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Neuroscience has focused on the detailed implementation of computation, studying

neural codes, dynamics and circuits. In machine learning, however, artificial neural

networks tend to eschew precisely designed codes, dynamics or circuits in favor of

brute force optimization of a cost function, often using simple and relatively uniform

initial architectures. Two recent developments have emerged within machine learning

that create an opportunity to connect these seemingly divergent perspectives. First,

structured architectures are used, including dedicated systems for attention, recursion

and various forms of short- and long-term memory storage. Second, cost functions and

training procedures have become more complex and are varied across layers and over

time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the

brain optimizes cost functions, (2) the cost functions are diverse and differ across brain

locations and over development, and (3) optimization operates within a pre-structured

architecture matched to the computational problems posed by behavior. In support

of these hypotheses, we argue that a range of implementations of credit assignment

through multiple layers of neurons are compatible with our current knowledge of neural

circuitry, and that the brain’s specialized systems can be interpreted as enabling efficient

optimization for specific problem classes. Such a heterogeneously optimized system,

enabled by a series of interacting cost functions, serves to make learning data-efficient

and precisely targeted to the needs of the organism. We suggest directions by which

neuroscience could seek to refine and test these hypotheses.

Keywords: cost functions, neural networks, neuroscience, cognitive architecture

1. INTRODUCTION

Machine learning and neuroscience speak different languages today. Brain science has discovered
a dazzling array of brain areas (Solari and Stoner, 2011), cell types, molecules, cellular states,
and mechanisms for computation and information storage. Machine learning, in contrast, has
largely focused on instantiations of a single principle: function optimization. It has found that
simple optimization objectives, like minimizing classification error, can lead to the formation of
rich internal representations and powerful algorithmic capabilities in multilayer and recurrent
networks (LeCun et al., 2015; Schmidhuber, 2015). Here we seek to connect these perspectives.

The artificial neural networks now prominent in machine learning were, of course, originally
inspired by neuroscience (McCulloch and Pitts, 1943). While neuroscience has continued to play
a role (Cox and Dean, 2014), many of the major developments were guided by insights into the
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mathematics of efficient optimization, rather than neuroscientific
findings (Sutskever and Martens, 2013). The field has
advanced from simple linear systems (Minsky and Papert,
1972), to nonlinear networks (Haykin, 1994), to deep and
recurrent networks (LeCun et al., 2015; Schmidhuber, 2015).
Backpropagation of error (Werbos, 1974, 1982; Rumelhart
et al., 1986) enabled neural networks to be trained efficiently,
by providing an efficient means to compute the gradient with
respect to the weights of a multi-layer network. Methods of
training have improved to include momentum terms, better
weight initializations, conjugate gradients and so forth, evolving
to the current breed of networks optimized using batch-wise
stochastic gradient descent. These developments have little
obvious connection to neuroscience.

We will argue here, however, that neuroscience and machine
learning are again ripe for convergence. Three aspects of machine
learning are particularly important in the context of this paper.
First, machine learning has focused on the optimization of cost
functions (Figure 1A).

Second, recent work in machine learning has started
to introduce complex cost functions, those that are not
uniform across layers and time, and those that arise from
interactions between different parts of a network. For example,
introducing the objective of temporal coherence for lower
layers (non-uniform cost function over space) improves feature
learning (Sermanet and Kavukcuoglu, 2013), cost function
schedules (non-uniform cost function over time) improve1

generalization (Saxe et al., 2013; Goodfellow et al., 2014b;
Gülçehre and Bengio, 2016) and adversarial networks—an
example of a cost function arising from internal interactions—
allow gradient-based training of generative models (Goodfellow
et al., 2014a)2. Networks that are easier to train are being used to
provide “hints” to help bootstrap the training of more powerful
networks (Romero et al., 2014).

Third, machine learning has also begun to diversify
the architectures that are subject to optimization. It has
introduced simple memory cells with multiple persistent
states (Hochreiter and Schmidhuber, 1997; Chung et al., 2014),
more complex elementary units such as “capsules” and other
structures (Delalleau and Bengio, 2011; Hinton et al., 2011;
Tang et al., 2012; Livni et al., 2013), content addressable (Graves
et al., 2014; Weston et al., 2014) and location addressable
memories (Graves et al., 2014), as well as pointers (Kurach et al.,
2015) and hard-coded arithmetic operations (Neelakantan et al.,
2015).

These three ideas have, so far, not received much attention in
neuroscience. We thus formulate these ideas as three hypotheses
about the brain, examine evidence for them, and sketch how
experiments could test them. But first, let us state the hypotheses
more precisely.

1Hyper-parameter optimization shows that complicated schedules of training,
which differ across parts of the network, lead to optimal performance (Maclaurin
et al., 2015).
2In adversarial networks, a generator network is trained to fool a discriminator
network into being unable to distinguish generated samples from real data samples,
while the discriminator network is trained to prevent the generator network from
fooling it in this way.

1.1. Hypothesis 1 – The Brain Optimizes
Cost Functions
The central hypothesis for linking the two fields is that biological
systems, like many machine-learning systems, are able to
optimize cost functions. The idea of cost functions means that
neurons in a brain area can somehow change their properties,
e.g., the properties of their synapses, so that they get better at
doing whatever the cost function defines as their role. Human
behavior sometimes approaches optimality in a domain, e.g.,
during movement (Körding, 2007), which suggests that the
brain may have learned optimal strategies. Subjects minimize
energy consumption of their movement system (Taylor and
Faisal, 2011), and minimize risk and damage to their body, while
maximizing financial and movement gains. Computationally,
we now know that optimization of trajectories gives rise to
elegant solutions for very complex motor tasks (Harris and
Wolpert, 1998; Todorov and Jordan, 2002; Mordatch et al., 2012).
We suggest that cost function optimization occurs much more
generally in shaping the internal representations and processes
used by the brain. Importantly, we also suggest that this requires
the brain to have mechanisms for efficient credit assignment in
multilayer and recurrent networks.

1.2. Hypothesis 2 – Cost Functions Are
Diverse across Areas and Change over
Development
A second realization is that cost functions need not be global.
Neurons in different brain areas may optimize different things,
e.g., the mean squared error of movements, surprise in a visual
stimulus, or the allocation of attention. Importantly, such a cost
function could be locally generated. For example, neurons could
locally evaluate the quality of their statistical model of their inputs
(Figure 1B). Alternatively, cost functions for one area could be
generated by another area. Moreover, cost functions may change
over time, e.g., guiding young humans to understanding simple
visual contrasts early on, and faces a bit later3. This could allow
the developing brain to bootstrap more complex knowledge
based on simpler knowledge. Cost functions in the brain are likely
to be complex and to be arranged to vary across areas and over
development.

1.3. Hypothesis 3 – Specialized Systems
Allow Efficient Solution of Key
Computational Problems
A third realization is that structure matters. The patterns
of information flow seem fundamentally different across
brain areas, suggesting that they solve distinct computational
problems. Some brain areas are highly recurrent, perhaps
making them predestined for short-termmemory storage (Wang,
2012). Some areas contain cell types that can switch between
qualitatively different states of activation, such as a persistent
firing mode vs. a transient firing mode, in response to
particular neurotransmitters (Hasselmo, 2006). Other areas, like

3Psychologists have been quantifying the subtleties of many such developmental
stagings, e.g., of our perceptual and motor performance, e.g., Nardini et al. (2010),
Dekker and Nardini (2015), and McKone et al. (2009).
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FIGURE 1 | Putative differences between conventional and brain-like neural network designs. (A) In conventional deep learning, supervised training is based

on externally-supplied, labeled data. (B) In the brain, supervised training of networks can still occur via gradient descent on an error signal, but this error signal must

arise from internally generated cost functions. These cost functions are themselves computed by neural modules specified by both genetics and learning. Internally

generated cost functions create heuristics that are used to bootstrap more complex learning. For example, an area which recognizes faces might first be trained to

detect faces using simple heuristics, like the presence of two dots above a line, and then further trained to discriminate salient facial expressions using representations

arising from unsupervised learning and error signals from other brain areas related to social reward processing. (C) Internally generated cost functions and error-driven

training of cortical deep networks form part of a larger architecture containing several specialized systems. Although the trainable cortical areas are schematized as

feedforward neural networks here, LSTMs or other types of recurrent networks may be a more accurate analogy, and many neuronal and network properties such as

spiking, dendritic computation, neuromodulation, adaptation and homeostatic plasticity, timing-dependent plasticity, direct electrical connections, transient synaptic

dynamics, excitatory/inhibitory balance, spontaneous oscillatory activity, axonal conduction delays (Izhikevich, 2006) and others, will influence what and how such

networks learn.

the thalamus appear to have the information from other areas
flowing through them, perhaps allowing them to determine
information routing (Sherman, 2005). Areas like the basal ganglia
are involved in reinforcement learning and gating of discrete
decisions (Doya, 1999; Sejnowski and Poizner, 2014). As every
programmer knows, specialized algorithms matter for efficient
solutions to computational problems, and the brain is likely to
make good use of such specialization (Figure 1C).

These ideas are inspired by recent advances in machine
learning, but we also propose that the brain has major differences
from any of today’s machine learning techniques. In particular,
the world gives us a relatively limited amount of information
that we could use for supervised learning (Fodor and Crowther,
2002). There is a huge amount of information available for
unsupervised learning, but there is no reason to assume that a
generic unsupervised algorithm, no matter how powerful, would
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learn the precise things that humans need to know, in the order
that they need to know it. The evolutionary challenge of making
unsupervised learning solve the “right” problems is, therefore, to
find a sequence of cost functions that will deterministically build
circuits and behaviors according to prescribed developmental
stages, so that in the end a relatively small amount of information
suffices to produce the right behavior. For example, a developing
duck imprints (Tinbergen, 1965) a template of its parent, and
then uses that template to generate goal-targets that help it
develop other skills like foraging.

Generalizing from this and from other studies (Minsky,
1977; Ullman et al., 2012), we propose that many of the
brain’s cost functions arise from such an internal bootstrapping
process. Indeed, we propose that biological development and
reinforcement learning can, in effect, program the emergence
of a sequence of cost functions that precisely anticipates the
future needs faced by the brain’s internal subsystems, as well
as by the organism as a whole. This type of developmentally
programmed bootstrapping generates an internal infrastructure
of cost functions which is diverse and complex, while simplifying
the learning problems faced by the brain’s internal processes.
Beyond simple tasks like familial imprinting, this type of
bootstrapping could extend to higher cognition, e.g., internally
generated cost functions could train a developing brain to
properly access its memory or to organize its actions in ways
that will prove to be useful later on. The potential bootstrapping
mechanisms that we will consider operate in the context of
unsupervised and reinforcement learning, and go well beyond
the types of curriculum learning ideas used in today’s machine
learning (Bengio et al., 2009).

In the rest of this paper, we will elaborate on these hypotheses.
First, we will argue that both local and multi-layer optimization
is, perhaps surprisingly, compatible with what we know about
the brain. Second, we will argue that cost functions differ across
brain areas and change over time and describe how cost functions
interacting in an orchestrated way could allow bootstrapping of
complex function. Third, we will list a broad set of specialized
problems that need to be solved by neural computation, and
the brain areas that have structure that seems to be matched
to a particular computational problem. We then discuss some
implications of the above hypotheses for research approaches
in neuroscience and machine learning, and sketch a set of
experiments to test these hypotheses. Finally, we discuss this
architecture from the perspective of evolution.

2. THE BRAIN CAN OPTIMIZE COST
FUNCTIONS

Much of machine learning is based on efficiently optimizing
functions, and, as we will detail below, the ability to use
backpropagation of error (Werbos, 1974; Rumelhart et al., 1986)
to calculate gradients of arbitrary parametrized functions has
been a key breakthrough. In Hypothesis 1, we claim that
the brain is also, at least in part4, an optimization machine.

4Our point in this section will not be that all learning in the brain can be
captured by cost function optimization, but rather, somewhat more narrowly,

But what exactly does it mean to say that the brain can
optimize cost functions? After all, many processes can be
viewed as optimizations. For example, the laws of physics
are often viewed as minimizing an action functional, while
evolution optimizes the fitness of replicators over a long
timescale. To be clear, our main claims are: that (a) the
brain has powerful mechanisms for credit assignment during
learning that allow it to optimize global functions in multi-
layer networks by adjusting the properties of each neuron to
contribute to the global outcome, and that (b) the brain has
mechanisms to specify exactly which cost functions it subjects
its networks to, i.e., that the cost functions are highly tunable,
shaped by evolution and matched to the animal’s ethological
needs. Thus, the brain uses cost functions as a key driving
force of its development, much as modern machine learning
systems do.

To understand the basis of these claims, we must now
delve into the details of how the brain might efficiently
perform credit assignment throughout large, multi-layered
networks, in order to optimize complex functions. We argue
that the brain uses several different types of optimization
to solve distinct problems. In some structures, it may use
genetic pre-specification of circuits for problems that require
only limited learning based on data, or it may exploit local
optimization to avoid the need to assign credit through many
layers of neurons. It may also use a host of proposed circuit
structures that would allow it to actually perform, in effect,
backpropagation of errors through a multi-layer network, using
biologically realistic mechanisms—a feat that had once been
widely believed to be biologically implausible (Crick, 1989; Stork,
1989). Potential such mechanisms include circuits that literally
backpropagate error derivatives in the manner of conventional
backpropagation, as well as circuits that provide other efficient
means of approximating the effects of backpropagation, i.e.,
of rapidly computing the approximate gradient of a cost
function relative to any given connection weight in the network.
Lastly, the brain may use algorithms that exploit specific
aspects of neurophysiology—such as spike timing dependent
plasticity, dendritic computation, local excitatory-inhibitory
networks, or other properties—as well as the integrated nature
of higher-level brain systems. Such mechanisms promise to
allow learning capabilities that go even beyond those of current
backpropagation networks.

our claim is that the algorithms for optimization like backpropagation in deep
learning may have correspondences in biological brains. We feel that it is an
important task for neuroscience to determine whether and how brains implement
these algorithms. The brain may also disclose dynamics that are unlike these
algorithms, so we are not disclaiming the possibility of broader theories. In
machine learning, many useful algorithms are not explicitly formulated as cost
function optimization; for example, many algorithms are based on linear algebra
procedures like singular value decomposition, rather than explicit optimization.
Such methods can be made nonlinear by using nonlinear kernels—relatedly, some
brain circuits run specialized computations using fixed nonlinear basis functions
(e.g., in cerebellum). Moreover, while an implicit cost function can be attributed
to account for many dynamical processes, as well as many popular learning
algorithms, our claim is not merely that the brain uses other learning procedures
that lead to solutions which implicitly minimize a cost function, but rather that it
actually finds its solutions by performing a powerful form of optimization as such.
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2.1. Local Self-organization and
Optimization without Multi-layer Credit
Assignment
Not all learning requires a general-purpose optimization
mechanism like gradient descent5. Many theories of
cortex (George and Hawkins, 2009; Kappel et al., 2014)
emphasize potential self-organizing and unsupervised
learning properties that may obviate the need for multi-
layer backpropagation as such. Hebbian plasticity, which
adjusts weights according to correlations in pre-synaptic and
post-synaptic activity, is well established6. Various versions
of Hebbian plasticity (Miller and MacKay, 1994), e.g., with
nonlinearities (Brito and Gerstner, 2016), can give rise to
different forms of correlation and competition between neurons,
leading to the self-organized formation of ocular dominance
columns, self-organizing maps and orientation columns (Miller
et al., 1989; Ferster and Miller, 2000). Often these types of
local self-organization can also be viewed as optimizing a cost
function: for example, certain forms of Hebbian plasticity
can be viewed as extracting the principal components of the
input, which minimizes a reconstruction error (Pehlevan and
Chklovskii, 2015).

To generate complex temporal patterns, the brain may also
implement other forms of learning that do not require any
equivalent of full backpropagation through a multilayer network.
For example, “liquid-” (Maass et al., 2002) or “echo-state
machines” (Jaeger and Haas, 2004) are randomly connected
recurrent networks that form a basis set (also known as a
“reservoir”) of random filters, which can be harnessed for
learning with tunable readout weights. Variants exhibiting
chaotic, spontaneous dynamics can even be trained by feeding
back readouts into the network and suppressing the chaotic
activity (Sussillo and Abbott, 2009). Learning only the readout
layer makes the optimization problem much simpler (indeed,
equivalent to regression for supervised learning). Additionally,
echo state networks can be trained by reinforcement learning as
well as supervised learning (Bush, 2007; Hoerzer et al., 2014).
Reservoirs of random nonlinear filters are one interpretation
of the diverse, high-dimensional, mixed-selectivity tuning
properties of many neurons, e.g., in the prefrontal cortex (Enel
et al., 2016). Other variants of learning rules that modify only
a fraction of the synapses inside a random network are being

5Of course, some circuits may also be heavily genetically pre-specified to minimize
the burden on learning. For instance, particular cell adhesion molecules (Hattori
et al., 2007) expressed on particular parts of particular neurons defined by a genetic
cell type (Zeisel et al., 2015), and the detailed shapes and placements of neuronal
arbors, may constrain connectivity in some cases, though in other cases local
connectivity is thought to be only weakly constrained (Kalisman et al., 2005).
Genetics is sufficient to specify complex circuits involving hundreds of neurons,
such as central pattern generators (Yuste et al., 2005) which create complex self-
stabilizing oscillations, or the entire nervous systems of small worms. Genetically
guided wiring should not be thought of as fixed “hard-wiring” but rather as
a programmatic construction process that can also accept external inputs and
interact with learning mechanisms (Marcus, 2004).
6Hebbian plasticity even has a well-understood biological basis in the form of the
NMDA receptors, which are activated by the simultaneous occurrence of chemical
transmitter delivered from the pre-synaptic neuron, and voltage depolarization of
the post-synaptic neuron.

developed as models of biological workingmemory and sequence
generation (Rajan et al., 2016).

2.2. Biological Implementation of
Optimization
We argue that the above mechanisms of local self-organization
are likely insufficient to account for the brain’s powerful learning
performance (Brea and Gerstner, 2016). To elaborate on the
need for an efficient means of gradient computation in the
brain, we will first place backpropagation into its computational
context (Hinton, 1989; Baldi and Sadowski, 2015). Then we will
explain how the brain could plausibly implement approximations
of gradient descent.

2.2.1. The Need for Efficient Gradient Descent in

Multi-layer Networks
The simplest mechanism to perform cost function optimization
is sometimes known as the “twiddle” algorithm or, more
technically, as “serial perturbation.” This mechanism works
by perturbing (i.e., “twiddling”), with a small increment, a
single weight in the network, and verifying improvement by
measuring whether the cost function has decreased compared
to the network’s performance with the weight unperturbed. If
improvement is noticeable, the perturbation is used as a direction
of change to the weight; otherwise, the weight is changed in the
opposite direction (or not changed at all). Serial perturbation is
therefore a method of “coordinate descent” on the cost, but it is
slow and requires global coordination: each synapse in turn is
perturbed while others remain fixed.

Weight perturbation (or parallel perturbation) perturbs all
of the weights in the network at once. It is able to optimize
small networks to perform tasks but generally suffers from high
variance. That is, the measurement of the gradient direction is
noisy and changes drastically from perturbation to perturbation
because a weight’s influence on the cost is masked by the changes
of all other weights, and there is only one scalar feedback
signal indicating the change in the cost7. Weight perturbation is
dramatically inefficient for large networks. In fact, parallel and
serial perturbation learn at approximately the same rate if the
timemeasure counts the number of times the network propagates
information from input to output (Werfel et al., 2005).

Some efficiency gain can be achieved by perturbing neural
activities instead of synaptic weights, acknowledging the fact that
any long-range effect of a synapse is mediated through a neuron.
Like weight perturbation and unlike serial perturbation, minimal
global coordination is needed: each neuron only needs to receive
a feedback signal indicating the global cost. The variance of node
perturbation’s gradient estimate is far smaller than that of weight
perturbation under the assumptions that either all neurons or all
weights, respectively, are perturbed and that they are perturbed
at the same frequency. In this case, node perturbation’s variance
is proportional to the number of cells in the network, not the
number of synapses.

7The variance can be mitigated by averaging out many perturbations before
making a change to the baseline value of the weights, but this would take significant
time for a network of non-trivial size as the variance of weight perturbation’s
estimates scales in proportion to the number of synapses in the network.
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All of these approaches are slow either due to the time
needed for serial iteration over all weights or the time needed
for averaging over low signal-to-noise ratio gradient estimates.
To their credit however, none of these approaches requires more
than knowledge of local activities and the single global cost signal.
Real neural circuits in the brain have mechanisms (e.g., diffusible
neuromodulators) that appear to code the signals relevant to
implementing those algorithms. In many cases, for example in
reinforcement learning, the cost function, which is computed
based on interaction with an unknown environment, cannot be
differentiated directly, and an agent has no choice but to deploy
clever twiddling to explore at some level of the system (Williams,
1992).

Backpropagation, in contrast, works by computing the
sensitivity of the cost function to each weight based on the layered
structure of the system. The derivatives of the cost function with
respect to the last layer can be used to compute the derivatives
of the cost function with respect to the penultimate layer, and
so on, all the way down to the earliest layers8. Backpropagation
can be computed rapidly, and for a single input-output pattern, it
exhibits no variance in its gradient estimate. The backpropagated
gradient has no more noise for a large system than for a small
system, so deep and wide architectures with great computational
power can be trained efficiently.

2.2.2. Biologically Plausible Approximations of

Gradient Descent
To permit biological learning with efficiency approaching
that of machine learning methods, some provision for more
sophisticated gradient propagation may be suspected. Contrary
to what was once a common assumption, there are now
many proposed “biologically plausible” mechanisms by which a
neural circuit could implement optimization algorithms that, like
backpropagation, can efficiently make use of the gradient. These
include Generalized Recirculation (O’Reilly, 1996), Contrastive
Hebbian Learning (Xie and Seung, 2003), random feedback
weights together with synaptic homeostasis (Lillicrap et al.,
2014; Liao et al., 2015), spike timing dependent plasticity
(STDP) with iterative inference and target propagation (Bengio
et al., 2015a; Scellier and Bengio, 2016), complex neurons with
backpropagating action-potentials (Körding and König, 2000),
and others (Balduzzi et al., 2014). While these mechanisms differ
in detail, they all invoke feedback connections that carry error
phasically. Learning occurs by comparing a prediction with a
target, and the prediction error is used to drive top-down changes
in bottom-up activity.

As an example, consider O’Reilly’s temporally eXtended
Contrastive Attractor Learning (XCAL) algorithm (O’Reilly et al.,
2012, 2014b). Suppose we have a multilayer neural network
with an input layer, an output layer, and a set of hidden
layers in between. O’Reilly showed that the same functionality
as backpropagation can be implemented by a bidirectional
network with the same weights but symmetric connections.
After computing the outputs using the forward connections

8If the error derivatives of the cost function with respect to the last layer of unit
activities are unknown, then they can be replaced with node-perturbation-like
correlations, as is common in reinforcement learning.

only, we set the output neurons to the values they should have.
The dynamics of the network then cause the hidden layers’
activities to evolve toward a stable attractor state linking input to
output. The XCAL algorithm performs a type of local modified
Hebbian learning at each synapse in the network during this
process (O’Reilly et al., 2012). The XCAL Hebbian learning rule
compares the local synaptic activity (pre x post) during the
early phase of this settling (before the attractor state is reached)
to the final phase (once the attractor state has been reached),
and adjusts the weights in a way that should make the early
phase reflect the later phase more closely. These contrastive
Hebbian learning methods even work when the connection
weights are not precisely symmetric (O’Reilly, 1996). XCAL has
been implemented in biologically plausible conductance-based
neurons and basically implements the backpropagation of error
approach.

Approximations to backpropagation could also be enabled by
the millisecond-scale timing of of neural activities (O’Reilly et al.,
2014b). Spike timing dependent plasticity (STDP) (Markram
et al., 1997), for example, is a feature of some neurons in
which the sign of the synaptic weight change depends on
the precise millisecond-scale relative timing of pre-synaptic
and post-synaptic spikes. This is conventionally interpreted as
Hebbian plasticity that measures the potential for a causal
relationship between the pre-synaptic and post-synaptic spikes:
a pre-synaptic spike could have contributed to causing a
post-synaptic spike only if it occurs shortly beforehand9. To
enable a backpropagation mechanism, Hinton has suggested an
alternative interpretation: that neurons could encode the types
of error derivatives needed for backpropagation in the temporal
derivatives of their firing rates (Hinton, 2007, 2016). STDP then
corresponds to a learning rule that is sensitive to these error
derivatives (Xie and Seung, 2000; Bengio et al., 2015b). In other
words, in an appropriate network context, STDP learning could
give rise to a biological implementation of backpropagation10.

9Interestingly, STDP is not a unitary phenomenon, but rather a diverse collection
of different rules with different timescales and temporal asymmetries (Sjöström
and Gerstner, 2010; Mishra et al., 2016). Effects include STDP with the inverse
temporal asymmetry, symmetric STDP and STDP with different temporal window
sizes. STDP is also frequency dependent, which can be explained by rules that
depend on triplets rather than pairs of spikes (Pfister and Gerstner, 2006).
In some cortical neurons, STDP even switches its sign as the synapse moves
away from the neuron’s soma into the dendritic tree (Letzkus et al., 2006).
While STDP is often included explicitly in models, biophysical derivations of
STDP from various underlying phenomena are also being attempted, some
of which involve the post-synaptic voltage (Clopath and Gerstner, 2010) or a
local dendritic voltage (Urbanczik and Senn, 2014). Meanwhile, other theories
suggest that STDP may enable the use of precise timing codes based on
temporal coincidence of inputs, the generation and unsupervised learning of
temporal sequences (Abbott and Blum, 1996; Fiete et al., 2010), enhancements
to distal reward processing in reinforcement learning (Izhikevich, 2007),
stabilization of neural responses (Kempter et al., 2001), or many other higher-level
properties (Nessler et al., 2013; Kappel et al., 2014).
10Hinton has suggested (Hinton, 2007, 2016) that this could take place in
the context of autoencoders and recirculation (Hinton and McClelland, 1988).
Bengio and colleagues have proposed (Bengio, 2014; Bengio and Fischer, 2015;
Scellier and Bengio, 2016) another context in which the connection between
STDP and plasticity rules that depend on the temporal derivative of the post-
synaptic firing rate can be exploited for biologically plausible multilayer credit
assignment. This setting relies on clamping of outputs and stochastic relaxation in
energy-based models (Ackley et al., 1958), which leads to a continuous network
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Another possible mechanism, by which biological neural
networks could approximate backpropagation, is “feedback
alignment” (Lillicrap et al., 2014; Liao et al., 2015). There,
the feedback pathway in backpropagation, by which error
derivatives at a layer are computed from error derivatives
at the subsequent layer, is replaced by a set of random
feedback connections, with no dependence on the forward
weights. Subject to the existence of a synaptic normalization
mechanism and approximate sign-concordance between the
feedforward and feedback connections (Liao et al., 2015), this
mechanism of computing error derivatives works nearly as well
as backpropagation on a variety of tasks. In effect, the forward
weights are able to adapt to bring the network into a regime
in which the random backwards weights actually carry the
information that is useful for approximating the gradient. This
is a remarkable and surprising finding, and is indicative of the
fact that our understanding of gradient descent optimization,
and specifically of the mechanisms by which backpropagation
itself functions, are still incomplete. In neuroscience, meanwhile,
we find feedback connections almost wherever we find feed-
forward connections, and their role is the subject of diverse
theories (Callaway, 2004; Maass et al., 2007). It should be noted
that feedback alignment as such does not specify exactly how
neurons represent and make use of the error signals; it only
relaxes a constraint on the transport of the error signals. Thus,
feedback alignment is more a primitive that can be used in fully
biological (approximate) implementations of backpropagation,
than a fully biological implementation in its own right. As such, it
may be possible to incorporate it into several of the other schemes
discussed here.

The above “biological” implementations of backpropagation
still lack some key aspects of biological realism. For example,
in the brain, neurons tend to be either excitatory or inhibitory
but not both, whereas in artificial neural networks a single
neuron may send both excitatory and inhibitory signals to its
downstream neurons. Fortunately, this constraint is unlikely to
limit the functions that can be learned (Parisien et al., 2008;
Tripp and Eliasmith, 2016). Other biological considerations,
however, need to be looked at in more detail: the highly recurrent
nature of biological neural networks, which show rich dynamics
in time, and the fact that most neurons in mammalian brains
communicate via spikes. We now consider these two issues in
turn.

2.2.2.1. Temporal credit assignment:
The biological implementations of backpropagation proposed
above, while applicable to feedforward networks, do not give
a natural implementation of “backpropagation through time”
(BPTT) (Werbos, 1990) for recurrent networks, which is widely
used in machine learning for training recurrent networks
on sequential processing tasks. BPTT “unfolds” a recurrent

dynamics (Hopfield, 1984) in which hidden units are perturbed toward target
values (Bengio and Fischer, 2015), loosely similar to that which occurs in XCAL.
This dynamics then allows the STDP-based rule to correspond to gradient descent
on the energy function with respect to the weights (Scellier and Bengio, 2016). This
scheme requires symmetric weights, but in an autoencoder context, Bengio notes
that these can arise spontaneously (Arora et al., 2015).

network across multiple discrete time steps and then runs
backpropagation on the unfolded network to assign credit to
particular units at particular time steps11. While the network
unfolding procedure of BPTT itself does not seem biologically
plausible, to our intuition, it is unclear to what extent temporal
credit assignment is truly needed (Ollivier and Charpiat, 2015)
for learning particular temporally extended tasks.

If the system is given access to appropriate memory
stores and representations (Buonomano and Merzenich, 1995;
Gershman et al., 2012, 2014) of temporal context, this could
potentially mitigate the need for temporal credit assignment
as such—in effect, memory systems could “spatialize” the
problem of temporal credit assignment12. For example, memory
networks (Weston et al., 2014) store everything by default
up to a certain buffer size, eliminating the need to perform
credit assignment over the write-to-memory events, such that
the network only needs to perform credit assignment over the
read-from-memory events. In another example, certain network
architectures that are superficially very deep, but which possess
particular types of “skip connections,” can actually be seen as
ensembles of comparatively shallow networks (Veit et al., 2016);
applied in the time domain, this could limit the need to propagate
errors far backwards in time. Other, similar specializations or
higher-levels of structure could, potentially, further ease the
burden on credit assignment.

Can generic recurrent networks perform temporal credit
assignment in in a way that is more biologically plausible
than BPTT? Indeed, new discoveries are being made about the
capacity for supervised learning in continuous-time recurrent
networks with more realistic synapses and neural integration
properties. In internal FORCE learning (Sussillo and Abbott,
2009), internally generated random fluctuations inside a chaotic
recurrent network are adjusted to provide feedback signals that
drive weight changes internal to the network while the outputs
are clamped to desired patterns. This is made possible by a
learning procedure that rapidly adjusts the network output to
a state where it is close to the clamped values, and exerts
continuous control to keep this difference small throughout the
learning process13. This procedure is able to control and exploit
the chaotic dynamical patterns that are spontaneously generated
by the network.

Werbos has proposed in his “error critic” that an online
approximation to BPTT can be achieved by learning to predict
the backward-through-time gradient signal (costate) in a manner
analogous to the prediction of value functions in reinforcement

11Even BPTT has arguably not been completely successful in recurrent networks.
The problems of vanishing and exploding gradients led to long short termmemory
networks with gated memory units. An alternative is to use optimization methods
that go beyond first order derivatives (Martens and Sutskever, 2011). This suggests
the need for specialized systems and structures in the brain to mitigate problems
of temporal credit assignment.
12Interestingly, the hippocampus seems to “time stamp” memories by encoding
them into ensembles with cellular compositions and activity patterns that change
gradually as a function of time on the scale of days (Rubin et al., 2015; Cai et al.,
2016), and may use “time cells” to mark temporal positions within episodes on a
timescale of seconds (Kraus et al., 2013).
13Control theory concepts also appear to be useful for simplifying optimization
problems in certain other settings (Todorov, 2009; Hennequin et al., 2014).
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learning (Werbos and Si, 2004). This kind of idea was recently
applied in (Jaderberg et al., 2016) to allow decoupling of
different parts of a network during training and to facilitate
backpropagation through time. Broadly, we are only beginning
to understand how neural activity can itself represent the
time variable (Xu et al., 2014; Finnerty et al., 2015)14, and
how recurrent networks can learn to generate trajectories of
population activity over time (Liu and Buonomano, 2009).
Moreover, as we discuss below, a number of cortical models
also propose means, other than BPTT, by which networks could
be trained on sequential prediction tasks, even in an online
fashion (O’Reilly et al., 2014b; Cui et al., 2015; Brea et al., 2016).
A broad range of ideas can be used to approximate BPTT inmore
realistic ways.

2.2.2.2. Spiking networks:
It has been difficult to apply gradient descent learning
directly to spiking neural networks15,16, although there do
exist learning rules for doing so in specific representational
contexts and network structures (Bekolay et al., 2013). A
number of optimization procedures have been used to generate,
indirectly, spiking networks which can perform complex tasks,
by performing optimization on a continuous representation
of the network dynamics and embedding variables into high-
dimensional spaces withmany spiking neurons representing each
variable (Thalmeier et al., 2015; Abbott et al., 2016; DePasquale
et al., 2016; Komer and Eliasmith, 2016). The use of recurrent
connections with multiple timescales can remove the need for
backpropagation in the direct training of spiking recurrent
networks (Bourdoukan and Denève, 2015). Fast connections
maintain the network in a state where slow connections have
local access to a global error signal.While the biological realism of
these methods is still unknown, they all allow connection weights
to be learned in spiking networks.

These and other novel learning procedures illustrate the
fact that we are only beginning to understand the connections
between the temporal dynamics of biologically realistic networks,
and mechanisms of temporal and spatial credit assignment.
Nevertheless, we argue here that existing evidence suggests that
biologically plausible neural networks can solve these problems—
in other words, it is possible to efficiently optimize complex
functions of temporal history in the context of spiking networks
of biologically realistic neurons. In any case, there is little
doubt that spiking recurrent networks using realistic population
coding schemes can, with an appropriate choice of connection
weights, compute complicated, cognitively relevant functions17.
14In one intriguing study of interval timing, single neurons exhibited response
patterns over time which were scaled to the interval duration, and cooling the
brain to slow down neural dynamics led to longer intervals being computed by
the brain (Xu et al., 2014).
15Analogs of weight perturbation and node perturbation are known for spiking
networks (Seung, 2003; Fiete and Seung, 2006). Seung (2003) also discusses
implications of gradient based learning algorithms for neuroscience, echoing some
of our considerations here.
16A related, but more general, question is how to learn over many layers of non-
differentiable structures. One option is to perform updates via finite-sized rather
than infinitesimal steps, e.g., via target-propagation (Bengio, 2014).
17Eliasmith and others have shown (Eliasmith and Anderson, 2004; Eliasmith
et al., 2012; Eliasmith, 2013) that complex functions and control systems can be

The question is how the developing brain efficiently learns such
complex functions.

2.3. Other Principles for Biological
Learning
The brain has mechanisms and structures that could support
learning mechanisms different from typical gradient-based
optimization algorithms employed in artificial neural networks.

2.3.1. Exploiting Biological Neural Mechanisms
The complex physiology of individual biological neuronsmay not
only help explain how some form of efficient gradient descent
could be implemented within the brain, but also could provide
mechanisms for learning that go beyond backpropagation. This
suggests that the brainmay have discoveredmechanisms of credit
assignment quite different from those dreamt up by machine
learning.

One such biological primitive is dendritic computation, which
could impact prospects for learning algorithms in several ways.
First, real neurons are highly nonlinear (Antic et al., 2010), with
the dendrites of each single neuron implementing18 something
computationally similar to a three-layer neural network (Mel,
1992)19. Individual neurons thus should not be regarded as single
“nodes” but as multi-component sub-networks. Second, when a
neuron spikes, its action potential propagates back from the soma
into the dendritic tree. However, it propagates more strongly into
the branches of the dendritic tree that have been active (Williams
and Stuart, 2000), potentially simplifying the problem of credit
assignment (Körding and König, 2000). Third, neurons can have
multiple somewhat independent dendritic compartments, as well
as a somewhat independent somatic compartment, which means
that the neuron should be thought of as storing more than one
variable. Thus, there is the possibility for a neuron to store both
its activation itself, and the error derivative of a cost function
with respect to its activation, as required in backpropagation,
and biological implementations of backpropagation based on this
principle have been proposed (Körding and König, 2001; Schiess
et al., 2016)20. Overall, the implications of dendritic computation
for credit assignment in deep networks are only beginning to

compiled onto such networks, using nonlinear encoding and linear decoding of
high-dimensional vectors.
18Dendritic computation may also have other functions, e.g., competitive
interactions between dendrites in a single neuron could also allow neurons to
contribute to multiple different ensembles (Legenstein and Maass, 2011).
19Localized activity in dendrites drives localized plasticity, with inhibitory
interneurons, and interactions between inputs at different parts of the dendritic
tree, controlling the local sign and spatial distribution of this plasticity (Sjöström
and Häusser, 2006; Cichon and Gan, 2015).
20In the model of Körding and König (2001), single spikes are used to transmit
activations and burst spikes are used to transmit error information. In other
models, including the dendritic voltage in a plasticity rule leads to error-
driven and predictive learning that can approximate backpropagation inside a
single complex neuron (in effect backpropagating from the net somatic output,
through nonlinearities at the dendritic branch points, all the way back to the
individual input synaptic weights) and that generalize to a reinforcement learning
context (Urbanczik and Senn, 2014; Schiess et al., 2016). Single neurons with
active dendrites and many synapses may also embody learning rules of greater
complexity, such as the storage and recall of temporal patterns (Hawkins and
Ahmad, 2016).
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be considered21. But it is clear that the types of bi-directional,
non-linear, multi-variate interactions that are possible inside a
single neuron could support gradient descent learning or other
powerful optimization mechanisms.

Beyond dendritic computation, diverse
mechanisms (Marblestone and Boyden, 2014) like
retrograde (post-synaptic to pre-synaptic) signals using
cannabinoids (Wilson and Nicoll, 2001), or rapidly-diffusing
gases such as nitric oxide (Arancio et al., 1996), are among many
that could enable learning rules that go beyond conventional
conceptions of backpropagation. Harris has suggested (Harris,
2008; Lewis and Harris, 2014) how slow, retroaxonal (i.e., from
the outgoing synapses back to the parent cell body) transport
of molecules like neurotrophins could allow neural networks to
implement an analog of an exchangeable currency in economics,
allowing networks to self-organize to efficiently provide
information to downstream “consumer” neurons that are trained
via faster and more direct error signals. The existence of these
diverse mechanisms may call into question traditional, intuitive
notions of “biological plausibility” for learning algorithms.

Another potentially important biological primitive is
neuromodulation. The same neuron or circuit can exhibit
different input-output responses and plasticity depending on a
global circuit state, as reflected by the concentrations of various
neuromodulators like dopamine, serotonin, norepinephrine,
acetylcholine, and hundreds of different neuropeptides such
as opiods (Bargmann, 2012; Bargmann and Marder, 2013).
These modulators interact in complex and cell-type-specific
ways to influence circuit function. Interactions with glial cells
also play a role in neural signaling and neuromodulation,
leading to the concept of “tripartite” synapses that include a
glial contribution (Perea et al., 2009). Modulation could have
many implications for learning. First, modulators can be used
to gate synaptic plasticity on and off selectively in different
areas and at different times, allowing precise, rapidly updated
orchestration of where and when cost functions are applied.
Furthermore, it has been argued that a single neural circuit can
be thought of as multiple overlapping circuits with modulation
switching between them (Bargmann, 2012; Bargmann and
Marder, 2013). In a learning context, this could potentially allow
sharing of synaptic weight information between overlapping
circuits. Dayan (2012) discusses further computational aspects
of neuromodulation. Overall, neuromodulation seems to
expand the range of possible algorithms that could be used for
optimization.

2.3.2. Learning in the Cortical Sheet
A number of models attempt to explain cortical learning on
the basis of specific architectural features of the 6-layered
cortical sheet. These models generally agree that a primary
function of the cortex is some form of unsupervised learning
via prediction (O’Reilly et al., 2014b; Brea et al., 2016)22.

21Interestingly, some connectomic studies are finding more obvious connectivity
structure at the level of dendritic organization than at the cellular level (Morgan
et al., 2016).
22An interesting recent study explored this idea in the context of a model of
modular cortical-column-like units (Piekniewski et al., 2016). Local units are

Some cortical learning models are explicit attempts to map
cortical structure onto the framework of message-passing
algorithms for Bayesian inference (Lee and Mumford, 2003;
Dean, 2005; George and Hawkins, 2009), while others start
with particular aspects of cortical neurophysiology and seek to
explain those in terms of a learning function, or in terms of a
computational function, e.g., hierarchical clustering (Rodriguez
et al., 2004). For example, the nonlinear and dynamical properties
of cortical pyramidal neurons—the principal excitatory neuron
type in cortex (Shepherd, 2014)—are of particular interest here,
especially because these neurons have multiple dendritic zones
that are targeted by different kinds of projections, which may
allow the pyramidal neuron to make comparisons of top-down
and bottom-up inputs23.

Other aspects of the laminar cortical architecture could be
crucial to how the brain implements learning. Local inhibitory
neurons targeting particular dendritic compartments of the L5

multi-layer perceptrons trained tominimize a prediction error by gradient descent.
Within each unit, predictive autoencoders form a data compression in their middle
layers, which is then fed up to higher levels as well as laterally. This system
is suggestive of the power of using modular units of intermediate complexity,
each of which minimizes a prediction error locally, e.g., in a local few-layer
network. The system currently uses a fixed format for transmission of vectors
from one unit to another, but ideally the inter-module connections should also be
trained by gradient descent as well or by reinforcement learning rather than being
fixed. The cortical-column-like modules could also be made more complex and
could be organized into higher-order structures like Minsky’s semantic networks,
frames and K-lines (Minsky, 1988) rather than in simple hierarchies, or such an
architecture could self-organize via reinforcement learning or other mechanisms
for defining inter-column connections. Such a system also needs connections with
specific kinds of memory and long-range information routing systems.
23This idea has been used by Hawkins and colleagues to suggest mechanisms
for continuous online sequence learning (Cui et al., 2015; Hawkins and Ahmad,
2016) and by Larkum and colleagues for comparison of top-down and bottom-up
signals (Larkum, 2013). The Larkum model focuses on the layer 5 (L5) pyramidal
neuron type. The cell body of this neuron lies in L5 but extends its “apical”
dendritic tree all the way up to a tuft at the top of the cortex in layer 1 (L1), which is
a primary target of feedback projections. In the model, interactions between local
spiking in these different dendritic zones, which are targeted by different kinds of
projections, are crucial to the learning function. The model of Hawkins (Cui et al.,
2015; Hawkins and Ahmad, 2016) also focused on the unique dendritic structure
of the L5 pyramidal neuron, and distinguishes internal states of the neuron, which
impact its responsiveness to other inputs, from activation states, which directly
translate into spike rates. Three integration zones in each neuron, and dendritic
NMDA spikes (Palmer et al., 2014) acting as local coincidence detectors (Shai
et al., 2015), allow temporal patterns of dendritic input to impact the cell’s internal
state. Intra-column inhibition is also used in this model. Other cortical models
pay less attention to the details of dendritic computation, but still provide detailed
interpretations of the inter-laminar projection patterns of the neocortex. For
example, in O’Reilly et al. (2014b), an architecture is presented for continuous
learning based on prediction of the next input. Time is discretized into 100 ms
bins via an alpha oscillation, and the deep vs. shallow layers maintain different
information during these time bins, with deep layers maintaining a record of the
previous time step, and shallow layers representing the current state. The stored
information in the deep layers leads to a prediction of the current state, which
is then compared with the actual current state. Periodic bursting locked to the
oscillation provides a kind of clock that causes the current state to be shifted into
the deep layers for maintenance during the subsequent time step, and recurrent
loops with the thalamus allow this representation to remain stable for sufficiently
long to be used to generate the prediction. Other theories utilize the biophysics
of dendritic computation and spike timing dependent plasticity to explain how
neurons could learn to make predictions (Brea et al., 2016) on a timescale of
seconds using neurons with intrinsic plasticity time constants of a few tens of
milliseconds.
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pyramidal could be used to exert precise control over when and
how the relevant feedback signals and associative mechanisms
are utilized. Notably, local inhibitory networks could also give
rise to competition (Petrov et al., 2010) between different
representations in the cortex, perhaps allowing one cortical
column to suppress others nearby, or perhaps even to send
more sophisticated messages to gate the state transitions of
its neighbors (Bach and Herger, 2015). Moreover, recurrent
connectivity with the thalamus, structured bursts of spiking,
and cortical oscillations (not to mention other mechanisms like
neuromodulation) could control the storage of information over
time, to facilitate learning based on temporal prediction. These
concepts begin to suggest preliminary, exploratory models for
how the detailed anatomy and physiology of the cortex could
be interpreted within a machine-learning framework that goes
beyond backpropagation. But these are early days: we still lack
detailed structural/molecular and functional maps of even a
single local cortical microcircuit.

2.3.3. One-shot Learning
Human learning is often one-shot: it can take just a single
exposure to a stimulus to never forget it, as well as to generalize
from it to new examples. One way of allowing networks
to have such properties is what is described by I-theory, in
the context of learning invariant representations for object
recognition (Anselmi et al., 2015). Instead of training via gradient
descent, image templates are stored in the weights of simple-
complex cell networks while objects undergo transformations,
similar to the use of stored templates in HMAX (Serre et al.,
2007). The theories then aim to show that you can invariantly and
discriminatively represent objects using a single sample, even of
a new class (Anselmi et al., 2015)24.

Additionally, the nervous system may have a way of quickly
storing and replaying sequences of events. This would allow
the brain to move an item from episodic memory into a long-
term memory stored in the weights of a cortical network (Ji and
Wilson, 2007), by replaying the memory over and over. This
solution effectively uses many iterations of weight updating to
fully learn a single item, even if one has only been exposed to
it once. Alternatively, the brain could rapidly store an episodic
memory and then retrieve it later without the need to perform
slow gradient updates, which has proven to be useful for
fast reinforcement learning in scenarios with limited available
data (Blundell et al., 2016).

Finally, higher-level systems in the brain may be able to
implement Bayesian learning of sequential programs, which is a

24I-theory can perhaps be viewed as a generalized alternative paradigm to the
online optimization of cost functions via multi-layer gradient descent, as used
in deep learning. It exploits similar network architectures as conventional deep
learning, e.g., hierarchical convolutional networks for the case of feedforward
vision, but rather than backpropagating errors, it uses local circuits and learning
rules to store templates against which new inputs are compared. This relies on a
theory of generalization in learning based on combinations of tuned units (Poggio
and Bizzi, 2004), which has been applied to both vision and motor control.
Neurons with the required Gaussian-like tunings to stored templates could
be obtained through canonical, local, normalization-based circuits (Kouh and
Poggio, 2008), which can also be tweaked to implement other aspects of a vision
architecture like softmax operations and pooling.

powerful means of one-shot learning (Lake et al., 2015). This type
of cognition likely relies on an interaction betweenmultiple brain
areas such as the prefrontal cortex and basal ganglia.

These potential substrates of one-shot learning rely on
mechanisms other than simple gradient descent. It should be
noted, though, that recent architectural advances, including
specialized spatial attention and feedback mechanisms (Rezende
et al., 2016), as well as specialized memory mechanisms (Santoro
et al., 2016), do allow some types of one-shot generalization to be
driven by backpropagation-based learning.

2.3.4. Active Learning
Human learning is often active and deliberate. It seems likely
that, in human learning, actions are chosen so as to generate
interesting training examples, and sometimes also to test
specific hypotheses. Such ideas of active learning and “child
as scientist” go back to Piaget and have been elaborated more
recently (Gopnik et al., 2000). We want our learning to be based
on maximally informative samples, and active querying of the
environment (or of internal subsystems) provides a way route to
this.

At some level of organization, of course, it would seem useful
for a learning system to develop explicit representations of its
uncertainty, since this can be used to guide the system to actively
seek the information that would reduce its uncertainty most
quickly. Moreover, there are population coding mechanisms that
could support explicit probabilistic computations (Zemel and
Dayan, 1997; Sahani and Dayan, 2003; Rao, 2004; Ma et al.,
2006; Eliasmith and Martens, 2011; Gershman and Beck, 2016).
Yet it is unclear to what extent and at what levels the brain
uses an explicitly probabilistic framework, or to what extent
probabilistic computations are emergent from other learning
processes (Orhan and Ma, 2016)25,26.

25One alternative picture that contrasts with straightforward cost function
optimization emphasizes the types of computation that appear most naturally
suited to heterogeneous, stochastic, noisy, continually changing neural
circuitry (Maass, 2016). On this view, network plasticity is viewed as a
sampling-based approximation to Bayesian inference (Kappel et al., 2015)
where transiently changing synapses sample from a posterior distribution of
network configurations, rather than as gradient descent on a cost function. This
view emphasizes Monte-Carlo sampling procedures, rather than cost function
optimization.
26Sampling based inference procedures are used widely in Bayesian statistics,
and efforts have been made to connect these procedures with circuit-based
models of computations (Mansinghka and Jonas, 2014). It currently appears
difficult, however, to reconcile generic Marcov Chain Monte Carlo (MCMC)
dynamics, which mix slowly, with the fast time scales of human psychophysics.
But Bayesian methods are powerful and come with a methodology for model
comparison (Ghahramani, 2005). In machine learning, variational Bayesian
methods have recently become popular precisely because they are capable of fast
though approximate posterior inference (inferring causes from observables), but
seem to be powerful enough to create strong models. For example, stochastic
gradient descent optimization is beginning to be used for variational Bayesian
inference (Kingma and Welling, 2013). Restricted Boltzmann Machines (RBMs)
also achieve fast inference in shallow architectures—with only a small number
of iterations of mixing required—but they do not mix quickly when stacked into
deep hierarchies as deep Boltzmann machines. The greedy, layer-wise pre-training
of a deep belief network (Hinton et al., 2006) provides a heuristic way to stack
the RBMs by auto-encoding, but these have achieved less competitive results than
current variational Bayesian models. The problem of fast inference in MCMC
models is the subject of current research, including at the interface with biologically
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Standard gradient descent does not incorporate any such
adaptive sampling mechanism, e.g., it does not deliberately
sample data so as to maximally reduce its uncertainty.
Interestingly, however, stochastic gradient descent can be used
to generate a system that samples adaptively (Alain et al., 2015;
Bouchard et al., 2015). In other words, a system can learn, by
gradient descent, how to choose its own input data samples in
order to learn most quickly from them by gradient descent.

Ideally, the learner learns to choose actions that will lead to
the largest improvements in its prediction or data compression
performance (Schmidhuber, 2010). In Schmidhuber (2010),
this is done in the framework of reinforcement learning, and
incorporates amechanisms for the system tomeasure its own rate
of learning. In other words, it is possible to reinforcement-learn a
policy for selecting the most interesting inputs to drive learning.
Adaptive sampling methods are also known in reinforcement
learning that can achieve optimal Bayesian exploration ofMarkov
Decision Process environments (Sun et al., 2011; Guez et al.,
2012).

These approaches achieve optimality in an arbitrary, abstract
environment. But of course, evolution may also encode its
implicit knowledge of the organism’s natural environment, the
behavioral goals of the organism, and the developmental stages
and processes which occur inside the organism, as priors or
heuristics27 which would further constrain the types of adaptive
sampling that are optimal in practice. For example, simple
heuristics like seeking certain perceptual signatures of novelty,
or more complex heuristics like monitoring situations that other
people seem to find interesting, might be good ways to bias
sampling of the environment so as to learn more quickly. Other
such heuristics might be used to give internal brain systems the
types of training data that will be most useful to those particular
systems at any given developmental stage.

We are only beginning to understand how active learning
might be implemented in the brain. We speculate that multiple
mechanisms, specialized to different brain systems and spatio-
temporal scales, could be involved. The above examples suggest
that at least some such mechanisms could be understood from
the perspective of optimizing cost functions.

2.4. Differing Biological Requirements for
Supervised and Reinforcement Learning
We have suggested ways in which the brain could implement
learning mechanisms of comparable power to backpropagation.
But in many cases, the system may be more limited by the
available training signals than by the optimization process itself.
In machine learning, one distinguishes supervised learning,
reinforcement learning and unsupervised learning, and the
training data limitation manifests differently in each case.

Both supervised and reinforcement learning require some
form of teaching signal, but the nature of the teaching signal

plausible models (Bengio et al., 2016).When these models are made to perform fast
inference, they actually become somewhat similar to variational Bayesianmethods,
since they rely on feedforward approximate inference, at least to initialize the
system.
27Heuristics are widely used to simplify motor planning and control, e.g., McLeod
and Dienes (1996).

in supervised learning is different from that in reinforcement
learning. In supervised learning, the trainer provides the entire
vector of errors for the output layer and these are back-
propagated to compute the gradient: a locally optimal direction
in which to update all of the weights of a potentially multi-layer
and/or recurrent network. In reinforcement learning, however,
the trainer provides a scalar evaluation signal, but this is not
sufficient to derive a low-variance gradient. Hence, some form of
trial and error twiddlingmust be used to discover how to increase
the evaluation signal. Consequently, reinforcement learning is
generally much less efficient than supervised learning.

Reinforcement learning in shallow networks is simple to
implement biologically. For reinforcement learning of a deep
network to be biologically plausible, however, we need a more
powerful learning mechanism, since we are learning based on a
more limited evaluation signal than in the supervised case: we
do not have the full target pattern to train toward. Nevertheless,
approximations of gradient descent can be achieved in this
case, and there are cases in which the scalar evaluation signal
of reinforcement learning can be used to efficiently update a
multi-layer network by gradient descent. The “attention-gated
reinforcement learning” (AGREL) networks of Stanisor et al.
(2013), Brosch et al. (2015), and Roelfsema and van Ooyen
(2005), and variants like KickBack (Balduzzi, 2014), give a
way to compute an approximation to the full gradient in a
reinforcement learning context using a feedback-based attention
mechanism for credit assignment within themulti-layer network.
The feedback pathway, together with a diffusible reward signal,
together gate plasticity. For networks with more than three
layers, this gives rise to a model based on columns containing
parallel feedforward and feedback pathways (Roelfsema and
van Ooyen, 2005), and for recurrent networks that settle into
attractor states it gives a reinforcement-trained version (Brosch
et al., 2015) of the Almeida/Pineda recurrent backpropagation
algorithm (Pineda, 1987). The process is still not as efficient
or generic as backpropagation, but it seems that this form
of feedback can make reinforcement learning in multi-layer
networks more efficient than a naive node perturbation or weight
perturbation approach.

The machine-learning field has recently been tackling the
question of credit assignment in deep reinforcement learning.
Deep Q-learning (Mnih et al., 2015) demonstrates reinforcement
learning in a deep network, wherein most of the network is
trained via backpropagation. In regular Q learning, we define
a function Q, which estimates the best possible sum of future
rewards (the return) if we are in a given state and take a given
action. In deep Q learning, this function is approximated by a
neural network that, in effect, estimates action-dependent returns
in a given state. The network is trained using backpropagation
of local errors in Q estimation, using the fact that the return
decomposes into the current reward plus the discounted estimate
of future return at the next moment. During training, as the
agent acts in the environment, a series of loss functions is
generated at each step, defining target patterns that can be used
as the supervision signal for backpropagation. As Q is a highly
nonlinear function of the state, tricks are needed to make deep
Q learning efficient and stable, including experience replay and
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a particular type of mini-batch training. It is also necessary
to store the outputs from the previous iteration (or clone the
entire network) in evaluating the loss function for the subsequent
iteration28.

This process for generating learning targets provides a
kind of bridge between reinforcement learning and efficient
backpropagation-based gradient descent learning29. Importantly,
only temporally local information is neededmaking the approach
relatively compatible with what we know about the nervous
system.

Even given these advances, a key remaining issue in
reinforcement learning is the problem of long timescales, e.g.,
learning the many small steps needed to navigate from London
to Chicago. Many of the formal guarantees of reinforcement
learning (Williams and Baird, 1993), for example, suggest that
the difference between an optimal policy and the learned policy
becomes increasingly loose as the discount factor shifts to take
into account reward at longer timescales. Although the degree
of optimality of human behavior is unknown, people routinely
engage in adaptive behaviors that can take hours or longer to
carry out, by using specialized processes like prospective memory
to “remember to remember” relevant variables at the right times,
permitting extremely long timescales of coherent action.Machine
learning has not yet developed methods to deal with such a wide
range of timescales and scopes of hierarchical action. Below we
discuss ideas of hierarchical reinforcement learning that may
make use of callable procedures and sub-routines, rather than
operating explicitly in a time domain.

As we will discuss below, some form of deep reinforcement
learning may be used by the brain for purposes beyond
optimizing global rewards, including the training of local
networks based on diverse internally generated cost functions.
Scalar reinforcement-like signals are easy to compute, and easy
to deliver to other areas, making them attractive mechanistically.
If the brain does employ internally computed scalar reward-like
signals as a basis for cost functions, it seems likely that it will
have found an efficient means of reinforcement-based training of
deep networks, but it is an open question whether an analog of
deep Q networks, AGREL, or some other mechanism entirely, is
used in the brain for this purpose. Moreover, as we will discuss
further below, it is possible that reinforcement-type learning is
made more efficient in the context of specialized brain systems
like short term memories, replay mechanisms, and hierarchically
organized control systems. These specialized systems could
reduce reliance on a need for powerful credit assignment

28Many other reinforcement learning algorithms, including
REINFORCE (Williams, 1992), can be implemented as fully online algorithms
using “eligibility traces,” which accumulate the sensitivity of action distributions
to parameters in a temporally local manner (Sutton and Barto, 1998).
29Zaremba and Sutskever (2015) also bridges reinforcement learning and
backpropagation learning in the same system, in the context of a neural network
controlling discrete interfaces, and illustrates some of the challenges of this
approach: compared to an end-to-end backpropagation-trained Neural Turing
Machine (Graves et al., 2014), reinforcement based training allows training of
only relatively simple algorithmic tasks. Special measures need to be taken to
make reinforcement efficient, including limiting the number of possible actions,
subtracting a baseline reward, and training the network using a curriculum
schedule.

mechanisms for reinforcement learning. Finally, if the brain uses
a diversity of scalar reward-like signals to implement different
cost functions, then it may need to mediate delivery of those
signals via a comparable diversity of molecular substrates. The
great diversity of neuromodulatory signals, e.g., neuropeptides, in
the brain (Bargmann, 2012; Bargmann and Marder, 2013) makes
such diversity quite plausible, and moreover, the brain may have
found other, as yet unknown,mechanisms of diversifying reward-
like signaling pathways and enabling them to act independently
of one another.

3. THE COST FUNCTIONS ARE DIVERSE
ACROSS BRAIN AREAS AND TIME

In the last section, we argued that the brain can optimize
functions. This raises the question of what functions it optimizes.
Of course, in the brain, a cost function will itself be created
(explicitly or implicitly) by a neural network shaped by the
genome. Thus, the cost function used to train a given sub-
network in the brain is a key innate property that can be built into
the system by evolution. It may be much cheaper in biological
terms to specify a cost function that allows the rapid learning of
the solution to a problem than to specify the solution itself.

In Hypothesis 2, we proposed that the brain optimizes not
a single “end-to-end” cost function, but rather a diversity of
internally generated cost functions specific to particular brain
functions30. To understand how and why the brain may use
a diversity of cost functions, it is important to distinguish
the differing types of cost functions that would be needed
for supervised, unsupervised and reinforcement learning. We
can also seek to identify types of cost functions that the
brain may need to generate from a functional perspective, and
how each may be implemented as supervised, unsupervised,
reinforcement-based or hybrid systems.

3.1. How Cost Functions May Be
Represented and Applied
What additional circuitry is required to actually impose a
cost function on an optimizing network? In the most familiar
case, supervised learning may rely on computing a vector of
errors at the output of a network, which will rely on some
comparator circuitry31 to compute the difference between the
network outputs and the target values. This difference could
then be backpropagated to earlier layers. An alternative way
to impose a cost function is to “clamp” the output of the
network, forcing it to occupy a desired target state. Such
clamping is actually assumed in some of the putative biological
implementations of backpropagation described above, such as
XCAL and target propagation. Alternatively, as described above,
scalar reinforcement signals are attractive as internally-computed
cost functions, but using them in deep networks requires special
mechanisms for credit assignment.
30This is distinct from a game-theoretic scenario in which multiple actors can
achieve an equilibrium, e.g., Gemp and Mahadevan (2015).
31Single neurons act as comparators in the motor system, e.g., Brownstone et al.
(2015), and networks in the retina adapt so as to report local differences in space or
time rather than absolute values, a form of predictive coding (Hosoya et al., 2005).
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In unsupervised learning, cost functions may not take the
form of externally supplied training or error signals, but rather
can be built into the dynamics inherent to the network itself,
i.e., there may be no need for a separate circuit to compute and
impose a cost function on the network. For example, specific
spike-timing-dependent and homeostatic plasticity rules have
been shown to give rise to gradient descent on a prediction error
in recurrent neural networks (Galtier and Wainrib, 2013). Thus,
specific unsupervised objectives could be implemented implicitly
through specific local network dynamics32 and plasticity rules
inside a network without explicit computation of cost function,
nor explicit propagation of error derivatives.

Alternatively, explicit cost functions could be computed,
delivered to an optimizing network, and used for unsupervised
learning, following a variety of principles being discovered in
machine learning (e.g., Radford et al., 2015; Lotter et al., 2015).
These networks rely on backpropagation as the sole learning
rule, and typically find a way to encode the desired cost
function into the error derivatives which are backpropagated.
For example, prediction errors naturally give rise to error
signals for unsupervised learning, as do reconstruction errors
in autoencoders, and these error signals can also be augmented
with additional penalty or regularization terms that enforce
objectives like sparsity or continuity, as described below. Then
these error derivatives can be propagated throughout the network
via standard backpropagation. In such systems, the objective
function and the optimization mechanism can thus be mixed and
matched modularly. In the next sections, we elaborate on these
and other means of specifying and delivering cost functions in
different learning contexts.

3.2. Cost Functions for Unsupervised
Learning
There are many objectives that can be optimized in an
unsupervised context, to accomplish different kinds of functions
or guide a network to form particular kinds of representations.

3.2.1. Matching the Statistics of the Input Data Using

Generative Models
In one common form of unsupervised learning, higher brain
areas attempt to produce samples that are statistically similar
to those actually seen in lower layers. For example, the
wake-sleep algorithm (Hinton et al., 1995) requires the sleep
mode to sample potential data points whose distribution
should then match the observed distribution. Unsupervised
pre-training of deep networks is an instance of this (Erhan

32Beginning with Hopfield’s definition of an energy function for inference in
certain classes of symmetric network (Hopfield, 1982), researchers have discovered
networks with inherent dynamics that implicitly optimizes certain objectives
even while the connection weights are fixed, such as statistical reconstruction
of the input via stochastic relaxation in Boltzmann machines (Ackley et al.,
1958). Fast approximations of some of these inference procedures are perhaps
biologically plausible and could rely on dendritic computation (Bengio et al., 2016).
Iterative local Hebbian-like learning rules are often used to train the weights of
such networks, without explicitly propagating error derivatives in the manner of
backpropagation. In an appropriate network context, many other combinations
of network dynamics and plasticity rules can give rise to inference and learning
procedures that implicitly descend cost functions in activity space and/or weight
space.

and Manzagol, 2009), typically making use of a stacked auto-
encoder framework. Similarly, in target propagation (Bengio,
2014), a top-down circuit, together with lateral information, has
to produce data that directs the local learning of a bottom-
up circuit and vice-versa. Ladder autoencoders make use of
lateral connections and local noise injection to introduce an
unsupervised cost function, based on internal reconstructions,
that can be readily combined with supervised cost functions
defined on the networks top layer outputs (Valpola, 2015).
Compositional generative models generate a scene from discrete
combinations of template parts and their transformations (Wang
and Yuille, 2014), in effect performing a rendering of a scene
based on its structural description. Hinton and colleagues have
also proposed cortical “capsules” (Hinton et al., 2011; Tang
et al., 2012, 2013) for compositional inverse rendering. The
network can thus implement a statistical goal that embodies
some understanding of the way that the world produces
samples33.

Learning rules for generative models have historically
involved local message passing of a form quite different
from backpropagation, e.g., in a multi-stage process that
first learns one layer at a time and then fine-tunes via
the wake-sleep algorithm (Hinton et al., 2006). Message-
passing implementations of probabilistic inference have also
been proposed as an explanation and generalization of deep
convolutional networks (Chen et al., 2014; Patel et al., 2015).
Various mappings of such processes onto neural circuitry have
been attempted (George and Hawkins, 2009; Lee and Yuille,
2011; Sountsov and Miller, 2015), and related models (Makin
et al., 2013, 2016) have been used to account for optimal
multi-sensory integration in the brain. Feedback connections
tend to terminate in distinct layers of cortex relative to the
feedforward ones (Felleman and Van Essen, 1991; Callaway,
2004) making the idea of separate but interacting networks for
recognition and generation potentially attractive34. Interestingly,

33Dreams arguably illustrate that the brain uses generative models which also
involve selective recall and recombination of episodic memories.
34Much is known about the architecture of cortical feedback vs. feedforward
connections. For example, canonically, feedforward connections project from
superficial cortical layers to layer 4 of the recipient layer, while feedback
connections terminate outside layer 4 and often originate in deeper layers.
These types of relationships can be used anatomically to define the hierarchical
organization of visual areas, as in Felleman and Van Essen (1991), although the
original studies were performed in primates and the precise generalization to
rodent cortex is not fully clear (Berezovskii et al., 2011), and there may be various
alternate or overlapping anatomical pathways (Callaway, 2004), e.g., with some
pathways involved in specific functions like gain control, others routed through
specific gating mechanisms, and so forth. Advances in connectomics should allow
this architecture to be studied more directly. The study of receptive field properties
in the visual cortical hierarchy has led to many insights into this hierarchical
system. For example, while each neuron in V1 has a classical local receptive
field, neural responses at a given location in V1 also depend on visual locations
far from the classical receptive field, e.g., through various forms of surround
suppression. These studies have allowed an understanding of the spatial scales over
which feedback connections operate in the early visual system (Angelucci et al.,
2002). In particular, feedback connections are invoked to account for longer-range
receptive field interactions, whereas horizontal connections are invoked to account
for shorter-range receptive field interactions (Schwabe et al., 2006). Feedforward
and feedback pathways are also distinguished dynamically, e.g., by propagating
different oscillatory frequencies (Van Kerkoerle et al., 2014; Bastos et al., 2015),
and moleculary, e.g., with NMDA receptors playing an important role in feedback
processing.
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such sub-networks might even be part of the same neuron and
map onto “apical” vs. “basal” parts of the dendritic tree (Körding
and König, 2001; Urbanczik and Senn, 2014).

Generative models can also be trained via backpropagation.
Recent advances have shown how to perform variational
approximations to Bayesian inference inside backpropagation-
based neural networks (Kingma and Welling, 2013), and how
to exploit this to create generative models (Goodfellow et al.,
2014a; Gregor et al., 2015; Radford et al., 2015; Eslami et al.,
2016). Through either explicitly statistical or gradient descent
based learning, the brain can thus obtain a probabilistic model
that simulates features of the world.

3.2.2. Cost Functions That Approximate Properties of

the World
A perceiving system should exploit statistical regularities in
the world that are not present in an arbitrary dataset or
input distribution. For example, objects are sparse, at least in
certain representations: there are far fewer objects than there
are potential places in the world, and of all possible objects
there is only a small subset visible at any given time. As such,
we know that the output of an object recognition system must
have sparse activations. Building the assumption of sparseness
into simulated systems replicates a number of representational
properties of the early visual system (Olshausen and Field,
1997; Rozell et al., 2008), and indeed the original paper on
sparse coding obtained sparsity by gradient descent optimization
of a cost function (Olshausen and Field, 1996). A range of
unsupervised machine learning techniques, such as the sparse
autoencoders (Le et al., 2012) used to discover cats in YouTube
videos, build sparseness into neural networks. Building in such
spatio-temporal sparseness priors should serve as an “inductive
bias” (Mitchell, 1980) that can accelerate learning.

But we know much more about the regularities of objects.
As young babies, we already know (Bremner et al., 2015) that
objects tend to persist over time. The emergence or disappearance
of an object from a region of space is a rare event. Moreover,
object locations and configurations tend to be coherent in time.
We can formulate this prior knowledge as a cost function, for
example by penalizing representations which are not temporally
continuous. This idea of continuity is used in a great number
of artificial neural networks and related models (Wiskott and
Sejnowski, 2002; Földiák, 2008; Mobahi et al., 2009). Imposing
continuity within certain models gives rise to aspects of the
visual system including complex cells (Körding et al., 2004),
specific properties of visual invariance (Isik et al., 2012), and
even other representational properties such as the existence of
place cells (Wyss et al., 2006; Franzius et al., 2007). Unsupervised
learning mechanisms that maximize temporal coherence or
slowness are increasingly used in machine learning35.

35Temporal continuity is exploited in Poggio (2015), which analyzes many
properties of deep convolutional networks with respect to their biological
plausibility, including their apparent need for large amounts of supervised training
data, and concludes that the environment may in fact provide a sufficient number
of “implicitly,” though not explicitly, labeled examples to train a deep convolutional
network for object recognition. Implicit labeling of object identity, in this case,
arises from temporal continuity: successive frames of a video are likely to have
the same objects in similar places and orientations. This allows the brain to derive

We also know that objects tend to undergo predictable
sequences of transformations, and it is possible to build this
assumption into unsupervised neural learning systems (George
and Hawkins, 2009). The minimization of prediction error
explains a number of properties of the nervous system (Friston
and Stephan, 2007; Huang and Rao, 2011), and biologically
plausible theories are available for how cortex could learn using
prediction errors by exploiting temporal differences (O’Reilly
et al., 2014b) or top-down feedback (George and Hawkins,
2009). In one implementation, a system can simply predict
the next input delivered to the system and can then use the
difference between the actual next input and the predicted next
input as a full vectorial error signal for supervised gradient
descent. Thus, rather than optimization of prediction error
being implicitly implemented by the network dynamics, the
prediction error is used as an explicit cost function in the
manner of supervised learning, leading to error derivatives
which can be back-propagated. Then, no special learning rules
beyond simple backpropagation are needed. This approach has
recently been advanced within machine learning (Lotter et al.,
2015, 2016). Recently, combining such prediction-based learning
with a specific gating mechanism has been shown to lead to
unsupervised learning of disentangled representations (Whitney
et al., 2016). Neural networks can also be designed to learn to
invert spatial transformations (Jaderberg et al., 2015). Statistically
describing transformations or sequences is thus an unsupervised
way of learning representations.

Furthermore, there are multiple modalities of input to the
brain. Each sensory modality is primarily connected to one part
of the brain36. But higher levels of cortex in each modality
are heavily connected to the other modalities. This can enable
forms of self-supervised learning: with a developing visual
understanding of the world we can predict its sounds, and then
test those predictions with the auditory input, and vice versa.
The same is true about multiple parts of the same modality:
if we understand the left half of the visual field, it tells us
an awful lot about the right. Indeed, we can use observations
of one part of a visual scene to predict the contents of other
parts (Noroozi and Favaro, 2016; van den Oord et al., 2016),
and optimize a cost function that reflects the discrepancy.
Maximizing mutual information is a natural way of improving
learning (Becker and Hinton, 1992; Mohamed and Rezende,
2015), and there are many other ways in which multiple
modalities or processing streams could mutually train one

an invariant signature of object identity which is independent of transformations
like translations and rotations, but which does not yet associate the object
with a specific name or label. Once such an invariant signature is established,
however, it becomes basically trivial to associate the signature with a label for
classification (Anselmi et al., 2015). Poggio (2015) also suggests specific means,
in the context of I-theory (Anselmi et al., 2015), by which this training could
occur via the storage of image templates using Hebbianmechanisms among simple
and complex cells in the visual cortex. Thus, in this model, the brain has used its
implicit knowledge of the temporal continuity of object motion to provide a kind
of minimal labeling that is sufficient to bootstrap object recognition. Although not
formulated as a cost function, this shows how usefully the assumption of temporal
continuity could be exploited by the brain.
36Although, some multi-sensory integration appears to occur even in the early
sensory cortices (Cappe et al., 2012).
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another. This way, each modality effectively produces training
signals for the others37. Evidence from psychophysics suggests
that some kind of training via detection of sensory conflicts may
be occurring in children (Nardini et al., 2010).

3.3. Cost Functions for Supervised
Learning
In what cases might the brain use supervised learning, given
that it requires the system to “already know” the exact target
pattern to train toward? One possibility is that the brain can
store records of states that led to good outcomes. For example,
if a baby reaches for a target and misses, and then tries again
and successfully hits the target, then the difference in the neural
representations of these two tries reflects the direction in which
the system should change. The brain could potentially use a
comparator circuit to directly compute this vectorial difference in
the neural population codes and then apply this difference vector
as an error signal.

Another possibility is that the brain uses supervised learning
to implement a form of “chunking,” i.e., a consolidation of
something the brain already knows how to do: routines that are
initially learned as multi-step, deliberative procedures could be
compiled down to more rapid and automatic functions by using
supervised learning to train a network tomimic the overall input-
output behavior of the original multi-step process. Such a process
is assumed to occur in cognitive models like ACT-R (Servan-
Schreiber and Anderson, 1990), and methods for compressing
the knowledge in neural networks into smaller networks are
also being developed (Ba and Caruana, 2014). Thus supervised
learning can be used to train a network to do in “one step”
what would otherwise require long-range routing and sequential
recruitment of multiple systems.

3.4. Repurposing Reinforcement Learning
for Diverse Internal Cost Functions
Certain generalized forms of reinforcement learning may be
ubiquitous throughout the brain. Such reinforcement signals may
be repurposed to optimize diverse internal cost functions. These
internal cost functions could be specified at least in part by
genetics.

Some brain systems such as in the striatum appear to
learn via some form of temporal difference reinforcement
learning (Tesauro, 1995; Foster et al., 2000). This is reinforcement
learning based on a global value function (O’Reilly et al., 2014a)
that predicts total future reward or utility for the agent. Reward-
driven signaling is not restricted to the striatum, and is present
even in primary visual cortex (Chubykin et al., 2013; Stanisor
et al., 2013). Remarkably, the reward signaling in primary
visual cortex is mediated in part by glial cells (Takata et al.,
2011), rather than neurons, and involves the neurotransmitter

37Other brain-inspired unsupervised objectives are being developed for
unsupervised visual learning. One recent paper (Higgins et al., 2016) uses an
objective function that seeks representations of statistically independent factors in
images, by introducing a regularization term that pushes the distribution of latent
factors learned in a generative model to be close to a unit Gaussian. This is based
on a theory that the ventral visual stream is optimized to disentangle factors of
variation in images.

acetylcholine (Chubykin et al., 2013; Hangya et al., 2015). On
the other hand, some studies have suggested that visual cortex
learns the basics of invariant object recognition in the absence of
reward (Li and Dicarlo, 2012), perhaps using reinforcement only
for more refined perceptual learning (Roelfsema et al., 2010).

But beyond these well-known global reward signals, we
argue that the basic mechanisms of reinforcement learning
may be widely re-purposed to train local networks using a
variety of internally generated error signals. These internally
generated signals may allow a learning system to go beyond what
can be learned via standard unsupervised methods, effectively
guiding or steering the system to learn specific features or
computations (Ullman et al., 2012).

3.4.1. Cost Functions for Bootstrapping Learning in

the Human Environment
Special, internally-generated signals are needed specifically for
learning problems where standard unsupervised methods—
based purely on matching the statistics of the world, or
on optimizing simple mathematical objectives like temporal
continuity or sparsity—will fail to discover properties of the
world which are statistically weak in an objective sense but
nevertheless have special significance to the organism (Ullman
et al., 2012). Indigo bunting birds, for example, learn a template
for the constellations of the night sky long before ever leaving
the nest to engage in navigation-dependent tasks (Emlen, 1967).
This memory template is directly used to determine the direction
of flight during migratory periods, a process that is modulated
hormonally so that winter and summer flights are reversed.
Learning is therefore a multi-phase process in which navigational
cues are memorized prior to the acquisition of motor control.

In humans, we suspect that similar multi-stage bootstrapping
processes are arranged to occur. Humans have innate
specializations for social learning. We need to be able to
read one another’s expressions as indicated with hands and faces.
Hands are important because they allow us to learn about the
set of actions that can be produced by agents (Ullman et al.,
2012). Faces are important because they give us insight into what
others are thinking. People have intentions and personalities that
differ from one another, and their feelings are important. How
could we hack together cost functions, built on simple genetically
specifiable mechanisms, to make it easier for a learning system to
discover such behaviorally relevant variables?

Some preliminary studies are beginning to suggest specific
mechanisms and heuristics that humans may be using to
bootstrap more sophisticated knowledge. In a groundbreaking
study, Ullman et al. (2012) asked how could we explain hands,
to a system that does not already know about them, in a cheap
way, without the need for labeled training examples? Hands are
common in our visual space and have special roles in the scene:
they move objects, collect objects, and caress babies. Building
these biases into an area specialized to detect hands could
guide the right kind of learning, by providing a downstream
learning system with many likely positive examples of hands
on the basis of innately-stored, heuristic signatures about how
hands tend to look or behave (Ullman et al., 2012). Indeed, an
internally supervised learning algorithm containing specialized,
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hard-coded biases to detect hands, on the basis of their typical
motion properties, can be used to bootstrap the training of
an image recognition module that learns to recognize hands
based on their appearance. Thus, a simple, hard-coded module
bootstraps the training of a much more complex algorithm for
visual recognition of hands.

Ullman et al. (2012) then further exploits a combination
of hand and face detection to bootstrap a predictor for gaze
direction, based on the heuristic that faces tend to be looking
toward hands. Of course, given a hand detector, it also becomes
much easier to train a system for reaching, crawling, and so forth.
Efforts are underway in psychology to determine whether the
heuristics discovered to be useful computationally are, in fact,
being used by human children during learning (Yu and Smith,
2013; Fausey et al., 2016).

Ullman refers to such primitive, inbuilt detectors as innate
“proto-concepts” (Ullman et al., 2012). Their broader claim is
that such pre-specification of mutual supervision signals can
make learning the relevant features of the world far easier, by
giving an otherwise unsupervised learner the right kinds of
hints or heuristic biases at the right times. Here we call these
approximate, heuristic cost functions “bootstrap cost functions.”
The purpose of the bootstrap cost functions is to reduce the
amount of data required to learn a specific feature or task, but
at the same time to avoid a need for fully unsupervised learning.

Could the neural circuitry for such a bootstrap hand-detector
be pre-specified genetically? The precedent from other organisms
is strong: for example, it is famously known that the frog
retina contains circuitry sufficient to implement a kind of
“bug detector” (Lettvin et al., 1959). Ullman’s hand detector,
in fact, operates via a simple local optical flow calculation to
detect “mover” events. This type of simple, local calculation
could potentially be implemented in genetically-specified and/or
spontaneously self-organized neural circuitry in the retina or
early dorsal visual areas (Bülthoff et al., 1989), perhaps similarly
to the frog’s “bug detector.”

How could we explain faces without any training data? Faces
tend to have two dark dots in their upper half, a line in the lower
half and tend to be symmetric about a vertical axis. Indeed, we
know that babies are very much attracted to things with these
generic features of upright faces starting from birth, and that
they will acquire face-specific cortical areas38 in their first few
years of life if not earlier (McKone et al., 2009). It is easy to
define a local rule that produces a kind of crude face detector

38In the visual system, it is still unknown why a clustered spatial pattern of
representational categories arises, e.g., a physically localized “area” that seems to
correspond to representations of faces (Kanwisher et al., 1997), another area for
representations of visual word forms (McCandliss et al., 2003), and so on. It is
also unknown why this spatial pattern seems to be largely reproducible across
individuals. Some theories are based on bottom-up correlation-based clustering or
neuronal competition mechanisms, which generate category-selective regions as a
byproduct. Other theories suggest a computational reason for this organization,
in the context of I-theory (Anselmi et al., 2015), involving the limited ability to
generalize transformation-invariances learned for one class of objects to other
classes (Leibo et al., 2015b). Areas for abstract culture-dependent concepts, like the
visual word form area, suggest that the decomposition cannot be “purely genetic.”
But it is conceivable that these areas could at least in part reflect different local cost
functions.

(e.g., detecting two dots on top of a horizontal line), and indeed
some evidence suggests that the brain can rapidly detect faces
without even a single feed-forward pass through the ventral
visual stream (Crouzet and Thorpe, 2011). The crude detection
of human faces used together with statistical learning should be
analogous to semi-supervised learning (Sukhbaatar et al., 2014)
and could allow identifying faces with high certainty.

Humans have areas devoted to emotional processing, and
the brain seems to embody prior knowledge about the structure
of emotional expressions and how they relate to causes in the
world: emotions should have specific types of strong couplings
to various other higher-level variables such as goal-satisfaction,
should be expressed through the face, and so on (Phillips et al.,
2002; Skerry and Spelke, 2014; Baillargeon et al., 2016; Lyons and
Cheries, 2016). What about agency? It makes sense to describe,
when dealing with high-level thinking, other beings as optimizers
of their own goal functions. It appears that heuristically specified
notions of goals and agency are infused into human psychological
development from early infancy and that notions of agency are
used to bootstrap heuristics for ethical evaluation (Hamlin et al.,
2007; Skerry and Spelke, 2014). Algorithms for establishing more
complex, innately-important social relationships such as joint
attention are under study (Gao et al., 2014), building upon more
primitive proto-concepts like face detectors and Ullman’s hand
detectors (Ullman et al., 2012). The brain can thus use innate
detectors to create cost functions and training procedures to
train the next stages of learning. This prior knowledge, encoded
into brain structure via evolution, could allow learning signals to
come from the right places and to appear developmentally at the
right times.

It is intuitive to ask whether this type of bootstrapping poses
a kind of “chicken and egg” problem: if the brain already has
an inbuilt heuristic hand detector, how can it be used to train a
detector that performs any better than those heuristics? After all,
isn’t a trained system only as good as its training data? The work
of Ullman et al. (2012) illustrates why this is not the case. First, the
“innate detector” can be used to train a downstream detector that
operates based on different cues: for example, based on the spatial
and body context of the hand, rather than its motion. Second,
once multiple such pathways of detection come into existence,
they can be used to improve each other. In Ullman et al. (2012),
appearance, body context, and mover motion are all used to
bootstrap off of one another, creating a detector that is better than
any of its training heuristics. In effect, the innate detectors are
used not as supervision signals per se, but rather to guide or steer
the learning process, enabling it to discover features that would
otherwise be difficult. If such affordances can be found in other
domains, it seems likely that the brain would make extensive
use of them to ensure that developing animals learn the precise
patterns of perception and behavior needed to ensure their later
survival and reproduction.

Thus, generalizing previous ideas (Ullman et al., 2012;
Poggio, 2015), we suggest that the brain uses optimization
with respect to internally generated heuristic39 detection signals

39Psychologists have postulated other innate heuristics, e.g., in the context of object
tracking (Franconeri et al., 2012). That infant object concepts are trainable but only
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to bootstrap learning of biologically relevant features which
would otherwise be missed by an unsupervised learner. In one
possible implementation, such bootstrapping may occur via
reinforcement learning, using the outputs of the innate detectors
as local reinforcement signals, and perhaps using mechanisms
similar to Stanisor et al. (2013), Rombouts et al. (2015), Brosch
et al. (2015), and Roelfsema and van Ooyen (2005) to perform
reinforcement learning through a multi-layer network. It is
also possible that the brain could use such internally generated
heuristic detectors in other ways, for example to bias the inputs
delivered to an unsupervised learning network toward entities
of interest to humans via an attentional process (Joscha Bach,
personal communication), to bias hippocampal replay (Kumaran
et al., 2016) or other aspects of memory access, or to directly train
simple classifiers (Ullman et al., 2012).

3.4.2. Cost Functions for Learning by Imitation and

through Social Feedback
It has been widely observed that the capacity for imitation
and social learning may be a feature that is uniquely human,
and that enables other human traits (Ramachandran, 2000).
Humans need to learn more from the environment by than
trial and error can provide for, and more than genetically
orchestrated internal bootstrapping signals can effectively guide.
Hence, babies spend a long time watching adults, especially
adults they are attached to Meltzoff (1999), and later use
specific kinds of social cues from their parents to shape their
development. Babies and children learn about cause and effect
through models based on goals, outcomes and agents, not
just pure statistical inference. For example, young children
make inferences about causality selectively in situations where
a human is trying to achieve an outcome (Meltzoff et al.,
2012, 2013). Minsky (2006) discusses how we derive not just
skills but also goals from our attachment figures, through
socially induced emotions like pride and shame. To do all
this requires a powerful infrastructure of mental abilities: we
must attribute social feedback to particular aspects of our
goals or actions, and hence we need to signal to each other
positively and negatively, to draw attention to these aspects.
Minsky speculates (Minsky, 2006) that the development of
such “learning by being told” led to language by selecting for
the development of increasingly precise parsing of synatatic
structures in relation to our representations of agents and action-
plans.

How does this connect with cost functions? The idea of goals
is central here, as we need to be able to identify the goals of
others, update our own goals based on feedback, and measure
the success of actions relative to goals. It has been proposed that
human intrinsically use a model based on abstract goal and costs
to underpin learning about the social world (Jara-Ettinger et al.,
2016). Perhaps we even learn about our “selves” by inferring a
model of our own goals and cost functions. Relatedly, machine
learning in some settings can infer their cost functions from
samples of behavior (Ho and Ermon, 2016).

along certain dimensions (Scholl, 2004) also suggests the notion of a heuristically
“guided” or “bootstrapped” learning process in this context.

3.4.3. Cost Functions for Story Generation and

Understanding
It has been widely noticed in cognitive science and AI that the
generation and understanding of stories are crucial to human
cognition. Researchers such as Winston have framed story
understanding as the key to human-like intelligence (Winston,
2011). Stories consist of a linear sequence of episodes, in
which one episode refers to another through cause and effect
relationships, with these relationships often involving the implicit
goals of agents.Many other cognitive faculties, such as conceptual
grounding of language, could conceivably emerge from an
underlying internal representation in terms of stories.

Perhaps the ultimate series of bootstrap cost functions
would be those which would direct the brain to utilize its
learning networks and specialized systems so as to construct
representations that are specifically useful as components of
stories, to spontaneously chain these representations together,
and to update them through experience and communication.
How could such cost functions arise? One possibility is that
they are bootstrapped through imitation and communication,
where a child learns to mimic the story-telling behavior of others.
Another possibility is that useful representations and primitives
for stories emerge spontaneously from mechanisms for learning
state and action chunking in hierarchical reinforcement learning
and planning. Yet another is that stories emerge from
learned patterns of saliency-directed memory storage and recall
(e.g., Xiong et al., 2016). In addition, priors that direct the
developing child’s brain to learn about and attend to social agency
seem to be important for stories.

In this section, we have seen how cost functions can
be specified that could lead to the learning of increasingly
sophisticated mental abilities in a biologically plausible manner.
Importantly, however, cost functions and optimization are not
the whole story. To achieve more complex forms of optimization,
e.g., for learning to understand complex patterns of cause and
effect over long timescales, to plan and reason prospectively,
or to effectively coordinate many widely distributed brain
resources, the brain seems to invoke specialized, pre-constructed
data structures, algorithms and communication systems, which
in turn facilitate specific kinds of optimization. Moreover,
optimization occurs in a tightly orchestrated multi-stage process,
and specialized, pre-structured brain systems need to be invoked
to account for this meta-level of control over when, where and
how each optimization problem is set up. We now turn to
how these pre-specialized systems may orchestrate and facilitate
optimization.

4. OPTIMIZATION OCCURS IN THE
CONTEXT OF SPECIALIZED STRUCTURES

Optimization of initially unstructured “blank slate” networks is
not sufficient to generate complex cognition in the brain, we
argue, even given a diversity of powerful genetically-specified
cost functions and local learning rules, as we have posited
above. Instead, in Hypothesis 3, we suggest that specialized,
pre-structured architectures are needed for at least two purposes.
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First, pre-structured architectures are needed to allow the
brain to find efficient solutions to certain types of problems.
When we write computer code, there are a broad range of
algorithms and data structures employed for different purposes:
we may use dynamic programming to solve planning problems,
trees to efficiently implement nearest neighbor search, or stacks
to implement recursion. Having the right kind of algorithm and
data structure in place to solve a problem allows it to be solved
efficiently, robustly and with a minimum amount of learning or
optimization needed. This observation is concordant with the
increasing use of pre-specialized architectures and specialized
computational components in machine learning (Graves et al.,
2014; Weston et al., 2014; Neelakantan et al., 2015). In particular,
to enable the learning of efficient computational solutions,
the brain may need pre-specialized systems for planning
and executing sequential multi-step processes, for accessing
memories, and for forming and manipulating compositional and
recursive structures40.

Second, the training of optimization modules may need to
be coordinated in a complex and dynamic fashion, including
delivering the right training signals and activating the right
learning rules in the right places and at the right times. To
allow this, the brain may need specialized systems for storing
and routing data, and for flexibly routing training signals such
as target patterns, training data, reinforcement signals, attention
signals, and modulatory signals. These mechanisms may need to
be at least partially in place in advance of learning.

Looking at the brain, we indeed seem to find highly conserved
structures, e.g., cortex, where it is theorized that a similar
type of learning and/or computation is happening in multiple
places (Braitenberg and Schutz, 1991; Douglas andMartin, 2004).
But we also see a large number of specialized structures, including
thalamus, hippocampus, basal ganglia and cerebellum (Solari and
Stoner, 2011). These structures evolutionarily pre-date (Lee et al.,
2015) the cortex, and hence the cortex may have evolved to work
in the context of such specialized mechanisms. For example, the
cortex may have evolved as a trainable module for which the
training is orchestrated by these older structures.

Even within the cortex itself, microcircuitry within different
areas may be specialized: tinkered variations on a common
ancestral microcircuit scaffold could potentially allow different
cortical areas, such as sensory areas vs. prefrontal areas, to
be configured to adopt a number of qualitatively distinct
computational and learning configurations (Yuste et al.,
2005; Marcus et al., 2014a,b), even while sharing a common
gross physical layout and communication interface. Within
cortex, over forty distinct cell types—differing in such
aspects as dendritic organization, distribution throughout
the six cortical layers, connectivity pattern, gene expression,
and electrophysiological properties—have already been
found (Markram et al., 2015; Zeisel et al., 2015). Central

40Of course, specialized architecture also enters the picture at the level of the
pre-structuring of trainable/optimizable modules themselves. Just as in deep
learning, convolutional networks, LSTMs, residual networks and other specific
architectures are used tomake learning efficient and fast, even thoughmore generic
architectures like multilayer perceptrons or generally RNNs are universal function
approximators.

pattern generator circuits provide an example of the kinds of
architectures that can be pre-wired into neural microcircuitry,
and may have evolutionary relationships with cortical
circuits (Yuste et al., 2005). Thus, while the precise degree
of architectural specificity of particular cortical regions is still
under debate (Marcus et al., 2014a,b), various mechanisms could
offer pre-specified heterogeneity.

In this section, we explore the kinds of computational
problems for which specialized structures may be useful, and
attempt to map these to putative elements within the brain.
Our preliminary sketch of a functional decomposition can be
viewed as a summary of suggestions for specialized functions
that have beenmade throughout the computational neuroscience
literature, and is influenced strongly by the models of O’Reilly,
Eliasmith, Grossberg, Marcus, Hayworth and others (Marcus,
2001; O’Reilly, 2006; Eliasmith et al., 2012; Hayworth, 2012;
Grossberg, 2013). The correspondence between these models and
actual neural circuitry is, of course, still the subject of extensive
debate.

Many of the computational and neural concepts sketched here
are preliminary and will need to be made more rigorous through
future study. Our knowledge of the functions of particular brain
areas, and thus our proposed mappings of certain computations
onto neuroanatomy, also remains tentative. Finally, it is still
far from established which processes in the brain emerge from
optimization of cost functions, which emerge from other forms
of self-organization, which are pre-structured through genetics
and development, and which rely on an interplay of all these
mechanisms41. Our discussion here should therefore be viewed
as a sketch of potential directions for further study.

4.1. Structured Forms of Memory
One of the central elements of computation is memory.
Importantly, multiple different kinds of memory are
needed (Squire, 2004). For example, we need memory that
is stored for a long period of time and that can be retrieved in a
number of ways, such as in situations similar to the time when
the memory was first stored (content addressable memory). We
also need memory that we can keep for a short period of time
and that we can rapidly rewrite (working memory). Lastly, we
need the kind of implicit memory that we cannot explicitly recall,
similar to the kind of memory that is classically learned using

41It is interesting to consider how standard neural network models of vision
would fit into this categorization. Consider convolutional neural networks, for
example, with the convolutional filters optimized via supervised backpropagation.
This is by no means a completely unstructured prior to backpropagation-based
training. Indeed, these networks typically contain max-pooling and normalization
layers with fixed computations that are not altered during learning, as well as
fixed architectural features such as number and arrangement of layers, size and
stride of the sliding window, and so forth. Likewise “hierarchical max-pooling”
(HMAX) models (Serre et al., 2007) of the ventral stream are so-named because of
these fixed architectural aspects. Thus, in a hypothetical biological implementation
of such systems, these aspects would be pre-structured by genetics even if
the convolutional weights would be trained via some kind of gradient descent
optimization. There are some plausible neural circuits that would implement these
standardized normalization andmax pooling operations (Kouh and Poggio, 2008).
Moreover, in a biological implementation, the machinery necessary to carry out
the optimization itself would need to be embodied by appropriate, genetically
structured circuitry.
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gradient descent on errors, i.e., sculpted into the weight matrix
of a neural network.

4.1.1. Content Addressable Memories
Content addressable memories42 are classic models in
neuroscience (Hopfield, 1982). Most simply, they allow us
to recognize a situation similar to one that we have seen
before, and to “fill in” stored patterns based on partial or
noisy information, but they may also be put to use as sub-
components of many other functions. Recent research has
shown that including such memories allows deep networks
to learn to solve problems that previously were out of reach,
even of LSTM networks that already have a simpler form
of local memory and are already capable of learning long-
term dependencies (Graves et al., 2014; Weston et al., 2014).
Hippocampal area CA3 may act as an auto-associative memory43

capable of content-addressable pattern completion, with
pattern separation occurring in the dentate gyrus (Rolls,
2013). If no similar pattern is available, an unfamiliar input
will be stored as a new memory (Kumaran et al., 2016). Such
systems could permit the retrieval of complete memories
from partial cues, enabling networks to perform operations
similar to database retrieval or to instantiate lookup tables of
historical stimulus-response mappings, among numerous other
possibilities.

Of course, memory systems may be organized—through
cost function optimization or other mechanisms—into higher-
order structures. Cost functions might be used to bias memory
representations to adopt particular structures, e.g., to be
organized into data structures like like Minskys frames and
trans-frames (Minsky, 2006).

4.1.2. Working Memory Buffers
Cognitive science has long characterized properties of the
working memory. Its capacity is somewhat limited, with the
old idea being that verbal working memory has a capacity of
“seven plus or minus two” (Miller, 1956), while visual working
memory has a capacity of four (Luck and Vogel, 1997) (or,
other authors defend, one). There are many models of working
memory (O’Reilly and Frank, 2006; Singh and Eliasmith, 2006;

42Attractor models of memory in neuroscience tend to have the property that
only one memory can be accessed at a time (although a brain can have many
such memories that can be accessed in parallel). Recent machine learning systems,
however, have constructed differentiable addressable memory (Graves et al., 2014)
and gating (Whitney et al., 2016) systems by allowing weighted superpositions of
memory registers or gates to be queried—it is unclear whether the brain uses such
mechanisms.
43Computational analogies have also been drawn between associative memory
storage and object recognition (Leibo et al., 2015a), suggesting the possibility of
closely related computations occurring in parts of neocortex and hippocampus.
Indeed, the hippocampus and olfactory cortex (a more ancient and simpler
structure than the neocortex Shepherd, 2014; Fournier et al., 2015) are few-layer
structures described in comparative anatomy as “allocortex,” as opposed to the six-
layered “neocortex,” and both types of cortex have some anatomical similarities
(particularly for CA1 and subiculum, though less so for CA3 and dentate gyrus)
such as the presence of pyramidal neurons. It has been suggested that the
hippocampus can be thought of as the top of the cortical hierarchy (Hawkins
and Blakeslee, 2007), responsible for handling and remembering information that
could not be fully explained by lower levels of the hierarchy. These computational
connections are still tentative.

Warden and Miller, 2007; Wang, 2012; Buschman and Miller,
2014), some of which attribute it to persistent, self-reinforcing
patterns of neural activation (Goldman et al., 2003) in the
recurrent networks of the prefrontal cortex. Prefrontal working
memory appears to be made up of multiple functionally distinct
subsystems (Markowitz et al., 2015). Neural models of working
memory can store not only scalar variables (Seung, 1998), but
also high-dimensional vectors (Eliasmith and Anderson, 2004;
Eliasmith et al., 2012) or sequences of vectors (Choo and
Eliasmith, 2010). Working memory buffers seem crucial for
human-like cognition, e.g., reasoning, as they allow short-term
storage while also—in conjunction with other mechanisms—
enabling generalization of operations across anything that can fill
the buffer.

4.1.3. Storing State in Association with Saliency
Saliency, or interestingness, measures can be used to tag the
importance of a memory (Gonzalez Andino and Grave de Peralta
Menendez, 2012). This can allow removal of the boring data
from the training set, allowing a mechanism that is more like
optimal experimentation. Moreover, saliency can guide memory
replay or sampling from generative models, to generate more
training data drawn from a distribution useful for learning (Ji
and Wilson, 2007; Mnih et al., 2015). Conceivably, hippocampal
replay could allow a batch-like training process, similar to
how most machine learning systems are trained, rather than
requiring all training to occur in an online fashion. Plasticity
mechanisms in memory systems which are gated by saliency
are starting to be uncovered in neuroscience (Dudman et al.,
2007). Importantly, the notions of “saliency” computed by the
brain could be quite intricate and multi-faceted, potentially
leading to complex schemes by which specific kinds of memories
would be tagged for later context-dependent retrieval. As
a hypothetical example, representations of both timing and
importance associated with memories could perhaps allow
retrieval only of important memories that happened within a
certain window of time (MacDonald et al., 2011; Kraus et al.,
2013; Rubin et al., 2015). Storing and retrieving information
selectively based on specific properties of the information itself,
or of “tags” appended to that information, is a powerful
computational primitive that could enable learning of more
complex tasks. Relatedly, we know that certain pathways become
associated with certain kinds of memories, e.g., specific pathways
for fear-related memory in mice.

4.2. Structured Routing Systems
To use its information flexibly, the brain needs structured
systems for routing data. Such systems need to address multiple
temporal and spatial scales, and multiple modalities of control.
Thus, there are several different kinds of information routing
systems in the brain which operate by different mechanisms and
under different constraints.

4.2.1. Attention
If we can focus on one thing at a time, we may be able to
allocate more computational resources to processing it, make
better use of scarce data to learn about it, and more easily
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store and retrieve it from memory44. Notably in this context,
attention allows improvements in learning: if we can focus on
just a single object, instead of an entire scene, we can learn about
it more easily using limited data. Formal accounts in a Bayesian
framework talk about attention reducing the sample complexity
of learning (Chikkerur et al., 2010). Likewise, in models, the
processes of applying attention, and of effectively making use
of incoming attentional signals to appropriately modulate local
circuit activity, can themselves be learned by optimizing cost
functions (Jaramillo and Pearlmutter, 2004; Mnih et al., 2014).
The right kinds of attention make processing and learning more
efficient, and also allow for a kind of programmatic control over
multi-step perceptual tasks.

How does the brain determine where to allocate attention,
and how is the attentional signal physically mediated? Answering
this question is still an active area of neuroscience. Higher-
level cortical areas may be specialized in allocating attention.
The problem is made complex by the fact that there seem
to be many different types of attention—such as object-based,
feature-based and spatial attention in vision—that may be
mediated by interactions between different brain areas. The
frontal eye fields (area FEF), for example, are important in
visual attention, specifically for controlling saccades of the eyes
to attended locations. Area FEF contains “retinotopic” spatial
maps whose activation determines the saccade targets in the
visual field. Other prefrontal areas such as the dorsolateral
prefrontal cortex and inferior frontal junction are also involved
in maintaining representations that specify the targets of
certain types of attention. Certain forms of attention may
require a complex interaction between brain areas, e.g., to
determine targets of attention based on higher-level properties
that are represented across multiple areas, like the identity
and spatial location of a specific face (Baldauf and Desimone,
2014).

There are many proposed neural mechanisms of attention,
including the idea that synchrony plays a role (Baldauf
and Desimone, 2014), perhaps by creating resonances that
facilitate the transfer of information between synchronously
oscillating neural populations in different areas45. Other
proposed mechanisms include specific circuits for attention-
dependent signal routing (Anderson and Van Essen, 1987;
Olshausen et al., 1993). Various forms of attention also have
specific neurophysiological signatures, such as enhancements in
synchrony among neural spikes and with the ambient local field
potential, changes in the sharpness of neural tuning curves, and
other properties. These diverse effects and signatures of attention
may be consequences of underlying pathways that wire up to

44Attention also arguably solves certain types of perceptual binding
problem (Reynolds and Desimone, 1999).
45The precise roles of synchrony in information routing and other processes, and
when it should be viewed as a causal factor vs. as an epiphenomenon of other
mechanisms, is still being worked out. In some theories, oscillations occur as
consequences of certain recurrent processing loops, e.g., thalamo-cortico-striatal
loops (Eliasmith et al., 2012). In other models, so-called “dynamic circuit motifs,”
involving specific combinations of cellular and synaptic sub-types, both generate
synchronies (e.g., in part via intrinsically rhythmic pacemaker neurons) and
exploit them for specific computational roles, particularly in the rapid dynamic
formation of communication networks (Womelsdorf et al., 2014).

particular elements of cortical microcircuits to mediate different
attentional effects (Bobier et al., 2014).

4.2.2. Buffers
One possibility is that the brain uses distinct groups of neurons,
which we can call “buffers,” to store distinct variables, such as
the subject or object in a sentence (Frankland and Greene, 2015).
Having memory buffers allows the abstraction of a variable.

Once we establish that the brain has a number of memory
buffers, we need ways for those buffers to interact. We need to
be able to take a buffer, do a computation on its contents and
store the output into another buffer. But if the representations in
each of two groups of neurons are learned, and hence are coded
differently, how can the brain “copy and paste” information
between these groups of neurons? Malsburg argued that such
a system of separate buffers is impossible because the neural
pattern for “chair” in buffer 1 has nothing in common with
the neural pattern for “chair” in buffer 2—any learning that
occurs for the contents of buffer 1 would not automatically be
transferable to buffer 2. Various mechanisms have been proposed
to allow such transferability, which focus on ways in which all
buffers could be trained jointly and then later separated so that
they can work independently when they need to46.

4.2.3. Discrete Gating of Information Flow between

Buffers
Dense connectivity is only achieved locally, but it would be
desirable to have a way for any two cortical units to talk to
one another, if needed, regardless of their distance from one
another, and without introducing crosstalk47. It is therefore
critical to be able to dynamically turn on and off the transfer
of information between different source and destination regions,
in much the manner of a switchboard. Together with attention,
such dedicated routing systems can make sure that a brain area
receives exactly the information it needs. Such a discrete routing
system is, of course, central to cognitive architectures like ACT-
R (Anderson, 2007). The key feature of ACT-R is the ability to
evaluate the IF clauses of tens of thousands of symbolic rules

46One idea for achieving such transferability is that of a partitionable (Hayworth,
2012) or annexable (Bostrom, 1996) network. These models posit that a large
associative memory network links all the different buffers. This large associative
memory network has a number of stable attractor states. These are called “global”
attractor states since they link across all the buffers. Forcing a given buffer into an
activity pattern resembling that of its corresponding “piece” of an attractor state
will cause the entire global network to enter that global attractor state. During
training, all of the connections between buffers are turned on, so that their learned
contents, though not identical, are kept in correspondence by being part of the
same attractor. Later, the connections between specific buffers can be turned off to
allow them to store different information. Copy and paste is then implemented
by turning on the connections between a source buffer and a destination
buffer (Hayworth, 2012). Copying between a source and destination buffer can also
be implemented, i.e., learned, in a deep learning system using methods similar to
the addressing mechanisms of the Neural Turing Machine (Graves et al., 2014).
47Micro-stimulation experiments, in which an animal learns to behaviorally report
stimulation of electrode channels located in diverse cortical regions, suggest that
many areas can be routed or otherwise linked to behavioral “outputs” (Histed
et al., 2013), although the mechanisms behind this—e.g., whether this stimulation
gives rise to a high-level percept that the animal then uses to make a decision—
are unclear. Likewise, it is possible to reinforcement-train an animal to control the
activity of individual neurons (Fetz, 1969, 2007).
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(called “productions”), in parallel, approximately every 50 ms.
Each rule requires equality comparisons between the contents of
many constant and variable memory buffers, and the execution
of a rule leads to the conditional routing of information from one
buffer to another.

What controls which long-range routing operations occur
when, i.e., where is the switchboad and what controls it? Several
models, including ACT-R, have attributed such parallel rule-
based control of routing to the action selection circuitry (Gurney
et al., 2001; Terrence Stewart, 2010) of the basal ganglia
(BG) (O’Reilly and Frank, 2006; Stocco et al., 2010), and its
interaction with working memory buffers in the prefrontal
cortex. In conventional models of thalamo-cortico-striatal loops,
competing actions of the direct and indirect pathways through
the basal ganglia can inhibit or disinhibit an area of motor
cortex, thereby gating amotor action48. Models like (O’Reilly and
Frank, 2006; Stocco et al., 2010; Terrence Stewart, 2010) propose
further that the basal ganglia can gate not just the transfer of
information from motor cortex to downstream actuators, but
also the transfer of information between cortical areas. To do
so, the basal ganglia would dis-inhibit a thalamic relay (Sherman,
2005, 2007) linking two cortical areas. Dopamine-related activity
is thought to lead to temporal difference reinforcement learning
of such gating policies in the basal ganglia (Frank and
Badre, 2012). Beyond the basal ganglia, there are also other,
separate pathways involved in action selection, e.g., in the
prefrontal cortex (Daw et al., 2006). Thus, multiple systems
including basal ganglia and cortex could control the gating of
long-range information transfer between cortical areas, with
the thalamus perhaps largely constituting the switchboard
itself.

How is such routing put to use in a learning context?
One possibility is that the basal ganglia acts to orchestrate
the training of the cortex. The basal ganglia may exert tight
control49 over the cortex, helping to determine when and how
it is trained. Indeed, because the basal ganglia pre-dates the
cortex evolutionarily, it is possible that the cortex evolved as a
flexible, trainable resource that could be harnessed by existing
basal ganglia circuitry. All of the main regions and circuits of
the basal ganglia are conserved from our common ancestor with

48Conventionally, models of the basal ganglia involve all or none gating of
an action, but recent evidence suggests that the basal ganglia may also have
continuous, analog outputs (Yttri and Dudman, 2016).
49It has been suggested that the basic role of the BG is to provide tonic inhibition
to other circuits (Grillner et al., 2005). Release of this inhibition can then activate
a “discrete” action, such as a motor command. A core function of the BG is thus
to choose, based on patterns detected in its input, which of a finite set of actions to
initiate via such release of inhibition. In manymodels of the basal gangliaâĂŹs role
in cognitive control, the targets of inhibition are thalamic relays (Sherman, 2005),
which are set in a default “off” state by tonic inhibition from the basal ganglia.
Upon disinhibition of a relay, information is transferred from one cortical location
to another—a form of conditional “gating” of information transfer. For example,
the BGmight be able to selectively “clamp” particular groups of cortical neurons in
a fixed state, while leaving others free to learn and adapt. It could thereby enforce
complex training routines, perhaps similar to those used to force the emergence
of disentangled representations in (Kulkarni et al., 2015). The idea that the basal
ganglia can train the cortex is not new, and already appears to have considerable
experimental and anatomical support (Pasupathy and Miller, 2005; Ashby et al.,
2007, 2010; Turner and Desmurget, 2010).

the lamprey more than five hundred million years ago. The
major part of the basal ganglia even seems to be conserved
from our common ancestor with insects (Strausfeld and Hirth,
2013). Thus, in addition to its real-time action selection and
routing functions, the basal ganglia may sculpt how the cortex
learns.

4.3. Structured State Representations to
Enable Efficient Algorithms
Certain algorithmic problems benefit greatly from particular
types of representation and transformation, such as a grid-
like representation of space. In some cases, rather than just
waiting for them to emerge via gradient descent optimization of
appropriate cost functions, the brain may be pre-structured to
facilitate their creation.

4.3.1. Continuous Predictive Control
We often have to plan and execute complicated sequences of
actions on the fly, in response to a new situation. At the
lowest level, that of motor control, our body and our immediate
environment change all the time. As such, it is important for us
to maintain knowledge about this environment in a continuous
way. The deviations between our planned movements and
those movements that we actually execute continuously provide
information about the properties of the environment. Therefore,
it seems important to have a specialized system, optimized for
high-speed continuous processing, that takes all our motor errors
and uses them to update a dynamical model of our body and
our immediate environment that can predict the delayed sensory
results of our motor actions (McKinstry et al., 2006).

It appears that the cerebellum is such a structure, and lesions
to it abolish our way of dealing successfully with a changing
body. Incidentally, the cerebellum has more connections
than the rest of the brain taken together, apparently in a
largely feedforward architecture, and the tiny cerebellar granule
cells, which may form a randomized high-dimensional input
representation (Marr, 1969; Jacobson and Friedrich, 2013),
outnumber all other neurons. The brain clearly needs a dedicated
way of quickly and continuously correcting movements to
minimize errors, without needing to rely on slow and complex
association learning in the neocortex in order to do so.

Newer research shows that the cerebellum is involved in
a broad range of cognitive problems (Moberget et al., 2014)
as well, potentially because they share computational problems
with motor control. For example, when subjects estimate time
intervals, which are naturally important for movement, it appears
that the brain uses the cerebellum even if no movements
are involved (Gooch et al., 2010). Even individual cerebellar
Purkinjie cells may learn to generate precise timings of their
outputs (Johansson et al., 2014). The brain also appears to
use inverse models to rapidly predict motor activity that
would give rise to a given sensory target (Hanuschkin et al.,
2013; Giret et al., 2014). Such mechanisms could be put to
use far beyond motor control, in bootstrapping the training
of a larger architecture by exploiting continuously changing
error signals to update a real-time model of the system
state.
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4.3.2. Hierarchical Control
Importantly, many of the control problems we appear to be
solving are hierarchical. We have a spinal cord, which deals with
the fast signals coming from our muscles and proprioception.
Within neuroscience, it is generally assumed that this system
deals with fast feedback loops and that this behavior is learned
to optimize its own cost function. The nature of cost functions in
motor control is still under debate. In particular, the timescale
over which cost functions operate remains unclear: motor
optimizationmay occur via real-time responses to a cost function
that is computed and optimized online, or via policy choices
that change over time more slowly in response to the cost
function (Körding, 2007). Nevertheless, the effect is that central
processing in the brain has an effectively simplified physical
system to control, e.g., one that is far more linear. So the spinal
cord itself already suggests the existence of two levels of a
hierarchy, each trained using different cost functions.

However, within the computational motor control literature
(see e.g., DeWolf and Eliasmith, 2011), this idea can be pushed
far further, e.g., with a hierarchy including spinal cord, M1, PMd,
frontal, prefrontal areas. A low level may deal with muscles, the
next level may deal with getting our limbs to places or moving
objects, a next layer may deal with solving simple local problems
(e.g., navigating across a room) while the highest levels may deal
with us planning our path through life. This factorization of
the problem comes with multiple aspects: First, each level can
be solved with its own cost functions, and second, every layer
has a characteristic timescale. Some levels, e.g., the spinal cord,
must run at a high speed. Other levels, e.g., high-level planning,
only need to be touched much more rarely. Converting the
computationally hard optimal control problem into a hierarchical
approximation promises to make it dramatically easier.

Does the brain solve control problems hierarchically? There
is evidence that the brain uses such a strategy (Botvinick et al.,
2009; Botvinick and Weinstein, 2014), beside neural network
demonstrations (Wayne and Abbott, 2014). The brain may use
specialized structures at each hierarchical level to ensure that
each operates efficiently given the nature of its problem space and
available training signals. At higher levels, these systems may use
an abstract syntax for combining sequences of actions in pursuit
of goals (Allen et al., 2010). Subroutines in such processes could
be derived by a process of chunking sequences of actions into
single actions (Graybiel, 1998; Botvinick and Weinstein, 2014).
Some brain areas like Broca’s area, known for its involvement
in language, also appear to be specifically involved in processing
the hierarchical structure of behavior, as such, as opposed to its
detailed temporal structure (Koechlin and Jubault, 2006).

At the highest level of the decision making and control
hierarchy, human reward systems reflect changing goals and
subgoals, and we are only beginning to understand how goals
are actually coded in the brain, how we switch between goals,
and how the cost functions used in learning depend on goal
state (Buschman and Miller, 2014; O’Reilly et al., 2014b; Pezzulo
et al., 2014). Goal hierarchies are beginning to be incorporated
into deep learning (Kulkarni et al., 2016).

Given this hierarchical structure, the optimization algorithms
can be fine-tuned. For the low levels, there is sheer unlimited

training data. For the high levels, a simulation of the world may
be simple, with a tractable number of high-level actions to choose
from. Finally, each area needs to give reinforcement to other
areas, e.g., high levels need to punish lower levels for making
planning complicated. Thus this type of architecture can simplify
the learning of control problems.

Progress is being made in both neuroscience and machine
learning on finding potential mechanisms for this type of
hierarchical planning and goal-seeking. This is beginning to
reveal mechanisms for chunking goals and actions and for
searching and pruning decision trees (O’Reilly et al., 2014a;
Huys et al., 2015; Balaguer et al., 2016; Krishnamurthy et al.,
2016; Tamar et al., 2016). The study of model-based hierarchical
reinforcement learning and prospective optimization (Sejnowski
and Poizner, 2014), which concerns the planning and evaluation
of nested sequences of actions, implicates a network coupling the
dorsolateral prefontral and orbitofrontal cortex, and the ventral
and dorsolateral striatum (Botvinick et al., 2009). Hierarchical
RL relies on a hierarchical representation of state and action
spaces, and it has been suggested that error-driven learning of
an optimal such representation in the hippocampus50 gives rise
to place and grid cell properties (Stachenfeld, 2014), with goal
representations themselves emerging in the amygdala, prefrontal
cortex and other areas (O’Reilly et al., 2014a).

The question of how control problems can be successfully
divided into component problems remains one of the central
questions in neuroscience (Wolpert and Flanagan, 2016) and
machine learning (Kulkarni et al., 2016), and the cost functions
involved in learning to create such decompositions are still
unknown. These considerations may begin to make plausible,
however, how the brain could not only achieve its remarkable
feats of motor learning—such as generating complex “innate”
motor programs, like walking in the newborn gazelle almost
immediately after birth—but also the kind of planning that allows
a human to prepare a meal or travel from London to Chicago.

4.3.3. Spatial Planning
Spatial planning requires solving shortest-path problems subject
to constraints. If we want to get from one location to another,
there are an arbitrarily large number of simple paths that could
be taken. Most naive implementations of such shortest paths
problems are grossly inefficient. It appears that, in animals, the
hippocampus aids—at least in part through “place cell” and
“grid cell” systems—in efficient learning about new environments
and in targeted navigation in such environments (Brown et al.,
2016). Interestingly, once an environment becomes familiar, it
appears that areas of the neocortex can take over the role of
navigation (Hasselmo and Stern, 2015).

In some simple models, targeted navigation in the
hippocampus is achieved via the dynamics of “bump attractors”
or propagating waves in a place cell network with Hebbian
plasticity and adaptation (Hopfield, 2009; Buzsáki and Moser,
2013; Ponulak and Hopfield, 2013), which allows the network
to effectively chart out a path in the space of place cell

50Like many brain areas, the hippocampus is richly innervated by a variety of
reward-related and other neuromodulatory systems (Verney et al., 1985; Colino
and Halliwell, 1987; Hasselmo and Wyble, 1997).
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representations. Other navigation models make use of the grid
cell system. The place cell network may51 take input from a grid
cell network that computes precise distances and directions,
perhaps by integrating head direction and velocity signals—grid
cells fire when the animal is on any node of a regularly spaced
hexagonal grid. Different parts of the entorhinal cortex contain
grid cells with different grid spacings, and place cells may
combine information from multiple such grids in order to build
up responses to particular single positions. These systems are
highly structured temporally, e.g., containing nested gamma and
theta oscillation structures that are phased locked to sequences
of place-cell responses, interfering oscillators frequency-shifted
by the animal’s motion velocity (Zilli and Hasselmo, 2010),
tuned cellular resonances (Giocomo et al., 2007; Buzsáki, 2010),
and other neural phenomena that lie far outside a conventional
artificial neural network description. It seems that an intricate
interplay of spatial and temporal network structures may be
essential for encoding sequences of spatiotemporal events
across multiple scales, and using them to drive multiple forms
of learning, e.g., supporting forward and reverse sequence
replay with various temporal compression factors (Buzsáki,
2010).

Higher-level cognitive tasks such as prospective planning
appear to share computational sub-problems with path-
finding (Hassabis and Maguire, 2009)52. Interaction between
hippocampus and prefrontal cortex could perhaps support a
more abstract notion of “navigation” in a space of goals and
sub-goals. Interestingly, there is preliminary evidence from fMRI
that abstract concepts are also represented according to grid-cell-
like hexagonal grid structures in humans (Constantinescu et al.,
2016), as well as preliminary evidence that social relationships
may also be represented through a hippocampal map (Tavares
et al., 2015). Having specialized structures for path-finding could
thus simplify a variety of computational problems at different
levels of abstraction.

4.3.4. Variable Binding
Language and reasoning appear to present a problem for neural
networks (Minsky, 1991; Marcus, 2001; Hadley, 2009): we seem
to be able to apply common grammatical rules to sentences
regardless of the content of those sentences, and regardless of
whether we have ever seen even remotely similar sentences in the
training data. While this is achieved automatically in a computer
with fixed registers, location addressable memories, and hard-
coded operations, how it could be achieved in a biological brain,
or emerge from an optimization algorithm, has been under
debate for decades.

As the putative key capability underlying such operations,
variable binding has been defined as “the transitory or permanent
tying together of two bits of information: a variable (such as
an X or Y in algebra, or a placeholder like subject or verb

51It remains unclear whether place cells take input from the grid cell system or vice
versa (Hasselmo, 2015).
52Other spatial problems such as mental rotation may require learning
architectures specialized for geometric coordinate transformations (Hinton et al.,
2011; Jaderberg et al., 2015) or binding mechanisms that support structural,
compositional, parametric descriptions of a scene (Hayworth et al., 2011).

in a sentence) and an arbitrary instantiation of that variable
(say, a single number, symbol, vector, or word)” (Marcus et al.,
2014a,b). A number of potential biologically plausible binding
mechanisms (Eliasmith et al., 2012; Hayworth, 2012; Kriete et al.,
2013; Goertzel, 2014) are reviewed in Marcus et al. (2014a)
and Marcus et al. (2014b). Some, such as vector symbolic
architectures53, which were proposed in cognitive science (Plate,
1995; Stewart and Eliasmith, 2009; Eliasmith, 2013), are also
being considered in the context of efficiently-trainable artificial
neural networks (Danihelka et al., 2016)—in effect, these systems
learn how to use variable binding.

Variable binding could potentially emerge from simpler
memory systems. For example, the Scrub-Jay can remember the
place and time of last visit for hundreds of different locations, e.g.,
to determine whether high-quality food is currently buried at any
given location (Clayton and Dickinson, 1998). It is conceivable
that such spatially-grounded memory systems enabled a more
general binding mechanism to emerge during evolution, perhaps
through integration with routing systems or other content-
addressable or working memory systems.

4.3.5. Hierarchical Syntax
Fixed, static hierarchies (e.g., the hierarchical organization of
cortical areas Felleman and Van Essen, 1991) only take us so
far: to deal with long chains of arbitrary nested references,
we need dynamic hierarchies that can implement recursion on
the fly. Human language syntax has a hierarchical structure,
which Berwick et al described as “composition of smaller forms
like words and phrases into larger ones” (Berwick et al., 2012;
Miyagawa et al., 2013). The extent of recursion in human
language and thought may be captured by a class of automata
known as higher-order pushdown automata, which can be
implemented via finite state machines with access to nested
stacks (Rodriguez and Granger, 2016). Specific fronto-temporal
networks may be involved in representing and generating such
hierarchies (Dehaene et al., 2015), e.g., with the hippocampal
system playing a key role in implementing some analog of a
pushdown stack (Rodriguez and Granger, 2016)54.

Little is known about the underlying circuit mechanisms for
such dynamic hierarchies, but it is clear that specific affordances
for representing such hierarchies in an efficient way would be
beneficial. This may be closely connected with the issue of
variable binding, and it is possible that operations similar to
pointers could be useful in this context, in both the brain and
artificial neural networks (Kriete et al., 2013; Kurach et al., 2015).
Augmenting neural networks with a differentiable analog of a

53There is some direct fMRI evidence for anatomically separate registers
representing the contents of different sentence roles in the human
brain (Frankland and Greene, 2015), which is suggestive of a possible anatomical
binding mechanism, but also consistent with other mechanisms like vector
symbolic architectures. More generally, the substrates of symbolic processing in
the brain may bear an intimate connection with the representation of objects in
working memory in the prefrontal cortex, and specifically with the question of
how the PFC represents multiple objects in working memory simultaneously. This
question is undergoing extensive study in primates (Warden and Miller, 2007,
2010; Siegel et al., 2009; Rigotti et al., 2013).
54There is controversy around claims that recursive syntax is also present in
songbirds (Van Heijningen et al., 2009).
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push-down stack is another such affordance being pursued in
machine learning (Joulin and Mikolov, 2015).

4.3.6. Mental Programs and Imagination
Humans excel at stitching together sub-actions to form larger
actions (Verwey, 1996; Acuna et al., 2014; Sejnowski and Poizner,
2014). Structured, serial, hierarchical probabilistic programs have
recently been shown to model aspects of human conceptual
representation and compositional learning (Lake et al., 2015). In
particular, sequential programs were found to enable one-shot
learning of new geometric/visual concepts (Lake et al., 2015).
Generative programs have also been proposed in the context of
scene understanding (Battaglia et al., 2013). The ability to deal
with problems in terms of sub-problems is central both in human
thought and in many successful algorithms.

One possibility is that the hippocampus supports the
rapid construction and learning of sequential programs, e.g.,
in multi-step planning. An influential idea—known as the
“complementary learning systems hypothesis”—is that the
hippocampus plays a key role in certain processes where learning
must occur quickly on the basis of single episodes, whereas
the cortex learns more slowly by aggregating and integrating
patterns across large amounts of data (Herd et al., 2013; Leibo
et al., 2015a; Blundell et al., 2016; Kumaran et al., 2016). The
hippocampus appears to explore, in simulation, possible future
trajectories to a goal, even those involving previously unvisited
locations (Ólafsdóttir et al., 2015). Hippocampal-prefrontal
interaction has been suggested to allow rapid, subconscious
evaluation of potential action sequences during decision-making,
with the hippocampus in effect simulating the expected outcomes
of potential actions that are generated and evaluated in the
prefrontal (Mushiake et al., 2006; Wang et al., 2015). The role of
the hippocampus in imagination, concept generation (Kumaran
et al., 2009), scene construction (Hassabis and Maguire, 2007),
mental exploration and goal-directed path planning (Hopfield,
2009; Ólafsdóttir et al., 2015; Brown et al., 2016) suggests that
it could help to create generative models to underpin more
complex inference such as program induction (Lake et al.,
2015) or common-sense world simulation (Battaglia et al., 2013).
For example, a sequential, programmatic process, mediated
jointly by the basal ganglia, hippocampus and prefrontal cortex
might allow one-shot learning of a new concept, as in the
sequential computations underlying a process like Bayesian
Program Learning (Lake et al., 2015).

Another related possibility is that the cortex itself
intrinsically supports the construction and learning of sequential
programs (Bach and Herger, 2015). Recurrent neural networks
have been used for image generation through a sequential,
attention-based process (Gregor et al., 2015), although their
correspondence with the brain is unclear55.

55The above mechanisms are spontaneous and subconscious. In conscious
thought, too, the brain can clearly visit the multiple layers of a program one after
the other. We make high-level plans that we fill with lower-level plans. Humans
also have memory for their own thought processes. We have some ability to put
“on hold” our current state of mind, start a new train of thought, and then come
back to our original thought. We also are able to ask, introspectively, whether we
have had a given thought before. The neural basis of these processes is unclear,
although one may speculate that the hippocampus is involved.

4.4. Other Specialized Structures
Importantly, there are many other specialized structures known
in neuroscience, which arguably receive less attention than
they deserve, even for those interested in higher cognition.
In the above, in addition to the hippocampus, basal ganglia
and cortex, we emphasized the key roles of the thalamus
in routing, of the cerebellum as a fast and rapidly trainable
control and modeling system, of the amygdala and other
areas as a potential source of utility functions, of the retina
or early visual areas as a means to generate detectors for
motion and other features to bootstrap more complex visual
learning, and of the frontal eye fields and other areas as a
possible source of attention control. We ignored other structures
entirely, whose functions are only beginning to be uncovered,
such as the claustrum (Crick and Koch, 2005), which has
been speculated to be important for rapidly binding together
information from many modalities. Our overall understanding
of the functional decomposition of brain circuitry still seems very
preliminary.

4.5. Relationships with Other Cognitive
Frameworks Involving Specialized Systems
A recent analysis (Lake et al., 2016) suggested directions
by which to modify and enhance existing neural-net-based
machine learning toward more powerful and human-like
cognitive capabilities, particularly by introducing new structures
and systems which go beyond data-driven optimization. This
analysis emphasized that systems should construct generative
models of the world that incorporate compositionality (discrete
construction from re-usable parts), inductive biases reflecting
causality, intuitive physics and intuitive psychology, and the
capacity for probabilistic inference over discrete structured
models (e.g., structured as graphs, trees, or programs) (Tervo
et al., 2016) to harness abstractions and enable transfer learning.

We view these ideas as consistent with and complementary
to the framework of cost functions, optimization and specialized
systems discussed here. One might seek to understand how
optimization and specialized systems could be used to implement
some of the mechanisms proposed in Lake et al. (2016)
inside neural networks. Lake et al. (2016) emphasize how
incorporating additional structure into trainable neural networks
can potentially give rise to systems that use compositional, causal
and intuitive inductive biases and that “learn to learn” using
structured models and shared data structures. For example,
sub-dividing networks into units that can be modularly and
dynamically combined, where representations can be copied and
routed, may present a path toward improved compositionality
and transfer learning (Andreas et al., 2015). The control flow for
recombining pre-existing modules and representations could be
learned via reinforcement learning (Andreas et al., 2016). How
to implement the broad set of mechanisms discussed in Lake
et al. (2016) is a key computational problem, and it remains
open at which levels (e.g., cost functions and training procedures
vs. specialized computational structures vs. underlying neural
primitives) architectural innovations will need to be introduced
to capture these phenomena.
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Primitives that are more complex than those used in
conventional neural networks—for instance, primitives that act
as state machines with complex message passing (Bach and
Herger, 2015) or networks that intrinsically implement Bayesian
inference (George and Hawkins, 2009)—could potentially be
useful, and it is plausible that some of these may be found in the
brain. Recent findings on the power of generic optimization also
do not rule out the idea that the brain may explicitly generate and
use particular types of structured representations to constrain
its inferences; indeed, the specialized brain systems discussed
here might provide a means to enforce such constraints. It
might be possible to further map the concepts of Lake et al.
(2016) onto neuroscience via an infrastructure of interacting
cost functions and specialized brain systems under rich genetic
control, coupled to a powerful and generic neurally implemented
capacity for optimization. For example, it was recently shown that
complex probabilistic population coding and inference can arise
automatically from backpropagation-based training of simple
neural networks (Orhan and Ma, 2016), without needing to be
built in by hand. The nature of the underlying primitives in the
brain, on top of which learning can operate, is a key question for
neuroscience.

5. MACHINE LEARNING INSPIRED
NEUROSCIENCE

Hypotheses are primarily useful if they lead to concrete,
experimentally testable predictions. As such, we now want to go
through the hypotheses and see to which level they can be directly
tested, as well as refined, through neuroscience.

5.1. Hypothesis 1– Existence of Cost
Functions
There are multiple general strategies for addressing whether and
how the brain optimizes cost functions. A first strategy is based
on observing the endpoint of learning. If the brain uses a cost
function, and we can guess its identity, then the final state of the
brain should be close to optimal for the cost function. We could
thus compare (Güçlü and van Gerven, 2015) receptive fields that
are optimized in a simulation, according to a particular cost
function, with the measured receptive fields. Various techniques
exist to carry out such comparisons in fRMI studies, including
population receptive field estimation (Dumoulin and Wandell,
2008; Güçlü and van Gerven, 2015) and representational
dissimilarity matrices (Kriegeskorte et al., 2008; Khaligh-Razavi
and Kriegeskorte, 2014). This strategy is only beginning to be
used at the moment, perhaps because it has been difficult to
measure the receptive fields or other representational properties
across a large population of individual neurons (fMRI operates at
a much coarser level), but this situation is beginning to improve
technologically with the emergence of large-scale recording
methods (Hasselmo, 2015).

A second strategy could directly quantify how well a cost
function describes learning. If the dynamics of learning minimize
a cost function then the underlying vector field should have a
strong gradient descent type component and a weak rotational

component, i.e., weight changes will primarily move down the
gradient rather than drifting in the nullspace. If we could
somehow continuously monitor the synaptic strengths, while
externally manipulating them, then we could, in principle,
measure the vector field in the space of synaptic weights, and
calculate its divergence as well as its rotation. For at least the
subset of synapses that are being trained via some approximation
to gradient descent, the divergence component should be strong
relative to the rotational component. This strategy has not been
developed yet due to experimental difficulties with monitoring
large numbers of synaptic weights56.

A third strategy is based on perturbations: cost function based
learning should undo the effects of perturbations which disrupt
optimality, i.e., the system should return to local minima after
a perturbation, and indeed perhaps to the same local minimum
after a sufficiently small perturbation. If we change synaptic
connections, e.g., in the context of a brain machine interface, we
should be able to produce a reorganization that can be predicted
based on a guess of the relevant cost function. This strategy is
starting to be feasible in motor areas.

Lastly, if we knew structurally which cell types and
connections mediated the delivery of error signals vs. input data
or other types of connections, then we could stimulate specific
connections so as to impose a user-defined cost function. In
effect, we would use the brain’s own networks as a trainable deep
learning substrate, and then study how the network responds
to training. Brain machine interfaces can be used to set up
specific local learning problems, in which the brain is asked to
create certain user-specified representations, and the dynamics
of this process can be monitored (Sadtler et al., 2014). Likewise,
brain machine interfaces can be used to give the brain access
to new datastreams, and to investigate how those datastreams
are incorporated into task performance, and whether such
incorporation is governed by optimality principles (Dadarlat
et al., 2015). In order to do this kind of experiment fully and
optimally, we must first understand more about how the system
is wired to deliver cost signals. Much of the structure that
would be found in connectomic circuit maps, for example, would
not just be relevant for short-timescale computing, but also for
creating the infrastructure that supports cost functions and their
optimization.

Many of the learning mechanisms that we have discussed
in this paper make specific predictions about connectivity or
dynamics. For example, the “feedback alignment” approach
to biological backpropagation suggests that cortical feedback
connections should, at some level of neuronal grouping, be
largely sign-concordant with the corresponding feedforward
connections, although not necessarily of concordant weight (Liao
et al., 2015), and feedback alignment also makes predictions
for synaptic normalization mechanisms (Liao et al., 2015). The
Kickback model for biologically plausible backpropagation has
a specific role for NMDA receptors (Balduzzi et al., 2014).
Some models that incorporate dendritic coincidence detection
for learning temporal sequences predict that a given axon should
make only a small number of synapses on a given dendritic

56Fluorescent techniques like (Hayashi-Takagi et al., 2015) might be helpful.
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segment (Hawkins and Ahmad, 2016). Models that involve STDP
learning will make predictions about the dynamics of changing
firing rates (Hinton, 2007, 2016; Bengio et al., 2015a,b; Bengio
and Fischer, 2015), as well as about the particular network
structures, such as those based on autoencoders or recirculation,
in which STDP can give rise to a form of backpropagation.

It is critical to establish the unit of optimization. We want
to know the scale of the modules that are trainable by some
approximation of gradient descent optimization. How large are
the networks which share a given error signal or cost function?
On what scales can appropriate training signals be delivered?
It could be that the whole brain is optimized end-to-end, in
principle. In this case we would expect to find connections that
carry training signals from each layer to the preceding ones.
On successively smaller scales, optimization could be within
a brain area, a microcircuit57, or an individual neuron (Mel,
1992; Körding and König, 2000, 2001; Hawkins and Ahmad,
2016). Importantly, optimizationmay co-exist across these scales.
There may be some slow optimization end-to-end, with stronger
optimization within a local area and very efficient algorithms
within each cell. Careful experiments should be able to identify
the scale of optimization, e.g., by quantifying the extent of
learning induced by a local perturbation.

The tightness of the structure-function relationship is the
hallmark of molecular and to some extent cellular biology, but
in large connectionist learning systems, this relationship can
become difficult to extract: the same initial network can be driven
to compute many different functions by subjecting it to different
training58,59. It can be hard to understand the way a neural
network solves its problems.

57The use of structuredmicrocircuits rather than individual neurons as the units of
learning can ease the burden on the learning rules possessed by individual neurons,
as exemplified by a study implementing Helmholtz machine learning in a network
of spiking neurons using conventional plasticity rules (Roudi and Taylor, 2015;
Sountsov and Miller, 2015). As a simpler example, the classical problem of how
neurons with only one output axon could communicate both activation and error
derivatives for backpropagation ceases to be a problem if the unit of optimization is
not a single neuron. Similar considerations hold for the issue of weight symmetry,
or approximate sign-concordance in the case of feedback alignment (Liao et al.,
2015).
58Within this framework, networks that adhere to the basic statistics of neural
connectivity, electrophysiology and morphology, such as the initial cortical
column models from the Blue Brain Project (Markram et al., 2015), would
recapitulate some properties of the cortex, but—just like untrained neural
networks—would not spontaneously generate complex functional computation
without being subjected to a multi-stage training process, naturalistic sensory data,
signals arising from other brain areas and action-driven reinforcement signals.
59Not only in applied machine learning, but also in today’s most advanced neuro-
cognitive models such as SPAUN (Eliasmith et al., 2012; Eliasmith, 2013), the
detailed local circuit connectivity is obtained through an optimization process
of some kind to achieve a particular functionality. In the case of modern
machine learning, training is often done via end-to-end backpropagation through
an architecture that is only structured at the level of higher-level “blocks” of
units, whereas in SPAUN each block is optimized (Eliasmith and Anderson,
2004) separately according to a procedure that allows the blocks to subsequently
be stitched together in a coherent way. Technically, the Neural Engineering
Framework (Eliasmith and Anderson, 2004) used in SPAUN uses singular value
decomposition, rather than gradient descent, to compute the connections weights
as optimal linear decoders. This is possible because of a nonlinear mapping into a
high-dimensional space, in which approximating any desired function can be done
via a hyperplane regression (Tapson and van Schaik, 2013).

How could one tell the difference, then, between a gradient-
descent trained network vs. untrained or random networks
vs. a network that has been trained against a different kind
of task? One possibility would be to train artificial neural
networks against various candidate cost functions, study the
resulting neural tuning properties (Todorov, 2002), and compare
them with those found in the circuit of interest (Zipser
and Andersen, 1988). This has already been done to aid
the interpretation of the neural dynamics underlying decision
making in the PFC (Sussillo, 2014), working memory in the
posterior parietal cortex (Rajan et al., 2016) and object or
action representation in the visual system (Tacchetti et al., 2016;
Yamins and DiCarlo, 2016a,b). Some have gone on to suggest a
direct correspondence between cortical circuits and optimized,
appropriately regularized (Sussillo et al., 2015), recurrent neural
networks (Liao and Poggio, 2016). In any case, effective
analytical methods to reverse engineer complexmachine learning
systems (Jonas and Kording, 2016), and methods to reverse
engineer biological brains, may have some commonalities.

Does this emphasis on function optimization and trainable
substrates mean that we should give up on reverse engineering
the brain based on detailed measurements and models of its
specific connectivity and dynamics? On the contrary: we should
use large-scale brain maps to try to better understand (a)
how the brain implements optimization, (b) where the training
signals come from and what cost functions they embody, and
(c) what structures exist, at different levels of organization, to
constrain this optimization to efficiently find solutions to specific
kinds of problems. The answers may be influenced by diverse
local properties of neurons and networks, such as homeostatic
rules of neural structure, gene expression and function (Marder
and Goaillard, 2006), the diversity of synapse types, cell-type-
specific connectivity (Jiang et al., 2015), patterns of inter-laminar
projection, distributions of inhibitory neuron types, dendritic
targeting and local dendritic physiology and plasticity (Markram
et al., 2015; Bloss et al., 2016; Morgan et al., 2016; Sandler
et al., 2016) or local glial networks (Perea et al., 2009). They
may also be influenced by the integrated nature of higher-
level brain systems, including mechanisms for developmental
bootstrapping (Ullman et al., 2012), information routing (Gurney
et al., 2001; Stocco et al., 2010), attention (Buschman and
Miller, 2010) and hierarchical decision making (Lee et al., 2015).
Mapping these systems in detail is of paramount importance
to understanding how the brain works, down to the nanoscale
dendritic organization of ion channels and up to the real-time
global coordination of cortex, striatum and hippocampus, all of
which are computationally relevant in the framework we have
explicated here. We thus expect that large-scale, multi-resolution
brain maps would be useful in testing these framework-level
ideas, in inspiring their refinements, and in using them to guide
more detailed analysis.

5.2. Hypothesis 2– Biological
Fine-Structure of Cost Functions
Clearly, we can map differences in structure, dynamics and
representation across brain areas. When we find such differences,
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the question remains as to whether we can interpret these
as resulting from differences in the internally-generated cost
functions, as opposed to differences in the input data, or
from differences that reflect other constraints unrelated to cost
functions. If we can directly measure aspects of the cost function
in different areas, then we can also compare them across areas.
For example, methods from inverse reinforcement learning60

might allow backing out the cost function from observed
plasticity (Ng and Russell, 2000).

Moreover, as we begin to understand the “neural correlates”
of particular cost functions—perhaps encoded in particular
synaptic or neuromodulatory learning rules, genetically-guided
local wiring patterns, or patterns of interaction between brain
areas—we can also begin to understand when differences in
observed neural circuit architecture reflect differences in cost
functions.

We expect that, for each distinct learning rule or cost function,
there may be specificmolecularly identifiable types of cells and/or
synapses. Moreover, for each specialized system there may be
specific molecularly identifiable developmental programs that
tune it or otherwise set its parameters. This would make sense if
evolution has needed to tune the parameters of one cost function
without impacting others.

How many different types of internal training signals does
the brain generate? When thinking about error signals, we are
not just talking about dopamine and serotonin, or other classical
reward-related pathways. The error signals that may be used to
train specific sub-networks in the brain, via some approximation
of gradient descent or otherwise, are not necessarily equivalent
to reward signals. It is important to distinguish between cost
functions that may be used to drive optimization of specific sub-
circuits in the brain, and what are referred to as “value functions”
or “utility functions,” i.e., functions that predict the agent’s
aggregate future reward. In both cases, similar reinforcement
learning mechanisms may be used, but the interpretation of the
cost functions is different. We have not emphasized global utility
functions for the animal here, since they are extensively studied
elsewhere (e.g., O’Reilly et al., 2014a; Bach, 2015), and since we
argue that, though important, they are only a part of the picture,
i.e., that the brain is not solely an end-to-end reinforcement
trained system.

Progress in brain mapping could soon allow us to classify
the types of reward signals in the brain, follow the detailed
anatomy and connectivity of reward pathways throughout the
brain, and map in detail how reward pathways are integrated into
striatal, cortical, hippocampal and cerebellar microcircuits. This
program is beginning to be carried out in the fly brain, in which
twenty specific types of dopamine neuron project to distinct
anatomical compartments of the mushroom body to train
distinct odor classifiers operating on a set of high-dimensional

60There is a rich tradition of trying to estimate the cost function used by human
beings (Ng and Russell, 2000; Finn et al., 2016; Ho and Ermon, 2016). The idea
is that we observe (by stipulation) behavior that is optimal for the human’s cost
function. We can then search for the cost function that makes the observed
behavior most probable and simultaneously makes the behaviors that could have
been observed, but were not, least probable. Extensions of such approaches could
perhaps be used to ask which cost functions the brain is optimizing.

odor representations (Caron et al., 2013; Aso et al., 2014a,b;
Cohn et al., 2015). It is known that, even within the same
system, such as the fly olfactory pathway, some neuronal wiring
is highly specific and molecularly programmed (Hattori et al.,
2007; Hong and Luo, 2014), while other wiring is effectively
random (Caron et al., 2013), and yet other wiring is learned (Aso
et al., 2014a). The interplay between such design principles
could give rise to many forms of “division of labor” between
genetics and learning. Likewise, it is believed that birdsong
learning is driven by reinforcement learning using a specialized
cost function that relies on comparison with a memorized
version of a tutor’s song (Fiete et al., 2007), and also that it
involves specialized structures for controlling song variability
during learning (Aronov et al., 2011). These detailed pathways
underlying the construction of cost functions for vocal learning
are beginning to be mapped (Mandelblat-Cerf et al., 2014).
Starting with simple systems, it should become possible to map
the reward pathways and how they evolved and diversified, which
would be a step on the way to understanding how the system
learns.

These types of mapping efforts would be a first step
toward the ability to create a concrete model of the brain’s
optimization architecture. Our discussion here has focused on
trying to anticipate, based on known neuroscience knowledge
and on approaches becoming successful in machine learning,
the kinds of local cost functions that the brain may rely
on, and how specialized brain systems may enable efficient
solutions to optimization problems. However, this framework-
level discussion is not a formal specification, either of the
architecture, or of a notion of biologically applied cost function
that could be directly measured based on neural data. In order to
move toward a more formal specification of the kind of model we
are proposing here, it would be useful to map the architecture
of the brain’s reward systems and to identify other biological
pathways that may mediate the generation and delivery of error
signals. Based on such maps, one could identify regions which
are proposed to be subject to a single cost function. Otherwise,
the problem of inference of the cost function, e.g., based on
neural dynamics becomes ill-posed: one can define a local cost
function for an arbitrary dynamics by integrating the trajectory
of the system, but this approach in general lacks explanatory
power and also, crucially, lacks any circuit-level relationship
with the brain’s actual neural mechanisms of optimization, i.e.,
such a defined cost function does not necessarily correspond
to the cost functions that the biological machinery is actually
organized to optimize. Notably, some of the relevant biological
pathways mediating cost functions and error signals may involve
key biomolecular or gene expression aspects, not just real-time
patterns of neural activity.

Another related consideration, in trying to formalize this type
approach and to infer cost functions from neural measurements,
is that not all neurons in the circuit may be subject to
optimization: after all, some neurons may be needed to generate
the error signals themselves, or to mediate the optimization
process for other neurons, or to perform other unrelated
functions. Furthermore, within a given region, there may be
multiple sub-circuits subject to different optimization pressures.
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It is the claim that the brain actually has structured biological
machinery to generate, route and apply specific cost functions
that gives substance to our proposal, over and above the
trivial claim that many kinds of dynamics can be viewed as
optimizations, but our knowledge of this machinery is still
limited. This is not to mention the difficulties involved in
inferring cost functions in the presence of noise or constraints
on the dynamics. Thus, one cannot blindly collect the neurons in
an arbitrary region, measure their dynamics, and hope to infer
their cost function by solving an inverse problem—instead, a
rich interplay between structural mapping, dynamic mapping,
hypothesis generation, modeling and perturbation is likely to be
necessary in order to gain a detailed knowledge of which cost
functions the brain uses and how it does so.

5.3. Hypothesis 3– Embedding within a
Pre-structured Architecture
If different brain structures are performing distinct types of
computations with a shared goal, then optimization of a joint cost
function will take place with different dynamics in each area. If
we focus on a higher level task, e.g., maximizing the probability
of correctly detecting something, then we should find that basic
feature detection circuits should learn when the features were
insufficient for detection, that attentional routing structures
should learn when a different allocation of attention would have
improved detection and that memory structures should learn
when items that matter for detection were not remembered.
If we assume that multiple structures are participating in a
joint computation, which optimizes an overall cost function (but
see Hypothesis 2), then an understanding of the computational
function of each area leads to a prediction of the measurable
plasticity rules.

6. NEUROSCIENCE INSPIRED MACHINE
LEARNING

Machine learning may be equally transformed by neuroscience.
Within the brain, a myriad of subsystems and layers work
together to produce an agent that exhibits general intelligence.
The brain is able to show intelligent behavior across a broad
range of problems using only relatively small amounts of data.
As such, progress at understanding the brain promises to
improve machine learning. In this section, we review our three
hypotheses about the brain and discuss how their elaboration
might contribute to more powerful machine learning systems.

6.1. Hypothesis 1– Existence of Cost
Functions
A good practitioner of machine learning should have a broad
range of optimization methods at their disposal as different
problems ask for different approaches. The brain, we have
argued, is an implicit machine learning mechanism which has
been evolved over millions of years. Consequently, we should
expect the brain to be able to optimize cost functions efficiently,
across many domains and kinds of data. Indeed, across different
animal phyla, we even see convergent evolution of certain brain

structures (Shimizu and Karten, 2013; Güntürkün and Bugnyar,
2016), e.g., the bird brain has no cortex yet has developed
homologous structures which—as the linguistic feats of the
African Gray Parrot demonstrate—can give rise to quite complex
intelligence. It seems reasonable to hope to learn how to do truly
general-purpose optimization by looking at the brain.

Indeed, there are multiple kinds of optimization that we
may expect to discover by looking at the brain. At the
hardware level, the brain clearly manages to optimize functions
efficiently despite having slow hardware subject to molecular
fluctuations, suggesting directions for improving the hardware
of machine learning to be more energy efficient. At the level
of learning rules, the brain solves an optimization problem
in a highly nonlinear, non-differentiable, temporally stochastic,
spiking system with massive numbers of feedback connections,
a problem that we arguably still do not know how to efficiently
solve for neural networks. At the architectural level, the brain can
optimize certain kinds of functions based on very few stimulus
presentations, operates over diverse timescales, and clearly uses
advanced forms of active learning to infer causal structure in the
world.

While we have discussed a range of theories (O’Reilly, 1996;
Körding and König, 2001; Hinton, 2007, 2016; Roelfsema et al.,
2010; Balduzzi et al., 2014; Lillicrap et al., 2014; O’Reilly et al.,
2014a; Bengio et al., 2015a) for how the brain can carry out
optimization, these theories are still preliminary. Thus, the first
step is to understand whether the brain indeed performs multi-
layer credit assignment in a manner that approximates full
gradient descent, and if so, how it does this. Either way, we
can expect that answer to impact machine learning. If the brain
does not do some form of backpropagation, this suggests that
machine learning may benefit from understanding the tricks that
the brain uses to avoid having to do so. If, on the other hand, the
brain does do backpropagation, then the underlying mechanisms
clearly can support a very wide range of efficient optimization
processes across many domains, including learning from rich
temporal data-streams and via unsupervised mechanisms, and
the architectures behind this will likely be of long-term value
to machine learning61. Moreover, the search for biologically

61Successes of deep learning are already being used, speculatively, to rationalize
features of the brain. It has been suggested that large networks, with many
more neurons available than are strictly needed for the target computation,
make learning easier (Goodfellow et al., 2014b). In concordance with this,
visual cortex appears to be a 100-fold over-complete representation of the
retinal output (Lewicki and Sejnowski, 2000). Likewise, it has been suggested
that biological neurons stabilized (Turrigiano, 2012) to operate far below their
saturating firing rates mirror the successful use of rectified linear units in
facilitating the training of artificial neural networks (Roudi and Taylor, 2015).
Hinton and others have also suggested a biological motivation (Roudi and Taylor,
2015) for “dropout” regularization (Srivastava et al., 2014), in which a fraction
of hidden units is stochastically set to zero during each round of training: such
a procedure may correspond to the noisiness of neural spike trains, although
other theories interpret spikes as sampling in probabilistic inference (Buesing
et al., 2011), or in many other ways. Randomness of spiking has some support in
neuroscience (Softky and Koch, 1993), although recent experiments suggest that
spike trains in certain areas may be less noisy than previously thought (Hires et al.,
2015). The key role of proper initialization in enabling effective gradient descent is
an important recent finding (Saxe et al., 2013; Sutskever and Martens, 2013) which
may also be reflected by biological mechanisms of neural homeostasis or self-
organization that would enforce appropriate initial conditions for learning. Retinal
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plausible forms of backpropagation has already led to interesting
insights, such as the possibility of using random feedback weights
(feedback alignment) in backpropagation (Lillicrap et al., 2014),
or the unexpected power of internal FORCE learning in chaotic,
spontaneously active recurrent networks (Sussillo and Abbott,
2009). This and other findings discussed here suggest that
there are still fundamental things we don’t understand about
backpropagation—which could potentially lead not only to more
biologically plausible ways to train recurrent neural networks, but
also to fundamentally simpler and more powerful ones.

6.2. Hypothesis 2– Biological
Fine-structure of Cost Functions
A good practitioner of machine learning has access to a broad
range of learning techniques and thus implicitly is able to
use many different cost functions. Some problems ask for
clustering, others for extracting sparse variables, and yet others
for prediction quality to be maximized. The brain also needs to
be able to deal with many different kinds of datasets. As such, it
makes sense for the brain to use a broad range of cost functions
appropriate for the diverse set of tasks it has to solve to thrive in
this world.

Many of the most notable successes of deep learning, from
language modeling (Sutskever et al., 2011), to vision (Krizhevsky
et al., 2012), to motor control (Levine et al., 2015), have been
driven by end-to-end optimization of single task objectives.
We have highlighted cases where machine learning has opened
the door to multiplicities of cost functions that shape network
modules into specialized roles. We expect that machine learning
will increasingly adopt these practices in the future.

In computer vision, we have begun to see researchers re-
appropriate neural networks trained for one task (e.g., ImageNet
classification) and then deploy them on new tasks other than the
ones they were trained for or for which more limited training
data is available (Oquab et al., 2014; Yosinski et al., 2014;
Noroozi and Favaro, 2016). We imagine this procedure will be
generalized, whereby, in series and in parallel, diverse training
problems, each with an associated cost function, are used to shape
visual representations. For example, visual data streams can be
segmented into elements like foreground vs. background, objects
that can move of their own accord vs. those that cannot, all
using diverse unsupervised criteria (Ullman et al., 2012; Poggio,
2015). Networks so trained can then be shared, augmented, and
retrained on new tasks. They can be introduced as front-ends for
systems that perform more complex objectives or even serve to
produce cost functions for training other circuits (Watter et al.,
2015). As a simple example, a network that can discriminate
between images of different kinds of architectural structures
(pyramid, staircase, etc.) could act as a critic for a building-
construction network.

Scientifically, determining the order in which cost functions
are engaged in the biological brain will inform machine

fixation has been tentatively connected with robustness of convolutional networks
to adversarial perturbations in images (Luo et al., 2015). But making these
speculative claims of biological relevance more rigorous will require researchers
to first evaluate whether biological neural circuits are performing multi-layer
optimization of cost functions in the first place.

learning about how to construct systems with intricate and
hierarchical behaviors via divide-and-conquer approaches to
learning problems, active learning, and more.

6.3. Hypothesis 3– Embedding within a
Pre-structured Architecture
A good practitioner of machine learning should have a broad
range of algorithms at their disposal. Some problems are
efficiently solved through dynamic programming, others through
hashing, and yet others through multi-layer backpropagation.
The brain needs to be able to solve a broad range of learning
problems without the luxury of being reprogrammed. As such, it
makes sense for the brain to have specialized structures that allow
it to rapidly learn to approximate a broad range of algorithms.

The first neural networks were simple single-layer systems,
either linear or with limited non-linearities (Rashevsky,
1939). The explosion of neural network research in the
1980s (Rumelhart et al., 1986) saw the advent of multilayer
networks, followed by networks with layer-wise specializations
as in convolutional networks (Fukushima, 1980; LeCun and
Bengio, 1995). In the last two decades, architectures with
specializations for holding variables stable in memory like the
LSTM (Hochreiter and Schmidhuber, 1997), the control of
content-addressable memory (Graves et al., 2014; Weston et al.,
2014), and game playing by reinforcement learning (Mnih et al.,
2015) have been developed. These networks, though formerly
exotic, are now becoming mainstream algorithms in the toolbox
of any deep learning practitioner. There is no sign that progress
in developing new varieties of structured architectures is halting,
and the heterogeneity and modularity of the brain’s circuitry
suggests that diverse, specialized architectures are needed to
solve the diverse challenges that confront a behaving animal.

The brain combines a jumble of specialized structures in a way
that works. Solving this problem de novo in machine learning
promises to be very difficult, making it attractive to be inspired
by observations about how the brain does it. An understanding
of the breadth of specialized structures, as well as the architecture
that combines them, should be quite useful.

7. DID EVOLUTION SEPARATE COST
FUNCTIONS FROM OPTIMIZATION
ALGORITHMS?

Deep learning methods have taken the field of machine learning
by storm. Driving the success is the separation of the problem
of learning into two pieces: (1) An algorithm, backpropagation,
that allows efficient distributed optimization, and (2) Approaches
to turn any given problem into an optimization problem, by
designing a cost function and training procedure which will result
in the desired computation. If we want to apply deep learning to
a new domain, e.g., playing Jeopardy, we do not need to change
the optimization algorithm—we just need to cleverly set up the
right cost function. A lot of work in deep learning, perhaps the
majority, is now focused on setting up the right cost functions.

We hypothesize that the brain also acquired such a separation
between optimization mechanisms and cost functions. If neural
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circuits, such as in cortex, implement a general-purpose
optimization algorithm, then any improvement to that algorithm
will improve function across the cortex. At the same time,
different cortical areas solve different problems, so tinkering with
each area’s cost function is likely to improve its performance.
As such, functionally and evolutionarily separating the problems
of optimization and cost function generation could allow
evolution to produce better computations, faster. For example,
common unsupervised mechanisms could be combined with
area-specific reinforcement-based or supervisedmechanisms and
error signals, much as recent advances in machine learning have
found natural ways to combine supervised and unsupervised
objectives in a single system (Rasmus and Berglund, 2015).

This suggests interesting questions62: When did the division
between cost functions and optimization algorithms occur? How
is this separation implemented? How did innovations in cost
functions and optimization algorithms evolve? And how do our
own cost functions and learning algorithms differ from those of
other animals?

There are many possibilities for how such a separation
might be achieved in the brain. Perhaps the six-layered cortex
represents a common optimization algorithm, which in different
cortical areas is supplied with different cost functions. This
claim is different from the claim that all cortical areas use a
single unsupervised learning algorithm and achieve functional
specificity by tuning the inputs to that algorithm. In that case,
both the optimization mechanism and the implicit unsupervised
cost function would be the same across areas (e.g., minimization
of prediction error), with only the training data differing between
areas, whereas in our suggestion, the optimization mechanism
would be the same across areas but the cost function, as
well as the training data, would differ. Thus the cost function
itself would be like an ancillary input to a cortical area, in
addition to its input and output data. Some cortical microcircuits

62It would be interesting to study these questions in specific brain systems.
The primary visual cortex, for example, is still only understood very
incompletely (Olshausen and Field, 2004). It serves as a key input modality to
both the ventral and dorsal visual pathways, one of which seems to specialize
in object identity and the other in motion and manipulation. Higher-level areas
like STP draw on both streams to perform tasks like complex action recognition.
In some models (e.g., Jhuang et al., 2007), both ventral and dorsal streams are
structured hierarchically, but the ventral stream primarily makes use of the spatial
filtering properties of V1, whereas the dorsal stream primarily makes use of
its spatio-temporal filtering properties, e.g., temporal frequency filtering by the
space-time receptive fields of V1 neurons. Given this, we can ask interesting
questions about V1. Within a framework of multilayer optimization, do both
dorsal and ventral pathways impose cost functions that help to shape V1’s response
properties? Or is V1 largely pre-structured by genetics and local self-organization,
with different optimization principles in the ventral and dorsal streams only
having effects at higher levels of the hierarchy? Or, more likely, is there some
interplay between pre-structuring of the V1 circuitry and optimization according
to multiple cost functions? Relatedly, what establishes the differing roles of the
downstream ventral vs. dorsal cortical areas, and can their differences be attributed
to differing cost functions? This relates to ongoing questions about the basic
nature of cortical circuitry. For example, DiCarlo et al. (2012) suggests that visual
cortical regions containing on the order of 10000 neurons are locally optimized to
perform disentangling of the manifolds corresponding to their local views of the
transformations of an object, allowing these manifolds to be linearly separated by
readout areas. Yet, DiCarlo et al. (2012) also emphasizes the possibility that certain
computations such as normalization are pre-initialized in the circuitry prior to
learning-based optimization.

could then, perhaps, compute the cost functions that are to be
delivered to other cortical microcircuits. Another possibility is
that, within the same circuitry, certain aspects of the wiring
and learning rules specify an optimization mechanism and
are relatively fixed across areas, while others specify the cost
function and are more variable. This latter possibility would be
similar to the notion of cortical microcircuits as molecularly
and structurally configurable elements, akin to the cells in a
field-programmable gate array (FPGA) (Marcus et al., 2014a,b),
rather than a homogenous substrate. The biological nature of
such a separation, if any exists, remains an open question. For
example, individual parts of a neuron may separately deal with
optimization and with the specification of the cost function, or
different parts of a microcircuit may specialize in this way, or
there may be specialized types of cells, some of which deal with
signal processing and others with cost functions.

8. CONCLUSIONS

Due to the complexity and variability of the brain, pure
“bottom up” analysis of neural data faces potential challenges
of interpretation (Robinson, 1992; Jonas and Kording, 2016).
Theoretical frameworks can potentially be used to constrain
the space of hypotheses being evaluated, allowing researchers
to first address higher-level principles and structures in the
system, and then “zoom in” to address the details. Proposed
“top down” frameworks for understanding neural computation
include entropy maximization, efficient encoding, faithful
approximation of Bayesian inference, minimization of prediction
error, attractor dynamics, modularity, the ability to subserve
symbolic operations, and many others (Pinker, 1999; Marcus,
2001; Bialek, 2002; Knill and Pouget, 2004; Bialek et al., 2006;
Friston, 2010). Interestingly, many of the “top down” frameworks
boil down to assuming that the brain simply optimizes a single,
given cost function for a single computational architecture.
We generalize these proposals assuming both a heterogeneous
combination of cost functions unfolding over development, and
a diversity of specialized sub-systems.

Much of neuroscience has focused on the search for “the
neural code,” i.e., it has asked which stimuli are good at driving
activity in individual neurons, regions, or brain areas. But, if the
brain is capable of generic optimization of cost functions, then
we need to be aware that rather simple cost functions can give
rise to complicated stimulus responses. This potentially leads to
a different set of questions. Are differing cost functions indeed a
useful way to think about the differing functions of brain areas?
How does the optimization of cost functions in the brain actually
occur, and how is this different from the implementations of
gradient descent in artificial neural networks? What additional
constraints are present in the circuitry that remain fixed while
optimization occurs? How does optimization interact with a
structured architecture, and is this architecture similar to what
we have sketched? Which computations are wired into the
architecture, which emerge through optimization, and which
arise from a mixture of those two extremes? To what extent
are cost functions explicitly computed in the brain, vs. implicit
in its local learning rules? Did the brain evolve to separate the
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mechanisms involved in cost function generation from those
involved in the optimization of cost functions, and if so how?
What kinds of meta-level learning might the brain apply, to learn
when and how to invoke different cost functions or specialized
systems, among the diverse options available, to solve a given
task? What crucial mechanisms are left out of this framework?
A more in-depth dialog between neuroscience and machine
learning could help elucidate some of these questions.

Much of machine learning has focused on finding ever faster
ways of doing end-to-end gradient descent in neural networks.
Neuroscience may inform machine learning at multiple levels.
The optimization algorithms in the brain have undergone a
couple of hundredmillion years of evolution.Moreover, the brain
may have found ways of using heterogeneous cost functions that
interact over development so as to simplify learning problems
by guiding and shaping the outcomes of unsupervised learning.
Lastly, the specialized structures evolved in the brain may inform
us about ways of making learning efficient in a world that requires
a broad range of computational problems to be solved over
multiple timescales. Looking at the insights from neuroscience
may help machine learning move toward general intelligence
in a structured heterogeneous world with access to only small
amounts of supervised data.

In some ways our proposal is opposite to many popular
theories of neural computation. There is not one mechanism
of optimization but (potentially) many, not one cost function
but a host of them, not one kind of a representation but a
representation of whatever is useful, and not one homogeneous
structure but a large number of them. All these elements are
held together by the optimization of internally generated cost
functions, which allows these systems to make good use of one
another. Rejecting simple unifying theories is in line with a
broad range of previous approaches in AI. For example, Minsky
and Papert’s work on the Society of Mind (Minsky, 1988)—
and more broadly on ideas of genetically staged and internally
bootstrapped development in connectionist systems (Minsky,

1977)—emphasizes the need for a system of internal monitors
and critics, specialized communication and storage mechanisms,
and a hierarchical organization of simple control systems.

At the time these early works were written, it was not yet
clear that gradient-based optimization could give rise to powerful
feature representations and behavioral policies. One can view
our proposal as a renewed argument against simple end-to-end
training and in favor of a heterogeneous approach. In other
words, this framework could be viewed as proposing a kind of
“society” of cost functions and trainable networks, permitting
internal bootstrapping processes reminiscent of the Society of
Mind (Minsky, 1988). In this view, intelligence is enabled by
many computationally specialized structures, each trained with
its own developmentally regulated cost function, where both the
structures and the cost functions are themselves optimized by
evolution like the hyperparameters in neural networks.
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