
MIT Open Access Articles

Bioinspired Security Analysis of Wireless Protocols

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Petrocchi, Marinella, Angelo Spognardi, and Paolo Santi. “Bioinspired Security Analysis
of Wireless Protocols.” Mobile Netw Appl 21, no. 1 (February 2016): 139–148.

As Published: http://dx.doi.org/10.1007/s11036-016-0702-z

Publisher: Springer US

Persistent URL: http://hdl.handle.net/1721.1/106989

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106989

Noname manuscript No.
(will be inserted by the editor)

Bioinspired Security Analysis of Wireless Protocols

Marinella Petrocchi · Angelo Spognardi · Paolo Santi

the date of receipt and acceptance should be inserted later

Abstract Fraglets represent an execution model for
communication protocols that resembles the chemical

reactions in living organisms. The strong connection
between their way of transforming and reacting and for-
mal rewriting systems makes a fraglet program amenable

to automatic verification. Grounded on past work, this
paper investigates feasibility of adopting fraglets as model
for specifying security protocols and analysing their
properties. In particular, we give concrete sample anal-

yses over a secure RFID protocol, showing evolution of
the protocol run as chemical dynamics and simulating
an adversary trying to circumvent the intended steps.

The results of our analysis confirm the effectiveness of
the cryptofraglets framework for the model and analysis
of security properties and eventually show its potential

to identify and uncover protocol flaws.

Keywords Fraglets, secure RFID protocols, Maude

1 Introduction

Fraglets are computation fragments flowing through a
computer network. They implement a chemical reac-

M. Petrocchi
CNR Istitute of Informatics and Telematics

Via G. Moruzzi 1, 56124 Pisa – Italy
E-mail: m.petrocchi@iit.cnr.it

A. Spognardi

DTU Compute, Technical University of Denmark
Richard Petersens Plads, 2800 Kgs. Lyngby – Denmark
E-mail: angsp@dtu.dk

P. Santi

CNR Istitute of Informatics and Telematics
Via G. Moruzzi 1, 56124 Pisa – Italy
MIT-Fraunhofer Ambient Mobility, Senseable City Lab

77 Massachusetts Avenue, Cambridge, MA 02139 USA
E-mail: psanti@mit.edu

tion model where computations are carried out by hav-
ing fraglets react with each other. They were origi-

nally introduced to automatise the protocol develop-
ment process, from design, to implementation, and de-
ployment. In the past, main fields of applications have

been protocol resilience and genetic programming ex-
periments, see, e.g. [26,27,30,31]. With an eye to mod-
elling security protocols and verifying security prop-
erties, the original pool of fraglets’ instructions have

been incrementally extended in the past years to deal
with symmetric cryptography [24], access control mech-
anisms [15], and dedicated primitives for trust manage-

ment [16]. This led to the definition of cryptofraglets,
i.e., fraglets enriched with capabilities of encrypting,
decrypting, signing, and verifying signatures over a se-

ries of symbols. Successively, work in [17] showed a more
concrete advancement towards adopting fraglets for se-
curity modelling and verification, by proposing an exe-

cutable specification of cryptofraglets in Maude [4,18],
the popular engine based on rewriting logic [20].

In [25], we enriched the cryptofraglets set of in-
structions with specific functionalities for hashing and
message authentication coding: these functionalities are

particularly significant, constituting the basic building
blocks in many protocols. The same work also pro-
posed a completely renewed executable specification of

cryptofraglets in Maude.

Here, the effectiveness of the enhanced framework is
demonstrated by presenting a Maude specification of a

privacy preserving RFID identification protocol, RIPP-
FS [5,6], under the fraglets communication paradigm.
The protocol provides a series of features, including:

secrecy of the shared key used to authenticate the tag
to the reader; tag privacy, intended as un-linkability
of two, or more, answers coming from the same tag,

against a passive adversary that eavesdrops two (or

2

more) protocol sessions; de-synchronization resistance,

which protects the protocol against Denial-of-Service
attacks; and forward secrecy, i.e., impossibility for an
active adversary that has captured a tag to know which

previously eavesdropped answers have been produced
by that tag. The specification of RIPP-FS in Maude al-
lows for the automated analysis of such features. With

respect to [25], we show extended examples of such anal-
yses, serving as a proof of concept to demonstrate fea-
sibility of modelling and analysing security protocols

specified via fraglets.

The paper is organized as follows. Section 2 recalls
the (crypto)fraglets model. Section 4 shows a fraglets-

based instantiation of one session of the RIPP-FS pro-
tocol, highlighting some Maude capabilities to perform
automatic analyses on the protocol execution. In Sec-

tion 5, we briefly revise related work in the area of fra-
glets and rewrite systems. Finally, Section 6 concludes
the paper.

2 Fraglets

A fraglet is denoted as [s1 s2 . . . tail], where si (1 ≤ i ≤
n) is a symbol and tail is a (possibly empty) sequence
of symbols. Nodes of a communication network may
process fraglets as follows. Each node maintains a fra-

glet store to which incoming fraglets are added. Fraglets
may be processed only within a store. The send (mcast)
instruction transfers a fraglet from a source store to a

destination store (to a set of destination stores).

Fraglets are processed through a simple prefix pro-
gramming language. Transformation instructions involve

a single fraglet, while reaction instructions involve two
fraglets. The interested reader can find a comprehen-
sive tutorial in [12], while Table 1 and Table 2 show the

core instructions that serve in the following.

Two fraglets react by instruction match, and their

tails are concatenated. With the catalytic matchp, the
reaction rule persists. Table 2 reports two particular
transformation instructions used for enabling commu-

nication. In particular, send performs a communication
between two fraglets stores. It transfers a fraglet from
store SA to store SB . Notation

SA [s1 s2 . . . tail]

denotes that the fraglet is located at SA. The name of

the destination store is given by the second symbol in
the original fraglet [send SB tail]. Where not strictly
necessary, we omit this to make the name of the store

explicit.

The mcast instruction models a multicast communi-

cation, namely a communication from a store to a group

of other stores, listed in symbol Slist, which represents

a list of stores. In case Slist is composed of all possi-
ble receivers, mcast acts a broadcast. This instruction
is recursively defined, as a fraglet that transforms itself

in a simpler one, while generating a new fraglet in one
of the destination stores.

The cryptographic version of fraglets, namely the
cryptofraglets, was firstly introduced in [24,15], In [25],
new instructions for hashing and message authentica-

tion coding, and their verification, were introduced. Ta-
ble 3 shows the entire set of cryptographic instructions.

Table 3 Crypto-instructions for encryption, decryption, hash-
ing, and message authentication coding

enc [enc t k tail] → [t tailk]

dec [dec t k tailk] → [t tail]

hash [hash t tail] → [t h(tail)]

hashi [hashi t i tail] → [hashi t i-1 h(tail)]

hmac [hmac t k tail] → [t h(k ∥ tail)]

hv [hv t tail1 tail2] [t tail1] → [tail2]

hnv [hnv t tail1 tail2] [t tail3] → [tail2]

The encryption instruction enc takes as input the
[enc newtag k1 tail] fraglet, consisting of the reserved
instruction tag enc, an auxiliary tag t, the encryption

key k, and a generic sequence of symbols tail, represent-
ing the meaningful payload to be encrypted. It returns
[t tail], with the auxiliary tag and the cyphertext tailk.

The decryption instruction dec acts in the complemen-
tary way.

Instruction hash applies an hash function to the
generic sequence of symbols tail. Instruction hashi per-
forms hash iteration, i.e., the application of the hash

function h i times on tail : hi(tail) = h(h(. . . h(tail) . . .).
Therefore, it is a transformation rule operating on the
fraglet [hashi t i tail]. Hash iteration is useful to model

the Lamport’s scheme, namely one-time passwords based
on sequences of values iteratively obtained computing
a hash function on a shared secret [19]. The Lamport’s

scheme is widely used for authentication purposes and
to guarantee the property of “forward secrecy” (see Sec-
tion 4 for an example of application). The hashi fraglet

for hash iteration is able to transform itself and evolve
to a single hash fraglet, eventually resulting in a fra-
glet with a tag and a tail sequence as input to a hash

function h, when i becomes 0.

The fraglet [hmac t k tail] evolves to compute the

hashed-MAC (Message Authentication Code), commonly
realized with the combination of a shared key k and a
message (the tail sequence). The fraglet transforms it-

self to a hashed fraglet, with the concatenation of the

3

Table 1 Subset of fraglets core instructions

match [match t tail1], [t tail2] → [tail1 tail2]

matchp [matchp t tail1], [t tail2] → [matchp t tail1], [tail1 tail2]

Table 2 Fraglets communication instructions

send SA
[send B tail] → SB

[tail]

mcast SA
[mcast (B,Slist) tail] → SA

[mcast Slist tail], SB
[tail]

tail sequence plus the key as input to the hash function
h. Operator ∥ denotes concatenation of symbols.

In this paper, we make the so called perfect cryptog-
raphy assumption and we consider encryption as a black
box: an encrypted (sequence of) symbol(s) cannot be

correctly learnt unless with the right decryption key.
Similarly, we consider hash functions to be collision-
resistant and non-invertible. This approach is standard

in (most of) the analysis of cryptographic communica-
tion protocols, see, e.g., [3,11,13,14].

Table 4 defines simple rules for hash verification.

Instruction hv let a computation proceed with tail2 if
two symbols sequences tail1 in two different fraglets
with matching tags are equal. In a complementary way,

instruction hnv let a computation proceed if two sym-
bols sequences tail1 and tail3 in two different fraglets
with matching tags are disequal. The role of these two

control instructions will be clarified in Section 4.

Table 4 Hash verification instructions

hv [hv t tail1 tail2] [t tail1] → [tail2]

hnv [hnv t tail1 tail2] [t tail3] → [tail2]

2.1 A simple communication protocol

Below, we show the initial pool of fraglets, originally at

stores SA and SB , needed to execute a simple program
that encrypts a fraglet at store A, transfers the cypher-
text at store B, and decrypts the cyphertext at store B.

Pool of 4 fraglets originally at SA:

A[match key match msg enc t] A[key k]

A[match t send B kmsg] A[msg m]
Pool of 2 fraglets originally at SB :

B [match key match kmsg dec t] B [key k]

One possible execution of the program is as follows.

A[key k] A[match key match msg enc t] →match A[match msg enc t k]

A[match msg enc t k] A[msg m] →match A[enc t k m]

A[enc t k m] →enc A[t mk]

A[match t send B kmsg] A[t mk] →match A[send B kmsg mk]

A[send B kmsg mk] →send B [kmsg mk]

B [key k] B [match key match kmsg dec t] →match B [match kmsg dec t k]

B [match kmsg dec t k] B [kmsg mk] →match B [dec t k mk]

B [dec t k mk] →dec B [t m]

Tags key, msg, and kmsg are auxiliary. In the above
example, we assume that SA and SB are the only stores
at stake, and that, originally, there are no other fraglets

than the ones in the initial pool at A and B.

2.2 Executable fraglets in Maude

The set of fraglets programming instructions in Ta-
bles 1, 2, 3, 4 consists of rewrite rules [18,20], with a
simple rewriting semantics in which the left-hand side

pattern (to the left of →) is replaced by corresponding
instances of the right-hand side one. They represent lo-
cal transition rules in a possibly distributed, concurrent

system. Thus, we assume the presence of a rewrite sys-
tem (defined by a single step transition operator →,
with →∗ as its transitive and reflexive closure) operat-

ing on fraglets by means of the rewrite rules correspond-
ing to the fraglets programming instructions. If we let
f, f ′ range over fraglets, by applying operations from

the rewrite system to a fraglets’ set F, a new fraglets’
set D(F) = { f | F →∗ f} is obtained.

The affinity between fraglets programming instruc-
tions and rewrite rules makes the former amenable for
execution in Maude. Maude is “a programming lan-

guage that models (distributed) systems and the ac-
tions within those systems” [18]. The system is speci-
fied by defining algebraic data types axiomatizing sys-

tem’s states, and rewrite rules axiomatizing system’s
local transitions.

We have defined an algebra for cryptofraglets, i.e.,
the sorts (types for values), and the equationally speci-
fiable operators acting on those sorts (and constants).

Also, we have defined the rewrite laws for describing
the transitions that occur within and between the set
of operators. The set of rewrite laws represents the set

of (crypto)fraglets instructions given in the tables of
Section 2.

The complete Maude specification of cryptofraglets,
together with appropriate equations for all the declared
operators, is available at http://mib.projects.iit.cnr.it/

mone16/cryptofraglets.html. The specification consists of

4

the three modules FRAGLETS, FRAGLETS-RULES,

and CRYPTO-FRAGLETS-RULES.

The functional module FRAGLETS provides decla-
rations of sorts, e.g., fraglets, symbols, stores, and keys,
and operators on those sorts, e.g., concatenation of fra-

glets and concatenations of fraglet stores. It also defines
subsort relationships. For instance, symbols, stores, and
keys are seen as specialized fraglets, meaning that all

variables of sorts symbols, stores, and keys are fraglets
too. The module also provides reserved ground terms
representing the names of the instructions (match, matchp,

send, . . .).

Module FRAGLETS-RULES defines the rewrite rules
encoding the instructions given in Tables 1 and 2, plus
core instructions non reported here for the sake of brevity.

Finally, module CRYPTO-FRAGLETS-RULES de-
fines the rewrite rules for encryption, decryption, hash-

ing and message authentication code. Decryption and
hash verification are defined as conditional rules (crl
[DEC], crl [HNV]): decryption is possible only if the

key used for encryption is equal to the key that one in-
tends to use to decrypt. A hash value is verified only if
it equals to some other hash that a fraglet store is able

to compute.

To actually do something with those modules, Maude
uses appropriate strategies for rule application. AMaude
default strategy is implemented by the rewrite com-

mand, that explores one possible sequence of rewrites,
starting by a set of rules and an initial state [18]. For ex-
ample, plugging in “rew [enc t k tail] .” into the Maude

environment, we obtain as a result “[t crypt(tail, k)]”.
The search command is also very convenient. A priori,
it gives all the possible sequence of rewrites between

an initial and a final state supplied by the user. Prac-
tically, since for certain systems the search could not
terminate, the command is decorated with an optional

bound on the number of desired solutions and on the
maximum depth of the search.

In next sections, we show the fraglets specification
of a RFID protocol guaranteeing a set of security prop-

erties. We will describe properties analysis example in
Section 4, through the use of basic strategies. All the
analysis examples shown in the paper illustrate how

the implementation of fraglets in Maude allows us to
exploit the Maude’s analysis toolset. In this respect,
it is worth noting that in the above analyses we have

made use of only basic Maude capabilities. There are
several other Maude tools whose use remains to be in-
vestigated (e.g., its SAT solver, its reachability analyser

and its LTL model checker).

3 Threat model

This section introduces a new threat model for fraglets.
We identify nodes A B C, . . . of a communication net-
work as fraglets stores, viz. SA, SB , SC , Thus, prin-

cipals of a communication protocol are fraglets stores,
within which fraglets (protocol code + protocol mes-
sages) are being processed. In particular, communica-

tions are via the send (“one to one” communication)
and mcast (“one to many” communication) instruc-
tions.

We consider a protocol specification involving two,
or more, honest roles. In case of two roles, we can call

them viz. the initiator SS and the responder SR. More-
over, when modeling and verifying security properties
of communication protocols, it is quite common to in-

clude an additional intruder whose aim is to subvert
the protocol’s correct behaviour. A protocol specifica-
tion is then considered secure w.r.t. a security property

if it satisfies this property despite the presence of the
intruder. We model the intruder as an untrusted store
SX , which can eavesdrop (and possibly modify) the fra-

glets exchanged between SS and SR (or, more generally,
among a set of honest stores).

We do not a priori fix any specific behaviour for the
adversary. SX can process fraglets by means of all the

instructions presented in Section 2. SX can also hon-
estly engage in a security protocol. To this aim, the
pool of fraglets at SX can contain also symmetric keys

kSX and kRX , shared with, e.g., SS and SR, respec-
tively. Concerning cryptographic keys, we assume that,
at deployment, each store SI contains the pool of keys

ΛI needed for the store to perform encryptions and de-
cryptions. We also assume that shared secret keys are
initially contained only by the legitimate stores that

share those keys.

Figure 1 shows how a multicast communication is
activated among a subset of stores. Each store, within
a universe of available stores, process fraglets represent-

ing both code and messages to run communication pro-
tocols sessions. Instruction mcast at store SA can be
programmed to list the subset of stores that will actu-

ally receive messages from SA. In particular, solid ar-
rows represent actual communication (i.e., SB and SX

receive messages from SA), while dashed arrows repre-

sent potential communication (i.e., in principle, com-
munication with SA and SC is possible, but not acti-
vated in the figure example). Note that, when specifying

security protocols, the adversary store SX is always in-
cluded in the list of stores of every mcast instruction,
to model, at least, eavesdropping.

Apart from some fraglets resident at the stores (de-

noted, resp., as [restA], [someB], [someC], and [someX]),

5

��������	
��
��	���	������	

����	�	��������

��������	
������������

�������
������������

������

������

������������

�����

�����������

������

�
�

�
�

�
�

�
�

Fig. 1 An example communication scenario for fraglets and fra-
glets stores.

in the figure we highlight fraglet [mcast B;X tail], which
enacts communication towards SB and SX .

Adversary’s knowledge The adversary’s knowledge [9,
23] is the set of all the messages an adversary knows

from the beginning (its initial knowledge) united with
the messages it can derive from the ones intercepted
during a run of the protocol. In terms of fraglets, the

adversary knowledge is the set of all fraglets hosted at
SX , at a given state of the computation.

Let FSX be the set of fraglets contained by SX .

Definition 1 The intruder’s knowledge Φ
FSX

SX
is defined

as:

Φ
FSX

SX
= {taili|fi =SX [ti taili] ∈ D(FSX)}

for some generic auxiliary or instruction tag ti, i =
0, . . . ,m.

Security properties: Secrecy Secrecy is one of the most
common security properties. Intuitively, a message is

secret when it is only known by the parties that should
share that secret. Thus, in a fraglet context, a symbol
(or sequence of symbols) is a secret between SS and

SR when it is not possible for SX to know that symbol
(sequence).

We let F0
SS

and F0
SR

to be the initial, and fixed (ac-

cording to the protocol in which the honest roles are
engaged), set of fraglets stored at, resp., SS and SR, at
the beginning of the computation.

Analogously, F0
SX

is the set of fraglets initially con-

tained by SX . A priori, we do not make any assumption

on this set, apart from the fact that it does not contain

private information of the honest roles, such as, e.g.,
shared secret key between SS and SR.

Definition 2 The secrecy property Sec(tail)SX of a se-
quence of symbols tail is preserved if ∀F0

SX
and ∀(F′

SS
∪

F
′

SX
∪ F

′

SR
) ∈ D(F0

SS
∪ F0

SX
∪ F0

SR
) then tail /∈ Φ

F
′
SX

SX
.

This means that, for every possible set of fraglets
initially contained by the adversary’s store, and for ev-
ery possible union of fraglets’ sets contained at SS , SX ,

and SR that are derivable from the initial sets by ap-
plying every possible rule of the rewrite system, SX will
never know the secret sequence.

4 Fraglet specification of a RFID protocol

In this section, we provide a specification of a RFID

protocol through cryptofraglets, together with the mod-
elling of some of its provided security properties. We
firstly introduce the RIPP-FS [5] protocol, that guaran-
tees RFID tag privacy, mutual authentication and for-

ward secrecy and, then, we provide the protocol fraglets
formulation. It belongs to the family of protocols based
on the concept of key synchronization between RFID

tags and server, like [1,22,28,29]. A subsequent version
of the protocol eRIPP-FS[6] was proposed to limit a
timing attack to which some hardware implementation

could be potentially exposed.

Before introducing the protocol, we briefly recall
some security notions. With tag privacy we indicate the
property for which a passive attacker cannot distinguish

two answers of a same tag, provided that she cannot dis-
tinguish between a hmac value and a pseudo random
generated number. Mutual authentication is the prop-

erty through which two entities prove each other their
own identity. Forward secrecy ensures that the knowl-
edge of a piece of information does not disclose any

information about the past. In the particular case of
RIPP-FS, the knowledge of the key of a captured tag
does not disclose any information about the previous

answers of that tag.

Finally, we informally mention the concept of de-
synchronization resistance: several RFID authentica-
tion protocols rely on the agreed renewal of a piece of

information shared between a tag and the server. When
the tag has to be identified, it renews the secret in order
to provide the answer expected by the server. However,

several implementations of this mechanism ([1,22,28])
are vulnerable to Denial of Service (DoS) attacks, which
force the tag to reach an irrecoverable state, where its

shared piece of information is no more aligned with the

6

Reader

Input: r = h(kupdated||j)

Tag

Input: k, Ai, i

send auth Aj and time j Aj , j
δ = j − i

if hδ(Aj) 6≡ Ai

then r = prng(k)
else

kupdated = hδ(k)
r = h(kupdated||j)

send reply rr
if r ≡ h(kupdated||j)
then tag read
else tag unknown

Fig. 2 The RIPP-FS protocol

one on the server. In particular, every tag has a maxi-
mum number of times it can answer correctly, and after

reaching this value the tag will not reply to the reader’s
queries. Since the tags update their shared information
with a value provided by any reader, an adversary could

simply provide to the tags enough readings to make the
tag time-stamp exceed its value and make the tag no
more identifiable. A RFID protocol that is immune to

this type of attack is said to be resistant against de-
synchronization attacks.

4.1 The RIPP-FS protocol

RIPP-FS, introduced in [5,6], is a privacy preserving
identification protocol for RFID tags: it is able to per-

form the scanning of multiple tags with only one read-
ing, avoiding the tracking of the tags among subsequent
readings. The main idea of the RIPP-FS protocol is that

a tag replies to a reader with a different answer each
time it is queried: if it recognizes a legitimate query,
then it answers correctly, else it replies with a random

string of the same length of the correct one. The an-
swer can be recognized only knowing a secret piece of
information, shared between the tag and the server.

Figure 2 concisely describes the computations and

the message exchanges of the protocol. The main build-
ing block of RIPP-FS is the use of a Lamport’s scheme
to provide the authentication of the reader: each tag

stores a value Ai that uses to verify the authenticity of
readers’ query at time i, since Ai is the result of the iter-
ation of a hash function h over a secret value A0, namely

Ai = hi(A0), where h
k(·) means the function h iterated

k times, h(h(. . . (·)) . . .). In particular, to authenticate
a reading, once receiving a new value Aj and a time

j (with j > i), the tag must verify that hδ(Aj) = Ai,
where δ = j − i. The collision resistance and the pre-
image resistance properties of hash functions guarantee

that only the entity that knows A0 could also know the

value Aj , since hash functions are one-way and evaluate

the pre-image is practically unfeasible.

The same properties are exploited to guarantee the
forward secrecy, since the same hash function is used to

modify the shared key of a tag, in order to generate a
different answer for each reading. In particular, before
answering to an authenticated reader, the tag iterates

several times the function h over its key, in order to
update the key to the current time j. This ensures that
if the adversary captures the tag and extracts the key

kj , she would be unable to evaluate the previous keys
ki, since kj = hδ(ki), for δ = j − i > 0.

To obtain key secrecy, the updated key is not straight-
forwardly sent to the reader, but instead it is used
by the tag to generate a reply that is a hmac value,

namely h(kupdated∥j). This ensures that the shared key
is never transmitted during the execution of the proto-
col. Eavesdropping all the communications or sending

malicious messages provides no information about the
shared key. Finally, if the authentication value Aj does
not pass the check hδ(Aj) ≡ Ai, then the tag will reply

with a pseudo random number of the same length of a
hmac value. In this way, any reader that does not know
the expected hmac h(kupdated∥j) is unable to determine

if the reply is a pseudo random number or a legitimate
reply.

Finally, the tag updates its key and correctly replies

only when it receives a reading including a genuine au-
thentication value Aj , then it can not be fooled to go
out-of-sync. An attacker can only eavesdrop and replay

genuine authentication values, but the tag will only up-
date when the received value refers to a value greater
than the last genuine value it has previously answered

to: since the authentication value Aj has been eaves-
dropped, any new authentication value sent by the gen-
uine reader will be something like Aj′ with j′ ≥ j. This

means that a tag that has answered to an eavesdropped
Aj and that receives a genuine Aj′ , it will recognize an
authentication value related to a reading (j′) that is

ahead in time to the one it has already answered (j),
avoiding the risk of a de-synchronization attack.

4.2 RIPP-FS fraglet specification

In this section, we introduce a fraglets specification of
the RIPP-FS protocol executable in Maude. The reader

can be specified as follows:
rippfs.test.maude

([’kzero-l k0tag1] , --- tag shared key at time 0

[’dl delta] , --- delta

[’tl ’tnow] , --- actual time

[’tnl ’tl ’tnow] , --- actual time to be sent

--- this builds the new authentication value

[hashi ’authval max-delta ’auth0] ,

7

--- this broadcasts the new authentication value

[match ’authval mcast anyone ’authl],

--- this broadcasts the actual time

[mcast anyone ’tl ’tnow] ,

--- this builds new shared key

[matchs ’dl match ’kzero-l hashi ’expkeytag-l] ,

--- this builds expected hmac

[match ’expkeytag-l match ’tl hmac ’exphmac] ,

--- this verifies if the answer is OK, on

--- reception of hmac-tag

[matchs ’hmac-tag match ’ifoktag hv ’exphmac] ,

[matchs ’hmac-tag match ’ifkotag hnv ’exphmac] ,

[’ifoktag ’OK] ,

[’ifkotag ’DOH]

) @ reader ; --- reader’s store

The reader’s store contains an initial set of fraglets (pro-
tocol messages + protocol code) to perform its steps of
the protocol: it can broadcast the authentication value

and the time, it can evaluate the expected answer of
the tag and verify the actual answer of the tag. It is
worth noting the use of the fraglet instruction hashi

that 1) produces the authval iterating max-delta times
the hash function over the auth0 value and 2) builds
the new shared key iterating h over the initial k0tag1

key. In particular, this evaluation originates from the
combination with the delta fraglet message that corre-
sponds to the reading number. Finally, we use the two

hash verification instructions hv and hnv : only one of
them will react with the expmac tag, that is hv if the
check is passed, hnv otherwise.

The tag can be specified as follows:
rippfs.test.maude

([’kzero-l k0tag1] , --- tag shared key at time 0

[’dl delta] , --- (t.old - t.now)

[’authlast h(h(h(h(’auth0)] , --- last auth. value

--- this hashes delta times the received authval.

[matchs ’dl matchs ’authl hashi ’authnew],

--- this checks the authnew against authlast

[matchs ’authlast match ’ifauthl hv ’authnew],

[matchs ’authlast match ’ifnotauthl hnv ’authnew],

--- if authenticated, builds new key know...

[’ifauthl matchs ’dl match ’klast-l hashi ’know-l],

--- ... and the hmac ...

[matchs ’know-l matchs ’tl hmac ’tagauth-l] ,

--- ... and broadcasts the hmac

[match ’tagauth-l mcast anyone ’hmac-tag] ,

--- if not authenticated, broadcast garbage

[’ifnotauthl mcast anyone h(’PRNG)])

) @ tag1 ; --- RFID tag1’s store

The initial fraglets in the tag’s store start reacting
with the reception of a fraglet with the authl tag. This

ignites the reaction of the authentication value check
and, then, the broadcast of the answer. It is worth not-
ing that, if the hash verification does not succeed, then

the pseudo-random value is sent, since the fraglet with
authlast will react with the hnv fraglet. Otherwise, the
fraglet reaction will produce the update of the key with

the hashi cryptofraglet, the evaluation of the legitimate

answer with the hmac cryptofraglet and the broadcast

of the hmac value, with the mcast anyone fraglet.

4.3 Modelling security properties with fraglets

In this section, we show some security analysis over the

fraglets specification of RIPP-FS. We highlight that the
examples we depict in the following do not guarantee
the fulfillment of the properties under all the possible

configurations of the fraglets at stake. For instance, an
exhaustive analysis of the protocol would necessitate
to explore all the possible initial configurations of the

fraglets stores representing the tag, the reader, and the
adversary, as well as interactions among the potential
universe of other fraglets stores. However, this kind of

analysis is out of scope in this paper, whose main pur-
pose is to show how the bio-inspired fraglet paradigm
can model protocols as well as security properties.

4.3.1 Key secrecy against passive eavesdropping

To model the key secrecy against a passive eavesdrop-
per, we introduce a malicious reader that eavesdrops on
all the communications between a genuine reader and

a legitimate tag. It silently exploits the inherently inse-
cure wireless channel to collect the messages exchanged
by the honest parties. Her aim is to collect the secret
shared key of the tag or any other useful piece of infor-

mation that would enable its disclosure.
To verify that the key is never disclosed, we lever-

age the Maude search command that explores all the

possible derivatives of a given initial configuration. In
particular, to model our adversary, we ask for any final
state where the adversary knows the key, as follows:

rippfs.istagkeysecret.maude

select IS-KEY-SECRET .

search(

(empty @ malreader) ; --- the store of mal. reader

(... @ reader) ; --- the store of gen. reader

(... @ tag1) --- the store of tag1

) =>! ([t1 h(h(k0tag1)) t2], more @ malreader) ; rest .

With the above Maude excerpt we are looking for any
possible evolution of the model in which the malreader’s

store contains a fraglet with the key of the tag: t1 and
t2 can be any fraglet (even nil or a tag), while more
denotes any other possible tag within the store; rest

denotes the remaining fraglets of the model that corre-
spond to the stores of tag1 and the genuine reader. The
omitted parts denoted with ... are the protocol spec-
ification as in Section 4.2. The outcome of the above

specification is the following:
Maude>

No solution.

states: 108855 rewrites: 713026 in 11828ms cpu ...

8

showing that all the possible branches of the model

never reached a state in which the key secrecy was vi-
olated by the malicious reader.

We remark that the excerpt only describes one pos-

sible system configuration: other settings can be ex-
plored considering different evolutions of the tag key
to be disclosed (for example k0tag1, h(k0tag1) and so

on) or different sets of initial fraglets in the malicious
reader’s store (for example to make the eavesdropped
data reacting with other fraglets).

4.3.2 Tag privacy against passive eavesdropping

Similarly to the key secrecy, we check tag privacy with
the Maude search command. In particular, we model
the prior knowledge of the malicious reader including

in its store some hmacs collected during previous ex-
changes between the genuine reader and two different
RFID tags (tag1 and tag2). Moreover, we provide the

malreader with a secret key (k), possibly extracted from
a third tag. Finally, the malicious reader’s store has a
set of fraglets that can react with any eavesdropped

hmac. We ask Maude to find any evolution of the sys-
tem in which the cryptofraglet that successfully verifies
the hmac reacts within the store of the malicious reader.

Thus, we model the tag privacy as follows:
rippfs.tagprivacy.maude

select IS-TAG-PRIVATE .

search(

([’authl h(’auth0)], --- the previous auth. value

[’hmac-tag h(h(k1)||’told)], --- previous tag1 hmac

[’hmac-tag h(h(k2)||’told)], --- previous tag2 hmac

[’kzero-l k], --- a key k =/= k1 and k2

... --- some other fraglets

[matchs ’hmac-tag match ’ifoktag hv ’exphmac] ,

[matchs ’hmac-tag match ’ifkotag hnv ’exphmac] ,

[’ifoktag ’OK] ,

[’ifkotag ’DOH] @ malreader) ; --- malreader store

(... @ reader) ; --- the store of gen. reader

(... @ tag1) --- the store of tag1

) =>! ([’OK], more @ malreader) ; rest .

With the search command specified as above, Maude

will explore all possible evolutions where there the mal-
reader store includes a fraglet with tag ’OK, meaning
that the hv tag reacted with the exphmac tag. The out-

come is:
Maude>

No solution.

states: 128790 rewrites: 951104 in 15508ms cpu ...

meaning that the malicious reader is unable to relate
the eavesdropped ’hmac-tag with any of the possible

tags.

Note that other possible configurations can consider
more fraglets in the malicious reader’s store, in order

to model a different prior knowledge or more hacking

strategies, for example one that tries to disclose the

information within the hmac fraglet and to relate them
with any of the possible tags.

4.3.3 De-synchronization resistance

Protection against de-synchronization is tested consid-
ering if the malicious reader is able to make the tag

unreadable to the reader. In order to test this property,
we consider a scenario in which the malicious reader
tries to send the tmax time, that corresponds to the last

possible answer of the tag. Since the starting authenti-
cation value is unknown to the malicious reader, she can
only reuse unrelated authentication values, eventually

collected during previous genuine readings. The aim of
the malicious reader is to induce the tag to update its
key according to the specific sent time.

In order to check this property, we again exploit the
Maude search command to verify if exists a possible
evolution from the initial configuration in which the tag

updates its key according to the tmax value. Then, we
start from an initial configuration in which the tag has
updated its key to the time t2 and the malicious reader

sends tmax joined all the previous sent authentication
values. We ask Maude to search a possible evolution of
the configuration in which the tag has a fraglet that

corresponds to the updated private key.
rippfs.desyncprotection.maude

select DESYNC-ATTACK .

search(

([’dl ’d 1] , --- possible time

[’dl ’d 2] , --- possible time

...

[’dl ’d 8] , --- possible time

--- this broadcasts the auth. value

[match ’authval mcast anyone ’authl],

--- this broadcasts the time

[match ’dl mcast anyone] ,

--- old auth. value

[’authval h(h(h(h(h(h(h(h(h(’auth10)))))))))] ,

--- old auth. value

[’authval h(h(h(h(h(h(h(h(h(h(’auth10))))))))))]

@ malreader)) ;

([’klast-l h(h(k))] , --- last used shared key

--- last auth. value

[’authlast h(h(h(h(h(h(h(h(’auth10))))))))],

--- hash received auth. received delta ’d times

[matchs ’d matchs ’authl hashi ’authnew],

--- verify that the authnew is the authlast

[matchs ’authlast match ’ifauthl hv ’authnew] ,

[matchs ’authlast match ’ifnotauthl hnv ’authnew],

--- if authenticated, build new key know and hmac

[’ifauthl matchs ’d match ’klast-l hashi ’know-l],

[matchs ’know-l matchs ’tl hmac ’tagauth-l] ,

--- broadcast hmac

[match ’tagauth-l mcast anyone ’hmac-tag] ,

--- if not auth., build and broadcast garbage

[’ifnotauthl mcast anyone h(’PRNG)]

@ tag)

9

=>! ([t1 h(h(h(h(h(h(h(h(h(h(k)))))))))) t2],

more @ tag) ; rest .

The outcome of the experiment is:
Maude>

No solution.

states: 85095 rewrites: 426805 in 19504ms cpu ...

and shows as without the right authentication value
there is no possibility for the malicious reader to induce
a tag update, like the tmax value h(h(. . .(k). . .) that

corresponds to the 10th iteration of the hash function
on the shared key k.

4.3.4 Forward secrecy against a tag capture

In order to test the forward secrecy property, we simply
model the store of the malicious reader. We initialise

a configuration where the attacker has eavesdropped
some previous successfully acknowledged protocol read-
ings of some tags (tag1 and tag2) and, some time later

— eventually after some other readings, she violates
the two tags and extracts all the cryptographic mate-
rial inside them. We ask Maude if the adversary is able

to relate any of the collected messages with any of the
tags she compromised.

rippfs.forwardsecrecy.maude

select FORWARD-SECRECY .

search(

([’authl h(h(h(h(h(h(’auth0)))))))],--- auth. value

[’hmac-tag h(h(k1)||’told)], --- previous tag1 hmac

[’hmac-tag h(h(k2)||’told)], --- previous tag2 hmac

[’kzero-l h(h(k1))], --- compromis. tag1 key

[’kzero-l h(h(k2))], --- compromis. tag2 key

[’dl 1] , --- delta to be checked

[’dl 2] , --- delta to be checked

[’dl 3] , --- delta to be checked

[’tl ’told] , --- old time

--- try to build a new shared key

[match ’dl match ’kzero-l hashi ’expkeytag-l] ,

--- try to build a matching hmac

[matchs ’expkeytag-l match ’tl hmac ’exphmac] ,

--- check if recv. hmac matches with previous hmacs

[matchs ’hmac-tag match ’ifoktag hv ’exphmac] ,

[matchs ’hmac-tag match ’ifkotag hnv ’exphmac] ,

[’ifoktag ’OK] ,

[’ifkotag ’DOH] @ malreader) --- malreader’s store

) =>! ([’OK] , more @ malreader) .

The fraglets in the store of the malicious reader can
combine in many ways, realizing a kind of brute force

attack against the collected hmac. This is the outcome
of the Maude execution:

Maude>

No solution.

states: 1180 rewrites: 3859 in 56ms cpu ...

Again, there was no evolution of the system in which
the fraglets in the store were able to produce a ’OK fra-

glet. This outcome is because of the one-way property

of the hash function, since we are assuming that there

exists no practical mechanism to have a pre-image of a
hashed value.

We remind the reader that the complete Maude

specification of cryptofraglets, as well as the Maude files
of the example analyses shown in the paper, are avail-
able at

mib.projects.iit.cnr.it/mone16/cryptofraglets.html

5 Related Work

The BIONETS EU project [2], BIOlogically inspired
NETwork and Services, seeked inspiration from biolog-

ical systems to provide a fully integrated network and
service environment ,able to scale to large amounts of
highly heterogeneous devices, and that is able to adapt

and evolve in an autonomic way. The fraglets model has
been extensively adopted in BIONETS and some secu-
rity and trust extensions to the original model have be-

come necessary to make it a running framework. That
was the main reason why cryptofraglets were born, first
from a theoretical point of view, then realising a pro-

totypal implementation of cryptofraglets in Maude to
run some toy example analyses [17]. Successively, the
implementation was extended in [25], to deal with a

larger set of cryptographic primitives, widely adopted
in standard security protocols.

In the literature, there exist remarkable examples

of the use of rewriting systems for modelling security
protocols and analysing their properties, including, e.g.,
[21,8,10]. Work in [21] shows how the Dolev-Yao model [7]

of security protocol analysis may be-formalized using a
notation based on multi-set rewriting with existential
quantification and exemplifies the formalisation of sub-

tle security properties. Under the same context, in [8]
the authors analyze the complexity of the secrecy prob-
lem under various restrictions, showing that, even with

a restricted size of messages, the secrecy problem is un-
decidable for the case of an unrestricted number of pro-
tocol roles and an unbounded number of freshly gener-

ated messages (so called nonces). The open complex-
ity problem is indeed the main issue that one needs
to explore for better defining limits and advantages in

adopting cryptofraglets for security analysis. Indeed, as
pointed out in the above sections, the example analy-
ses that we have shown consider a limited number of

actors and no generation of fresh messages. Finally, for
page limits, we refer the interested reader to the tutorial
in [10], describing the Maude-NRL Protocol Analyzer, a

Maude-based tool for the analysis of cryptographic pro-
tocols. The tutorial also points to related work in the
area of security protocols models and analysis, with an

eye to rewriting systems.

10

6 Conclusions

In this paper, we moved from an extended model for
cryptofraglets, with primitives for multicasting, hash-

ing, and message authentication coding. Based on this
communication model and on a threat model where fra-
glets stores can engage in communication protocols to-

gether with passive and active intruders, we presented
the modelling and analysis of a set of security proper-
ties of a wireless protocol. Even exploiting only a min-

imal set of the verification tool capabilities and paving
the way for further investigation (like, e.g., the pres-
ence of more actors in a protocol run), the results show

the effectiveness of the cryptofraglets framework for the
model and analysis of security communication proto-
cols.

Acknowledgements This work has been partly supported by
the Registro.it project My Information Bubble MIB.

References

1. Avoine, G., Oechslin, P.: A scalable and provably secure hash
based RFID protocol. In: International Workshop on Perva-

sive Computing and Communication Security (PerSec ’05),
pp. 110–114 (2005)

2. BIONETS website. Http://www.bionets.eu/
3. Clarke, E., Jha, S., Marrero, W.: Verifying security protocols

with Brutus. ACM Transactions on Software Engineering
and Methodology 9(4), 443–487 (2000)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N.,

Meseguer, J., Talcott, C.L. (eds.): All About Maude - A
High-Performance Logical Framework, How to Specify, Pro-
gram and Verify Systems in Rewriting Logic, LNCS, vol.
4350. Springer (2007)

5. Conti, M., Di Pietro, R., Mancini, L.V., Spognardi, A.:
RIPP-FS: an RFID Identification, Privacy Preserving pro-
tocol with Forward Secrecy. In: Pervasive Computing and

Communications Workshops, 2007. Fifth Annual IEEE In-
ternational Conference on, pp. 229–234. IEEE (2007)

6. Conti, M., Di Pietro, R., Mancini, L.V., Spognardi, A.:
eRIPP-FS: Enforcing privacy and security in RFID. Security

and Communication Networks 3(1), 58–70 (2010)
7. Dolev, D., Yao, A.: On the security of public key protocols.

IEEE Trans. Inf. Theory 29(2), 198–208 (1983)
8. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting

and the complexity of bounded security protocols. Journal
of Computer Security 12(2), 247–311 (2004). URL http:

//iospress.metapress.com/content/gpwf813k7jnlup50/
9. Egidi, L., Petrocchi, M.: Modelling a secure agent with team

automata. In: Proc VODCA’04, pp. 119–134. Elsevier (2005).
ENTCS

10. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryp-

tographic protocol analysis modulo equational properties.
In: Foundations of Security Analysis and Design V, Lecture
Notes in Computer Science, vol. 5705, pp. 1–50. Springer

Berlin Heidelberg (2009). DOI 10.1007/978-3-642-03829-7 1

11. Focardi, R., Martinelli, F.: A uniform approach for the def-
inition of security properties. In: Proc. FM’99, LNCS, vol.

1708, pp. 794–813. Springer (1999)
12. FRAGLETS website. Http://www.fraglets.net
13. Lenzini, G., Gnesi, S., Latella, D.: Spider: a Security Model

Checker. In: Proc. FAST’03, pp. 163–180 (2003). Informal

proceedings
14. Lynch, N.: I/O automaton models and proofs for shared-

key communication systems. In: Proc. CSFW’99, pp. 14–31.
IEEE (1999)

15. Martinelli, F., Petrocchi, M.: Access control mechanisms for
fraglets. In: BIONETICS. ICST (2007)

16. Martinelli, F., Petrocchi, M.: Signed and weighted trust cre-
dentials for fraglets. In: BIONETICS. ICST (2008)

17. Martinelli, F., Petrocchi, M.: Executable Specification
of Cryptofraglets in Maude for Security Verification.
In: BIONETICS, pp. 11–23 (2009). DOI 10.1007/
978-3-642-12808-0 2. URL http://dx.doi.org/10.1007/

978-3-642-12808-0_2

18. Maude website. Http://maude.cs.uiuc.edu/
19. Menezes, A.J., Vanstone, S.A., Orschot, P.C.V.: Handbook

of Applied Cryptography 5th ed. CRC Press, Inc. (2001)
20. Meseguer, J.: Research directions in rewriting logic. In: Com-

putational Logic, LNCS, vol. 165. Springer-Verlag (1997)
21. Mitchell, J.C.: Multiset rewriting and security protocol anal-

ysis. In: S. Tison (ed.) Rewriting Techniques and Ap-
plications, Lecture Notes in Computer Science, vol. 2378,
pp. 19–22. Springer Berlin Heidelberg (2002). DOI 10.
1007/3-540-45610-4 2. URL http://dx.doi.org/10.1007/

3-540-45610-4_2

22. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic ap-
proach to “privacy-friendly” tags. In: 2003 MIT RFID Pri-
vacy Workshop (2003)

23. Petrocchi, M.: Formal techniques for modeling and verifying
secure procedures. Ph.D. thesis, University of Pisa (2005)

24. Petrocchi, M.: Crypto-fraglets. In: BIONETICS. IEEE
(2006)

25. Petrocchi, M., Spognardi, A., Santi, P.: Cryptofraglets
reloaded - bioinspired security modeling of a RFID pro-
tocol and properties. In: 8th International Conference on

Bio-inspired Information and Communications Technologies,
BICT 2014 (2014). URL http://dx.doi.org/10.4108/icst.

bict.2014.258027

26. Tschudin, C.: Fraglets - a metabolistic execution model for

communication protocols. In: Proc. AINS’03 (2003)
27. Tschudin, C., Yamamoto, L.: A metabolic approach to pro-

tocol resilience. In: Proc. WAC’04, LNCS 3457, pp. 191–206.
Springer (2004)

28. Tsudik, G.: YA-TRAP: Yet another trivial RFID authenti-
cation protocol. In: Proceedings of the Fourth Annual IEEE
International Conference on Pervasive Computing and Com-
munications Workshops (PERCOMW ’06), p. 640 (2006)

29. Tsudik, G.: A family of dunces. In: Proceedings of the Sev-
enth Workshop on Privacy Enhancing Technologies (PET
’07), pp. 45–61 (2007)

30. Yamamoto, L., Tschudin, C.: Experiments on the automatic
evolution of protocols using genetic programming. In: Proc.
WAC’05, LNCS 3854, pp. 13–28. Springer (2005)

31. Yamamoto, L., Tschudin, C.: Genetic evolution of protocol

implementations and configurations. In: Proc. SelfMan’05
(2005)

