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Abstract

Marine populations are increasingly subjected to changing conditions whether through har-
vest or through broad-scale habitat change. Historically, few models have accounted for
such trends over time, and even fewer have been used to study how trends affect optimal
harvests.

I developed and analyzed several models that explore, first, endogenous change caused
by harvest and, second, exogenous change from factors (such as rising ocean temperatures)
outside harvesters' control. In these models, I characterized the profit-or yield-maximizing
strategy when harvesting damages habitat in a multispecies fishery, when harvest creates a
selective pressure on dispersal, and when rising temperatures cause changes in vital rates.
I explore this last case in both deterministic and stochastic environments, and also allow
the harvester to learn about unknown parameters of the stock recruitment model while
harvesting. I also develop an unambiguous definition of and describe a statistical test for a
shift in a species' spatial distribution.

My results demonstrate that optimal harvesting strategies in a changing environment
differ in important ways from optimal strategies in a constant environment.

Thesis Supervisor: Dr. Michael G. Neubert
Title: Senior Scientist
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

A quote by Dr. Thomas Henry Huxley delivered at the Fisheries Exhibition is 1883 is often

presented to illustrate the now clearly erroneous belief that the ocean's supply of fish is

limitless: "...it may be affirmed with confidence that, in relation to our present mode of

fishing, a number of the most important sea-fisheries, such as the cod fishery, the herring

fishery, and the mackerel fishery, are inexhaustible" (Huxley, 1883). Less frequently invoked

are his preceding words, noting that other fish stocks (such as salmon) might indeed be

exhaustible and that human actions, such as the addition of pollutants to streams, might

precipitate this exhaustion. His colleague, Mr. Charles E. Fryer, mentioned that some

contemporaries blamed "overfishing" or the "burning of seaweed, building of lighthouses"...

or the "wickedness of the people" for occasional fisheries fluctuations and failures (Fryer,

1883). While these words may seem comically antiquated now, they foreshadow the study

and debate about how and to what extent human actions deteriorate fisheries.

In the intervening years, we have augmented the list of ways in which humans impact

fish population dynamics. We now recognized that increased harvesting capacity and effort,

increased human population density and its associated effluents-including the addition of

heat-trapping gases such as carbon dioxide to the atmosphere-may negatively impact the

health of fish stocks and their habitats. These ongoing alterations of both the oceanic

environment and the removal of its inhabitants create a regime characterized by change.

Understanding how these alterations affect the interactions between exploitation and the

11



health of marine resources is critical, as humans rely on marine resources for food and em-

ployment (Food and of the United Nations, 2012), tourism (Madin et al., 2012), and other

ecosystem services (Worm et al., 2006). The repercussions of historical fisheries collapses

have been long-lasting and far-reaching. For example, high unemployment, government

subsidies, and low incomes among fishermen persisted long after the collapse of Newfound-

land's cod fishery (Schrank, 2005). The 1970s El Niio-related fisheries declines contributed

to a global drop in food production and negatively impacted the Peruvian economy (Glantz,

1979). Conflicts over fishing rights have even caused major international disputes, such as

the mid-20th century Cod Wars between Iceland and the United Kingdom.

Currently, many fish stocks are declining and could provide larger, sustainable harvests

(of 8 to 40% globally) if rebuilt (Costello et al., 2012); a more recent analysis suggests

that the median fishery is both historically and currently being overfished and that large

economic benefits could result from improved management (Costello et al., 2016). Several

high profile stocks, such as the New England and Newfoundland cod stocks, have yet to

recover from their collapses; recent work has further suggested that temperature induced

increases in natural cod mortality might have contributed to allowing recent overfishing on

the New England stock (Pershing et al., 2015). The current poor health of many fisheries,

coupled with the fact that well-managed stocks may suffer if changes to the stock are

not appropriately taken into account, provides strong motivation for trying to understand

fishery dynamics.

Mathematical models are an important tool in building such an understanding. Fisheries

models create a set of rules that describe (at a minimum) how the fish life-cycle and human

harvest influence the size of the population. Environmental or demographic variability,

stage structure, trophic interactions, environmental dependence, spatial structure, harvester

behavior, etc. may also be added. These models may be used to determine the harvest

strategies that maximize yield, profit, or conservation goals.

Many fisheries management models, however, assume a stationary environment; they

assume that the underlying processes are not changing over time. There are many good

reasons for the stationarity assumption including mathematical tractability and a lack of
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long term data to suggest trends. Our focus on stationary environments, however, leaves

many unanswered questions when change is considered. The goal of this thesis is to provide

theoretical models that address a few possible sources of such change in an integrated

framework that includes both the fish population dynamics and the human response.

There are two ways to classify the sources of environmental change on fisheries: endoge-

nous and exogenous. I consider endogenous change to be cases in which harvesting directly

changes the environment. Exogenous change, in contrast, is caused by an agent other than

the harvesters. In this thesis, I model both sources of change and organize the constituent

chapters according to this classification.

I first address endogenous change. The first two chapters of the thesis focus on the

feedback between harvesters' actions on either habitat suitability or on the preferential

settlement of juvenile fish; these types of feedbacks-perhaps unimaginable in 1883 when

the high-sea fisheries seemed limitless-have been increasingly incorporated into models in

recent years. Then I address exogenous environmental change, in particular focusing on

climate change. I investigate a statistical method for characterizing when a population is

shifting in response to these changing conditions and then two models that characterize the

optimal harvesting response to a population whose vital rates change in response to the

rising temperatures.

In these next pages, I briefly describe the motivation, approach, and main results of the

chapters of my thesis.

Endogenous Impacts

Harvesting fish removes biomass and acts as an additional source of mortality for fish.

However, fishing activity may also damage habitat, while additional mortality to different

life-stages or trophic groups may alter ecosystem structure. From a management perspec-

tive, change caused by harvesting itself is interesting because of the actions of the harvester

feedback on the stock.

Habitat Damage (Chapter 2)
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One clear impact of fishing-apart from the direct removal of fish-is the disturbance caused

by the fishing gear itself. Understanding the impacts of fishing gear on habitat quality and

on community structure has been an active area of research (e.g., Collie et al., 2000). When

habitat damage is included as part of a single-species, spatial fishery model, its inclusion

qualitatively changes the optimal harvesting strategy (Moeller and Neubert, 2013).

Much less, if anything, is known about how habitat damaging fishing impacts multi-

species fisheries. The importance of species interactions on population dynamics has been

increasingly well documented (e.g., Casini et al., 2008) and the implications of these in-

teractions for management have also been of interest (e.g., Baskett et al., 2007; Kellner

et al., 2011; Matsuda and Abrams, 2006). The analysis of optimal management of a mul-

tispecies fishery is, however, difficult due to the large number potential interactions among

species that need to be accounted for (and potentially parameterized!). This difficulty is

compounded by our desire to include space. To address this issue, I employ a type of model

called a 'patch-occupancy' model that tracks the proportion of patches in a particular state.

Disturbance and subsequent recolonization have often been studied with patch-occupancy

models (e.g., Hastings, 1980; Caswell and Cohen, 1991; Nee and May, 1992). These types

of models allow the inclusion of spatial dynamics among multiple species in a relatively

mathematically tractable way. I couple such a model with a simple economic harvesting

model to understand how habitat damage and subsequent resettlement of the habitat influ-

ence optimal harvesting patterns, community structure, and economic productivity. I also

studied the efficacy of no-take marine reserves as a management tool. I found that when

ecosystems have a long recovery time, they produce lower profit and have lower optimal

harvest rates. I found that while no-take marine reserves are not part of a profit maximiz-

ing harvest strategy, they incur a relatively low cost, while potentially providing a large

diversity benefit.

Fisheries Induced Evolution (Chapter 3)

In addition to influencing the numbers of a fish population and potentially their habitat,

fishing pressure also exerts a strong selection pressure on the fish. Evidence of so-called

'fisheries induced evolution' has been found in the life-history traits of fish (especially in age

14



and size at maturation, e.g., Haugen and Vollestad 2001; Grift et al. 2003; Olsen et al. 2004)

and recent work suggests that accounting for this evolution changes optimal management

(Eikeset et al., 2013).

Given the current interest in spatial management for fisheries, I was interested in how

the evolution of dispersal would impact the optimal spatial allocation of effort. In particular,

how would the evolution of a dispersal strategy that avoids harvested areas change optimal

harvester response? My co-authors and I constructed a two-patch model and allowed the

tendency to preferentially migrate to one patch evolve in response to fishing mortality. I

found that marine reserves ceased to be part of a profit-maximizing harvest strategy, but

that this strategy is unstable economically over short-time scales.

Exogenous Impacts

Exogenous impacts on fisheries are perhaps easier to identify-the introduction of pollutants

or invasive species. I was interesting in investigating exogenous impacts because the lack of

feedback from the harvester's actions to the source of change will likely produce different

optimal management strategies. Furthermore, there are relevant exogenous stressors on

fisheries-like climate change-that are currently a focus for the scientific community. I focus

on climate change as the source of exogenous change.

While climate change encompasses a variety of changes, including changes in precipita-

tion patterns and storm frequency, I consider the average increase in temperature as the

motivating agent of change in this thesis. Temperature change is the hallmark of climate

change and is particularly relevant for fish. Fish are generally ectothermic, meaning they

rely on the external environment for heat, and poikilothermic so their internal tempera-

ture varies with their external environment. Temperature plays an important role in the

metabolism and function of fish; temperature of water controls the solubility of oxygen, in-

fluences metabolic demands, and affects the ability of hemoglobin to bind oxygen (Helfman

et al., 2009). Fish experiencing different temperatures may consequently have different vital

rates (e.g. Munday et al., 2008; Houde, 1989; Donelson et al., 2010; Tanasichuk and Ware,

1987; Reist et al., 2006) that ultimately determine the size and growth rate of populations.
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I investigate how fish stocks' responses to changing temperatures influence the optimal

management of those stocks.

Detection (Chapter 4)

What gets measured gets managed. -management adage, often attributed to Peter Drucker

One common response to changing conditions is a shift in a species' geographical location

to follow a suitable environment. This type of movement has been extensively studied as a

'fingerprint' of climate change impacts. There is a large body of literature reviewing range

shifts (e.g., Parmesan and Yohe 2003; Root et al. 2003; Sorte et al. 2010; Madin et al. 2012)

that have found evidence of poleward range shifts in many species (or shifts upwards in

elevation for terrestrial species or deeper in marine environments) or phenological shifts to

cooler periods in the year. However, the methodologies for testing for such shifts are not

standardized. For example, some authors have focused on the mean location of individuals

(e.g., Perry et al., 2005; Chen et al., 2009; Pinsky et al., 2013) while others have focused on

the locations of the poleward boundary (e.g., Hickling et al., 2006; Solow et al., 2014). If

distributional shifts tended to translate individuals identically, these definitions would be

equivalent, but that type of shift appears to be uncommon (Hampe, 2004; Breshears et al.,

2008; Sunday et al., 2012).

To address this, I describe a methodology that both defines an unambiguous distribu-

tion shift and tests for it. I borrow a concept from the economics literature-stochastic

dominance-and apply it to the detection of unambiguous shifts in a species' distribution.

In this chapter, I describe the concept of stochastic dominance and a test for it, and finally

illustrate its usage with a fisheries example.

Changing Vital Rates (Chapter 5)

Shifts in a species' spatial distribution result from interactions between demographic rates

and dispersal and may take time to manifest. Alternatively, barriers to dispersal or an

organism's tracking of another component of their habitat niche may result in their expe-

riencing different conditions. Locally, changing temperatures will impact vital rates, thus

it is important to understand how to manage a stock experiencing these fluctuating vital

rates. To this end, I investigate the harvest implications of a species that is experiencing
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changing conditions that negatively impact its vital rates. In particular, I consider a species

that has a vital rate-such as mortality or fecundity-that is a function of temperature; as

temperature increases, the vital rate changes. Few authors (but see e.g., Walters and Parma

1996) have investigated how optimal harvesting changes in response to changing vital rates.

I built a deterministic model to investigate how the optimal harvesting policy varies

with the changing vital rate and found that even for a compensatory growth function with

a monotonically decreasing vital rate, that the optimal number fish left to 'escape' in each

period may not be monotonic. I show that the interplay of density dependence is critical

in structuring this the shape of the optimal escapement policy.

Adaptive Management (Chapter 6)

Finally, I extend my work on the optimal management of a population with a changing vital

rate to include uncertainty. Unfortunately, as Professor Huxley bemoaned in 1883, we often

must regulate and manage fishing activities without perfect knowledge of the dynamics of

the stock. As stocks experience (warming) conditions that are increasingly outside of the

historical range, it seems likely that the response of the stock to those conditions are likely

to be imperfectly known.

To address this, I employ a methodology called adaptive management (Holling, 1978),

which allows for the inclusion of imperfect knowledge explicitly into the optimization of the

harvest. I construct several simple models that include learning about an uncertain pa-

rameter in both unchanging and changing environments to compare the optimal harvesting

strategies. I highlight how adding a trend in time removes the possibility of a stationary

policy over an infinite time horizon and that, for a broad class of models, the optimal

escapement only depends on the initial stock size (in that period) as a constraint.

1 "In answer to questions relating to the habits, the food, and the mode of propagation of fishes-points,
be it observed, of fundamental importance in any attempt to regulate fishing rationally-I [am] usually met
with vague and often absurd guesses in the place of positive knowledge." - Professor Huxley in an address
to the Fisheries Exhibition in 1883 (Huxley, 1883).
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Summary

In this thesis, I explore the optimal management of stocks undergoing change with either

endogenous or exogenous (to the fishery) sources of that change. Perhaps unsurprisingly,

I found that including novel feedbacks and trends produce qualitatively different optimal

management strategies. This suggests that the identification of the mechanisms creating

change for fisheries deserve attention both empirically and from a modelling perspective.
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Chapter 2

Bioeconomics and biodiversity in

harvested metacommunities: a

patch-occupancy approach

2.1 Abstract

'We develop a coupled economic-metacommunity model to investigate the trade-off between

diversity and profit for multi-species systems. The model keeps track of the presence or

absence of species in habitat patches. With this approach, it becomes (relatively) simple to

include more species than can typically be included in models that track species population

density. We use this patch-occupancy framework to understand how profit and biodiversity

are impacted by (1) community assembly, (2) pricing structures that value species equally

or unequally, and (3) the implementation of marine reserves. We find that when local

communities assemble slowly as a result of facilitative colonization, there are lower profits

and optimal harvest rates, but the trade-off with diversity may be either large or small.

The trade-off is diminished if later colonizing species are more highly valued than early

colonizers. When the cost of harvesting is low, maximizing profits tends to sharply reduce

'Originally published as "Moberg, E.A., Kellner, Julie B., Neubert, M.G. (2015) Bioeconomics and
biodiversity in harvested metacommunities: a patch-occupancy approach. Ecosphere." 6 (11):246. This
version differs only in formatting.
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biodiversity and maximizing diversity entails a large harvesting opportunity cost. In the

models we analyze, marine reserves are never economically optimal for a profit-maximizing

owner. However, management using marine reserves may provide low-cost biodiversity

protection if the community is over-harvested.

Keywords: fisheries management, ecosystem-based management, marine reserves, multi-

species interactions, metacommunity

2.2 Introduction

There is growing evidence that biologically diverse ecosystems provide services to society

that are more valuable than the sum that would be provided by isolated individual species

(Boehlert, 1996; Worm et al., 2006); that is, biodiversity has real value (Halpern et al.,

2012). It follows that natural and anthropogenic threats to biodiversity, including over-

harvesting and habitat destruction, have real biodiversity costs (Halpern et al., 2008). As a

result, and particularly in marine systems, interest has begun to move from the management

of single species or populations, and toward 'ecosystem-based management' in which the

conservation of biodiversity is typically one of the explicit goals (Kellner et al., 2011).

Of course, the conservation of biodiversity will have costs. In harvested systems, maxi-

mizing biodiversity may come at the cost of reduced economic productivity or employment

(Cheung and Sumaila, 2008). In order for managers and policy makers to strike a reasoned

balance between economic productivity and biodiversity conservation they must be able to

estimate those costs, typically with the aid of mathematical models.

Although bioeconomic modeling studies have considered the management of several

interacting species (e. g., Finnoff and Tschirhart 2003; Fleming and Alexander 2003; Kellner

et al. 2011), these are typically limited in the number of species that they consider. A model

complex enough to capture all of the interactions both within and between its biological

and economic components, for realistically large communities, is difficult to construct and

often needs an prodigious amount of environmental, biological, and economic data in order

to estimate its parameters (Fulton et al., 2011; Fogarty, 2014). In most cases, such data is

simply not available. In addition, ecosystem-based management is "place-based" (McLeod
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et al., 2005; Crowder and Norse, 2008) and so requires models with a spatial component.

Spatial management has become an ubiquitous part of the marine conservation toolbox

(Neubert and Herrera, 2008; Botsford et al., 2009; Rassweiler et al., 2012) and, in a variety

of conditions, has been shown to improve management outcomes (e. g., Thrush et al. 1998;

Sanchirico and Wilen 1999; Neubert 2003; Kellner et al. 2007; Neubert and Herrera 2008;

Moeller and Neubert 2013). Marine reserves-spatial management in which some areas

are closed to fishing-have garnered interest as a way to potentially increase biodiversity,

population sizes, resilience of communities to perturbations (including climate change), and

spillover of biomass into fishable areas.

How, then, could one include multiple species in a mathematically-tractable bioeconomic

framework that is complex enough to address questions of spatial management? Here we

present one possibility, and demonstrate how it could be used to understand the trade-offs

(or synergies) between biodiversity conservation and economic productivity. Our approach

has, at its foundation, a so-called patch-occupancy model (e. g., Levins and Culver 1971;

Hastings 1980; Caswell and Cohen 1991; Leibold et al. 2004). Such models have been used

to investigate how species-specific differences in dispersal and colonization ability affect local

and regional diversity patterns (Levins and Culver, 1971; Gouhier et al., 2011), as well as

the role of disturbance in maintaining or eroding biodiversity (Nee and May, 1992; Prakash

and de Roos, 2004).

Here we develop a patch-occupancy metacommunity framework in order to understand

how profit and biodiversity are impacted by (1) the process of community assembly, (2)

pricing structures that treat species harvest values either equally or unequally, and (3) the

implementation of marine reserves.

In general, we are concerned with the trade-off between diversity and profit over a range

of harvest rates and reserve fractions. The curves in Fig. 2-1 are intended to illustrate the

different diversity and profit quantities discussed in the paper. Two quantities are useful

for summarizing this trade-off: the change in diversity-the 'diversity gain'-and the change

in profit-the 'foregone profit'- that accompany a change in harvest rate or reserve fraction

relative to their profit maximizing levels (Fig. 2-1). These quantities are useful for compar-
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Table 2.1: Definitions and concepts.

Term

diversity (a)

profit (H)

profit (7r)

diversity gain

forgone profit

open access

open access diversity

profit maximizing diver-
sity

protected diversity

Units

# spp.

$ per time

$ per patch per time

# spp.

$ per time

# spp.

# spp.

# spp.

Definition

average number of species in a patch
at equilibrium

revenue from selling fish minus har-
vest costs of fish at equilibrium

revenue from selling fish minus har-
vest costs of fish at equilibrium per
patch

change in diversity relative to that
at profit maximizing harvest level

change in profit relative to maxi-
mum profit

unregulated state in which profit is
zero

diversity at open access harvest level

diversity at the profit maximizing
harvest level

difference between diversity at open
access with and without a reserve
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Figure 2-1: Schematic of the quantities related to profit-diversity tradeoffs with (a) effort
regulation and (b) effort regulation plus marine reserves. In each panel. the grey and black
curve represents the profit-diversity trade-off for a community with no marine reserve. The
orange curve indicates this trade-off for a community where some habitat is protected by
a marine reserve. The diversity gain (purple. horizontal bar) and forgone profit (green.
vertical bar) are calculated for a particular harvest rate (star). They are measured relative
to the diversity and profit at the profit maximizing harvest rate. Descriptions of 'open
access diversity,' 'profit maximizing diversity.' and 'protected diversity' are in the text and
Table 2.1. For each profit-diversity curve. the lighter portion of the curve indicates where
profit and diversity can be simultaneously increased by harvesting less.

ing the trade-off under different management scenarios. If no reserves are implemented. the

diversity gain and forgone profit result solely from a decrease in harvest rate (Fig. 2-1a).

When reserves are added (as in Fig. 2-1b). the changes in diversity and profit can result

from a combination of the effects of the reserve and harvest rate changes. With reserves.

we also introduce the concept of 'protected diversity,' which is the increase in diversity at

open access that results from implementing a reserve. The shape of these trade-off curves

is determined by the biotic interactions within the community; the shape shown here was

anticipated from biomass versus profit for single species models and serves as a compari-

son for the shape we may obtain when plotting diversity versus profit. One objective of

this study is to characterise and understand how biotic interactions influence the shape of

these trade-off curves. Table 2.1 details the relevant quantities that we calculate in our two

illustrative models.
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2.3 Patch Occupancy Framework

Patch occupancy models have several advantages over alternative approaches. First, by

using spatial models, we can incorporate ecologically important processes such as dispersal

and habitat disturbance. Second, because they are spatially implicit, and only consider

species' presence or absence (rather than population density), patch-occupancy models tend

to be more amenable to analysis than their spatially explicit counterparts. Finally, coupling

the patch-occupancy model with a simple economic model enables us to optimize profit or

diversity and gain insights into the trade-offs between different management objectives.

The first step in formulating a patch occupancy model is to divide a site (e.g., a bay,

reef, or fishing ground) into a set of patches. Each of these patches is described by its state,

as defined by the identities of the species present. Patches can change state either because

they are colonized by individuals of a new species dispersing from other patches or by losing

species via local extinction. The dynamics of community assembly are determined by the

rules governing the colonization process-in particular how the state of a patch determines

which species may invade-and the rules governing species replacement (or coexistence)

after a colonization event.

In the following sections, we construct two illustrative models that capture two extreme

community assembly mechanisms. In the first, null model, we assume that the species do

not interact and may colonize any habitable patch at which they are not already present.

The simplicity of this model makes it a useful baseline against which to compare more

complicated and realistic processes. Such models are commonly used in community assembly

studies (e.g., Weiher and Keddy 1995; Neubert et al. 2006). In the facilitation model we

assume that species may only colonize patches already inhabited by a facilitating species.

This type of obligate facilitation operates, for example, when one species provides habitat for

another (e.g., anemones and clownfish (Dunn, 1981), which may be targeted for aquarium

trade, or crabs in mussel beds (Silliman et al., 2011)); for other examples, see Bruno et al.

(2003). In the facilitative model section below, we demonstrate the trade-offs that might be

present in these communities. The facilitation model is simple and readily compared with

a null model; in the discussion, we suggest possible model extensions to incorporate more

28



complex community assembly dynamics.

In the framework we develop here, local extinction is the result of harvesting that can

be regulated by a resource manager. Harvest causes extirpation of all species within a patch

and renders the patch uninhabitable until the patch habitat recovers. Fishing frequently

damages habitat (for example, through trawling) and has been shown to have strong effects

on community composition (e. g., Thrush et al. 1998; Thrush and Dayton 2002). In addi-

tion, previous studies that have incorporated destruction of habitat have found it to be an

important driver of interspecies interactions (Caswell and Cohen, 1991; Klausmeier, 2001;

Prakash and de Roos, 2004) and optimal management (Moeller and Neubert, 2013). Below

we present a case in which harvesting is the only source of disturbance in the community;

we discuss the implications of this assumption in the discussion.

The structure of this model, the simplicity of which we exploit to facilitate analysis

over these broad ranges of ecological and economic parameters and relationships, comes in

the form of strong assumptions. For instance, we assume that harvesters do not know the

state of any particular patch-including one that they just harvested. Harvester avoidance

of recently fished areas would increase the effective fishing pressure applied to other areas.

The model is also spatially implicit, which means that the survival of relict populations in

space, as can occur with cellular automaton models, cannot occur. Our study of equilibrium

conditions also means that the study of systems that are perturbed or far from equilibrium

are not accommodated. However, as detailed below, many of these assumptions make

this framework suitably tractable to be coupled with a simple economic model in order to

address the role of community assembly, pricing structure, and profit-diversity trade-offs

under different types of management.

2.4 Null Model

In the null model, species do not interact and are identical in colonizing ability. Species may

colonize any habitable patch at which they are not already present; the rate of colonization is

independent of the presence or absence of other species. Some patches are also uninhabitable

until they recover.
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Imagine S species which are distributed among a large set of N patches. A simple way

of defining the state of a particular habitable patch is to label it with a 1 x S vector, 'b,

composed of zeros and ones. The ith element of iP, 4i, is one if species i is present and zero

if it is absent. An uninhabitable patch is in state q. We will keep track of the number of

patches in these states with the variables Xg and X0. In general, there will be 2S + 1 state

variables. Table 2.2 lists the variable and parameter names for reference.

It will be notationally convenient to define IQ as the set of all possible 0, and Tj as the

subset of T whose members have ith element equal to one. Thus %F is the set of all possible

habitable states and Tj is the set of all states where species i is present (regardless of other

inhabitants). It will also be useful to define the state where only species i is present as ei.

The state of an individual patch is changed when it is colonized, harvested, or recovers

from harvest. Patches are harvested at rate h, causing the patch to become temporarily

uninhabitable. These patches recover at rate r, becoming habitable, but empty. Thus, the

number of uninhabitable patches changes at the rate

dXO - h E X - rX, (2.1)
dt

Next, let us consider the rate of change of the number of habitable patches that are in state

,0. These patches change state when they are colonized or harvested. In a given patch,

colonization by species i occurs only when species i is absent; i. e., when 4'i = 0. Propagules

of species i are produced in state Tj patches. There are E a X such patches. Because all

species are identical in this null model, these propagules are generated at constant per-patch

rates, c. Each of these propagules lands on a patch in state 0 with probability X.4/N. We

now sum over all species to obtain the rate of colonization of patches in state 0 as

S

(1 - :!) c X] (2.2)

New state-4' patches are created by the colonization of patches that, by the addition of

a single species, become a state-4 patch. Let us focus on one such patch that is missing

species i; it is in state 4' - ej. At any time, there are c X. propagules of species i
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Table 2.2: Null model parameters and variables.

Term Units Definition

Parameters
r time-I rate of recovery for uninhabitable

patches to become habitable

c time- 1  rate of propagule production from a

single patch

w $patch- 1  cost of effort

[] efficiency of harvest

N # number of patches in the community

S # spp. number species in the community

Variables

h time- 1  rate of harvest; this renders the har-
vested patch uninhabitable

XO # patches number of uninhabitable patches

XO, # patches number of patches in state 4p

[] proportion of patches in uninhabit-
able state

y] proportion of patches with species i

(regardless of other inhabitants)

Xf [] proportion of patches in reserve,
with all S species present
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being produced to colonize our focal patch. Only a fraction of these propagules, 1/N, will

land on it to possibly recruit. Summing over all species that are eligible to colonize patches

in state b - ej (those with 4i = 1) gives us the total rate of addition of new state-4' patches:

(2.3)
S

Combining the effects of harvest and colonization, we obtain

dXo = rX -c

i=1 77E~i

X77

X] -hXo

+ 1+ iX e cZ X1 -h

for I = 0. By defining

X0 = X4/N, and xp = XgpN

(so that x0 and x, track the fraction of

simplify the null model to

dx0p
dt

dxop
dt

patches in these states) and rearranging we further

- hZxiP-rx4

S
= rx -E xocExii -hxo

i=1 ?E-T

S

(2.7)

(2.8)

(2.9)c 5x [O4ixiei - (1 - Vi)xp] - hxo.
i=1 ?JEq'

Eqs. 2.7-2.9 comprise the biological and harvesting component of our null model. A

simple example of this model, with only two species, is illustrated in Fig. 2-2; we show the

corresponding equations, for the reader's entertainment, in Appendix 2.6.

A manager of such a multispecies fishery might choose h to maximize profit. The profit

depends on the cost of harvesting, the price for the harvested fish, and the intra- and in-

32

and

dX i= Ey

dtN

(2.4)

(2.5)

(2.6)

=



a) ,

110

UninhabiableHabitable &

- _1

b) t~O t=Q.5 t= 1 t=2 t=4

N=[555551 N [622213] N [812113] N=[822211] N=[82 2211]

c) __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.6 uninhabitable

habitable and empty

0 nhabited by species 1 (1,0)

nhabited by species 2 (0,1)

0D

* nhabited by species l and 2 (1,1)

'1- -0 _O

0 I I I I
0 1 2 3 4 5

lime

Figure 2-2: (a) Schematic of null model states (boxes), transitions (arrows; solid is coloniza-

tion, dashed is harvest), and rates (arrow labels) for a community with 2 species. The model
equations are described in Appendix 1. Uninhabitable patches (gray box) can recover to

become habitable (white boxes) are rate r. These empty patches can then be colonized by

either species 1 or 2 (pink and blue boxes) at a rate proportional to the number of patches

producing propagules and the number of patches being colonized. Finally, these patches
may transition to a patch with both species. All patches may become habitable but empty

through harvest. (b) Schematic of how the transitions in (a) manifest for many patches.
The circles, which represent patches, are colored using the same meanings as in (a). Each

panel corresponds roughly to the time steps marked in (c). Note that in the last two boxes,
while an equilibrium has been reached (so the number of patches in each state is the same),

individual patches may change state. (c) Plot showing the simulations of the system of

equations from Appendix 1 through time. While the proportion of patches started evenly
distributed among states, the proportions reach equilibrium values.
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terspecific interactions that determine the dynamics of the metacommunity. In the section

(Null model: diversity and profit), we focus on a manager who wants to understand the

potential trade-off between long-term, sustainable profit (i.e, the profit at equilibrium) and

biodiversity. Before this, we explore how the equilibrium configuration of the metacommu-

nity depends upon the control variable h, which we will take to be a constant. This allows

us to formulate relatively simple static optimization problems and facilitates identification

of profit-diversity trade-offs. An alternative approach, and an ambitious next step, might

include the consideration of the dynamic control of harvest in time and the stability of

solutions to imperfect control; the importance of such analyses in understanding fisheries

collapse is illustrated for a single species by Roughgarden and Smith (1996).

2.4.1 Null Model: Equilibria

The dynamics of our null model are dominated by equilibria. While the state of any

particular patch will continue to change as it is harvested, recovers, and is colonized, the

proportion of patches in those states converges to a set fraction determined by the parameter

values. Thus, at any time the patches are in a mosaic with some patches containing all

species, some uninhabitable, et cetera. As long as all S species are initially present in

the community, the fraction of patches in the uninhabitable state will converge to the

equilibrium value x*, and the fraction of patches in the various habitable states will converge

to x*. An easy way to calculate the equilibria is to introduce the new variable yj = X xe

which gives the fraction of all patches that contain species i. The dynamics of y are given

by

dt = h(1 - x) - rx, (2.10)
dytdyi = cyj(1-x.0-yj)-hyj, for 1 <i < S. (2.11)
dt_ _

We can solve for the proportions of patches in these states at equilibrium as

x*= - h (2.12)
r + h
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and

r h
yi r y = (2.13) r + h c*

All S species persist as long as the harvest rate satisfies c > h(r + h)/r. At higher harvest

levels, all species are extirpated and y* = 0. We show that this solution is stable in Appendix

2.6.

To calculate x*, we take advantage of the symmetry among species' equilibrium values

and use the binomial formula. Specifically,

)k 1(S-k)

Z* = 1-(1 - X*) (2.14)1 -x 1- X*

where k is the number of species present in state 4 (i.e., the sum of the elements of 4).

The proportion of patches with exactly i species, zi, is

= )(( - 1 ) (1 - x*,). (2.15)i! (S - i)! I - X* 1 - X*

At low harvest rates, most patches have all species, although there are some patches in

every state (Supplemental fig. 2-3). At sufficiently high harvest levels, c < h(r + h)/r, all

species are extirpated from the system.

2.4.2 Null Model: Diversity and Profit

We use the equilibrium values (Equations 2.14 to 2.15) to calculate diversity and profit. We

focus on a diversity, or the expected number of species at a patch:

a = izi = Sy*. (2.16)

For the null model (2.10)-(2.11), a diversity declines monotonically with harvest rate in all

cases (Fig. 2-4 (a)). Higher colonization rates or recovery rates increase the diversity at

a particular harvest level. When the diversity curve intersects the h-axis, all species are

extirpated.
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Figure 2-3: Proportion of patches with differing numbers (labelled) of coexisting species

(Zi) for a fifteeii-species version of the null model (equations 2.10 and 2.11). '0' includes

only empty, habitable patches. S = 15. c = 5 and r = 1. At very low harvest levels, there

are some patches in all states. just as at higher harvest levels, there axe still some patches

with all fifteen species.

To calculate profit. we need to specify the nionetary value of the harvest from a patch

in each state. Because species are identical and do not interact, each contributes the same

amount of biomass and value to a patch. Without loss of generality then, we set the value of

the harvest from a patch equal to the number of species that are present. Any unoccupied

(or uninhabitable) patch is worth 0. We call the price of a patch with i species present, p;

for the null model., p i.

There is also a cost to harvest. We will assume the per patch harvest cost is w. The

revniille gained from all inhabited patclies. which are harvested with efficiency 6 minus the

effort costs is the equilibrium profit. I:

1 = ENh zip, - wliN. (2.17)

The per patch profit rate 7 = H/N gives the average profit obtained from harvest of an

individual patch and is obtained by dividing equation (2.17) by N.

A manager who can regulate the harvest level is able to maximize the profit rate. With-

out such oversight. we will assume the system is at open-access. i.e. profits are driven to
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Figure 2-4: For the null model (top row; Eqns. 2.10 and 2.11) and facilitation model
(bottom row; Eqs. 2.25-2.28) , a diversity (a) and profit (b) depend upon harvest rate.
Together these determine the trade-off between profit and diversity and equilibrium (c).
For the parameter values r = 1 and c = 5 (solid curve). the profit maximizing harvest
rate is marked hpM and the open access harvest rate is marked h'oA. The diversity gain

(relative to profit maximizing harvest level) and profit loss (when diversity is mnaxiIized)

are labelled in (c). For all panels, S = 15, w = 0.5, and E = 1.
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zero (Clark, 1973). Profit is maximized at an intermediate harvest level, hpM. The open

access harvest level, hoA, is higher (Fig. 2-4 (b)).

We can now compare the diversity and profit at different harvest levels or among fisheries

with different biological or economic parameters (Fig. 2-4 (c)). a diversity is maximized

when h = 0, thus 7r = 0 as well. We focus on the maximal diversity gain (recall Fig. 2-1)-

the increase in diversity from the profit maximizing harvest rate relative to the diversity at

no harvest. The monetary cost of maximizing diversity is the difference in profit at hpM

and at the diversity maximizing level. In the null model, h = 0 maximizes diversity, so the

'profit loss' or cost to maximize diversity is equivalent to the maximal profit.

As can be seen in Fig. 2-5, if propagule production rates (c) are high relative to the

recovery rate, both the profit lost (a) and the diversity gained (b) by maximizing diversity

are more sensitive to variation in harvest costs (w) than propagule production rates. Higher

propagule production rates and lower effort costs (northwest of both plots) boost the max-

imum profit attainable in a given community, which incentivizes a heavy harvest and thus

reduces diversity.

However, the trade-off is not always large. Both low costs or high propagule production

rates can make a community profitable to harvest; however, they do not impact the trade-

off between diversity and profit in identical ways. For example, when propagule production

rates are low, the profit loss is very low, whereas the diversity gain may still be large. When

propagule production rates are low, a small increase in harvest rate increases the proportion

of empty patches dramatically. As a result, even the small profit-maximizing harvest levels

can cause large diversity losses. A community with low propagule production rates and

high harvest costs will still face high diversity losses when harvesting occurs, but the high

harvest cost reduces optimal harvest rates, so this potential diversity loss is not realized.

However, it is important to note that these results are for a profit-maximizer; the costs

associated with managing an open-access fishery may be very different.
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(a) (b)
20 20

0 0_
0 5 0 5

0 foregone profit 7.3 0 diversity gain 15

Figure 2-5: (a) Potential profit lost from harvesting at the diversity maximizing level (h=
0); i.e.. the maxinium profit. For a particular w, c combination, this is the vertical arrow
shown in Figure 2-4 c. (b) Diversity gain at no harvest relative to harvesting at the profit
maximizing level (h hpAI). For a particular w, c combination, this is the horizontal arrow
shown in Figure 2-4 c. For both panels, S = 15, r = 1 and E = 1.
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2.4.3 Null Model: Spatial Management

To investigate the cost of conserving diversity using marine reserves we modify our models

to keep track of the proportion of patches that cannot be harvested. Since harvest is the

only source of disturbance, we will assume that protected patches harbor all species. These

reserves have the potential to provide the maximum benefit to biodiversity. Let us call

the fixed fraction of patches that are set aside as protected reserves xf. The dynamics are

governed by the following systems of equations, which modify equations 2.10 and 2.11:

dx4
dx = h(1 - x4 - xf) - rxo (2.18)

dy-d = c(yj + xf)(1 - xO - yj - xf) - hyj (2.19)

The equilibria are then

X* =h(1-xf) (2.20)0- r + h

h + A - cxf + V(-h- A + cxf) 2 + 4cxf A
yi = y2= (2.21)2c

where A = c(1 - x*- xf). This is the equilibrium as long as y* is positive (otherwise

y* = ).

We calculate a diversity and profit, which are now

a = S(y* + Xf) (2.22)

7r = eh zipi - wh (2.23)

where zi is modified from Eqn.(2.15) as

zi!(S. ! ( - (1 - X* - Xf). (2.24)Z -z(1!(S - z)! 1 - X* -xf 1 -X* - xf

40



We use these to compare the trade-off between diversity and profit (Fig. 2-6, left column).

At a particular harvest level, ar diversity is always higher when reserves are present,

as a set of patches with all species present is preserved. The maximum profit attainable

is, however, lower if reserves are implemented (Fig. 2-6 (b)). Hart (2006) found a similar

pattern in a single-species model, maximizing yield. The harvest rate that maximizes profit

and the harvest rate at open access both increase. Consistent with this finding, Halpern

et al. (2004) showed that concentrated effort outside reserves cannot produce comparable

harvest to a community without reserves, unless there is a compensatory increase to the

production rate.

In addition to increased diversity at all harvest rates, reserves provide an additional

benefit: a diversity buffer. Whatever the harvest rate, diversity cannot fall below a lower

limit (equal to xfS). Even when the community is harvested at extreme (open access)

harvest levels, some diversity is preserved. We define 'protected diversity' as the difference

in diversity in the community at open-access when no reserve is present and when it is. At

very high harvest rates, the diversity gain is almost entirely due to the diversity of patches

in the reserve state; outside the reserves, most patches will be in uninhabitable states.

We can calculate the forgone profit necessary to achieve different combinations of the

two types of diversity: protected diversity and the realized diversity gain. In Fig. 2-7 we

show that the cost of adding relatively large amounts of protected diversity is consistently

low (i.e., the iso-cost curves are approximately flat over large ranges of protected diversity).

The white line shows the diversity at the profit maximizing harvest rate for a given amount

of protected diversity. Above the white line, one can often gain protected diversity without

sacrificing much profit by increasing the reserve fraction. Below the white line, for a fixed

protected diversity, one can always increase the diversity gain and profit by decreasing the

harvest rate. Overall, while increasing the diversity in a community (relative to the profit

maximizing level) has a cost, the cost of using marine reserves to do so-which provides a

degree of guaranteed diversity even if over-harvested-is relatively cheap. These patterns

are consistent for other parameter values.
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Figure 2-6: Both left panels show a fifteen-species version of the null model (Eqs. 2.18 -
2.19), while the right panels show the facilitation model (Eqs. 2.25-2.28) with parameter
values c = 5, r = 1, e = 1, and w = 0.5. The black, dashed line indicates a community with
20% in reserve and the solid line indicates a community with no reserves. (top) a diversity
as a function of harvest rate. The open access harvest rates are marked. The vertical arrow
shows the 'protected diversity', which is the difference between the diversity at open access
with no reserves and at open access with a reserve. (bottom) Profit as a function of harvest
rate. The vertical arrow shows the difference in maximal profit rate without and with a
reserve.
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Null 1 Facilitation 1.5
10 10

0 1 0 0 0
0 15 0 15

Protected diversity Protected diversity

Figure 2-7: The cost. in forgone profit., necessary to achieve different levels of protected

diversity and diversity gain for a fifteen-species version of the null model (Eqs. 2.18-2.19)
and facilitation model (Eqs. 2.25-2.28) with parameter values c = 5, r =1, Iw = 0.5 and

- = 1. Since a diversity is positive at h = hp, the diversity gain does not extend

to S = 15. The white line shows the profit-maximizing diversity gain for each level of

protected diversity. Points below this line are sub-optimal in both diversity and profit.

2.5 Facilitation Model

Real communities are more complicated than our null model: species interact. have different

life-history traits. and are differentially valuable when harvested. In this section we present

a model in which interspecies interactions are strong. as a contrast to the null model.

As in the null model, species accumulate in a patch as they colonize, but in this "facil-

itation" model, species colonize in sequential order. (i.e., species 2 cannot colonize unless

species 1 is present. and species 3 cannot colonize without species 2, etc.). Once a species

has colonized, it does not displace the previous inhabitants, so a patch with species 5 nec-

essarily will contain species 1 through 4 as well. Uninhabitable patches, which are created

by harvest. must recover from this disturbance before they can be colonized by the first

species.

Because of this strong facilitative interaction, the number of states is tremendously

reduced compared to the null model with the same number of species. One can now specify

the state of a patch with a scalar quantity indicating the number of species in a patch. We

call the proportion of patches in state 7, xi. As before. we write a system of differential
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SHabitable &Uninhabitable E mty (-)
Empty (0)

Figure 2-8: Schematic of facilitation model (Eqs. 2.25-2.28) states (boxes), transitions (ar-
rows), and rates (arrow labels). Like in the null model, patches can transition from being
uninhabitable from habitable and empty at rate r, but subsequent colonization can only
be by species 1. Those patches may then be colonized by species 2, etc. at rates that
are proportional to the propagule production rate c and the number of patches able to be
colonized and to colonize. All patches may be harvested at rate h.

equations to track how colonization, harvest, and recovery change the proportion of patches

in these states. (For parameters and variables see Table 2.3.) We again imagine N patches

inhabited by S species. x. indicates the fraction of patches that are uninhabitable. These

are created through harvest (at rate h) and recover at rate r:

dxo (2.25)=t h 1:xi - rX0. (.5
i=O

Let us focus on patches in state i. The proportion of such patches changes when propagules

from species i colonize state i - 1 patches, propagules from species i -+ 1 colonize state

i patches, or state i patches are harvested and rendered uninhabitable. Colonization by

species i occurs via propagules which are produced at a per patch rate of ci. Combining

these, we obtain (c.f. Fig. 2-8):

dx0  S

dXtx - c1 x0  xi - hxo, (2.26)
i=1

dxt

d = -ci+1 i j + ci i- 1 - , (2.27)

d 5

dt = csxsxs- 1 - hxs. (2.28)
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Table 2.3: Facilitation model parameters and variables.

Term Units Definition

Parameters
r time-

c time-1

w

N

S

Variables
hline h

X05

Xi

Xf

pi

K

$patch-1

[#

# spp.

time- 1

[]1

[]

[I]

$

[]

rate of recovery for uninhabitable
patches to become habitable

rate of propagule production from a
single patch

cost of effort

efficiency of harvest

number of patches in the community

number species in the community

rate of harvest; this renders the har-
vested patch uninhabitable

proportion of patches in uninhabit-
able state

proportion of patches with species 1
through i

proportion of patches in reserve,
with all S species present

the value of species j

constant that relates the value of
patches in state j - 1 to those in

state j
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2.5.1 Facilitation Model: Equilibria

As in the null model, while individual patches continue to change state, the proportions of

patches in different states equilibrate. These equilibria are straightforward to calculate for

arbitrary parameter values (Appendix 3). Here we focus on the case when the propagule

production rate is equal among species (i.e., ci = c for all i). We illustrate this case for

comparison with the null model.

For the model given by Eqns. (2.25)-(2.28), the number of species that can persist is

given by

S* = min S, crh , (2.29)
( h(r + h)

where [ J indicates the floor function.

If the harvest rate is high relative to the propagule production and recovery rates, all

S species cannot co-exist in the community at equilibrium. Thus, species 1 through S*

occupy positive proportions of the habitat, while species above S* are absent. The stable

solution when S* > 0 (Appendix 3) is

h
X0 r +h' (2.30)

* h
xi=-, for i = 0,..., S* - 1, (2.31)

C

r S*h
x* r = , and (2.32)r + h c

X* = 0, for j> S*. (2.33)

The proportion of patches in the uninhabitable state is the same as in the null model. In the

null model, all species are extirpated when h(r + h)/r > c. In contrast, in the facilitation

model, species are sequentially extirpated from the community as harvest rate increases

from zero, with the late colonizers being the most vulnerable to overfishing (Supplementary

fig. 2-9). The earliest colonizer (species 1), which is the most resilient in the face of

harvesting, is eliminated at the same harvest rate that would eliminate all species in the
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0.5

2 3

h
Figure 2-9: Proportion of patches with differing numbers (labelled) of coexisting species in

the facilitation model (Eqs. 2.25-2.28) with parameter values S 15. c = 5. and r = 1.
Unlike in the null nodel. the number of species also uniquely identifies the patch type.

null model.

2.5.2 Facilitation Model: Diversity and Profit

Using Eqns. (2.30)-(2.33). we can calculate equilibrium diversity and profit. The expected

number of species in a patch, or a diversity is
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S

a = ii, (2.34)

r h(S* + 1)
-r1 h (2.35)

lr+ h 2c I

since a patch in state i has i species present and ci = c.

Diversity declines monotonically with harvest in the facilitation model, but more pre-

cipitously at low harvest levels than in the null model (Fig. 2-4 (a)). Diversity vanishes

(i.e., all species are extirpated) at the same harvest rate for both types of communities.

In the facilitation model, species are not identical. It is reasonable then to allow different

species to have different economic value. Let p3 be the value of species j. A simple model

for species values is the geometric series:

Pj = Pin . (2.36)

If the constant , is less than 1, early colonizing species are worth more than later colonizers;

, > 1 indicates the opposite. We use p1 = 1 and K = 0.9, 1, and 1.1 'to explore different

value relationships.

The value of a patch in state i is then

A = Epj, (2.37)
j=1

and the total harvest value is

7r = h [e (xipi) -w . (2.38)
_i=1

As in the null model, profit is maximized at an intermediate harvest rate (Supplemental

fig. 2-11). At open-access, profit is zero and the harvest rate is higher. As might be expected,

profits are larger, and profit-maximizing harvest rates are smaller, if later colonizing species

are more valuable relative to early colonizers (i. e., for larger K). Profit is maximized at

lower harvest rates than in the null model (compare Supplemental fig. 2-11 with Fig. 2-
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Figure 2-10: (a) c- versus w for a fifteen-species version of the facilitation model (Eqs. 2.25-
2.28), with w = 0.05, r = 1. : = 1, and c = 5. Price per patch was determined by K, as

marked. (b) Potential profit lost from harvesting at the diversity maximizing level (b = 0).

(c) The diversity gain from no harvest relative to harvesting at the profit maximizing level

(h = hpyv). For all panels, S = 15. r = 1, p1 = 1, and 5 1.
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4(b)). At sufficiently high harvest levels, when only early colonizing species persist, the

profit is essentially independent of K.

We can now compare the diversity and profit among fisheries with different biological or

economic parameterizations (Fig. 2-10). Diversity is again maximized at a = S when h = 0

and 7r = 0. Fig. 2-10(b) shows the potential profit that is lost by maximizing diversity.

Fig. 2-10(c) shows the diversity that is gained by not harvesting, relative to harvesting to

maximize profit; this is the difference between maximum diversity, S, and the diversity at

the profit maximizing-harvest level. Below, we highlight several qualitative patterns in the

trade-off between diversity and profit.

First note that low harvest costs (w) and high propagule production rates (c) increase

profits. In such profitable systems, the trade-off between diversity and profit is relatively

large; however, as later colonizers become more valuable (higher K), the trade-off between

diversity and profit is diminished. In contrast, communities with high effort costs and low

propagule production rates do not tend to have a large trade-off, as both the profit loss and

diversity gain are low.

One interesting case to consider is a low r. community (first column of Fig. 2-10) with

low w and low c. While the monetary loss from maximizing diversity is low, the diversity

gain is still high. In this case, even though the profit maximizing harvest level is low

(and thus profits are low), diversity declines even more rapidly (as the community re-builds

species slowly), making the profit maximizing diversity level low. As r, increases, and the

trade-off between diversity and profit decreases, this low w, low c region ceases to have such

high diversity costs.

2.5.3 Facilitation Model: Spatial Management

Let xf be the proportion of patches that are set aside in a reserve. These patches cannot be

fished and we assume they are in the unharvested equilibrium state with all species present.

We modify Eqns. (2.25)-(2.28) to obtain a set of S +2 differential equations which describe

the dynamics of a facilitation system with reserves:
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dx= h( - xO - xf) - rxp, (2.39)
dt

dx0  S
dt = rxO - clxO Sx - hxO, (2.40)

j=1

dx C~x f+ S +Ci- +S
d -- Cix (xf + Xj + cExi 1  + f xj - hxi, (2.41)

j=i+1 j=i
dx5

dt - cs(xf + xs)xs- 1 - hxs. (2.42)

Using a modification of Eqn. (2.35) to calculate diversity:

S

a ixi + SXf (2.43)

and Eqn. (2.38) along with the (numerically derived) equilibria of this system, we can

calculate diversity and profit for communities with and without reserves (Fig. 2-6).

As in the null model, diversity is always higher in communities with reserves, and at

high harvest levels the diversity is almost entirely within the reserves. The implementation

of reserves reduces the maximum profit rate (Fig. 2-6(b)), but higher harvest levels can still

be profitable. In these instances, the open-access harvest rate is larger.

We again calculate the 'protected diversity', 'forgone profit', and 'diversity gain' for all

combinations of harvest rates and reserve fractions. These quantities are calculated in the

same way as in the null model and are shown schematically in Fig. 2-1b. The cost in forgone

profit of different levels of protected diversity and diversity gain is shown in Fig. 2-6.

Qualitatively, the trade-offs among cost and the two diversity metrics are the same as

in the null model, although the maximum foregone profit and maximum diversity gains are

lower in the facilitation model. For a given reserve fraction, the protected diversity is the

same between the two models. The cost of adding protected diversity to a given level of

diversity gain is still minimal and is generally cheaper than in the null model.
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2.6 Discussion

The coupled metacommunity-economic modeling framework we have described provides a

way to examine the ecological and economic factors that influence profit-diversity trade-offs.

The quantities we highlighted-foregone profit, diversity gain, and protected diversity-are

useful for structuring thinking about the trade-offs in a complex bioeconomic system (Fig. 2-

1).

Our framework is, perhaps, best suited for identifying the types of harvested communi-

ties that are cost-effective to manage. For example, our analysis showed that in communities

structured by facilitative colonization dynamics, a manager could often increase diversity

without sacrificing much profit from reduced harvest, especially when propagule production

rates and harvest costs are low.

An advantage of the framework is that it permits inclusion of a variety of ecological

rates and types of interactions. This is important, because such variation exists in real

marine systems. For example, strongly competitive systems that exhibit trophic cascades

have been observed (Casini et al., 2008), while other systems show strong facilitative in-

teractions (Silliman et al., 2011). These communities may change at vastly different rates.

Recovery from harvest disturbance may take a long time-hundreds of years for deep water

corals, which grow on the order of a few millimeters per year (Lartaud et al., 2012)-or

a short time--for habitats which are not damaged by fishing, such as long-line fished sys-

tems or those with muddy substrates. Additionally, colonization rates can vary widely in

marine metacommunities and may depend upon oceanographic features, the distribution

of habitat, and species' attributes. Strategic models of the kind we developed here can

accommodate this ecological variability and complement the system specific analyses that

model the interactions and management of a particular community (e.g., Rassweiler et al.,

2012).

In our analysis, we compared a null-community with no interactions to one with strong,

facilitative colonizing interactions. The facilitative interaction results in a community that

is more sensitive to harvest; it loses species sequentially as harvest rates increase. In con-

trast, all species persist in the null model until the harvest rate exceeds a threshold value.
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Facilitative community assembly also reduces profits and profit-maximizing harvest rates.

Both the magnitude and shape of the profit-diversity trade-off are changed by the type

of ecological interaction (Figs. 2-5 and 2-10). Decreasing propagule production rates or

colonization rates affect the diversity-profit trade-off in similar ways in both the null and

facilitation models; the magnitude of the trade-off is changed, but not the shape.

The reader should not expect that the relationship between profit and diversity will

always have be as simple as the curves depicted in Figs. 2-1, 2-4(c), and 2-10(a); other

types of ecological interactions will produce even more interesting, complicated trade-offs.

For example, in a competitive metacommunity where species displace each other at a patch

(modeled by Hastings (1980)), there is non-monotonic relationship between the harvest

rate and the number of species that persist. Our preliminary analysis of optimal harvest in

this type of community suggests that the relationship between diversity and profit is more

complex. In addition, other measures of diversity (e.g., beta-diversity or species richness)

may be better suited to capturing these trade-offs.

The models we formulated can include potentially large numbers of species. The exten-

sive literature on two species metacommunities has illustrated how important interspecies

interactions are for species persistence and diversity patterns (e.g., Caswell and Cohen

(1991), Nee and May (1992), Klausmeier (2001), Prakash and de Roos (2004), Gouhier

et al. (2011)). When these models are extended to include marine reserves, species interac-

tions may change the optimal reserve size and configuration (Baskett et al., 2007; Baskett,

2007). We extended these results by showing that such interactions continue to be impor-

tant in much larger communities. Our results comport with those of Matsuda and Abrams

(2006) who studied yield in multispecies fisheries and found, like we did, that few species

are driven to extinction at yield (or in our case, profit) maximizing harvest levels. In ad-

dition, the authors found that constraining the harvest to prevent species extinction could

be done without substantially reducing yield, which is analogous to our result for the cost

of protected diversity.

We also investigated the cost of using marine reserves as a diversity-preserving man-

agement technique. In particular, we highlighted differences in the diversity gains achieved
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when the harvest rate maximizes profit or dissipates it at open access. For both the null

and facilitation models, we found that that the cost of achieving some protected diversity

tends to be low. At least for the theoretical communities we studied, marine reserves are

an efficient way to prevent the erosion of diversity at high harvest levels.

In contrast with some previous results, we found that marine reserves are not economi-

cally optimal in this model. (I.e., reserves never increase the maximum profit attainable).

Different per patch pricing methods that we examined did not reverse this result. Other,

single-species models (e.g., Neubert 2003; Sanchirico et al. 2006; Neubert and Herrera 2008;

White et al. 2008; Moeller and Neubert 2013) have found reserves to be economically opti-

mal; these models incorporate spatial heterogeneity, which our models do not.

Our models also neglect natural disturbance. Thus, the inclusion of marine reserves

here shows the maximum diversity benefit of reserves, as reserves have all species present.

Natural disturbance primarily affects the role of marine reserves (in the non-reserve section,

a disturbance rate that reduces all patches to being uninhabitable is additive with harvest

and can be easily separated), as an additional S +2 equations to track the natural destruc-

tion and re-building of non-fished patches would be required. The magnitude of natural

disturbance relative to the colonization, harvest, and recovery rates will determine whether

natural disturbance is critical to the trade-offs we described here.

We assume that harvesters do not know the state of a particular patch, but rather only

know the mean conditions of the entire metacommunity. They are additionally harvesting all

fish present at a patch. In reality, harvesters with modern technology are increasingly able to

target specific species of fish at specific locations. Allowing fishermen to target either species

(species-specific harvest rates) or areas in space would dramatically increase the number of

states and/or controls. This would certainly make harvesters more economically efficient

and likely qualitatively change the shape of the trade-off between profit and diversity.

This framework allowed us to investigate broad scale patterns of diversity-profit trade-

offs and identify regions where conservation would be cost-effective. We believe there are

many interesting directions to extend this work. For example, our model is spatially im-

plicit and does not allow us to investigate spatial patterns in connectivity (for colonization)
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or in harvest (such as 'fishing the line around marine reserves'). The inclusion of spatial

complexity allows for spatial variation in harvest, which can result in non-intuitive configu-

rations of harvesting effort (Wilen et al., 2002; Neubert, 2003; Kellner et al., 2007; Costello

and Polasky, 2008). These analyses show that complicated patterns that are not intuitively

obvious may appear when harvester behavior in space is accounted for. Spatial variation in

harvest may mitigate the trade-off between harvest and biodiversity objectives.
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Appendix: Null Illustration

Fig. 2-2 is an illustration of the two-species version of the null metacommunity model.

The states of this model are listed in Table 2.4. The dynamics of the state transitions are

governed by

dx dx,o

dt
dx[iO]

dt
dx[o1J

dt
dxi,1i1

dt

= h E i> - rx4

= rxo - c(x[,o] + x[1,1])x[o,o] - c(x[ol] + x(1,1)x[oo - hx[o,o]

= c(x[1,o] + x[1,1])x[oo] - c(x[o,l] + x[1,1])x[1,O] - hxi1,01

= c(x[oi1 + x[1,1)x[OO] - c(x[1,o] + x[1,1])x[o,1] - hx[0,11

= c(x[1,o + X[1,1)X[ o,1J + c(x[o,1] + X[1,1])X[1,0] - hx[1,1].

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

States Description

< uninhabitable
[0, 0] habitable, empty
[1, 0] only species 1 present
[0, 1] only species 2 present
[1, 1] both species present

Table 2.4: Definition of states for the null model (Eqns. 2.1 and 2.2).

Appendix: Stability of the null model

The Jacobian matrix, which consists of partial derivatives of the differential equations, is:

-(h+r)

-cy;

0

0

0

c(1 - xO) - h - 2cy

0

0
(2.49)

Because the determinant for this matrix is just the product of the diagonal entries, the

eigenvalues of the Jacobian are described by

61



0 = (-(h + r) - A\)IIi_1 (c(1 - xO) - h - 2cyi - A) . (2.50)

yis are equivalent for all i, so we can simplify to

0 = (-(h + r) -A) (c(1 - xO) - h - 2cyi - A)S . (2.51)

A thus can take two values, -(r + h) or c(1 - xp) - h - 2cyi. The first is always negative,

since r and h are non-negative. When yj = 0, A = - h) is negative (and thus this

solution is locally stable) whenever c < h(r+h)

The other solution is yi = r h .

rr h
A = c - h - 2c). (2.52)

r +h r +h c

Setting A < 0, we find that this solution is stable when c > h(r+h)

Appendix 3: Solutions and stability of the facilitation model

Equations 2.25 and 2.26-2.28 are set to zero to solve for the equilibria. x* is the same as

in the null model and is equal to h/(r + h). We then solve for the equilibrium of the next

highest state, x*. The roots of the quadratic are

0h
O and -. (2.53)

r + h Ci

X* = h/c1 when x1 > 0. Because when xo = r/(r + h), x4 + xo = 1, only the second

solution makes sense if there are patches in other states.

We repeat the same procedure to solve for x1 , using xo = h/ci; the roots are

r h h
Xt=rhand -. (2.54)

r + h ci C2

Again, the first solution corresponds to a case in which species 2 (and above) are absent.

Because of this structure, we can solve for an arbitrary i.

62



dxi S S

dt 0 = -Ci+xi E Xj + cixi-1 E x - hx i (2.55)
j=i+1 j=1

i i-1
0 = -ci+xi 1 - XO - E X) + ci i 1 1 -x4 -Ex) - hxi (2.56)

j=0 j=0

r S h r S1
0 =-Ci+1xi -h E - - x +C c- - h E - - x

r+h c= ci r+h . cj

x7 is either

Xi r h (2.57)
r + h - j

j=1

Xi = (2.58)
ci+1

If xi = L pushes the sum of all uninhabitable and lower hierarchy patches higher than one,Ci

the first solution must hold. Alternatively - h E 1 1 must always be non-negative,

since this expresses the proportion of patches 'left over' for state i. When c = c, this

simplifies to c > ih (r + h). The highest species number that can persist, o is

rcr
(P=min S, L L J . (2.59)

h(r + h)

Thus, for that case, the total solution is expressed as

X*=[h 7h Ih 1 17r - h (260
r+h c c r +h c _

Cases in which ci is not the same among species follow a similar pattern.

To test local stability, we constructed the Jacobian, J, for this system:
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-(h+c s _1 7)0-r -cxo-r -cXO -'r - -cxo - r

0 cZES xi -(h+cZs 1 j) + cxi_1 c(Xj- 1 - xi)

0 0 0 cxs h+cx,_1
(2.61)

We substituted the solutions from equation 2.60 for systems with randomly generated pa-

rameter values for S, r, c over harvest rates ranging from 0 to 10. The eigenvalues, calculated

with MATLAB, were always negative for these solutions, while other solutions (specifically,

that for p one species lower) were unstable.
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Chapter 3

On the Bioeconomics of Marine

Reserves when Dispersal Evolves

3.1 Abstract

'Marine reserves are an increasingly used and potentially contentious tool in fisheries man-

agement. Depending upon the way that individuals move, no-take marine reserves can be

necessary for maximizing equilibrium rent in some simple mathematical models. The im-

plementation of no-take marine reserves often generates a redistribution of fishing effort in

space. This redistribution of effort, in turn, produces sharp spatial gradients in mortality

rates for the targeted stock. Using a two-patch model, we show that the existence of such

gradients is a sufficient condition for the evolution of an evolutionarily stable conditional

dispersal strategy. Thus, the dispersal strategy of the fish depends upon the harvesting

strategy of the manager and vice versa. We find that an evolutionarily stable optimal har-

vesting strategy (ESOHS)-one which maximizes equilibrium rent given that fish disperse

in an evolutionarily stable manner-never includes a no-take marine reserve. This strategy

is economically unstable in the short run because a manager can generate more rent by

disregarding the possibility of dispersal evolution. Simulations of a stochastic evolutionary

'Originally published as "Moberg, E.A., Shyu, E., Herrera, G., Lenhart, S., Lou, Y., Neubert, M.G.
(2015) On the bioeconomics of marine reserves when dispersal evolves. Natural Resource Modelling." 28 (4):
456-474. This version differs only in formatting.
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process suggest that such a short-run, myopic strategy performs poorly compared to the

ESOHS over the long run, however, as it generates rent that is lower on average and higher

in variability.

Keywords: evolution of dispersal, evolutionarily stable strategy, fisheries management, ma-

rine protected areas, optimal harvesting.

3.2 Introduction

No-take marine reserves are a type of "marine protected area" in which fishing is prohib-

ited. Closed areas like marine reserves have been used to manage artisanal fisheries on small

spatial scales for many years (Fogarty et al., 2000). The advent of geographical position-

ing systems (which make the possibility of enforcing closures more feasible (Pala, 2014))

combined with the decline of fish stocks, an increased demand for marine fish protein (FAO

Fisheries Department, 2014), and a call for ecosystem-based management, have led not only

to increased study of the efficacy of marine reserves but also to an increase in their imple-

mentation. Marine protected area coverage worldwide has increased by over 150% since

2003 (Toropova et al., 2010).

A number of studies have shown that marine reserves can contribute to the conserva-

tion of stocks and to the ecosystems that support them (e. g., Halpern and Warner, 2002;

Halpern, 2003; Lester et al., 2009). Increases in individual size, biomass, population density

and species diversity have been shown to increase subsequent to reserve establishment (see

examples in, for example, Lester and Halpern, 2008).

The potential economic costs or benefits of reserves are less clear (Kaiser, 2005; White

et al., 2008; Hart and Sissenwine, 2009; Fletcher et al., 2015, in press). Some modeling

studies (e. g., Neubert, 2003; Sanchirico and Wilen, 2005; Sanchirico et al., 2006; Armstrong,

2007; Neubert and Herrera, 2008; Joshi et al., 2009; Moeller and Neubert, 2013) have shown

that the establishment of marine reserves for conservation purposes does not necessarily

require a reduction in economic productivity. Indeed, in some models reserves are necessary
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to maximize yield or sustainable rent. Others (including Polacheck, 1990; Quinn et al.,

1993; Man et al., 1995; Holland and Brazee, 1996; Nowlis and Roberts, 1999; Guenette

and Pitcher, 1999; Hastings and Botsford, 1999; Li, 2000; Pezzey et al., 2000; Sanchirico

and Wilen, 2001; Apostolaki et al., 2002) have shown that reserves may be yield-neutral

or produce minor improvements when compared with non spatial effort-control policies. In

some cases, the establishment of a reserve decreases yield (Tuck and Possingham, 1994).

The optimality of reserves, then, would seem to depend both on the objective as well as

the ecological and economic circumstances. One phenomena, however, emerges from all of

these modeling studies, as well as from real-world observations (Fig. 3-1): the imposition

of marine reserves can produce a radical redistribution of fishing effort in space. Effort is

displaced from reserve areas and frequently concentrates near their borders as harvesters

attempt to catch the "spillover" from the reserves. As a consequence, the establishment of

marine reserves can produce sharp spatial gradients in mortality (Neubert, 2003; Kellner

et al., 2007; Joshi et al., 2009; Abbott and Haynie, 2012; Moeller and Neubert, 2013).

It is easy to imagine, that as a result of these gradients, there would be strong selective

pressure to evolve context-dependent dispersal (McPeek and Holt, 1992)-that is, low dis-

persal rates within the reserve and high dispersal rates outside-or, equivalently, the ability

for dispersing individuals to detect and preferentially settle in better patches. Since the

potential economic benefits of reserves rely on dispersal of individuals from reserves into

fished areas, evolution of dispersal might work against the generation of sustainable rent.

In this paper we explore that possibility with the aid of a simple, "two-patch" model

(Holt, 1985). We begin by briefly demonstrating that, in the absence of evolution, reserves

can be economically optimal when the two patches are sufficiently different in either their

biological or economic properties (Sanchirico et al., 2006). We then ask whether reserves

are ever optimal (in the sense of maximizing equilibrium rent) when dispersal evolves.

Our analysis of this second problem builds on the work of Law and Grey (1989) and Grey

(1993) who were perhaps the first to seriously investigate the interplay between harvest and

evolution, i. e., the inclusion of evolutionary change in the constrained optimization problem

of the resource manager. They developed the concept of an evolutionarily stable optimal
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Y, -

Figure 3-1: Marine reserves (blue polygons) designed to manage scallop harvest off the New

England Coast. Dots indicate estimates of fishing effort in 2003. based on satellite tracking

of vessels. Warmer colors (green to red) denote more intense activity. The highest intensity

of fishing occurred right at MPA borders. Graphic from Fooarty and Murawski (2004).
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harvest strategy (ESOHS) 2 -a harvesting strategy "which gives the greatest sustainable

yield, after evolution caused by cropping has taken place." Law and Grey (1989) were

particularly concerned with the problem of how age-specific harvesting selects for changes

in the age at maturity, so they developed the ESOHS concept in the context of life-history

theory (which generally ignores dispersal). We extend their idea here to the evolution of

dispersal in a spatially managed fishery and find that evolution qualitatively changes the

nature of the optimal distribution of fishing effort.

3.3 Model

The model we use is similar to those of Clark (1990, pg. 337) and Sanchirico et al. (2006),

both of which derive from the classic model of Gordon (1954). The model describes the

dynamics of a stock distributed across two spatial locations, or "patches," connected by

dispersal. Each patch is characterized by an intrinsic rate of growth ri and a carrying

capacity ki. Individuals leave a patch at a constant per capita rate m and enter a common

pool of dispersers. From this pool a fraction e (instantaneously) choose to settle into

patch 1; the remaining fraction, 1 - E, settle in patch 2. In this sense, 6 can be thought

of as a disperser's preference for patch 1. Patches are harvested at nonnegative patch-

dependent effort rates Ei. If the population size of the stock in patch i is xi, this fishing

effort generates yield at the rate qjEjxi. The proportionality constants qj are called the

"catchability coefficients."

Under this model, the dynamics of the stock in the two patches are given by the ordinary

differential equations

dxj = rizx 1 - Xi) - m(1 - E)x1 + mex2 - q1 E1 x1 , (3.1)

dX 2  = r2x 2  1 - X2 ) + m(1 - e)xi - mex 2 - q2 E2X2. (3.2)

If the price of fish is p, and the cost per unit of effort in patch i is ci, then the rent

2We prefer the pronunciation ess-oh-ess for this acronym.
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generated by harvesting is

2

7r[El, E2; E] = (pqixi - ci) Ei. (3.3)
i=1

At first, we concern ourselves with the case in which a manager is able to control the levels

of effort in each of the patches (for example by limiting the number of boat-days available

for fishing or by taxing effort) and does so with the objective of maximizing the rent, 7r, at

equilibrium.

It is a simple matter to numerically calculate the equilibrium stock sizes from equa-

tions (3.1) and (3.2) for any combination of E1 and E2 . These can be substituted into

formula (3.3) to determine the equilibrium rent. We call the effort levels that maximize the

equilibrium rent Ei, the corresponding stock sizes x1, and the maximum equilibrium rent

7r.

The optimal solution in patch i will fall into one of three categories depending upon the

signs of El and the marginal rent in patch i, pqix* - ci. If

1. Ei > 0, we say the patch is fished; if

2. El = 0 and pqix* - ci < 0, we say the patch is unfished; and if

3. Ei = 0 and pqijx - ci > 0, we say the patch is in reserve.

We distinguish between unfished and reserve patches because the latter would require en-

forcement by the regulator-an individual harvester would have incentive to fish in that

patch, but doing so would reduce the total rent at equilibrium. In unfished patches the

marginal rent is negative, and rational harvesters (which we assume) avoid it of their own

accord.

The optimal equilibrium effort levels in each patch are determined by the model pa-

rameters (Fig. 3-2). When the patches are economically and ecologically identical, and

dispersers settle indifferently (i. e., e = 0.5), the optimal strategy is to ensure that both

patches are harvested at the same rate (or not fished at all if pqiki - ci < 0). Asymmetric

settlement, or differences in intrinsic growth rates, carrying capacities, or harvest costs can
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1 P1 fished, P2 unfished

0.8
P1 fished, P2 in reserve

0.6
U Both patches fished

0.4

0.2 P1 in reserve, P2 fished

0 P1 unfished, P2 fished
0.5 1 1.5 2 2 6 10 3 2 1 0.2 0 .6 1

r 2  k2 C2 q2

Figure 3-2: Optimal fishing effort. in the absence of evolution. in each patch as patch
2 quality varies. Patch 2 is the 'poorer' patch in every case, with variations in patch 2
parameters noted on the abscissae. All other parameters are equal between patches, with
Ai = 10,ri = 2, qj = 1, ci = 0.25, i = 4, p = 1. Note that the axis for c2 is flipped. because
patch 2 becomes 'better' (less costly to fish) as c2 decreases.

result in the optimal closing of one patch (blue and red regions of Fig. 3-2). For the rest of

the paper, we will explore cases in which patch 1 is in one way (and only one way) better

(for the harvesters) than patch 2; that is, all of the inequalities

r1 ;> r 2 . k1 > k2 , c1 < c2, q1 > q2> (3.4)

are satisfied and only one is satisfied as a strict inequality. This is the case for all of the

parameter combinations encompassed by Fig. 3-2 and subsequent figures.

3.4 Evolution of dispersal and the ESS

III general. the optimial harvesting effort, and thus the per capita mortality rate, in each

patch will differ. The dispersal strategy may evolve in response to this mortality gradient.

Evolution. in turn, affects optimal fishing strategies. including the optimality of reserves.

through changes in dispersal. Here, we consider the evolution of _ the proportion of dis-

persers that settle into patch 1. We derive the evolutionarily stable strategy (ESS). 5, the

dispersal phenotype against which no alternative phenotype can increase under selection.

In this section. we find an expression for S and show that it is a "weak form ESS." This ESS

is also convergence-stable, making it an evolutionary attractor to which the population will

converge in the long run.
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3.4.1 Calculating the ESS

To determine e, we begin by considering a population composed of a single "resident"

phenotype with dispersal preference e. The equilibrium stock sizes, x1 and 52, satisfy

r1 - - qiE1 t - m(1 - E)i + mEt2 = 0, (3.5)

r2 1 - - q2E2 52 + r(1 - - Me.t 2 = 0. (3.6)

We will find it useful to define ac as the per capita growth rate, including fishing mortality,

in patch i if it were isolated (i. e., if m = 0). That is,

ai= r (1 - qiEi] . (3.7)
ki

ai can be thought of as the fitness of an individual in patch i at equilibrium.

The phenotype that characterizes the resident population evolves through invasions

(and sequential replacement) by rare mutants-alternative phenotypes that appear at low

frequencies. Mutants are identical to residents, save for their dispersal preference, which we

will denote as E'. A mutant's fate depends on its invasion fitness-its initial growth rate

in the resident population. When it first appears, the mutant is rare, and its effect on the

resident's population dynamics is negligible (Metz, 2008). Thus if x' and x' are the mutant

populations in the two patches, their dynamics are initially given by the linear system

d X/1 X'1- = A' ( (3.8)

where

A' = (i- m(1 - F') me' . (3.9)

m( -e') a2 - ME'

The invasion fitness is then given by the dominant eigenvalue of A' (which is always real):

A'=g(al + a2 - M + V/(a1 - a2)2 + 2(al - a2)(26' - 1)M + M2) .(3.10)
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Note that the invasion fitness is a function of both the mutant phenotype and the resident

phenotype (because the a's depend upon the equilibrium population sizes of the resident,

which, in turn depend on 6).

If the invasion fitness (3.10) is positive, the mutant can replace the resident, inducing

evolutionary change; if negative, the mutant will be extirpated. An ESS, e, is a resident

phenotype that cannot be replaced by any e', making it resistant to further evolution (Geritz

et al., 1998). A condition that must be satisfied by any ESS is that the selection gradient

dA'/de' vanishes when e' = E = e. Differentiating the invasion fitness (3.10) with respect to

e' and evaluating at E' = E= E gives

a' (al - a2 )rn 0. (3.11)
e',,_ 1/(ai - a2) 2 + 2(ai - a 2 )(2e - 1) + r 2

Since we have assumed that m is positive, a vanishing selection gradient (3.11) implies

that al = a 2 ; but, adding (3.5) and (3.6) we find that

ajizi + a2x2 = al(11 + X2) = 0. (3.12)

Thus, when the resident population sizes are positive, al = a2 = 0. That is, when the patch

preference is at its ESS value, e, the per capita growth rates in the two patches (including

fishing mortality) are identical and zero.

By setting a 1 = a2 = 0 in equilibrium equations (3.5) and (3.6), we see that the only

potential ESS is

(3.13)
= 1+ x'2

where

i= ki I- q Ej (3.14)
ri

are the corresponding population sizes.

Substituting the condition al = a2 = 0 into (3.10), we see that the invasion fitness of

any mutant is 0 whenever the resident phenotype is given by (3.13). Because the invasion

fitness is never positive, no mutant phenotype can increase under selection, confirming that
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(3.13) is a local ESS. Because the invasion fitness is always 0, however, every mutant will

have the same fitness as the resident, making (3.13) a 'weak form ESS' (sensu Uyenoyama

and Bengtsson, 1982).

3.4.2 Convergence stability of the ESS

As we show next, the evolutionarily stable dispersal strategy (3.13) is also convergence

stable-an evolutionary attractor to which a monomorphic population will converge through

small, successive mutations (Geritz et al., 1998). We thus expect the settlement preference

to evolve to, and remain at, 6.

We demonstrate the convergence stability of e using the second derivatives of the invasion

fitness (3.10). Convergence stability requires that

a A '+ a9'2  ) < 0. (3.15)

That is, the sum of these second derivatives, taken with respect to the resident and mutant

phenotypes, must be negative at the ESS e (Eshel, 1983; Geritz et al., 1998).

Because al and a2 do not depend on the mutant strategy e', it follows that a2 A'/1E' 2

0 when ai = a2. Thus, (3.13) will be a convergence-stable ESS if 0 2A'/& aE' < 0 at

To calculate a 2 A'/&e4e', first differentiate the invasion fitness (3.10) with respect to E':

aA' (al - a2)M (-6
19E' (oa1 - a2) 2 + 2(ai - a2)(2E' - 1)m + m 2

Next, recall that a1 and a2 depend on the resident trait 8, and rewrite the equilibrium

conditions (3.5) and (3.6) as

a= 1- E( 1 + 2 ) 1  (3.17)
X1.

a2= m E - _ . (3.18)

Note that the equilibrium stock sizes tl and 22 are both functions of E.

74



We can substitute (3.17) and (3.18) into (3.16), and then differentiate with respect to

e to obtain 2A'/eae'. After evaluating the resulting expression at E' = E=, as given by

(3.13), we find that

a2A/ m ~diz1 dVz2 (.l+i22
7X2 - - 1 ( (3.19)

a6 B' 6/,= X1x2 .dE dE

The derivatives dzi/de and dt2 /dE can be found by differentiating the equilibrium equa-

tions (3.5) and (3.6) with respect to E. When evaluated at E' = E = 9 and j3 = :3, as given

by (3.14), these derivatives are

d1 i mkjr2 ,2(.i1 + X2)2

de /,, mk 2r15! + r2i2 [mki 2 + r1:i1(i1 + 2)] ,(3.20)

dT2 mk 2rii(i1 + i2)2
_E mk 2r1 Sj, + r2 : 2 [mkij 2 + ri 1 (Ii + '2)]. (3.21)

After substituting (3.20) and (3.21) into (3.19), we find that

a 2 A' = xM2 rir2xhix2(i1 + i2)3 < 0. (3.22)
e D' ,,12 mk 2 r 1 + r212 [mki 2 + r121(i + i2)]

It follows that inequality (3.15) is satisfied and the ESS settlement preference (3.13) is a

convergence-stable strategy.

3.5 The ESOHS and effects of evolution on optimal manage-

ment

In general, the rent that is generated in each patch depends upon the fishing effort in both

patches. This is not the case when the patch preference E is at its ESS value e, which

becomes clear upon substituting the equilibrium stock sizes (3.14) into the rent (3.3):

7r[Ei, E2; e] = r= pqiki (1 - ci q E.. (3.23)
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This means that when we maximize rent over E1 and E 2 , we are maximizing the rent in

the patches independently of each other. Thus, a reserve cannot be part of an ESOHS; a

patch should never be closed unless it is unprofitable to harvest (i. e., falls in the 'unfished'

category). Specifically, the ESOHS is

ri(p=jkj-cj) if pqiki - ci > 0,
= 2p k- i (3.24)

0 otherwise.

The resulting stock sizes in each patch at the ESOHS are

' (ki + c- if pqiki -ci > 0,{ =(3.25)
ki otherwise.

The evolutionarily stable settlement preference at optimal harvest, e*, can be calculated

using (3.13) with stock sizes ii =. *.

Spatial heterogeneity in biological or economic parameters is reflected in the ESOHS

(Fig. 3-3). When the patches differ in their biological parameters (r or k), the ESOHS

effort level in the worse patch is smaller than it would be if the patches were identical

and the parameter values were equal to their values in the good patch (Fig. 3-3, first two

columns). If the only difference between the patches is due to a difference in intrinsic growth

rate (i. e., if r2 < ri), the ESOHS settlement preference, e*, remains 1/2, and the stock sizes

are equal to one half of the (identical) carrying capacity in each patch. In contrast, when

the carrying capacities of the two patches differ (i. e., k 2 < k1 ), e > 1/2, and settlement in

patch 1 is more frequent than settlement in patch 2. In combination with the lower carrying

capacity, this dispersal asymmetry results in a smaller equilibrium stock size in patch 2.

When the patches differ in one of their economic parameters (either c or q; Fig. 3-3, last two

columns), e* < 1/2; that is, settlement is more frequent in the economically poorer patch.

If the patches only differ in the cost of fishing (i. e., c2 > ci), then the ESOHS effort in the

more expensive patch, as expected, is lower than in the less expensive patch. Combined

with the settlement asymmetry, this results in a larger standing stock in the poorer patch.

Similarly, there is a larger standing stock in patch 2 when fish are harder to catch there
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(i. e., q2 < qi). In contrast with differences in cost, however, the ESOHS effort level in the

patch with lower catchability (Es) is higher than it is in the patch where fish are easier to

catch (at least until fish become so difficult to catch that it is no longer worth harvesting

in patch 2 at all).

3.5.1 Management with reserves

Marine reserves may be part of an economically optimal, equilibrium management strategy

when dispersal does not evolve; however, as (3.24) shows, this is not the case when dispersal

does evolve. While marine reserves are not part of the ESOHS, they may be desirable for

other purposes. It is therefore interesting to know how the establishment of a reserve would

impact profits. The impact of a reserve is contingent upon whether the organisms evolve

in response to differences in growth or mortality conditions.

We placed either patch 1 or patch 2 in reserve and calculated the unconstrained rent-

maximizing level of effort in the other patch. We also calculated the effort level when the

resulting settlement preference was constrained to be evolutionarily stable. We found that

using reserves when the settlement preference e evolves can produce dramatically lower

profits (Fig. 3-4). When a patch is placed in reserve, E evolves to increase the tendency

of fish to disperse to that patch (i.e., when patch 1 is in reserve, E increases relative to its

value when both efforts are optimized to the ESS settlement preference). At least for the

parameter values we studied, e varies most with variation in k2 and varies least with r2

(Fig. 3-4, top row).

3.5.2 Is the ESOHS economically stable?

The ESOHS represents the best equilibrium harvesting strategy under the constraint that

the strategy will not produce further evolutionary change. At the ESOHS no mutant phe-

notypes can invade and displace the resident phenotype. We have assumed that those

mutants are rare, so that there will generally be a long time between mutation events. In

between such events, however, the ESOHS is suboptimal. More rent could be extracted

from the resource if the manager were to set the effort levels at their unconstrained levels

78



100 -. ..... - - . .

80

4-60

40
0

No evolution, patch 1 reserve

20 No evoluton patch 2 reserve

Evolution. patch 1 reserve
Evlto patch 2 rsiv

0
0 1 2 2 6 10 3 2 1 0.2 0.6 1

r 2 k 2 C2 q 2

Figure 3-4: Percent of equilibrium rent lost, relative to an optimally managed system with
no evolution (in blue) or with evolution (in green). Either patch 1 is in reserve (solid line) or
patch 2 is in reserve (dashed line). and effort in the other patch is managed so as to maximize
equilibrium rent. Note that when there is no evolution. closing patch 2 may be part of the
optimal management strategy (when the dashed blue line is at 100%). Parameters are the
same as in Fig. 3-2.

(i. e., 7rE*, E*; f*] < T[E*. Ej; i*]), and the manager will be sorely tempted to do so. As a

result, we should not expect the ESOHS to be economically stable.

As a consequence of fishing at (short-term) optimal levels. rather than according to the

ESOHS. the resident phenotype would no longer be an ESS and would be vulnerable to

an invasion by a more fit mutant. Of course the mnamager could simply chaInge his or her

harvesting strategy to optimize the rent given this new phenotype. Because of the way

it disperses. the potential profitability of a new phenotype would likely be different than

that of the resident. Imagine that this iterative process harvesting at rent-maximizing

rates, invasion of a new phenotype, adjustment of the harvesting rates, etc.-continued for

a long time. At some times the instantaneous rent would be larger than that that could be

generated by the ESOHS; in some instances, it would be less.

We simulated this "reactionary" policy by introducing a mutant phenotype according

to a Poisson process with rate constant p. We drew the mutant phenotype E' from a

normal distribution with mean equal to the resident phenotype -. and standard deviation

u-, truncated so that 0 < s' < 1. Whenever a mutant appeared, we computed the invasion

fitness (3.10). If the invasion fitness was positive. we replaced the resident by the mutant

phenotype and calculated a new harvesting policy that would maximize equilibrium rent for

the new phenotype. (In doing so, we implicitly assume that invasion implies displacement.

For sufficiently small mutations. Geritz et al. (2002) have proved that this substitution does

79



occur.)

We show a single realization of such a reactionary harvesting policy in Fig. 3-5. When

the mutant invades, the efforts in each patch, the population levels, and the profits also

fluctuate. In the case illustrated, e tends to be less than the ESOHS e value, while the

effort and population levels tend to be higher than the ESOHS level in patch 1 (blue

lines) and lower in patch 2 (orange lines). The rent derived from the reactionary policy

tends to be less than the ESOHS rent for this realization. We simulated this stochastic

process for a variety of parameter values to assess the average performance of a reactionary

versus ESOHS harvesting policy; we found that the rent generated by the ESOHS always

exceeded the average rent generated by reactionary harvesting (Fig. 3-6, top row). It

appears that, on average, harvesting at rates that maximize short-term profits selects for

new phenotypes that are inimical to expected long-term sustainable rent. In addition to

boosting average rent, using the ESOHS has the additional advantage of reducing (to zero)

the variability in profits that would accompany reactionary harvesting (Fig. 3-6, bottom

row). Our simulations suggest that the more different the two patches are, the lower and

the more variable are the reactionary rents.

3.6 Discussion

In a simple two-patch model, we have shown that almost every optimal harvesting strategy is

unstable in the face of dispersal evolution. The exception is a unique evolutionarily stable

optimal harvesting strategy, or ESOHS, where dispersal, as described by the settlement

preference, is a convergence-stable, weak-form ESS. The ESOHS, however, is potentially

economically unstable: in the short term, a manager could always generate more rent using

a different distribution of effort (sometimes using a reserve), at least until a new phenotype

invades. A manager who employs a myopic, reactionary strategy of constantly maximizing

equilibrium rent, assuming that the current phenotype will not change, suffers reduced

average rent, and higher variation in rent, over long timescales. In the real world, there

would be economic and social benefits of a consistent harvest strategy, compared to one

that changed unpredictably in response to evolutionary changes.
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Marine reserves do not play a role in the ESOHS for the two-patch model. This is

because evolution of dispersal acts to equalize fitness between the two patches and push

population densities to levels that result in no net movement between them. Without this

net movement of individuals, or "spillover," from the reserve patch into the fished patch,

reserves only reduce economic benefits. The equilibration of fitness across habitats is the

sine qua non of the so-called ideal free distribution (Fretwell and Lucas, 1969). Based on

our results with the two-patch model, we conjecture that, more generally, marine reserves

will never be economically optimal when the dispersal behavior of individuals leads to the

ideal free distribution of the population. The evolution of dispersal, however, does not

inevitably lead to the ideal free distribution. In particular, the ideal free distribution does

not emerge as the result of an evolutionary stable dispersal strategy when the environment

has a source-sink structure and is characterized by temporal variability in fitness (Holt and

Barfield, 2001; Schreiber, 2012). Describing the ESOHS in such circumstances, if one exists,

would be challenging.

Our results, when combined with the results from Baskett et al. (2007), who found

that increased fragmentation of a reserve network tended to reduce dispersal distance (i. e.,

increase local retention), suggests that evolution of dispersal may be an important consid-

eration for spatially managed fisheries. However, our understanding of the likely effects of

dispersal evolution on optimal management is still nascent. For example, dispersal may

encompass a host of traits, including larval duration, the proportion of offspring which dis-

perse or migrate (a la Baskett et al., 2007; Dunlop et al., 2009), or adaptive movements of

mature individuals (a la Abrams et al., 2012). How reserves impact population sizes and

selection pressures will depend on the particular dispersal trait.

Of course, settlement preference is not the only life history trait that may evolve in

response to harvesting (Borisov, 1978; Jorgensen et al., 2007; Allendorf et al., 2008; Heino

and Dieckmann, 2009). Most other studies have focused on size-selective harvest, evolution

of age or size at maturity (Kuparinen and Merild, 2007) and the consequences (both negative

and positive) that such fisheries induced evolution can have on sustainable yield or rent(Law

and Grey, 1989; Heino, 1998; Law, 2000; Ratner and Lande, 2001; Eikeset et al., 2013).
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Intriguingly, it has been suggested that marine reserves might ameliorate the consequences

of fisheries induced evolution of such traits (Baskett et al., 2005; Miethe et al., 2010). The

ramifications of marine reserves in real evolving systems are likely to be complicated by the

simultaneous evolution of multiple traits which may have countervailing effects.

While our study suggests that evolution of dispersal may reduce the efficacy of reserves

as a rent-maximizing strategy, our analysis focused on equilibrium management on very long

timescales. As Sanchirico et al. (2006) highlighted, solving for the optimal harvest trajectory

between two patches through time is much more difficult; different results regarding marine

reserve optimality may emerge in this case.
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Chapter 4

Testing for an Unambiguous Shift

in a Species Distribution

4.1 Abstract

Climate change is expected to lead to a shift in the distributions of many species. Al-

though there is considerable interest in detecting such shifts in recent historical data, ex-

isting methods can be sensitive to changes that do not constitute an unambiguous shift.

Here, we propose stochastic dominance as an unambiguous way to characterize such a shift

and describe a test for it. We describe a test for stochastic dominance using a one-sided

Kolmogorov-Smirnov test statistic. We first conduct a simulation study to assess the valid-

ity and power of the test. We then illustrate the test on locational data for Atlantic cod.

The described test reliably rejects dominance when appropriate, especially at larger sample

sizes (>500). Our illustration shows one case in which the null hypothesis is rejected and

another in which it is not. Stochastic dominance has yet to be applied in ecology, although

it has the potential to allow better comparison and comprehensive understanding of species

distributional changes. This unambiguous definition of a distributional shift may be a useful

tool in ecology.
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4.2 Introduction

One of the clearest predicted impacts of climate change is a shift in the distributions of plant

and animal species (e.g., higher in elevation or in the direction of their local temperature

gradient) (IPCC, 2007). Such shifts can have both ecological and economic consequences

(Sumaila et al., 2011; Pinsky and Fogarty, 2012) and numerous methods have been pro-

posed for detecting them in recent historical data. In broad terms, these methods involve

focusing on some property of a species distribution - such as the mean latitude / location

of individuals (e.g., Perry et al., 2005; Chen et al., 2009; Pinsky et al., 2013) or the location

of the poleward boundary (e.g., Hickling et al., 2006; Solow et al., 2014) - and determining

whether the observed locations of individuals in two periods are consistent with a shift in

this property. These methods implicitly define a distributional shift in different ways and

can give contradictory results. However, these disparate properties of the distribution-and

the implicit definition of a shift that accompanies them-are likely to differ; distributional

shifts that translate population density uniformly in a single direction appear to be excep-

tion rather than the norm (e.g., Hampe and Petit, 2005; Breshears et al., 2008; Sunday et al.,

2012); see also Fig. 4-1 for examples of distributional changes, many of which may produce

contradictory results depending on what character the shift is defined for. An unambiguous

definition of a shift across an entire distribution fills a necessary gap in our study of the

impact of environmental change on species (Tingley and Beissinger, 2009). The definition

we propose characterizes the difference between two spatial distributions at every point in

space, capturing information about the changes in central tendency and in the 'tails' of the

distribution. This strict, unambiguous definition of a shift thus allows comparison among

data-sets in which shifts occur in different ways.

Here, we propose as a novel definition of an unambiguous poleward distributional shift

based on the notion of stochastic dominance. Stochastic dominance is commonly used in

economics to compare income distributions or returns on uncertain investments (Davidson,

2008). However, it appears not to have been used in ecology. We go on to describe a test for

stochastic dominance and apply it to some survey data for Atlantic cod (Gadus morhua)

in the northwest Atlantic. It is important to emphasize that we are not simply proposing
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a new test for a poleward shift, but a new and unambiguous definition of a poleward shift.

Existing tests are based on definitions that are not unambiguous. For example, the mean

location and the range boundaries may shift in opposite directions. Because the underlying

definitions do not comport with each other, the test we propose is not comparable to earlier

tests and we make no such comparison here.

4.3 Method

4.3.1 Definition

Suppose that in the first time period ni individuals are observed at coordinates (x1i, yij), i =

1,2, ... , nj. These locations are assumed to arise from a 2-dimensional Poisson process with

rate function A(x, y). It is a general result that, conditional on ni, these locations repre-

sent a random sample from a bivariate distribution with probability density function (pdf)

fi(x, y) that is proportional to A(x, y). It follows that, conditional on ni, the latitudes yi,

of these locations represent a random sample from the corresponding marginal distribution

with pdf fi (y) = f f, (x, y)dx and cumulative distribution function (cdf) F (y). Similarly,

the latitudes Y2j, i = 1, 2, ... , n2 of n2 individuals observed in a later period represent a

random sample from a distribution with cdf F2 (y). For concreteness, we focus on a North-

ern Hemisphere species so that y increases toward the pole. However, stochastic dominance

can be defined along other one-dimensional axes, such as elevation or in the direction of a

pertinent climate velocity (sensu Pinsky et al. (2013)).

Our interest centers on whether the latitudes in the later period lie poleward of the

latitudes in the earlier period. This can be formalized through the notion of (first order)

stochastic dominance. By definition, a random variable Y with cdf F is dominated by

another random variable Y2 with cdf F2 if F (y) > F2 (y) for all y with the inequality strict

for at least one value of y. Importantly, if Y is dominated by Y2 then it is possible to

transform F1 into F2 solely by shifting probability mass to the right. It is in this sense that

stochastic dominance constitutes an unambiguous shift to higher values.

In the situation considered here, Y represents the location of an individual in an earlier
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period and Y2 the location of an individual in a later period. The stochastic dominance of

Y by Y2 means that the density of individuals has shifted only in the poleward direction

with no local shifts toward the equator. For this to be true, the mean of Y2 is larger than

that of Y1 . Figure 4-1 shows a number of common types of distributional changes and

identifies those that constitute an unambiguous shift according to this definition. Note that

some of these examples may conflict with the mean or boundary shifts; in particular, for a

'lean' polewards (sensu Breshears et al. (2008)), neither range margin moves, or for a range

expansion or contraction, the mean and one may shift northward, while the other boundary

shifts southward.

4.3.2 Statistical Test

We turn now to the general problem of testing stochastic dominance based on samples from

two distributions. It is fair to say that the literature in this area is unsettled. Briefly, one

body of work in this area focuses on testing the null hypothesis that two (or more) random

variables have the same distribution against the alternative of stochastic dominance (e.g.,

El Barmi and Mukerjee, 2005). This formulation is not useful here because such a test

is sensitive to alternatives other than dominance (e.g., a bi-directional range expansion).

A number of tests have been proposed of the null hypothesis that one random variable

dominates another against the alternative hypothesis of the reverse (e.g., Linton et al.,

2010). Again, this formulation is inadequate here; it rules out the plausible possibility

that neither random variable dominates the other. Most common are tests of the null

hypothesis that one random variable dominates another against the alternative that it does

not (e.g., McFadden, 1989; Schmid and M., 1996; Barrett and Donald, 2003; Ledwina and

Wylupek, 2011). Finally, Davidson and Duclos (2013) described a test of the more natural

null hypothesis of non-dominance against the alternative hypothesis of dominance but only

over a restricted range of values of the random variables. While this proposal deserves

further study, we will follow the bulk of the literature here and test the null hypothesis

HO : F1(y) ;> F2 (y) for all y against the alternative hypothesis H : Fi(y) < F2 (y) for at

least one y.
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Let

Fi(y) = - I(yij y) (4.1)
nl

be the empirical distribution function of the observed latitudes in the earlier period where

we define the indicator function I(yij y) = 1 and 0 otherwise. Similarly, let F2 (y) be the

empirical distribution function of the observed latitudes in the second period. A natural

statistic for testing HO against H1 is the one-sided Kolmogorov-Smirnov statistic:

T = max (P2(Y) - P1(Y)) (4.2)

with HO being rejected for large values of T.

The significance level of T can be assessed through the following bootstrap procedure

(Fig. 4-2). Let P1 and P 2 be the maximum likelihood estimates of F1 and F2 under the

restriction that Fi(y) F2 (y) for all y. These are given by

P1(Y) = Fi(y), P2(Y) = P2 (y) if P1(y) 2 2(Y) (4.3)

Fi(y) = p2 (y) = 1 Fi(Y) + n2 F2(y) otherwise (4.4)
ni + n2 n, + n2

(El Barmi and Mukerjee, 2005). Simulate multinomial samples of sizes ni and n 2 from F1

and P 2 , respectively, and form the corresponding value T* of T. Repeat the procedure a

large number of times. As the test is one-sided, in sampling under HO, the distribution of

T* will have a point mass at 0. For this reason, we use the so-called mid-p method (Berry,

1995) specifically, HO is rejected at significance level a if the proportion values of T* that

exceed the observed value of T plus one-half the proportion values of T* that are equal to

the observed value of T is less than a. In the next section, we present simulation results

showing that this test works well.

4.4 Simulation Results

We conducted a simulation study aimed at assessing the performance of the test described

in the previous section. All calculations were carried out using MATLAB (Mathworks,
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Figure 4-2: Schematic of the test fOr stochastic doiinance described in the text. The blue
color indicates the early distribution. while the orange indicates the later distribution, as
in other figures. Note that a p-value which is less than the nominal significance level means
we reject the null hypothesis that the late distribution dominates the early.

R2015a). The study proceeded in the following way. For selected values of ni and n2 .

sample locations were simulated from selected distributions F and F2. chosen as realistic

representations of species distributions. The test was applied (with 200 bootstrap samples)

to each such pair of samples at nominal significance level 0.05. The procedure was repeated

500 tines and the rate at which HO was rejected was recorded. As noted above, because

they are based on potentially conflicting definitions of a range shift, we do not present

results for other tests.

The first part of the simulation study was aimed at assessing the agreement between the

nominal and achieved significance levels of the test. In testing a composite null hypothesis

like HO. the significance level is defined as the maximum rate at which the null hypothesis

is rejected when it is. in fact, true. This maximum rate occurs when F = F2 . As reported

in Table 4.1, the estimated rate at which HO is rejected when F = F2 is in all cases close

to 0.05. We conclude that the test is valid.

The second part of the simulation study was aimed at assessing the power of the test.

In this case, sample locations were simulated from distributions satisfying F(y) < F2 (y)

for at least one value of y. The results are summarized in Table 4.2. In overall terims, the
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Early Dist. Late Dist. Rej. Rate (ni = Rej. Rate (ni = Rej. Rate (ni 1
250, n2 = 500) n2 = 500) 500, n2 = 250)

N(0,1) N(0,1) 0.064 0.066 0.048
B(2,2) B(2,2) 0.058 0.040 0.046
U(0,1) U(0,1) 0.054 0.048 0.062

Table 4.1: Results of simulated data drawn from equal distributions. The first and second
columns show the distributions from which the simulated data were drawn (N indicates a
normal distribution, B is a beta distribution, and U is a uniform distribution; the numbers
in parentheses give the parameter values for the distributions). The grey columns show the
rejection rate at the 5% significance level for different sample sizes (as marked).

test has good power provided ni and n2 are not too small. Simulations across a range of

samples sizes indicate that the power is largely controlled by the size of the smaller sample.

4.5 Illustration

In this section, we illustrate the described test through an application to trawl survey data

for the commercially important Atlantic cod (Gadus morhua) in the US northwest Atlantic.

Cod are associated with cool bottom waters, and temperature appears to impact their

condition, spawning, growth rates as juveniles and adults, and egg incubation (Drinkwater,

2005). Temperature may also indirectly influence cod through their food, the composition

and abundance of which has been changing (Friedland et al., 2013). The expected response

of different cod stocks to increasing temperatures is different; some are expected to increase

in size, while others are expected to decrease or have no change (Drinkwater, 2005). Analysis

of the cod survey data in this region show that the catch rate decreases with increasing

bottom temperatures, in addition to an overall decline in abundance with time (Fogarty

et al., 2008).

Annual surveys for cod (and other groundfish) have been conducted by Northeast Fish-

eries Science Center (NEFSC) in this region since 1968. Briefly, NEFSC conducts trawls

in a stratified random sampling design in this region twice a year. This stratified design

takes into account hydrological and geographic features relevant for marine species. At

each sampling location, the abundance and biomass per species is reported. Here, we use
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Early Late Dist. Rej. Rej. Rej.
Dist. Rate Rate Rate

(n = (ni (n, =

250, 2 500,

02 = 500) 2 2

500) 250)

U(0,1) U(-0.125.1.125) 0.948 1 0.908

N(0.1) N(0.1,1.7) 0.982 0.994 0.968
range expansionN

shift at both boundaries N(0,1) N(0,1.5) 0.926 0.984 0.892

N(0,1) N(-.1,1) 0.272 0.392 0.294

N(0,1) N(-.2,1) 0.718 0.872 0.768
shift equatorward

U(0,1) U(0.125,0.875) 0.99 1 1

g ~ N(0,1) N(0.1,0.5) 0.996 1 0.998
range contraction

shift at both boundaries N(0, 1) N(0.0.5) 1 1 1

U(0,1) U(-0.25.1) 1 1 1

M, -A , B(1.2) B(3,1), -0.5 shift 0.946 0.994 0.844
range expansion
trailing edge shift

U(0.1) U(0.0.75) 1 1 1

G(2.2) G(9,0.5) 0.85 0.982 0.886
range contraction
leading edge shift

Table 4.2: Results of simulated data drawn from distributions in which the later distribution
does not dominate the earlier distribution, i.e., for which the null hypothesis is false. The
first colu1 shows the qualitative description of the type of shift which has occurred.
The second and third columns show the distributions from which the simulated data were
drawn (letter indications of distribution types are as in Table 1). The grey columns show
the rejection rate at the 5%( significance level for different sample sizes (as marked).
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the total number of Atlantic cod at each location as our data. Details on the collection

methodology and sampling design are provided in Grosslein (1969). The data are available

at http://www.nefsc.noaa.gov/epd/ocean/MainPage/ioos.html. Cod in this region are

considered to belong to two stocks, a Georges Bank stock in the south and a Gulf of Maine

stock in the north; these stocks are defined geographically (Mayo et al., 2009).

In this application, we tested the null hypotheses that latitude over the period 1968-1975

was dominated by latitude over the period 2005-2011 for the George's Bank stock and that

the latitude over the period 2005-2011 was dominated by latitude over the period 1968-

1975 for the Gulf of Maine stock. The latter case may reflect that Gulf of Maine currents

often travel southward (Ruoying et al., 2005). Sample sizes for George's Bank cod were

ni = 4203, n2 = 6528 and n, = 6084, n2 = 2841 for the Gulf of Maine. The empirical cdfs

of the latitudes for each stock are shown in Figure 4-3, along with a map of cod abundance.

The p-value for the George's Bank stock based on 1000 bootstrap samples was less than

0.001, so the null hypothesis can be rejected at the 0.05 significance level, indicating that an

unambiguous northward shift did not occur between the two periods; the mean may have

shifted, but the population did not shift only northwards. In contrast, the p-value for the

Gulf of Maine stock was 0.50, indicating an unambiguous southward shift between the two

periods.

4.6 Discussion

The purpose of this paper has been to propose an unambiguous definition of a directional

shift in a species distribution based on stochastic dominance and to describe and illustrate

a test of such a shift. While existing methods can provide useful information, they can

also give contradictory results. For example, Nye et al. (2009) identified significant south-

ward shifts in the mean and northern boundary of the distribution of Gulf of Maine cod

but a significant northward shift in the southern boundary. The possibility of this kind of

contradiction has been recognized in the literature, leading to ad hoc approaches involv-

ing multiple criteria. The test described here assumes that the observed locations follow a

Poisson process. Note that this assumption, which appears to be implicit in other methods,
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applies to the locations of individuals that are sighted and not necessarily to the locations of

all individuals. Even if the latter are not Poisson, under some conditions on the observation

process, the former will tend to be (e.g., Westcott, 1976). In addition, it is assumed that

the spatial sampling of individuals is unbiased. This would not be the case, for example, if

the allocation of spatial sampling effort changes over time. In addition, this methodology

tests for stochastic dominance along a specified axis. Here, this axis was chosen because

of the presumed influence of climatic change acting along that axis. However, it is im-

portant to distinguish that other factors in this case, spatially heterogeneous harvesting

of the cod, changes in depth, or movements in space for non-temperature related reasons

may influence the spatial distribution. Thus, the signal of distributional change may be

eroded or enhanced by other factors. Finally, as noted, in keeping with the bulk of the

literature, the test proposed here takes stochastic dominance "rather than non-dominance"

as the null hypothesis. Although there are good technical reasons for this, it is somewhat

unnatural. We are currently exploring the approach of Davidson and Duclos (2013) as an

alternative. Extending this test to more than two periods may be an attractive area of

future investigation.
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Chapter 5

Optimal Harvest in a Deteriorating

Environment

Abstract

'Deteriorating environmental conditions (e.g., due to climate change) negatively impact

the vital rates of marine fish, with implications for fisheries management. While the rent-

maximizing harvesting strategy in a constant environment has been well characterized,

optimal management under changing conditions is less understood. We develop a bioeco-

nomic model for a fishery with compensatory growth and decreasing marginal harvest cost

in a deteriorating environment. With it we show that (1) optimal escapement is largely

independent of the stock size; (2) the stock is 'fished down' to a rent-dissipating level at a

characteristic time after which fishing ceases; and (3) non-monotonic escapement policies

are often optimal. Using the Beverton-Holt stock-recruitment model with Schaeffer harvest

costs, we show that non-monotonic escapement can be optimal when fecundity decreases

in time. Analysis of a simpler piecewise-linear model shows that non-monotonicity gener-

ally arises from an interaction between the deteriorating vital rate and density-dependent

mechanisms of population regulation.

'This paper has been submitted as "Moberg, E.A., Neubert, M.G. and Costello, C. Optimal harvest in
a deteriorating environment."
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5.1 Introduction

Recent human impacts on Earth's biota are dramatic and unprecedented (Ceballos et al.,

2015). These impacts can take many forms, ranging from habitat degradation to climate

change. Some populations are able to adapt to local impacts by moving to more favorable

locations (Parmesan and Yohe, 2003). Other populations, however, cannot track their habi-

tat niche (or all parts of it), and, as a result, experience changing environmental conditions

that may alter their vital rates. These vital rates ultimately determine the growth rate

and size of the population. This paper concerns the optimal management of a population

subject to a systematically deteriorating environment.

Fish are particularly vulnerable to temperature changes. They are generally poikilo-

thermic-their internal temperature depends on the external temperature-and temperature

strongly impacts their metabolism and health. Studies have found temperature effects on,

for example, individual growth (Munday et al., 2008) and developmental (Houde, 1989)

rates, breeding probability and spermatogenesis (Donelson et al., 2010), and fecundity

(Tanasichuk- and Ware, 1987). Temperature may also influence food availability, expo-

sure to toxins, predation, disease, and foraging behaviour (Reist et al., 2006). The response

to temperature trends may be heterogenous across species (see, for example Persson, 1986).

While the scientific literature examining the many ways that species may be impacted

by changing conditions is growing, little research examines how continuing environmental

change affects management. Recently, the importance of these interactions was highlighted

for the western North Atlantic cod stock. Pershing et al. (2015) determined that this stock

has been overharvested, in part due to improper accounting for temperature driven declines

in recruitment and increases in mortality.

In this paper, we focus on the coupled biological-economic system of a harvested popu-

lation in a deteriorating environment. While managers of wild populations may have many
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(potentially conflicting) goals-including employment, conservation, and rent-we focus on

rent maximization here as it is easily quantifiable and is likely important. It is also necessary

for estimating the costs of alternative management policies.

There is a well developed theoretical literature on the optimal exploitation of stocks in

unchanging environments (see, e.g., Reed, 1979; Moussalli and Hilborn, 1985; Costello et al.,

2001; Clark, 2010). A classic result is that constant escapement strategies, in which a fixed

number of fish are left unharvested each time period, are optimal for a wide range of growth

and cost functions in temporally constant (or stationary, stochastic) environments (Reed,

1979). Mathematical models suggest that the optimal harvest strategy in changing condi-

tions may be qualitatively different. For example, Walters and Parma (1996) found that

when fish mortality rates increase, the best constant exploitation-rate strategy (in which a

fixed proportion of the population is harvested each time period) dramatically outperforms

the best constant escapement policy for maximizing yield. Polasky et al. (2011) character-

ized environmental change as an exogenous probability of a regime shift, and suggested the

optimal policy may be unaffected by the potential regime shift. We extend these analyses

by focusing more generally on how the properties of deterministically deteriorating vital

rates can qualitatively alter optimal harvest strategies. We then demonstrate these effects

with examples of climate-change impacted fisheries.

A priori, we might expect that as conditions deteriorate, optimal escapement ought

to decrease because unharvested individuals will be less productive, eroding their in situ

value. Indeed, for a forecast of poor conditions in a stationary stochastic environment,

the optimal escapement is reduced for just this reason (Costello et al., 2001). Carson et al.

(2009) arrive at a similar conclusion for populations subject to cyclical population dynamics.

However, this logic oversimplifies the potential for a complex interplay between changing

vital rates and density dependence. We show that, for some vital rates, deteriorating

conditions can actually first necessitate a temporary increase in escapement followed by

decreasing escapement after conditions deteriorate sufficiently.
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5.2 Optimal Harvest in a Constant Environment

We first consider a population in an unchanging environment managed by a single harvester.

We define xt as the population size at time t; the function f(xt) projects the population to

the next time period.

In each period, the harvester knows the size of the population as well as the population

projection function f and its parameters and can make a harvesting decision based on this

information (closed-loop decision making, sensu Bertsekas (2000)). By setting the harvest

size, ht, the harvester controls both the population size and her revenue stream. The fish

that are left behind after harvest (xt - ht) are able to reproduce and grow, so that the

population grows (or shrinks) according to:

xt+1 = f(xt - ht). (5.1)

It will be mathematically convenient to track the escapement, yt = xt - ht, rather than ht.

Assume the harvester's goal is to maximize the present value of the stream of discounted

rent resulting from her choice of escapement over a period from t = 0 to T. This rent results

from the revenue gained by selling the harvest at price p, per unit biomass, minus harvest

costs. The harvester is price-taker, so p is not influenced by the harvester's actions. Harvest

costs are incurred when effort is exerted for harvest. We assume that the cost of a given

harvest is a function of the population size, with higher marginal costs, c(x), associated

with smaller populations, (i.e., c'(x) < 0). Thus, the cost of harvesting a stock from size

x down to size y is f c(s)ds. The rent attained in a period is then discounted by factor

6 (0 < 6 < 1), which relates the value of money in earlier and later periods. The present

value of the total rent is

T Xt
II(yo, y1, ... , yT)= P (Xt - yt) - c(s) ds 6t. (5.2)

t=O Yt -

The manager's problem is to choose the escapement sequence, yt, with 0 yt :5 xt, so as

to maximize II given the population projection function (5.1) and a given initial stock size

x 0 . We will denote this optimal escapement policy by {t}.
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It will be useful to define yo, as the escapement at which marginal revenue equals

marginal cost; i.e., y, satisfies

p = c(yo). (5.3)

Harvesting below y, incurs higher costs than revenue, making it economically unattractive,

even in the short-run. Since c(x) is a strictly decreasing function, there is at most one

positive value of yo. If p > c(0) then yo is zero.

Following Reed (1979) and Costello et al. (2001), we will use dynamic programming to

maximize 1I. Those authors found it useful (as will we) to introduce the immediate harvest

value, Q(xt):

Q(xt) =p(xt - yo) - j c(s)ds. (5.4)

Q(xt) is the maximum one-period profit at time t given the stock size xt. With Q(xt)

in hand, we can break the problem of maximizing II(yt) into subproblems consisting of

two pieces. The first piece is the value of the harvest in time t, which, conveniently is

Q(xt) - Q(yt). The second piece is the value of the remaining future harvests, given that

these harvests are optimal from time t + 1 to the end of the time horizon given xt+1. Let

us define this second piece as V(xt+1 ). Putting these two pieces together we have

V(xt) = max t [Q(xt) - Q(yt) + 6V(xt+i) (5.5)

= Q(xt) + max Q(Yt) + 6V(f(yt))]. (5.6)
O Yt XJ

To find the optimal escapement policy it, we first find yr by maximizing Q(XT) - Q(YT).

Typically, yr = y,. We then use the recursion (5.6) to calculate the optimal escapements,

YT-1, YT-2, --- , o. -

Reed (1979) showed that if f(x) is a differentiable, strictly concave, and non-decreasing

function (i.e., f'(x) > 0 and f"(x) < 0 for all x > 0), and c(x) is non-increasing, then a
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Figure 5-1: Schematic of the typical

vironment. In this example, initially

'constant escapement policy' for an unchanging en-

no harvest occurs to allow the population to build.

In the last period, the population is harvested down to y,.

population and escapement are constant.

constant escapement policy' is optimal (Figure 5-1);

y*, if X ;y

xt, if Xt < y*,

In intervening periods, the

(5.7)

where y* is a tinie-invariant optimal escapement level that we call the 'interior solution.

We impose these same conditions on f(x), along with the slightly more restrictive condition

that c(x) be strictly decreasing.

5.3 Optimal Harvest in a Deteriorating Environment

Now we prescribe that one of the vital rates of this population changes in time; in general,

let this changing parameter be 01. To explicitly recognize this change, we now write the

population projection function as

(5.8)Xt+1 = f (yt, t).
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Noting that Ot has no effect on the function Q(.), we can rewrite the value function V(xt)

(5.6) as

V(xt, t) = Q(xt) + max -Q(Yt) + 6V[f(yt, 0t), t+1]. (5.9)
Oyt xt

We say conditions are deteriorating for all y > 0 if f(y, Ot) ;> f(y, Ot+i), with strict

inequality for at least one t. That is, the population projection function does not yield

more fish for the same escapement in period t + 1 than it would in period t. Deteriorating

environments can produce an increase in 9 (e.g., if 9 is a mortality rate) or a decrease in 9

(e.g., if 9 is fecundity). Thus, Of(y, 9)/99 may be either positive or negative.

5.3.1 Interior Solution

To find V(xt, Ot) we must find the escapement it that maximizes the term in braces in

equation (5.9). We seek ?t by setting the derivative of the maximand with respect to yt

equal to 0:

dQ (yt) +dV(f(yt, 0t), t+1)10 = [-Q + dy. (5.10)
dyt dyt Iy~t

We define y* as the escapement that satisfies equation (5.10); it is analogous to y* in

equation (5.7), excepting that we do not expect it to be constant over time.

Equation (5.10) can be interpreted as stating that at the escapement level y*, the

marginal loss from leaving an additional unit of escapement is balanced by the marginal

gain of leaving that individual unharvested and harvesting it or its progeny later. If y*

satisfies y.. < y* < Xt, we call it feasible.

From equation (5.9), observe that the derivative of V(xt, Ot) with respect to xt is equiv-

alent to the derivative of Q(xt). Using this fact and upon applying the chain rule, the

first-order condition for an interior optimum (5.10) becomes

0- = -y +6 .f(t,0 (5.11)
N dt d u =f (ytt) r t Yt h

Note that y* does not depend on the stock in period t(or any other period). This
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observation leads directly to our first result:

Proposition 1 For a population growing according to equation (5.8) (with af (x, 0)/x > 0

and 02f (x, 6)/&x 2 < 0 for all x > 0) and marginal harvesting cost c(x) decreasing in x, the

interior solution escapement, yt*, does not depend on the stock size at the beginning of the

period or on vital rates (0) in other periods.

Thus, for a stock subject to a changing vital rate (non-constant population projection

function), there exists a feedback control law that is pseudo-independent of the stocks,

analogous to the 'constant escapement policy' in Reed (1979):

9 ifXt (5.12)

Xt, if x < yt*,

while y* > yo (see section 5.3.2). Thus, if the stock is initially small (for example, due to

overfishing), it < yt* (no harvest) while the stock recovers.

Following Costello et al. (2001), we establish a condition under which y* is a unique

maximum. Equation (5.11) can be rewritten as

1 dQ(f (yt, )t)) dQ(yt)]- df(yt,9t)
- (5.13)

6 df (yt, Ot) dyt dyt

Call the right-hand side of equation (5.13) l(yt, 6O). When 4 is non-negative and dP/dyt is

negative (for yt > y .)2, 4 = 1/6 for at most one value of yt, at y*. The negativity condition

on dT/dyt is equivalent to the second-order condition, guaranteeing y* is a maximum.

Note that in each period t, the interior solution y* is equal to the constant optimal

escapement in an unchanging environment with parameter 6 = 6 t.

In some cases, the interior solution will be blocked by the constraint Qt ; xt. If y* > xt,

the optimal escapement yt is xt (no harvest). This allows the stock to recover and approach

the interior solution for harvest at a later time. If the interior solution y* falls below yo,

the harvester makes her final harvest, leaving the escapement Pt = y,, and exits the fishery.

2At y,, the second-order condition is undefined, but the limit from from positive direction is arbitrarily
negative
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The time at which this last harvest occurs we call i.

5.3.2 Exiting the Fishery

Unlike a harvester in a constant environment, a rent maximizing fisherman in a deteriorating

environment may choose to exit the fishery prior to the time horizon, T, if conditions have

declined sufficiently. This early exit time, F, is independent of the specified time horizon T.

Proposition 2 If there exists a time F < T such that f(y,, 9 t) < y" for all t > t, then at

t = t the optimal escapement Qi is yx, and it = xt (no harvest) thereafter.

When t > F, the interior solution y* is no longer optimal, because y* < y'. To

see this, let us calculate the conditions for which y, = y*. From equations (5.3) and

(5.4), d(u) u=Y = 0, so it follows that equation (5.13) (which defines y*) holds only if

dQf (,Ocrt)) = 0. This 9 crit is, by definition, the value of the vital rate at which the

escapement y, yields y, fish in the next period; i.e., f(y"", Ocrit) = y,. Once 0 crit is

passed, y* < y,; future stock sizes will be below y, and no fishing will occur.

To develop an intuition as to why this occurs, it is helpful to consider this same process

in a different way. Let us define Pt as an escapement such that Pt = f(9t, 9 t). Pt is interesting

first because y* must be less than Pt. In order that the first-order condition (5.13) is satisfied,

at Qt, both derivatives the dQ(yt)/dyt and dQ(f(yt))/d(f(yt)) have the same value, while

the derivative of f at that point must be less than 1. Recall that 6 is also less than 1. At

y > y, f(y) will be smaller and thus the derivative of Q with respect to f(y, Ot) will be

smaller than that with respect to y alone; equation (5.13) cannot be satisfied above Pt. Pt

is also non-increasing in time. Because f(y, Ot) < f(y, 6t+1), if, at time t, Pt fish yields a

recruitment of t in the next period, leaving &t will yield fewer than &t fish; thus, Pt+i must

be smaller. This also implies that once the harvester fishes down to y, at F, the future

stocks sizes will be less than or equal to y,.

Note that if f(yc,, 0) > y, for all t, the harvester will fish down to y' only the end of

the time horizon, T.
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5.3.3 Qualitative Behavior of Optimal Escapement Policy

In most cases, the basic structure of the optimal harvest has three parts: an approach to

the 'interior solution', a series of periods during which the interior solution is optimal, after

which harvest ceases. This is similar to the optimal escapement policy in a non-deteriorating

environment, except that the interior solution changes in time and the fish-down time may

come prior to T. In this section, we focus on the qualitative behavior of the interior solution,

y*, as it depends on 9 t, and in particular on dy*/dt.

Since y* is a function of Ot, we use implicit differentiation of equation (5.13) to calculate

dy*/dOt. If we define F as

[dQ(yt) dQ(u) Of(yt, Ot) (.4
F(Ot, yt) =- +Qt af ( , (5.14)dyt du 0 yt 1

L u=f(yt,ot) .

then equation (5.13), which implicitly defines y*, is F(t, yt*) = 0.

It follows that

dF (=ty'(00) - 0 (5.15)
dOt

F+ =Fdyt - 0 (5.16)
D9t 0y* d9t

dyj _ -OF/aOt
d t O- (5.17)
d6t aF/ayt

Because y* is a maximum, the second-order condition OF/Dy * < 0 holds. Thus the sign

of dy*/dOt is the sign of aF/IOt. In turn,

aF a2,y f (Y7 tOF = F O ~, [p -c(f(yt*,Ot))]
Dot -9toy I [D tO(Y 1t0

(5.18)
Of(y9t, Ot) Oc(f(c, Ot)) Df(y*, t)

Oyt Df(yt*, Ot) aOt

Most of the terms in equation (5.18) do not change sign as Ot changes. Following

from our assumptions about the cost and population projection functions we have: (i)
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[p - c(f(yt*, Ot))] is positive when yt* > y,, so it will be positive for all interior maxima; (ii)

aft',t) is positive; (iii) Jac, 'Z* is negative; (iv) 2f ( ,t) has a fixed sign by our definition
ayt~~6~ y vOIaf( t)l t

of deteriorating conditions. The sign of a- may be negative or positive depending on

how Ot appears in the population projection function, but it does not change.

The term 8ft)The term ,) however, may change sign as time progresses and the vital rate

Ot changes. This raises the possibility that dyt*/d6t may change sign as well, i.e., optimal

escapement may not be monotonic even if Ot changes monotonically. This is the basis of

our third proposition:

Proposition 3 For a fishery governed by a relatively simple compensatory population pro-

jection function (f'(x) > 0, f"(x) < 0) and marginal cost function (c'(x) < 0), the resulting

optimal escapement policy defined by the 'interior solution' may be non-monotonic in the

monotonically varying vital rate, Ot.

The non-monotonic optimal escapement policy appears to be the result of the counter-

valing effects of biological parameters that delay the onset of density dependent mortality

and those that hasten it; the former tends to increase optimal escapement levels while the

latter tends to decrease it. For some parameters (e.g., per capita fecundity) the behavior

shifts depending on the value of the parameter (see Section 5.5).

The existence of both monotonic and non-monotonic optimal escapement policies is

shown by example. In the next section, we develop a Beverton-Holt model, and allow one

of two vital rates to vary-density dependent morality or per capita fecundity. The former

(examined in section 5.4.1) produces a strictly decreasing y* trajectory while the latter

(section 5.4.2) produces non-monotonic optimal escapements.

5.4 Example: Beverton-Holt Stock Recruitment Model

A simple characterization of stock dynamics that accounts for both density-independent

and density-dependent mortality is the Beverton-Holt stock recruitment model (Beverton

and Holt, 1957; Clark, 2010). Let xt+1 be the individuals that escaped harvest in period t

and survived until the next period plus their progeny which also survived (Figure 5-2).
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harvest lel

X - + Yt survival

Figure 5-2: Schematic of the life-cycle of the iteroparous fish population. The initial xt fish
are harvested down to yt, the escapement. The escaped fish then reproduce at a per capita
rate a, to produce ayt new fish. The fish that survive (governed by f(yt, 0)) are described
by xt+1; in this case, both the newly hatched and adult fish survive into the next period.

If each adult produces a offspring, there are ayt initial juveniles at time t. If those juve-

niles experience density-independent mortality at rate pi and density-dependent mortality

at rate 12aYt, the proportion to survive to t + 1 is

Iple" ple-l"(5.19)
/p11 + p12ayt(l - e-1)

During the period between t and t + 1, the mortality rates and fecundity are constant;

changes to these vital rates occurs between discrete periods and the value at t governs until

t + 1.

The adults survive with probability o. Thus, the number of fish in the next period is

Xt+1 = f(yt) = Uyt + ple-Play . (5.20)
Al + Y2(1 - e-/1)ay

We may investigate a semelparous species by setting o = 0.

Now, we analyze two examples where vital rates are functions of time, reflecting de-

teriorating conditions. First, we imagine the density-dependent mortality rate P2 in-

creases in time (pL2,t = 112,0 + t). Second, we let the fecundity a decrease in time

(at = max{ao - 3t,0}). These two cases produce qualitatively distinct patterns of op-

timal escapement.
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5.4.1 Increasing density-dependent mortality rate (P2)

First, we allow the density-dependent mortality rate, A2, to increase with time. Figure 5-3

shows an example when the cost function is c(x) = co/I. The rapid decline in escapement

initially, followed by a long tail approaching y,, is typical for increasing P2.

In fact it can be shown that dyt*/dP2,t is always negative. Recall that it is the sign

of alF/o9t (equation (5.18)) in the numerator that determines the sign of the optimal es-

capement. There are two components of equation (5.18) that have signs dependent on the

population projection function. The value of these terms is

a2f _ -2p/ 1 2 ye,' (1 - e-1)

aP2,taYt* [/11 + P2,t(1 - e- 1)ayt]
3 '

and

8f _-pia
2/4 2 e- 1 (1 _ e-1)i~f -- pla t ]2(5.22)

09/ 2  [Ai + A2(1 - e-Al)ay*

The derivatives (5.21) and (5.22) are always negative, so dy*/dp 2,t is also always nega-

tive. As mortality increases, the optimal escapement always decreases, in agreement with

our initial intuition.

5.4.2 Decreasing fecundity (a)

In contrast, if a varies in time, we find that the optimal escapement policy may not be

monotonic. In particular may change sign as at changes and may then also changeaatayt

the sign of dy*/dat.

As fecundity decreases, the optimal escapement often changes from increasing to de-

creasing (Fig. 5-4).

The reason for this non-monotonic behavior is more apparent in a simpler model, de-

veloped in the next section.
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Figure 5-3: Optimal escapement for a population in which /12 increases at rate 3. The stock

is fished down to y, at = 45, although harvest is very small for a while prior (see inset).

c = 10, o- 0.7, 3 0.01, co 7, p 1, 6 0.95, 11i 0.05, P2,0 0.01.
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Figure 5-4: Optimal escapement for a population in which a changes over time at rate

3. Initial population size is the resulting population size for an optimal escapement cor-

responding with the initial conditions. The population is fished down to y, at t 49.

"0 = 10, o- = 0.7, 3 = 0.2, co = 7, p = 1, 6 = 0.95, p1 = 0.05, P2 = 0.01.
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Figure 5-5: Schematic of how a Beverton-Holt model's recruitment (y-axis) varies with

escapement (x-axis) over a decreasing fecundity (shaded lines) for the same parameters as

Fig. 5-4. Selected a values are labeled on the right margin. The stars show optimal, interior

solution. Circles show the optimal yt policy; once the interior solution is below the stock

size, no harvest occurs.

5.5 Yield Maximizing Harvest

To develop our intuition, we constructed a model that is simpler than (5.2) and (5.20) in

two ways. First, we set c(x) = 0 for all x and p = 1, reducing the objective (5.2) to the

maximization of discounted yield

T

I(yO, yi, ... ,YT) = , (xt - yt) 6t. (5.23)
0

Second, we replace the nonlinear recruitment function (5.20) with the piecewise linear func-

tion:

Xt+ ayt if yt < r7 (5.24)

k if yt > 1;

where tl = k/a is the escapement at which the two pieces intersect (Fig. 5-6a). The

population grows at rate a when the population is small; for stock sizes larger than q,
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strong density dependence caps the population at the size k. We can imagine that either

the carrying capacity k or the low-density growth rate a decreases in time as the environment

deteriorates (Fig. 5-6b,c).

Recall that in an environment in which a vital rate Ot is changing in time, the optimal

escapement in period t is the same as the optimal (constant) escapement in an unchanging

environment in which 9 = 6t for all t. For the constant environment model (5.24), the

optimal escapement is q:

77 if xt > 77(.59= t 7(5.25)

xt otherwise,

as long as 6a > 1. Thus 77 is our interior solution, y*, towards which we build the stock if

xo < 7 or reduce the stock via harvesting, if xo > q. To see why, first note that it is not

optimal to allow an escapement larger than q because a smaller harvest does not increase

subsequent recruitment. We can also show that 7 is preferable to a smaller escapement,

provided 6a > 1.

Harvesting for T periods to q (starting with a stock size, larger than 77) yields

II477,77, . .. , 7) = (xO - 7) + 6 (aq - 7). (5.26)

Similarly, the yield obtained from harvesting to a smaller escapement, (, is

(XO~ - 0 jj
, 1, . ) (a( (5.27)

The difference between these two constant escapement policies is

- ) (a-1) 6  - . (5.28)

By construction, q - ( is positive, so the relationship between a and J determines whether,

overall, harvesting the entire expression is positive ( = 7) or negative (Q = 0). As T goes

to infinity, we find that aJ > 1 for rj to be the optimal escapement. If there is no discounting

(J = 1), the stock must be self-sustaining (a > 1) for the constant escapement policy to
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outpeform removing all fish in the first period. If we are discounting, this growth rate must

be slightly higher to incentivize sustained harvest.

Now let us imagine that the vital rate of the population changes between periods. In

each period, we choose the optimal escapement as if it were a constant environment.

First let us consider a case in which the maximum population size, or carrying capacity

k, for the stock decreases (Fig. 5-6b). This manifests as a decreasing rq; saturation of the

population occurs at smaller escapement levels. Thus, we have the behavior we initially

expected-decreasing optimal escapement as conditions decline, until eventually we harvest

all the remaining fish.

Now consider a case in which a-the initial rate of growth-declines. This merely slows

the approach the the ultimate population size; the onset of that saturation now occurs at

larger escapement levels. The intersect point, 77, increases as a decreases, implying a larger

optimal escapement each period. Eventually, we expect a6 to decline below 1, at which

point it is optimal to harvest all the fish to maximize yield.

These two cases show how processes that induce saturation of the population at lower or

higher escapement levels tends to decrease or increase the optimal escapement respectively.

Parameter changes in more complicated biological models (e.g., Beverton-Holt) tend to

change the shape of the entire recruitment curve (Fig. 5-5), making the overall behavior a

mixture of the two processes in this simpler model. For some parameter values (e.g., high

per capita fecundity in (5.20)), the population projection function changes more similarly

to a decrease in initial growth rate, while at others (e.g., low fecundity) it behaves more

similarly to a decreasing carrying capacity. Ultimately, it is this property that determines

how the optimal escapement changes and allows a non-monotonic optimal escapement.

5.6 Discussion

Numerous studies have documented the ways that climate change may impact the physiol-

ogy, development, or behavior of individuals and how these impacts determine vital rates

(Wood and McDonald, 1997). Nevertheless, few analyses (e.g. Walters and Parma, 1996)

focus on the implications of changing vital rates for fishery policy design. In the face of
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Figure 5-6: (a) Simple recruitment func-
tion with linear growth at low density

(escapement less than r) and saturated
growth at high densities (escapement
larger than 'q). (b) Recruitment curves,
when the size of the saturating population
decreases. (c) Recruitment curves, when
the slope of the initial growth is lowered.

(a)

escapement

(b)

escapement

(c)
t

escapement
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deteriorating environmental conditions, a naive strategy might be to decrease escapement

over time. We find that such a strategy may not be optimal. In particular, we find that

decreasing fecundity may mitigate the impacts of density dependence and, as a result,

temporarily increase the optimal escapement. This result holds even for simple models

with compensatory stock-recruitment and monotonic harvest cost functions. We suggest

that more attention should be paid to the consequences of dynamic vital rates in optimal

management.

We analyzed deterministic models. Fish populations, in contrast, frequently suffer the

slings and arrows of stochastic environmental variability. A preliminary investigation sug-

gests that environmental stochasticity does not change our results qualitatively. In nu-

merical simulations, we applied a multiplicative, uniform shock to the stock-recruitment

function, f(x, 6), at each time step3 and calculated the escapement policy that maximizes

the expected rent using stochastic dynamic programming (Appendix 1). These simula-

tions suggest that the the interior solutions are quantitatively similar to their deterministic

counterparts. 4

We also investigated the impact of simultaneous variation in two or more vital rates,

a likely outcome for populations experiencing changing conditions. We found that mono-

tonic or non-monotonic optimal escapement may result, although we have not found non-

monotonic escapement to result from changing two variables that would only produce mono-

tonic escapements in isolation.

Another ecological complication that our analysis ignores is the possibility of overcom-

pensation (negative population growth at high population densities) which is a common

phenomenon (Abrams, 2009; Schroder et al., 2014). An analysis similar to section 5.3.3

with the Ricker model (Ricker, 1954), f(yt) = yter(1-y/k), showed that non-monotonic

optimal escapement can be optimal; we confirmed this result numerically.

We also investigated the importance of our assumption that the harvester is a price-

taker (i.e., that p is not influenced by the harvester's actions). We calculated optimal

3The uniform shock had mean 1, lower bound 1 - w and upper bound 1 + w for 0 < w < 1.
4For a given realization, the main difference is that if the population is stochastically driven below the

interior solution, it is allowed to rebuild, and if, after i the population grows larger than y, for a period, it
is fished down to y, in that period.
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escapements numerically with a price that depends on the size of harvest (isoelastic demand:

pt = a(xt - yt)b). The optimal policies produced are no longer of the 'constant escapement'

type with a threshold escapement level (i.e., target escapement varies with all stock sizes).

Trajectories through time may be non-monotonic as a vital rate declines.

The optimal exploitation of a continually degrading renewable resource is an interesting

hybrid between a renewable resource problem (in stationary conditions, e.g., Reed (1979))

and an exhaustible resource problem. It resembles the 'cake-eating' problem (e.g., Gale

(1967)), in which a finite resource (the cake) has a fixed-lifespan (because it spoils) and

discounted future utility; the optimizer's choice is how much to consume in each period.

The optimal eating strategy is to eat slightly less cake each period, until the entire cake is

consumed. Our problem differs in that the total amount of the resource to be consumed

depends on the manager's actions, since escapement determines recruitment in the next

period.

Finally, it has not escaped our attention that our analyses are applicable both to other

taxa and to forms of environmental degradation other than increasing temperature. Com-

mercially exploited species besides fish (e.g., game birds, Bethke and Nudds (2007)) have

been impacted by climate change or environmental degradation. In addition, these types of

analysis are equally applicable to increasingly favorable conditions, which may be encoun-

tered by species invading a newly suitable habitat.

5.7 Appendix: Stochastic Case

Let us consider the case in which the population is influenced also by environmental pertur-

bations, or shocks. These shocks, zt, at time t alter how the population projects to the next

time period. The random variable z has expectation 1, and has finite support (z < z < f

such that z > 0 and f(x, z) > 0 for x > 0 (i.e., the shocks will not drive the population to

extinction). We will now denote the population projection function as f (yt, Ot, zt):

Xt+1 = f(yt, Ot, Zt). (5.29)
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For this example, we used the following function, modified from (5.20):

Xt+1 O-yt + - Zt. (5.30)
P1 + P2(I - e-11) ay

Instead of maximizing rent, we maximize the expectation:

V(xt, 9 t, zt) = max [Q(xt) - Q(yt) + 6EtV(f(yt, Ot, zt), 9 t+i, zt+1)] (5.31)
O<yt<xt

where the expectation is taken over z.

To investigate the influence of these shocks on the model, we specified z as a uniform

distribution with lower bound 1 - w and upper bound 1+ w, for 0 < w < 1. We calculated

optimal policies numerically, using 50 time steps and 113 stock sizes, which were more closely

spaced near y,,; we interpolated the value function using spline-interpolation between these

stock sizes. Using the optimal policies calculated, we then simulated the policy forward in

time, with the stock experiencing a shock in each period. Figure 5-7 shows an example of

such a realization. The optimal policy is very similar to that in the deterministic case for

the same biological and economic parameters.
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Chapter 6

Adaptive managment in stationary

and changing environments

6.1 Introduction

The study of changing conditions-in particular, of the changing climate-on ecological

processes has underscored how much about ecological systems we have yet to learn. In

fact, uncertainty is such a ubiquitous feature that we often discuss the different types we

may encounter: environmental uncertainty (e.g., from weather), state uncertainty (i.e.,

from imperfect measurements of the system), or structural and parameter uncertainty (i.e.,

wherein the correct model or parameter values are unknown). The last two types, structural

and parameter uncertainty, are 'reducible' in that we are able to learn about them over time.

Weather, in contrast, which may still exert a stochastic forcing even if we perfectly know

its properties).

Climate change provides an additional source of this uncertainty; as Conroy et al. (2011)

note, "the challenge posed by climate change is that predictions based on historical obser-

vations and experiences may no longer be appropriate." Managed ecological systems, like

fisheries, are potentially entering previously unobserved regimes. Such changes may have

profound implications for the management of such systems. For example, choosing a harvest

level without knowing the dependence of vital rates on temperature has been implicated as
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a reason for overfishing (e.g. Pershing et al., 2015). However, the management of natural

resources does not stop while we reduce our uncertainty (e.g., via the collection of addi-

tional observations or the execution of focused experiments). How then, can we achieve

management objectives (such as maximizing yields over time) given imperfect information?

Adaptive management (Holling, 1978)-that is, management in which learning is explicitly

incorporated-is an attractive option.

The basic idea of adaptive management is that management actions are treated as data

collection opportunities, or even as experiments. The processes of managing and studying

a resource occur in tandem and mutually support each other. Lancia et al. (1996) note

that "in adaptive resource management, learning is not simply a byproduct, but is formally

acknowledged as an integral objective of the management process." Adaptive management

has been investigated for its utility in fisheries (Walters and Hilborn, 1976), threatened

species management (Chades et al., 2012), and the control of invasive species (Haight and

Polasky, 2010; Regan et al., 2011), among others. There are many approaches to adaptive

management, ranging from a periodic model update from routinely collected data (e.g.

Varley and Boyce, 2006; Hobbs et al., 2015), to experimentation on small portions of a

larger management area.

I focus on the simple case of managing a single stock of fish, one management action

(escapement), and uncertainty about the dynamics of the system. I then model both the

stock and our knowledge about the system to choose the optimal series of actions to meet

various objectives (e.g., maximization of rent). In this chapter, let xt denote the size of

the stock at time t. The stock at time t + 1, xt+1, will depend on the escapement (the fish

left after harvest that reproduce and survive); a stock-recruitment function f projects this

escapement, yt to the next period; xt+1 = f(yt, 0). 0 denotes a parameter of interest, in

particular, one about which we hope to learn.

Core to adaptive management is the belief state, which quantifies our confidence that a

particular model or parameter value is correct (Figure 6-1). The belief state is typically a

probability distribution over a set of beliefs. For example, if we were unsure if a population

had a high or low carrying capacity, we might assign a probability p that the carrying
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Figure 6-1: 'Why, some-
times I'e believed as many
as six impossible things be-

fore breakfast.' the Queen
in Carroll (1871), who likely
would be comfortable with
the concept of belief states.
The image is a plate from
the 1871 edition of that
book, illustrated by John
Tenniel.

capacity is high and probability (1 - p) that it is low; the belief state would be p. If

instead, we were unsure of the population growth rate, we might assign equal probability

to all potential values within a reasonable range-say a uniform distribution across Asmaii

to Aiarge. We would then treat this belief state as a part of the model in the same way we

would treat a state like the size of the population.

Now, in addition to modeling population or harvesting dynamics. we can also model how

the belief state changes over time. To do this, we need a mathematical construct that will

allow us to update the belief state as new observations are collected. One straightforward

way to do this, that I will employ throughout this chapter, is through Bayesian updating.

If -V(0) is the belief state for some parameter value 0 and we observe a stock size x, we can

update the the belief state to ,+ using Bayes' rule:

Pr(X |0) (0)
P+(0 =) (6.1)
Pr (x )

If the probability of x is low for a given value of 0, say 0, we may reduce our belief that 0

is correct (i.e., J+() < /(O)). On the other hand, as we accumulate data points that are

in agreement with a different value. we may increase our belief that that value is correct.

With a way to update belief states in hand, we can incorporate the belief state into our

management framework. Let us consider a (closed-loop, sensu Bertsekas (2000)) system in

which at each period we use the belief state and information about the current state of the

stock to make a decision for that period. The next period, we again observe the system and
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may update our belief state. Our goal is to characterize the optimal policy, or rule dictating

what escapement to choose if we encounter a specific state in any given period, given our

management objective.

We typically update the belief state in one of two ways: passively or actively. While

passive adaptive management is easier to implement numerically, active adaptive manage-

ment is more intuitive. Under active adaptive management, we forecast the impact of a

management action on both the dynamics of the ecological system (e.g., the population size)

and the belief state. We can imagine considering an action, such as harvesting intensely,

that would allow us to learn more about the population dynamics at low density, thereby

changing our belief state. The resulting improvement in the accuracy of our belief state

may then allow us to make better decisions in the future. This feedback between the action

and the belief state is what makes a policy 'active'. However, we can also imagine a case in

which we do not model the feedback of our action on the belief state; we make our decision,

ignoring the possibility that modulating our actions could produce learning benefits, but

then update our belief state after our decision and its outcome have been observed. This

may seem to be a subtle difference, but the computational differences between these types

of policies can be marked!

In adaptive management, learning for learning's sake is typically not the objective, but

rather is ancillary to achieving our primary objective, whether that be a large yield through

harvest or a large population size to be conserved (Walters, 2002). In this chapter, I will

focus on yield or profit maximization from a harvested species. While there are many other

potential objectives, this formulation has a long history (e.g., Clark, 2010; Reed, 1979;

Costello et al., 2001) with which to compare and build our intuition.

I start by describing the general properties of adaptive management solutions in a sta-

tionary environment and develop a few tractable examples to build our intuition about

how these systems are optimally managed. They also serve as a comparison with the later

models, in which we introduce a trend in the growth-recruitment function.

I find that the differences between adaptive and non-learning policies may be particularly

dramatic when vital rates change in time, as the choice of the correct parameter value
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determines when the stock should be depleted; depleting the stock too early can cause

severe population and yield losses.

6.2 Stationary Case

6.2.1 Model

Let us consider a population that is of size xt at time t. A harvester fishes this population

down to the escapement yt. This escaped population then changes as result of reproduction

and possibly survival according to the stock recruitment function f(yt). Population change

may have a stochastic component; at time t, an independent and identically distributed

random shock, Zt, modulates the population size.1 Let 6 be a parameter of the stock

recruitment function. The growth process is thus

Xt+I = f(yt, Zt, 9) (6.2)

and a particular realization of that process is

Xt+1 = f(yt, zt, 0). (6.3)

The management of such a stock has been extensively studied in the theoretical fisheries

literature. Reed (1979) studied the problem of maximizing the net present value of the

rent generated by the harvest of a fish stock governed by a stock recruitment function

Xt+1 = f(yt, 6)Z over an infinite time horizon. He showed that when the growth of the

population is compensatory (that is, af/ay > 0 and 92 f /y 2 < 0) and the marginal cost of

harvest is a non-increasing function of stock size, then the optimal harvest rule is a 'constant

escapement' policy,2 . Other authors (e.g., Costello et al., 2001) have extended this result

to more general functional forms, including when the shock does not multiply f. I too will

'Throughout this chapter we will use capital letters to denote random variables and a lowercase letters
to denote realizations of those random variables

2In Chapter 5 I further describe a constant escapement policy. As a reminder, a constant escapement
policy is a type of threshold policy or bang-bang rule. When the stock size at a time t is larger than some
time-invariant optimal escapement level, that escapement is optimal; if the stock size is lower than that
threshold, no harvest occurs until the stock rebuilds.
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focus on the maximization of the present value of a stock governed by a compensatory stock

recruitment function and non-increasing marginal harvest costs. Reed, however, assumed

that all parameters were perfectly known. I seek to describe some general properties of

optimal escapement policies when there is also uncertainty regarding a parameter that we

hope to learn about.

Let us assume the parameter 9 is imperfectly known. We model our uncertainty in

9 at time t by treating it as a random variable E8 and describing our belief that 9 is

the true value, 9, as Jt($) = Pr(Et = 9). We update this belief state as we accumulate

observations of the system. In particular, for each perfectly known escapement yt and

resulting perfectly observed population size xt+1 we learn about this unknown parameter.

I define the information state's update as

t+1 = g(ft, Yt, Xt+1). (6.4)

We will use Bayes' rule (equation 6.1) to update Jt. Note that we do not observe the

value of zt; we only know the distribution of Zt. We therefore may not be able to tell if a

particular xt+1 is the result of a large shock or an extreme value of 8t.

Our goal is to maximize the expected stream of discounted rents over a fixed time

horizon ending at T or over an infinite time-horizon by choosing a sequence of escapements

yt. We take the expectation of both the shock and our belief state. The objective is thus

T Xt-

II(yt0, .100) = E [p(Xt - yt) - I c(s)ds it (6.5)

where p is the price per unit harvest, c(x) is the marginal cost of harvesting a stock of size

of size x, and J is the discount factor.

Infinite Time Horizon

First, let us explore the properties of the optimal management policy over an infinite time

horizon. In this case, I will assume that we have a discount factor J < 1. In addition, I

will restrict the shocks, Zt, to have finite support. Because the shocks are multiplicative, I
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specify that their expectations are unity.

In this case, a 'stationary' policy is optimal; that is, in each period, the stock size and

the belief state determine the optimal escapement rule, but this rule does not vary over

time. This result follows from the basic theory of dynamic programming on infinite time

horizons ([e.g., Bertsekas, 2000). Because there is a finite profit (or yield)3 per time period

and the discount factor is less than 1, a stationary policy is optimal .

Finite Time Horizon

We turn our attention to the finite time horizon. This case is particularly interesting because

'real-world' managers often have fixed time horizons over which to manage a resource. The

finite time horizon case also facilitates comparison to my later analysis in which there is a

trend in the vital rates over time.

I show that, for a broad class of models, the optimal escapement at time t depends on

the stock size xt only in through constraint yt <; xt. That is, it is not optimal to take

advantage of unusually large or small stock sizes to gain information.

To solve for the optimal harvest policy, I reformulate the problem (equation 6.5) as a

sequence of single decisions that capture the payoff from the current decision plus the result

of the optimal choices going forward in time (see Chapter 5 also). It will be convenient to

define an immediate harvest value (a la Reed, 1979) as

Q(x) = p(x - yo) - j c(s)ds. (6.6)

yc is the lowest economically viable escapement or 'zero profit level' where p = c(yo);

harvesting below y, costs more than it it is worth. When p > c(0), yO, = 0.

The value from harvesting the stock at time t down to yt is simply Q(xt) - Q(yt). To

this value, I add the future value from harvesting yt or its progeny later; we define this

future value as V(xt+j, 9t+i), as the value also depends on the belief state. The right side

of equation 6.5 is thus V(xo, AO). However, this recursive approach is more useful when we

3The finite profit or yield per stage is guaranteed by the concavity of growth function and the finite
support of the shocks.
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start at the end of the time horizon. At the ultimate time T the value function is

V(XT, ft) = Q(xT);

future harvests have no value to us.

At time T - 1 it is thus

V(xT_1, JT_1) = maxT
0< yT _1<_xT -1

Q(XT-1) - Q(yT-1) + 6 E
ZT _1,)T -1

(V(XT))} (6.8)

= max Q(xT-1) - Q(YT-1) + 6  E
YT-1 ZT-1,ET-1

(Q(XT)) }
= Q(Xr-1) +max -Q(yT_1) +6 E [Q(f(yT-1,

YT- 1 ZT-_1,E)T-_1
ZT_1, s))]

= Q(xT-1) - Q(yT- 1 ) + 

where yt* is the optimal value of the escapement at time t.

A candidate for y* is the interior optimum that satisfies the first-order conditions:

&EZT_1,eT_1 [Q(f (YT-1, ZT-1, ))
0 =- aQ(YT1) +6

aYT-1 '9 YT-1

(6.9)

(6.10)

(6.11)

(6.12)
YT-1=YT-1

Note that equation 6.12 is independent of the value of xT_1; unless y _1 is less than XT-1

it is the optimal escapement at T - 1.

Stepping back one more time period, we have

V(xT-2, fT-2) = max
YT -2 5XT -2

Q(xT-2) - Q(YT-2) + 6 E [V(xT-1,-0r-1)]
ZT -2,)T -2 )

= max Q(xT-2)
YT -2

-Q(yT-2) + Z E Q(f (YT-2, ZT- 2 , $)) - Q(yT_1)
ZT -2,)T -2

+ 6 E ZQ(fl(y ,_ 1, )) I
ZT-1,TT-1 } (6.14)

(6.15)

In the last line, note that the distribution of ET_1 will be modelled using g(fr-2, YT-2, 34-2,
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where XT_1 = f (yT-2, ZT-2, 9).

The first order conditions for a maximum for this time-period are more complicated-

there is now a term representing the control's influence on the future information state:

0 OQ(yT-2) + EzT-2 ,eT-2 [Q(f (yT-2, zT-2, )

OYT-2 +9YT-2

+ E 2 EzT2ET2EzT2,erT [Q[f(Y-l, Z-1, 9)]] T (6.16)
YT-2 JYT-2=YT*-2

As we go further back in time, each information state over which we take the expectation

will depend on the current control and its projected influence multiple time steps into the

future on the belief state (e.g., at time T - 3, fT- will be gT-2(gT-3(fT-3, YT-3), yr- 2 )-

However, we note that none of these terms depend on the current stock; the optimal (inte-

rior) solution is independent of the size of the stock.

Passive versus Active Adaptive Management

In passive adaptive management, we do not model the impact of the control (yt) on the

future information state, so the expectation of the future information state is always the

current information state; that is, the first-order conditions for a maximum are equivalent

(for all time) to those for T - 1 for the active case. In general, the passive and active

policies are equivalent at other times if the expectation of the future information state is

independent of the control. In equation (6.16), we can see that if this is the case, the 62

term will be zero, reducing the first-order conditions to that of the passive management.

Thus, we expect the active and passive strategies to be identical always in the penulti-

mate period, while they typically will differ earlier. In the special case when the pre-posterior

is not a function of the control, the policies are the same. This is particularly relevant be-

cause it is (much) computationally easier to calculate the passive adaptive management

strategy.
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6.3 Yield Maximizing Beverton-Holt Growth with Uniform,

Multiplicative Shocks

Let us develop a simple model that is relatively tractable so that we may gain insight into

its optimal harvesting policy. Because adaptive management solutions typically are solved

exclusively numerically, gaining an intuition about them can be difficult. To this end, I

make several simplifying assumptions that make our task easier: (1) we will maximize yield

(so, p = 1, c(x) = 0 for all x), (2) the shock is uniform, (3) it multiplies a growth function

as in Reed (1979), and (4) the uncertain parameter has only two candidate values. Taken

together, these assumptions create a fishery with an adaptive management policy that is

fairly tractable to calculate.

Let us imagine that the stock grows according to a Beverton-Holt stock-recruitment

curve (f(yt, b) = yt/(b + ayt)). I introduce environmental stochasticity by assuming that

population is perturbed by a multiplicative, uniform shock; that is,

Xt+1 = f (yt, b)Zt, (6.17)

where Zt are independent, identically distributed uniform random variables with lower

bound 1 - w and upper bound 1 + w (with 0 < w < 1). We consider uncertainty about

the value of the parameter b, which is the inverse of the growth rate at low density (i.e.,

f'(0) = 1/b). We are unsure whether b takes one of two candidate values b1 and b2 . Let

us assume, without loss of generality, that 1/bi < 1/b2 so that b1 represents the low-

productivity model. For this simple form of uncertainty, we can then fully describe the

information state with a single variable, pt, which is the probability at time t that b1 is the

true value, b, i.e., E9 - Bernoulli(pt).

At T, the optimal escapement y* is 0; future fish have no value, so, since c = 0 and

therefore yo = 0, we harvest all remaining fish. Thus V(XT, PT) = XT. We then step
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backwards, to time T - 1, and find:

xT-1, PT-) = 0<max XT_ - y-1 + 6 E V(XT,
O YT_15XT-1 ZT_1,E)T_1

max x_1 - y-1 + Z E XT
0<y_16!XT_1 ZT_1,E)T_1

max XT-1 - YT-1

+6 E [PT-if (YT-1, bl)zT-1 + (1 - PT-1)f (YT-1, b2)ZT-1]
ZT-1

max {XT-1 - YT-1

+6 [pT-1f(yT-1, b1 ) + (1 - pT-1)f(yT-1, b2 )] }
= XT-1 - YT-I + 6 [pT-if (y*_1, bi) + (1 - PT-1)f (Y* -1, b2 )]

PT)

}

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

To find y _, we differentiate the maximand of (6.21) with respect to YT-1 to obtain the

first-order conditions for a maximum:

1 PT1 f (yT-1, b1) + T1 f (YT-1, b2)
6- +Ym1 (1YT--

We then turn to time T - 2 when the value function is

(6.23)

V(xT-2, PT-2) =

= max
0YT-2 XT-

max 4 XT-2 - Y-2 + E
YT-2!XT-2 ZT-2,ET-2

2
XT-2 - YT-2 +6 E

ZT-2,ET-2

V(XT-1, PT-2)

EXT-1 - yT*1 +

6 (pT-1i(yr-i, bi) + (1 - PT-1)f (Y_1, b2 )) }
max

0YT-25XT-2

SE
ZT-_1,Er _

\ZT-2,E)

XT-2 - YT-2 + 6 PT-2f(y-2, bi) + (1 - PT-2)f (Y-2, b2 ) - Y* -1 +

g(pT-1, YT-1, f(YT-1, bi)ZT-_)f (y*_1, bi) +

g(PT-1, y _1, f(yT_1, bj)ZT_1) f(y'r1 2 (6.2(
T-1 , - 1b ).

Now, we need to know the expectation of PT-1 in period T - 2. We can use Bayes

137

(6.24)

(6.25)

6)



Theorem to update pt;

Pt+1 9(t, yt, Xt+1) (6.27)

Pr(xt+1 bi)pt (6.28)
Pr(xt+ilbi)pt + Pr(xt+ Ib2)(1 - Pt)

The expectation of the posterior distribution, Ezt,et (Pt+i) is called the 'pre-posterior'

and is a critical component of active adaptive management, because it maps the expected

effect of a management action onto the information state.

From equation (6.28) and (6.17), the pre-posterior can be written as:

j1+w Pr(f (yt, bi)zt~bi)pt -
(pt+1|yt) = + rf(t izllp Pr(bi)-- dz.

zt,E)t 1_w b Pr(f(yt, bi)ztlbi)pt + Pr(f(yt, bj)ztjb2)(1 - Pt) 2W

(6.29)

Let us start assembling the pieces to calculate this pre-posterior. First, the probability

that we achieve a given population size is calculated as follows:

Pr(Xt+ 5 xt+1 1bi) =

Pr(XT+l = xt+11bi)

and

Pr (ytZt
bi + ayt J

Pr Zt :5 xt+1(bi + ayt))

Yt
xt+1 (b4+ayt )

Yt dz

1 xt+ 1(bi + ayt) - (1 - w)1
2w yt

dPr(Xt+i xt+11bi)
dxt+i

1 bi + ayt

2w yt

Combining (6.35) with the bounds on Xt+1 that it inherits from the bounds on Z, we have

bi +ayt

Pr(Xt+i = xt+11bi) = 2wyt

0,

if (1-w)yt K X < (1+w)yt
bi+ayt bi+ayt

otherwise.
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(6.31)
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(6.33)

(6.34)

(6.35)

(6.36)



Some values of the shock will drive the population to extreme sizes that are only con-

sistent with one model. In this case, we immediately learn which model is true. 4

The probability of being in the region where only b1 is consistent is Pt(l-w) 2; the2w b2+ay'

probability of being in the region where only b2 is consistent is (l-Pt)(l+w) b-b 2  The2w la

expectation of pt+i is thus

E (pt+ 1) = b-b 2 + (6.37)
ZtE~t 2w b2 + ayt

b1 - b2 pt(1 - w) (1 - pt)(1 + w) 2wyt Pt

2w b2 + ayt bi + ayt bi+ayt Pt + b2+ay t)
- -2wyt 2wyt

= Pt. (6.38)

Now, we return to equation 6.24 by substituting (6.38) for EzT_1,eT_ 1 PT-1:

V(xT-2, pT-2) = max XT-2 - yT-2+ (6.39)
0<YT -2 XT -2

6 [PT-2f(y-2,b1)+(1 - p-2)f(yT-2, b 2 ) - y +

(pT--2f(yT-1 b 1 ) + (1 - PT2) f(yT- 1 , b 2  - (6.40)

The derivative of the pre-posterior with respect to the control is 0, so the first-order con-

ditions are equivalent to equation 6.23 (with updated time subscripts). Now, we not only

have our optimal threshold escapement, but also know that the active and passive adaptive

management policies are equivalent (recall section 6.2.1). We can repeat this procedure

backwards in time and will find the same first-order conditions each period.

In figures 6-2 and 6-3, I show a single realization of how these optimal policies perform

when either b1 or b2 is true. Note that, when b 2 is the correct parameter value, the value of

the belief state may not be monotonic 6-3. This is because any value of the recruitment that

is consistent with both b1 and b 2 is more likely to have come from bi's being true, since-by

4Note that for some small w and yt, it is possible that the bounds of these two distributions will not

intersect. In that special case, the probability that xt+1 is consistent with b1 is equivalent to our belief that
b1 is the true value (i.e., pt).
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Figure 6-2: A single realization of the optimal policy and its outcomes through time when

b = b1 . The first panel shows the shocks that occurred in each time period. In the next

panel, red circles show the optimal escapement, while blue dots show the population size.

The black line shows the belief state, while the orange line shows yield. Note that at t = 5,

a sufficiently large shock occurred that fell outside the range of recruitments consistent with

b2 , causing a slight 'jump' in the information state and optimal policy. Parameter values

are a = 0.02, b, = 0.15, b2 = 0.03, ; = 0.6, 6 = 0.9, rO = 31.51.
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construction-bi has higher probability density over the smaller range of recruitment values

that are possible for it. This is interesting, since the manager is essentially being 'mislead'

by the data she collects for a period of time!

I ran 500 simulations and aggregated the results in terms of stock and yield sizes. The

initial population size was assigned as the expected recruitment from choosing the optimal

escapement associated with po = 0.5. While having perfect information does outperform the

adaptive management policy (see figures 6-4 and 6-5), once the parameter is well known,

the performance is equal. For these parameter values, the correct model only narrowly

outperforms the adaptive management case, while the 'average' policy only underperforms

slightly. However, managing as if the incorrect model is true does markedly worse.

Since the passive and active adaptive management policies are identical, there is no

experimentation. In this case, note that we learn rather quickly; within 10-15 time steps,

we have close to perfect knowledge regardless of the true underlying model.

6.4 Sustainable or not? Yield Maximizing Piecewise Linear

Growth Function with Multiplicative, Uniform Shocks

An interesting case is one in which we are unsure if a stock is sufficiently productive to

sustainably harvest, or, on the other hand, would be optimally extirpated (e.g., Clark

(1973)). If we are unsure which type of stock we are managing, how should we proceed?

To investigate this, I chose a simple piecewise linear growth function (Figure 6-6). Let ac

be the growth rate at low densities and k be the carrying capacity k, which is reached at

an escapement of 77. The growth is thus

ai' ztt if Yt < 'rj
Xt+i = f(y, ai)Zt = (6.41)

kzt if yt > qj.

Zt is a uniformly distribution iid shock, with lower bound 1 - w and upper bound 1 + w.

Without loss of generality, we assume that a, > a2, such that ai > 1/6 (i.e., it is

viable to harvest) and a2 < 1/6 (i.e., it is optimal to fish out the stock). If a1 is the true

141



b=bi

50

40

30

20

10

0
2 4 6 8 0

time

2 4 6 8

time

50

- adaptive
correct model

2 4 6

time
8 10

- adaptive

I ncorrect model

40

30 I

20

10

0
10

/

~1L

2 4 6 8 10

time

adaptive

average

2 4 6 8 10

time

Figure 6-4: Performance of adaptive and non-adaptive management strategies when b = bl.
The top panel shows the adaptive policy's performance in terms of stock size (left) and yield

(right) versus perfect information. The black lines show average results; the grey lines show

the minimum and maximum values. The middle panels contain the results for the adaptive

and 'incorrect' model. Finally, I show the performance of the adaptive model and a model

that assigns equal weight to each model and does not update this weight. Parameter values

are a = 0.02, b 1 = 0.15, b 2 = 0.03, w = 0.6, 6 = 0.9, xo = 31.51, as in figure 6-2.
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a2it

Escapement

Figure 6-6: A schematic of the potential growth functions (Equation 6.41). Option 1 (growth
rate a1) is an economically viable stock (a1 > 1/6), while option 2 (growth rate a2) is not.
The onset of density dependence is at an escapement of 77, and 772 respectively.

growth rate at low density, then the optimal escapement in each period is T1. (To see why,

consider harvesting-even for a single period-above qj; we forgo harvest to do so, but there

is no expected gain, since the expected recruitment is still k. Harvesting at lower levels is

similarly disadvantageous, but because we are havesting too hard.)

Now let us consider the case in which we are unsure which parameter is correct. Let pt

be our belief at time t that a1 is the correct model. Note that it will never be optimal to

leave an escapement larger than q; if al is the true value, then we will gain no more fish

by sacrificing harvest, while if a2 is the correct value, we want to escape no fish. Thus, we

may restrict our attention to a truncated range of escapements (y < 71).

We find that the optimal policy is to harvest either down to ql or to 0, depending on

the value of the belief state5 The following section shows how we determined this.

Let us consider a stock of size x0 . If it is fished down to a level y, the expected

recruitment in the next period is poaiy + (1 - po)a2y. Because the environmental shock is

again uniform and our uncertainty constrained to two values, the expectation of pi = po.

So, if we again harvest down to an escapement of y, the expected yield is again 3 (poaly +

5 f the stock size is below ri1, no harvest occurs.
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(1 - po)a2Y - y). The expected yield from harvesting at y is then

7r = (Xo - y) + 1 (poaly + (1- Po)a2Y - y) . (6.42)

We may then compare the yield of a policy with an escapement of 71 and one with an

arbitrarily smaller yi:

7rm = (Xo - ?7) + 1 71 (poai + (1 - po)a2 - 1), (6.43)

versus

7rm = (xO - y1) + y1 (poal + (1 - PO)a2 - 1). (6.44)

The difference in yield is

(r71 - Y) + 6 (poa (1 - po)a2 - 1) . (6.45)

The policy of harvesting at 771 is greater if

Po > ;16-a2  (6.46)
al - a2

since we considering an infinite time horizon, this calculate holds for any starting po, so

if at any time our updated belief state falls below that threshold, an arbitrarily smaller

escapement is optimal. In fact, we should harvest all the fish at that point, as the expected

value of all future harvest is less than the value of fishing down immediately.

6.5 Non-stationary case

Now we turn our attention to adaptive management in a deteriorating environment. The

distinguishing feature here is that the growth function, f, changes through time. In Chapter

5 we considered this problem under the assumption that we had perfect information. Here,

we relax this assumption, instead assuming that one of the parameters is imperfectly known.

As environmental conditions vary outside the range observed in the historical record, we
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are likely to see a different type of parametric uncertainty: uncertainty as to how the vital

rates depend on these environmental variables. For concreteness, I will focus on temperature

as the driver of changing vital rates. For fisheries, this is a sensible choice, because fish are

poikilothermic, meaning their internal temperature varies with ambient conditions. The

vital rates of fish have been shown to be be strongly temperature dependent (e.g., Munday

et al., 2008; Houde, 1989; Donelson et al., 2010; Tanasichuk and Ware, 1987; Reist et al.,

2006). However, species respond to temperature changes idiosyncratically (Persson, 1986,

e.g.,). For a specific stock, under specific historical and future conditions, we are unlikely

to know precisely the dependence of its vital rates on the temperature changes.

The application of adaptive management to populations impacted by climate change

is expected to be a complicated task, as climatic changes occur over long time-scales and

may involve a high degree of uncertainty from sources other than the parameter of interest

(Gregory et al., 2006). On the other hand, as Conroy et al. (2011) emphasizes, adaptive

management holds promise for better management in the face of conditions managers have

yet to encounter. In this chapter, I attempt to investigate how deteriorating conditions

impact adaptive management policies. To this end, I construct a simple example to try

to build our intuition about how adding this temporally changing component alters the

intuition we built earlier in this chapter. However, note that the logic we used to deter-

mine when the active and passive strategies are equivalent still holds-those strategies are

equivalent when the preposterior of the belief state does not depend on the control.

The reader may not be surprised to learn that the optimal policy in a changing envi-

ronment is no longer stationary; this makes sense because we expect that it will be optimal

to respond to changes in stock dynamics. Second, building on the results of Chapter 5, we

expect that at some time, the optimal action will be to fish the stock down to a low level,

perhaps even to extirpation.

6.6 Non-stationary Yield Maximizing Beverton-Holt Model

Here, I extend the simple Beverton-Holt model I developed in section 6.3 to include a vital

rate that varies over time. In particular, b, the inverse of the growth rate at low-density,
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Figure 6-7: The average stock recruitment function over time for two different values of 0.
In the first case. 0 is 1.26; in the second, it is 1.07. Other parameters are a = 0.02, and
b0 = 0.03. Cool colors indicate early times, while warm colors indicate recruitment at later
times.

varies over time so that the growth rate decreases over time. I specify that b = b0O'. so that

as time (which I assume, for simplicity, is correlated perfectly to temperature) goes on, the

growth rate decreases. Figure 6-7 shows how how such recruitment curves may look for

different parameter values (without stochasticity).

Again, we imagine a Beverton-Holt recruitment function is multiplied by an iid uniform

shock (with bounds 1 - w and 1 + w):

Xt+ = f (yt, 0, t )Zt = Zt. (6.47)
b06t + ayt

Let us consider uncertainty about the sensitivity, 0, of the low-density growth rate to

the temperature. We have two candidate values-0 1 and 02. Pt will describe our confidence

at time ( that 01 is the correct value. Without loss of generality, let us assume that 01 > 02,

so that 01 is the 'high sensitivity' model.

At the ultimate time-step, the optimal action is to harvest whatever fish remain, as they

have no value to us in the future. Note that the value functions and first order conditions

that we derive here are similar to those in the stationary case, excepting that the growth
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function now has a time-dependent term.

V (xT-1, P_1) = 0<max 1X-1T - y-1+
0yT-1<XT-_1

SE [f (yT-1, Oj, T - 1)zT-1]
ZT-_1,ET_ 1

= max XT-1 - YT-1 +
0-YT-1 XT-1

6 [PT-If(YT-1, 01, T - 1) + (1 - PT-1)f (YT-1, 02, T - 1)] }

(6.48)

(6.49)

The first-order conditions for a maximum are

1 _f(yT-1, 01, T - 1) af (yT1, 02, T - 1)
-YT-= -- (1 -p -) aYT-1 (6.50)

Going back on period in time, the value function is

V(xT-2, pT-2) = max xT-2 - yT-2+
O<YT -2 -XT+-2

Z E [V(xT-1, PT1)]}
ZT-2,8T-2

= max jT-1 - yT-1 +
0<YT-1<xT-1

6 [PT-if (yT-1, 61, T - 1) + (1 - PT-1)f(YT-1, 02, T - 1)] .

(6.51)

(6.52)

As in the stationary analog, the expectation of the pt+1 is pt, which allowed us to simplify

equation 6.52 so easily. The lack of dependence of the pre-posterior on the control also

implies that the passive and active adaptive management policies are identical. If we repeat

this procedure backwards in time, we find that the first-order conditions from T - 1 are

repeated at each time step (with their respective growth values at that time).

Figure 6-8 shows the optimal policy over time and over different information states; at

a given time, if a stock associated with a particular information state is larger than this

value, the stock is fished down to this level, otherwise no harvest occurs. Note that if we

are confident (p close to 1) that the high sensitivity parameter is true, we fish hard early;

the more confident that we are that the low sensitivity model is true, the longer we delay

fishing out the stock.
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In figures G-9 and 6-10 I show the realizalions of this policy forward in tii under

the high and low sensitivity models respectively. As in the stationary model. the inforia-

tion state often changes abruptly. as a sufficiently large (or small shock) reveals the true

parameter value inst ant aneously.

As in the stationary case, I compare the performance of the adaptive policy to a variety

of non-learning policies (figures 6-11 and 6-12). When the high-sensitivity model (01 = 0)

is true. the adaptive policy does not differ greatly in performance from the non-learning

policies (either incorrect or average). However, when the low-sensitivity model is true,

the adaptive policy far outperforns the incorrect and average models in both population

size and yield, because the harvester does not anticipate a population decline that is not
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state and optimal policy. Parameter values are the same as in Figure 6-8.
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occuring.

6.7 Conclusion

In this chapter, I outline a few basic properties of adaptive management policies applied

to simple, classic bioeconomic fisheries models. In particular, my results highlight that

policies should often be pseudo-independent of the initial stock size and highlights cases (in

particular, when the shock is uniform) in which the passive and active adaptive management

policies are the same. We also extended these analyses to include a trend in time, which

is an area that deserves more attention, given its relevance to management in the face of

climate change.

The use of a uniform shock significantly simplified calculations such that I could solve

for first-order conditions for the optimal policy rather than numerically calculating the

entire policy using stochastic dynamic programming. This simplification also comes at a

cost-the passive and active policies are equivalent. Changing the functional form of the

stock recruitment function (e.g., to a Ricker model) or allowing the shock to multiply a

parameter (e.g., f = yZ/(b + ayZ)) did not change the preposterior's independence from

the escapement. When the active and passive policies differ, the analytical solution does not

decouple between periods as it does in this case; the dependence of the belief state on past

states creates a sort-of serial dependence among periods. Ignoring this dependence and only

forecasting the belief state one-period ahead tends to create very poorly performing policies

(the examples I tried had much lower yields than the passive adaptive management policy).

Analytical and computational difficulties aside, calculating the active adaptive policy (when

it differs from the passive policy) is attractive because it allows us to tackle questions about

optimal experimentation, which I was unable to do in this chapter.

In doing this work, I found that the computation of optimal policies was quite sensitive

to how finely discretized the state space was. This sensitivity became more pronounced

when parameter uncertainty was added. One difficulty that this highlights is that when

analytical results are not available to compare-as is most often the case-it is difficult to

tell if a complicated policy is a numerical artifact or if it is reflective of the true policy. I
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Figure 6-11: Performance of adaptive and non-adaptive management strategies when 0 = 01.

The top panel shows the adaptive policy's performance in terms of stock size (left) and yield

(right) versus perfect information. The black lines show average results; the grey lines show

the minimum and maximum values. The middle panels contain the results for the adaptive

and 'incorrect' model. Finally, I show the performance of the adaptive model and a model

that assigns equal weight to each model and does not update this weight. Parameter values

are as in Figure 6-8.
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Figure 6-12: Performance of adaptive and non-adaptive management strategies when 0 = 02.
The top panel shows the adaptive policy's performance in terms of stock size (left) and yield

(right) versus perfect information. The black lines show average results; the grey lines show

the minimum and maximum values. The middle panels contain the results for the adaptive

and 'incorrect' model. Finally, I show the performance of the adaptive model and a model

that assigns equal weight to each model and does not update this weight. Parameter values

are as in Figure 6-8.
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believe that this mismatch is another reason to push in the direction I've been working, so

that we may build better intuition as to when this is the case.
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Chapter 7

Discussion

Charles E. Fryer noted that "it is difficult, but who shall say that it is impossible, to dis-

cover.. .the causes of these fluctuations and occasional failures of a fishery..." (Fryer, 1883).

Now technologies have improved our ability to monitor both fish and their environments

(underwater vehicles, satellites, etc.), and sophisticated models have helped uncover the pro-

cesses that influence population dynamics. Moreover, the scientific community has moved

beyond simply seeking to understand 'the causes' of stock fluctuations towards controlling

them and optimally managing wild fish stocks.

In this thesis, I have created and analyzed a collection of models concerning the man-

agement of fish stocks undergoing change. As a whole, my work suggests that accounting

for change in fisheries fundamentally alters optimal management. Thus, the identification

of fisheries that are impacted by, for example, habitat damaging harvest or rising temper-

atures is critical to optimal management. Here, I briefly summarize key findings from each

chapter and suggest some promising directions for further investigation.

In Chapters 2 and 3, I developed models in which the changes result directly from

harvesting.

In Chapter 2, I found that including harvest-induced habitat damage in a spatially-

implicit patch-occupancy model did not incentivize the creation of no-take marine reserves

as part of a profit-maximizing harvesting strategy. Reserves were, however, a relatively low-

cost way to protect biodiversity. The approach I took is novel in its coupling of a patch-
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occupancy model to an economic model, which allowed me to include multiple species

in a spatial context. This approach could be used to study other multispecies systems

with different trophic interactions (see, for example, competition, in Hastings (1980), who

studied an unharvested multispecies competition model) or objective functions. In addition,

I studied the equilibrium dynamics and harvest rates, all in a spatially implicit framework.

An investigation of the transient dynamics or explicit spatial interactions (e.g., with a

cellular automaton model) would provide additional insight. For example, we could ask

how long after the establishment of marine reserves would diversity benefits be realized.

Or, does the spatial arrangement of patches and the dispersal ability of species change the

general results I found in the spatially implicit model? Given the paucity of studies on the

optimal management of multi-species fisheries (especially using spatial models), I believe

there are many attractive, open questions that can be fruitfully addressed with a similar

methodology.

Next, in Chapter 3, I constructed a two-patch model and included the rapid evolution of

dispersal in response to harvest pressure. The evolution of dispersal essentially decoupled

the two patches so the closure of a patch as a marine reserve ceased to be part of the profit

maximizing strategy. However, I found that the evolutionary stable optimal harvesting

strategy is not economically stable over shorter time scales, since such a strategy is sub-

optimal between rare mutation events. To my knowledge, this is the only work that couples

the optimal harvest of a stock with the evolution of dispersal.

To start, my co-authors and I made several simplifying assumptions. We investigated the

optimal harvest at equilibrium and assumed that the evolution of dispersal was very rapid.

We also did not treat dispersal or its evolution mechanistically. An investigation of optimal

harvesting dynamics over time, when the rate of evolution-depending on rare mutations-is

slow, might produce different optimal harvesting strategies. In contrast, allowing selection

over the existing phenotypes may produce different results.

In Chapters 4 through 6, I considered climate change as example of an exogenous (to

the harvester) source of change to the fishery.

I first describe in (Chapter 4) a statistical test for detecting unambiguous shifts of
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populations in space. The extension of the concept of stochastic dominance into distribution

ecology promises to useful. If a later distribution is stochastically dominant to an earlier

one, the population distribution moved only in the direction of interest, making stochastic

dominance a stronger condition than the shift of the centroid or tail of the distribution

alone. Applications of this methodology are particularly promising. A comparison of the

results of studies using other metrics of change (e.g., movement of the centroid) with the

results of my stochastic dominance test, would reveal the circumstances under which the

methods produce contradictory conclusions.

In Chapter 5, I investigated the impacts of a continuously deteriorating environment

on the optimal harvest of a fish stock. This work demonstrated how complicated the opti-

mal response to changing vital rates may be; I found a non-monotonic optimal escapement

schedule was optimal when fecundity declined over time, while monotonically decreasing

escapement was optimal when mortality increased. I showed that density dependent dy-

namics are particularly important in structuring the shape of the optimal response. My

results also suggest that the extirpation of a stock may be economically optimal, which

highlights the importance of specifying the management goals for a fishery as well as the

management time scale. My general results hold for a large class of growth and cost func-

tions, but extending these analyses to more complicated growth functions would be useful.

In addition, the objective I analyzed was profit (or yield) maximization. This objective is

one of many potential objectives; one can imagine placing value on the size of stock for

conservation, for tourism, or for other ecosystem services. Changing the objective function

to account for such "existence value" may qualitatively change the optimal harvest (e.g.

Kellner et al., 2011). The alteration of the objective function may be particularly interest-

ing in the deteriorating habitat cases, valuing because the existence value would offset the

eroding in situ value derived only from future harvest.

Finally (in Chapter 6), I extended the models I described in Chapter 5 to include un-

certainty about the parameters. I attempted to characterize basic properties of optimal

harvest policies for unchanging stocks and to contrast these with the properties for stocks

that change over time. I focused on very simple models that were relatively analytically
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tractable to attempt to understand how the optimal adaptive management policy arises.

Even small complicating additions (e.g., non-uniform shocks, maximizing profit instead of

yield) necessitate numerical methods. Given the analytical and computational challenges

associated with adaptive management, this work merely scratches the surface of the ques-

tions we might pose. In particular, further attention to the relative impacts of different

types of uncertainty (e.g., parameter versus state uncertainty) on the form of optimal har-

vest policy. Investigation of a broader range of examples and case studies may also help

highlight qualitative differences among optimal policies and the the systems that give rise to

those policies. As others have suggested (e.g., Chades et al., 2012), adaptive management

problems are computationally difficult, and improvements in numerical methods, including

heuristics, are needed.

I have incorporated single sources of change in analyses. In reality, fish stocks are

subjected to multiple stressors operating simultaneously. For example, a stock experiencing

warming temperatures may be also impacted by trawling that damages spawning habitat.

Analysis of singe stressors is foundational to further understanding, which may include

modeling the interactions among these stressors or the comparison of more complicated

management tools to achieve different objectives. We continue to accumulate longer-term

data on fish stocks and gain more knowledge about the dependence of fishes' life-histories on

environmental stressors. It is important to couple these observations with models that will

help us determine which stressors are likely to impact management and what management

changes might result.
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