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A Network Flow Approach for Tactical Resource Planning in

Outpatient Clinics

Abstract

This paper introduces a deterministic model to gla physician requirements for outpatient clinigcsachieve
service targets for the appointment lead-times atfepts. The Ministry of Health of Singapore hatalelshed
targets for the median, 95percentile, and 18D percentile of appointment lead-times for patiersisice long
appointment postponements are regarded as beirngaptable for health care services. The study imadtch the
capacity of the healthcare providers to the patiarhand for a re-entry system, subject to regtristion the
appointment lead-times for patients. We proposexaarinteger programming model for planning capauiith the
minimization of the maximum required capacity &sabjective. In the model we assume a finite plagriorizon,
deterministic arrivals, multiple types of patienidentical physicians, and dependent demand betwgsss of
patients. We solve this model with a Branch andadlgrithm. We test the model with numerical expennts using
real data from the chosen specialty at the outpiatknic of the studied hospital. The results shtbe value of the
proposed model via a systematic push-pull mechamsstheduling patients’ requests to minimize thgective.
The clinic should use one of the appointment |éa-targets to determine the patients’ appointrdatgs. Finally,
from the sensitivity analyses we demonstrate that dbjective is negatively correlated with firssivipatients’
appointment lead-time targets, the discharge rat&s the re-visit patients’ mean appointment leag:t we find a
positive correlation between the first-visit pat@nmean appointment lead-time and the appointniead-time

targets.

Keywords Appointment Lead-time, Capacity Planning, Mixetetyer Programming, Outpatient Clinics.

1. Introduction

The increase in the patients’ appointment lead-ti(Regure 1) at the outpatient clinics of
hospitals has been a crucial concern of the Migisif Health (MOH) in Singapore. Currently,
the MOH is focused on the performance of healthcargices, particularly the performance of
outpatient services, in order to improve the quyabf health care service. The MOH has set
targets for the median, #5percentile, and 10D percentile of appointment lead-times as a
guideline for hospitals in Singapore. This posealleinges to the hospitals to provide quick
access or short appointment lead-times to healthcarvices. The hospitals have to determine
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how to continue to provide quality healthcare whigelucing their appointment lead-times with
their existing resources.

Patient’s appointment lead- ~ Patient’s waiting
time time
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« >
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Patient/polyclinic calls clinic to Patient’s appointment

request an appointment Patient sees doctor
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This research is based on the study of an outpatkmc at Tan Tock Seng Hospital
(TTSH) in Singapore. A new patient, termed asst-fiisit (FV) patient, calls a contact center to
book an appointment. Then, the patient has to wit his/her appointment-date (a reminder of
the appointment is sent, for reducing the rate @fshow [14]). After the first visit, a patient
typically continues to return to the clinic at rdguintervals as part of a treatment plan to
assure continuity of care [24]. After the first wisthe patient then becomes a re-visit (RV)
patient. There is a restricted range for the appwmient lead-time for the next visit by a RV
patient. In addition, the patient may need to retas a RV patient several times, depending on
treatment protocol. This re-entry system (Figureallenges the service providers in planning
their capacity for future demand, because any newal (or any FV patient) leads to a number
of additional RV arrivals.

FV patient

FV patient queues for

being served

Patient served
by doctor

Patient arrival FV patient

served

v

Patient arrival

RV patient
queues for
being served
A

Patient returns as a RV patient:
Fig. 2 Patient flow through the re-entry system

Currently the clinic plans capacity by allocatingetavailable physician time into blocks
dedicated to see FV patients and blocks dedicatesee RV patients. These allocations are
based largely on the preferences of each physidiae.appointment booking for FV patients is
usually on a first-come-first-served basis, whdre patient is offered the earliest block with
available capacity. Appointments of RV patients stleeduled by the physicians and depend on

3



the prescribed return interval (e.g., come backhiree to four weeks), where again the patient is
offered the earliest available block in the giveange. The current practice results in long
appointment lead-times because of the mismatcheleatéhe volume and mix of patient demands
and the capacity of the healthcare providers. Tfoeees we expect there is opportunity for
improvement from a more systematic way to plandhaired capacities.

Furthermore, urgent requests are very rare at thel®d clinics. For most of the urgent
requests, the patients will be sent to an emergdepgartment that operates separately from the
studied clinics. Occasionally, a physician will agrto see an urgent request within the clinic,
but this is quite rare. Hence, we can ignore thgemt cases when examining the appointment
scheduling and capacity planning at the outpatiimics.

This study develops a network flow model to plamréurequired capacity at the tactical
level for the re-entry system. We propose a madelihimize the maximum level of physician-
hours that are required to meet the MOH’s servageéts for median, 95th percentile, and 100
percentile of appointment lead-times for patieM& formulate the model in Section 3, which
follows the literature review in Section 2. In Sect4, we report on numerical experiments on
real case studies; we also present our analysithefcharacteristics of the objective and the
appointment lead-time targets. We then discussfiodiings in Section 5, and we provide a
conclusion in Section 6.

2. Literature Review

The appointment systems of outpatient clinics Haaen studied for many years. One of the
earliest studies was in the early of 1950s by Bajl§ who adopted a queuing perspective to
investigate the relationship between patients' wgittimes and physicians' idle times. The
author analyzed the impact of patients arrivingaatlinic (e.g. such as an appointment interval,
a number of patients per session, and patientsciuatity) on patients’ waiting times and

physicians' idle times. Many subsequent studies hHavestigated how to improve service
performance in outpatient appointment systems. ifikestigations mainly consider patient

appointment scheduling and capacity design problems

We comment here on three approaches to the appamtscheduling problem: queuing
theory [1, 4, 10, 17, 19], simulation [6, 9, 13,,1%3, 25], and heuristic search [5, 12, 18, 26].
Queuing theory has been employed extensively tcelnmantd analyze different health care
systems (see Lakshmi and Sivakumar [16] for anvoae). Applications of queuing theory in
scheduling appointment systems for outpatient adinaim to find the optimal system
performance taking into consideration the tradeb#tween patients' waiting time versus
physicians' idle time as a measurement of servigetformance. The studies investigate the
impact of various factors such as no-show [10, Pdnctuality of doctors [17], punctuality of
patients [10], length of appointment interval [1)]1and the number of patients per session [1].
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Bailey [1], Brahimi and Worthington [4], Hassin anMlendel [10], and Liu and Liu [17]
consider a deterministic appointment interval [1,149, 17] while Pegden and Rosenshine [19]
try to determine the optimal appointment intervid. addition, these papers make various
assumptions on service time distribution: stocltasgrvice systems are investigated with an
exponential distribution [10, 19], a general digution [4, 17], and a Pearson Type Il curve

[1].

Secondly, simulation has been used for the appemtischeduling problem to determine
the bottle-neck station [6, 9, 25], and to schedpleysicians to achieve a given service
performance [13, 15, 23]. The first set of papexplered the effect of patient flow and that of
the appointment schedule on the stations' perfoo@an clinics. Harper and Gamlin [9], and
Wijewickrama and Takakuwa [25] considered differgmtorities of appointment schedule
amongst categories of patients, while Cote [6] gdwe same priority to all patients. Cote [6]
measured utilization, queue length, probabilityfuf occupied stations, and patient flow time.
Harper and Gamlin [9] considered the objectives patient waiting duration from his/her
appointment time until his/her first time servet percentage of patients that wait more than 30
minutes, and the mean time that a patient spentseiglinic. Wijewickrama and Takakuwa [25]
examined the tradeoff between the patient's waiiimg and the doctor's idle time. The second
set of papers focused on physician scheduling gmbiatment scheduling policies in order to
minimize patients’ waiting time and physicians’eidime. Rising et al. [23] provided a policy
without differentiating between advanced booking aralk-in patients. Klassen and Rohleder
[13] accounted for this, by prioritizing based oypes of patients. An overbooking policy was
proposed by LaGanga and Lawrence [15] to reducdrtipact of no-shows

Finally, many studies propose heuristic searchespttimize the appointment scheduling
problem. This approach has been conducted for uargroblem instances, e.g., the exponential
service time distribution [12, 18, 26], general wee time distribution [5], single no-show
probability [12], different no-show probabilities5] 18, 26], multi-modularity [12, 26] and
unimodal objective [5, 18]. Kaandorp and Koole [1@¢rived a local search in which a local
optimal schedule converges to the global optimahgZet al. [26] proposed a local search to
find a local optimal schedule for heterogeneousgmas. Muthuraman and Lawley [18] provided
proofs of necessary and sufficient conditions fairt scheduling policy. Chakraborty et al. [5]
developed a sequential scheduling policy whichhie @o provide an appointment to patients
before call is ended. Zeng et al. [26], Muthuranaard Lawlay [18], and Chakraborty et al. [5]
addressed the objective of profit maximization imwg a trade-off between patient revenue, and
cost associated with patients’ waiting time andgtigns’ over-time. Kaandorp and Koole [12]
considered an objective that is a function of agh®d mean of expected patients' waiting times,
doctors' idle time, and doctors' overtime.

In contrast to the appointment scheduling probletmere are fewer studies that
investigate how to plan the capacity for an appwoient system. There are two versions of the
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problem. The resource allocation version optimittes usage of given and known resources.
The re-design capacity version aims to determieanimimal amount of resources required.

Resource allocation optimization was investigatgdu et al. [20, 22]. In both articles,
the authors provided analytic approaches to detearthe optimal percentage of advanced (or
pre-booked) access versus open access appointnidr@sstudies aim to match the provider’s
capacity with patient demand, assuming that a levegt causes a high no-show rate. The
authors started with single period [20], and lagtpanded the study to two time periods [22].

The re-design capacity problem was studied in tB80% by Ittig [11]. The study
determined the capacity level to maximize profite Profit is a function of patient revenue,
additional capacity, and patient cost. Capacitydegontinued to be investigated by Bowers et
al. [3], and Qu and Shi [21]. These articles dedvRinctions to determine required capacity.
Bowers et al. [3] provided a simple function to mtiey the number of clinics required in each
specialty from information of new attendancesofotup rates, no-show rates, and utilization of
a clinic. Green and Savin [8] developed a recursioadel that could help determine capacity
requirement or patient panel size for a same-dgyoagment system. Qu and Shi [21] proposed
a function of demands and no-show rates of twoerdifit types of patients (e.g., fixed
appointments and open appointments) to determieeettpected number of patients to be
scheduled, which helps to evaluate the requiredcidyp. According to our best knowledge, there
is only one paper which considers appointment li@me- [7]. The study mentions the "85
percentile of appointment lead-time of new pati@si® performance target and uses an M/D/1
queuing model. However, the authors did not proddsy/stematic way to plan the capacity for
the given target.

In general, there does not seem to be any liteeathat examines how to meet multiple
service targets, such as for the mediar" pbrcentile, and 100percentile of appointment lead-
times. Almost all the studies optimize the perforceafor a given level of capacity, and allow for
requests of patients for treatment to be rejectést MOH of Singapore regards the rejection of
the requests for treatment as being unacceptabladalthcare services. Although Bowers et al.
[3], Ittig [11], and Qu and Shi [21] designed capgclevels which assumed that all requests of
patients are accepted, patient appointment lea@girwere not addressed. All of the papers
ignore the re-entry characteristic in their studeecept Bowers et al. [3]. The authors developed
a model including RV patients’ demand, but assunad patients return only once into the
system. This assumption underestimates the reqoaedcity for re-entry systems in which any
new arrival may lead to multiple returns to thetsys; this is the case for the clinic we study.
Thus, our work focuses on designing capacity tacimtite demand for the re-entry systems while
considering appointment lead-times targets. Oufgranance measure is the maximum required
capacity.

We propose a network flow model for planning cafyaaf the re-entry outpatient
appointment system at the tactical level. This rhatlews for restrictions on the length of
6



patients’ appointment lead-times. We provide a itltadescription of the model in the next
section.

3. Model Development

We introduce a network flow model (Figure 3) witbtedministic arrivals of FV patients,
arrivals of RV patients that depend on the FV aisy and a finite horizon for the re-entry
system. One actual patient can create more tharpatient visit. Therefore, within the model we
will specify the “patient” as being defined as aagent visit”. The following model minimizes
the maximum required capacity (physician-hours) nhk requests of new appointments must
be accepted.

The required capacity must satisfy the achieveraefV appointment lead-time targets
for median, f percentile, and 100 percentile, as well as restrictions on the RV apfoent
lead-time range and on the RV’'s mean appointmead-tene. We let u, v, and w
correspondingly be a median™ percentile, and 100 percentile of FV appointment lead-time
targets; for instance, we might have targets of tweeks for the median, six weeks for th& 95
percentile and ten weeks for the T0fercentile. Furthermore, we let [a, b] artldenote the
restrictions on the RV appointment lead-time raage on the RV’'s mean appointment lead-
time, respectively; for instance, we might requinat a RV patient needs to be scheduled
between two and ten weeks, with a mean of sevekswee

Time-unit
% Arrival horizon I
| Model horizon I
—l : FV’s demand —— : Number of FV remains as RV
— : Number of pre-assigned patients — — — - : Number of RV remains as RV
L —:'/\ : Number of discharged patients

Fig. 3 A network flow model for planning capacity of teeentry appointment system

We term the first S time-units to be the arrivaliban. We assume that FV demands are
known for S time-units into the future. Howevere do the patient dynamics and the inherent
appointment lead-times, we extend the model hori@aoh time-units; we need to set T to be
significantly long to cover the maximum appointmeat-time allowed for the last arriving FV
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patient. Moreover, the objective of the problenthe minimization of the maximum required
capacity. Therefore, we need to also consider tlimmum appointment lead-time for RV
patients when setting T. In other worT = Max[S + w; S + b] so as to cover the maximum
possible appointment lead times for both FV and g&¥ents that arrive within the arrival
horizon. We list assumptions and notation in Talilesd 2, respectively. The above description
leads to design of S and T nodes that represerarteVRV patient nodes (or FV-nodes and RV-
nodes), respectively. FV- nodes are numbered Flup2o FS, and RV-nodes R1, R2, up to RT.

The arrival of the FV patienf;, at time-unit ' is signified in Figure 3 by the black thick
solid arrows that go into the FV-nodes. The gragktsolid arrows that go into the RV-nodes
represent the total number of pre-assigned FV p&tie’’, and RV patientsry”. The FV pre-
assigned patients are patients who made their retgugefore the start of the arrival horizon and
their appointment dates are within the arrival hmomn. The RV pre-assigned patients are patients
whose last appointment was before the start of dihval horizon but their following
appointment is within the arrival horizon.

Table 1List of assumptions

No. Assumptions

1 Patient requests cannot be rejected.

The designed capacity needs to be sufficient foh B/ and RV patients, who are already
in the system at the start.

The model considers a single type of FV patients asingle type of RV patients in terms
of consultation times, appointment lead-times, disdharge rates.

Physicians are identical in terms of consultatiores

There is no uncertainty in the rate at which pasiemrive for their appointment requests.

4
5 A patient’s appointment can be scheduled in #imestime-unit as the patient’s request.
6
7

Patients continue to be RV patients until theydischarged from the system.

An FV patient is a patient who calls to requestimitial appointment. After the first
8 appointment the FV patient might be dischargedadf, the FV patient becomes a RV
patient and requests a re-visit appointment.

9 The model does not consider discharges afteartinaal horizon.

10 | There are no new requests after the arrivakbori

11 | There are constant discharge raiggor FV and RV patients respectively.

We consider the impact of discharge rates on desigrthe clinic capacity. The
discharge rates may be different following eacltMmut for the sake of model simplification, we
assume constant discharge rae$3 for FV and RV patients respectively. Since thehdisgge
rates are different, it is necessary for the mdddtack whether a patient visit is a first visit@
return visit. The thick solid arrows that go oubrin FV-nodes represent the total number of FV
discharges,d{, namely the number of FV patients that are disghdr after their first
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appointment. For example, the thick solid arrowtthaes out from node F1 represents the total
number of discharges for FV patients, who make estpufor appointments in the first time-unit.
However, the schedule for their appointments may abeanother time. Some patients’
appointment dates could be on the first time-wmitpthers’ appointment dates could be on the
second or up to the™rtime-unit. The thick solid arrows that go out fr&kV-nodes represent
total number of RV discharged;, for patients that were discharged as RV patiefist
example, the thick solid arrow that goes out fraydenR1 represents the total number of patients
that will be discharged after their next appointmerhe time until the next appointment will be
between a to b time-units from th&time-unit.

Table 2List of notation

Notation | Descriptions
- N Index set for the arrival horizon.
S n
= Bl z Set of allz;;: j —i = 0.
ol
a L™ LP Set of allz;; e z that have —i < and set of alt; € z that have - i < v, respectively.
: Number of FV patients who make a request in thetime-unit and have their
% appointment scheduled in tff&time-unit.
The number of FV patients who request in ithéime-unit and have appointment in the
Xi j™ time-unit, and still remain in the system as RViguets after their appointment in the
.th . .
j time-unit.
% ) The number of patients who have an appointmerttént time-unit and have their next
= Yi appointment in th@" time-unit, and still remain as RV patients aftezjt” time-unit.
> & The number of FV patients who make a request in'théme-unit, and are discharged
_§ i after their first appointment.
3 d; The number of RV patients who are discharged #fi@r appointment in time-unijt
a
cif Capacity for FV patients in tH& time-unit, minutes.
o Capacity for RV patients in tH& time-unit, minutes.
G Total capacity in thé" time-unit, minutes.
q The maximum required capacity per time-unit, misute
UVw Appointment lead-time targets for mediap® percentile, and 100 percentile
T respectively, time-units.
p A p" percentile of a given appointment lead-time taug@ <p <1)
2 i Consultation times for FV and RV patients, in meaitThese times are specified by the
a nr doctors
a .
c
- a B Discharge rates for FV and RV patients, respecti{et a, 5<1)
fi Number of FV patients’ requests that arrive inithéme-unit.
o The number of pre-scheduled FV and RV patients ajfipointments in time-unjf who
. still remain as RV patients after their appointnsent




Restricted appointment lead-time of RV patientsamige of RV appointment lead-timg,
[a, b] : \
time-units.
a RV’s mean appointment lead-time, time-units.
o s S The number of time units in the arrival horizon
g g T The number of time-units in the planning horizogs, Max(s +b, S+ w).
Sl Indices for time-units.

The thin solid lines that connect FV-nodes and Refes show the number of FV patients
who make their request in time-unit i and are asstyappointments in time-unit j, and that will
remain in the system after their consultation metunit j. We denote this hy;. We allow the
appointment date to be the same as the request Aatenentioned above, the constanis
assumed. Therefore, the thin solid arrows that echirV-nodes and RV-nodes can also be used
to relate to the assignments of appointment reguest-V patients.

The dashed arrows that connect two RV-nodes sigingynumber of RV patients with
appointments in time-unit i that have their nexpaiptment in time-unit j, and that will not be
discharged at time-unit j. We denote thisyhpy We do not model randomness in the no-show
rate. Effectively, we assume that all patientd aitive; alternatively we could assume that
there is a fixed fraction that does not arrive. Weo assume that physicians are identical, both
in the eyes of the patients and in their consudtaimes. Hence, patients exercise no choice as
to which physician to see, or the timing of thgapaintment. These assumptions simplify the
model, and we believe that it is acceptable gienititent to use the model for tactical planning.
Finally, we assume that a patient remains as a Riiépt until he/she is discharged.

Min g €y

Subject to:
q=c,VjEN, (2)
STz = fVi€EN, (3)
xij—(1—a)z; =0, Vi,j EN, 4)
d! = af;, Vi€N, (5)
(0 +17 + 2 xy + 2, vy) — (47 + 212 y;) = 0, Vi €N, (6)
dr =B+ + X,y + X, x) = 0,V €N, (7)
yij =0,¥j—i<aVije€EN, (8)
yij =0,¥j —i>b,Vi,j €N, 9)
yij=0, Vj=T+1Vi<$, (10)

10



iT=s+1 dir =0, (11)

Yoy ez = (3 Tien fi) + 1 (12)
Yzjev Zij 2P Lien i (13)
25 =0,¥j—i>w,Vj—i<0, (14)
N1 TG = Dy~ aXfa vy < (15)
ij — (ﬁrf 13.f +1f Z{=1zij) =0, Vj €EN, (16)
o — (ﬁrr i+ %Tr Z{zlyij) =0, VjEN, (17)

(c+ )—0 Vj EN, (18)
Xij» Vij» Zij » C l e ,dlf, di =20, Vi,j EN, (19)
z;; integer, Vi,j € N. (20)

The objective (1) minimizes the maximum requirgzhcay, per time-unit, to achieve the
appointment lead-time targets. The maximum requicadacity for the clinic is shown in
constraint (2). The above objective leads to thenogd allocated capacity between FV and RV
patients as well, in each time-unit. The conseoratflow at FV-nodes is represented in
constraints (3), (4), and (5). Constraint (3) schked an appointment for each request.
Constraint (4) determines the RV patients who renaier the first visit. The number of FV
patients who are discharged after their first visitspecified in constraint (5). The conservation
of flow at RV-nodes is modeled in constraints (@) &). The first bracket of constraint (6) is
the total number of pre-assigned FV and RV patiphis the total number of FV patients, plus
the total number of RV patients, all with appointisein time-unit j. The second bracket of
constraint (6) is the number of RV patients disgledr after their visit in time-unit j plus the
number of RV patients remaining with a subsequppbimtment (the flows that go out from the
same time-unit j). Constraint (7) specifies the hamof patients discharged after their visit in
time-unit j. Constraints (8) and (9) assure thatRd patients will have appointment lead-times
falling outside the restricted range [a, b]. Wecamplish this by defining;yto be zero if the
time interval between i and j falls outside thetrieted range. Constraint (10) prohibits RV
patients’ appointments to be made after last ddtehe model horizon T. Constraint (11)
specifies the number of RV patients discharged #fir visit in time-unit i. Constraints (12)
and (13) assure that the targets of the appointnhesd-time for the median and"percentile
are satisfied, respectively. Constraint (14) assugerealistic appointment date and does not
allow appointments that go beyond the "I @@rcentile of limit. The restriction on the RV mea
lead-time is represented in constraint (15). Thqureed capacities of FV and RV patients in
time-unit j are determined in constraints (16) gid), respectively. The total required capacity
in time-unit j is presented in constraint (18). THeguired capacity for either FV or RV patients
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includes the required capacity of pre-assignedguati and that of the new arrivals. Constraint
(19) requires non-negative variables. Finally, cmamt (20) requires the integer assignment of
FV patients.

4. Numerical experiments

In this section, we report on numerical experimemnds investigate how the proposed
mathematical model sets the appointments for patiéie report on four performance metrics:
maximum required capacity, mean required capadiy,s mean appointment lead-time, and
RV’s mean appointment lead-time.

4.1. Experimental design

Data from years 2008, 2009, and 2010 were obtdireed the Urology specialty. We use the

data from year 2008 to determine the number ofagsigned FV and RV patients in the model.
We use the data from years 2009 and 2010 to deterthe inputs on the arrival of FV patients,
on the discharge rates of FV and RV, and on th&icesd appointment lead-times of RV

patients. The design of data is due to the fadtttt@FV and RV pre-assigned patients of year
2009 came from requests in 2008, and the FV demahdear 2009 were scheduled with

appointments in years 2009 and 2010. The lengtth@fRV mean appointment lead-time is
currently not restricted. Hence, the optimizationd®l, as formulated, would tend to set the
appointment lead-time for RV patients to be unst@lally long. To correct for this, we set the

range for the RV appointment lead-times based opemxjudgment; we also imposed a

constraint on the mean RV appointment lead-timiee detailed inputs are listed in Table 3.

Table 3 The inputs included in the model for planning adtyeof re-entry appointment system

No. Descriptions Urology
1 . _ Median (u) 2 weeks
2 gpr)gg;ntment lead-timer™ gz percentile(v) 6 weeks
3 100 percentile(w) 9 weeks
4 FV (r') 15 minutes

Consultation time slots -
5 RV () 10 minutes
6 _ FV (a) 38 (%)
Discharge rates
7 RV (B 32 (%)
8 Min (a) 2 weeks
9 g\fplg(\))ntment lead-time Max (b) 30 weeks
10 Mean @) 30 weeks
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The numerical experiments were implemented wittydlae 2009 as the arrival horizon.
The planning horizon extends into 2010. The totahber of pre-assigned FV and RV patients
are 1,277 and 10,970 respectively. As the arrivaizon is 2009, pre-assigned patients are any
patient who made an appointment request before 17412009 and had their appointment
scheduled on or after Jari'2009. In addition, the number of total new FV ress in 2009 is
9,760 patients. We set up the model to plan theired, capacity on a weekly basis. The Branch
and Cut algorithm [2], a variant of the Branch ambund algorithm, is chosen to solve the
problem.

The computation time to find optimal solutions Hmamerical examples is less than four
minutes, implemented in IBM ILOG CPLEX Optimizat®tudio V12.4 on HP Pavilion G6
Notebook 1.9GHz PC with the Windows 7 operatintesys

4.2. Experimental results

Given the inputs described in section 4.1, we reflue results in Figures 4, 5 and 6. These
figures illustrate the comparison between histdriaad model's performances in terms of the
cumulative required capacity, the maximum requicadacity per week, and the mean required
capacity per week, respectively. The actual cunudatapacity (Figure 4) for FV patients was

always less than what should have been providedrdowy to the model. However, in terms of
RV patients, the actual cumulative capacity wasvabwhat is obtained from the model. The
implication of the result is that the hospital cdwchieve the lead-time targets by providing
more capacity to FV patients and less capacity YopRtients, while maintaining the same total
capacity. In other words, the proposed model presithe most efficient and effective planned
capacity by systematically pushing and pulling®¢and FV patients’ appointments so that the
clinic can achieve the FV’s appointment lead-timegéts with the least maximum required

capacity.
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Fig. 4 The cumulative capacity of actual vs. model

As further look at the results we compare the mesuired capacity, the maximum
required capacity, and mean appointment lead-tifnthe proposed model and the actual plan.
Figure 5 shows that for the FV patients the meamiver of the required slots (135 slots per
week) from the model is slightly more than thahefactual provided slots (132 slots per week).
However, for the RV patients the mean number ofdhaired slots (352 slots per week) from
the model is much less than that provided (394 gdet week) from the actual plan. The mean
total number of the required slots from the modé7(slots per week) is less than that of the
provided slots from the actual plan (525 slots week) for both FV and RV patients. In general,
we can achieve the appointment lead-time targettsowt requiring the additional capacity.

No. of slots per week
600.0
500.0
400.0 -

: 300.0
1 200.0 -
100.0 -
0.0 -

Both FV and BV FV RV
mModel = Actual

Fig. 5 The mean required capacity of actual vs. model
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Fig. 6 The maximum required capacity of actual vs. model

Furthermore, Figure 6 shows that the maximum resplicapacity obtained from the
model is only 680 slots per week (14.5 full-timeieajent doctors) for both FV and RV patients.
This is less than values extracted from the acplah, 751 slots per week (17.8 full-time
equivalent doctors). This is evidence of the paaérftficacy of the model for capacity planning.
Since physicians are a scarce resource, the redi@ti required resources is significant.

We investigate the drivers for this improvementhveatdetailed study on the maximum
required capacity for each FV or RV patient typdeTresults (Figure 6) illustrate that the
maximum required capacities for each FV and RVemitiype from the proposed model are
actually 2 and 1.3 times, respectively, as mucthase from the actual plan. This suggests that
reasonable assignments or allocations of theseureges might vary from week to week to
accommodate the appointment schedules and to a&cthievappointment targets. The suggested
model can help to do this, by proactively adjusting appointments allocations for RV and FV
patients to minimize the maximum required numbghgsicians.

Finally, we observe that the model produces shodgpointment lead-times for the
newly arriving patients while still being able toamtain the continuity of treatments for RV
patients. The FV’'s mean appointment lead-time filoenmodel is 4.2 weeks. This is 35% lower
than the FV’'s mean appointment lead-time of thealgblan (6.4 weeks). A consequence is that
the appointment lead-times for the RV’'s patients mcreased. The mean lead-times of RV
patients from the model and the actual plan areaB8 16 weeks respectively. However, this
increase in lead-time does not violate the timest@mnts between treatments, and the continuity
of care is maintained.

From the above results, we can see that the prapos®lel provides a systematic view to
optimize the required capacity via the push-pulcha@mism, and can produce better capacity
plans than the actual practice.
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4.3. Sensitivity analysis

We now examine the sensitivity of the model's padiace measures to changes to the
appointment lead-time targets, to the restrictionRV’s mean appointment lead-time, and to the
discharge rates. We define in Table 4 our termiggloonventions for displaying and discussing
the findings.

Table 4Definition of signs

No. Sign Descriptions

1 i A negative correlation between the lead-time targetier a specifig
lead-time target category, and the measurement.

2 + A positive correlation between the lead-time targetder a specifig
lead-time target category, and the measurement.
The measurement’s value remains the same whilegaiguthe lead-

3 0 .
time target that belongs to the same category.

4 1 An indeterminate correlation.

4.3.1Sensitivity to changes of the appointment leaddime

We investigate the sensitivity of the maximum reducapacity, the mean required capacity,
FV’s mean appointment lead-time, and RV’s mean iappent lead-time when changing the
median, or the 95 percentile, or the 10Dpercentile of appointment lead-time target as \asl|
changing the restricted length of RV’'s mean appoarit lead-time. We performed numerical
experiments for 5 different sets of discharge rafi@s6 levels of the RV’'s mean lead-time, and
for 15 different sets of appointment lead-time &sgrefer to Appendix Al for the combinations
that were considered). Thus, we set up and sabve@ix 15= 45(test cases. The details of those
inputs and results are presented in Table 5.

We find that the maximum required capacity decreasewe increase an appointment
lead-time target for FV patients; this is not sugimg, but as expected. This finding is consistent
for all considered pairs of discharge rates for ¢ and RV patients. Similarly we find that the
maximum required capacity decreases as we incrédaseRV's mean appointment lead-time.
However, the maximum required capacity remains angbd with the change of the
appointment lead-time targets when the RV’'s meawiapment lead-time is large enough.

The mean required capacity is generally negatiwelyrelated or indeterminate with the
appointment lead-time targets, but not for all caseonsidered. When the RV’s mean
appointment lead-time is large enough, there isandéfinitive correlation pattern.

The mean appointment lead-time of the FV patiengositively correlated to median,
95" percentile, and 100th percentile of appointmeatiime targets in most of the cases. This
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trend may not exist when the restriction of meaud{gme for RV patients is large, as then the
model can have alternative optimal solutions, whidve different mean lead-times for FV
patients. Besides, increasing the RV's mean appent lead-time decreases the FV's mean
appointment lead-time; this trend is consistentdibsettings of the discharge rates.

We fit a regression model to these numerical redoltestimate the relationship between
the FV's mean appointment lead-time and the appwnt lead-time targets, u, v and w. In

equation (21) we provide the model wittbeing the estimate of the FV’s mean appointment
lead-time.

[ =0.5u + 0.45v + 0.05w (22)

The mean appointment lead-time of the RV patigmistéo be positively correlated with
the change of the restricted length for RV’'s appuoent lead-time. However, it remains
unchanged when the limit on the RV’s mean appoimtiead-time is small. This reinforces the
push- pull mechanism in assigning the FV and R\oagpments.
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Table 5 Summarization of sensitivity analysis to the changeappointment lead-times

Restriction  of Maximum required capacity] ~ Mean required capacity FV's mean appointment leady ~ RV's mean appointment
RV’s mean time lead-time
appointment | FV's discharge rate 038 038 05 07| 038 038 05 07| 0.38 038 05 07| 038 03§ 05 07
lead-time RV's dischargerate | 0.1 0.2 032 = 032 |01 02 032 032 |01 02 0372 032 |01 02 032 032
(weeks) Lead-time target
Median - - - - - - - - - 1) + + + + +/ 0 O 0 0 0
5 95" percentile - - - N . - N + + +| 0 O 0 0 0
100" percentile - - - - -1 1 1 1| + 4+ + + + 0 O 0 o
M edian - - - - - - - - - - + + + + + 0 0 0 0 0
10 95" percentile - - - - - - - -1 o+ o+ + + +| 0 O 0 0 d
100" percentile - - - T | - 1 1| + + + + 4+ 0 O 0 0
M edian - - - - - - - - - - + + + + + 0 0 0 0 0
16 95" percentile - - - - - - - -1 o+ o+ + + +| 0 O 0 0 d
100" percentile - - - - -1 - 1, 1| + o+ + + + 0 O 0 (o I«
Median - - - - 0 - - - - 1 + + + + 1 0 0 0 o a
20 95" percentile - - - -0 1 1 - 1 1| + o+ + + + 0 O 0 0
100" percentile - - - -0 1 - 1 1 1| + 4+ + + 1| 0 O 0 e
Median - 0 0 0 0 1 1 1 1 1 + + + 1 + € € - 1 L
25 95" percentile - - 0 0o o 1 1 1 1 1 o+ o+ + + 0+ 0 C 1 11
100" percentile - 0 0 0 0 1 1 1 1 1 + 1 1 + il ( ) 1 1 1
Median 0 0 0 0 0 0 - - 1 1 + + + 1 1 1 1 1 L
30 95" percentile -0 0 0, 0] 1 1 + 1 1 o+ o+ + + 4 1 1 1 11
100" percentile - 0 0 0 0 1 - 1 + 1 1 - 1 1 1 1 1 il

" These are the historical RV’s mean appointmert-teae and discharge rates at TTSH.
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4.3.2Sensitivity to changes of the discharge rates

In this part, we analyze the sensitivity of the maxn required capacity, the mean required
capacity, the FV’s mean appointment lead-time d@dRV’s mean appointment lead-time to the
changes to the discharge rates. The maximum redjgia@acity decreases when the discharge
rate increases. This pattern exists for changesoth FV’'s and RV’s discharge rates. However,
this negative correlation is not always true wheeasuring the mean required capacity. The
mean required capacity is not minimized by the hdace, when the discharge rate increases,
in order for the model to decrease the maximumiredwapacity, it might need to increase the
mean required capacity.

In terms of appointment lead-time, the change tfeeiFV’s or RV’s discharge rates
does not impact the general way of providing appoents to patients, specifically FV patients.
We find through the numerical results that the F¥ied RV's mean appointment lead-times
remain unchanged with changes of the dischargesrate

4.3.3Guidelines for scheduling an appointment

We implemented the numerical experiment with 4% skinputs corresponding with
450 runs, which are combined from different lewdlshe discharge rates, the RV’s mean lead-
time, and the appointment lead-time targets. Frévasé results we observe that the model
solution tends to set the appointment lead-timethefFV patients to one of the appointment
lead-time targets. That is, the optimal solutidans appointments for the FV patients to be with
lead times of u time-units (the median target)ydime-units (the 9% percentile target) or w
time-units (the 10D percentile target). Table 6 reports the percentte FV patients whose
appointments are set to one of the appointmentiigael targets. From 450 cases experimented,
a minimum 3%, mean 39%, median 47%, and maximumdQbe FV demands are assigned a
median appointment lead-time. Similarly, a minim8#, mean 37.4%, and maximum 45% of
the total number of FV demands are assigned"am@Scentile appointment lead-time.

Furthermore, the estimated value of FV’'s mean ampoént lead-timd, should
correspond to the MOH’s targets in any time-unitidg the model's period, when providing
appointments to FV patients. Hence, the schedufngatients’ requests needs not only to pay
attention to maintaining the satisfaction of the MI® appointment lead-time targets but to
preventing the risk of violation of the MOH’s appionent lead-time targets in a long term as
well.

Table 6Percentage of patients whose appointment leadsteme equal to one of appointment lead-time targets

Targets of patients’ appointment Percentage of patients (%)
lead-time Min Median | Max Mean
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Median 3.0 47.0 50.0 39.0
95th percentile 3.0 45.0 45.0 37.4
100th percentile 0.0 5.0 5.0 4.4

This finding implies that to achieve the appointmkrad-time targets, a scheduling
policy may focus just on these three appointmead-tene targets and the estimated value of
mean appointment lead-time for FV patients. Thisnsnteresting way of scheduling because it
not only enables easy control of the appointmeatiftme targets to plan capacity, but also
gives more fairness to all patients making requdsence, this scheduling approach should be
implemented in providing appointment dates to pasie

5. Discussions

We have proposed a mixed integer model to deterthmenaximum required capacity for the
re-entry system, with a specified accounting fa& #ppointment lead-time characteristics. The
proposed model minimizes the maximum required ¢gpabile achieving service targets on the
median, 95 percentile, and 100 percentile for the appointment lead-times for Fatignts and
satisfying the constraints on the revisit appoimnitriead-times.

With numerical experiments, we show that the pregamodel can provide systematic
capacity planning for the re-entry system at thetital level. The proposed model pushes and
pulls the appointments to minimize the maximumiredwapacity. This push-pull mechanism of
the proposed model is to delay the appointmengat@pts as long as possible without violating
the FV’'s appointment lead-time targets and the R¥ppointment lead-time constraints.
Regardless of how the system pushes and pulls gpheiraments to optimize the required
capacity, one of the appointment lead-time targdisuld be the appointment lead-time for FV
patients’ requests and the estimated value of Fvean appointment lead-time should be within
the MOH targets in any time-unit during the modelésiod. However, there is no specific trend
in scheduling the appointments of RV patients. dfoee, a deeper investigation on the
scheduling of RV patients is encouraged.

We conducted a sensitivity analysis to understaowl the maximum required capacity,
the mean required capacity, the FV’s mean appointnead-time, and the RV’'s mean
appointment lead-time are affected by changes ® dppointment lead-time targets, the
discharge rates, and the restriction of RV's meppantment lead-time.

- The maximum required capacity is negatively coteglawith the appointment lead-

time targets, the discharge rates, and the restrictf RV’'s mean appointment lead-

time. However, this is not always true for the meaguired capacity measure.
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- The FV's mean appointment lead-time is positivelgrrelated with the FV’s
appointment lead-time targets. However, the RV’sameppointment lead-time
generally increases with increases in the restncon the RV’s mean appointment
lead-time, until the latter becomes very large.

- Changing the discharge rates does not have mucacingm the determination of the
FV patient’s appointment.

The proposed model does not guarantee that thé amt@unt of required capacity is
minimized because it optimizes only the maximumired| capacity. This shortcoming might be
addressed by adopting multiple objectives in plagrthe capacity. The study is limited by the
consideration of a single category of patients,vidnich all patients have the same consultation
times, the same FV appointment lead-time targkeéssame restrictions of RV appointment lead-
time, and the same discharge rates factors. Faesys with different categories of patients, we
could develop an extension to the model. Furtheemee do not consider any uncertainty due
to randomness in the arrival demands, or discha@es, or no-show rates, in the proposed
model. Consequently, the model may prescribe aerestimate to the capacity needed, in light
of these uncertainties. Future research should éxanmow to account for multiple patient
categories and the uncertainties in modeling angmheining the required capacity.

6. Conclusions

In this study, we develop a mixed integer progrartoraptimize the maximum required capacity
for outpatient clinics which are characterized asrexentry system. The service targets of
median, 9% percentile, and 100 percentile for patient appointment lead-times were
investigated. Given the estimated FV arrival densaadd the current FV and RV patients, and
an appointment lead-time policy, we obtain an optiplanned capacity from the model. Then,
the proposed guidelines for scheduling an individoatient’ appointment are carried out to
manage the service targets. The study found thexretis a strong relationship between the
service targets and how appointments are plannedhi® FV patients. In addition, we examine
the sensitivity of the maximum required capacity mean required capacity, the FV’'s mean
appointment lead-time, and the RV’s mean appointresad-time to changes to the service
targets, the discharge rates, and the restrictedjte for RV’'s mean lead-time.

The assumptions of unified and deterministic atridamands for FV patients, and
identical discharge and no-show rates are arguaklstrictive, and could limit the applicability
of the model in a variety of scenarios. We expeat the required capacity obtained from the
proposed model may underestimate what is needesl taypossible uncertainties in reality.
Hence, to enhance the applicability of the propasgporoach, future work should explore how to
extend the model and its analysis to allow for ipldtpatient categories as well as uncertainties
in arrivals, and in the patient’s consultation timy@o-show behavior and discharge rates.
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Appendix

Appendix Al Sets of the appointment lead-time targets

No L ead-time category Appointment lead-time tar gets (weeks)
changed Median | 95" percentile | 100" percentile
1 1 6 9
2 2 6 9
3 Median 3 6 9
4 4 6 9
5 5 6 9
6 2 3 9
7 2 4 9
9% 95" per centile ; g g
10 2 7 9
11 2 8 9
12 2 6 7
13 2 6 8
1;:.) 100™ per centile 22 % 190
16 2 6 11
17 2 6 12

"The same cases are presented for the purpose sifisiéy analysis
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