these attacks may corrupt state estimates and lead to severe conse-

quences. This thesis proposes a novel dynamic state estimator that is resilient against

data injection attacks and robust to modeling errors and additive noise signals. By

leveraging principles of robust optimization, the estimator can be formulated as a

convex optimization problem and its effectiveness is demonstrated in simulations of

an IEEE 14-bus system.

Thesis Supervisor: Mardavij Roozbehani

Title: Principal Research Scientist
Department: Laboratory for Information and Decision Systems

3



4



Acknowledgments

First, I would like to thank my thesis advisor, Dr. Mardavij Roozbehani, for his

patience and guidance during my graduate studies. Mardavij has always set aside

time to help me move forward with this work, event if it meant reviewing basic

mathematics principles or debugging computer programs. I greatly admire Mardavij's

passion towards research and I am grateful for the opportunity to collaborate with

Mardavij over the past two years.

I would also like to thank members of the Laboratory for Information and Decision

Systems for their invaluable feedback and discussion on this research, especially Sze

Zheng Yong, who has been my mentor and my friend. Many of the difficulties that I

have encountered in the course of this research were resolved thanks to his insightful

comments during afternoon discussions.

Finally, I would like to dedicate this thesis to my family. This accomplishment

would not have been possible without their unwavering love and support.

5



6



Contents

1 Introduction

1.1 Literature Review . . . . . . . . . . . . . . . . . .

1.2 Contributions . . . . . . . . . . . . . . . . . . . .

1.3 Notation and Basic Results . . . . . . . . . . . .

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . .

2 Quadratically Constrained Quadratic Programs

2.1 Convex Relaxations . . . . . . . . . . . . . . . . .

2.2 Equivalence of Relaxations . . . . . . . . . . . . .

2.3 Exactness of Relaxations . . . . . . . . . . . . . .

3 Distributed Feasibility Algorithms for solving the

lem

3.1 Problem Statement . . . . . . . . . . . . . . . . .

3.2 Preliminary Material . . . . . . . . . . . . . . . .

3.3 Distributed Constraint Satisfaction Algorithm . .

3.4 Constrained Consensus Algorithms . . . . . . . .

3.5 Power Flow Problem: An Application . . . . . . .

9

11

15

16

17

19

20

23

24

Power Flow Prob-

4 Secure Estimation for Cyber-Physical Systems

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Preliminary Material . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Robust and Resilient State Estimation . . . . . . . . . . . . . . . . .

7

33

34

35

41

43

46

51

52

53

56



4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 71

A Convergence Analysis of the CC algorithm 73

B Electric Power System Analysis 79

B.1 Equivalent H Circuit Model . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Power Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3 Power Flow Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 Structure-Preserving Power Network Model . . . . . . . . . . . . . . 85

8



Chapter 1

Introduction

The electric power grid is the largest and most complex engineering system in the

world. For over a century, it has contributed to the growth of the world's economy and

quality of life. As our dependence on electricity grows, it will face serious challenges

in the near future that will require the intervention of new technologies. This thesis

examines two problems concerning the privacy, security and reliability of electric

power grid operation.

The first part of this thesis studies the distributed operation of the electric power

grid. The term "distributed" will be used to denote an approach that is fully decen-

tralized, which does not require any form of central coordination, which evolves by

local message exchanges, and which is scalable. Current operations are dominated

by centralized schemes that require complicated communication protocols to monitor

operating conditions throughout the grid and a powerful central computer to process

the large amount of data, which become impractical as the size of the grid grows.

The advent of the smart grid and development of computational abilities in network

components will also encourage distributed operation schemes by means of commu-

nication between the components, while privacy and security concerns discourage

the collection and storage of information. Distributed approaches are also naturally

suited for improving system reliability in the presence of faulty processes.

Our motivating application is the power flow problem, which is vital to the oper-

ation of the electric power grid. The power flow problem is a feasibility problem for
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finding an operating point in a network that is consistent with the physical laws and

within operational and safety limits of the network. Due to the quadratic relations

between voltage and power, the power flow problem is non-convex. If the optimiza-

tion of a cost function is also sought, then the problem is equivalent to the Optimal

Power Flow (OPF) problem 1151. In the event of a contingency (e.g. a generator

or transmission line failure), the priority of the operator is the restoration of grid

operation, while optimization and cost are secondary. For this reason, the focus of

this thesis is on solving the power flow problem in a quick and reliable manner.

The second part of this thesis studies the cyber-physical security of the electric

power grid. The electric power network can be characterized as a Cyber-Physical

System (CPS), which is defined as a computer-based system that monitors and con-

trols physical processes using embedded sensors, actuators, control processing units

and communication devices. Many other infrastructure that sustain our modern so-

ciety, such as oil and natural gas distribution, water and waste-water treatment and

transportation systems fall under this category.

Unlike traditional research in computer security that has focused on the protec-

tion of information [1, 13], the study of cyber-physical security considers how these

attacks affect estimation and control algorithms, and ultimately, the physical infras-

tructure. The operation of a cyber-physical system can be modeled as a dynamical

system that is supported by numerous feedback control mechanisms, which depend

heavily on state estimation algorithms. As a CPS is connected to the internet for

remote monitoring and control, it becomes vulnerable to cyber attacks on its com-

munication channels, while its large scale also makes it challenging to secure every

system component. Failure to check these attacks may corrupt state estimates and

lead to physical consequences in the forms of faults and failures.

The term "resilient" will be used to describe a system that can withstand attacks,

while a "robust" system is insensitive to random disturbances and modeling errors,

i.e., discrepancies between the model used to design the state estimate and the real

dynamics of the controlled system. It is necessary to distinguish between resilient esti-

mation from the relatively well-studied field of robust estimation. The latter assumes
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that the disturbance signals are natural and that they follow a specific probabilistic

model. These assumptions are not justifiable when adversarial actions are involved.

Early research on the design of resilient systems have focused on the characteri-

zation of undetectable attacks and on attack detection and identification techniques.

These range from a simple application of data time-stamps [541 to hypothesis test-

ing using residuals [14, 37, 421. More recent works have addressed the problem of

state estimation despite attacks, but assume the absence of modeling errors and noise

signals. These assumptions are difficult to guarantee in practice, which motivates

the goal of this thesis - to design a dynamic state estimator that is both robust and

resilient.

1.1 Literature Review

1.1.1 Electric Power Grid Operation

The electric power grid consists of three interacting physical elements: i) generating

units produces electric energy by harnessing other forms of energy; ii) loads are the

end users that consume electric energy in a multitude of ways; and iii) the transmission

and distribution network connects the generating units to the loads. In this section,

we briefly describe the main physical elements of the electric power grid and how they

operate in tandem.

Electric power is produced by generating units that convert primary energy into

electric energy. Primary energy comes from a number of sources, such as fossil and

nuclear fuels and other renewable energy sources. The transmission system carries

electric power over long distances in transmission lines from the generating units

to the distribution system, which subsequently transmits electric power from dis-

tribution substations to loads that are in close proximity. Distribution networks

are distinguished from transmission networks by their voltage levels and topologies.

Transmission networks have meshed topologies with higher voltage levels to reduce

transmission losses, while distribution networks usually have radial topologies with
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lower voltage levels to cater to load requirements.

At the end users, electric power is consumed by a wide variety of loads. Loads can

have impedances that are resistive, reactive, or a combination of the two. Resistive

loads consume only real power while reactive loads may consume or supply reactive

power. To cope with different types of loads, generating units must be able to absorb

and supply both real and reactive power.

The objective of real-time operation of the electric power grid is to ensure that

the system remains stable and protected while meeting end user demands for electric

power. Unlike oil and gas, electricity cannot be stored economically except in small

quantities. The development of new storage technologies and high penetrations of

electric vehicles may change this, but these developments are unlikely to occur in the

near future. The main challenge for operators is that the supply of electricity must

match consumption at all times. Since the load is changing all the time in ways that

cannot be perfectly predicted, generation must follow the load in real time. To this

end, the operator must solve the power flow problem, which will be discussed in detail

in Appendix B.

1.1.2 Distributed Feasibility Algorithms for Networks

A feasibility or constraint satisfaction problem is defined by its three main compo-

nents: variables, values and constraints. A solution to a feasibility problem is an

assignment of values to variables that satisfies all constraints.

We are interested in solving feasibility problems that can be distributed across

many agents. The classical approach to distributed algorithms has been decomposi-

tion: based on the specific structure of the constraints, the problem is decomposed

into a number of sub-problems. These sub problems can be solved independently,

but they typically require a centralized coordinator to ensure that the local decisions

converge to a global feasible solution. In addition, the algorithm imposes a certain

computation and communication structure among the individual agents.

However, the situation is the reverse in certain emerging applications of network

problems: the communication and computation structure of the problem is given and
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the implementation of a centralized coordinator is undesirable or infeasible. Examples

include ad hoc wireless communication networks [16] and sensor networks 1471 that are

characterized by a lack of centralized control and access to information. Furthermore,

a distributed approach may be preferred in the case of very-large scale networks where

sub-problems are easier to solve simply because they are smaller or because they have

a special structure that can be exploited.

We shall focus on solving feasibility problems for networks that have the following

characteristics:

1. The network has a variable-based model - there exist m nodes 1, 2, ... , m, and

each variable xi belongs to the node i.

2. There exist constraints on each node and inter-node constraints, in which case

an edge is drawn between each pair of nodes.

3. Communication is restricted to immediate neighbors.

4. Knowledge (i.e., domains, variables and constraints) is local to nodes and their

neighbors, and cannot be centralized for different reasons.

5. A solution is an assignment of values to nodes that satisfies every constraint,

i.e. globally consistent.

6. All nodes cooperate to find a solution.

The feasibility problem considered here shares similarities with the distributed

constraint satisfaction problem that was first studied by Yokoo [52] and which has

since gained considerable interest in the field of artificial intelligence. Unlike Yokoo's

problem, we assume a static communication structure between nodes and do not

restrict ourselves to discrete variables and constraint sets.

In any distributed algorithm, a communication and timing model is necessary.

We will use a synchronous model, which is the simplest model to describe, program,

and reason about. Steps are performed in a synchronized fashion across agents.

Synchronization solely requires that the algorithm instances each have access to a
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shared sense of time, and that this can be achieved without information sharing

or other communication between agents. A suitable protocol is the Network Time

Protocol (NTP).

In addition, we assume the existence of a reliable underlying communication struc-

ture among the nodes and are not concerned about the implementation of the physi-

cal communication network. This is because our primary concern here is cooperation

among intelligent nodes rather than solving feasibility problems by certain multipro-

cessor architectures.

Although distributed feasibility algorithms appear to be similar to parallel process-

ing methods for solving feasibility problems, research motivations are fundamentally

different. The primary concern in parallel processing is efficiency, while distributed

feasibility algorithms assume that we can choose any type of parallel computer archi-

tecture.

1.1.3 Secure State Estimation

For linear systems under attack, [221 maps the resilient state estimation problem

onto an to optimization problem when the attacks are unbounded and provides a

characterization of the maximum number of attacks that can be tolerated. The

estimator is subsequently relaxed using the "e1/er" norm and demonstrated to be

effective under the prescribed conditions. However, this approach assumes the absence

of modeling errors and noise signals.

141] extends the previous estimator for linear systems with bounded noise signals

and modeling errors by constraining them in the optimization problem. However,

this approach generates an estimate for the case where the noise signals and modeling

errors are benign, i.e., they cancel out the attack signals, and hence does not provide

the robustification that we seek. [531 proposes a robust and resilient estimator that

generates unbiased estimates asymptotically when the system is perturbed by noise

signals that are zero mean, Gaussian white processes. Both estimators require the

solution of a combinatorial problem, which is intractable for large systems.

A zero-sum game theoretic approach to robust and resilient estimation can be
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formulated using H, filtering [461. The problem is viewed as a dynamic game be-

tween two players with competing goals. The first player is the CPS operator, whose

objective is to minimize a cost function that depends on the estimation errors. The

second player is the adversary, who wants to maximize the same objective. In this

setting, the noise signals and modeling errors are assumed to be adversarial.

Even in the absence of attacks, the robust estimation problem with modeling

errors and noise signals is of significant interest and has been primarily considered

from the Bayesian perspective, i.e., with the assumption of known priors. The robust

Kalman filtering approach in 1491 minimizes the mean squared state estimation error

asymptotically using multiple steady-state Riccatti equations, whereas the set-valued

filtering approach in [121 utilizes semidefinite relaxation techniques for computing

minimal size ellipsoids that bound the solution set of a system of uncertain linear

equations.

Another set of relevant literature pertains to that of robust optimization, which

addresses the problem of optimization under uncertainty, in which the uncertainty

model is not stochastic, but rather deterministic and set-based (e.g., [3, 51). Of par-

ticular relevance is the subject of robust regression and specifically of the equivalence

of robustification and regularization in linear regression under some assumptions on

the uncertainty sets [23, 61. This equivalence is a key tool that we will make use of

in our design of a robust and resilient estimator.

1.2 Contributions

Distributed Feasibility Algorithms with Application to the Power

Flow Problem

The first part of this thesis presents two novel feasibility algorithms that are based

on the Method of Alternating Projections (MAP) and the Projected Consensus algo-

rithms. Our algorithms solve convex feasibility problems by distributing computation

among nodes and require only local information exchanges. The main application of
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our algorithms is the power flow problem, which finds a feasible set of complex bus

voltages and is vital to the operation of the electric power grid. Although the power

flow problem is non-convex, our algorithms are demonstrated to be effective heuris-

tics using various IEEE test beds. Furthermore, it will be shown that the projection

sub-problems in our algorithms can be formulated as non-convex Quadratically Con-

strained Quadratic Programs (QCQPs) that can be solved efficiently.

Robust and Resilient State Estimation with Application to Elec-

tric Power Grid Operation

The second part of this thesis presents a novel state estimation algorithm that is

resilient to data injection attacks and robust to modeling errors and additive noise

signals. By leveraging principles of robust optimization, the estimator can be formu-

lated as a convex optimization problem and the use of cross-validation to determine

its hyperparameters is advocated. The effectiveness of our estimator is demonstrated

in simulations of an IEEE 14-bus system.

1.3 Notation and Basic Results

For any vector v E R, va:b, 1 < a K b K n, denotes the subset of v comprising the

a-th to b-th entries of v, inclusive. We also denote the Euclidean norm by 11 - 11.

For any matrix M E Rmxn, M(i,.) E R' denotes the i-th row of M, i E I, ... 7n,},

and M(-j) E- Rm denotes the j-th column of M, j E ...--. , n}. M' denotes the

transpose of M. We introduce several matrix norms used in this paper:

" Co norm: |'MI1j, = number of nonzero rows of M

* "mixed" e1/l," norm: |IM||j/e, = -i ||M(i,)Ir-

" (fq/fr) subordinate norm: ||MAI(eqe,er) = max3 #o 1IM0IIF

For two matrices A, B E Rmx", the trace inner-product over R" is defined as

A . B = trace (AT B).
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When the context makes it clear, we will use 0 (or 1) to denote either a matrix,

vector or scalar of zeros (or ones).

1.4 Thesis Overview

The thesis is organized as follows.

Chapters 2 and 3 studies the distributed operation of the electric power grid. In

Chapter 2, we first review Quadratically Constrained Quadratic Programs (QCQPs),

a class of optimization problems that occur frequently in power system analysis, and

show that certain classes of non-convex QQCPs can be solved efficiently. In Chap-

ter 3, we study feasibility problems for networks and develop two new algorithms

that distribute computation among st network nodes whilst restricting information

exchanges to take place only along network edges. We demonstrate that these al-

gorithms are powerful heuristics for solving the power flow problem using IEEE test

beds. Chapter 4, addresses the problem of grid cyber-physical security by developing

a dynamic state estimator that is resilient against adversarial actions and robust to

modeling errors and additive noise signals. We demonstrate the effectiveness of our

estimator using simulations of an IEEE 14-bus system. Finally in Chapter 5, we

conclude with a summary of our findings and suggestions for future research.
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Chapter 2

Quadratically Constrained Quadratic

Programs

A Quadratically Constrained Quadratic Program (QCQP) is an optimization problem

of the following form:

*: min fo(x)

s.t. fi(x) < 0 i = 1,- ,m (2.1)

x E R"

where fi : Rn -+ R, i = 0, -- - , m, are quadratic functions defined as:

fi(x) := xTQix + 2 q~x + -Y

with coefficients Qj C Sn, qi E Rn and 7yj C R, i = 0, - - - , m. Qj is allowed to be a

zero matrix, thus QCQPs include Linear Programs and Quadratic Programs. Notice

that an equality constraint can be represented as two inequality constraints.

QCQP is a general class of optimization problem with a wide range of applications.

It can model binary variables with the constraint x2 - x = 0, allowing combinato-

rial problems such as the knapsack or max-cut problems to be cast as QCQPs [26].

QCQPs also appear in trust-region sub-problems [441 of Sequential Quadratic Pro-

gramming methods in nonlinear programming [71.
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The quadratic function fi is convex if and only if Qi > 0. (2.1) is a convex

optimization problem if fo, - - - , fr are convex, in which case it can be solved in

polynomial time by Semidefinite Programming methods [9], or more efficiently by

specialized Second-Order Cone Programming algorithms [36].

In general, QCQPs non-convex and therefore lack computationally tractable solu-

tion methods. The standard approach in such cases is to solve a relaxation, in which

(2.1) is cast as a Semidefinite Program or Second-Order Cone Program. In certain

cases, these relaxations are exact, i.e., the optimal value of the relaxation is equal to

the true optimal value and an solution of (2.1) can be recovered from every solution

of the relaxation. It turns out that these relaxations are exact for several classes of

non-convex QCQPs.

This chapter studies non-convex QCQPs and their relaxations. Due to the quadratic

relationship between voltage and power, QCQPs occur in electric power system analy-

sis. The two most important problems in power flow analysis, the optimal power flow

(OPF) problem and power flow problem can be formulated as QCQPs [8]. Several

conditions under which the relaxations are exact will be provided and our motivation

for studying QCQPs will become clear in Chapter 3 when QCQPs are encountered

in the projection sub-problems.

2.1 Convex Relaxations

2.1.1 Semidefinite Programming Relaxation

The homogenized version of (2.1) is

min xT x+2 tqox+t2 yo

sAt. xTQix + 2 t qTX + t2 -Yi <; 0 i=1,---,mi (2.1A)
t2 sI

xE'n tc1R

If (x, t) solves (2.1A), then ix solves (2.1) with the same objective function value.

20



We adopt the following matrix notations:

-yj qjT I OT
Mi= , = , and Mm+ ( )=

(qj Q) (0 0

If we rewrite the quadratic functions as trace inner-products between two matrices,

it is clear that (2.1A) admits the following lifted representation to the real symmetric

space S"+':

min MO - X

s.t. M .i-X O i= 1,-. ,m

/M+ 1 -X =- I

X -X00 
X TMrX XX 1

X0 0 E R, xER n

Notice that the non-convex equality constraint

X -X00 
X T

is equivalent to X >- 0 and rank(X) 1. A usual approach to relax this constraint

is to drop the constraint rank(X) 1, thus obtaining the following Semidefinite

Programming relaxation of (2.1A):

* min Mo - X

s.t. AM1 - X < 0 i = I,.. -- -2,2)

Mm+i -X = 1

X E Sn+1

Unlike (2.1), (2.2) is a Semidefinite Program and it can be solved in polynomial

time 191-
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2.1.2 Lagrangian Dual Relaxation

It is useful to define the following notations:

QA := Qo + AjQj
i=1

qA :qo + Aq

m

7A Yo0ZAiY 2
i:=1

for some A c RJ.

The Lagrangian of (2.1) can be written as

L(x, A) = XTQAX + 2q Tx + -YA

To derive the Lagrange dual relaxation of (2.1),

i* = min max L(x, A)
xeR AERT '

> max min L(x, A)
AERm XERn

Applying Shor's relaxation scheme [451,

P* max T

s.t. MO - T Mrn + E', Ai Mi 0

Ai > 0, 1 = I - -- ,7m

T E R

Notice that (2.3) is a Semidefinite Program. It is straightforward to verify that

(2.3) is also the conic dual of (2.2), i.e., [4 < [4.

22
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2.2 Equivalence of Relaxations

Assumption 2.1. (2.1) satisfies the Slater regularity condition, i.e. there exists Y

such that fi(7) < 0, i 1,.-. ,m. It follows that (2.2) satisfies the Slater regularity

condition as well.

Proposition 2.1 (1511). (2.3) satisfies the Slater regularity condition when either

(a) at least one of the m constraints is ellipsoidal, or

(b) the objective function is strictly convex.

Proof. For case (a), let us assume that the i-th constraint is ellipsoidal, i.e. Qt S 0

and -y + qiQi qj < 0. If we let Ai > 0 be sufficiently large and A= 1, j f i, , we

have

m

Qo + AQi - 0
i= 1

Then we let T < 0 be sufficiently large in absolute value to obtain

m

A10 - Mm+1 + Ai Mi - 0
i=1

For case (b), we have Qo >- 0. Let A, . - A,, = E for some E > 0 that is

sufficiently small, and T < 0 be sufficiently large in absolute value such that

m

MO - Mm+ + e I 0
i=1

It is a well-known result in optimization that strong duality holds for a convex

optimization problem under constraint qualification such as Slater regularity condi-

tion [511. Hence, if either Assumption 2.1 or the hypothesis of Proposition 2.1 holds,

then we have strong duality between (2.2) and (2.3), i.e., p* = p*
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2.3 Exactness of Relaxations

In general, the solutions of the relaxations (2.2) and (2.3) do not solve (2.1) but they

can provide lower bounds, i.e., p* < p* < p* . If a solution of (2.1) can be recovered

from a solution of (2.2) or (2.3) in polynomial time, then (2.2) or (2.3) is said to be

an exact relaxation of (2.1). Several authors have studied conditions under which the

relaxation is exact. Here we provide a few of them.

Lemma 2.1 ([81). Assume that the feasible set of (2.1) is bounded. If X* solves (2.2)

and rank (X*) < 1, then /4 /4t* and -1x* solves (2.1), where uniquely solves

T

X t* t*

x *) (x*)

Proof. Since the feasible sets of (2.1) and hence (2.2) are bounded, p* and p* are

finite. Given any feasible solution x of (2.1),

T

X :

(D (Dx

is a feasible solution of (2.2). Hence (2.2) is feasible and / < p*.

If rank X* = 0, then X* = 0 and an optimal solution to (2.1) is x* 0, and

therefore *= p*

If rank X* = 1, then X* has the unique decomposition

T

t* t*
X * =- (*) ()T

TQ x* x*2T

'2
and u*= trace ( Mo - X*) = x*TQx* + -qx* + (t*)Yi = A*.

Theorem 2.1 (1311). Assume that there exists a sign vector o c {-1, 1}n+1 such that

[Ai]kojuk 0, 0 j < kn, 1 < i < m
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Let

A00

xx

xnf

--. -xl1

be an optimal solution of (2.2). Then

OnV'Xnn)

is an optimal solution of (2.1).

Proof. From our hypothesis, we observe that:

O=1 and 'P = 33cj=1,**-,n

Since X is positive semidefinite,

(Xik)2 XjjXkk, 0 < j < k < n

Hence, it follows that:

[Mi]jk-iijiik = [Aki]jkxjcrk 'XT4X

< IA'iljkXik, 0 < j < k < n,

25
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For i = 0, . -m, we obtain

T( XOi
.=0 k=o

n nY [ Ali]Ij -i j
j=0 k=o

j=O k=O

This implies that ( oI

of (2.1A), ) is also an

is a feasible solution of (2.1A). Since (2.2) is a relaxation

optimal solution of (2.1A).

2.3.1 S-Procedure

Suppose gi : V -+ R, i = 0, -. , n, are m+ 1 real valued functionals defined on a

vector space V. Consider the minimization problem

min go( )

(P)SAt. gi (X) 0, = 1,

X E V

The Lagrangian of (P) is

L (x, T) = go(x) + Ti gj (X)
i= 1

Consider the following two conditions

go(x) > 0 V XEV,
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= A -X

m
V X EV s. t. go W)+ Ti qi Wx) 0

(S1)

(S2)

s.t. gi(,,) < 0, i = 1, -. - ,m

I r, > 0, 2' = 1,.. - --,M,1



It is straightforward to show that (S2) -> (Si):

(S2) =- 3 i ! 0, i =- 1, .--- 71, s.t. go(x) > -Z ri gi(x),

=> (S1)

In general, the converse may not be true. The S-Procedure for (P) is the method

of verifying (Si) using (S2). This is helpful since (S2) is generally easier to verify

than (Si). If (Si) =- (S2), the S-Procedure is said to be lossless.

Theorem 2.2 (Theorem 3.1 [24]). Connection of the losslessness of the S-Procedure

with strong duality

The S-Procedure for (P) is lossless if and only if strong duality holds in (P), i.e.

m

max min go(x) + Ti gi(x) = A*P
T>O xEV

Proof. The proof applies the S-Procedure for the inequality go(x) - c > 0 for some

c E R, subject to the constraints gi(x) 0, i = 1, ... , m.

We begin with the proof of the sufficient condition. Choosing c = p*, (Si) gives

go(x) > P* V x E V, s.t. gi(x) < 0, i = 1, - - - , n

Losslessness of the S-Procedure implies (S2):

V x C V,
m

s.t. go (X) +FZTi gi W) > p*p

Hence we obtain the inequality

max min go(x) +
T>O XEV

m
~Ti gi W)> P4
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It is straightforward to show the reverse inequality. For any T > 0,

m

min go(x)+ Ti gi(x)
i=1

min
XEV go(x)

s.t. gi(x) < 0,

Taking the maximum of both sides over all T > 0,

max min
r>O xev

go(x) + Ti gi(x)
i= 1

Conversely, the application of strong duality and (Si) gives

max min go (x)
r>O XEV

m

+ Zri gi(x)
i= 1

i=1, --- ,m

C

Therefore there exists Tr > 0, i = 1, -- - i m, such that go(x) + Z> Tr gi > c for

all x E V, i.e.,
,rn

go(X) - c + Ti gi 0
i=1

which satisfies (S2).

Definition 2.1. (P) is said to satisfy the regularity condition if

xl E V, S. t. gi(5 < 0, j ,---,m

Lemma 2.2 (Lemma 2.1.1 [18]). For (P), define the mapping o: V --+ Rm+

10(X)

V() 91 W)

p(x) g(X)gm (x)/
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s. gi W) < 0,



If (P) satisfies the regularity condition (2.4) and its joint image set 0 {p(x) I x C V} C

Rm+1 is convex, then the S-Procedure for (P) is lossless.

Proof. An equivalent characterization of (Si) is

E) n E = o

where E = {(Ro1) x Rm : o < 0, 0} is a convex cone. The separation

theorem states that disjoint convex sets can be separated by a hyperplane, i.e., there

exists a non-zero ( E0, ) ER x R' such that

m

Ao0o + Z 6i > 0 V (00, ) E E (2.5)

Aodo + 14 Z z 0 V (60,() E (2.6)

Since (-1, 0) E E, from (2.6) we get A0 2 0. Using (-e, -ei) E E, where ei E Rm

is the i-th unit vector and e > 0, we get A1 2 0, i 1, . - , m.

By the regularity assumption (2.4), there exists T E V such that 62 = g1(T) < 0,

i =1,- -, m. Thus (2.5) implies that o > 0. If we multiply (2.5) by -, we obtain

AA

go() + gi(x) 0 V X E V
1 Ao

which shows that (S2) holds with Ai = , i= , m.

Remark 2.1. Yakubovich's S-lemma (1971) proves the losslessness of the S-Procedure

when m = 1, and go, g1 : R -+ R are quadratic functions.

We now turn our attention back to quadratic functions. In the rest of the section,

we will consider the application of S-Procedure theorems on (2.1).
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Lemma 2.3. Define the mapping (p: RI -+ R"*1,

xTQox

W~x .TQTx

TQnX)

If Qi, i =0,-. ,i, are real, diagonal matrices, then its joint image set E=
{p(x) I x E R"} is convex.

Proof. For any A E [0, 1], and Xi,x 2 E R2, we want to prove

Apo(xi) + (1 - A)((x 2 ) E = {p(x) I x E R}

Since Qi, i 0,.- , m, are real, diagonal, we observe that p(-) is linear with

respect to x?, i 1,*-- , n, hence o(-) and its image set E are convex.

Lemma 2.4 (Theorem 2.1 [241). Consider (2.1). Assume that Qi, i = 0,--- , m

are real, diagonal matrices and (2.1) satisfies the regularity condition. Then the S-

Procedure for (2.1) is lossless.

Proof. Let us first assume that fi, i =0,-- , m are homogeneous quadratic functions.

Since Qi, i = 0, - - - , m are real, diagonal matrices, we may use Lemma 2.3 to deduce

that the joint image set of (2.1) is convex and the application of Lemma 2.2 completes

the proof.

Now let fi, i = 0,.- , m be general, not necessarily homogeneous, quadratic

functions. We may assume the Slater point to be - = 0, so that the regularity

condition is equivalent to fi(0) = -y < 0, i = 1,.- , m; if this is not the case, we

replace fi(x) = fi(x + T).

Define homogeneous versions of our quadratic functions Fi : R' x R -+ R, i
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0,--. ,in, where

if # 0

if = 0

It is clear that

F (x, ) = xTQx + 2%q + 2

x Qi

=0 q2

qjT

qi)
K

Recall that (Si) of the S-Procedure states

fo(x) > 0 V x E R", s.t. fi(x) 0, i = 1, --- , m

An equivalent statement for our new functions is

Fo(x, ) 0 V (x, )ERnxR, s.t. F(x, ) 0, i = 1,.-. 1 ,m

We now proceed to prove (Si) = (Si').

exists (x, ) E R' x R such that:

By contraposition, assume that there

Fo(x, ) < 0

If =, 0,

fo (Ix) = Fo (x, ) < 0

fi (Ix) = F (x, ) < 0,

which contradicts (Si).

If = 0, the same result is obtained by observing the continuity and boundedness

Of fi, i = 0,' * - - , .
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(Si')

s.t. F (x, ) < 0,

i , -,M

F (x, ) = 0~ x

IxTQix



Furthermore, choosing (x, ) = (0, 1) gives

Fi (0, 1.) = fi (0) < 0, i1 = 1,.. - --, r

Therefore the regularity condition (2.4) is satisfied by the new functions, so we

can apply the homogeneous version of the theorem that has been proven above. We

obtain

3 T ;> 0, i = 1,.- ,m, s.t. Fo(x) + r7Fi(x) > 0, V x E R' (S2')

which recovers (S2) if we let = 1.

Theorem 2.3. Assume that (2.1) satisfies the regularity condition (2.4) and Qj,
j = 0, - - , m, are diagonal. Then its Lagrangian relaxation (2.3) is tight.

Proof. The proof follows from Lemmas 2.2, 2.3, and 2.4, and Theorem 2.2.
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Chapter 3

Distribuited Feasibility Algorithms for

solving the Power Flow Problem

A canonical problem in distributed systems and networks is to simultaneously satisfy

constraints between neighboring nodes. As the size of the problem grows, centralized

algorithms become impractical and undesirable, due to the reliance on a central pro-

cessor. On the other hand, distributed computing environments are on the rise due

to advances in hardware and networking technologies, leading to renewed interest

in distributed algorithms. Such algorithms have been studied in a wide variety of

feasibility problems, the most widely known being that of average consensus, i.e., of

calculating an average in a distributed manner 121, 40].

The shift towards distributed algorithms is also driven by various application do-

mains. In electric power networks or communication networks, for example, privacy

and security concerns discourage the collection and storage of information while the

growth in the number of active components with sensing and computational capa-

bilities has fueled interest in distributed operation schemes. Distributed approaches

are also naturally suited for improving system reliability in the presence of faulty

processes.

Given a network of interconnected nodes, each with its own value (such as a mea-

surement, position or vote) and with constraints between each node and its neighbors,

this chapter develops two novel algorithms for finding feasible assignments of values
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for all nodes when all constraints are convex. The algoritluns, based on the Method

of Alternating Projections (MAP) and the Projected Consensus algorithm, distribute

computation among nodes and do not assume the existence of a communication in-

frastructure with topology different from the network. In other words, a node only

needs to communicate with its immediate neighbors in the network.

The main application for our algorithms is the power flow problem, which is

central to the operation of the electric power grid. The problem is formulated as a

feasibility problem for finding an operating point that is consistent with the physical

laws and within operational and safety limits of the grid. Due to the quadratic

relations between voltage and power, the power flow problem is non-convex. If the

optimization of a cost function is also sought, then the problem is equivalent to

the Optimal Power Flow problem that was first introduced by [15]. In the event of a

contingency (e.g. a generator or transmission line failure), the priority of the operator

is the restoration of grid operation, while optimization and cost are secondary. For

this reason, the focus of this chapter is on solving the power flow problem in a quick

and reliable manner.

At first glance, applying convex feasibility algorithms on a non-convex problem

would seem to contradict the convexity assumptions underlying these algorithms. But

in fact, these algorithms turn out to be well-defined for general feasibility problems

and often are powerful heuristics even for NP-hard non-convex problems in areas

such as phase retrieval in image processing and synthesis problems in low-order con-

trol design, see, e.g. [2, 291. Furthermore, the projection sub-problems encountered

when solving the power flow problem can be formulated as Quadratically Constrained

Quadratic Programs (QCQP) that can be solved efficiently.

3.1 Problem Statement

Consider a network of interconnected nodes that is described by the undirected graph

g = (V,E), where V = {1,... ,'m} represents the set of nodes and S C V x V

represents the set of undirected edges between nodes. Ni {j (i, j) E E} is defined

34



X1

find x

s.t. fi (X1, X2, X3) 5 0
X3 X4 f2 (X1, X2, X3) <- 0

f3 (x1, x2, X3, x4) 0
f4 (x3, x4) 0

X2

Figure 3-1: Example feasibility problem with V = {1, 2, 3, 4}

as the set of be neighbors of node i, excluding i itself, whereas i := Ni U {xi}. Each

node is assigned a value (such as a measurement, position or vote) and when it is

clear from the context, V, Ni and i will also be used to refer to the nodal values:

V = {x1, - - - , xm}, Ni := {xj : (ij). E E} and I := Ni U {i}.

For each node i, its value xi and those of its neighbors are constrained to lie in

the (local constraint) set Si. It is assumed that every nodal value xi belongs to the

same Euclidean space E, thus S g EIl and all nodal values can be aggregated into

the value tuple x = ( 1, - , xm) E Em. The feasible set of the problem is denoted as

S c Em .

The feasibility problem is to find an assignment of nodal values such that all

constraint sets are satisfied simultaneously, for which an example is given in Figure

3-1. In the example, the nodal values xj, X2 and 3 are constrained to lie in the set

Si {(x1, X2, x3) E E3 : fi (X1, X2, X3) < 0}. Similar observations can be made for the

the constraint sets S2, S3 and S4.

The goal of this thesis is to develop algorithms for solving the feasibility problem

in a manner that i) distributes computation among nodes, ii) requires only (local)

information exchanges along edges (i.e., with neighbors), and iii) keeps knowledge

(e.g. domains, constraints) local to nodes.
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3.2 Preliminary Material

3.2.1 Basic Results

For some Euclidean space E, E' consists of ordered m-tuples of elements of E.

Definition 3.1. Given a set S C E and a vector x E E, the projection (if it exists)

of x onto S is a point p E S such that

|1p - x|| = d (x,S) := inf ||x - sI

If p is unique, then the projection onto S is the operator Ps : E -+ S that maps x

to its nearest point in S. We write Ps(x)= p. When the projection is not unique we

consider Ps to be a set valued mapping, i.e. Ps(x) = {p E S : ||p - xl| = d (x, S)}.

Definition 3.2. Given a set T C E'+m,, its projection onto the space of the first n

coordinates is the set U C E' that is defined as follows:

(x 1 ,-.- ,xn) E U <-> ] (y, , ym) E E' such that (xi,... x., yr,.- ,y) E T

The projection onto the space of coordinates with indices {i1, - - -,i} i { 1, -- ,

m} is defined similarly.

3.2.2 Survey of Feasibility Algorithms

For this section, we assume that all sets belong to the same space, i.e., Si C E".

The Method of Alternating Projections (MAP) was first proposed by Von Neu-

mann 1481 for finding the projection of a given point onto the intersection of two closed

subspaces in a Hilbert space by iteratively projecting a point between the two sets.

The method has since been rediscovered many times in the literature due to its sim-

plicity and intuitive appeal. It extends in an obvious manner for finding points in the

intersection S of multiple closed, convex sets S1, -- - , Sm [111. It is worth mentioning

that the limit point in Bregman's scheme need not be the closest in the intersection

to the starting point.
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The MAP algorithm assumes that Ps is difficult to compute, whereas Psi, i

1,-. , m are easy to obtain. Beginning with the initial value x(0), the MAP algorithm

solves a convex feasibility problem by generating a sequence of iterates {W(t)}, with

i = 0, .. - -m (see Figure 3-2(a)). The superscript i indicates the cyclical projection

onto the constraint sets S1, , Sm, while the subscript j represents the entry index.

The sequence is defined by the recursive formulas

x0 (t) = xm (t _ 1) (3.1)

Xi = Ps, (Xi- (t)), i=1,-- ,

with initial value xm(O) = x(0).

As mentioned, (3.1) does not necessarily generate a limit point closest to x(0).

More recently, Boyle [101 and Dykstra [191 proposed a modification that allows MAP

to generate a limit point that is closest in the intersection to x(0). An extra sequence

of increments {yi(t)} is generated, and the sequences are defined by the recursive

formulas

x0 (t) = xm (t - 1)

Xi W) = Psi (Xi- 1(t) - yi (t - 1)) , ,---,m(3.2)-

yi(t) = Xi - (W--Y() - y i(t - 1)) ,i = 1, -- -,.

with initial values xm(0) = x(0) and yi(t) = 0, i = 1,.. , m. If S is non-empty, then

the sequence of iterates in (3.2) will converge to Ps(x(0)).

The appeal of the MAP algorithm for convex feasibility problems lies in the ease

of the projection sub-problem. If a closed set in a Euclidean space is convex, then the

projection of any point onto that set has a unique solution. Furthermore, comput-

ing the projection is tractable computationally using modern interior point methods

provided the set is reasonably described [39]. These properties of the MAP algo-

rithm makes it popular in a wide range of applications such as finding the correlation

between stock returns [301 and solving the positive semidefinite matrix completion

problem [9]. However, the MAP algorithm is not amenable for parallel or distributed
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implementation.

Using a different approach, the Projected Consensus algorithm [38] solves a con-

vex feasibility problem by assigning an agent to each constraint set SI, - - - , Sm and

coordinating the actions of the agents to reach a consensus on a solution that satisfies

all the constraints.

At time step t, agent i generates and stores an estimate ri(t) of x that is con-

strained to lie in Si known only to agent i. Given a (possibly time-varying) com-

munication network between agents, the collective objective of the agents is to co-

operatively reach a consensus on a common vector x. through a sequence of local

estimate updates subject to the local constraint sets and local information exchanges

with neighboring agents. The algorithm can be formulated as an iterative sequence

defined by the recursive formula

ri (t + 1) = Psi. (E _1 ai M) r (0)) , I ,---,M
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2

.1:52

(a) MAP algorithm (3.1)

x(O

6)0

SI

2) ( S2
2.1

(a) CA algorithm (3.1)

0))

() C algorithm (3.).)

Figure 3-2: Comparison of the MAP, DCS and CC algorithmis for two closed, convex

sets SS and S2
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3.2.3 Feasibility Algorithms in the Absence of Convexity

The attractive theories of the MAP and Projected Consensus algorithms and their

extensive use for solving convex feasibility problems make it tempting to experiment

with analogous heuristics for non-convex feasibility problems. In fact, these heuristics

are quite popular in practice, in areas such as phase retrieval in image processing [21

and synthesis problems in low-order control design [291.

The analogous non-convex heuristics for the MAP and Projected Consensus algo-

rithms may appear difficult to implement on non-convex problems. A key ingredient

in the proofs of these algorithms was to use the non-expansivity of projections, allow-

ing a rich fixed point theory to be applied. Such properties do not hold for general

non-convex sets. Furthermore, the projection mapping for non-convex sets will no

longer guarantee a unique solution and are hard to compute in general. As conse-

quence, global convergence of either algorithm is no longer achievable. We must be

content with a local theory.

Nevertheless, application of MAP for non-convex feasibility problems has been

studied extensively and local convergence is guaranteed under assumptions of good

geometric property of the sets [34, 35]. We state some of these results.

Definition 3.3. A closed set S C E is super-regular at s E S if, for all J > 0, any

two points x, y sufficiently near s with y E S and any point z E Ps(x) satisfy

(y - zx - Y) <;l|y - -11 - 11- - Ad|

Definition 3.4. Two sets S, T C E have linearly regular intersection at x* c Sn T if

there eXist constants a, 3 > 0 such that for all x c S n B(x* a) and y E TfnB(x*,a),

and all p E (0, a], we have

B(O, 3 p) C ((S - x) n pB(0, 1)) - ((T - y) n B(0, p))

Theorem 3.1 ([351). Consider closed sets S, T C E and a point x* SnT. Suppose

S is super-regular at x*. Furthermore, suppose that S and T have linearly regular in-
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tersection at x*. Then for any initial point sufficiently close to x*, the AIAP algorithm

converges to a point in S n' T.

Proof. See Theorem 5.16 of [351.

The projection sub-problem for some fundamental non-convex sets is also rela-

tively easy. Examples include the set of matrices of some fixed rank and any set

defined by a single quadratic equation or inequality, which is analogous to the clas-

sical "trust region sub-problem". When the set is defined by one or more quadratic

equations or inequalities, the projection sub-problem becomes a Quadratically Con-

strained Quadratic Program (QCQP). QCQPs are of particular interest because they

occur frequently in power flow problems. Although they are non-convex and NP-

hard in general, we show in Chapter 2 that a large class of QCQP is computationally

tractable.

3.3 Distributed Constraint Satisfaction Algorithm

The appeal of the MAP algorithm for convex feasibility problems lies in its simplicity

and ease of implementation, given a subroutine that solves the projection sub-problem

efficiently. However, it is not amenable for parallel or distributed implementation. In

this section, we propose an extension of the MAP algorithm that solves the feasibility

problem for a network in a distributed manner.

The new algorithm is inspired by the coordinate descent method: at time step t,

each node i in the network generates an estimate of its variable xi(t) and solves a

projection sub-problem with respect to xi(t), while keeping other variables fixed. The

sub-problem is an optimization problem with respect to a single variable and thus

it can be computed more efficiently than the sub-problem considered in the MAP

algorithm (3.1). Through a sequence of projections and message exchanges with

their neighbors, the nodes update their estimates so that, eventually, all constraints

are simultaneously satisfied (see Figure 3-2). We call our algorithm the Distributed

Constraint Satisfaction (DCS) algorithm and illustrate it with the following example.
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.x3(t)

X2(0) X3 X4

X2

Figure 3-3: An iteration of the DCS algorithm for node 1. Nodes 2 and 3 broadcast

their estimates to node 1.

Example 3.3.1. Consider a feasibility problem for the network in Figure 3-1. At

time step t, the neighbors of node 1 broadcast their estimates x2 (t) and x 3 (t) to node

1, as depicted in Figure 3-3. To obtain a new estimate, node 1 solves the projection

sub-problem

m"In ||x1 -x1(t }1\2
mm (3.3)
s.t. (x 1 , x2(t) , x3(t)) E Si

We denote the feasible set of (3.3) as X1 (t) and the solution to be i (t) = PXi(t) (x1 (t)).

Node 1 obtains a new estimate using the relation x1(t+1) = a1(t)X 1(t)+(1-a1(t))x1(t)

for some weight a1 (t).

The other nodes carry out the same operations simultaneously and X2 (t), X3 (t)

and X4(t) can be derived similarly. The process is repeated until all constraints are

satisfied.

Summarizing Example 3.3.1, the DCS algorithm generates two sequences of iter-

ates {xj(t)} and {2ih(t)} that are defined by the recursive formulas':

'We assume that Pyx(t) (xi(t)) has a unique solution.
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For i 1,- ,'m,

2i(t) = Pxia) (Xit))(.4

Xi(t + I) =_ ai(t) X-i(t) + (1 -- ai(t))xi(t)

where a (t) are non-negative weights and each i2 (t) is constrained to lie in the set

Xi(t) C E, which depends on the values of i's neighbors and is known only to node i.

In other words, Xi(t) is the projection of Si onto the space of coordinate i, with the

neighbors taking on the values xj(t), j E N(i). For example,.if i = 1, then

X1 (t) = {xi E E I (Xi, x2 (t),- ,Xm.(t)) E Si}

3.4 Constrained Consensus Algorithms

We will now develop an extension of the Projected Consensus Algorithm that solves

the feasibility problem for a network. An agent is associated with a node in the

network and its constraint set. Instead of assigning the same set of variables to every

agent, each agent is only assigned the variables of the corresponding node and its

neighbors. At time step t, each agent (node) i generates the estimate

rz(t) = {x.(t) : j E I}j

where x (t) is the estimate of variable xj generated by agent i at time step t. Through

a sequence of projections and message exchanges with their neighbors, the agents

update their estimates so that, eventually, all constraints are simultaneously satisfied

(see Figure 3-2). We call this algorithm the Constrained Consensus (CC) algorithm

and illustrate it with the following example.
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X2

Figure 3-4: An iteration of the CC algorithm for agent 1. Agents 2 and 3 broadcast

their estimates to agent 1.

Example 3.4.1. Consider a feasibility problem for the network in Figure 3-1. At

time step t, agent 1 stores the estimate

(t)= {x,(t) : j E Ih} {x}(t) , s4(t) , x, (t)}

The neighbors of agent 1 broadcast their estimates to agent 1, as depicted in Figure

3-4. Agent 1 forms a convex combination of its estimate with the estimates received

from other agents using the relation

~)={&~, ')t), 3()

where

iN(t) = a',,(t) x'(t) + al,2 (t) i(t) + a',3(t) xi(t)

22'(t) = a',,(t) x'(t) + a',2(t z(t)

23(t) = a',1(t) x1(t) + a',3(t) xi(t)

To obtain its estimate for time step t + 1, agent 1 solves the projection problem

|xi - ?1 (t) 112 + _x2 - S2(t)I 2 + 213 - S(t)11 2
XsIt. X (3.5)

S. t. (X1, X2, X3) E Si
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We denote the solution of (3.5) as

r(t + 1) = Ps, (r,(0))

= {'1(t + 1) , 22t+1 2( )

The other agents carry out the same operations simultaneously, and the process is

repeated until all constraints are satisfied.

To summarize Example 3.4.1, the CC algorithm first assigns an agent for each

node in V. Agent i keeps the set of local decision estimates {Xk : k E Ii}, and at

time step t agent i generates the estimate

r,~t = {Xi(t): E i

where x4(t) is the estimate of Xk held by agent i. In general, one or more agents may

hold estimates of the same variable. r (t) is a vector that is constrained to lie in the

set Si C EIliI.

The collective goal of the agents is to find a feasible vector x*, i.e.,

X* = (x* , .,x*) E S

through the sequence of local estimate updates and local information exchanges de-

fined as follows2

For i = 1, ..-, m,

(t)= ak(t) x(, j E Ii (3.6)
k E Ii

ri(t + 1) = Psi ((t)) (3.7)

where P(t) = {2.(t) : j c I} and ak (t) are non-negative weights such that 0 <

ajk(t) 1.

2We assume that Pr,, (i(t)) has a unique solution.
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3.4.1 Convergence Analysis

The convergence analysis of the CC algorithm for the case where S, -. , Sm, are

closed and convex and S is non-empty is inspired by the work of 1381. We will now

state a few assumptions that will be required in our analysis.

Assumption 3.1 (Weights rule). There exists a scalar rj, with 0 < il <

for all i,

1, such that

(a) ab(t) ;> r

(b) a,(t) > rj if (j, k)E

(C) a 3.t ) = 0 if (3, k ) E ,z and i : k

Assumption 3.2 (Double stochasticity). For all i, the weights aj k(t) satisfy

k=) ja (t) = I if j E N(i)

(b) I a (t) = 1 if (j, k) E S

For full details of the analysis, the reader is referred to Appendix A.

3.5 Power Flow Problem: An Application

3.5.1 Problem Formulation

Consider an electric power grid with a set of buses V ={1 , . , m} and a set of

lines E C V x V. Given the m x ?n bus admittance matrix Y G + iB, the power

flow problem seeks to find a vector of complex bus voltages V := V + iV that is

consistent with the power flow equations, is within operational limits and satisfies
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complex power demands at every bus. It is formulated as

find V,i, V,i, V i E V

s.t. PG'i va,i > (V,j Gij - V ,j Bij) + V,i > (VjGi j + Vd,j Bij) + PD,i
jEI jcih

P" axV iEV

Q V, 3 BJ ) - Vd, >3 (V,jGij + VdJBij) + QD,i
jEIi jEIh

Q3,X V i V

(Vmin) 2 < V2 + V 2  (Vma-x)2

wher geeraor imis pin pax Qri
wGee"i P, G, real and reactive power demands PD,i and

QD,i, and Q and voltage magnitude limits V "" and Vim' are assuned to be

known. The reader is referred to Appendix B for a detailed derivation of the power

flow problem and its parameters.

3.5.2 Implementation

It is clear that the power flow problem is a feasibility problem for a network, where

the nodes are represented by buses and the constraints are local to the nodes and their

neighbors. We shall now show that the distributed feasibility algorithms developed in

Sections 3.3 and 3.4 are well-defined for the power flow problem because the projection

sub-problems can be formulated as Quadratically Constrained Quadratic Programs

(QCQPs) that can be solved efficiently.

Each bus i has the local variable

Xi = (Vd,i, V,) E R2

such that the state of the transmission system is given by

X = (XJ, . . . , XM E R 2,r

47



DCS algorithm

At time step t, bus i generates the estimate

Xi M) = (V,i(t), V,i(t))

and solves the sub-problem

m 1-2 2
mil Vd,i - Vd, (t) + 4, - V,i(t)

s.t. PI~J 7' E ( Y V, (t) G - Vq, (t)

+ ,i (V Ii Gii - fo B )

Q3 V >E (VJ(t) Gj -Vqj (t)
jEMi

q,i d,iG B2
mrin 2 2,< Vmax 2

B-i ) + Y,,i E (V,(t) Gij + Vj (t) Bij)

+ 9,1 i7;,j Gi + Vi, Bi) + PD,i Gi

Bij) - Yaj E (Vj (t) Gij + V4,j (t) Bij)
j e Ni

-V/,i (q, Gii + Yj Bi) + QD,i Q,

(3.8)

The optimization variables are indicated by a "hat" (namely Vd,j and Vpq,), while the

other variables (e.g. Vd,j (t) and Vj (t)) are given. Notice that (3.8) is a Quadratically

Constrained Quadratic Program and the equivalent quadratic matrices Qj (see (2.1))

are diagonal. Assuming that (3.8) satisfies the regularity condition, we can apply

Theorem 2.3 to deduce that the convex relaxation of (3.8) will be exact.

CC algorithm

Each bus is assigned an agent. At time step t, agent i generates the estimate

ri(t) - {xj(t) :j Eci

48



and solves the sub-problem

Z 2 2min - VJ (t) + f' J - I J W

jEhi iEli

it , dpjGi- 9P,, Bij - YqFi > j (t) Gi + Vd, t)Bij + PD,i Pr,
jEI jEIi

Q~' f' S P~3I - j Bi , 5 q~ + Vdi) + QD,Z Q
iEli jEhi

rmin 
2 < /2 2 max 2

(3.9)

The optimization variables are indicated by a "hat" (e.g. Vd,i and Va), while the

other variables (e.g. Vd, 3(t) and VqJ(t)) are given. Notice that (3.9) is a Quadratically

Constrained Quadratic Program (QCQP). Although there are no guarantees for the

exactness of the convex relaxations of (3.9), in practice they are found to be exact by

verifying the conditions of Lemma 2.1.

3.5.3 Numerical Results

We validate the CC and DCS algorithms developed in Sections 3.4 and 3.3 using

IEEE test beds from the Power Systems Test Case Archives [171 and MATPOWER

archives by [551.

The algorithms are implemented in MATLAB and a MATLAB interface to CVX

provided by [271 and [28] is used to solve the projection sub-problems. In all cases, the

algorithms are initialized with a flat profile (i.e., V,i= 1 and Vq,i = 0 for i = 1, -- - , ?n)

and the criteria for declaring convergence is that norm of update differences are less

than 10-3, with the further requirement that constraints must be satisfied within a

precision of 10-3. For comparison, the same problem is also solved with the MAP

algorithm (3.1).

The results of a serial implementation of the CC, DCS and MAP algorithms on

an Intel Core i7-3720QM 2.60 GHz Processor are summarized in Table 3.5.3. In our

serial implementation, a "cycle" of the above algorithms completes when all nodes

have consecutively solved their corresponding projection sub-problems.
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The DCS algorithm converges in the shortest time all test cases, largely due to the

ease of solving the projection sub-problenis (involving the least number of variables).

The CC algorithm has an easier projection sub-problem compared to the MAP algo-

rithn, but appears to perforn worse than the MAP algorithm. In practice, the CC

and DCS algorithms will be executed in parallel across processors at each node, thus

they can show even greater performance improvements over the MAP algorithm.

Number Algorithms
of buses MAP DCS CC

5 59, 6.Os 111, 0.9s 280, 20.6s
9 25, 5.4s 79, 1.7s 73, 10.8s

14 216, 76.2s 155, 8.3s 345, 120.4s
30 418, 310.8s 396, 10.6s 446, 305.0s

Table 3.1: Comparison of algorithms for solving the power flow problem. (Number
of cycles, Total CPU time)
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Chapter 4

Secure Estimation for Cyber-Physical

Systems

Cyber-physical are computer-based systems that monitor and control physical pro-

cesses using embedded sensors, actuators, control processing units and communication

devices. They characterize many of the critical infrastructure that sustain our modern

society, such as electric power grids, oil and natural gas distribution, water treatment

and transportation systems. The disruption of their operation can have disastrous

consequences on public health and the economy.

The operation of a cyber-physical system can be modeled as a dynamical system

that is supported by numerous feedback mechanisms. These mechanisms rely heavily

on state estimation algorithms to work correctly and an entire field of research has

been dedicated to improving these algorithms. As more cyber-physical systems are

connected to the internet for remote monitoring and control, they become vulnerable

to attacks on their communication channels, while their large scales make it challeng-

ing to secure every system component. Failure to check these attacks may corrupt

state estimates and lead to physical consequences in the forms of faults and failures.

This chapter considers the problem of estimating the states of a noisy and uncer-

tain cyber-physical system that is subject to data injection attacks [14, 37, 421 on its

actuators and sensors. By leveraging principles of robust optimization, a novel robust

and resilient state estimator that can be formulated as a convex optimization problem
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is proposed. The effectiveness of our estimator is demonstrated in simulations of an

IEEE 14-bus system.

4.1 Problem Statement

A noisy and uncertain cyber-physical system that is under attack can be modeled by

the following linear, time invariant (LTI) dynamical system:

Xk+1 -Axk + B (uk +dk)+wk
(4.1)

Yk -Cxk+D (uk+dk)- -ek+vk

where Xk E R' is the state vector at time k, Uk E R' is a known input vector

and yi, E RP is the measurement vector, Wk E R' and Vk E RP are process and

measurement noise signals. The data injection attacks carried out by the adversary

are generalized by the attack signals dk E R m and ek E RP that are injected into the

actuators and sensors, respectively. The system parameters A A+6A, B B+6B,

:= C + SC and b := D + SD each consists of a known part (A, B, C and D) as

well as an unknown part (6A, 6B, SC and SD) that represents (possibly time-varying)

modeling errors. We shall henceforth refer to the modeling errors and noise signals

as uncertainties, and the attack signals as attacks (on actuators and sensors).

We will assume in this paper that all pairs (A, C) are observable and that the

known inputs uk are independent of xO (i.e., we consider the closed loop dynamics in

which the dependence of Uk on XO is already incorporated into the system). In addi-

tion, adversary attacks a fixed subset of the sensors and actuators. Note that if sensor

i E {1,... ,p} is not attacked then necessarily e( = 0 for all time steps k; otherwise

e) can take any value, i.e., the attack signals are arbitrary and unpredictable. The

same observation holds for the attacks on actuators dk.

The objective of this paper is robust and resilient estimation: given T corrupted

measurements yo, yi, - - - , Yr-1, we wish to obtain estimates for the states x0 ,-. -, XT-1

that are 1) robust to uncertainties, and 2) resilient to attacks.

52



4.2 Preliminary Material

4.2.1 Known System with Sensor Attacks Only

We begin with the following simplified system:

Xk+1 =AXk (4.2)

yA =Cxk+ek

The goal of the estimator is to reconstruct the initial state x0 of the plant from

the corrupted measurements yo, . - - , yr_1.- Since A is known, the remaining states

X1, - - - , XT_1, can be reconstructed from xo using (4.2) and therefore it is sufficient

for the estimator to reconstruct x0 .

The system (4.2) can be written compactly as

Y =-<(xo)+E

whereY:= yo , .. YT, y I E RpxT, E:= eo , eT_ E RPxT and<D

is a linear map defined by <D : R" -+ RpT, <(x) = [Cx CAx -.. CAT-1].

The optimal estimator of (4.2) is given by [221 as

xo = arg min|lEJIl, = arg min IIY - <b(xo)je (4.3)
xoERn xoER"

It has been shown that, if (A, C) is observable, then the maximum number of

attacked sensors (such that xo can be reconstructed exactly) is E - 11. Additionally,

the maximum number of correctable errors cannot increase beyond a window size of

T = n measurements (a consequence of Cayley-Hamilton theorem).

However, since (4.3) is intractable (NP-hard), we consider a convex relaxation of

the optimal estimator using a "mixed" ti/t, norm that is also used in the compressed

sensing literature [201, i.e., the relaxed estimator minimizes the ti/t norm of E:

-o = arg min ||E| =,ie arg min ||Y - 4D(xo)t (4.4)
xoER" xoER(
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The "hat" on io denotes that the relaxed estimator (4.4) generates an estimate of

xO, whereas the optimal estimator (4.3) recovers the exact xo. The relaxed estimator

(4.4) has been demonstrated to generate estimates that are close to the exact solutions

in [22].

4.2.2 Known System with Actuator and Sensor Attacks

Next, we consider the following system

Xk+1 =Axk+ B (u + dk )

Yk =Cxk+ D(uk+dk)+ek
(4.5)

(4.5) can be written compactly as

Y = <b(xo) + 9(U) + 9(D) + E

where Y : Y= yo , . -

are defined similarly. <bD

by

, YT- E RpxT and U E RmxT D C RmxT and E E RpxT

R -+ RPxT and E : RmxT - RPxT are linear maps defined

(X)= (Cx ,CAx

9(U) [Duo , CBuo + Du,

E(D) [Ddo , CBdo + Dd1

CAT-1X]

C - -2 AT-2-iBui + DuT-1

C >'- A T-2-Bdi + DdT-_

For (4.5), the optimal estimator is given by [221 as

(Xo, D) = arg min |1Y - <b(xo) - 9(U) - 9(D)Ij0 + IDIL0oDoERn
DER'"-x

(4.6)

In contrast to (4.3), the optimal estimator in (4.6) has to generate the initial state

xo as well as the actuator attacks D so that the remaining states xi, .-- ,XT1 can be

recovered using (4.5).
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Similar to (4.4), the following convex relaxation of (4.6) is considered:

(Jo, D) arg min ||Y - <D(xo) - E(U) - E(D)ji/er + A ||D||ei/er (4.7)

DERmxT

where A is a tuning parameter. Since the system parameters are known, the esti-

mates of the remaining states ,- - - ,T- I can be obtained using so, estimates of the

actuator attacks D := [d,. .. , d_ 1 and (4.5).

4.2.3 Equivalence of Robust Regression and fq-Regularization

A useful theorem that we shall make use of in our design of a robust estimator is

the equivalence of robust regression and fq-regularization for the (f4, e,) subordinate

norm.

Theorem 4.1 (Equivalence of Robust Regression and (q-Regularization [6, Corollary

11). Let 6Q be an uncertain matrix belonging to the uncertainty set Uyeqe,) = {6

11|6||(Fe,) <; p}. If q, r E [1, oc] then for for some matrix T and vectors y, 3, we

have

max IIy - (TP + 6'')/3IJI = 1 - To/3Ife + pII/3 11t4.

Proof. See [6, Corollary 1].

It is worth noting that there are theorems similar to Theorem 4.1 for the Schatten

and Frobenius norms 13, 6, 501.
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4.3 Robust and Resilient State Estimation

Now we are ready to consider the system in (4.1), restated below

Xk+1

Yk

A Xk + F (Uk + dk) + Wk

= C Xk +D (Uk +) +ek +vk
(4.1)

(4.1) can be compactly written as

Y = i(xo) + 6(U) + 6(D) + Y(W, V) + E (4.8)

where Y := *yo. YT-11 E RPxT, and D E RmxT, U E RPXT W E RxT, V E

RPxT and E E RP" are defined similarly. 1, e and T are linear maps 1 :R" -+ j RPT,

e : R" xT -+ RPxT and T: R'X T x RPxT -+ RPxT defined as

)(X)

9(U)

O(D)

T(W,V)

= px
= [Duo

= [bdo

= [vo

, CAx , . , C x]

,N Uo u1 ,Ui --- , a5 z _02 4T- 2-izBuD-uT-1-

, hdo+bd1  , ... , & 7_j T T -2- sdid + dT-1

Owo Vi , .. , 0 -2E 
2

T 
2

-iU, + VT1I

(4.9)

In light of the uncertain parameters in (4.1), we consider the robustification of the

estimator in (4.7) by using the compact representation in (4.8), i.e.,

(^co, D) =arg min max I|Eille, + AIIDI|iif,,
XoERn 

6 ''EU(eq,?r)
DERmXT

= arg min max Y - e(xo) - O(U) - E(D) - T(W, V)
xRnT 6E1(tqPr

DERm"xT

+ AIIDIt/e,

(4.10)

for some tuning parameter A and some uncertain 6qj belonging to the uncertainty set

U(qer). In Section 4.3.1, we will provide two formulas for 6T and U(neqr) that will

lead to tractable formulations of (4.10). It is noteworthy that by substituting E into
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the objective function, we have avoided equality constraints that are known in the

robust optimization community to oftentimes cause infeasibility.

Even with the estimates (2o, D), we cannot obtain i1, , -I using (4.1) because

the system parameters A, B and noise signals wk are unknown. In Section 4.3.2, we

develop a robust estimator for the states x 1, - - - , XT_ I using (i o, D).

4.3.1 Robust and Resilient Estimation of xO and Actuator At-

tacks

Row-wise Uncertainty Sets

Notice that we can use the definition of the f1 t, norm to rewrite (4.10) as the sum

of rows:

= arg min max
xoER n 6E EU(ft ,fr)

DERMXT

V)) +AIIDI ti/ji

(4.11)

We first consider the sub-problem for the i-th row of E, i.e.,

max Elle, = max
AviEui,(yq,Er) 6ToiEUi~,(ere)

Y(W, V))(i,.)

(4.12)

for some uncertain matrix 6'J! belonging to the uncertainty set Ui,(fe,er) that we will

now define.

It is helpful to consider another compact representation of (4.1):

y = 5xo +.(u+ d)+ jw+e + v (4.13)

where y := vec(Y), u := vec(U), d := vec(D), e := vec(E), w := vec(W) and
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I Y - $(xo) - 6(U) -- 6(D) -



v := vec(V), as well as the following observability and invertibility matrices

o =AT (CA) T (CA 2 ) T ... (AT - T,

05 0 .. 0 0 0 o ... o0
Cb D 0 ... 0 C 0 0 ... 0

. C AB CR 0 ...0,j= CA C 0 ... 0

The matrices 0 and J2 are defined in a similar fashion to (4.9) with the nominal

system matrices A, B, C and D. We also define 60 =0 - 0 and 6J. : . - J$.

Definition 4.1 (Row-wise uncertainty sets). Let

6Tj := (P0)i (6j)i (6j.)i (j,)iw + (V)i] (4.14)

be an uncertain matrix belonging to the uncertainty set Ui,(e,,e,) = {6xII : 364'i|,,,) <
pi} with (M)i denoting the sub-matrix of M consisting of only the (i+jp)-th rows of M

forj = 0,.-- , T- 1. (e.g., (6)i : ( (:-)( ,.) (042)(i,. ... ( AT-1)(i,.)] )

Lemma 4.1. Let 6Ti and Ui,(e,,,r) be defined according to Definition 4.1. In addition,

we define

[e:=(O)i (Ju)i (Ju)i Orx1]

)3 :=[,T uT dT ]

Then, for any q, r E [1, oo], (4.12) is equivalent to

max Y - N(xo) - 6(U) - 6(D) - i(W, V)) Y(i,-) - Pi,311|r + PI11011
6X j j,(eq,,e) I((i,-) ,

Proof. We can rewrite E(j,.) as follows

EI) (Y - (x0 ) - 6(U) - 0(D) - i(W, V)) Y(i,.) - (Pi + 64T%)/3.
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The result follows by application of Theorem 4.1 on (4.12).

Assumption 4.1 (Uncoupled uncertainty sets). Let 64j; and Ui,,te,) be defined ac-

cording to Definition 4.1. We assume that the uncertainty sets U,(q,ter), i = 1,-

are uncoupled.

Now we are ready to develop a robust estimator for (4.10).

Proposition 4.1 (Robust Estimation of xO with e1/f, relaxation and q-regularization).

Let Assumption 4.1 hold, and let 6T E U(eq,r) represent 6 4 ' C UE,(eV,e,) for i =

1 *-* , p. Then, for any q, r E [1, oo), the robust estimator is equivalent to the follow-

ing constrained optimization problem

( o, D) arg min p|,II3I, +| IY - <b(xo) - E(U) - e(D)JIf/ir + AIIDIV/tr
XOER n

DER
m

xT

)3ERn+
2
mT+l

s.t. )3 1:n = XO

f
3 n+1:n+mT = Vec(U)

f 3n+mT+1:n+2mT = vec(D)

13 n+2mT+1 - 1
(4.15)

with p := pr. A > 0 is a tuning parameter that controls the relative weight

between the penalty on errors corresponding to attacks on sensors and actuators.

Proof. This proposition follows the repeated application of Lemma 4.1 and noticing

that Y(j,.) - TiO = (Y - <b(xo) - 6 (U) - O(D)

We next consider the case fq = f1, which significantly simplifies the robust esti-

mator.

Corollary 4.1 (Robust Estimation of xo with f1 /4f relaxation and f1-regularization).

Let Assumption 4.1 hold, and let 6T E UVeeI, denote 6xi E Uijei,e,), i = 1,.- -,p.
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Then, for any r E [1, c)],

(;o, D) = arg min pllxo Ile, + I|Y - 4(xo) - O(U) - 0(D)He|/e . + plDl|e1 /, + A lDI|e/e,
DERrn.,T

,ith A > 0 as a tuning parameter that controls the relative weight between the penalty

on errors corresponding to attacks on sensors and actuators while p = 1 pi, where

pi is a robust parameter for the uncertainty set Ui4,(,,) (see Definition 4. 1).

Proof. Noting that

1i1011f = Ixo ile, + l|u||ei + IIdIei + 1,

|dle1 = lIDjIe1/i, and

Y(i,-) - 41 = (Y - <b(xo) - 0 (U) - 0(D))

Application of Lemma 4.1 on (4.12) gives

max Y - (xo) - 6(U) - 6(D) - T(W, V))
6qj .)(eqG er

= (Y - b(xo) - E (U) - 0(D))( .) + pi( IxoIe1 + 1jue, + Ilelt, + 1)

Thus (4.11) becomes

(io,b) arg min (Y - <D(xo) - E (U) - E(D))(j.) + pi(ixo|ei + julie1 + HDleiei + 1)

DERmXT

+ AI|D Ie/f,
p p

= arg min Y - <b(xo) - 0 (U) - O(D) 1, + pillxolle1 + pillDIllI/1e, + AIIDIle,/e,
DERmxT ==1

since we have assumed that u is independent of xO.
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Coupled Uncertainty Set

We now consider the case eq = f, = e1 . We will show that an alternative robust

counterpart can be found that accommodates a coupled uncertainty set. This is in

contrast to the uncoupled row-wise uncertainty sets in Proposition 4.1 and Corollary

4.1.

Definition 4.2 (Coupled uncertainty set). Let 6 := [60 6ju 6ju (juw + v)

be an uncertain matrix belonging to the uncertainty set tli(h) = {61F : I|6I|I(lei) <

p}.

Proposition 4.2 (Robust Estimation of xo with f,/4f relaxation and er-regularization).

Let the uncertain matrix 6T and its corresponding uncertainty set UV 1,t,4 be defined

according to Definition 4.2. Then,

(xo, D) = arg min Y - <b(xo) - O(U) - e(D)je 1/ij + p||xo|je1 + (p + A)IIDjIjei/i
XoER'n
DERmXT

with A > 0 as a tuning parameter.

Proof. From the definition of the mixed 4i/-norm, we have

Y - (xo) - 6(D) - 6(U) - T(W, V)

= y - Oxo - J,(u+ d) - Jw - v (4.16)

=|y - Ju - Jd - (%F + 6T) Kite

where q := 0 0 0 0] and r := [XT uT dT 1  Noting that

T K = Oxo,

Ilnie = lixo le + Iulle, + jd|Il, + 1, and

|dIlte, = IID lelle,
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From (4.10) and the application of Theorem 4.1,

() =arg mini
XOERn

DERrnxT

arg min
XOERn

DER't

arg min
XOERn
dERnT

arg min
XoERn

arg min
XoERn
dER-'T

since we have assumed

relation

max Y - e(xo) - 6(U) - 6(D) - i(W, V)
TEU(jf1) -. Li/f'

+ AIDCl/e

max 11(y - 7uu - Jd) - (1P + 64F) ,'1|L + AIIDjje,/i

IIy - lJu - jld - T r.1|e| + pIKI|e + AIIDIlei/ti

IIy - lJu - - OXo| e +p(pIxolije + lulle, + lIDIe/e1 + 1) + A||Djjeiiei

ly - .- Jd - Oxo||e + plIxollei + (p + A)IID|leiiei

that u is independent of xO. The result follows from the

|IY - <b(xo) - O(U) - 8 (D)IIjI/e, = IIy - Jlu - Jud - Oxo|l

LI

Summary

We have now gained a key insight that, with an appropriate choice of an uncertainty

set from Definitions 4.1 or 4.2, a robustification of (4.7) is equivalent to a regulariza-

tion procedure. In addition, we restrict ourselves to the cases where q = f.

Summarizing the results of Corollary 4.1 and Proposition 4.2, our robust estimator

is given by

O ro Drob) = arg min Y - <t(xo) - 9(U) - 9 (D)lelf, + plixo He, + plID1llie + AIIDIIf1/frO~rob oERn
DERUn T

(4.17)

where p is a parameter that controls the amount of robustification (a greater p indi-

cates a more conservative estimator) and A is a tuning parameter.
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In contrast, the nominal estimator in (4.7) does not consider modeling errors and

noise signals. It is given by

i, ) arg min lY - <1(xo) - 8(U) - O(D)li/e, + AlIDI1fe/i,
,noin, Dnom) XoERn

DER
m xT

(4.18)

Remark 4.1. In practice, it is difficult to construct p because the modeling errors and

noise signals cannot be accurately predicted. In addition, there is no clear strategy

for selecting the ideal values for A and f. Therefore it is natural to use a statistical

approach such as cross-validation with data sets to obtain p, A and Cr, which will be

discussed in detail in Section 4.4.1.

4.3.2 Robust Estimation of the Remaining States

In the previous section, we have developed a robust and resilient estimator for ob-

taining (:o, D). However, we cannot obtain X 1 ,- ,XT-1 using (4.1) because we do

not know the parameters A, B and noise signals Wk. In this section, we will develop

a robust estimator for the states x1 ,-- , X 1 using (o, D).

The problem can be formulated as: given (so, D), we wish to obtain estimates of

the states X := xT xT ... x T that are robust to modeling errors 6A, SB1 2 T

and noise signals Wk. First, note that (4.1) can be compactly written as

X = 'xO + )C,(u + d) + Kww (4.19)

where the state transition and input matrices are given by

f? [(A)T (A2 )T  
... (AT-1)T]

B 0 0 ... 0 0 I o ... 0 0

o 3 0 ... 0 0 I 0 ... 0 0

k = 2i3 gF b ... 0 0C ,= A2 A 0 0

jT-2b jjT-3b 'T-4f ... 0 AT-2 jT-3 jT-4 ... I 0
(4.20)
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The matrices P, K, and IC, are similarly defined with A and B instead of A and

B. In addition, we define 6P := f - P and 61C := k, - k,.

Definition 4.3. Let 6Q := 1P 6K kwwl be an uncertain matrix belonging to

the uncertainty set l' qe,) {6Q :|6Q| < ,}.

Proposition 4.3 (Robust Estimation of State Sequence). Let 6Q and U(fer) be de-

fined according to Definition 4.3. Then, given x0 = x 0 and d = vec (D) and for some

q,r E [1, oo], the robust estimate of X is given by

X = arg min max ||X - P&o - /Cu(u + d) - KCwW||j,
XERn(T-1) JQEU(eq,er)

= P + ICU(u + d).

Proof. From (4.19) and the definitions in (4.20),

X - Pso - k(u - a) - Acw = X - (Q +6)y,,

)CU 0] ICu jCwW and - =
- T

U T+aT 11

by Theorem 4.1, we have

=arg min max
XeRn(T-1) 6QEU(t,tr)

11X - (Q + Q) der

arg min IX - -YI||, + 3i|ye,
XERf(T-

1
)

= arg min liX - Pso - /C(u + d)||I, + illy1|leq
XERf(T-

1)

w Po + ICU (U + f =

since -y is kniown and lizlir = 0 if and only if z -- 0.
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4.4 Numerical Simulations
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Figure 4-1: IEEE 14-bus system 117]

In this section, we demonstrate the effectiveness of our robust and resilient estima-

tor (4.17) using an IEEE 14-bus system [171. The system, depicted in Figure 4-1,

comprises of 5 synchronous generators and 14 buses. It is represented by 10 states

comprising of the rotor angles and frequencies of each generator. The dynamics of

the system can be represented by the following uncertain and noisy continuous time

LTI model:

(4.21)y(t) =Ac x(t) + Dc (u(t) + d(t)) +w(t)

y(t) =Cc x(t)+ Dc (u(t) + dt)) + et) +v(t )

where the matrices Ae, b, and Ce are defined in Appendix B and Dc = 0. The other

variables denote the same quantities as in (4.1).

To obtain a discrete time model, we discretize (4.21) with a sampling interval of

AT = 0.05s. Similar to 431, p = 35 sensors is deployed to measure the real power

injections at every bus, the real power flows along every branch and the rotor angle of

generator 1 and the sensor measuring the rotor angle of generator 1 is also protected
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from attacks.

In the following sections, we will describe the cross validation procedure used to

determine the hyperparameters of our robust and resilient estimator, as well as the

simulations used to compare the performance of our robust and resilient estimator

(4.17) with the nominal estimator (4.18). The estimators are implemented in MAT-

LAB and a MATLAB interface to CVX [27, 281 is used to solve the optimization

problems. In all our simulations, the initial state x(0) = xo and uncertainties (model-

ing errors and noise signals) are drawn from independent and identically distributed

Gaussian distributions.

4.4.1 Cross Validation Procedure for Selection of Hyperpa-

rameters

In practice, it is difficult to predict the modeling errors and noise signals for the

purpose of constructing our uncertainty sets. Thus, it is natural to use a statistical

learning procedure known as cross-validation to determine the hyperparameters of

our robust and resilient estimator - namely, given some training data, we want to

select i) the tuning parameter A, ii) the robustification level p, and iii) the estimation

approach among our robust and resilient f//1, e1/2 and ei/e estimators.

To this end, 200 sets of data (given by the tuple (xO, yo, yi, . . ., yr-1) are generated

with a window size of T = 15) using a nominal system model with modeling errors and

attack signals drawn from i.i.d. Gaussian distributions, initial states xo drawn from

the standard Gaussian distribution, different sets of attacked sensors K of cardinality

q, = 3 and different sets of attacked actuators L of cardinality q, = 1. Subsequently,

the data is randomly partitioned into three sets: allocate 50% for training, 25% for

validation and 25% for testing. The procedure of cross-validation for both the nominal

and robust resilient estimators is conducted in the following phases:

Training: For each approach (e/C1/, f1/e2 and e1/f4), find the best values of

A and p using the training set.

Validation: Using the validation set, select the best approach among the f/C 1 ,
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f 1/e2 and fj/fE estimators with A and p that were determined in the training

phase.

Testing: Determine how well the resilient estimator (nominal and robust) can

predict the values of xO in the testing set.

When the above process is repeated 20 times, average reductions of 16.92% and

11.68% in the mean and standard deviation, respectively, of the state estimation errors

are observed. Furthermore, when the intensities of the model errors and noise signals

are increased by about 2.5 times, a similar cross-validation study shows decreases of

14.06% and 41.43% in the mean and standard deviation, respectively, of the state

estimation errors.

4.4.2 Varying intensities of modeling uncertainty and noise

signals

To observe the effects of uncertainties (modeling errors and noise signals) on the

performances of our estimators, their intensities are varied while parameters are kept

constant. For different intensity levels, the simulations are repeated 100 times with

different sets of attacked sensors K of cardinality q, = 3, different sets of attacked

actuators L of cardinality q, = 1.

The procedure is repeated for different robust and resilient estimators (e1/e1 , e1/e 2

and e1/4o) and compared with the nominal estimator. From Figure 4-2, it is clear

that the nominal estimator has the best performance when the uncertainty intensity

is small. As the uncertainty intensity is increased, the situation is reversed, and in

addition a larger p (i.e., more conservative robust and resilient estimator) leads to

improved estimates.

4.4.3 Varying number of sensor and actuator attacks

In this task, the performances of the robust and resilient estimator and the nominal

estimator are compared for different number of attacked sensors and actuators. The
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results of 100 simulations, summarized in 4-3, indicate that the robust and resilient

estimator performs consistently better (with a mean normalized error between 0.6072

and 0.7009) than the nominal estimator (with a mean normalized error between 0.7326

and 0.9360).
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A = 0.2 and p = 0.1) simulated on the IEEE 14-bus system. A darker shade indicates
a higher relative mean normalized error.
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4.4.4 Estimation of the Initial State for Different Attack and

Uncertainty Scenarios

Next, we compared the performances of the robust and resilient estimator and the

nominal estimator for various scenarios. The results of 500 simulations are summa-

rized in Figure 4-4.

In the first scenario, where the modeling errors and noise signals are absent ("at-

tack only"), it can be observed that the nominal estimator performs the best, thus

validating the results of 4.4.2. In the second scenario, where the attack signals are

absent ("uncertainty only"), a significant improvement in performance of the robust

and resilient estimator over the robust estimator can be observed. The same ob-

servations can be drawn from the third scenario ("uncertainty and attack"), where

modeling errors, noise signals and attacks are considered.

Boxplot of Normalized Initial State Error
5

4.5 -

4

3.5-

3 --

2.5 -

2 -

1.5- T

.. 1 T

0 - - _
Nom. Rob. Rob. Nom. Rob. Rb Nom. Rob. Rob.

Attack nly Uncertinty only Uncertainty and attack

Figure 4-4: Normalized errors of the nominal E1/4o. estimator and the robust and
resilient E1/f, estimator (with A = 0.2 and different values for p) under different
scenarios simulated on the IEEE 14-bus system. The dashed lines represent the
support of the data, while the box represents the mean and standard deviation of the
normalized errors.

4.4.5 Estimation of the State Trajectory for Different Attack

and Uncertainty Scenarios

Lastly, the robust estimation of the state trajectory, developed in Section 4.3.2, is

validated using the same scenarios that are considered in Section 4.4.4. The results

of 100 simulations are summarized in Figure 4-5. As expected, the nominal estimator
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performs best in the "attack only" scenario, but fares worse than the robust and

resilient estimators in the other scenarios.

Attack Only

- nominal - - robust p = 0.1 ---- robust p = 1.0 -

T- -- -T -T -T T - T --

0 5 10
Time step, k

Uncertainty Only

0 5 10 1

Time step, k

Uncertainty and Attack
4-

10
Tine step, k

Figure 4-5: Normalized errors of the nominal fe/f4 0 estimator and the robust and
resilient 4i/4o estimator (with A = 0.2 and different values for p) under different
scenarios for the IEEE 14-bus system. The curves represent mean values and the
error bars represent standard deviations.
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Chapter 5

Conclusion

Distributed Feasibility Algorithms for Networks

In the first part of this thesis, we studied the distributed operation of the electric power

grid using the power flow problem. Two novel distributed algorithms are developed

for finding feasible assignments of values in a network when all constraints are convex.

Our algorithms distribute computation among the nodes of the network and require

only local information exchanges. Although the power flow problem is non-convex,

our algorithms are demonstrated to be effective heuristics using meaningful power

flow scenarios and are shown to perform well in comparison to existing algorithms.

A number of issues, mainly related to convergence analysis, deserve future atten-

tion. Also, the choice of weights in the CC and DCS algorithms and their impact on

the algorithms' rates of convergence remain open problems.

Secure Estimation for Cyber-Physical Systems

In the second part of this thesis, we studied the cyber-physical security of the electric

power grid by considering the problem of state estimation of a noisy and uncertain

cyber-physical system that is subjected to data injection attacks. A novel state esti-

mation algorithm that is resilient to adversarial actions and robust to modeling errors

and additive noise signals is developed. By leveraging principles of robust optimiza-
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tion, the estimator is formulated as a convex optimization problem. The use of cross

validation is also advocated for determining the hyperparameters of our estimator

and its effectiveness is demonstrated using simulations of an IEEE 14-bus system.

For future research, it will be interesting to adapt the robust and resilient estimator

developed in this thesis in a feedback loop for control and compared with a H"

controller. The robust and resilient estimator can also be improved by developing

uncertainty sets that are tailored for specific applications, by taking into account

structural vulnerabilities of the particular cyber-physical system.
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Appendix A

Convergence Analysis of the CC

algorithm

In this section, we analyze the convergence of the CC algorithm for the case where

Si, --. , Sm are closed and convex and S is non-empty. We will first introduce several

notations for representational convenience, then derive two lemmas, both of which

will then be used to establish the convergence properties of the CC algorithm.

For the m-tuple x = (x1 , - - - , x.m) and subset of indices I C V, we let [x]I denote

that the subset of decision variables {xi : i E I}. Similarly for the set S C Em , we

denote [S], denote that projection of S onto the space of the coordinates i E I.

Observe that the update rules (3.6) and (3.7) can be rewritten as

(t a, 3(0) EI (A.1)

r (t + I) = P(t) + e"(t) (A.2)

where ei(t) represents the error due to projection given by

ez(t) = Psi (iN(t)) - F(t) (A.3)

The evolution dynamics of the estimates r (t) for each agent is decomposed into
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a sum of a linear term Pd(t) and a non-linear term e2 (t). The linear term captures the

effects of mixing the agent estimates, while the non-linear term captures the effects

of the projection operation.

Lemma A.1. Let S be a non-empty closed convex set in E. Then for any x E E, we

have

||Ps(x) - S111 < 11X _ S112 _ 11pS(X) _ X112 V S E S

Lemma A.2. Assume that S1,-. , Sm are closed and convex, and S is non-empty.

In addition, let Assumptions 3.1 and 3.2 hold.

(a) For all x* - S and all t, we have

(i) Irt + 1) - [x*] 112 < 1i||(t) - [x* ]I 2 - ||ei(t)W 2

for all i

(ii) || (t) - [x*]i 112 < I lr (t) - [x* 112
i=1 i=1

(b) For all x* E S, the sequences |I(t.) - [x* ]1

are monotonically non-increasing with t.

(c) The errors e (t) converge to zero as t -+ oo.

12 and ||ri(t) - [x*]11 12}

Proof. (a) (i)

For any x* E S and i, we have [x*], E [S], and [S]r, C Si.

[x* ]Ii C Si for all i. The application of Lemma A.I yields

It follows that

||Ps8 (?(t ) ) - fx*] 112 < ||(t) - [x*]I11 - _Ps ((t)) -11p

Substituting for the update relation (3.6) and error expression (A.3), we obtain

(a)(i).

(a) (ii)
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By Assumption 3.2(a) we have E'_ a' -kE = 1, thus

F4(t) - [x*]1 =
EI ((x(t) j }

Taking the squared norm of P(t) - [x*]i,

2

I(t ) - [x*_]1|j2= a x - x,)

jEIlL kEIi

'ak, (t) IIx,(t) - x11 2
jEhI kEI

where the second inequality holds because the inner sum kekI a>(t) (x (t) - x) is

a convex combination of x (t) - v and the norm operator is a convex function.

By summing the preceding relations over i,

Pi - [x*]I 112
i=1

< ~( a ,t M) I Xj(t- _Vj11 2
jEI kEI\ i=1

IISE lx (t) - x* 112 by Assumption 3.2(a)
jEI kEIj

kEI

(b)

Combining parts (a)(i) and (a)(ii),

= 1
+ 1) - [X*Ii 112 < 11 r i(t + 1) - [x*li 12

i=1
m m

mK l~()- [x* 122

i= 1
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which proves that the sequence { |I(t) [x*i 112 is monotonically non-increasing

with t. Similarly,

rn mn

rit + 1) -- *]
i=1 i=1

- [x*]1iIf 2 - ei(t)I| 2
i= 1

) - [x*],112
i= 1

I I I'(t) - [x*]i 12
i= 1

which proves that the sequence { ~ri(t) - [x*]1 i 12 is monotonically non-increasing

with t.

(c)

Summing (a)(i) over i,

rn.

-Zlr(t ~+
i-=1

Combining the above relation with (a) (ii),

E liei(t)|12 < r2(t) - [x*]|i 112

1)- [x*] 112

- Kr@ +1) - 11
z= 1

1r (t + 1) - [x*]i 112

Summing the above relation over t = 0, - , s, for any s > 0 and expressing the

result as a telescoping series yields

IIri(0) - [x*li2 112

ri(0) - [x*1 112
i=1

r(s+ 1) - [x*]. 112
i=1
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i=1 i=1

i=1 i=1

< 1Iri(t) - [x*I,|2 -
i= 1

1e (t) 2
t=0 i=1

e i(t)||2 <E p(t) - [X*]fi||2



By letting s -+ o,

E E>11 ~e (t)11 2 < 11r'(0) - [X*]i 12
t=O i=1

which implies limtw, I|e (t)= 0 for all i.

For the rest of the section, let us assume that G is a complete graph, i.e. every

pair of distinct vertices is connected by a unique edge. We proceed to show that

the proposed algorithm becomes equivalent to the Distributed Projected Consensus

algorithm and the results of [38] can be applied.

Assumption A.1. g is complete and for all i and k, the weights a t, j c V, are

equal i.e.

1 k(t)= a",.t = k. a(t)

If G is complete, then I = V for all i, i.e. all agents have the same set of variables.

We can define the auxiliary sequence {y(t)}, where y(t) is given by

y(t) = (t) (A.4)
i= 1

Lemma A.3. Assume that S1, -.- , S, are closed and convex, and S is non-empty.

In addition, let Assumptions 3.1, 3.2 and A. 1 hold. Then for all i,

lim I1r'(t) - y(t)|I = 0 and lim |II(t) - y(t)I = 0
t-+00 t-+00

Proof. By Assumption A.1, we can define new weights ak(t) where, for all i and k,

?'(t) = aj,k(t), j=1,- ,m (A.5)
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such that our update rules (3.6) and (3.7) become

71, r = r(t ) ( A.6 )
k=1

r"(t + 1) =Psi (F(t)) (A. 7)

We can verify that (A.5), (A.6) and (A.3) satisfy Assumptions 2, 3, 4 and 5 of

[38]. The proof follows by the application of Lemma 4 in [381.

Proposition A.1. A ssume that S1 , S are closed and convex, and S is non-

empty. In addition, let Assumptions 3.1, 3.2 and A. 1 hold. Then for some x* E S,

we have

lim |rt(t) - x*|| = 0 and lim I|F(t) - x*|= 0

Proof. The proof follows from the application of (A.5), Lemma A.3, and Proposition

2 of 138].
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Appendix B

Electric Power System Analysis

Pr,4jQ, 110.MW 110. MW
+ j40.MWAR + j40.MVAR

1 2

95 MW

+ j 50. MVAR

Figure B-1: 3-bus electric power grid [33]

Electric power grids can be thought of as electric circuits of nation, or even

continent-wide, dimensions. The multivariate versions of Kirchoff's and Ohm's laws

apply, which are overviewed using a matrix-vector notation. As electric power grids

are alternating current circuits, all electric quantities involved are complex valued.

In power engineering nomenclature, a bus is a connection point or node in the

electric power grid. It connects various electrical elements such as transmission lines,

transformers, generating units and loads. Buses, which may have generating units
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and loads connected to them, can inject or remove power from the grid. A bus is

called a generator bus if it has one or more generating units connected to it and a

load bus otherwise.

We restrict our analysis to a simplified one-line diagram of the electric power

grid under steady-state, synchronized operation with only buses, lines, generating

units and loads as shown in Figure B-1. All other electrical elements are assumed

to have been absorbed into the line, generating unit, or load models and are not

shown explicitly. Further, quantities are measured in the per unit (p.u.) system,

which are assumed to be properly normalized. The p.u. system enables uniform

three-phase analysis over the different voltage levels present in the electric power grid

[25]. Thus, the grid can be represented abstractly by nodes (buses) and edges (lines)

in a connected network.

B.1 Equivalent H Circuit Model

I~j~ 121

Bus I > Z12 < Bus 2

2 +

Figure B-2: Equivalent H circuit

Consider a system that comprises of two buses, 1 and 2, connected by a line (also

known as a branch), which may represent a transmission line or even a transformer.

A line between two nodes is represented by the equivalent H circuit model [41 depicted

in Figure B-2.

The model entails the line series impedance z12 and a line charging susceptance
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b12 . The line series impedance consists of a resistive part rl2 and a reactive (inductive)

part x 12 > 0, so that z12 = 'r1 2 +ix 12 . The line series impedance Y12 := Y = 912 +ib1 2

is often used in place of the impedance.

Let V and 2 denote the complex voltages at buses 1 and 2 respectively, and I12

the complex current flow from bus 1 to bus 2. Invoking Ohm's and Kirchoff's laws

on the circuit of Figure B-2, we obtain:

I12 = i V1 + y12 (V - V2)2

The reverse current flow 21 is expressed symmetrically. Note that unless b12 is

zero, it holds that 112 = 121-

Building on the two-bus system, consider next a network consisting of a set of

buses V = {1 , - - - , m} and a set of lines E C V x V. By Kirchoff's current law, the

complex current injected at bus i into the network must equal the sum of currents on

the lines incident to bus i, i.e.,

jEN(i)

= S i V + Yi (Vi - V)
jEN(i)

where N(i) is the set of buses incident to bus i, excluding i itself. Collecting complex

bus voltages in the vector V E Cm and complex bus currents in the vector I C C',

we obtain the Multivariate Ohm's Law:

I = Y V (B.1)
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where Y e Cxm is the bus admittance matrix given by

2 + if -j
kEN(i)

3 -yij if j E N(i)

0 otherwise

Y is sparse and symmetric, but not necessarily Hermitian. We use a rectangular

representation for the bus admittance matrix Y := G + iB, where G is the bus

conductance matrix and B is the bus susceptance matrix.

B.2 Power Flow Equations

A major implication of (B.1) is the control of power flows. We denote SG,i := PG,i +

iQG.i to be the complex power produced at generator bus i and SDi PDi + iQD,i to

be the complex power demanded by bus i. It is convenient to define Si := SGji - SD,i

to be the complex power injected at bus i to the rest of the network.

Typically, the bus voltages and bus admittances are expressed in Cartesian coor-

dinates, i.e. V := V7,i + ilg,i and Yi = Gij + iBij. From the definition of power and

application of the Multivariate Ohm's Law (B.1), the complex power injected at bus

i into the network is

S, 11-,

(m)H

= ( (B.2)
j=1

(V,i + iV,i) Y ((Gij - iBij) (V,i - iWK,i)) (B.3)
j=1

If we resolve (B.3) into real and imaginary parts, we obtain the real and reactive
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powers injected at bus i into the network:

m m

Pi = V,i (V,jGij - VqjBij) + V,i >3(VGij + VjBigj) (B.4)
j=1 j=1

m 
m

i q,i (VdjGij - Vg Bij) - V,i > (Vq,jGij + VdjBij) (B.5)
j=1 j=1

We can also express the bus voltages in polar coordinates, i.e., Vi := IVilei0i. If

we resolve (B.2) into real and imaginary parts, we obtain alternative formulas for the

real and reactive power injected at bus i into the network:

m

Pi= Vi| > (IV IGi cos Oij + IV|Bi sin Oij) (B.6)
j=1

rn

Qi =Vl>E (|Vj|Gij sin Oij - JVjJBij cos Oij) (B.7)
j=1

where %ij := Oi - Oj. It is common to linearize (B.6) and (B.7) to obtain the DC

power flow equations. The DC model hinges on the following assumptions:

" The power network is purely inductive, so the conductance part of the bus

admittance matrix is zero, i.e. G = 0.

" The voltage phase differences across directly connected buses are small, thus

Oij - 0 for every pair of neighboring buses (i, j) and the trigonometric functions

in (B.6) and (B.7) are approximated by sin Oij r Oi - Oj and cos Oij ~ 1.

* The magnitude of bus voltages is approximately one p.u., i.e. JVil 1 for all i.

The DC model simplifies to:

m

Pi = Bij (i - O) (B.8)
j=1

PG,i - PD,i
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B.3 Power Flow Problem

An important problem in electric power grid operation is the problem of power flow,

where we want to solve for the steady-state powers and voltages of an electric power

grid that are consistent with the power flow equations and within operational limits.

The formulation of the power flow problem is based on operational limits of the grid

as well as the power flow equations and circuit model described in the preceding

sections.

Given a transmission network with a set of buses V = {1 , - , m} and a set of

transmission lines E C V x V, the power flow problem is formulated as:

find Vd, V,i, V i E V

s.t. P Y (VjGj - V1, B,3) + V,j (Vj Gij + Vd.3 B23 ) + PD,i
j=1 j=1

P V iV
m M.

Q V (V, G - V1,3 B 3 ) - V,> (V,jGjj + V ,j Bi) + QDJ
j=1 j=1

Qm V i E

(V|"i")2 KV +V2 (Vax)- V iEV

where generator limits P (, P' QW and Q and voltage magnitude limits V"im"

and V"' are assumed to be known. For load buses, we have P(, " =

QSim& = 0.

The power flow problem seeks to find a set of complex bus voltages, Vjj, V,i, V i E

V, that is consistent with the power equations and operational limits and satisfies

complex power demands at every bus. From the solution, real and reactive power

generation can be recovered using the power flow equations (B.4) and (B.5).
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B.4 Structure-Preserving Power Network Model

Consider a simplified model of an electric power grid consisting of n generating

units {gi, -. - , g,}, their associated n generator buses {bi, - -. , b}, and rn load buses

{bn+1, - - - , bn+m}. The interconnection structure of the grid is encoded by a connected

admittance-weighted graph. The generators form the vertex set of the graph and the

edges represent lines between buses or internal connections between generator buses

and their corresponding generating units

The Laplacian matrix associated with the admittance-weighted graph is the sym-

metric matrix:

99 Lg R(2n+mx(2n+

[iCg 111

where the first n entries are associated with the generating units and the last n + m

entries are associated with the buses. gg E R x" is diagonal, 111 e R(n+m)x(n+m) is

invertible and 1 2 g = LT.

Given the transient reactances zi of the generating units,

gg = diag , ,I) Rnx, Lig = E] R(n+n) xn g

And given the bus susceptances Bkj, the element in the k-th row and j-th column

of L1 is can be derived using:

-Bk, if Jg k

{L11k j I: kBkl if j k and k is a load bus

E Zlk BkI + - if j k and k is a generator bus

for k= 1,... ,n+m andj = 1,.- ,n+m.

A classical mathematical model to describe the behavior of the electric power

grid in transient stability studies is the structure-preserving power network model

[32, 421. In this work, we consider the linearized small signal version of the structure-
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preserving model, which consists of the linearized swing equations and the DC power

flow equations (B.8) [43]. In addition, we use a Kron-reduced representation of the

electric power grid to reduce the number of states. The model is given by the linear

continuous-time descriptor system

2(t) = c x (t) + -fi P (t)

where the state x(t) = 6T WT IE R2 consists of the rotor angles 3 E Rn and the

frequencies W E R"-. The input term

P(t) P(t) E r2n
PO(t)j

is due to known changes in mechanical input power to the generators Pe,(t) and power

injections at the buses P (t). Furthermore, the descriptor matrices are:

AC - R 2nx2n
[M- (gg +IgIJC1IiCg) -MPD ~n~

C 1 R 2 nx(m{ 2 -n)

M-1 M-iIrgIL-

where IV= diag (.A , ., M) and D diag (D1 , - , Dn) are the diagonal

matrices of the generating units' inertias and damping constants respectively.
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