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Abstract

The problem of investing over time remains an important open question, considering the
recent large moves in the markets, such as the Financial Crisis of 2008, the subsequent
rally in equities, and the decline in commodities over the past two years. We study this
problem from three aspects.

The first aspect lies in analyzing a particular dynamic strategy, called the stop-loss strat-
egy. We derive closed-form expressions for the strategy returns while accounting for
serial correlation and transactions costs. When applied to a large sample of individual
U.S. stocks, we show that tight stop-loss strategies tend to underperform the buy-and-
hold policy due to excessive trading costs. Outperformance is possible for stocks with
sufficiently high serial correlation in returns. Certain strategies succeed at reducing down-
side risk, but not substantially. We also look at optimizing the stop-loss level for a class
of these strategies.

The second approach is more behavioral in nature and aims to elicit how various mar-
ket players expect to react to large changes in asset prices. We use a global survey of
individual investors, financial advisors, and institutional investors to do this. We find
that most institutional investors expect to exhibit highly contrarian reactions to past re-
turns in terms of their equity allocations. Financial advisors are also mostly contrarian;
a few of them demonstrate passive behavior. In contrast, individual investors are, on
average, extrapolative, and can be partitioned into four distinct types: passive investors,
risk avoiders, extrapolators, and everyone else.

The third part of the thesis studies how people actually trade. We propose a new model
of dynamic trading in which an investor is affected by behavioral heuristics, and carry
out extensive simulations to understand how the heuristics affect portfolio performance.
We propose an MCMC algorithm that is reasonably successful at estimating model pa-
rameters from simulated data, and look at the predictive ability of the model. We also
provide preliminary results from looking at trading data obtained from a brokerage firm.
We focus on understanding how people trade their portfolios conditional on past returns
at various horizons, as well as on past trading behavior.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor

2



Director of Laboratory for Financial Engineering

3



Acknowledgments

I would like to thank my advisor, professor Andrew Lo, for his continuous guidance,

support, and motivation throughout my thesis. I am very grateful to have been working

with him on very interesting and exciting projects that I truly enjoyed. Andrew’s brilliant

intuition and big picture thinking, wealth of knowledge and new ideas, and amazing work

ethic made it a great honor and pleasure to work with him and learn from him. His advice

and thoughts on various aspects of academia, industry and life in general have been and

definitely will be extremely helpful for me throughout my entire career.

I am very grateful for continuous research discussion and guidance with my other

committee members: professors Dimitris Bertsimas, Leonid Kogan, and Hui Chen. I

learned a lot about the power of analytics and optimization from the classes I took with

Dimitris and conversations I had with him. Leonid and Hui were extremely helpful in

teaching me and providing advice on how to build and extend financial models, especially

from an asset pricing perspective in which they are truly experts.

It was great to work with Daniel Elkind during the last few months of my degree.

The project on modeling investor trading really took off after he came on board, and we

have been able to produce great results at a very fast pace due to his great enthusiasm

and hard work, as well as very productive discussion. I wish him all the best during the

remainder of his Ph.D. and I am sure he will do great.

The research collaboration that Andrew and I had with Natixis Asset Management

was crucial for producing the results of this thesis. David Goodsell and Stephanie Gi-

ardina did a great job in designing and carrying out investor surveys; it was also very

helpful to continuously discuss the progress and the results with them. Support from

John Hailer is also very much appreciated.

I also want to acknowledge the terrific help of the U.S. retail brokerage firm that

provided us with the trading data towards the end of my thesis. The individuals at

the firm responsible for delivering the data were extremely responsive and involved in

compiling and sending the data and ensuring it is clean and satisfies our joint research

purposes. Even though only preliminary results of this joint project are included in this

thesis, I am truly excited about this project and hope that it will produce some amazing

results down the road.

I am grateful to Laura Rose and Andrew Carvalho at the ORC who were always very

4



helpful with the many questions I had throughout my time here and took care of any

relevant administrative items in a very timely and helpful manner. I also want to thank

Andrew’s secretaries Jayna Cummings, Patsy Thompson, and Allison McDonough for

being very responsive and always being able to fit me into Andrew’s busy schedule.

My Ph.D. would not be the same without all the great people I met here. Charles T.,

Velibor M., Andrew L., Will M., Shalev B., Anna P., Stefano T., Alexandre S., Daniel S.,

Ali A., Alex W., Virgile G., Joey H., Zach O., Arthur F., Adam E., David F., Ludovica R.,

Mariapola T., and Dan S. are some of the awesome students that made the last four years

such a fun and fulfilling experience. It was also an awesome experience leading the ORC

soccer team, and I want to thank my fellow teammates Nikita, Anurag, Kevin, Marnix,

Adam, Osman, Fransisco, Elliott, Joey, Virgile, Max, Hai, Alex S., Alex W., David, Will,

and Charles, among others for coming to the pick-up and intramurals games and playing

the great game together. I have a lot of fond memories from the two years I lived with

my two roommates and very close friends Danny Shi and David Rush, especially when

we played Settlers (and particularly the games which I won).

I want to thank Edwin Cao for being an amazing friend. We had a lot of entertaining

conversations and heated discussions on all kinds of topics ranging from analytics to

Texas to nuggets, and I truly cherish the fact that we were able to talk almost every day

besides often being in different cities or even countries. Edwin’s continuous grind to be

tier 1 or nothing will always continue to be a great source of motivation for me.

I want to thank my family for their continuous encouragement and support throughout

my thesis and also throughout my whole life. Particularly my mother and father, who

have taught me so much and have always done their best for me. I would not be here

without them.

Finally, I want to thank my wife Kristina for all her care and love. For being so

understanding and supportive. For being a constant source of inspiration and happiness.

For always being by my side. I love you.

5



Contents

1 Stop-loss Strategies with Serial Correlation, Regime Switching and Trans-

action Costs 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Strategy returns for an AR(1) process . . . . . . . . . . . . . . . . 7

1.3.2 Impact of trading costs . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Simulation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 AR(1) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Regime-switching process . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Data and methodology . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 Strategy performance . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.3 Delayed stop-loss strategies . . . . . . . . . . . . . . . . . . . . . 26

1.6 Optimizing Stop-Loss Level . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.1 Applying SDP to Stop-Loss Problem . . . . . . . . . . . . . . . . 30

1.6.2 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.8.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . 39

1.8.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . 43

1.8.3 Definition of Delayed Stop-Loss Strategy . . . . . . . . . . . . . . 44

1.8.4 Discussion of strategy returns regression results . . . . . . . . . . 44

1.8.5 Standard Errors in Simulations . . . . . . . . . . . . . . . . . . . 46

6



1.8.6 Supplemental tables and figures . . . . . . . . . . . . . . . . . . . 48

1.8.7 Historical strategy performance and regime-switching . . . . . . . 51

1.8.8 Volatility-adjusting stop-loss strategies . . . . . . . . . . . . . . . 55

2 Measuring Risk Preferences and Asset-Allocation Decisions: A Global

Survey Analysis 58

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Investors, Advisors, and Institutions . . . . . . . . . . . . . . . . . . . . . 65

2.4 Individual Investor Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5 Individual Investor Predictive Analytics . . . . . . . . . . . . . . . . . . . 78

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7.1 Individual Investor and Institutional Survey Questions . . . . . . 85

2.7.2 Financial Advisor Survey Questions . . . . . . . . . . . . . . . . . 86

2.7.3 Survey Respondents Characteristics . . . . . . . . . . . . . . . . . 87

3 Algorithmic Models of Investor Behavior 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Decision-Making Framework . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.1 The Disposition Effect . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2.2 Loss Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.3 Overconfidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2.4 The Gambler’s and Hot Hand Fallacies . . . . . . . . . . . . . . . 101

3.2.5 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.6 Anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 Default Strategy and Heuristic Weights . . . . . . . . . . . . . . . 106

3.3.2 Heuristic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4.1 Simulations with Pairs of Heuristics . . . . . . . . . . . . . . . . . 111

3.4.2 Simulated Heuristic Correlations . . . . . . . . . . . . . . . . . . . 115

3.5 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7



3.5.1 Empirical Results for Pairs of Heuristics . . . . . . . . . . . . . . 119

3.5.2 Empirical Heuristic Correlations . . . . . . . . . . . . . . . . . . . 122

3.6 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.6.1 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.6.2 MCMC Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.6.3 Single Investor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.6.4 Multiple Investors . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.7 Predictive Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.7.1 The Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . 146

3.7.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . 147

3.7.3 Predictive Accuracy of Single and Pairwise Heuristics . . . . . . . 148

3.7.4 Predictive Accuracy for All Heuristics . . . . . . . . . . . . . . . . 149

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4 Preliminary Analysis of Trading Data 165

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3 Trading Distribution Analysis Methodology . . . . . . . . . . . . . . . . 169

4.3.1 Computing Past Returns . . . . . . . . . . . . . . . . . . . . . . . 169

4.3.2 Computing Net Trade . . . . . . . . . . . . . . . . . . . . . . . . 171

4.3.3 Computing Trading Indicator . . . . . . . . . . . . . . . . . . . . 173

4.3.4 Computing Conditional Distributions . . . . . . . . . . . . . . . . 173

4.4 Trading Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.5 Dependence on Past History . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.6 Conclusion and Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.7.1 Return and Net Trade Intervals . . . . . . . . . . . . . . . . . . . 192

8



Chapter 1

Stop-loss Strategies with Serial

Correlation, Regime Switching and

Transaction Costs

(joint work with Andrew W. Lo)

Abstract

Stop-loss strategies are commonly used by investors to reduce their holdings in risky
assets if prices or total wealth breach certain pre-specified thresholds. We derive closed-
form expressions for the impact of stop-loss strategies on asset returns that are serially
correlated, regime switching, and subject to transaction costs. When applied to a large
sample of individual U.S. stocks, we show that tight stop-loss strategies tend to under-
perform the buy-and-hold policy in a mean-variance framework due to excessive trading
costs. Outperformance is possible for stocks with sufficiently high serial correlation in
returns. Certain strategies succeed at reducing downside risk, but not substantially. We
also look at optimizing the stop-loss level for a class of these strategies.

Keywords : Stop-loss strategy; Risk management; Investments; Portfolio management;

Asset allocation; Behavioral finance

JEL classification: G11, G12
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1.1 Introduction

Many investors attempt to limit the downside risk of their investments by using stop-

loss strategies, the most common of which is the stop-loss order, a standing order to

liquidate a position when a security’s price crosses a pre-specified threshold. By closing

out the position, the investor is hoping to avoid further losses.

If prices follow random walks, any price movement in the past has no bearing on

future returns—as long as the risky asset has a positive risk premium, the investor’s

portfolio will have a higher expected return by staying invested in the asset rather than

liquidating it after its price reaches a particular limit. In this case, Kaminski and Lo

(2014) have shown that the stop-loss strategy tends to underperform a buy-and-hold

strategy. However, there is extensive evidence that financial asset prices do not follow

random walks (e.g., Lo and MacKinlay, 1988; Poterba and Summers, 1988; Jegadeesh

and Titman, 1993). A natural question is whether these departures from randomness can

be exploited using a dynamic investment strategy, including stop-loss policies.

In this paper, we focus on simple dynamic strategies incorporating stop-loss rules

to determine how they compare to static buy-and-hold strategies. We provide closed-

form expressions for the returns of a large class of these strategies and derive conditions

under which they underperform or outperform buy-and-hold. Assuming that prices fol-

low a first-order autoregressive process, we prove that the log-returns of “tight” stop-loss

strategies—strategies with price triggers that are close to the asset’s current price—

are approximately linear in the interaction term between autocorrelation and volatility,

providing an explicit relation between the profitability of a stop-loss policy, return pre-

dictability, and volatility. This expression yields bounds on how large return autocorrela-

tion and volatility must be to beat a buy-and-hold strategy after accounting for trading

costs.

We also consider the dynamic optimization problem of an investor trading a risky

asset and a risk-free asset, with the returns of the risky asset following an AR(1) process.

Consistent with our approximation results, optimal stop-loss behavior arises only when

we have positive serial correlation in returns; furthermore, an investor should use a tighter

stop-loss level for higher values of serial correlation and volatility of the process.

We extend our theoretical analysis by simulating various return processes and by com-

paring the performance of stop-loss and buy-and-hold policies in a mean-variance frame-
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work. We consider two general processes—an AR(1) and a regime-switching process—and

vary the underlying parameters for each. In the first case, with a high enough serial cor-

relation and volatility, the stop-loss strategy provides superior risk-adjusted returns in

comparison to the buy-and-hold strategy. In the regime-switching case, the stop-loss

strategy gives better performance in a few cases, and this outperformance comes from a

large reduction in volatility rather than an improvement in raw returns. We also look at

the tail performance of the strategy, as measured by skewness and maximum drawdown.

We find that if a longer horizon for past returns is used to make the decision whether to

stop out or not, downside risk tends to improve over the buy-and-hold.

To illustrate the practical relevance of stop-loss strategies, we perform a detailed

empirical analysis of the performance of these strategies using a large sample of U.S. stock

returns from 1964 to 2014. To derive realistic measures of performance, we incorporate

transaction costs in our backtests by using bid-ask spreads, as well as historical estimates

when such spreads are missing.1 Our empirical findings are most relevant to short-term

traders, who usually employ tight stop-loss policies and frequently change their positions.

We find that the performance of tight stop-loss strategies is closely related to the realized

return autocorrelation over the investment period, which supports the common trading

adage: “The trend is your friend." However, such strategies require a lot of trading, leading

to high transaction costs. As a result, tight stop-loss strategies are able to outperform

the buy-and-hold strategies only when asset returns are significantly serially correlated.

Of course, a stop-loss rule alone does not fully define an entire investment strategy

since, after exiting a risky investment, the investor must decide when to re-enter. We

consider several simple re-entry policies as part of our definition of a stop-loss rule and

demonstrate that it is usually beneficial to re-invest soon after being stopped out in the

case of tight stops. Another aspect that must be considered is where cash is invested

after a stop-out. Assuming that cash is immediately invested in a risk-free asset, we show

that the risk-free rate has a significant impact on the effectiveness of a stop-loss strategy,

and this impact reconciles some of the inconsistencies among existing empirical studies

of stop-loss strategies.

From a broader perspective, the use of stop-loss strategies can correct for the tendency

of investors to hold on to losers too long and to sell winners too early, a behavioral

1For transaction costs prior to 1993, we use the Hasbrouck (2009) dataset.
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bias known as the “disposition effect” first documented by Shefrin and Statman (1985).

The presence of behavioral biases such as this has been well documented in the finance

literature.2 While most of this research has focused on the empirical evidence for these

biases and the theoretical models to explain them, few studies have proposed methods

for investors to actively avoid or protect against such biases. Stop-loss strategies are an

important first step in this direction.

1.2 Literature review

Kaminski and Lo (2014) lay out the first general framework for analyzing stop-loss

strategies. They start with analytical results for the performance of a stop-loss policy and

consider three cases for the return process of the risky asset. For a simple random walk,

the policy always produces lower expected returns. For an AR(1) process, the policy

improves performance in the case of momentum, but hurts performance in the case of

mean reversion. For a two-state Markov regime-switching model, the strategy sometimes

gives better performance, since it tends to outperform the buy-and-hold strategy only in

the low-mean state.

There are a few other analytical studies of stop-loss strategies. Glynn and Iglehart

(1995) derive an optimal strategy by demonstrating that the expected value of the stock

price at the time of exit satisfies a relatively simple ordinary differential equation (ODE).

They also present an example of a utility function with a very heavy penalty on losses,

which would lead the investor to set up a finite stop-loss limit. This contrasts with the

case of constant relative risk aversion (CRRA) utility, where it is optimal to not use

a stop-loss (Merton, 1969). Glynn and Iglehart’s ODE approach was later applied to

derive the optimal selling rule in more complicated settings for the return distribution,

including for a regime-switching process (Zhang, 2001; Pemy, 2011) and a mean-reverting

process (Zhang and Zhang , 2008; Ekström, Lindberg, and Tysk, 2011). Besides the

ODE approach, Abramov, Khan, and Khan (2008) analyze the trailing stop strategy in a

discrete time framework, while Esipov and Vaysburd (1999) present a partial differential

equation approach for analyzing stop-loss policies.

With respect to the empirical literature on stop-loss strategies, Kaminski and Lo

2For surveys of behavioral biases, see Hirshleifer (2001) and Shefrin (2010).
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(2014) consider the strategy of investing in the S&P 500, using monthly frequency for the

historical returns and U.S. long-term bonds as the “safe” asset. Erdestam and Stangenberg

(2008) and Snorrason and Yusupov (2009) study the strategies applied to stocks in the

OMX Stockholm 30 Index. Lei and Li (2009) use daily data for individual U.S. stocks

(with the S&P 500 and the one-month U.S. T-bill considered as the “safe" assets) and

conclude that traditional stop-loss strategies are able to reduce losses for some stocks, but

not for others. Trailing stop-loss strategies are found to consistently reduce investment

risk.

There has been little attention paid to the transaction costs associated with stop-loss

strategies. Two papers that do address this issue are Macrae (2005) and Detko, Ma,

and Morita (2008). They note that in many cases, the associated hidden costs, such as

slippage, result in lower strategy returns.

Finally, stop-loss strategies may also benefit investors by implicitly correcting for

some of their behavioral biases. One such bias is the disposition effect, where investors

tend to hold losers for too long and sell winners too early, as documented by Shefrin

and Statman (1985), Ferris, Haugen and Makhija (1988), and Odean (1998). Wong,

Carducci, and White (2006) find evidence for the disposition effect in an experimental

setting and propose using stop-loss orders to offset this bias. However, studies exploring

this possibility have yielded mixed and inconclusive results. For example, Garvey and

Murphy (2004) investigate a sample of trading records for professional traders in the U.S.

and find that, while traders tend to use stop-loss orders and avoid large losses, they still

exhibit the disposition effect. Nevertheless, Richards, Rutterford, and Fenton-O’Creevy

(2011) find that retail investors who employ stop-loss strategies exhibit the disposition

effect to a smaller extent than those who do not.

We build on the existing literature in several important directions. The first is an

advanced theoretical formula approximating stop-loss strategy performance when returns

follow an AR(1) process. We link the conclusions from this formula to historical stop-loss

performance. The second direction is that we rigorously incorporate transaction costs

into our analysis of simulated and historical strategy performance. The sample of assets

we consider is individual U.S. stocks, which has different dynamics to the S&P 500 futures

considered in the Kaminski and Lo (2014) paper. The third piece is that we consider

downside risk by looking at skewness and maximum drawdown as performance metrics.
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Finally, we perform extensive simulations to gain insights on how the performance of the

strategies is related to their specifications and the parameters of the underlying returns

process.

1.3 Analytical results

We consider the stop-loss strategy introduced by Kaminski and Lo (2014) and later

generalized by Erdestam and Stangenberg (2008). We invest 100% in the risky asset at

the start of the period. If its cumulative return over 𝐽 consecutive periods drops below a

specified threshold 𝛾, we liquidate our position and invest in the risk-free asset; otherwise

we stay fully invested. To buy the asset again, the cumulative return over 𝐼 periods has

to exceed a threshold 𝛿.

Denote by 𝑟𝑡 the log return on the risky asset at time 𝑡. Define the cumulative log

return 𝑅𝑡(𝑁) over 𝑁 consecutive periods as:

𝑅𝑡(𝑁) ≡
𝑁∑︁
𝑗=1

𝑟𝑡−𝑗+1 . (1)

Let 𝑠𝑡 be the proportion of wealth allocated to the risky asset at the start of period 𝑡.

We define the stop-loss strategy as:

Definition 1. A fixed rolling-window policy 𝒮(𝛾, 𝛿, 𝐽, 𝐼) is a dynamic asset allocation

rule {𝑠𝑡} between the risky asset 𝑄 and the safe asset 𝐹 , such that:

𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑅𝑡−1(𝐽) > log(1 + 𝛾) and 𝑠𝑡−1 = 1 (stay in)

0 if 𝑅𝑡−1(𝐽) ≤ log(1 + 𝛾) and 𝑠𝑡−1 = 1 (exit)

0 if 𝑅𝑡−1(𝐼) < log(1 + 𝛿) and 𝑠𝑡−1 = 0 (stay out)

1 if 𝑅𝑡−1(𝐼) ≥ log(1 + 𝛿) and 𝑠𝑡−1 = 0 (re-enter)

(2)

The strategy can be implemented in practice as follows. During each day we track

the log cumulative return over the past 𝐽 days, where 𝐽 is specified by the strategy. The

return over the current day is also included in the calculation. As we approach the close

of the day, if the cumulative return drops below the specified threshold, we sell the asset.

We thus assume that the asset price does not move significantly just prior to the close.
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Since sometimes selling the asset right before the close may be problematic, we propose

a modified stop-loss strategy that is more realistic to implement. At the start of each

day, if the cumulative return over the previous 𝐽 days (not counting the current day) is

below a specified threshold, we submit a market-on-close order to sell the asset at the

end of the day. We call this strategy the delayed fixed rolling window policy 𝒮𝑑(𝛾, 𝛿, 𝐽, 𝐼);

the formal definition of this policy is given in the Appendix.

We next present a theoretical analysis of the performance of the stop-loss strategy

when the underlying returns follow an AR(1) process. We give an explicit expression

for the returns of the strategy after accounting for the dependence on the risk-free rate,

as well as transaction costs. This enables us to analyze when the stop-loss beats the

buy-and-hold strategy in terms of raw returns.

1.3.1 Strategy returns for an AR(1) process

Suppose we are investing over a period of length 𝑇 and hold the risky asset on the

first day. The return on the safe asset is assumed to be constant and equal to 𝑟𝑓 in each

period, while trading costs (as a percentage of capital) are also assumed to be constant

at 𝑐 per period in which a transaction on the risky asset is made.3

The log returns {𝑟𝑡} on the risky asset follow an AR(1) process:

𝑟𝑡 = 𝜇 + 𝜌(𝑟𝑡−1 − 𝜇) + 𝜖𝑡, 𝜖𝑡 ∼ 𝑊𝑁(0, 𝜎2), (3)

where 𝜌 ∈ (−1, 1) is a constant.

Consider the stop-loss strategy 𝒮(𝛾, 𝛿, 𝐽, 𝐼). We restrict ourselves to cases where 𝛾

and 𝛿 are small, while 𝐽=𝐼=1. This corresponds to a tight stop-loss/start-gain strategy

in which we exit or re-enter the risky asset if its one-day return is too low or too high,

respectively.

Let 𝑎≡ log(1 + 𝛾), 𝑏≡ log(1 + 𝛿). In proposition 1 we present an approximation for

the performance of the strategy absent any trading costs:

Proposition 1. Assume |𝜌| is not too large. If 𝑏 ≥ 𝑎, the expected log-return of the

3Thus 𝑐 includes both the cost of one transaction on the risky asset and one transaction on the
risk-free one, since whenever we sell one of the assets, we immediately invest in the other.
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stop-loss strategy 𝒮(𝛾, 𝛿, 1, 1) is approximated by:

E[𝑅𝑠𝑝] ≈ 𝜋

[︂
1 + (𝑇−1)

(︂
Φ(
𝜇− 𝑏

𝜎̃
) + 𝑝1

(︀
Φ(
𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
)
)︀)︂]︂

+ 𝑇𝑟𝑓 +

𝜌
𝜎̃√
2𝜋

(𝑇−1)

[︂
exp(−(𝜇− 𝑏)2

2𝜎̃2
) + 𝑝1

(︀
exp(−(𝑎− 𝜇)2

2𝜎̃2
) − exp(−(𝑏− 𝜇)2

2𝜎̃2
)
)︀]︂
,

(4)

where:

𝑝1 =
P(𝑟𝑡−1 ≥ 𝑏, 𝑎 < 𝑟𝑡 < 𝑏)

P(𝑟𝑡−1 ≥ 𝑏, 𝑎 < 𝑟𝑡 < 𝑏) + P(𝑟𝑡−1 ≤ 𝑎, 𝑎 < 𝑟𝑡 < 𝑏)
, 𝜎̃2 ≡ 𝜎2

1 − 𝜌2
.

If 𝑏<𝑎, then the expected return is approximately:

E[𝑅𝑠𝑝] ≈ 𝜋

[︂
1 + (𝑇−1)(Φ(

𝜇− 𝑎

𝜎̃
) + 𝑝2(Φ(

𝑎− 𝜇

𝜎̃
) − Φ(

𝑏− 𝜇

𝜎̃
)))

]︂
+ 𝑇𝑟𝑓 +

𝜌
𝜎̃√
2𝜋

(𝑇−1)

[︂
exp(−(𝜇− 𝑎)2

2𝜎̃2
) + 𝑝2(exp(−(𝑏− 𝜇)2

2𝜎̃2
) − exp(−(𝑎− 𝜇)2

2𝜎̃2
))

]︂
,

(5)

where:

𝑝2 =
P(𝑟𝑡−1 ≤ 𝑎, 𝑏 ≤ 𝑟𝑡 ≤ 𝑎)

P(𝑟𝑡−1 ≤ 𝑎, 𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + P(𝑟𝑡−1 ≥ 𝑏, 𝑏 ≤ 𝑟𝑡 ≤ 𝑎)
, 𝜎̃2 ≡ 𝜎2

1 − 𝜌2
.

The first part in (4) is the return contributed from the mean 𝜇 and is similar to the

random walk case. However, in this case we have another part that depends on the

autocorrelation coefficient 𝜌 and volatility 𝜎. In fact, for small values of |𝜌|, 𝜎̃ does not

depend too much on 𝜌 and as a result the second part of (4) is close to linear in 𝜌𝜎.

To get an idea of how much the serial correlation adds to the return, we consider the

case when 𝜇 ≈ 0 and 𝑎 = 𝑏 = 0. Here, we use a very tight stop-loss/start-gain strategy

and assume low daily returns on the risky asset. We then have:

E(𝑅𝑠𝑝) ≈ 𝜋(1 +
1

2
(𝑇 − 1)) + 𝜌

𝜎̃√
2𝜋

(𝑇 − 1) + 𝑇𝑟𝑓 . (6)

Assuming as before a risk-free rate of 0, and no trading costs, in order to beat the expected

log-return of the buy-and-hold strategy, we need to have:

𝜋(1 +
1

2
(𝑇 − 1)) + 𝜌

𝜎̃√
2𝜋

(𝑇 − 1) + 𝑇𝑟𝑓 > 𝜇𝑇 ⇔ 𝜌 >
𝜋
√

2𝜋

2𝜎̃
. (7)
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Assuming 𝜌 is small, we have 𝜎̃ ≈ 𝜎, and as a result, an approximate lower bound on 𝜌

is:

𝜌 >

√
2𝜋

2

𝜋

𝜎
≈ 1.25

𝜋

𝜎
≈ 1.25

𝜇

𝜎
, (8)

in order to beat the buy-and-hold strategy. For daily U.S. stock data over the 1964–2014

period, the ratio of daily return to standard deviation is 5.62%, implying that on average a

serial correlation of around 7.0% or higher is necessary to beat the buy-and-hold strategy.

1.3.2 Impact of trading costs

We now incorporate trading costs into this framework. Let 𝐶𝑠𝑝 be the log of cumulative

transaction costs incurred over the period. Then the following result holds:

Proposition 2. If |𝜌| is not too large and 𝑏≥𝑎, the expected log transaction costs incurred

are approximated by:

E[𝐶𝑠𝑝] ≈ 𝑐P(𝑟𝑡−1 ≤ 𝑎) + 𝑐 (𝑇−2)

[︂
P(𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≥ 𝑏) + P(𝑟𝑡−1 ≥ 𝑏, 𝑟𝑡 ≤ 𝑎) +

𝑝1P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≤ 𝑎) + (1 − 𝑝1)P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≥ 𝑏)

]︂
,

(9)

where 𝑝1 is defined as in Proposition 1. If 𝑏<𝑎, then the expected transaction costs are

approximately:

E[𝐶𝑠𝑝] ≈ 𝑐P(𝑟𝑡−1 ≤ 𝑎) + 𝑐 (𝑇−2)

[︂
P(𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≥ 𝑏) + P(𝑟𝑡−1 > 𝑎, 𝑟𝑡 ≤ 𝑎) +

𝑝2P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≤ 𝑎) + (1 − 𝑝2)P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≥ 𝑏)

]︂
,

(10)

where 𝑝2 is defined as in Proposition 1.

To validate these results, we estimate the expected log return on stop-loss strategies

using simulations for various values of the parameters in the model. We then compare the

simulation estimates with the approximations obtained using Propositions 1 and 2; Tables

1.4 and 1.5 in the Appendix report the results. The approximations are very good, with

the deviation between the simulated and the approximated values not exceeding 0.8%

per year in each case, and not exceeding 0.4% in most cases.

As in the random walk case, we can derive conditions under which the stop-loss

strategy beats the buy-and-hold strategy. Suppose we employ a tight stop-loss/start-
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gain policy and consider the case in which 𝑎= 𝑏= 0. Using (4) and (10), we obtain an

approximate lower bound on the serial correlation 𝜌 in order to outperform the buy-and-

hold strategy:4

𝜌 > 1.25
𝜇+ 2𝑐

(︀
P(𝑟𝑡−1 ≤ 0, 𝑟𝑡 ≥ 0) + P(𝑟𝑡−1 ≥ 0, 𝑟𝑡 ≤ 0)

)︀
𝜎

. (11)

It is clear that 𝜌 has to be positive. When 𝜌>0 and 𝜇=0, we have:

P(𝑟𝑡−1 ≤ 0, 𝑟𝑡 ≥ 0) + P(𝑟𝑡−1 ≥ 0, 𝑟𝑡 ≤ 0) ≤ 1

2
. (12)

As a result, an approximate lower bound for 𝜌 is:

𝜌 > 1.25
𝜇+ 𝑐

𝜎
. (13)

For U.S. stocks over the 1964–2014 period, the daily mean is, on average, equal to

5.62% of volatility; however trading costs, as a fraction of volatility, are much higher.

Assuming transaction costs of 0.2%, for 𝜎 = 1% the lower bound on 𝜌 becomes 32.0%,

which is very high. It is evident that for a realistic scenario, we need to have not only

a high serial correlation, but also a high volatility. For example, for a daily volatility

of 𝜎 = 4%, the lower bound on autocorrelation is 13.3%. This is still high, but serial

correlation of this magnitude is not unrealistic, as we will see later in our empirical

results.

1.4 Simulation analysis

To develop intuition for our theoretical results, we simulate the performance of the

stop-loss strategy for various return-generating processes with various parameters and

compare its performance to that of a simple buy-and-hold strategy. The comparison is

made in terms of raw returns, certainty equivalent (CE) in a mean-variance framework,

skewness, and maximum drawdown. While we vary the return process for the risky asset,

we always assume the risk-free asset yields a 0% return.

We consider two different cases for the strategy depending on the horizon used to

4We use the fact that
√
2𝜋
2 ≈ 1.25.
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measure the cumulative return. In each case, we set the start-gain level at 0% and vary

the stop-loss level. The first strategy type is a one-day stop-loss, where 𝐼 = 𝐽 = 1,

and the stop level ranges from −6% to 0%. The second is a two-week stop-loss, so that

𝐼 = 𝐽 = 10; here the stop level varies from −14% to 0%.

We also incorporate transaction costs into our simulations. We assume a level of 0.2%

per trade, which is approximately half of the average spread between the closing bid and

ask prices over all stocks in our sample on all days in 2013 and 2014. We use the average

over the most recent two years instead of over the full sample period from 1964 to 2014

because trading costs have declined significantly in recent years, and current levels seem

more practically relevant than higher historical averages.

We first consider the AR(1) process, and find that high serial correlation and volatility

leads to outperformance of the stop-loss strategy. We also consider the regime-switching

process of Kaminski and Lo (2014). Our results are consistent with theirs, namely that

outperformance is quite rare. For both processes, the two-week stop-loss strategy leads to

a more positive skewness and less negative maximum drawdown than the buy-and-hold

strategy.

1.4.1 AR(1) process

Recall the specification of an AR(1) process:

𝑟𝑡 = 𝜇 + 𝜌(𝑟𝑡−1 − 𝜇) + 𝜖𝑡, 𝜖𝑡 ∼ 𝑊𝑁(0, 𝜎2).

There are three parameters: the mean 𝜇, the volatility 𝜎, and the serial correlation

coefficient 𝜌. In our simulations, we vary the annualized unconditional volatility from 20%

to 50% (an empirically plausible range for individual U.S. stocks) and serial correlation

from −20% to 20%. While the serial correlation in daily U.S. returns is close to 0

historically, it can take on more extreme values over short periods. We fix the mean

at 10% per year for simplicity. For each unique set of values for these parameters, we

run 100,000 simulations over a 252-day horizon. We feel this number of simulations is

sufficiently large; standard errors of our estimates are reported in section 1.8.5 in the

Appendix.

Figure 1-1 shows the performance statistics for the one-day stop-loss strategy relative
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to the the buy-and-hold strategy (i.e., we subtract the corresponding statistic for the buy-

and-hold strategy from that of the stop-loss strategy). Figure 1-2 displays the comparable

results for the two-week strategy.

We see that returns and CE depend positively on serial correlation and volatility, and

outperformance occurs only for high values of these two parameters, which is consistent

with our model. The magnitude of relative performance is quite dramatic, even for a

two-week strategy that uses a longer horizon to make decisions and hence does not trade

as frequently. For a −20% serial correlation, the stop-loss strategy can lose up to 30%

per year relative to the buy-and-hold strategy.

It is interesting to compare the two types of strategies in terms of skewness and

maximum drawdown. The one-day strategy has lower skewness than the buy-and-hold

strategy in most cases. One explanation is that using a one-day return to get out of the

risky asset dampens the potential upside and hence reduces the right tail of the return

distribution, even if there is improvement in the left tail. In contrast, the two-week

strategy yields higher skewness in almost all situations because the effect on the right tail

is quite marginal, whereas the downside risk is cut, especially if serial correlation is high.

The one-day strategy improves maximum drawdown only in cases of positive serial

correlation; the two-week strategy does so for quite a few values of negative correlation as

well. This difference is due to the fact that while the one-day strategy cuts downside risk,

it also incurs high transaction costs and produces poor returns when serial correlation is

negative.

In conclusion, the returns and certainty equivalent of stop-loss strategies depend heav-

ily on serial correlation and volatility, outperforming the buy-and-hold strategy only for

high values of these parameters. For an investor with preferences for positive skewness and

a lower drawdown, the two-week strategy is quite attractive since it is able to consistently

reduce downside risk without incurring too much in trading costs, while maintaining most

of the upside potential.

1.4.2 Regime-switching process

We now consider a Markov regime-switching (MRS) process for daily returns:

𝑟𝑡 = 𝜇𝑖𝑡 + 𝜎𝑖𝑡𝜖𝑡 , 𝜖𝑡 ∼ 𝑊𝑁(0, 1), (14)
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where 𝑖𝑡 ∈ {1, 2} is the regime indicator that evolves according to a discrete Markov chain

with transition probability matrix 𝑃 :

𝑃 =

⎡⎣𝑝11 𝑝12

𝑝21 𝑝22

⎤⎦ , (15)

so that 𝑝𝑖𝑗 = P(𝑖𝑡+1 = 𝑗|𝑖𝑡 = 𝑖). In the “bull market” regime (without loss of generality,

we assume this is regime 1), the risky asset’s returns are distributed as 𝑁(𝜇1, 𝜎
2
1), and

in the “bear market” regime (regime 2), its returns are distributed as 𝑁(𝜇2, 𝜎
2
2), where

𝜇2 < 𝜇1.

There are three sets of parameters: the means 𝜇1, 𝜇2, the volatilities 𝜎1, 𝜎2, and the

transition probability matrix 𝑃 . We vary each of them to see how the stop-loss and

buy-and-hold strategies perform relative to each other. Table 1.1 lists the parameter

values considered, which were chosen to capture a representative range of empirical char-

acteristics for U.S. equities. The more extreme negative values of 𝜇2 and 𝜎2 represent

stock-market crashes. Both transition probability matrices we consider imply that these

negative regimes are not rare but occur much less frequently than the positive regimes

(20% and 14% of the time for 𝑃1 and 𝑃2, respectively). For each unique set of parameter

values, we run 100,000 simulations over a 252-day horizon; standard errors are provided

in the Appendix.

Table 1.1: Parameter Values of MRS Process Simulations

Parameters Values Considered

(𝜇1, 𝜇2) (10%,−10%), (15%,−20%), (20%,−30%)
𝜎1 20%, 30%
𝜎2 40%, 80%

𝑃 𝑃1 =

[︂
0.99 0.01
0.04 0.96

]︂
, 𝑃2 =

[︂
0.96 0.04
0.25 0.75

]︂
Table 1.1 lists the parameter values of the simulations for the MRS process. The means 𝜇1, 𝜇2

and standard deviations 𝜎1, 𝜎2 are annualized. The higher values of 𝜎2 and the more extreme
low values of 𝜇2 capture stock market crashes. There are two cases for the transition probability
matrix 𝑃 : 𝑃1, when there is little switching out of regimes, and 𝑃2, when there is frequent
switching.

Figures 1-3 and 1-4 show the performance statistics for the one-day and two-week stop-

loss strategies relative to the buy-and-hold strategy. The stop-loss strategy produces lower

returns in almost all cases; it is able to outperform in terms of CE when volatility is high

in the bear regime. Performance is better when the expected return in the bear regime
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is low and when there is little switching between regimes. The intuition behind this is

that for the stop-loss strategy to outperform, it must switch out of the risky asset during

negative regimes. Further, the negative regime should last for a considerable amount

of time so that the relative gain of investing in the risk-free asset will offset transaction

costs.

The improvement in CE in situations of high volatility in the bear regime happens

for two reasons. First, when volatility is very high, the stop-loss strategy is morely likely

to be triggered, correctly divesting when expected returns are negative. Second, the high

volatility in the negative regime results in a low CE for a mean-variance investor, so the

risk reduction due to holding the risk-free asset produces significant benefits relative to

the buy-and-hold strategy.

When it comes to skewness and kurtosis, the results are similar to those of the AR(1)

process. The one-day strategy gives lower skewness, while the two-week strategy gives

higher skewness in comparison to the buy-and-hold strategy. Furthermore, while the

one-day strategy improves maximum drawdown over the buy-and-hold strategy in about

half the cases (again, for high volatility in the bear regime), the two-week strategy does

so in all situations. We can conclude that it does a good job of managing downside risk.

In summary, the stop-loss strategy beats the buy-and-hold strategy when volatility

in the negative regime is high, when the returns in the negative regime are low, and

when there is little switching between the two regimes. Using a wider stop results in

more frequent outperformance, since stops are then more likely to occur during negative

regimes. Finally, the two-week stop-loss strategy offers a consistent reduction in maximum

drawdown and a more positive return skewness, whereas this occurs in fewer cases for

the one-day strategy.

1.5 Empirical analysis

To gauge the practical relevance of stop-loss strategies, we document their performance

when applied to individual U.S. stocks over the 1964–2014 sample period. The raw

returns on the strategies are very poor due to excessive transaction costs. When it comes

to the certainty equivalent in a mean-variance framework, the results look better due to

a reduction in volatility when using a stop-loss strategy in comparison to the buy-and-
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hold strategy. Finally, we connect the empirical results to our model and demonstrate

that historical returns on the strategies exhibit heavy dependence on the interaction term

between volatility and serial correlation.

1.5.1 Data and methodology

Stop-loss strategy performance is calculated on a yearly basis. At the start of every

year from 1964 to 2014 we use the CRSP database to identify all stocks listed on the

NYSE, AMEX, and NASDAQ. We exclude shares of non-U.S. companies, Americus trust

components, exchange-traded funds, closed-end funds, and real estate investment trusts.

We also remove all stocks with a closing price below $5 on the first trading day of the

year, and stocks with less than 250 active trading days before that day. We consider

the daily returns of the remaining stocks, adjusted for dividends and stock splits; any

missing returns are replaced with zero. Stop-loss strategies are then applied to each of

these stocks.

Table 2.1 in the Appendix contains summary statistics for the daily returns in the

stock sample. In addition to the statistics for the entire 1964–2014 period, we also provide

statistics for consecutive 5-year subperiods (the last subperiod from 2009 to 2014 contains

6 years). As we have posited in Propositions 1 and 2, serial correlation is a very important

factor in explaining the performance of tight stop-loss strategies. During the 1964–1988

period, average serial correlation tends to be close to zero or positive. However, from

1989 to 2014, this average is negative over all subperiods. Since average serial correlation

is slightly negative over the full period, we expect the historical returns on stop-loss

strategies to be inferior to buy-and-hold returns.

We consider two different rates of return on the safe asset. The first is simply 0% all

the time; the second is the U.S. 30-day T-bill return. Monthly returns on the T-bill are

obtained from Ibbotson Associates and converted to daily returns assuming continuous

compounding.

Finally, we incorporate trading costs by assuming that the investor pays one-half of

the bid-ask spread whenever a stock is traded, where the spread is calculated with end-of-

day closing bid and ask prices from CRSP. However, prior to 1993 these data are missing

for a large portion of the stocks. We resort to using estimates from closing prices over

the 1964–1992 period from Joel Hasbrouck’s website obtained using a Gibbs sampling
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approach outlined in Hasbrouck (2009).

1.5.2 Strategy performance

We analyze stop-loss strategies with the stop and start horizons ranging from one day

to two weeks. We restrict the start-gain level 𝛿 to values between 0% and 1.5%, and vary

the stop level 𝛾 between 0% and −20%. The safe asset is assumed to be the U.S. 30-day

T-bill.5 Figure 1-5 shows strategy performance for the different parameter values.

Tight stop-loss strategies have very poor returns, with the one-day strategy employing

a 0% stop losing over −20% per year for all start levels considered, in comparison to the

+15.2% annual gains for the buy-and-hold strategy. This is not surprising since tight

stop-loss strategies require a great deal of trading. Strategies with a wider stop-loss limit

provide better performance but still underperform the buy-and-hold strategy in terms of

raw returns.

Stop-loss strategies do better when we use the certainty equivalent as the basis of

comparison. While most strategies still underperform due to worse returns and higher

transaction costs, most strategies employing a wide stop limit do as well as the buy-and-

hold or even a little better. In particular, two-week strategies with a start gain level

between 0.5% and 1.5%, and stop level between 12% and 16% tend to do best. For these

strategies, the CE value is between −14.9% and −16.3%, in comparison to −18.3% for the

buy-and-hold. The favorable results stem from the volatility reduction upon employing

a stop-loss strategy.

For a mean-variance investor, the buy-and-hold strategy is not necessarily optimal.

An investor would tend to allocate only a portion of their wealth to the risky asset, based

on the perceived mean and variance of the asset, as well as the individual risk aversion.

At the same time, the buy-and-hold strategy is widely used in practice and therefore

serves as a natural benchmark when looking at stop-loss strategy performance.

Finally, strategies with wider stops have lower skewness, usually worse than the buy-

and-hold, whereas strategies with tight stops have higher skewness and outperform. This

is because upside is reduced in all cases. However, performance for tight stop-loss strate-

gies is very poor, leading to a significant shift in expected returns and a seemingly shorter

left tail. There are quite a few cases when stocks suffer significant intra-day losses, and

5In the Appendix, we include results when assuming a 0% risk-free rate of return.
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during those cases it is common to observe very high bid-ask spreads (as large as 50%

of stock price). This, of course, leads to very poor returns, and in fact quite a few that

are worse than −90% over the year, implying a very fat left tail. When it comes to

drawdowns, we are able to get improvement over the buy-and-hold strategy, especially

when a two-week strategy is used, because the downside is reduced without incurring too

much trading cost in the process.

Since many proprietary trading strategies employ tight stops, from now on we focus

on strategies with small values for the stop and start levels. We take a “typical" tight

stop-loss strategy 𝒮(−2%, 0%, 1, 1) (using the U.S. T-bill as the safe asset) and regress

its returns in excess of the buy-and-hold strategy on the statistical properties of stock

log returns. We control for the time effect as follows. Each “observation" corresponds to

the return on the stop-loss strategy applied to a particular stock in a particular year. We

employ indicator variables for each of the 51 years in the sample, excluding the last year

to avoid collinearity.

We also control for the firm size effect. On the first day of each of the years in the

sample, we compute the market capitalization for each of the available stocks, and split

the resulting values into deciles. This way we assign a decile to each stock in each year,

and we use indicator variables for each of the ten deciles, again excluding the last one.

To summarize, the regression is:

𝑅𝑆
𝑖,𝑡 −𝑅𝐵𝐻

𝑖,𝑡 = 𝛼 + 𝛽𝑥𝑖,𝑡 + controls + 𝜖, (16)

where 𝑅𝑆
𝑖,𝑡 is the return on the stop-loss strategy for stock 𝑖 in year 𝑡 and 𝑅𝐵𝐻 is the

return on the buy-and-hold strategy; 𝑥𝑖,𝑡 are various functions of stock returns; controls

are the time and size controls defined earlier; and 𝜖 is a random error term.

Table 1.2 contains the results of the regression. The mean (along with time and size

controls) is able to explain a significant portion of variation in returns, around 41.7%.

Adding volatility and the interaction between volatility and mean increases 𝑅2 by about

6.0%. Adding the remaining regressors boosts 𝑅2 by another 14.1%, a significant increase.

We next consider a set of regressors motivated by our model for the performance of

stop-loss strategies when log-returns follow an autoregressive process. Following Propo-

sitions 1 and 2, we only include the mean 𝜇 and the interaction term 𝜌(1) × 𝜎 between

the AR(1) coefficient and volatility as the explanatory variables. Table 1.2 shows that
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Table 1.2: Regressions of the Stop-loss Strategy 𝒮(−2%, 0%, 1, 1) Relative
Return on Statistical Properties of Stock Log Returns

Explanatory Variable Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Average

Intercept 15.2% 29.9% 26.6% 25.1% 12.1% 24.6% N/A
(20.6) (42.3) (38.0) (41.4) (18.5) (40.5)

Return -0.388 -0.448 -0.462 -0.510 -0.429 -0.508 3.16%
(-193.7) (-127.8) (-130.3) (-165.8) (-240.0) (-164.9)

Volatility -0.660 -0.647 -0.607 -0.591 42.17%
(-134.9) (-133.5) (-143.6) (-132.7)

Ret. × Volatility -0.072 -0.052 -0.011 -0.013 -3.93%
(-20.0) (-14.5) (-3.5) (-4.2)

Skewness / 100 0.008 -0.033 -0.001 0.30%
(0.1) (-0.7) (0.0)

Kurtosis / 100 0.282 0.192 0.189 11.80%
(60.4) (47.1) (46.5)

𝜌(1) 1.218 1.128 -2.95%
(229.5) (120.6)

𝜌(2) 0.299 0.311 -0.55%
(32.3) (33.4)

𝜌(1) × Volatility 2.246 0.209 -1.87%
(208.6) (11.8)

Adj R-sq 41.70% 47.76% 49.10% 61.84% 54.03% 61.87% N/A

In table 1.2 we regress the return of the stop-loss strategy 𝒮(−2%, 0%, 1, 1) relative to the buy-
and-hold strategy on statistical properties of stock log returns. In each regression, we control
for time effect and firm size effect by using indicator variables for each year and each market
cap decile for the stock at the start of the year. Note that the average value for the log returns
is very different than for simple returns in the summary statistics table 2.1 because we are using
log returns instead of simple returns.
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these two terms explain more than 50% of the variation in returns. Furthermore, the

estimated regression coefficients are in line with our model. The coefficient for 𝜇 of −0.43

implies highly negative dependence on the expected return of the underlying process,

since higher returns hurt relative performance. The coefficient for the interaction term

𝜌(1)× 𝜎 of 2.2 implies significant dependence on serial correlation and volatility. A more

detailed discussion of why these coefficients are in line with our model is provided in the

Appendix.

If we include all eight summary statistics as regressors, the𝑅2 only improves marginally,

suggesting that our model is able to explain the relative performance of tight stop-loss

strategies very well, and that this performance has a close to linear dependence on the

product of serial correlation and volatility.

To further investigate the dependence of strategy returns on autocorrelation, in each

year we divide the sample of stocks into seven groups based on their realized serial correla-

tion for the year. In each group, we compute the return on the 𝒮(−2%, 0%, 1, 1) strategy

in excess of the buy-and-hold strategy using the U.S. T-bill as the “safe" asset. Table 1.3

contains the results of this procedure. We find a drastic difference in performance across

the realized serial correlation groups. The tight stop-loss strategy applied to stocks with

autocorrelation exceeding 15% outperforms the buy-and-hold strategy by 5.5% per year,

while it dramatically underperforms by 57% per year for stocks with autocorrelation less

than −10%. The overall patterns in this table show that higher autocorrelation leads to

significantly better returns. It should be noted that trading costs and positive equity risk

premia can cause a tight stop-loss strategy to underperform the buy-and-hold strategy

even for stocks with positive serial correlation. The tight stop policy outperforms buy-

and-hold only for the stocks in the highest autocorrelation group, and even then only

during some of the sub-periods of the entire 1964–2014 sample.

Table 1.3 also contains the excess returns on the strategy in different autocorrelation

groups over time. Throughout all of the subperiods, higher autocorrelation gives much

better relative performance. The pattern of severe underperformance for stocks with low

serial correlation and outperformance for stocks with high serial correlation holds for

most subperiods as well.

To develop greater intuition for positive serial correlation in equity returns, we record

the proportion of stocks in our sample that fall in a particular serial correlation group
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Table 1.3: Returns on the Stop-loss Strategy 𝒮(−2%, 0%, 1, 1) in Excess of the
Buy-and-hold Stratified by Serial Correlation

Serial
Correlation

1964 -
1968

1969 -
1973

1974 -
1978

1979 -
1983

1984 -
1988

1964 -
2014

Excess
Return

-10% or less -42.9% -41.3% -50.2% -49.2% -67.8% -56.6%
-10% to -5% -48.3% -40.1% -46.1% -46.7% -41.1% -41.5%
-5% to -0% -41.7% -33.7% -38.8% -37.2% -30.4% -33.7%
0% to 5% -33.6% -23.7% -30.9% -29.4% -21.9% -25.3%
5% to 10% -24.1% -13.1% -20.4% -18.0% -12.2% -15.7%
10% to 15% -14.9% -2.1% -13.5% -10.1% -4.6% -6.1%
15% or more -1.6% 13.4% 0.6% 3.2% 5.8% 5.5%

Proportion
of Stocks

-10% or less 16.8% 13.1% 11.6% 8.5% 26.6% 27.0%
-10% to -5% 11.7% 10.1% 9.0% 7.2% 9.1% 11.7%
-5% to -0% 15.6% 13.3% 13.1% 11.5% 11.9% 14.9%
0% to 5% 18.0% 17.0% 15.3% 14.3% 13.5% 14.9%
5% to 10% 15.5% 17.0% 15.5% 15.9% 13.3% 12.3%
10% to 15% 11.1% 13.3% 14.2% 14.5% 10.6% 8.5%
15% or more 11.3% 16.2% 21.3% 28.1% 14.9% 10.6%

Serial
Correlation

1989 -
1993

1994 -
1998

1999 -
2003

2004 -
2008

2009 -
2014

1964 -
2014

Excess
Return

-10% or less -87.4% -83.7% -63.6% -36.7% -45.1% -56.6%
-10% to -5% -51.1% -57.4% -46.5% -18.9% -22.6% -41.5%
-5% to -0% -41.7% -51.8% -40.5% -11.3% -13.8% -33.7%
0% to 5% -32.8% -43.7% -32.7% -3.7% -4.4% -25.3%
5% to 10% -21.5% -35.3% -23.6% 4.3% 3.2% -15.7%
10% to 15% -11.8% -28.3% -8.6% 13.1% 15.1% -6.1%
15% or more 1.8% -20.3% 5.5% 22.3% 20.9% 5.5%

Proportion
of Stocks

-10% or less 40.7% 41.0% 34.1% 30.6% 27.7% 27.0%
-10% to -5% 9.2% 11.4% 14.0% 16.7% 17.4% 11.7%
-5% to -0% 12.1% 13.5% 16.1% 19.4% 22.1% 14.9%
0% to 5% 12.0% 12.9% 15.2% 16.4% 17.8% 14.9%
5% to 10% 10.9% 10.0% 10.6% 10.0% 9.9% 12.3%
10% to 15% 7.3% 6.0% 5.7% 4.5% 3.7% 8.5%
15% or more 7.8% 5.2% 4.4% 2.4% 1.5% 10.6%

Serial correlation is calculated using daily log returns. Proportion of Stocks measures the pro-
portion of stocks in each bucket over the particular period. This is done by calculating the
proportion of stocks in a particular bucket for each year and then taking the average over all
years. We report results from averaging over all years, as well as over all subperiods. Note that
there are more buckets for positive values of serial correlation since these are situations when
the stop-loss strategy is more likely to outperform the buy-and-hold strategy.
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each year and the striking results are given in Table 1.3. During the first half of the

1964–2014 period, many stocks exhibited high autocorrelation: more than 20% of stocks

in each subperiod with correlation exceeding 10%, with as much as 43% of such stocks

around 1980. However, over the most recent 25 years, there have been much fewer of

these stocks: 15.2% in the 1989–1993 period, and less than that in subsequent periods,

with only 5.2% of such stocks in 2009–2014.6

The pattern is reversed for mean-reverting stocks (i.e., those with low serial correla-

tion). In the 1964–1983 period, there were under 20% of stocks with autocorrelation less

than −10%. This proportion jumped to 27% in 1984–1988, then to 41% in 1989–1993,

and has stayed above 27% in each of the subsequent subperiods. The explanation for

this pattern is beyond the scope of this paper. However, as we have demonstrated, using

tight stop-loss strategies provides a simple yet effective way to trade serial correlation;

thus there is significant economic value in being able to forecast it.

1.5.3 Delayed stop-loss strategies

As documented in Section 1.5.1, daily U.S. stock returns exhibit slight negative au-

tocorrelation over the 1964–2014 period, with most of it occurring during the past two

decades. This suggests that stocks may have a tendency to revert in the short-term fol-

lowing large price movements. This anomaly has been well-documented in the finance

literature (e.g., Bremer and Sweeney, 1991; Benou and Richie, 2003; Savor, 2012). As

a result, the delayed stop-loss strategies 𝒮𝑑 may provide superior returns to their non-

delayed counterparts.

Recall that with a delayed stop-loss strategy we wait an extra day to trade out or

trade into the risky asset. For example, if the past return over a certain horizon was

below a specified threshold on day 𝑡, then the strategy would switch to the safe asset at

the end of day 𝑡+ 1 instead of day 𝑡.

Figure 1-6 contains the performance metrics of the delayed stop-loss strategy relative

to its non-delayed counterpart using the same specifications. As before, we consider

three different past horizon pairs (𝐼, 𝐽), stop-loss levels ranging from 0% to −24%, and

start-gain levels between 0% and 1.5%. We see that the delayed strategy provides an

6We calculate these proportions by adding the percentages of stocks in the buckets for correlation
between 10% and 15% and for correlation of 15% or more.
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improvement in all cases for the return, CE, and maximum drawdown. The improvement

is particularly drastic for the one-day strategy using tight stops, since this is the one for

which one-day reversals would be most relevant. For example, one-day strategies using

a stop of 0% and start-gain under 1% experience an improvement of 2% to 5% per year

when using the delayed specification.

For strategies with wider stops performance gets better when using delays, but it

is very marginal. Thus overall, their performance relative to the buy-and-hold would

not change drastically, and it would still look similar to Figure 1-5. Finally, we note

that delayed strategies usually have better skewness than the non-delayed ones – because

upside is more preserved by capturing the positive returns on days following price declines.

The only exception is very tight one-day strategies, where skewness decreases; however

this is not due to reducing upside, but due to the significant shift in the average (and

very negative) strategy return resulting from high transaction costs.

We conclude that using delayed stop-loss strategies marginally improves performance

in most cases, and significantly improves returns for the case of tight stops. They are

also easier to execute, since the investor can just submit a market-on-close order at the

end of the next day rather than trying to submit one right before the close while tracking

returns in real-time as with the original stop-loss strategies. Therefore, if an investor

does decide to employ stop-loss strategies within our framework, it is generally beneficial

to use the delayed specification.

1.6 Optimizing Stop-Loss Level

By now we have a good understanding of how stop-loss strategy performance depends

on the underlying market dynamics and strategy parameters. We briefly discuss how to

tackle the question of choosing an optimal stop-loss level. We apply the optimization

framework to the case of an AR(1) process and investigate how the optimized stop level

depends on the process volatility and serial correlation, as well as the investment horizon.

As before, there is a risky asset with log-returns 𝑟𝑡 in period 𝑡, and a risk-free asset

with a constant log-return 𝑟𝑓 in each period. An investor trades these two assets over

time, with a portion 𝑤𝑡 of his portfolio held in the risky asset. There is a fixed cost 𝑐 (as

a percent of notional traded) associated with trading the risky asset.
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There are 𝑇 periods, and therefore 𝑇 + 1 times 0, 1, . . . , 𝑇 . An investor starts with

initial wealth𝑊0 and can trade at times 𝑡 = 0, 1, . . . , 𝑇 −1 by deciding on allocation 𝑤𝑡+1

during period 𝑡+ 1. His objective is to maximize the expected utility of terminal wealth

E(𝑈(𝑊𝑇 )).

At time 𝑡 the investor uses all of the information available up to that point to make

his decision on portfolio allocation 𝑤𝑡+1 during the next period. Define by 𝑉 (𝑊𝑡, 𝑤𝑡, ℐ𝑡, 𝑡)

to be the value function which is the expected utility of terminal wealth, conditional on

period 𝑡 wealth 𝑊𝑡, allocation 𝑤𝑡, and information ℐ𝑡 up to time 𝑡. Accounting for the

wealth dynamics, we can write, for 𝑡 = 0, 1, . . . , 𝑇 − 1:

𝑉 (𝑊𝑡, 𝑤𝑡, ℐ𝑡, 𝑡) = max
𝑤∈𝒮

E𝑡

[︀
𝑉 (𝑊𝑡+1, 𝑤, ℐ𝑡+1, 𝑡+ 1)

]︀
𝑠.𝑡. (17)

𝑊𝑡+1 = 𝑤 ×𝑊𝑡(1 + 𝑟𝑡+1) +
[︁
(1 − 𝑤) ×𝑊𝑡 − 𝑐× |𝑤 − 𝑤𝑡| ×𝑊𝑡

]︁
(1 + 𝑟𝑓 )

where 𝒮 is the set of possible values that the allocation can take. After the last period

there is no uncertainty, so that 𝑉 (𝑊𝑇 , 𝑤𝑇 , ℐ𝑇 , 𝑇 ) = 𝑈(𝑊𝑇 ). The optimal allocation 𝑤𝑡+1

is defined as:

𝑤*
𝑡+1 = argmax

𝑤∈𝒮
E𝑡

[︀
𝑉 (𝑊𝑡+1, 𝑤, ℐ𝑡+1, 𝑡+ 1)

]︀
(18)

subject to the wealth evolution constraint. There have been several popular approaches

in the literature for solving the above problem. One “standard" method is Stochastic

Dynamic Programming (SDP), outlined, for example, in Infanger (2006). The idea is to

calculate the optimal decision function 𝑉 (𝑊𝑡, 𝑤𝑡, ℐ𝑡, 𝑡) recursively for 𝑡 = 𝑇 − 1, . . . , 0 at

specified grid points for 𝑊𝑡, 𝑤𝑡, and ℐ𝑡. At each stage 𝑡, and each grid point (𝑊𝑡, 𝑤𝑡, ℐ𝑡)

the procedure is as follows. We approximate the conditional expectation function:

𝑓(𝑤) = E𝑡

[︀
𝑉 (𝑊𝑡+1, 𝑤, ℐ𝑡+1, 𝑡+ 1)

]︀
(19)

by drawing a large sample of next period returns (conditional on current information

ℐ𝑡) and averaging the associated values for 𝑉 (𝑊𝑡+1, 𝑤, ℐ𝑡+1, 𝑡 + 1). These values can be

computed, because we know the value function at the next period gridpoints, and we can

interpolate in between.

Once we can compute 𝑓(𝑤), it suffices to carry out optimization over the set 𝒮 to find

an approximation for 𝑤*
𝑡+1 and the corresponding value 𝑓(𝑤*

𝑡+1) of the value function,
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which would be an approximation for 𝑉 (𝑊𝑡, 𝑤𝑡, ℐ𝑡). After dealing with all the gridpoints

at time 𝑡, we move on to time 𝑡− 1 and repeat.

Brandt et. al (2005) also present an SDP approach, however they propose a novel way

to approximate the optimal solution 𝑤*
𝑡+1. They perform Taylor expansion on the value

function 𝑉 (𝑊𝑡, 𝑤𝑡, ℐ𝑡, 𝑡) and derive the corresponding First Order Conditions. These

produce an expression for the optimal solution as an explicit function of partial derivatives

of the value function in the next period. The advantage of this approach is that it can

deal with more complicated dynamics for the evolution of information ℐ𝑡 than other

simulation-based methods.

Finally, Moallemi and Sağlam (2015) demonstrate how to solve the above problem

when considering only the space of linear dynamic policies. That is, the next period

allocation 𝑤𝑡 is restricted to be a linear function of the previous allocation 𝑤𝑡−1 and

factors 𝑓𝑠 that make up the information set ℐ𝑡. The authors demonstrate that in that

case they can optimize over all periods 𝑡 = 0, 1, . . . , 𝑇 − 1 at once in a single convex

optimization problem. The method is shown to be tractable and provides near optimal

results.

1.6.1 Applying SDP to Stop-Loss Problem

We now go into more detail about how to solve the optimization problem (17) in the

context of our framework. As before, suppose there are two assets: the risky asset with a

return 𝑟𝑡 during period 𝑡 and the risk-free asset yielding a constant return 𝑟𝑓 each period.

The risky asset log returns 𝑟𝑡 follow an AR(1) process:

𝑟𝑡+1 = 𝜇 + 𝜌(𝑟𝑡 − 𝜇) + 𝜎𝜖𝑡, 𝜖𝑡 ∼ 𝑊𝑁(0, 1) (20)

where 𝜇 is the mean, 𝜎 is the volatility, and 𝜌 is the serial correlation coefficient. We

assume the investor knows this is indeed the right model and also its parameters 𝜇, 𝜎,

and 𝜌. At the end of each period 𝑡 = 0, 1, . . . , 𝑇 − 1 he is able to observe the return 𝑟𝑡 for

that period (as well as the previous periods); he chooses his allocation 𝑤𝑡+1 for the next

period.

The investor chooses his allocation using the forecast distribution 𝑟𝑡+1|ℐ𝑡 conditional

on the information ℐ𝑡 available as of the end of period 𝑡. Because returns follow an AR(1)
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process and the investor knows this, then it suffices for him to just consider the return in

the previous period and look at the corresponding distribution 𝑟𝑡+1|𝑟𝑡. This significantly

reduces the dimensionality of the problem.

We assume the investor has initial wealth 𝑊0 and has a quadratic utility function

𝑈(𝑊 ) = 𝑊 − 𝜆𝑊 2. The allocations in each period are restricted to be either 0% or

100%.

We are now ready to solve (17) using approximate SDP. We first create a grid of nodes

(𝑊𝑡, 𝑤𝑡, 𝑟𝑡) for each time 𝑡. For allocation 𝑤𝑡 we consider just the values 0% and 100%

(since these are all the possible allocations the investor can use).We consider 100 evenly

spaced values for log returns 𝑟𝑡 in the range [𝜇 − 𝑘 × ̂︀𝜎, 𝜇 + 𝑘 × ̂︀𝜎], where 𝑘 is a scaling

factor and ̂︀𝜎 = 𝜎/
√︀

1 − 𝜌2 is the unconditional volatility of the AR(1) process. With

𝑘 = 3, about 99.7% of the log return values sampled under the unconditional distribution

will fall into the interval we use, which is very good coverage. From the log returns we

easily obtain simple returns 𝑟𝑡 as 𝑟𝑡 = exp(𝑟𝑡) − 1.

For wealth 𝑊𝑡 we consider 101 equally spaced values in the range [𝑊0 exp(𝜇𝑡− 𝑘𝜎
√
𝑡,

𝑊0 exp(𝜇𝑡 + 𝑘𝜎
√
𝑡)], where 𝑘 is again the scaling factor. Note that this range increases

with 𝑡 to accommodate for the fact that as time passes, the distribution of values of

wealth becomes more and more dispersed. The motivation for the functional form of the

bounds comes from the evolution of Geometric Brownian Motion after time 𝑡, assuming

drift 𝜇 and volatility 𝜎. Of course, here things are a bit more complicated due to the

serial correlation 𝜌 in returns; however for a small value of 𝜌 (under 20% in absolute

value) and a large value of 𝑘 (we use 𝑘 = 3) we will again be covering a large proportion

of the sample of possible values of wealth. Note that Brandt et al. (2006) use the same

functional form.

Within this set of values 𝑊𝑡 we insert another value of 𝑊0, in order to compare the

optimal stop-loss level as a function of investment horizon, while keeping initial wealth

constant. Thus in the end we use 102 values of 𝑊𝑡 in the nodes at each time 𝑡.

Once the nodes are well-defined, we outline how to do optimization at each node. We

solve the optimization problem recursively at all nodes at time 𝑇 − 1, then at all nodes

at time 𝑇 − 2, and so on. Take an arbitrary node (𝑊𝑡, 𝑤𝑡, 𝑟𝑡). There are two cases.

Case 1: 𝑡 = 𝑇 − 1. In this case we know the exact formula for the next period value
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function:

𝑉 (𝑊𝑡+1, 𝑤𝑡+1, 𝑟𝑡+1) = 𝑉 (𝑊𝑇 , 𝑤𝑇 , 𝑟𝑇 ) = 𝑈(𝑊𝑇 ) = 𝑊𝑇 − 𝜆𝑊 2
𝑇 (21)

As discussed in the previous section, we need to calculate the conditional expectation

function 𝑓(𝑤) in (19), where we condition on past period return 𝑟𝑡. To do this, we resort

to a “direct" density approximation, where we take 100 evenly spaced values 𝑟𝑡+1,𝑠 in the

range [𝜇𝑐 − 𝑘× 𝜎𝑐, 𝜇𝑐 + 𝑘× 𝜎𝑐], where 𝑘 = 3 is a scaling factor giving very good coverage

of the distribution, and 𝜇𝑐, 𝜎𝑐 are the parameters for the conditional distribution of 𝑟𝑡+1:

𝑟𝑡+1|𝑟𝑡 ∼ 𝑁(𝜇𝑐, 𝜎
2
𝑐 ); 𝜇𝑐 = 𝜇+ 𝜌(𝑟𝑡 − 𝜇), 𝜎𝑐 = 𝜎

For each of the values 𝑟𝑡+1,𝑠 we calculate the next period wealth 𝑊𝑡+1 and the corre-

sponding value function 𝑉 as in (21). These are then combined using a weighted average,

where the weights correspond to the densities for 𝑟𝑡+1,𝑠 under the distribution 𝑁(𝜇𝑐, 𝜎
2
𝑐 ),

and scaled to add to 100%. This gives us 𝑓(𝑤).

The final step is optimization. This is easy, because we know 𝑤 ∈ {0%, 100%}, so it

suffices to just calculate 𝑓(0%) and 𝑓(100%) and take the larger value.

Case 2: 𝑡 ≤ 𝑇 − 2. In this case we know the value function 𝑉 (𝑊𝑡+1, 𝑤𝑡+1, 𝑟𝑡+1) at

specific nodes in the next period. We carry out the exact same procedure as in Case 1 by

calculating next period wealth 𝑊𝑡+1 for each value 𝑟𝑡+1,𝑠. The only new part is that the

next period triplet (𝑊𝑡+1, 𝑤𝑡+1, 𝑟𝑡+1) may not hit an exact node in the next period. If that

happens, we perform interpolation between the nodes (we resort to linear interpolation).

Note that we need to only interpolate over (𝑊𝑡+1, 𝑟𝑡+1) because 𝑤𝑡+1 ∈ {0%, 100%} gives

us full coverage of all the possible values for 𝑤. After performing the interpolation we

can calculate 𝑓(𝑤) and again optimize.

1.6.2 Optimization Results

We apply the above optimization approach to an investment problem with a horizon

of 𝑇 = 20 periods. We assume each period is a month7.The annual mean is assumed to be

10%, and we consider different cases for annualized volatility, ranging from 10% to 50%.

We also consider different cases for the serial correlation 𝜌, in the range [−20%, 20%].

These parameters are the same as in the simulations for an AR(1) process we carried out

7We considered daily frequency as well, and results were similar.
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earlier.

We look at two cases for transactions costs: 𝑐 = {0.2%, 1.0%}, as well as two cases for

the risk aversion coefficient: 𝜆 ∈ {0.05, 0.1}. The transactions costs levels are motivated

by our empirical analysis from before, where a level of 1.0% is closer to the historical

average, whereas a level of 0.2% is closer to the average cost of trading at the close over

the 2013–2014 period. The risk aversion coefficient choice is rather arbitrary and just

done to be small enough so that there is no satiation, where if the past return is very

high, the investor decides to cut allocation due to the nature of his utility function. We

assume 𝑊0 = 1.

While we solve the optimization at each node (𝑊𝑡, 𝑟𝑡, 𝑤𝑡), we only focus on the nodes

where 𝑊𝑡 = 𝑊0 = 1 so that we have a more fair comparison in behavior across time.

We further restrict to nodes where 𝑤𝑡 = 100%, since this gives us the case when the

investor was fully invested in the previous period. Fixing these two variables, the optimal

allocation in the next period depends just on the past return 𝑟𝑡:

𝑤*
𝑡+1(𝑊𝑡, 𝑤𝑡, 𝑟𝑡) = 𝑔(𝑟𝑡)

The aim is to show, using the dependence of 𝑔(𝑟𝑡) on 𝑟𝑡, that stop-loss behavior arises

at optimality. Recall from before, that for a particular time 𝑡, the possible values of 𝑟𝑡

considered for the nodes are independent of 𝑡. Let us label these values from smallest to

largest as ̂︀𝑟1, ̂︀𝑟2, . . . , ̂︀𝑟𝐾 .
If we find 𝑔(̂︀𝑟𝑘) = 100% for 𝑘 = 1, 2, . . . , 𝐾, this means that it is always optimal to

stay invested, and no stop-loss level is needed. If we find 𝑔(̂︀𝑟𝑘) = 0% for 𝑘 ≤ 𝐿 and

𝑔(̂︀𝑟𝑘) = 100% for 𝑘 > 𝐿, then this means it is optimal to get out of the risky asset for all

values of past return below a certain threshold. This is exactly the case when a stop-loss

strategy arises, and we can define ̂︀𝑟𝐿 as the stop-loss level.

Of course, other cases for 𝑔 are possible, and in those cases a stop-loss strategy is no

longer optimal.

Our results are as follows. For 𝜌 < 0, stop-loss behavior does not arise, and instead

it is the case that 𝑔(̂︀𝑟𝑘) = 0 for 𝑘 ≥ 𝐿 and 𝑔(̂︀𝑟𝑘) = 1 for 𝑘 < 𝐿 – i.e. for a large

enough return, it is optimal to get out of the risky asset. This makes sense, since if there

is negative serial correlation, then a large (positive) past period return is expected to

be followed by a relatively significant negative return the next period. Because we are
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interested in stop-loss behavior, we do not go into more detail with these results.

For 𝜌 ≥ 0 we find two cases. Either it is optimal to always stay invested, or we do

indeed find that stop-loss behavior is optimal. Figure 1-7 plots the stop-loss level as a

function of the underlying model parameters. We see that it is optimal to not use a

stop-loss when serial correlation is low and/or volatility is low. It makes sense intuitively

that if serial correlation is low (and positive), then even if the return in the previous

period is very negative, it will have only a small effect on the risky asset return the next

period. Because the unconditional expected return is positive, it makes sense to stay

invested whenever the conditional expected return is close to it, as is the case when serial

correlation is small.

The explanation for why low volatility results in not using a stop-loss is as follows.

Since the expected return is fixed, then the return in the next period has to be very

negative in magnitude for an investor to get out of the risky asset. But if volatility is

low, the probability this very negative return occurs is very small – so even for those

situations using a stop-loss is better, they occur so rarely (i.e. less than 0.3% of the time)

that it’s almost like not using a stop-loss at all.

We also see that with higher serial correlation and higher volatility, it becomes optimal

to employ a stop-loss strategy; furthermore, the optimal stop-loss level increases and gets

closer to 0%. It is important to note that this level has a heavier dependence on serial

correlation than on volatility. We also find that as the time horizon increases, the optimal

stop-loss level is lower (keeping serial correlation and higher volatility constant), and in

some cases it becomes optimal to not use a stop-loss at all. The explanation behind this

is due to the fact that using a stop-loss reduces the upside of the terminal wealth, which

is particularly important when the investment horizon is long.

Finally, we investigate the dependence of the stop-loss level on the investor risk aver-

sion and transactions costs level. From comparing the two charts on the left of Figure

1-7 and on the right of the figure, we see that the stop level is wider when transactions

costs are higher. This makes sense since with higher transactions costs we should not

be trading as much and so should set a wider stop-loss level. From comparing the two

charts at the top of Figure 1-7 and at the bottom of the figure, we see that the stop level

is wider for lower risk aversion – again, this makes sense, since the investor cares about

the upside more and is ok with suffering larger losses in wealth.
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We conclude that employing a stop-loss strategy is indeed optimal when considering

an “all-or nothing" class of dynamic investment strategies. The optimal stop-loss level

is increasing in the serial correlation and the volatility and decreasing in the investment

horizon. Higher transactions costs and lower risk aversion both result in a lower stop-loss

level.
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1.7 Conclusion

From both analytical and empirical perspectives, stop-loss strategies can improve

investment performance in certain circumstances. Our theoretical results show that the

log return on a tight stop-loss strategy is close to linear in the interaction term between

return volatility and autocorrelation when returns follow an AR(1) process. We further

validate this result by solving for the optimal stop-loss level in a dynamic setting and

show that this level is increasing in volatility and serial correlation of the underlying

returns process. When returns follow a regime-switching process, wider stop-loss policies

will outperform buy-and-hold only in the case when volatility is low in the bull regime

and high in the bear regime. And, of course, transaction costs have a significant impact

on performance, especially when a tight stop-loss level is used.

When applied to individual U.S. stock returns from 1964 to 2014, we find that stop-

loss strategies employing a tight stop produce significantly lower returns in comparison to

buy-and-hold strategies. Most of this poor performance stems from very high transaction

costs. At the same time, the strategies offer a large reduction in volatility, which in a

few cases leads to outperformance over the buy-and-hold strategy in terms of certainty

equivalence for a mean-variance investor.

We also explore how stop-loss strategies affect the skewness and maximum drawdown

of returns. In our simulations, most two-week strategies are able to provide an improve-

ment over buy-and-hold strategies because they successfully reduce downside risk while

preserving upside potential. However, the empirical results using historical stock returns

are not as good due to high transaction costs. Nevertheless, some strategies still perform

on par with buy-and-hold strategies in terms of skewness and drawdowns.

A closer investigation of the historical performance of tight stop-loss strategies shows

that the mean and the interaction term between volatility and serial correlation explain

over 50% of the variation in returns on these strategies in excess of the buy-and-hold

strategy, and that the estimated regression coefficients are consistent with our analytical

results. The trading costs on these strategies are very high, and as a result, a high serial

correlation (typically over 10%) is necessary to outperform the buy-and-hold strategy. We

also find a striking pattern that over the first half of the 1964–2014 period, stocks tend

to exhibit positive serial correlation, while over the second half this correlation turned

significantly negative. The mean reversion in returns over the past two decades helps
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explain why tight stop-loss strategies have done poorly.

These results clarify the role that stop-loss strategies can play in modern portfolio

management. While buy-and-hold portfolios are attractive low-cost passive vehicles for

long-term investors, their performance can be improved if asset-price dynamics are more

complex than the standard random walk model.
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1.8 Appendix

In this Appendix, we provide proofs of propositions 1 and 2 in Sections 1.8.1–1.8.2, the

definition of a delayed stop-loss policy in Section 1.8.3, and more detailed discussion of the

strategy return regression results in Section 1.8.4. We also include several supplemental

tables and figures.

1.8.1 Proof of Proposition 1

For an AR(1) process, the unconditional distribution of log returns is:

𝑟𝑡 ∼ 𝑁(𝜇, 𝜎̃2), where 𝜎̃2 =
𝜎2

1 − 𝜌2
. (22)

If |𝜌| is not too large, e.g., |𝜌| ≤ 0.3, then:

|corr(𝑟𝑡, 𝑟𝑡+𝑘)| = |𝜌𝑘| ≤ 0.09 for 𝑘 ≥ 2 . (23)

We can thus assume that 𝑟𝑡 is approximately independent of 𝑟𝑡−2, 𝑟𝑡−3, . . .

Case 1: 𝑏 ≥ 𝑎.

We have 𝑠1 = 1 and for 𝑡 ≥ 2:

𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 𝑟𝑡−1 ≥ 𝑏

1 if 𝑎 < 𝑟𝑡−1 < 𝑏 and 𝑠𝑡−1 = 1

0 otherwise.

(24)

For 𝑡 not too small, we have:

P(𝑠𝑡 = 1|𝑎 < 𝑟𝑡 < 𝑏) ≈ P(𝑠𝑡−1 = 1|𝑎 < 𝑟𝑡−1 < 𝑏). (25)
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Therefore, in view of (25):

P(𝑠𝑡 = 1|𝑎 < 𝑟𝑡 < 𝑏) = P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏) + P(𝑠𝑡−1 = 1|𝑎 < 𝑟𝑡−1 < 𝑏, 𝑎 < 𝑟𝑡 < 𝑏) ×

P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑎 < 𝑟𝑡 < 𝑏)

≈ P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏) + P(𝑠𝑡−1 = 1|𝑎 < 𝑟𝑡−1 < 𝑏) ×

P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑎 < 𝑟𝑡 < 𝑏)

≈ P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏) + P(𝑠𝑡 = 1|𝑎 < 𝑟𝑡 < 𝑏) ×

P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑎 < 𝑟𝑡 < 𝑏). (26)

We can then define 𝑝1 = P(𝑠𝑡 = 1|𝑎 < 𝑟𝑡 < 𝑏) and derive the expression for it:

𝑝1 = P(𝑠𝑡 = 1|𝑎 < 𝑟𝑡 < 𝑏) ≈ P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏)

1 − P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑎 < 𝑟𝑡 < 𝑏)

=
P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏)

P(𝑟𝑡−1 ≥ 𝑏|𝑎 < 𝑟𝑡 < 𝑏) + P(𝑟𝑡−1 ≤ 𝑎|𝑎 < 𝑟𝑡 < 𝑏)
. (27)

The above expression can be easily approximated by simulating 𝑟𝑡−1 ∼ 𝑁(𝜇, 𝜎̃2) and the

innovation 𝜖𝑡 ∼ 𝑁(0, 𝜎2).

We now have:

E(𝑠𝑡𝑟𝑡) = P(𝑟𝑡−1 ≥ 𝑏)E(𝑟𝑡|𝑟𝑡−1 ≥ 𝑏) + P(𝑎 < 𝑟𝑡−1 < 𝑏)E(𝑠𝑡𝑟𝑡|𝑎 < 𝑟𝑡−1 < 𝑏) . (28)

We approximate each term individually for 𝑡 not too small:

P(𝑟𝑡−1 ≥ 𝑏)E(𝑟𝑡|𝑟𝑡−1 ≥ 𝑏) ≈ P(𝑟𝑡−1 ≥ 𝑏) × 𝜇 +

𝜌

∫︁ ∞

𝑏

(𝑥− 𝜇)
1√
2𝜋𝜎̃

exp

(︂
−(𝑥− 𝜇)2

2𝜎̃2

)︂
𝑑𝑥

= Φ(
𝜇− 𝑏

𝜎̃
)𝜇 + 𝜌

𝜎̃√
2𝜋

exp

(︂
(𝜇− 𝑏)2

2𝜎̃2

)︂
(29)
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and:

P(𝑎 < 𝑟𝑡−1 < 𝑏)E(𝑠𝑡𝑟𝑡|𝑎 < 𝑟𝑡−1 < 𝑏)

≈ P(𝑎 < 𝑟𝑡−1 < 𝑏)E(𝑟𝑡|𝑎 < 𝑟𝑡−1 < 𝑏, 𝑠𝑡−1 = 1) × 𝑝1

= 𝑝1P(𝑎 < 𝑟𝑡−1 < 𝑏)𝜇 + 𝑝1

∫︁ 𝑏

𝑎

(𝑥− 𝜇)
1√
2𝜋𝜎̃

exp

(︂
−(𝑥− 𝜇)2

2𝜎̃2

)︂
𝑑𝑥

= 𝑝1(Φ(
𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
))𝜇 + 𝑝1𝜌

𝜎̃√
2𝜋

(exp

(︂
−(𝑎− 𝜇)2

2𝜎̃2

)︂
− exp

(︂
−(𝑏− 𝜇)2

2𝜎̃2

)︂
),

where 𝑝1 is given by (27). Combining the above two expressions, we get the result for

the first case.

Case 2: 𝑏 < 𝑎.

This case is similar. We have:

𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 𝑟𝑡−1 > 𝑎

1 if 𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎 and 𝑠𝑡−1 = 0

0 otherwise.

(30)

Note that (25) still holds for 𝑡 not too small. It follows that:

P(𝑠𝑡 = 1|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) = P(𝑟𝑡−1 > 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + P(𝑠𝑡−1 = 0|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑏 ≤ 𝑟𝑡 ≤ 𝑎) ×

P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎)

≈ P(𝑟𝑡−1 > 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + P(𝑠𝑡−1 = 0|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎) ×

P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎)

≈ P(𝑟𝑡−1 > 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + P(𝑠𝑡 = 0|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) ×

P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎). (31)

Define 𝑝1 = P(𝑠𝑡 = 1|𝑏 ≤ 𝑟𝑡 ≤ 𝑎), 𝑝2 = P(𝑠𝑡 = 0|𝑏 ≤ 𝑟𝑡 ≤ 𝑎), then:

𝑝1 ≈ P(𝑟𝑡−1 > 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + 𝑝2P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎). (32)
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Similarly we get:

𝑝2 ≈ P(𝑟𝑡−1 < 𝑏|𝑏 ≤ 𝑟𝑡 ≤ 𝑎) + 𝑝1P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎). (33)

Solving the above system of equations, it follows that:

𝑝1 ≈
1 − 𝑞2

2 − 𝑞1 − 𝑞2
, 𝑝2 ≈

1 − 𝑞1
2 − 𝑞1 − 𝑞2

, (34)

where

𝑞1 = P(𝑟𝑡−1 > 𝑎|𝑏 ≤ 𝑟𝑡 ≤ 𝑎), 𝑞2 = P(𝑟𝑡−1 < 𝑏|𝑏 ≤ 𝑟𝑡 ≤ 𝑎). (35)

The above expression can be easily approximated by simulating 𝑟𝑡−1 ∼ 𝑁(𝜇, 𝜎̃2) and the

innovation 𝜖𝑡 ∼ 𝑁(0, 𝜎2).

We now proceed in a similar way to case 1:

E(𝑠𝑡𝑟𝑡) = P(𝑟𝑡−1 > 𝑎)E(𝑟𝑡|𝑟𝑡−1 > 𝑎) + P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)E(𝑠𝑡𝑟𝑡|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎). (36)

We approximate each term individually:

P(𝑟𝑡−1 > 𝑎)E(𝑟𝑡|𝑟𝑡−1 > 𝑎) ≈ P(𝑟𝑡−1 > 𝑎) × 𝜇 +

𝜌

∫︁ ∞

𝑎

(𝑥− 𝜇)
1√
2𝜋𝜎̃

exp

(︂
−(𝑥− 𝜇)2

2𝜎̃2

)︂
𝑑𝑥

= Φ(
𝜇− 𝑎

𝜎̃
)𝜇 + 𝜌

𝜎̃√
2𝜋

exp

(︂
−(𝜇− 𝑎)2

2𝜎̃2

)︂
(37)

and:

P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)E(𝑠𝑡𝑟𝑡|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)

≈ P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)E(𝑟𝑡|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑠𝑡−1 = 0) × 𝑝2

= 𝑝2P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)𝜇 + 𝑝2

∫︁ 𝑎

𝑏

(𝑥− 𝜇)
1√
2𝜋𝜎̃

exp

(︂
−(𝑥− 𝜇)2

2𝜎̃2

)︂
𝑑𝑥

= 𝑝2(Φ(
𝑎− 𝜇

𝜎̃
) − Φ(

𝑏− 𝜇

𝜎̃
))𝜇 + 𝑝2𝜌

𝜎̃√
2𝜋

(exp

(︂
−(𝑏− 𝜇)2

2𝜎̃2

)︂
− exp

(︂
−(𝑎− 𝜇)2

2𝜎̃2

)︂
),

where 𝑝2 is given by (34). Combining the above two expressions, we get the result for

the second case. �
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1.8.2 Proof of Proposition 2

The technique is similar to Proposition 1. Let 𝑘𝑡 = 1 if a trade is made at the end of

day 𝑡; 𝑘𝑡 = 0 otherwise. We have:

P(𝑘𝑡 = 1) = P(𝑠𝑡+1 = 1, 𝑠𝑡 = 0) + P(𝑠𝑡+1 = 0, 𝑠𝑡 = 1)

= P(𝑠𝑡 = 0|𝑟𝑡 ≥ 𝑏)P(𝑟𝑡 ≥ 𝑏) + P(𝑠𝑡 = 1|𝑟𝑡 ≤ 𝑎)P(𝑟𝑡 ≤ 𝑎) . (38)

Case 1: 𝑏 ≥ 𝑎.

We have:

P(𝑠𝑡 = 0|𝑟𝑡 ≥ 𝑏) ≈ P(𝑟𝑡−1 ≤ 𝑎|𝑟𝑡 ≥ 𝑏) + P(𝑠𝑡−1 = 0|𝑎 < 𝑟𝑡−1 < 𝑏)P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑟𝑡 ≥ 𝑏)

and

P(𝑠𝑡 = 1|𝑟𝑡 ≤ 𝑎) ≈ P(𝑟𝑡−1 ≥ 𝑏|𝑟𝑡 ≤ 𝑎) + P(𝑠𝑡−1 = 1|𝑎 < 𝑟𝑡−1 < 𝑏)P(𝑎 < 𝑟𝑡−1 < 𝑏|𝑟𝑡 ≤ 𝑎).

Substituting these into (38) we get:

P(𝑘𝑡 = 1) ≈ P(𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≥ 𝑏) + P(𝑟𝑡−1 ≥ 𝑏, 𝑟𝑡 ≤ 𝑎)

+ 𝑝1P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≤ 𝑎) + (1 − 𝑝1)P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≥ 𝑏),

where 𝑝1 is defined as in Proposition 1.

Case 2: 𝑏 < 𝑎.

We have:

P(𝑠𝑡 = 0|𝑟𝑡 ≥ 𝑏) ≈ P(𝑟𝑡−1 < 𝑏|𝑟𝑡 ≥ 𝑏) + P(𝑠𝑡−1 = 1|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑟𝑡 ≥ 𝑏)

and

P(𝑠𝑡 = 1|𝑟𝑡 ≤ 𝑎) ≈ P(𝑟𝑡−1 > 𝑎|𝑟𝑡 ≤ 𝑎) + P(𝑠𝑡−1 = 0|𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎)P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎|𝑟𝑡 ≤ 𝑎).
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Substituting these into (38) we get:

P(𝑘𝑡 = 1) ≈ P(𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≥ 𝑏) + P(𝑟𝑡−1 > 𝑎, 𝑟𝑡 ≤ 𝑎)

+ 𝑝2P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≤ 𝑎) + (1 − 𝑝2)P(𝑏 ≤ 𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≥ 𝑏),

where 𝑝2 is defined as in Proposition 1.

Multiplying by 𝑐 and 𝑇 − 2 we get the result. �

1.8.3 Definition of Delayed Stop-Loss Strategy

Definition 2. A delayed fixed rolling-window strategy 𝒮𝑑(𝛾, 𝛿, 𝐽, 𝐼) is a dynamic

asset allocation rule {𝑠𝑡} between the risky asset 𝑄 and the safe asset 𝐹 , such that:

𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑅𝑡−2(𝐽) ≤ log(1 + 𝛾) and 𝑠𝑡−1 = 1 (exit); otherwise:

1 if 𝑅𝑡−1(𝐽) > log(1 + 𝛾) and 𝑠𝑡−1 = 1 (stay in); otherwise:

1 if 𝑅𝑡−1(𝐽) ≤ log(1 + 𝛾) and 𝑠𝑡−1 = 1 (stay in one more day); otherwise:

1 if 𝑅𝑡−2(𝐼) ≥ log(1 + 𝛿) and 𝑠𝑡−1 = 0 (re-enter); otherwise:

0 if 𝑅𝑡−1(𝐼) < log(1 + 𝛿) and 𝑠𝑡−1 = 0 (stay out); otherwise:

0 if 𝑅𝑡−1(𝐼) ≥ log(1 + 𝛿) and 𝑠𝑡−1 = 0 (stay out one more day).

(39)

When using the delayed strategies, we no longer need to impose the assumption that

the stock price does not move significantly right before the close. However, we now

assume that a market on close order is executed at a price that is equal to, or at least

very close to, the closing price for the day.

1.8.4 Discussion of strategy returns regression results

We show that the estimated coefficients in Regression 5 in Table 1.2 are consistent with

the approximation formula in Proposition 1. We have 𝑇 = 252, 𝑎 = log(1 − 0.02), 𝑏 =

log(1 + 0), and from Table 1.2, the daily volatility of log returns is on average equal

to 𝜎̃ ≈ 42.17%√
252

, while the daily mean of log returns is on average equal to 𝜇 ≈ 3.16%

252
.

Using Proposition 1, the log return on the stop-loss strategy in excess of the buy-and-hold
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strategy is approximately linear in the annual mean with a coefficient of:

1

𝑇

[︂
1 + (𝑇 − 1)(Φ(

𝜇− 𝑏

𝜎̃
) + 𝑝1(Φ(

𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
))) − 𝑇

]︂
. (40)

We already know the empirical values of 𝑇, 𝑎, 𝑏, 𝜎̃, and 𝜇. For 𝑝1, we do a further ap-

proximation by assuming 𝑟𝑡−1 and 𝑟𝑡 are independent (this is a reasonable assumption if

serial correlation is small). We have:

𝑝1 =
P(𝑟𝑡−1 ≥ 𝑏, 𝑎 < 𝑟𝑡 < 𝑏)

P(𝑟𝑡−1 ≥ 𝑏, 𝑎 < 𝑟𝑡 < 𝑏) + P(𝑟𝑡−1 ≤ 𝑎, 𝑎 < 𝑟𝑡 < 𝑏)

≈ P(𝑟𝑡−1 ≥ 𝑏)

P(𝑟𝑡−1 ≥ 𝑏) + P(𝑟𝑡−1 ≤ 𝑎)
≈

Φ(𝜇−𝑏
𝜎̃

)

Φ(𝜇−𝑏
𝜎̃

) + Φ(𝑎−𝜇
𝜎̃

)
.

Substituting the empirical values, we get 𝑝1 ≈ 69%. Substituting into (40), we obtain a

“theoretical" coefficient of −0.30, which is close to the empirical value of −0.42.

The coefficient for the interaction term between serial correlation and annual volatility

is approximately:

1√
𝑇

1√
2𝜋

(𝑇 − 1)

[︂
exp

(︂
−(𝜇− 𝑏)2

2𝜎̃2

)︂
+ 𝑝1(exp

(︂
−(𝑎− 𝜇)2

2𝜎̃2

)︂
− exp

(︂
−(𝑏− 𝜇)2

2𝜎̃2

)︂
)

]︂
.

Substituting the parameter values, the “theoretical" coefficient becomes 5.20, while the

empirical coefficient is 2.25. While the coefficients are a bit different, they have a similar

order of magnitude.

The intercept term in the regression corresponds to the transaction costs and the

component due to the risk-free rate. From Proposition 2, the transaction costs are ap-

proximately:

𝑐× P(𝑟𝑡−1 ≤ 𝑎) + 𝑐(𝑇 − 2)[P(𝑟𝑡−1 ≤ 𝑎, 𝑟𝑡 ≥ 𝑏) + P(𝑟𝑡−1 ≥ 𝑏, 𝑟𝑡 ≤ 𝑎)

+ 𝑝1P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≤ 𝑎) + (1 − 𝑝1)P(𝑎 < 𝑟𝑡−1 < 𝑏, 𝑟𝑡 ≥ 𝑏)].

These can be approximated further, assuming 𝑟𝑡−1 and 𝑟𝑡 are independent. The approx-
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imation becomes:

E(𝐶𝑠𝑝) ≈ 𝑐× Φ(
𝑎− 𝜇

𝜎̃
) + 𝑐 (𝑇 − 2) [2 Φ(

𝑎− 𝜇

𝜎̃
) Φ(

𝜇− 𝑏

𝜎̃
)

+ 𝑝1 (Φ(
𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
)) Φ(

𝑎− 𝜇

𝜎̃
)

+ (1 − 𝑝1) (Φ(
𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
)) Φ(

𝜇− 𝑏

𝜎̃
)].

Assuming a low level of transaction costs of 0.2% per trade so that 𝑐 = log(1 − 0.002),

we get transaction costs of −15.5% according to our model.

The contribution from the risk-free rate is:

𝑟𝑓 ×
[︂
𝑇 − (1 + (𝑇 − 1)(Φ(

𝜇− 𝑏

𝜎̃
) + 𝑝1(Φ(

𝑏− 𝜇

𝜎̃
) − Φ(

𝑎− 𝜇

𝜎̃
)))

]︂
.

Since the average daily log return 𝑟𝑓 on the U.S. T-bill is around
4.88%

252
over the 1964–

2014 period, this contribution comes out to 1.5%. Therefore the regression intercept

according to the model should be approximately −15.5% + 1.5% = −14.0%. This is a

negative number, which would be even lower if we assume higher transaction costs. (Over

the 1964–2014 period, the average cost per trade is 0.8%.) However, from Table 1.2 we

see that this intercept is positive and significant. We can explain this by the fact that

we control for time and size effects. In particular, the indicator variables corresponding

to lower market capitalization deciles have very large negative coefficients. This is not

surprising, since smaller cap stocks have much higher transaction costs, which translate

into poor returns on the tight stop-loss strategy considered here. Because of these negative

coefficients, the intercept term in the regression ends up being positive instead of negative

as per our model.

1.8.5 Standard Errors in Simulations

Recall that we ran 100,000 simulations for each case of parameter values and strat-

egy specifications, both for the AR(1) process and the Markov Regime-Switching (MRS)

process. Here we present the level of standard errors for our estimates of strategy re-

turns, maximum drawdown, skewness, and kurtosis. In particular, we argue that these

errors are low enough so that we can be comfortable about making conclusions about the

dependence of these performance metrics on parameters as observed in Figures 1-1, 1-2,
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1-3, 1-4.

For the AR(1) process, the standard error over all strategies (including the buy-and-

hold) for the annual return is at most 0.16%, for the CE – at most 0.37%, for skewness

is at most 0.0077, and for maximum drawdown is at most 0.05%. We calculate the

standard error for the return by taking the standard deviation over all samples (and

scaling appropriately); the same is done for calculating the median of skewness and

maximum drawdown (we make sure to use the appropriate multiplier of 1.253 for the

median estimate). For the CE we combine the standard errors for the mean and the

variance.

For the MRS process, the standard error for all strategies for the annual return is

at most 0.16%, for the CE is at most 0.33%, for skewness is at most 0.0077, and for

maximum drawdown is at most 0.07%.

Comparing these standard errors to the ranges of observed performance metrics in

the figures showing simulation results, it is evident that these errors are very small. Thus

using 100,000 simulations for our analysis is sufficient.
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1.8.6 Supplemental tables and figures

Table 1.4: Approximation of Stop-loss Strategy 𝒮(𝛾, 0%, 1, 1) Returns

𝜌, 𝛾 -2.0% -1.0% 0.0% 1.0% 2.0%

-20% -3.7% -27.9% -46.2% -50.4% -49.4%
(-0.4%) (-0.4%) (0.0%) (-0.2%) (-0.3%)

-10% 0.7% -17.0% -32.2% -37.9% -38.7%
(-0.1%) (-0.2%) (0.0%) (-0.1%) (-0.3%)

0% 4.8% -6.5% -18.6% -25.7% -28.7%
(-0.3%) (-0.2%) (-0.1%) (0.0%) (-0.1%)

10% 9.0% 4.0% -5.0% -13.7% -18.8%
(0.0%) (0.0%) (0.1%) (0.2%) (0.3%)

20% 13.9% 15.0% 8.9% -1.2% -8.8%
(-0.2%) (-0.1%) (0.0%) (0.2%) (0.5%)

Approximation for the expected annual log return of a stop-loss strategy 𝒮(𝛾, 0%, 1, 1) when
using a start-gain level of 0% and a stop-loss level of 𝛾, and using the one-day return to decide
whether to stay in or out of the risky asset. We assume an annualized return of 10%, annualized
volatility of 20%, risk-free rate of 0%, and transaction costs of 0.2%. The serial correlation 𝜌
ranges from −20% to 20%. The investment horizon is 21 days, corresponding to one month.
For each case for (𝜌, 𝛾), we run 1,000,000 simulations to estimate the expected log return on the
strategy. In parentheses we give the deviation of the simulated value from the theoretical value
obtained using the approximation formula in Propositions 1 and 2. The standard error for the
simulation estimate in each case does not exceed 0.16%.
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Table 1.5: Approximation of Stop-loss Strategy 𝒮(𝛾,−1%, 1, 1) Returns

𝜌, 𝛾 -2.0% -1.0% 0.0% 1.0% 2.0%

-20% -2.8% -26.7% -46.9% -52.0% -50.6%
(0.0%) (0.0%) (0.3%) (0.6%) (0.7%)

-10% 1.3% -16.7% -34.4% -42.1% -43.5%
(0.0%) (0.0%) (0.2%) (0.2%) (0.1%)

0% 4.9% -7.2% -22.4% -32.5% -36.7%
(0.0%) (0.1%) (0.2%) (0.1%) (0.0%)

10% 8.6% 2.1% -10.4% -22.8% -29.9%
(0.0%) (0.0%) (0.0%) (0.1%) (0.3%)

20% 12.8% 11.8% 1.8% -12.4% -22.6%
(0.0%) (0.0%) (-0.1%) (0.4%) (0.8%)

Approximation for the expected annual log return of a stop-loss strategy 𝒮(𝛾,−1%, 1, 1) when
using a start-gain level of −1% and a stop-loss level of 𝛾, and using the one-day return to decide
whether to stay in or out of the risky asset. We assume an annualized return of 10%, annualized
volatility of 20%, risk-free rate of 0%, and transaction costs of 0.2%. The serial correlation 𝜌
ranges from −20% to 20%. The investment horizon is 21 days, corresponding to one month.
For each case for (𝜌, 𝛾), we run 1,000,000 simulations to estimate the expected log return on the
strategy. In parentheses we give the deviation of the simulated value from the theoretical value
obtained using the approximation formula in Propositions 1 and 2. The standard error for the
simulation estimate in each case does not exceed 0.16%.
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Table 1.6: Summary Statistics for Stocks over the 1964–2014 Period

Summary Statistic
1964 -
1968

1969 -
1973

1974 -
1978

1979 -
1983

1984 -
1988

1964 -
2014

Return 29.59% -7.63% 21.15% 28.24% 11.61% 15.21%
Standard Deviation 32.63% 40.83% 35.15% 35.82% 39.46% 41.31%
Skewness 0.57 0.43 0.52 0.58 0.32 0.38
Kurtosis 5.42 5.48 6.87 7.24 7.12 6.28
Max Drawdown -22.85% -38.93% -28.82% -26.61% -29.22% -29.78%
Serial Correlation 1.03% 3.61% 5.15% 7.62% -2.01% -2.10%
Sharpe Ratio 0.85 -0.08 0.71 0.89 0.49 0.52
Certainty Equivalent 10.5% -37.2% -1.3% 5.0% -18.1% -18.3%
Daily abs(mean)/vol 6.40% 5.08% 6.50% 6.59% 5.46% 5.62%
Number of Stocks 1732 1969 2984 3375 3537 3184

Summary Statistic
1989 -
1993

1994 -
1998

1999 -
2003

2004 -
2008

2009 -
2014

1964 -
2014

Return 16.73% 15.42% 15.19% 0.77% 20.03% 15.21%
Standard Deviation 44.27% 46.52% 53.87% 44.03% 40.64% 41.31%
Skewness 0.27 0.32 0.35 0.27 0.18 0.38
Kurtosis 5.31 5.72 6.45 7.03 6.20 6.28
Max Drawdown -28.14% -28.84% -34.83% -32.99% -27.08% -29.78%
Serial Correlation -9.03% -9.42% -6.10% -5.65% -5.48% -2.10%
Sharpe Ratio 0.53 0.50 0.44 0.20 0.63 0.52
Certainty Equivalent -22.1% -26.7% -42.6% -39.4% -12.1% -18.3%
Daily abs(mean)/vol 5.55% 5.29% 5.18% 4.80% 5.43% 5.62%
Number of Stocks 3364 4587 3989 3626 2760 3184

For each statistic, we first take the mean over all stocks in each year, and then take the arithmetic
mean over all years. The exceptions are skewness, kurtosis, and maximum drawdown, where
we use the median in each year to avoid the effect of outliers. For the certainty equivalent, we
assume a risk aversion coefficient of 3. Number of stocks is the number of stocks in the sample
per year.
Note that taking the arithmetic mean across all years results in a large average annual return
of 15.21%. Taking the geometric mean gives a more conservative number of 13.02%. However,
since we use arithmetic averaging across years for the certainty equivalent, we also do it for
returns to keep the comparison consistent.
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1.8.7 Historical strategy performance and regime-switching

We want to link the historical performance of stop-loss strategies to the simulated

results we obtained earlier for a MRS process. To do this, for every stock and every cor-

responding year of daily log returns, we estimate six MRS parameters:8 the two means

𝜇1, 𝜇2, the two variances 𝜎2
1, 𝜎

2
2, and the transition probabilities 𝑃 (1, 1), 𝑃 (2, 2) of remain-

ing in the same state. As before, we use the returns of the stop-loss strategy relative to

the buy-and-hold strategy and control for time and size effects:

𝑅𝑆
𝑖,𝑡 −𝑅𝐵𝐻

𝑖,𝑡 = 𝛼 + 𝛽1𝜇1,𝑖,𝑡 + 𝛽2𝜇2,𝑖,𝑡 + 𝛽3𝜎
2
1,𝑖,𝑡 + 𝛽4𝜎

2
2,𝑖,𝑡

+𝛽5𝑃 (1, 1)𝑖,𝑡 + 𝛽6𝑃 (2, 2)𝑖,𝑡 + controls + 𝜖.

We run the above regression for two strategies. Both are one-day strategies employing

a 0% start level; however, one uses a stop level of −2%, while the other uses −5%.

Note that since estimating MRS parameters on all stocks is computationally intensive,

we randomly select 7% of all stocks in each year of study; this gives 11,341 stock-year

observations across all years, which is still large. The results of the regression are listed

in Table 1.7. The coefficients for the means in both regimes are negative and significant.

This makes sense because a higher expected return leads to a worse performance on the

strategy relative to the buy-and-hold strategy. We see that the coefficient for the mean

in the bad regime is more negative and significant than in the good regime. This stems

from the fact that the stop-loss strategy tends to earn its premium over the buy-and-hold

strategy by staying out of the risky asset in bad times; therefore, its sensitivity to the

expected return during those times is particularly large.

The relative return does not have strong dependence on the volatility in the good

regime, probably because it is the bad regime that really matters for stop-loss strategies.

On the other hand, the volatility in the bad regime has a large and negative coefficient.

This is not consistent with our simulations results, where we predicted the stop-loss

strategies to do better when this volatility is high since they would be able to switch to

the bad regime “at the right time." On the other hand, we realize that very high volatility

may lead the strategy to get back into the risky asset (and subsequently to keep trading

in and out of it), so that transaction costs are high, while the benefits from staying in

8The estimation is performed in MATLAB using the MS_Regress package by Marcelo Perlin (2012).
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the safe asset are limited.

Finally, we discuss the coefficients for the transition probability matrix. The coefficient

for 𝑃 (1, 1), the probability of staying in the good state, is negative because a higher value

of this coefficient leads to a lower probability of switching to the bad regime, in which

the stop-loss strategy does well relative to the buy-and-hold strategy. On the other hand,

the coefficient for 𝑃 (2, 2) is positive because a higher probability of staying in the bad

state means that the bad regime is expected to persist for longer periods of time, leading

to a greater potential for stop-loss outperformance. Both coefficients are significant at

the 5% level only when the wider stop of −5% is used.

We conclude that the regression results are generally consistent with our simulations

results. However, they are not as strong, and the coefficient for volatility is not consistent,

possibly because the historical level of transaction costs has been high, while the MRS

process does not always provide a good model for historical returns.
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Table 1.7: Regressions of the Relative Return of Stop-loss Strategies on
MRS Parameters of Stock Returns

Explanatory Variable 𝛾 = −2% 𝛾 = −5% Average

Intercept 0.06% 0.06% N/A
(1.59) (2.08)

Mean 1 -0.004 -0.001 126.17%
(-3.61) (-1.51)

Mean 2 -0.081 -0.039 -22.89%
(-8.16) (-5.65)

Variance 1 0.009 -0.008 41.38%
(0.74) (-0.96)

Variance 2 -0.452 -0.272 15.54%
(-9.43) (-8.21)

P(1, 1) -0.018 -0.035 75.48%
(-0.86) (-2.47)

P(2, 2) 0.038 0.037 81.13%
(1.75) (2.52)

Adj R-sq 23% 17% N/A

In table 1.7 we regress the relative return of stop-loss strategies on MRS parameters fit to stock
log returns. We control for time effect and firm size. In the first regression, we use the one-day
strategy 𝒮(−2%, 0%, 1, 1) with stop level 𝛾 = −2%. In the second regression, we use the strategy
𝒮(−5%, 0%, 1, 1) with stop level 𝛾 = −5%.
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1.8.8 Volatility-adjusting stop-loss strategies

So far we have considered stop-loss strategies where the stop level stays fixed through-

out the whole investment horizon. With a fixed stop level, trading low volatility stocks

results in the stop getting hit less frequently and, in turn, lower trading costs than for

stocks with higher volatility. Therefore it may be worthwhile to consider a strategy with

a stop-loss level that depends on the forecast volatility of the risky asset.

We use the exponentially weighted moving average (EWMA) model to produce volatil-

ity forecasts:

𝜎̂2
𝑡 =

1 − 𝜆

1 − 𝜆𝐻

𝐻∑︁
𝑖=1

𝜆𝑖−1𝑟2𝑡−𝑖, (41)

where 𝜆 is a parameter (the standard is 0.94, which is used in this paper), 𝐻 is a time

horizon (we use 𝐻 = 20, corresponding to one month), and 𝑟𝑡 are log returns.

Our volatility-adjusting strategy works as follows. At the end of each trading day we

classify the stock as a high volatility or low volatility one. If the stock has high volatility,

we use one pre-specified stop-loss level, and if the stock has low volatility we use another

level. More specifically, we decide on a volatility threshold 𝜃. At the end of day 𝑡, we

calculate the forecast 𝜎̂2
𝑡 for stock volatility using equation (41). If the forecast is greater

than the threshold 𝜃, the stock is classified as a high volatility one and we set a stop level

𝛾2. Otherwise we set a stop level 𝛾1.

In Figure 1-9 we explore how changing the threshold 𝜃 and stop levels 𝛾1, 𝛾2 affects

strategy performance. For convenience, we only consider two-week strategies (i.e. 𝐼 =

𝐽 = 10) with a start-gain level of 0%. The results are quite interesting. For returns it

is best to use a wide stop both for high volatility and low volatility stocks. Among the

two types of stocks, it appears that using a tighter stop hurts performance more for high

volatility stocks than low volatility stocks. This is not surprising, because using a tight

stop for a high volatility stock incurs very high transaction costs, causing poor returns.

Overall, all strategies still produce a lower return (at most 14.3%) in comparison to the

buy-and-hold strategy return of 15.2% per year.

When we look at the certainty equivalent (CE), the situation is different. Using a

very wide stop is now not desirable, since often the volatility of the strategy remains

high. This is particularly relevant for high volatility stocks – and we do indeed see that

in Figure 1-9, where the highest CE levels are achieved when using a stop level of −10%

55



or −15% for such stocks. On the contrary, using a wide stop for low volatility stocks is

still fine, because strategy volatility remains quite low, while performance is good. The

best-performing strategies among the ones considered use a stop level of −15% to −25%

for low volatility stocks, and either a stop level of −10% for high volatility stocks and a

volatility threshold of 3% to 4%, or a stop level of −15% for high volatility stocks and

a threshold of 2% to 4%. All these strategies have a CE between −14.4% and −14.3%,

which is better than the buy-and-hold CE of −18.3%. It is also a small improvement

over the CE of −14.9% for the best strategy among the “standard" stop-loss policies

considered earlier (see Section 1.5.2).

The skewness of strategy returns is generally on par with the buy-and-hold strategy

as long as we do not use tight stops for low volatility stocks. For the case when we do

use tight stops, skewness improves quite significantly. However, this improvement is not

due to a greater upside potential in the strategy, but rather by a large negative shift in

its average return caused by high trading costs. We conclude that volatility-adjusting

stops do not have a large effect on skewness. For maximum drawdown, we see a marginal

improvement over the buy-and-hold strategy in almost all cases. When a stop of −5% is

used for low volatility stocks, drawdown improves further, but still by a small amount.

We conclude that using stop-loss levels that depend on volatility forecasts can improve

performance. For generating better returns, it is more important to use a wider stop for

high volatility stocks than for low volatility ones. Overall, it is the stop-loss strategies

with the widest stop levels that perform best, although still worse than the buy-and-hold

strategy. If an investor cares about risk-adjusted returns, then a moderate stop level for

high volatility stocks and a wide one for low volatility ones tends to generate the highest

certainty equivalent, superior to the buy-and-hold strategy. Finally, stop-loss strategies

tend to consistently improve maximum drawdown, although not by a lot.
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Chapter 2

Measuring Risk Preferences and

Asset-Allocation Decisions: A Global

Survey Analysis

(joint work with Andrew W. Lo)

Abstract

We use a global survey of individual investors, financial advisors, and institutional in-
vestors to elicit their asset allocation behavior and risk preferences. We find drastically
different behavior among these three groups of market participants. Most institutional
investors exhibit highly contrarian reactions to past returns in their equity allocations.
Financial advisors are also mostly contrarian; a few of them demonstrate passive behav-
ior. Individual investors are, on average, extrapolative. To investigate further, we use a
clustering algorithm to partition individuals into four distinct types: passive investors,
risk avoiders, extrapolators, and everyone else. Across demographic categories, older in-
vestors tend to be more passive and more risk-averse, while more wealthy individuals are
less risk-averse.

Keywords: Asset Allocation; Risk Aversion; Behavioral Finance; Retail Investors; In-

stitutional Investors; Financial Advisors

JEL Classification: G02, G11, G23
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2.1 Introduction

There are three major groups of participants in the investment management industry:

individual investors, financial advisors, and institutions. Each of these groups has its

own risk preferences and behavioral characteristics it uses in its investment decisions. We

study the behavior of these groups by using the results of a comprehensive global survey

covering 7,000 individuals, over 2,300 advisors, and over 600 institutional investors.

The breadth of our dataset sets it apart from earlier survey data in the literature. To

the best of our knowledge, these surveys are the first to present the same set of questions

to three distinct groups of market participants. This dataset covers 19 countries in the

Individual Investor Survey and 16 countries in the Financial Advisor Survey. This global

breadth provides us with insight into investment behavior by country, as well as allowing

us to compare survey results across countries. Finally, all our survey subjects have a

significant stake in the market: all the surveyed individual investors have a net worth

above $200,000, while the financial advisors and the institutional investors are employed in

the financial industry. As a result, their answers will generally be more realistic and have

greater relevance for modeling investor behavior than the results of surveying students in

a laboratory setting, as many other studies have done.

Our main goal is to understand how different market participants and different types

of individuals compare along the dimensions of risk aversion and asset allocation. To

this end, we poll members of these groups about their investment decisions under various

historical and hypothetical scenarios. We obtain two sets of results. The first set of results

shows that investors tend to be significantly more risk-averse and mostly extrapolative

in their asset allocation, while institutions tend to be significantly less risk-averse and

mostly contrarian in their investment decisions, with advisors falling in the middle of the

risk aversion scale while also following a contrarian asset allocation strategy. The second

set of results focuses on just individual investors—using a clustering algorithm applied

to survey responses, we are able to identify four distinct types of investors: passive

investors, extrapolators, risk avoiders, and everyone else. Extrapolators tend to decrease

allocation in equities following bad market performance, and tend to increase allocation

following good returns, extrapolating past trends. Passive investors leave their allocation

unchanged in either scenario. Risk avoiders significantly cut their allocation to equities

when they see large moves in the S&P 500 in either direction. The remaining investors
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is relegated to the last category, everyone else.

While the largest cluster of individuals in our dataset corresponds to passive investors,

it also contains a significant number of risk avoiders and extrapolators. Evidence for each

of these types is found in the literature, although most papers focus only on one type

at a time. Agnew, Balduzzi, and Sunden (2003) and Dahlquist, Martinez, and Söder-

lind (2014) document that a large proportion of investors make no changes to allocations

within their retirement portfolios over spans of several years. They note that this phe-

nomenon may be linked to inertia, a widely recognized behavioral bias. Some major

papers documenting extrapolation include De Bondt (1993), Greenwood and Shleifer

(2014) using survey data, as well as Benartzi (2001) and Choi et al. (2009) which look at

historical 401(k) account allocations. Finally, Ben-David and Hirshleifer (2012) investi-

gate individual trading records and derive a V-shaped probability distribution of selling

a stock as a function of profit. This in part may be driven by the cluster of risk avoiders

identified from our survey.

In comparison, we find that most financial advisors and institutional investors are

contrarian in allocation strategy—that is, they would change equity allocation in the

direction opposite to recent returns on the S&P 500. This contrasts with the overall

behavior of individual investors, who on average are extrapolators.1 The differences in

the reactions across these three groups of market participants are significant and very

large. We note that a few earlier studies have viewed individuals as momentum traders,

and institutions as contrarians.2 However, these studies consider shorter-term horizons

than ours, and focus on trading behavior. Our survey asks about asset allocation, a

strategic and longer-term investment decision, rather than short-term trading, which

potentially could be affected by excessive speculation on the part of individual traders,

or by liquidity considerations of institutions. A recent paper by Haan and Kakes (2011)

does focus on asset allocation of Dutch institutional investors, and concludes that they

tend to be contrarians.

Our results have another important implication, one that arises from the differences

in response between financial advisors and individual investors. We find that advisors

1While a large number of individual investors are passive or risk avoiders, both of these groups have
symmetric reactions to large moves in the S&P 500: they either do nothing, or they significantly decrease
equity allocation.

2See, for example, Griffin, Harris, and Topaloglu (2003), Jackson (2003), and Kaniel, Saar, and
Titman (2008).
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generally advise their clients to change their allocation in the opposite direction of the

typical preference of the individual investor. It may be that advisors recognize the exces-

sive tendency of investors toward extrapolation, and try to mitigate this effect by giving

“contrarian advice". Also, the proportion of advisors who suggest a significant decrease in

equity allocation when seeing large S&P 500 moves is much smaller than the proportion

of individual investors who would implement such a change. As a result, advisors may

also provide the significant benefit of ensuring their investors stay invested in the markets

despite periods of high volatility, and hence earn higher returns in the long run.3 Over-

all, our findings suggest that financial advisors are of direct benefit to most individual

investors.

We also investigate how individual investor demographics can be used to predict their

anticipated investment decisions, particularly in response to large shocks. While very

limited data on demographics and past trading behavior is available from the survey, we

are able to obtain a significant improvement in prediction accuracy over the baseline by

using standard analytics approaches, particularly the random forest model.

Finally, we compare risk aversion across the three groups, as well as within investor

demographic categories. Individual investors are significantly more risk-averse than fi-

nancial advisors, who are in turn more risk-averse than institutional investors. Individual

risk aversion increases with age, and decreases with wealth. This is consistent with pre-

vious literature linking risk aversion to age, wealth, and education; see Masters (1989),

Pålsson (1996), and Hartog, Ferrer-i-Carbonell, and Junker (2002).

In Section 2.2 we outline the survey methodology and the estimation of risk aversion.

We compare survey responses across individuals, advisors, and institutions in Section 2.3.

We focus on individual investors in more detail in Section 2.4 and we conclude in Section

2.6.

2.2 Methodology

We use data from three separate but closely related surveys: the Natixis Global Survey

of Individual Investors, the Natixis Global Survey of Financial Advisors, and the Natixis

Global Survey of Institutional Investors. Each survey involved two sets of questions. The

3Winchester, Huston, and Finke (2011) find that investors using a financial advisor are 1.5 times more
likely to stick to long-term investment decisions.
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first set originated with Natixis Asset Management for their own research purposes. The

second set was created by us, in coordination with Natixis, for studying the behavioral

aspects of investor decision-making.

Survey Questions

We asked four questions in each survey. The first involved preferences among poten-

tial gambles, and was used to elicit the risk aversion coefficient among respondents. The

second and third asked how respondents would change their investment allocation as a

result of large negative or positive moves in the S&P 500. Possible responses were “sig-

nificantly decrease equity allocation", “slightly decrease equity allocation", “do nothing",

“slightly increase equity allocation", and “significantly increase equity allocation". In the

case of financial advisors, we asked them how they would advise their clients to act in

such situations. The final question asked if and when investors decreased their allocation

during the 2007–2009 Financial Crisis. The exact formulation of the questions is included

in the Appendix.

Natixis Asset Management commissioned CoreData Research to conduct each survey

via an online questionnaire. The Individual Investor Survey was carried out in March

2015 and involved 7,000 individuals from 17 countries. Each investor needed to have a

minimum net worth of $200,000 (or Purchasing Power Parity equivalent) to participate.

The Financial Advisor Survey was conducted in June–July 2015 and involved 2,400 ad-

visors from 16 countries. Since some advisors opted to not complete the behavioral part

of the survey, we had a total of 2,342 advisor observations. The Institutional Investor

Survey was carried out in October 2015 and involved 660 respondents from 29 countries.

All respondents had to be decision makers working in the institutional investment indus-

try, such as Chief Investment Officers, pension fund managers, and investment portfolio

managers.

Table 2.1 provides summary statistics across the three groups on age, gender, and net

worth/assets. In the Appendix we also include a breakdown of respondents by country

in the individual and advisor surveys, as well as the list of institution types covered in

the institutional survey.

It is important to keep in mind that the surveys give us information about what

investors think they would do under various market scenarios. Thus the results pertain to
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Survey Group # Subjects Summary

Individual
Investors

7000

Age Gender Net Worth
Generation X: 32% Male: 59% Mass Market: 21%
Generation Y: 37% Female: 41% Mass Affluent: 24%
Baby Boomers: 28% Emerging HNW: 25%
Pre-Baby Boomers: 3% High Net Worth: 30%

Financial
Advisors

2342

Advisor Characteristics
Average age: 46 years
Male: 79%; Female: 21%
Average personal book of business: $28.3 million

Institutional
Investors

660

Organization Assets
Less than $2 billion: 18%
$2 billion – $5 billion: 25%
More than $5 billion: 57%

Table 2.1: Summary statistics for the three survey groups on age, gender, and net worth/assets.
Different groups were presented with different demographic questions, and the summary statis-
tics are not directly comparable across groups. Gender and age were not asked for institutional
investors.
The definitions of generations of investors and their net worth classifications are in the Appendix.
HNW stands for High Net Worth. Organization Assets means the size of assets for which the
respondent’s organization is responsible.

investors’ conditional expected changes to their portfolios; to obtain actual changes, we

would need to use historical data on portfolio allocations or on investor trades. However,

we obtain highly significant differences across various investor groups, so that even in the

presence of potential noise in self-reporting how investors anticipate their future decisions,

we may still draw reliable conclusions from these comparisons.

Estimating Risk Aversion

We estimate the risk aversion of survey respondents using the popular technique

introduced by Holt and Laury (2002), and later modified by Dave et. al (2010). The idea

by Holt and Laury is to present subjects with pairs of gambles and ask which gamble they

would choose within each pair. Dave et al. extend this idea by presenting a list of six

different gambles and asking subjects to pick one. Table 2.2 lists the six gambles used in

the Natixis surveys, with gamble 1 being the safest and gamble 6 being the riskiest. Note

that these are the same gambles as in the Dave et al. study, except they are of greater

magnitude, given that our subjects are professional investors or industry professionals,

who tend to care about relatively large bets when investing.

The choice of one gamble among six gambles is converted to a choice of one gamble in
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each of five different pairs of gambles: gamble 1 vs. gamble 2, gamble 2 vs. gamble 3, . . .,

gamble 5 vs. gamble 6. The conversion is done as follows. If a person chose a particular

gamble 𝑘 among the six gambles, then he would choose gamble 𝑖 + 1 over gamble 𝑖 as

long as 𝑖+ 1 ≤ 𝑘, and would choose gamble 𝑖 over gamble 𝑖+ 1 as long as 𝑖 ≥ 𝑘. This is

valid because gambles 1, 2, . . . , 6 are increasing in risk, in that order.

Gamble
Outcome 1 Outcome 2

Probability Payoff Probability Payoff

Gamble 1 50% $28,000 50% $28,000
Gamble 2 50% $36,000 50% $24,000
Gamble 3 50% $44,000 50% $20,000
Gamble 4 50% $52,000 50% $16,000
Gamble 5 50% $60,000 50% $12,000
Gamble 6 50% $70,000 50% $2,000

Table 2.2: List of six gambles presented to survey participants. The subjects were asked to
choose which one of the gambles they would prefer. Each gamble involves two outcomes, each of
which has a 50% probability of occurring. The first gamble can be viewed as a “sure" outcome.

We assume that respondents have constant relative risk aversion (CRRA) utility. The

risk aversion coefficient 𝑟 will be used as a proxy for risk aversion among different groups

throughout the paper. When considering a particular gamble 𝑖, a subject first evaluates

their expected utility:

𝐸(𝑈𝑖) = 𝑝𝑖,1𝑈(𝑥𝑖,1) + 𝑝𝑖,2𝑈(𝑥𝑖,2); 𝑈(𝑥) =
𝑥1−𝑟 − 1

1 − 𝑟
(1)

where 𝑥𝑖,1, 𝑥𝑖,2 are the two possible payoffs for the gamble, and 𝑝𝑖,1, 𝑝𝑖,2 are their associated

probabilities of occurring. Then, for each pair of gambles 𝑖, 𝑗, after calculating expected

utility, the subject picks gamble 𝑖 with probability:

P( choose gamble 𝑖) =
[𝐸(𝑈𝑖)]

1/𝜇

[𝐸(𝑈𝑖)]1/𝜇 + [𝐸(𝑈𝑗)]1/𝜇
(2)

where 𝜇 is a noise parameter, since a subject may actually pick gamble 𝑗 even if gamble 𝑖

has higher expected utility. Values close to 0 signify little deviation from expected utility

theory.

Using equations (1), (2), and survey responses, we calculate the likelihood function

for parameters 𝜇, 𝑟. We then estimate parameters using the maximum likelihood method,

and use the Hessian to estimate standard errors. The risk aversion estimates are compared
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across the three groups of subjects as well as across individual investor demographic

categories.

2.3 Investors, Advisors, and Institutions

In this section, we present our comparison of allocation decisions and risk aversion

across investors, advisors, and institutions. The results are striking. Investors appear to

be mostly extrapolative in their changes in equity allocation, while advisors and insti-

tutions are predominantly contrarian. The proportion of “passive" respondents is much

higher for individuals and financial advisors than for institutional investors. Finally,

investors are more risk-averse than advisors, who are in turn more risk-averse than insti-

tutions.

Asset Allocation Decisions

All individual and institutional investors were asked two questions pertaining to in-

vestment decisions. The first asked how they would change their allocation to equities if

the S&P 500 declined by 10–20% during the next six months, and other assets performed

as expected. The second asked the same question in a scenario where the S&P increased

by 10–20%. Financial advisors were asked two similar questions about how they would

advise their clients to change equity allocation. There were five possible responses: “large

decrease", “slight decrease", “do nothing", “slight increase", and “large increase".

Figures 2-1 and 2-2 plot the distributions of responses for the two questions. In

the scenario of an S&P 500 fall, 48% of individuals would decrease equity allocation,4

in comparison to just 17% for advisors and 20% for institutions. At the same time,

71% of institutions and 53% of advisors would increase equity allocation, a much higher

proportion than the corresponding 18% for individuals. For a rise in the S&P 500, the

results are basically reversed. For individuals, 32% would decrease allocation and 36%

would increase it, whereas the corresponding numbers are 49% and 13% for advisors, and

66% and 13% for institutions. Thus, on average, individual investors would change their

allocation in the same direction as a recent S&P 500 move, while financial advisors and

4The proportion of respondents decreasing equity allocation is calculated by counting all respondents
who answered with “large decrease" or “slight decrease" to the survey question.
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institutional investors would change allocation in the opposite direction.

We obtain more insight into these differences by looking at the response distributions

in more detail. One aspect that stands out is the “extreme contrarian" responses of

institutional investors. 36% would significantly increase allocation following a fall in the

S&P 500, whereas 27% would significantly decrease allocation following a rise in the

S&P 500. This is much higher than the corresponding 4% and 17% for individuals,

or the 13% and 10% for advisors. While advisors also give contrarian responses, their

predominant response it to change allocation only slightly : 40% of advisors would favor

a slight increase after a fall in the S&P 500, and 39% of advisors would favor a slight

decrease after a rise in the S&P 500—much higher than the comparable rates among

individual investors. Finally, we notice that while investors on average extrapolate, there

is a significant fraction in both scenarios that prefers to significantly decrease equity

allocation: 21% for an S&P 500 fall and 17% for an S&P 500 rise. We will later show,

using clustering techniques on the individual investor dataset, that these numbers are

mainly driven by the “risk avoider" class of investors.

As a robustness check, we also compare the responses across individuals and advisors

for each country included in both the Individual Investor and the Financial Advisor

Surveys.5 The results are shown in Figures 2-3 and 2-4. We again see that there is a

much larger proportion of individual investors who would decrease equity allocation after

seeing an S&P 500 fall than there is of advisors; at the same time, many more advisors

would increase allocation in this scenario compared to individuals. The differences are

significant for each country at the 1% level. In the scenario of an S&P 500 rise, the results

are reversed; this time, advisors are the ones who are more likely to decrease equity

allocation. It is important to note that the differences between advisors and individual

investors who decrease equity allocation are now smaller (although still significant at the

1% level for all but three countries). This again is caused by “risk avoider” investors who

significantly decrease equity allocation following a rise in the S&P 500.

The fifth category of response in these two scenarios is the “do nothing" response. Its

levels for individual investors and financial advisors are quite similar in both scenarios,

and relatively large: 34% and 30% in case of an S&P 500 fall, and 32% and 38% in

case of an S&P 500 rise. In contrast, only 9% of institutional investors would do nothing

5We do not include institutional investors in the comparison because the sample sizes at the country
level are small in the Institutional Investor Survey.
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Figure 2-1: Reactions to a decrease in the S&P 500 across three groups. For each group and each
possible answer, we show error bars corresponding to one standard error calculated assuming
each respondent chooses either that particular answer, or any other answer.
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Figure 2-2: Reactions to an increase in the S&P 500 across three groups.
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Figure 2-3: Reactions to a decrease in the S&P 500 across individual investors and financial
advisors, split up by country. Error bars correspond to one standard error.
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Figure 2-4: Reactions to an increase in the S&P 500 across individual investors and financial
advisors, split up by country.
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following a decrease in the S&P 500; this number is 22% following an increase in the S&P.

The more passive responses for individuals and advisors may be explained by the fact

that many have long-term investment objectives that do not require significant changes to

their asset mix. As a result, they would generally not be affected by large fluctuations in

asset prices. In contrast, institutional investors often have shorter investment horizons,

and their performance may be evaluated at shorter frequencies. Because of this, they

may need to react to changes in the relative prices of different asset classes more often.

The observed differences in active response between groups have several potential

explanations. The apparent tendency of a large number of individual investors toward

extrapolative allocation may be an inherent aspect of their behavior. Our survey is insuf-

ficient to understand why this behavior comes about. However, we note that pervasive

evidence for similar behavior has been documented in other studies; see Greenwood and

Shleifer (2014) for a comprehensive survey. Financial advisors may recognize that some

of their individual investor clients excessively extrapolate, and instead advise them to

apply a contrarian allocation strategy, as observed in the survey. Also, should the S&P

500 decline significantly, an advisor may view that circumstance as a good entry point

for a client with a long investment horizon.

The contrarian behavior of financial advisors may also be explained by long-term

investment objectives, which are typically planned to maintain a target asset mix over

several years. For example, if equities move significantly relative to bonds over the short

term, then client allocation will experience a large deviation from its target mix, and

advisors may propose a contrarian reallocation to return it to the target.

The target-mix story may also explain the extreme contrarian response of institutions,

especially if their performance is evaluated relative to a benchmark. However, because a

large proportion of institutional respondents would significantly decrease or significantly

increase allocation, there are probably more factors at play. It is possible that some

institutional investors are employing value strategies or are engaged in distressed invest-

ing, which results in contrarian trading when asset class prices deviate from their earlier

relationship. Another possibility may be that some investors (e.g. pension plans) have

a target return in mind. If recent performance is very good, they may cut portfolio risk

by moving out of equities in order to have a safer portfolio for the rest of the year, while

likely still hitting their target.
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Overall, because individual investors tend to have extrapolative reactions, while in-

stitutional investors usually have contrarian ones, we conclude that institutions generally

take the other side of individual investor trades in broad asset allocations. Note that

Greenwood and Shleifer (2014) propose firms may be also involved in accommodating

individual investor demand through equity issuance.

Risk Aversion

We next compare risk aversion across the three survey groups. Figure 2-5 shows the

distribution of preferences for the six gambles across respondents. Recall that gamble

1 is safest, and gamble 6 is riskiest. We see that 40% of individuals choose gamble 1,

much higher than 27% for advisors, which in turn is higher than 17% for institutions; the

differences are significant at the 1% level. At the other end of the spectrum, a significantly

higher proportion of institutions choose gambles 5 and 6 in comparison to individuals and

advisors. These observations strongly suggest that individual investors are the most risk-

averse of the three groups, while institutional investors are the least risk-averse. Note

that we are able to make this conclusion from the distribution of responses alone, without

making assumptions about the utility functions of respondents.

To investigate further, we add the assumption that all subjects have CRRA prefer-

ences, and carry out the estimation procedure for the risk aversion coefficient as discussed

in the methodology. The results are shown in Figure 2-6. Individual investors have the

highest risk aversion coefficient at 1.14, followed by financial advisors at 0.85 and insti-

tutional investors at 0.39. The pairwise differences in coefficient estimates are very large,

and are again significant at the 1% level. Our results are consistent with the general

intuition that individuals are generally the most risk-averse group of market participants,

while institutional investors are the least risk-averse one. Likewise, it is plausible for

financial advisors to fall in the middle of the spectrum, given the fact that, while they

do work in the investment management industry, they generally do not directly man-

age money for their clients and so do not take outright bets in the markets, whereas

institutions do.

We have presented evidence that individual investors are, on average, extrapolators,

while financial advisors and institutional investors are contrarians. Contrarian behavior

is particularly strong for institutions. Furthermore, institutions would usually reallocate
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portfolios more actively in response to large S&P 500 moves, while a significant proportion

of individuals and advisors would do nothing in those situations. Individuals are by far

more risk-averse than financial advisors, and advisors are much more risk-averse than

institutional investors.

2.4 Individual Investor Decisions

We have seen that a large proportion of individual investors tend to extrapolate mar-

ket performance when making their equity allocation decisions. However, we have also

observed that a few of them tend to consistently decrease equity allocation. This sug-

gests that we cannot label all investors as extrapolators, and it makes sense to study the

individual dataset in more detail. We start by looking at the dependence of investor risk

aversion and preference for active investing on the demographic factors of age, gender,

and net worth. The strongest results are observed for age, older investors tending to be

more risk-averse and also more passive. We then run a clustering algorithm to partition

investors into four groups: passive investors, risk avoiders, extrapolators, and everyone

else. We also compare the demographic breakdowns of the different investor types.

Asset Allocation

We used three questions from the survey to elicit the degree of investor passivity.

The first two questions asked about their allocation under different S&P 500 moves, as

discussed in the last section. The third question asked when during the Financial Crisis

of 2007-2009 investors decreased their equity allocation. Possible answers ranged from

“the second half of 2007" to “the second half of 2009". We also included a “do nothing"

response for investors who did not significantly decrease allocation. Figure 2-7 compares

the proportions of investors choosing the passive response for each of the three questions

across the different demographic categories. Note that we do not have exact numbers

for age or net worth, but rather a classification into one of four possible groups, listed in

Table A.5 in the Appendix.

Within each demographic category, the percent of respondents who choose to do noth-

ing is similar in all three scenarios, the percentage responding passively to the Financial

Crisis only slightly higher than the same response to the hypothetical moves in the S&P
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each respondent chooses either that particular gamble, or any other gamble.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Individual Advisor Institution

R
Is

k 
A

ve
rs

io
n

 C
o

ef
fi

ci
e

n
t

Risk Aversion Coefficient across Three Groups
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to one standard error.
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Figure 2-8: Estimated Risk Aversion coefficients across individual investor demographic cate-
gories. Error bars correspond to one standard error.
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500. However, there are large and statistically significant (at 1%) pairwise differences

across age categories, where older investors are much more likely to be passive. Compar-

ing the different ends of the spectrum, 79% of pre-Baby Boomers did not significantly

decrease equity allocation around the time of the crisis, while this number is just 29% for

Generation Y investors. The greater observed percentage of older investors being more

passive may be a result of their inherent behavior; this is consistent with other empiri-

cal evidence, for example, by Dorn and Huberman (2005) and Grinblatt and Keloharju

(2009). Another potential explanation is that younger investors generally tend to have a

higher allocation of equities in their portfolios, and therefore would react more to a large

change in equity prices. The differences across gender and net worth categories are not

large, and almost in all cases not significant at the 5% level.

Risk Aversion

Figure 2-8 compares the estimated risk aversion coefficient across demographic cat-

egories. Risk aversion increases with age and decreases with net worth; the pairwise

differences across generations and across net worth categories are significant at the 1%

level (except for pre-Baby Boomers; standard errors for this cohort are large, in part, due

to the small sample of 207 respondents). These results have been documented earlier in

multiple studies, including Pålsson (1996) for age and Cohn et. al (1975) for net worth.

Women appear to be slightly more risk-averse than men, although the difference is not

significant at the 5% level. We also include a comparison of individual risk aversion across

countries in Figure 2.7.1 in the Appendix. Standard errors are large for a few countries

due to the small sample size, and large differences between countries are generally not

seen. The only outlier is Hong Kong, where investors are significantly less risk-averse

than in almost every other country considered (the differences are significant at the 5%

level).

Cluster Analysis

We now perform clustering on the individual dataset of 7,000 investors. We use the

responses to the three asset allocation questions described earlier. The verbal responses

are transformed into numbers as shown in table 2.3; the numbers range from 1 to 6 for

the reaction to the Financial Crisis, and from −2 to 2 for the two questions on reactions
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to S&P 500 moves. We then run a 𝑘-means clustering algorithm assuming four clusters.

We choose four clusters since this partition seems to give the best results (i.e., the most

distinct and “cleanest” clusters) compared to our trials using 2, 3, 5, and 6 clusters. For

robustness we ran the algorithm for different values of the random seed, and performed

hierarchical clustering on the dataset; the results were generally the same in all cases.

Question Response Coding

Reaction to
Financial Crisis

Timing of Decrease in Equity Allocation:
1 - Second Half of 2007
2 - First Half of 2008
3 - Second Half of 2008
4 - First Half of 2009
5 - Second Half of 2009
6 - No Significant Decrease

Reaction to
S&P 500 Fall

Change in Equity Allocation:
−2 - Significant Decrease
−1 - Slight Decrease
0 - Do Nothing
1 - Slight Increase
2 - Significant Increase

Reaction to
S&P 500 Rise

Change in Equity Allocation:
Same as for Reaction to S&P 500 Fall

Table 2.3: Coding of investor responses for the clustering algorithm. The exact formulation of
the questions and possible responses is in the Appendix.

Table 2.4 shows the results of the clustering procedure. Cluster 1 consists predomi-

nantly of passive investors, since the average responses are “close" to the response corre-

sponding to not changing equity allocation in each of the three scenarios: 5.9 for allocation

around the crisis, −0.3 for an S&P 500 fall and 0.0 for an S&P 500 rise. Cluster 2 con-

tains mostly risk avoiders who significantly cut allocation following large moves in the

S&P 500: average responses are −1.4 for an S&P 500 fall and −1.6 for an S&P 500 rise.

Cluster 3 is composed of extrapolators who tend to change equity allocation in the same

direction as a recent S&P 500 move: average responses are −1.5 for an S&P 500 fall and

1.0 for an S&P 500 rise. Finally, cluster 4 contains everyone else.

To further validate our clustering approach, we look at the distributions of responses

within each cluster, shown in Figure 2.7.2 in the Appendix. It is evident that the dis-

tributions for both the risk avoider and the extrapolator clusters are tightly clustered

around the corresponding means for the reactions to S&P 500 moves. The same is true

for the passive cluster for all three questions (and especially, for the allocation around
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the Financial Crisis). The response distribution of the “everyone else" cluster is quite

spread out for all three responses, except for the response to an S&P 500 fall, explaining

why we do not label the investors in this cluster as following any well-defined type of

behavior. We conclude that the clustering into four groups is indeed successful, and the

descriptions of the clusters are appropriate.

Clustering Analysis of Individual Investors

Cluster 1 Cluster 2 Cluster 3 Cluster 4

% Respondents 51% 16% 14% 19%

Allocation Decisions

Reaction to Crisis 5.9 2.7 2.5 2.6
Reaction to S&P 500 Fall −0.3 −1.4 −1.5 0.7
Reaction to S&P 500 Rise 0 −1.6 1 0.2

Demographics

Gender 0.41 0.42 0.41 0.41
Age 1.13*** 0.69*** 0.86 0.8
Net Worth 1.64 1.62 1.63 1.72*
Advised 0.56 0.57 0.67* 0.63
Satisfied with 2014 Ret. 0.59 0.44*** 0.55 0.61
Retired 0.09*** 0.02 0.02 0.03
Gamble Preference 1.19*** 1.64 1.47 1.62
Risk Aversion Coefficient 1.24*** 0.98 1.08 1.01

Table 2.4: Clustering of allocation decision responses from the Individual Investor Survey. For
each cluster, we present the percent of respondents and the mean response based on the response
coding in Table 2.3.
We also list the mean values of demographic categories across clusters. For Gender, Male = 0,
Female = 1. For Age, Generation Y = 0, Generation X = 1, Baby Boomers = 2, Pre-Baby
Boomers = 3. For Net Worth, Mass Market = 0, Mass Affluent = 1, Emerging HNW = 2, High
Net Worth = 3. The definitions of demographic categories are in Table A.5 in the Appendix.
Advised is an indicator for if an investor uses a financial advisor. Satisfied with 2014 Ret. is
an indicator for if an investor was satisfied with their 2014 investment returns. Retired is an
indicator for if an investor is retired. Gamble Preference corresponds to the one of six gambles
from Table 2.2 chosen by the investor; if an investor chooses gamble 𝑖, his response is recorded
as 𝑖− 1 for calculating the mean, so that responses range from 0 to 5. Risk Aversion Coefficient

is the estimated risk aversion coefficient based on the responses in each cluster.
For each category, we color green the cell corresponding to the cluster with the highest mean
value. We test for how significant the difference is between the highest mean and second-highest
mean across the clusters; the result of the test is reported in terms of number of stars in the
cell. * means significance at the 5% level, *** means significance at the 0.1% level; no stars
means no significance at the 5% level. We color red the cell corresponding to the cluster with
the lowest mean value, and perform the same test comparing the lowest mean and second-lowest
mean across the clusters.

It is important to note the relative sizes of the clusters from Table 2.4. Passive

investors are the largest cluster and make up 51% of the whole sample. Risk avoiders

consist of 16% of all investors, and extrapolators are at 14%. The rest—everyone else—is

76



19% of investors. Because passive investors and risk avoiders have symmetric responses

to the two different questions about S&P 500 moves (as does the “everyone else" category

to an extent), the group of individual investors, taken as a whole, appears to exhibit the

extrapolative behavior that we discussed when comparing this group to financial advisors

and institutions.

In Table 2.4 we look at demographic patterns across different clusters. We assume

that the clusters are independent collections of investors and compare their demographic

averages; tests for statistical significance are given in Table A.6 in the Appendix. There

are no significant differences in gender. Passive investors are the oldest and risk avoiders

are the youngest among the four clusters (statistically significant at the 0.1% level).

Unsurprisingly, passive investors are also the ones that are most likely to be retired

(significant at the 0.1% level). This is consistent with the results from Figure 2-7, which

compared the degree of activity between generations. Here we have a more detailed

breakdown, showing that the more active group, made up of younger investors, tends to

exhibit risk avoidance behavior following large S&P 500 changes.

There are no significant differences in net worth across the clusters—except that the

“everyone else" group has the highest average net worth (significant at the 5% level).

An interesting distinction arises when we look at the proportion of investors in different

clusters who use a financial advisor. Passive investors and risk avoiders are much less

likely than extrapolators and “everyone else" to use an advisor (significant at the 1%

level). This makes intuitive sense, given that a financial advisor would likely try to

discourage a risk avoider from significantly decreasing equity allocation in response to all

large changes, as well as likely encouraging some fraction of passive investors into more

active allocation. Interestingly enough, the extrapolator cluster is the one most likely

to use a financial advisor—even though, as mentioned earlier, advisors usually provide

contrarian advice to these individuals. We do not have sufficient evidence to explain

this finding. However, it may be that advisors often deal with clients who extrapolate,

and consequently advise an “opposite" allocation strategy to mitigate the bias of these

investors.

Another dimension on which we compare investors is the degree of satisfaction with

their 2014 investment returns. Not surprisingly, risk avoiders were much less satisfied

in comparison to everyone else (significant at the 0.1% level). This is likely explained
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by their risk avoidance: they saw large positive returns on their investments, and thus

decreased their equity allocation—and missed out on very good market returns over the

full year, the S&P 500 returning 13.5% in 2014. We note that financial advisors would

be particularly beneficial to risk avoiders, since they would encourage investors to stay

invested in the market despite large swings, and in this way earn higher returns over

longer time horizons.

Finally, we compare risk aversion across the clusters. Passive investors are the most

risk-averse cluster (significant at the 0.1% level when comparing both direct gamble pref-

erences and risk aversion coefficients). This is most likely due to its composition of

predominantly older investors, who are more risk-averse than younger cohorts, as seen

earlier. Ironically, risk avoiders appear to be the least risk-averse cluster, although the

differences are not significant compared to the “everyone else" group.

We briefly comment on clustering results for the financial advisor and institutional

investor responses. Because the sample sizes for these groups are much smaller than for

the individual investor sample (2,342 for advisors and 660 for institutions), we cannot

perform the in-depth analysis that we do for individuals. However, we can still look at the

largest cluster in each group. In particular, we use the responses from the two questions

about hypothetical S&P 500 moves to form three clusters (data exploration found three

to be the most useful number). Tables A.7 and A.8 in the Appendix outline the relative

sizes of the clusters and the average responses within each cluster. We see that the largest

cluster in each sample clearly corresponds to a contrarian reaction; it makes up 47% of

the sample for advisors and 68% for institutions. This further confirms our findings from

the previous section that advisors and institutions are predominantly contrarian.

2.5 Individual Investor Predictive Analytics

We now look at the problem of predicting asset allocation behavior. Since we only have

survey data available, the best we can do is use the responses to one set of questions for

predicting the responses to other questions. We are particularly interested in predicting

the three questions related to allocation decisions: the timing of equity allocation decrease

around the financial crisis, and the two questions about reactions to S&P 500 moves. Our

conclusion is that for individual investors we able to marginally beat the baseline for the
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crisis allocation timing question and are able to get a significant increase (of 15%) over

the baseline when predicting how people react to S&P 500 changes.

We have decided to focus only on the individual investor dataset, since its sample

size of 7,000 makes it large enough to perform predictive analytics. While we have also

considered prediction for financial advisors and institutional investors, we decided to not

proceed with it due to the small sample size (2,342 and 660, respectively) and more

importantly, the lack of features that could be used for prediction. Thus, throughout this

whole section we will only be dealing with individual investors.

Table 2.3 lists the possible responses and their coding for the three questions we focus

on. We use six features for prediction:

∙ Gender

∙ Generation

∙ Net worth

∙ Use of financial advisor

∙ Gamble preferences

∙ Region

The possible values for the first three features above are shown in Table 2.1. The use of

financial advisor variable is an indicator specifying if an investor uses a financial advisor

or not. The gamble preferences variable is the answer to the question on which one of six

gambles in Table 2.2 is preferred. Finally, region is one of the seven possible regions the

investor is located in, shown in Table A.2 in the Appendix.

For questions about the reaction to the S&P 500 moves, we use two more features:

the response to the question about asset allocation around the financial crisis, as well as

an indicator for if an investor was satisfied with their 2014 investment returns or not.

These features cannot be used for the crisis allocation timing question, since otherwise a

look-ahead bias would arise.

We randomly split the sample into 70% for training and 30% for testing. We consider

three different models: multinomial regression, CART, and random forest. For differen-

tiating which model performs better we use a standard accuracy measure, whereby we

measure the percent of responses on the test set that we predict correctly.
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For each of the three allocation cases we look at by how much the models beat the

baseline prediction. We use a simple baseline where we predict the same response for

each investor; this response is chosen as the most common one among the ones in the

training set. In all three cases we find this most common response is the passive one,

whereby the investor chooses to not change their equity allocation.

Table 2.5 lists prediction accuracy for the model. The baseline model has relatively

high accuracy. In the case of the financial crisis allocation question, with six possible

responses, the baseline has 44% accuracy. For the questions about reactions to S&P 500

moves, the baseline has 34% and 33% accuracy, which is also quite high, considering

five different responses are possible. We also see that across all questions random forest

performs best, yielding close to 50% prediction accuracy.

We next investigate the prediction accuracy for each question individually. Multino-

mial regression gives accuracy of 44%, in comparison to 49% for both CART and random

forest. This is a marginal improvement over the baseline – however it is important to keep

in mind that the baseline prediction is already quite high. Table 2.6 shows the confusion

matrix for the random forest model predictions; we see that when we predict a passive

response, we obtain good prediction accuracy. When we predict a decrease in equity

allocation between the first half of 2008 and the first half of 2009, prediction accuracy is

not as good.

For the two questions about the reaction to S&P 500 changes results are better. For

both questions multinomial regression and CART provide accuracy between 42% and

44% on the test set. Random forest is more accurate, getting 49% of predictions right for

the reaction to a fall in the S&P 500, and 48% for the reaction to an S&P 500 rise. This is

a substantial increase of 15% over the baseline. The confusion matrices for random forest

predictions, shown in Table 2.6, also look good. For each of the predicted responses and

both questions, accuracy is above 40%, whcih means that predictions are consistently

accurate across all predicted responses. The accuracy of the “do nothing" prediction is

above 50%, while we also have high accuracy in predicting an increase in equity allocation

(although the sample size corresponding to predictions for this latter response is small).

We look into how individual variables contribute to prediction accuracy. While multi-

nomial regression would allow for better interpretability, it performs worse than other

methods. Hence we again focus on the random forest model applied to the two questions
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Table 2.5: Accuracy of Investor Asset Allocation Predictions

Baseline
Multinomial

Regression
CART

Random

Forest

Financial Crisis 44% 46% 49% 49%

S&P 500 Fall 34% 42% 44% 49%

S&P 500 Rise 33% 44% 43% 48%

Prediction Method

Sc
en

ar
io

This table shows how well we can predict asset allocation decisions under different investment
scenarios. Baseline is when the same outcome is predicted in all cases. This is compared to
three models: multinomial regression, CART, and random forest. Each model is estimated
on the training set and then applied to the testing set. We measure accuracy as percent of
observations in the test set that we predict correctly. Three scenarios are considered. Financial
Crisis is the response to the question about when (if at all) an investor decreased their equity
allocation around the financial crisis. S&P 500 Fall and S&P 500 Rise correspond to the two
questions about how an investor would change their equity allocation following large moves in
the S&P 500. For each case, the model with the highest accuracy is highlighted.

about reactions to S&P 500 moves. For each of the eight variables considered, we measure

the decrease in accuracy on the test set if that variable is excluded from the model in

comparison to the case when all variables are included. Table 2.7 shows the results. We

see that accuracy does not substantially decline if a particular variable excluded. The

effect of the crisis allocation timing feature seems to be more substantial, with accuracy

decreasing the most when this variable is excluded. This could suggest that this vari-

able is particularly important for prediction, which makes sense because it has explicit

information about past investor allocation decisions.

We conclude that we can predict expected equity allocation behavior reasonably well

by using investor demographics and past portfolio information. Using the random forest

model we get close to 50% accuracy in predicting the responses to questions on asset

allocation under various market scenarios. In the case of reactions to large S&P 500

changes, this is a big improvement over the baseline (which gives just 33%-34% accuracy).

It is important to note that only a limited number of features are available for prediction,

and if we had more details about past investor trading history, our predictions would

likely improve.

2.6 Conclusion

Using a comprehensive global survey, we have identified differences in the investment

behavior and risk tolerance preferences of individual investors, financial advisors, and
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Table 2.6: Confusion Matrices for Random Forest Predictions

1 2 3 4 5 6

Second half of 2007 (1) 0 6 25 5 0 131

First half of 2008 (2) 0 30 65 11 0 190

Second half of 2008 (3) 0 26 102 9 1 212

First half of 2009 (4) 0 5 51 23 0 121

Second half of 2009 (5) 0 2 31 7 3 116

No Significant Change (6) 0 14 43 7 0 864

Accuracy N/A 36% 32% 11% 75% 53%

-2 -1 0 1 2

Large Decrease (-2) 144 116 152 14 2

Small Decrease (-1) 68 298 207 9 1

Do Nothing (0) 43 113 537 11 3

Small Increase (1) 50 80 138 33 3

Large Increase (2) 13 16 18 12 19

Accuracy 45% 48% 51% 42% 68%

-2 -1 0 1 2

Large Decrease (-2) 104 7 103 153 0

Small Decrease (-1) 52 22 125 110 1

Do Nothing (0) 33 8 490 141 0

Small Increase (1) 36 8 182 387 2

Large Increase (2) 10 1 41 76 9

Accuracy 44% 48% 52% 45% 75%

Equity Allocation Change

Following S&P 500 Rise

Predicted

A
ct

u
al

Timing of Equity Allocation

Decrease around Financial Crisis

Predicted

A
ct

u
al

Equity Allocation Change

Following S&P 500 Fall

Predicted

A
ct

u
al

This table presents confusion matrices for predicting responses to the three allocation questions
discussed earlier. In each case a random forest model is used for prediction. Columns correspond
to different predicted responses, whereas rows correspond to actual responses. For each predicted
response, we list the accuracy of prediction, measured as the empirical probability that the
predicted response matches the actual one.
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Table 2.7: Random Forest Predictions: Excluding One Variable

S&P 500

Fall

S&P 500

Rise

49.1% 48.2%

Gender 48.5% 47.8%

Generation 48.0% 47.2%

Net Worth 48.8% 47.5%

Use of Financial Advisor 46.4% 46.4%

Satisfied with 2014 Returns? 48.0% 47.4%

Gamble Preferences 47.4% 46.2%

Region 47.6% 45.4%

Crisis Allocation Timing 45.8% 44.6%

V
ar

ia
b

le
 E

xc
lu

d
ed

All Variables Included

Predicting Change to:

This table presents how much accuracy in prediction is lost if one variable is excluded from
the random forest model. For each variable, we train the model using the remaining seven
variables on the training set and then measure prediction accuracy on the test set. We perform
this exercise for the two questions about reactions to S&P 500 moves. For each question, we
highlight the cells corresponding to the two variables for which accuracy decreases by the largest
amount.

institutional investors. Advisors and institutions exhibit contrarian strategies in their

behavior whereby they tend to change equity allocation in the opposite direction of recent

returns on the S&P 500. This reaction is particularly strong for institutional respondents,

71% of whom would increase equity allocation following a fall in the S&P 500, and 66%

would decrease allocation following a rise. This behavior is not as pronounced among

financial advisors, because a large proportion of advisors tend to act passively and not

change allocation at all.

By asking for preferences among six hypothetical gambles we are able to estimate the

risk aversion coefficient for each of the three groups. Consistent with general intuition,

individual investors are by far the most risk-averse, whereas institutional investors are the

least risk-averse. We also compare risk aversion across different individual demographic

categories, and find that risk aversion increases with age and decreases with net worth.

We observe significant heterogeneity among individual investors in terms of their

allocation decisions. Using a clustering algorithm we classify investors into four distinct

types. The first corresponds to passive investors and makes up about 50% of the sample.

The other three types are risk avoiders, extrapolators, and everyone else and are of similar

size, ranging between 14% and 19% of all respondents. Risk avoiders tend to significantly

decrease equity allocation following large changes in the S&P 500 (both positive and

negative), while extrapolators shift allocation in the same direction as those changes.
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Passive investors are, on average, older and more risk-averse than the other three types,

while risk avoiders tend to consist of younger investors.

We further investigate the individual investor dataset by addressing the problem of

classifying investor responses to the allocation decision questions based on demographics

information. We find that employing random forests provides a classification accuracy of

around 50%, an improvement of over 15% over the baseline for both allocation questions.

Our results using this novel survey dataset have important implications for future

research. First, this data gives us new insight into the allocation decisions of market

participants over medium-term time horizons. While there have been been extensive

studies of short-term trading by individual and institutional investors (e.g. by Grinblatt

and Keloharju (2000) and Griffin, Harris, and Topaloglu (2003)), few have looked at

the broader decisions of asset allocation. The fact that institutions and advisors are

largely contrarian in their allocation strategies, while investors are on average slightly

extrapolative, may be important in understanding the process of strategic asset allocation

and the trading between these different market participants on the asset class level.

Our other important insight comes from our breakdown of individual investors into

clusters of different behavioral types. Our “risk avoider" type has seldom been docu-

mented in the literature, and it may prove to be a useful component of future economic

models. Recent papers already incorporate extrapolators (e.g. Barberis et. al (2015a,

2015b)) into their models, as well as fundamental investors, which correspond to our

institutional investors. It would be interesting to see the equilibrium dynamics of all

four different individual investor types play out, as well as the dynamics of potentially

contrarian institutions taking the other side of trades made by extrapolators.

Finally, it is of significant benefit to study the behavior of financial advisors, and in

particular, why so many of them advocate contrarian strategies to their clients. It also

appears that individuals who use a financial advisor are more likely to exhibit extrap-

olative behavior. Do they ignore financial advice, or are advisors trying to “balance out"

their extrapolation with contrarian suggestions? Further surveys and studies of historical

financial advice and associated client action are needed to answer these questions.
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2.7 Appendix

In this appendix, we include the specific survey questions used for individual and
institutional investors (Section 2.7.1), and for financial advisors (Section 2.7.2), and sum-
marize the characteristics of the survey participants (Section 2.7.3).

2.7.1 Individual Investor and Institutional Survey Questions

The behavioral questions presented in the Individual Investor and the Institutional
Surveys were exactly the same. They are listed below.

1. Of the following six gambles, which would you prefer the most?
a. Win $28,000 with probability 100%

b. Win $36,000 with probability 50%; win $24,000 with probability 50%

c. Win $44,000 with probability 50%; win $20,000 with probability 50%

d. Win $52,000 with probability 50%; win $16,000 with probability 50%

e. Win $60,000 with probability 50%; win $12,000 with probability 50%

f. Win $70,000 with probability 50%; win $2,000 with probability 50%

2. How would you change your asset allocation if the S&P 500 declined between 10%
and 20% during the next six months and other asset classes performed as you
expected?
a. I would do nothing

b. I would decrease my stock or shares allocation slightly

c. I would decrease my stock or shares allocation significantly

d. I would increase my stock or shares allocation slightly

e. I would increase my stock or shares allocation significantly

3. How would you change your asset allocation if the S&P 500 declined between 10%
and 20% during the next six months and other asset classes performed as you
expected?
a. I would do nothing

b. I would decrease my stock or shares allocation slightly

c. I would decrease my stock or shares allocation significantly

d. I would increase my stock or shares allocation slightly

e. I would increase my stock or shares allocation significantly

4. Around what time during the Financial Crisis of 2007–2009 did you significantly
decrease your allocation to stocks in your investment portfolio?
a. Second half of 2007

b. First half of 2008

c. Second half of 2008

d. First half of 2009

e. Second half of 2009

f. I did not significantly decrease my allocation to stocks during the Financial
Crisis
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2.7.2 Financial Advisor Survey Questions

The behavioral questions presented in the Financial Advisor Survey were essentially
the same as the questions for individual investors. For questions pertaining to asset
allocation, advisors were asked about how their clients changed their allocations/how
they would advise clients to change their allocations rather than how advisors would
alter allocation in their personal investment portfolios. We also asked a question about
when clients typically increased equity allocation after the Financial Crisis. Since this
question was not asked to the individual investors or institutional participants, we did
not include its results in our analysis.

1. Of the following six gambles, which would you prefer the most?

a. Win $28,000 with probability 100%

b. Win $36,000 with probability 50%; win $24,000 with probability 50%

c. Win $44,000 with probability 50%; win $20,000 with probability 50%

d. Win $52,000 with probability 50%; win $16,000 with probability 50%

e. Win $60,000 with probability 50%; win $12,000 with probability 50%

f. Win $70,000 with probability 50%; win $2,000 with probability 50%

2. Around what time after the Financial Crisis of 2007–2009 did most of your clients
significantly decrease their allocation to stocks in their investment portfolios?

a. Second half of 2008

b. First half of 2009

c. Second half of 2009

d. First half of 2010

e. Second half of 2010

f. Most of my clients did not significantly increase their allocation to stocks after
the Financial Crisis.

3. How would you advise your clients to change their asset allocation if the S&P 500
declined between -10% and -20% during the next six months and other asset classes
performed as expected?

a. I would advise clients to do nothing

b. I would advise clients to decrease equity allocation slightly

c. I would advise clients to decrease equity allocation significantly

d. I would advise clients to increase equity allocation slightly

e. I would advise clients to increase equity allocation significantly

4. How would you advise your clients to change their asset allocation if the S&P 500
increased between -10% and -20% during the next six months and other asset classes
performed as expected?

a. I would advise clients to do nothing

b. I would advise clients to decrease equity allocation slightly

c. I would advise clients to decrease equity allocation significantly
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d. I would advise clients to increase equity allocation slightly

e. I would advise clients to increase equity allocation significantly

5. Around what time during the Financial Crisis of 2007–2009 did most of your clients
significantly decrease their allocation to stocks in their investment portfolios?

a. Second half of 2007

b. First half of 2008

c. Second half of 2008

d. First half of 2009

e. Second half of 2009

f. Most of my clients did not significantly decrease their allocation to stocks
during the Financial Crisis.

2.7.3 Survey Respondents Characteristics

We provide more details on the subjects included in the surveys. Table A.1 and
A.2 show the country and region breakdowns of respondents for the Individual Investor
Survey, while Table A.3 does this for the Financial Advisor Survey. In Table A.4 we list
the types of institutions included in the Institutional Investor survey. Finally, Table A.5
presents the definitions of the individual investor demographic categories.

Country # Respondents Country # Respondents

Argentina 200 Japan 350
Australia 250 Mexico 350
Canada 250 Singapore 500
Chile 200 Spain 500
Colombia 200 Switzerland 350
France 500 UAE/Qatar/Kuwait 350
Germany 500 United Kingdom 750
Hong Kong 500 United States 750
Italy 500

Table A.1: Number of respondents, by country, in the Individual Investor Survey.

Region # Respondents Region # Respondents

Asia & The Pacific 1600 North America 250
Europe 2350 UK 750
Latin America 950 US 750
Middle East 350

Table A.2: Number of respondents, by region, in the Individual Investor Survey.
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Country # Respondents Country # Respondents

Canada 150 Singapore 146
Chile 137 Spain 150
France 150 Switzerland 150
Germany 150 UAE/Qatar/Kuwait 144
Hong Kong 144 United Kingdom 300
Italy 150 Uruguay 140
Panama 131 United States 300

Table A.3: Number of respondents, by country, in the Financial Advisor Survey.

Institution Type # Respondents

Central Bank 11
Corporate Pension Plan 196
Insurance Company 100
Non-Profit (Endowment/Foundation) 131
Public/Government Pension Plan 140
Sovereign Wealth Fund 69
Other Institution 13

Table A.4: Breakdown of respondents by institution type, in the Institutional Investor Survey.

Demographic Definition

Generation Y 18–33 years old
Generation X 34–49 years old
Baby Boomers 50–68 years old

Pre-Baby Boomers 69 years old and above

Mass Market NW: $200,000 - $300,000
Mass Affluent NW: $300,000 - $500,000
Emerging HNW NW: $500,000 - $1,000,000
High Net Worth NW: $1,000,000 and above

Table A.5: Descriptions of the different demographic categories used in the Individual Investor
Survey. The abbreviation NW means Net Worth, while HNW means High Net Worth.
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Individual Investor Risk Aversion Coefficient across Countries

Figure 2.7.1: Estimated risk aversion coefficients for individual investors across countries. Error
bars correspond to one standard error. Standard errors are large for some countries due to small
sample size, e.g. for Colombia we have only 200 observations.
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Figure 2.7.2: Distributions of responses for the four clusters created from the Individual Investor
Survey. Error bars correspond to one standard error.
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Gender Passive Risk Av. Extrap. Other Satisfied 2014 Passive Risk Av. Extrap. Other

Passive 0.500 0.245 0.496 0.456 Passive 0.500 1.000 0.974 0.064

Risk Av. 0.755 0.500 0.703 0.691 Risk Av. 0.000 0.500 0.000 0.000

Extrap. 0.504 0.297 0.500 0.470 Extrap. 0.026 1.000 0.500 0.002

Other 0.544 0.309 0.530 0.500 Other 0.936 1.000 0.998 0.500

Age Passive Risk Av. Extrap. Other Retired Passive Risk Av. Extrap. Other

Passive 0.500 1.000 1.000 1.000 Passive 0.500 1.000 1.000 1.000

Risk Av. 0.000 0.500 0.000 0.000 Risk Av. 0.000 0.500 0.773 0.026

Extrap. 0.000 1.000 0.500 0.977 Extrap. 0.000 0.227 0.500 0.004

Other 0.000 1.000 0.023 0.500 Other 0.000 0.974 0.996 0.500

Net Worth Passive Risk Av. Extrap. Other Gamble Pref. Passive Risk Av. Extrap. Other

Passive 0.500 0.635 0.615 0.010 Passive 0.500 0.000 0.000 0.000

Risk Av. 0.365 0.500 0.488 0.017 Risk Av. 1.000 0.500 0.998 0.626

Extrap. 0.385 0.512 0.500 0.022 Extrap. 1.000 0.002 0.500 0.005

Other 0.990 0.983 0.978 0.500 Other 1.000 0.374 0.995 0.500

Advised Passive Risk Av. Extrap. Other Risk Aversion Passive Risk Av. Extrap. Other

Passive 0.500 0.188 0.000 0.000 Passive 0.500 0.000 0.000 0.000

Risk Av. 0.812 0.500 0.000 0.003 Risk Av. 1.000 0.500 1.000 0.863

Extrap. 1.000 1.000 0.500 0.986 Extrap. 1.000 0.000 0.500 0.005

Other 1.000 0.997 0.014 0.500 Other 1.000 0.137 0.995 0.500

Statistical Significance for Comparisons of Mean Demographics across Clusters

Table A.6: Hypothesis tests for statistical significance when comparing means of demographic
categories across the four clusters from the Individual Investor Survey. We assume that each
cluster corresponds to an independent collection of investors. For every demographic, we calcu-
late the mean response within each cluster. The resulting means are shown in Table 2.4.
For every two means, we test for statistical significance using Welch’s 𝑡-test—with the exception
of the risk aversion coefficient, where we employ a 𝑧-test using the risk aversion coefficients and
associated standard errors from the estimation. Each cell contains the 𝑝-value associated with
testing if the column cluster mean minus the row cluster mean is greater than zero. A cell is
colored green if the mean in the row cluster is significantly less than the mean in the column
cluster, at the 5% significance level. A cell is colored red if the mean in the row cluster is
significantly greater than the mean in the column cluster, at the 5% significance level.
Risk Av. means Risk Avoiders cluster; Extrap. is the Extrapolators cluster. Satisfied 2014 is an
indicator for if an investor was satisfied with their 2014 investment returns. Risk Aversion is
short for the risk aversion coefficient.
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Clustering of Financial Advisors

Cluster 1 Cluster 2 Cluster 3

% Respondents 47% 37% 16%

Allocation Decisions

Reaction to S&P Fall 1.1 0.4 -1.4
Reaction to S&P Rise -1.1 0.2 0.3

Table A.7: Clustering of allocation decision responses from the Financial Advisor Survey. For
each cluster, we present the percent of respondents and mean response based on the response
coding in Table 2.3.

Clustering of Institutional Investors

Cluster 1 Cluster 2 Cluster 3

% Respondents 68% 22% 10%

Allocation Decisions

Reaction to S&P Fall 1.5 -0.6 -1.4
Reaction to S&P Rise -1.1 0.7 -1.7

Table A.8: Clustering of allocation decision responses from the Institutional Investor Survey.
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Chapter 3

Algorithmic Models of Investor

Behavior

(joint work with Andrew W. Lo)

Abstract

We propose a heuristic approach to modeling investor behavior by simulating combina-
tions of simpler systematic investment strategies associated with well-known behavioral
biases—with functional forms motivated by an extensive review of the behavioral finance
literature review—with parameters calibrated from historical data. We compute the in-
vestment performance of these heuristics individually and in pairwise combinations using
both simulated and historical asset-class returns. The mean-reversion or momentum
nature of a heuristic can often explain its effect on performance, depending on whether
asset returns are consistent with such dynamics. We propose a Markov chain Monte Carlo
(MCMC) algorithm for estimating the parameters of these strategies and their implicit
weights, and show that this method can successfully infer the relative importance of each
heuristic among a large cross-section of investors, even when the number of observations
per investor is quite small. We also compare the accuracy of the MCMC approach to re-
gression analysis in predicting the relative importance of heuristics at the individual and
aggregate level, and conclude that MCMC predicts aggregate weights more accurately
while regression outperforms in predicting individual weights.

Keywords: Portfolio Management; Asset Allocation; Performance Attribution; Behav-

ioral Finance.

JEL Classification: G02, G11, G12
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3.1 Introduction

Individuals often behave in predictable ways when making investment decisions, in

patterns that are sometimes called “behavioral biases”. These behavioral biases can be

quite costly to investors, leading to large losses and inappropriate amounts of risk in

their portfolios. However, in other circumstances, these same biases can lead to positive

outcomes, such as protecting investors from even larger losses than they would otherwise

experience. A clearer understanding of these biases would benefit all investors, allowing

them to modify their behavior according to their changing circumstances.

Over the past 40 years, academics have made considerable progress in empirically

documenting these biases in financial decision-making, both by running experiments in

a laboratory setting and by analyzing historical data on investor trades. However, this

work has mainly focused on one or two biases in isolation, and only a few studies have

considered the full spectrum of their impact on realized investment performance. Further-

more, while there is strong evidence that specific patterns of behavior exist, the problem

of their origin and evolution over time remains open.

On the theoretical side, academics have proposed several behavioral models to com-

plement the original paradigm of the rational investor. These models are designed to

capture particular irrational aspects of financial behavior. They can be used to generate

optimal trading strategies for investors influenced by these behaviors, and they imply

potential changes to the financial markets under their influence. Prospect theory, put

forward by Kahneman and Tversky (1992), is perhaps the most popular model of this

type. However, even this simple framework is challenging to apply to the prediction of

investor behavior since there are several free parameters that must be calibrated, e.g.,

the reference point and the investment horizon.

We propose a novel framework to analyze and predict investor behavior in which

behavior is modeled as a combination of simpler heuristics, each linked to one or more

well-known biases such as loss aversion or overconfidence and motivated by the existing

academic and practitioner literature. For tractability and ease of interpretation, we use

very few parameters to describe each heuristic, and these heuristics imply specific strate-

gies that, when systematically combined, form a portfolio that can describe the trading

behavior of an investor. This approach is purely algorithmic and can be viewed as an

“artificial intelligence" model of investor behavior. It can be applied to individual trad-

94



ing data from which an individual’s heuristics can be calibrated, thereby approximating

the individual’s behavior algorithmically. This framework can also be used to analyze

investor behavior under various conditions, and can predict future investor behavior.

We begin with explicit definitions of our heuristics, all of them motivated by existing

examples of behavioral biases in the literature. After specifying our investor decision-

making framework, we investigate how pairs of biases affect investment performance

under different specifications for the risky asset’s return-generating process. We also

investigate the interactions among these heuristics when all of them are active. We

perform an analogous exercise with historical data, applying various heuristics to different

asset classes, including equities, bonds, foreign exchange, and commodities. Despite the

relative simplicity of our approach, we are able to capture important aspects of investor

behavior and corresponding biases.

We then show how to estimate the parameters of the heuristics from trading data

by applying Markov chain Monte Carlo (MCMC) methods to cross-sectional data on

investment decisions data, assuming several stylized cases: when only one heuristic is

active, when a pair of heuristics is active, and when all heuristics are active. With only

100 observations for each investor, and with a relatively small number of investors overall

(1,000), we are able to estimate several important parameters with reasonable accuracy:

the default strategy, the allocation noise, and the heuristic weights. It is important to

note that we have less success at estimating time horizons and the thresholds for the

heuristics.

Finally, we study the problem of predicting asset allocation decisions within our frame-

work. We simulate data according to our heuristics, estimate the model parameters on a

training subset of the simulated data, and then attempt to predict subsequent allocation

decisions using these estimates on an out-of-sample basis. This approach is able to suc-

cessfully predict aggregate investor behavior, and it usually outperforms regression-based

predictions. However, at the level of the individual investor, regressions tend to have

more accurate out-of-sample predictions.
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3.2 Decision-Making Framework

In our model, an investor follows several decision-making rules or heuristics. These

rules are motivated by existing evidence on behavioral biases in investor behavior. While

some of these rules may serve as proxies for particular investor biases, it is important to

remember that they do not fully capture them. Rather, these rules can be thought of

as generic versions of common decision-making patterns, which have strong connections

with particular behavioral biases in the literature.

Throughout the rest of the paper, we will use the words “rule" and “heuristic" inter-

changeably.

We consider an agent investing over time in risky assets 1, 2, . . . , 𝑁 and a risk-free

asset 𝑁+1. For tractability we will initially assume 𝑁 = 1, so that there is only one risky

asset. The agent follows a default strategy which invests a portion 𝑥𝑖,𝑡 of the portfolio

into asset 𝑖 at the start of period 𝑡.

Besides the default strategy, the investor is subject to heuristics 1, 2, . . . , 𝐾 that result

in adjustments to the portfolio. We view each heuristic 𝑗 as a separate (systematic)

investment strategy which specifies the portfolio weight 𝑧𝑗𝑡 to be invested into the risky

asset at the start of period 𝑡. The strategies are combined as a weighted average, with

weight 𝛾𝑗,𝑡 assigned to heuristic 𝑗. Thus the portfolio allocation to the risky asset at the

start of period 𝑡 is:

𝑤1,𝑡 = 𝑥1,𝑡 +
𝐾∑︁
𝑗=1

𝛾𝑗,𝑡𝑧
𝑗
𝑡

The allocation to the risk-free asset is just 𝑤2,𝑡 = 1 − 𝑤1,𝑡.

For each heuristic, the decision on the portfolio adjustment 𝑧𝑡𝑗 is made at the end of

period 𝑡− 1 using the asset prices and portfolio performance up to date 𝑡− 1, inclusive.

This decision consists of two parts. The first is the “heuristic trigger" – the conditions that

need to occur to trigger the heuristic. If a heuristic is triggered, it is assigned a strength

of 𝑠𝑗𝑡 ; this strength is set to 0 when the heuristic is inactive. The second component is

the “heuristic trade" – the proposed asset allocation 𝑧𝑗𝑡 as a result of the heuristic. Each

of these two time-varying variables are functions of past performance and asset returns

with fixed parameters.
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We will use the following notation:

∙ 𝑃𝑖,𝑡 – price of asset 𝑖 at the end of period 𝑡

∙ 𝐵𝑖,𝑡 – amount of portfolio held in asset 𝑖 at the end of period 𝑡

∙ 𝐵𝑡 – total portfolio balance at the end of period 𝑡

The following parameters will be used for describing the biases (different heuristics

will have different parameters):

∙ 𝐿 – horizon over which past performance is measured

∙ 𝛼 – gain/loss threshold

∙ ℎ – horizon of the heuristic

∙ 𝑛𝑜 – number of remaining periods of the heuristic

In the next few sections, we summarize the relevant behavioral finance literature used

to motivate our heuristics, and present our heuristic definitions.

3.2.1 The Disposition Effect

People tend to hold on to losers for too long and to sell winners too soon, a behavior

known as the disposition effect, first discussed by Shrefin and Statman (1985). Odean

(1998) documents the disposition effect more explicitly by examining trading records of

individual investors. Further evidence of this effect in both an experimental setting and

using trading records has been produced by Weber and Camerer (1998), Garvey and

Murphy (2004), and Frazinni (2006).

Several explanations of the disposition effect have been put forward. Fogel and Berry

(2006) propose that regret is the primary explanation for why people hold onto losing

investments and sell winning ones too soon. Barberis and Xiong (2009, 2012) show that

prospect theory alone is not always able to explain the disposition effect, and propose an

alternative model where investor utility depends on realized gains. This would cause an

investor to be unwilling to sell a losing investment due to its associated realized loss, and

instead would wait until it becomes profitable.

Another potential cause of this effect is self-control, or rather, its lack. Shefrin and

Statman (1985) suggest that self-control could be used to explain the disposition effect.
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People who lack self-discipline and prefer short-term gratification may prematurely sell

off winners, while investors may hold on to losers for too long, since they cannot exercise

enough discipline to sell them. This may be why some traders use set trading rules,

such as stop-loss orders, in order to prevent such mistakes. Traders are often advised to

exercise good self-control in order to ride out their profits, in spite of the temptation to

sell too soon; see, for example, Krivo (2012).

Finally, loss aversion also contributes to the disposition effect; we will discuss this in

the next section.

There are two basic behaviors described by the disposition effect. The first is selling

profitable investments too early. Here, soon after initiating the position, an investor sees a

stock perform well and sells it, instead of holding it for potentially larger gains. We model

a short-term gains heuristic by setting the behavior to be triggered if the gains in the

investor portfolio over a particular (short) time horizon exceed a prespecified threshold.

Definition 3. A short-term gains heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝐵𝑡

𝐵𝑡−𝐿

> 𝛼

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(1)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩−1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(2)

The second aspect of the disposition effect is the reluctance to exit losing positions.

For example, an investor buys a stock expecting its price to increase. Instead, its price

falls. The investor hopes the negative trend will reverse, and keeps holding the stock,

even though it can potentially further decline in value. In our model, a short-term losses

heuristic is triggered if the losses over a particular (short) horizon exceed a prespecified

threshold. In that case, the investor is inclined to increase his position.
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Definition 4. A short-term losses heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝐵𝑡

𝐵𝑡−𝐿

< 𝛼

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(3)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(4)

3.2.2 Loss Aversion

Loss aversion is the tendency of investors to avoid losses. This behavioral anomaly

affects people in several ways. First, they are reluctant to accept investment opportunities

with a large downside relative to gains. Second, investors are reluctant to liquidate a

position showing a paper loss, the disposition effect discussed in the previous section.

Third, if investors have suffered a large loss, they become even more frightened of losing

money, and often stay out of risky markets for a considerable period of time. In our

model, we focus on describing this last phenomenon.

The literature on loss aversion is extensive. Kahneman and Tversky (1992) begin by

conducting a classic series of experiments demonstrating loss aversion, offering subjects

a series of gambles, and asking how much they would be willing to pay for each gamble.

Kahneman and Tversky conclude that for the participants, losses matter about twice

as much as gains of comparable magnitude. Further experimental evidence of this phe-

nomenon has been produced by Thaler et al. (1997), demonstrating that people care more

about losses than about gains, especially if their performance is evaluated frequently, and

by Haigh and List (2005), who show that professional traders also exhibit loss aversion.

People tend to invest less in the markets after experiencing losses. This is probably due

to a combination of loss aversion and other behaviors, such as the extrapolation of past

returns or the negative emotions following a loss. Strahilevitz, Odean, and Barber (2011)

analyze individual trading records and find that investors are less likely to repurchase

stocks they had previously sold for a loss. Malmendier and Nagel (2009) show that

investors who experienced poor returns on equities during their lifetime tend to invest
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less in stocks. Benartzi (2001) documents that employees allocate 30% less of their

discretionary 401(k) contributions to company stock if the stock has performed poorly

over the past 10 years, compared to the employees of firms whose stock has done well.

We model loss aversion as a long-term losses heuristic to be triggered if portfolio losses

over a particular (long) horizon exceed a prespecified threshold. In that case, the investor

will want to decrease his position in the security.

Definition 5. A long-term losses heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝐵𝑡

𝐵𝑡−𝐿

< 𝛼

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(5)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩−1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(6)

3.2.3 Overconfidence

People are overconfident. They tend to overestimate their ability to do certain tasks,

1 to think they are better than other people, 2 and to be unrealistically confident in the

accuracy of their beliefs. 3 This behavior has been observed in many different areas,

including entrepreneurship (Koellinger, Minniti, Schade, 2007), medicine (Berner and

Graber, 2008), driving (Svenson, 1981), and negotiation (Neale and Bazerman, 1985).

Not surprisingly, it also shows up in finance.

Overconfident traders often believe they can beat the market because they overesti-

mate how much money they will make on their trades. This results in a higher trading

volume, and usually in lower investor profits due to excessive trading, as documented by

Odean (1998a), and by Barber and Odean (2001). Odean (1998a) concludes that investors

do not merely overestimate the accuracy of their beliefs, but are also overconfident about

their ability to interpret the information used to arrive at their beliefs.

A few empirical studies have been conducted to analyze how overconfidence arises

1Buehler, Griffin, and Ross(1994), Nowell and Alston (2007), Cassar (2010)
2Alicke et al. (1995), Camerer and Lovallo (1999), Guenther and Alicke (2010)
3Fischhoff et al. (1977), Klayman et al. (1999), Jørgensen et al. (2004)
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from past returns and how this affects subsequent trading. Glaser and Weber (2009)

study trading records of individual investors to find that, after experiencing high port-

folio returns, investors tend to overweigh higher risk stocks, and reduce the number of

stocks in their investment portfolio. Chuang and Susmel (2011) find that both individ-

ual and institutional investors trade more after good market returns in bull markets, in

momentum markets, and in low volatility environments. Deaves, Luders, and Luo (2009)

analyze students trading in a laboratory setting, and find that overconfidence due to

overestimation of the accuracy of one’s beliefs, as well as the belief that one is better

than average, leads to more trading.

We focus on a phenomenon closely related to overconfidence, called self-attribution.

When investors make a profitable trade, they tend to attribute their success to pure

skill, and to underestimate the element of luck involved. As a result, they become more

confident in their abilities following a winning streak of investments – and sometimes

suffer large losses afterwards because they take excessively large positions. Two prominent

papers analyzing this behavior within a theoretical framework are Daniel, Hirshleifer, and

Subrahmanyam (1998) and Gervais and Odean (2001).

In our model a long-term gains heuristic is triggered if the investor’s profits over a par-

ticular (long) horizon exceed a prespecified threshold, after which the investor increases

his position.

Definition 6. A long-term gains heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝐵𝑡

𝐵𝑡−𝐿

> 𝛼

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(7)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(8)

3.2.4 The Gambler’s and Hot Hand Fallacies

People incorrectly predict future outcomes after observing random sequences. In some

situations, people believe in mean reversion (a heuristic known as the gambler’s fallacy),
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while in others, they believe in momentum (the hot hand fallacy).

The gambler’s fallacy tends to be associated with an incorrect interpretation of ran-

domness in a random sequence. Rabin and Vayanos (2010) estimate that people observing

flips of a fair coin on average estimate a 70% probability of a tail on the next flip after

observing three consecutive heads. Oskrasson et al. (2009) provide a detailed summary of

the existing literature on people’s judgment of random sequences. It is consistently found

that randomness tends to be associated with the belief that a trend in observed values will

end. Empirical evidence supporting the gambler’s fallacy has been documented among

lottery players (Clotfelter and Cook, 1993), casino gamblers (Cronson and Sundali, 2005),

and institutional investors (Shefrin, 2000). A belief in mean reversion may also partly

explain the disposition effect.

The hot hand fallacy occurs when people observing a random sequence believe it is

actually not random. Gilovich, Vallone, and Tversky (1985) find that people erroneously

believe in “hot streaks" in basketball, while Cronson and Sundali (2005) show that some

casino players increase bets after roulette winnings, thinking their streak will continue.

Burns (2003) and Johnson, Tellis, and MacInnis (2005) document the hot hand fallacy

among investors in laboratory experiments.

While both the gambler’s fallacy and the hot hand fallacy are closely related to the

heuristics discussed previously, they are distinct because they are related to sequences of

binary events, rather than changes in prices or wealth. Thus, in our model we will look

at the sign of returns over a specified number of periods 𝐿. If at least 𝑚 of these returns

are positive, or at least 𝑚 are negative, then a binary streak heuristic is triggered.

We assume the heuristic lasts for only one period, so we have no need to keep track

how long the heuristic will remain in effect. However, we record the direction 𝑑, which

specifies whether most of the returns over the past horizon are positive or negative. We

will not speculate which of the two heuristics will dominate (considering they work in

different directions). Rather, we assume the investor follows the gambler’s fallacy, and

note that we still capture the hot hand fallacy if the weight assigned to the heuristic is

negative.
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Definition 7. A binary streak heuristic is triggered as follows:

(𝑠𝑡, 𝑑) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if
𝑡∑︁

𝑣=𝑡−𝐿+1

I{𝑃1,𝑣 > 𝑃1,𝑣−1} ≥ 𝑚

(1,−1) if
𝑡∑︁

𝑣=𝑡−𝐿+1

I{𝑃1,𝑣 < 𝑃1,𝑣−1} ≥ 𝑚

(0, 0) otherwise

(9)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if 𝑑 = 1 and 𝑠𝑡 = 1

1 if 𝑑 = −1 and 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(10)

3.2.5 Regret

The regret heuristic is less basic than the heuristics described earlier, as it deals with

the reaction of an investor observing the price behavior of a risky asset relative to his

position. This heuristic captures the common idea that sometimes an investor “misses

out" on potential gains by not investing in the asset when it went up in value. This

investor will likely suffer a negative emotion, but his financial reaction is not obvious.

On the one hand, he may feel disappointed in the stock, and no longer want to invest

in it. On the other hand, he may wish to make up for his “mistake" by investing in

the asset instead. Strahilevitz, Odean, and Barber (2011) analyze retail trading records

and conclude that the former effect is more common, at least for the situation where an

investor sells a stock that goes up in price following the sale. Weber and Welfens (2011)

obtain similar results in a laboratory setting.

Lin, Huang, and Zeelenberg (2006) surveyed investors to ask which hypothetical sit-

uations they would feel the most regret as a result of their actions. They find that

non-investment in a profitable stock has the largest impact on regret. Also, as mentioned

above, the desire to avoid regret may be the primary cause of the disposition effect (see

for example Fogel and Berry, 2006).

We will model regret by looking at situations where the return on a risky asset over a

specified horizon is high (above a threshold 𝛼), while the return on the investor portfolio
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is low (below a threshold 𝜃). This will cause an investor to experience regret, and to be

more inclined to invest in the asset. Our specification of the missing out heuristic also

incorporates the possibility of an investor decreasing his position in the asset instead –

this will happen if the weight assigned to this heuristic is negative.

Definition 8. A missing out heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝐵𝑡

𝐵𝑡−𝐿

< 𝛼 and
𝑃1,𝑡

𝑃1,𝑡−𝐿

> 𝜃

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(11)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(12)

3.2.6 Anchoring

The final heuristic we consider is anchoring. In this heuristic, investors evaluate

information by comparing it to an important reference point. For example, a trader may

decide on whether to buy or sell a stock based on its current price relative to its purchase

price, a comparison which also may yield the disposition effect (Shapira and Venezia,

2001). While the purchase price is important, other aspects of past security and portfolio

performance also may influence the reference point. Baucells, Weber, and Welfens (2011)

estimate various functional forms for the reference point based on subject behavior in a

laboratory setting. They propose a model which uses a linear combination of five prices:

the current price, the purchase price, the average of prices over the holding period, as

well as the high and the low prices. They find that the coefficients for all five variables

are statistically significant in determining the anchor point.

George and Hwang (2004) suggest that the 52-week high stock price may be used by

some investors as a natural anchor, explaining a large part of momentum strategy profits.

More generally, investors may often compare the stock price to a recent high, and buy

the stock because it “looks cheap", even if it is fairly priced based on its fundamentals.

This is known among practitioners as a value trap (Yee, 2008, Speece and Rogers, 2010).

We will model this last aspect of anchoring by considering situations where an investor
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sees that the stock price has declined by more than a prespecified threshold relative to

the high of the stock within a past time horizon. If that happens, under the recent decline

heuristic, the investor is inclined to increase his position in the stock.

Definition 9. A recent decline heuristic is triggered as follows:

(𝑠𝑡, 𝑛𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, ℎ) if

𝑃1,𝑡

𝑚𝑎𝑥(𝑃1,𝑡−𝐿+1, 𝑃1,𝑡−𝐿+2, . . . , 𝑃1,𝑡)
< 𝛼

(1, 𝑛𝑜 − 1) otherwise and if 𝑛𝑜 > 1

(0, 0) otherwise

(13)

The heuristic trade is:

𝑧𝑡+1 =

⎧⎪⎨⎪⎩1 if 𝑠𝑡 = 1

0 if 𝑠𝑡 = 0

(14)

Having defined the component heuristics of an investor’s decision-making process,

we are ready to apply them to various investment scenarios. We start by outlining the

parameters of our model, both for individual heuristics and for their weights in a portfolio.

We then examine how investor decisions will affect this portfolio, simulating risky asset

prices for different return-generating processes. After that, we consider the historical

performance of investments in various asset classes while subject to these heuristics.

3.3 Model Parameters

Recall our specification for the investor’s allocation problem:

𝑤1,𝑡 = 𝑥1,𝑡 +
𝐾∑︁
𝑗=1

𝛾𝑗,𝑡𝑧
𝑗
𝑡

Each of the variables on the right side at time 𝑡 is a function of the information ℱ𝑡−1

available to the investor after the end of period 𝑡−1; this includes past portfolio balances

𝐵𝑠 and asset prices 𝑃𝑖,𝑠 for 𝑠 ≤ 𝑡− 1. These variables are functions with parameters that

stay fixed throughout the whole investment horizon:

𝑥1,𝑡 = 𝑥1,𝑡(𝛼,ℱ𝑡−1), 𝛾𝑗,𝑡 = 𝛾𝑗,𝑡(𝛽𝑗,ℱ𝑡−1), 𝑧
𝑗
𝑡 = 𝑧𝑗𝑡 (𝜃𝑗,ℱ𝑡−1)
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For simplicity, we will assume that the default strategy 𝑥1,𝑡 used by an investor main-

tains a constant allocation, which corresponds to the “buy and hold” strategy. In this

case, the vector 𝛼 contains just one parameter – which is the level, so that 𝑥1,𝑡 = 𝛼. Sim-

ilarly, we will assume that the weights assigned to the heuristics are not time-varying.

This way, we set 𝛾𝑗,𝑡 = 𝛽𝑗. Finally, the parameters for 𝜃𝑗 for the “heuristic trades" 𝑧𝑗𝑡

have been described in the previous section.

In general, the model parameters are unknown, and they need to be estimated from

data. Ideally, our data contains the values of the portfolio positions and asset prices,

so that we can calculate both 𝐵𝑡 and 𝑃𝑖,𝑡. After that point, however, we find ourselves

dealing with a high-dimensional statistical inference problem, a particularly difficult one,

considering the functions 𝑧𝑗𝑡 have nonlinear parameters, some of which are continuous,

and others discrete. We address the inference problem in Section 3.6.

Since we do not have the data available, we will choose what we believe are “reason-

able" parameters, and use them in our simulations and historical backtests. Note that

these parameters are chosen mainly for expositional purposes. For more robust conclu-

sions about the effects of our heuristics, these parameters should be based on empirical

data.

3.3.1 Default Strategy and Heuristic Weights

We first need to decide on the proper frequency of portfolio decisions in our model.

We believe that a monthly frequency is a reasonable compromise between a short time

horizon and a long time horizon. This allows us to maintain the computational tractability

of investor portfolio performance over a long horizon, while still allowing the investor to

make decisions reasonably often. At the same time, if the investor rebalances his portfolio

every month, trading costs will have fewer effects than than rebalancing daily or even

more frequently.

We will assume a 𝑥𝑗,𝑡 = 60% allocation to the risky asset for our default strategy. This

corresponds to the classic 60/40 ratio of equities to bonds, still quite a popular strategy

among long-term investors. For the heuristic weights, we will consider two situations.

The first assumes at most two of the heuristics are active, so that we consider pairs of

heuristics. This allows us to isolate the effects of the individual heuristics, since only

one or two will affect the investor at any given time. Similarly, we can analyze the
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Table 3.1: Heuristics Used in Simulations and Backtests

Heuristic 
Related 

behavioral bias 
Nature of 
heuristic 

Horizon for past 
performance 

(months) 

Heuristic 
lasts for 
(months) 

Threshold 

LT Losses Loss Aversion 
Trend-

following 
12 3 –5% (loss) 

LT Gains Overconfidence 
Trend-

following 
12 3 15% (gain) 

ST Losses 
Disposition 

Effect 
Contrarian 3 1 –3% (loss) 

ST Gains 
Disposition 

Effect 
Contrarian 3 1 5% (gain) 

Missing Out Regret Either 12 3 
gain on risky asset 

threshold: 5% 
gain on portfolio 
threshold: 2% 

Recent 
Decline 

Anchoring Contrarian 24 6 
–10% (loss relative 

to max) 

Binary 
Streak 

Gambler’s/Hot 
Hand Fallacy 

Contrarian 6 1 
# of months of same 

return sign: 6 

 
This table lists, for each heuristic, the behavioral bias it relates to and the parameters assumed
when carrying out simulations and backtests. We also specify whether the heuristic is trend-
following or contrarian in nature. LT stands for long-term, ST stands for short-term.

interaction between each pair of heuristics while varying the weighting of the heuristics

in a tractable manner. For every pair of heuristics 𝑖 and 𝑗 we consider two cases for

their weights (𝛾𝑖,𝑡, 𝛾𝑗,𝑡): (60%, 20%) and (20%, 60%). If 𝑖 = 𝑗, this corresponds to a case

when only one heuristic is active, with a weight of 𝛾𝑖,𝑡 = 80%. The weights for every

other heuristic 𝑘 ̸= 𝑖, 𝑗 are set to 0%. With 𝐾 = 7 possible heuristics, we have a total of

𝐾2 = 49 different cases.

The second situation occurs when all the heuristics are active. We will use it to

analyze how the heuristics interact with each other simultaneously. In that situation, we

assign the same weight of 𝛾𝑗,𝑡 = 20% to each heuristic.

3.3.2 Heuristic Parameters

In all our simulations we assume fixed parameters for the seven heuristics; this allows

for a more consistent comparison across the different cases. In Table 3.1 we specify,

for each heuristic, the bias it relates to, the parameters considered, as well as whether

the heuristic is contrarian or trend-following in nature. As we will see later, the nature

of the heuristic is an important determinant for how the heuristic affects investment

performance. We explain our reasoning behind the chosen parameters below.

Long-Term Losses: With our choice of monthly portfolio rebalancing, a one-year
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horizon is a natural one to measure portfolio losses over a relatively long period. We

assume this heuristic lasts for a shorter period, i.e. one quarter. The threshold for losses

is −5%, a moderate loss for a portfolio over a one-year period, given that we use a 10%

annual return and a 20% annual volatility for our risky asset returns.

Long-Term Gains: This heuristic is similar to the long-term losses heuristic, using the

same horizons for past portfolio performance and heuristic duration. The threshold for

gains is 15%, a reasonable number for a “good" return on a portfolio given the underlying

asset return dynamics described in the previous paragraph.

Short-Term Losses: Here, an investor looks at past performance over a short horizon

(3 months), and is reluctant to liquidate his portfolio if he has suffered a loss over the

period. We assume this heuristic lasts for a very short period of time (1 month). The

loss threshold should also be closer to 0% than the long-term losses heuristic, since we

are dealing with a short-term decision. We use a value of −3% for this number.

Short-Term Gains: This heuristic is similar to the short-term losses heuristic. We

also assume a three-month horizon for past performance measurement, and one month

for the duration of the heuristic. The gain threshold is still close to 0%, but it should

be slightly larger than the corresponding value for short-term losses, since the expected

return on the asset is positive. We use 5% for the threshold.

Missing Out: The choice of time horizons in this heuristic will be the same as the

long-term heuristics considered above. An investor compares the performance of his

portfolio over the past year to the performance of the risky asset. If the heuristic is

triggered, the investor will be affected by the heuristic for three months. The non-trivial

part of specifying this heuristic, however, is setting the proper thresholds of the risky

asset returns and the portfolio returns. We tentatively set the threshold for the gain on

the risky asset to 10% (close to its expected return), and the threshold for the gain on

the portfolio to 2% (an adequate but low return).

Recent Decline: For this heuristic, an investor compares the current price to the

highest price “in recent memory.” It makes intuitive sense to assume a long horizon for

this heuristic, and we use two years. The heuristic is also assumed to last for a rather

long period of time, half a year. We set a threshold of −10% on the asset loss in order

for an investor to view the asset as “cheap".

Binary Streak: Our final heuristic is the binary streak heuristic. We assume this
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Table 3.2: Parameters for Simulated Processes

Return Process Parameters 

Random Walk mu  = 6%; vol = 19% 

AR(1) Process, 
Rho = 20% 

mu  = 6%; vol = 19%; rho = 20% 

AR(1) Process 2, 
Rho = –20% 

mu  = 6%; vol = 19%; rho = –20% 

MRS Process, 
S&P 500 

(mu1, mu2) = (12%, –17%), (vol1, vol2) = (15%, 34%), P = [
99% 1%
8% 92%

] 

MRS Process, 
Crash Scenario 

(mu1, mu2) = (7%, –40%), (vol1, vol2) = (18%, 80%), P = [
99% 1%
90% 10%

] 

 
This table lists the parameters for the return processes used in simulations. mu stands for
annualized mean, vol for volatility, rho for serial correlation. P is the transition probability
matrix.

heuristic is active over relatively short horizons. We consider an investor looking at the

six past monthly returns, and if the vast majority of them (five or more) are of the same

sign, the heuristic is triggered. Once triggered, the heuristic lasts for a month.

3.4 Simulation Analysis

We now consider how an investor affected by the heuristics would fare under five

different simulated market conditions. We assume a 0% rate of return on the risk-free

asset, and consider three generic underlying return processes for the risky asset: a random

walk, an AR(1) process, and a Markov regime-switching (MRS) process. For the AR(1)

process and the MRS process, we consider two sets of parameter values. We look at five

different processes in total, listed in table 3.2.

The first process is a random walk with an annual mean of 6% and volatility of

19%. These parameters are chosen to match the corresponding statistics for the S&P

500 monthly returns over the 1926 - 2014 period. 4 The next two simulated scenarios

are AR(1) processes, using the same (unconditional) annual mean and volatility as the

random walk. We consider two values for the serial correlation in returns: −20% and 20%.

These values of serial correlation may seem a little extreme; however, they were chosen

to see more clearly how the effects of the heuristics change for different autocorrelation

values. As a reference, we provide the specification for the log returns 𝑟𝑡 following an

AR(1) process:

4S&P 500 returns were obtained from CRSP.
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𝑟𝑡 = 𝜇 + 𝜌(𝑟𝑡−1 − 𝜇) + 𝜎𝜖𝑡, 𝜖𝑡 ∼ 𝑊𝑁(0, 1) (15)

where 𝜇 is the mean, 𝜎 is the volatility, and 𝜌 is the serial correlation coefficient. Setting

𝜌 = 0% gives a random walk process.

Finally, we analyze two different specifications for the Markov regime-switching pro-

cess, one simulating an environment that switches between a bull market and a bear

market, and another that switches between a “normal” market and stock market crash

conditions. We assume that there are two states, and the log-returns in each state are

normally distributed. The MRS model is defined as:

𝑟𝑡 = 𝜇𝑖𝑡 + 𝜎𝑖𝑡𝜖𝑡 , 𝜖𝑡 ∼ 𝑊𝑁(0, 1) (16)

where 𝑖𝑡 ∈ {1, 2} is the regime indicator which evolves according to a discrete Markov

chain with the transition probability matrix 𝑃 :

𝑃 =

⎡⎣𝑝11 𝑝12

𝑝21 𝑝22

⎤⎦ (17)

so that 𝑝𝑖𝑗 = P(𝑖𝑡+1 = 𝑗|𝑖𝑡 = 𝑖). In the bull market regime (without loss of generality,

we will assume this is regime 1), the risky asset’s returns are distributed as 𝑁(𝜇1, 𝜎
2
1),

and in the bear market regime (regime 2) its returns are distributed as 𝑁(𝜇2, 𝜎
2
2) where

𝜇2 < 𝜇1.

We estimate the first set of parameters using monthly returns on the S&P 500 over

the 1926 - 2014 period. We see that in the “good" regime, there is an annualized mean

of 12% and volatility of 15%, while in the “bad" regime, there is a very negative mean of

−17%, and high volatility of 34%. The estimated transition probability matrix implies

that the good regime occurs 88% of the time, or about 7 out of 8 times.

The second MRS process corresponds to a case where the good regime is a “normal"

environment, with returns similar to the S&P 500, while the bad regime represents a

stock market crash, one that occurs quite rarely. We specifically assume an annual mean

of −40% and a volatility of 80% in the bad regime. We set a transition probability of 1%

from the good regime to the bad one, and an unconditional probability of 1% of the bad
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regime occurring, yielding the transition probability matrix in Table 3.2.

Now that we have chosen the particular specification of the heuristics, their weights,

and the underlying returns process, we are ready to simulate investor behavior. We

generate 50,000 paths of monthly returns, each path containing 500 observations (corre-

sponding to approximately 40 years). The first 30 observations are used as a “burn-in",

during which the investor follows only the default strategy and is not affected by the

heuristics. After that burn-in period, the heuristics become relevant. 5 We analyze the

performance statistics of the resulting portfolio by calculating them for each return path

and then averaging over all the paths.

3.4.1 Simulations with Pairs of Heuristics

We begin by considering the situation where at most two heuristics can be active. We

consider every possible pair of heuristics 𝑖 and 𝑗, so that their weights in the investor

decision-making model are 60% and 20%, respectively.

Table 3.3 shows the detailed portfolio performance of an investor in one of our five

simulated processes. In particular, we look at the situation where the risky asset returns

follow an AR(1) process with a positive serial correlation of 20%. Exposure to the heuris-

tics consistently hurts the investor’s Sharpe ratio and hit ratio, with the short-term gains

heuristic and the binary streak heuristic being particularly detrimental to performance.

This intuitively makes sense: in a strongly trending environment like our example, any

gains or positive returns are expected to continue. In such situations, however, getting

out of the market (what these two heuristics typically do) is suboptimal. On the other

hand, both of these heuristics decrease volatility, since they encourage the investor to be

less invested overall. The long-term losses heuristic appears to be the only heuristic that

helps to improve maximum drawdown significantly.

Of the other heuristics, the short-term losses heuristic also hurts performance, using

the Sharpe ratio and the maximum drawdown as the basis for comparison, because like

the earlier examples, it is contrarian in nature. The other three heuristics – long-term

gains, missing out, and recent decline – tend to provide higher returns than the buy-and-

hold strategy, but also higher volatility.

5The burn-in period is required so that there is a history of past asset returns and portfolio balances
which are required to generate heuristics going forward.
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In Table 3.4, we compare the Sharpe ratios of the investor portfolio for all five of our

returns processes. The results for the random walk and the MRS process in a market

crash scenario are very similar, with the long-term losses heuristic giving a significantly

worse performance relative to the benchmark, and the other heuristics having little effect.

For the AR(1) process with a serial correlation of 20%, the Sharpe ratio decreases

in all situations, as we have discussed earlier. On the other hand, for the AR(1) pro-

cess with a negative serial correlation of −20%, we see significant outperformance from

some heuristics – in particular, from the short-term losses heuristic, the short-term gains

heuristic, and the binary streak heuristic. This is readily explained by the fact that these

heuristics cause an investor to trade in the opposite direction of the movement of past

returns, while the returns process in this scenario also exhibits mean reversion. Mean-

while, the long-term losses heuristic gives a much lower Sharpe ratio than the others, as

it leads to an investor staying out of the risky asset following a decline in its price.

We note an interesting combination of heuristics that leads to a significant deviation

from the benchmark strategy in this process. The combination of the long-term gains

heuristic and the missing out heuristic leads to a decrease in the Sharpe ratio of over 10%,

while neither of these two heuristics has much effect on its own. This is due to the very

large increase in volatility of that specific combination’s returns (14.2% compared to just

11.2% for the buy-and-hold strategy). This takes place in situations where an investor

stays out of the risky asset and “misses out” on its returns, followed by a significant

and persistent investment in the risky asset due to the missing out heuristic, and then a

further increase in investment because of the long-term gains heuristic. However, by that

point, the investor has typically taken on too much risk, while returns will eventually turn

negative due to mean reversion in the underlying process, causing the overall performance

to suffer.

The last process we consider is the MRS process calibrated to historical S&P 500

returns. Here, the short-term losses heuristic and the recent decline heuristic are bad

for performance, because they are triggered under conditions of large negative returns

on the risky asset, which explicitly signify a negative regime and low subsequent returns,

while encouraging the investor to hold more of the risky asset, despite the negative

regime. The binary streak heuristic also causes the Sharpe ratio to deteriorate relative

to the benchmark, since it is triggered in conditions which implicitly identify a good
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or a bad regime (e.g. a high number of subsequent returns that are all negative or all

positive) while trading in the direction opposite to the one that an investor would prefer,

had he knowledge of the true regime. Finally, the long-term losses heuristic improves

performance in this scenario, because it would advise the investor to stay out of the risky

asset following large losses.

We conclude that the underlying returns process has a significant effect on the relative

performance of our heuristics, whether considered singly or in pairs. This effect can often

be explained by whether a heuristic is contrarian or trend-following in nature, and whether

the returns process of the risky asset exhibits persistent trending movement or mean

reversion. When returns are generated by a regime-switching process, it is important for

investor performance if the trigger for the heuristic can implicitly identify the regime, if

the trader is subsequently encouraged to take on a larger position in the risky asset, and

if that position favors the true underlying regime. Heuristics generally hurt performance

as measured by the Sharpe ratio in all cases and for all processes, with the exception

of contrarian heuristics for the mean-reverting AR(1) process, and the long-term losses

heuristic for the MRS process based on S&P 500 returns.

3.4.2 Simulated Heuristic Correlations

In this section, we analyze the interaction between the heuristics in more detail.

Unlike before, we now assume that all the heuristics are active at the same time; the

weight assigned to each heuristic is 𝛾𝑖,𝑡 = 20%. Recall that each heuristic results in an

additional allocation 𝑧𝑖𝑡 to the risky asset. (If the heuristic is not active, this additional

allocation is simply equal to zero.) We will look at the pairwise correlations 𝜌(𝑧𝑖𝑡, 𝑧
𝑗
𝑡 ) to

determine how often the heuristics affect investor allocation in the same direction.

Table 3.5 lists the correlations of the heuristics for each case and each returns process.

There is a remarkable similarity in heuristic correlations across different processes – some-

thing we did not observe when looking at their relative performance. This is conceptually

important, because it allows us to identify the structure of the heuristics from trading

data even when the data comes from different assets and different market environments.

Most of these correlations can be explained by the character of the heuristics, that is,

whether they are trend-following and extrapolative or contrarian in nature. The long-term

losses heuristic and the long-term gains heuristic are both trend-following, and we see that
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they exhibit a strong positive correlation of around 50% across all processes. Examining

them in more detail, the long-term gains heuristic leads to a more positive or unchanged

allocation to the risky asset, while the long-term losses heuristic usually leads to an

unchanged or a more negative allocation. Similarly, the short-term losses heuristic and

the short-term gains heuristic also have a strong positive correlation. Finally, every pair

of short-term and long-term heuristics has a negative correlation, because the heuristics

operate at different time horizons, although it is not as strong as the earlier examples.

The remaining three heuristics are more heterogeneously correlated than the first

four. The missing out heuristic has a low correlation with all the other heuristics, since

it is the only heuristic determined both by the price behavior of the risky asset and by

portfolio performance. The recent decline heuristic has a large negative correlation with

both long-term heuristics. This has an intuitive explanation. Following a significant fall

in the risky asset price, the investor would be more inclined to add to his position under

the recent decline heuristic, rather than to lower it under the long-term losses heuristic,

or to leave it unchanged under the long-term gains heuristic. The binary streak heuristic

has a relatively low correlation with other heuristics; however, the correlation is negative

relative to the long-term heuristics, and positive relative to the short-term heuristics,

since the binary streak heuristic is contrarian in nature, while the long-term heuristics

are extrapolative, and the short-term heuristics are contrarian.

While the correlation patterns across the different returns processes are in general very

similar, there are two notable exceptions. The first exception is the set of correlations

in the MRS S&P 500 process between the short-term losses heuristic and the short-term

gains heuristic, between the long-term losses heuristic and the long-term gains heuristic,

and between the long-term gains heuristic and the recent decline heuristic. These are

smaller in magnitude compared to the other four processes. Generally speaking, for all

three of these pairs, one heuristic is active only in the good regime in the MRS S&P 500

process, while the other is active only in the bad regime. 6 This dampens the correlations

relative to the other returns processes, where both heuristics can be active at the same

time.

The other notable exception is the correlation between the long-term losses heuristic

and the recent decline heuristic in the AR(1) process with negative serial correlation. The

6For example, the long-term losses heuristic, triggered by very poor returns, would usually be triggered
in the bad regime for the risky asset.
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correlation between this pair is significantly less negative than for the other processes.

This is explained by mean reversion in returns in the AR(1) process. The recent decline

heuristic is less likely to be triggered at the same time that the long-term losses heuristic

is triggered, since this would require large negative returns over both the 24-month and

the 12-month periods. However, this is much more likely in the other returns processes,

and it is precisely those times when both heuristics are active that lead to a more strongly

negative observed correlation between the heuristics in allocation decisions.

To summarize, there is a common correlation structure between allocations influenced

by particular heuristics across different returns processes. Trend-following (extrapolative)

heuristics tend to be positively correlated to each other, and contrarian heuristics also

tend to be positively correlated to each other. We also observe a negative correlation

between every pair of trend-following and contrarian heuristics. Particularly important

correlations are found between the long-term losses and gains heuristics (positive), be-

tween the short-term losses and gains heuristics (also positive), and between the long-term

heuristic and the recent decline heuristic (negative).

3.5 Empirical Analysis

We next examine the historical performance of an investor portfolio exposed to these

behavioral heuristics. For notational convenience, we will define an investment strategy

as a pair of assets, a risky asset and a risk-free asset. As before, the default strategy

consists of fixed weights of 60% in the risky asset, and 40% in the risk-free one, reset

at the start of each month. We consider five different historical investment strategies,

spanning different asset classes:

∙ 60% S&P 500, 40% US Long-Term Corporate Bonds, 1926 - 2014

∙ 60% S&P 500, 40% US 1-mo. Treasury Bills, 1926 - 2014

∙ 60% US Long-Term Corporate Bonds, 40% US 1-mo. Treasury Bills, 1926 - 2014

∙ 60% US Dollar Index, 40% US 1-mo. Treasury Bills, 1990 - 2014

∙ 60% S&P GSCI Commodity Index, 40% US 1-mo. Treasury Bills, 1970 - 2014
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Data for S&P 500 was obtained from the Center for Research in Security Prices

(CRSP), and for US Long-Term Corporate Bonds and T-Bills from Ibbotson and Asso-

ciates. Returns on the US Dollar Index and on GSCI were obtained from Datastream.

Note that transactions costs are ignored for all strategies.

As with our earlier simulations, we first consider pairs of heuristics and their corre-

sponding portfolio performance. We then consider the situation when all the heuristics

are active, and study the resulting correlations of allocation between the heuristics.

3.5.1 Empirical Results for Pairs of Heuristics

Figure 3.6 shows the historical performance of an investor exposed to pairs of heuris-

tics versus the popular 60/40 equity-bond strategy. In this example, the long-term losses

heuristic significantly outperforms the buy-and-hold strategy in the categories of return,

volatility, Sharpe ratio, and maximum drawdown. The short-term gains heuristic and the

missing out heuristic also improve investor performance, but only if the investor is also

exposed to the long-term losses heuristic. In the other cases, investor performance dete-

riorates, especially if the investor is heavily influenced by the short-term losses heuristic,

the recent decline heuristic, or the binary streak heuristic. These three heuristics are

contrarian in nature, and given that the underlying risky asset, the S&P 500, exhibits

consistent trends over time, with a serial correlation of 8.7%, it is natural that they have

a negative affect on investor performance.

In Figure 3.7, we focus on just one performance metric, the Sharpe ratio, and this time

consider all five historical investment strategies. Not surprisingly, the performance for

the S&P 500 and Bonds strategy is similar to that of the S&P 500 and T-Bills strategy,

with the long-term losses heuristic, the short-term gains heuristic, and the missing out

heuristic doing well. Most of the heuristics generally do not affect the Bonds and T-

Bills strategy. However, the recent decline heuristic strongly hurts performance in this

strategy, and the binary streak heuristic also decreases the overall Sharpe ratio, though

to a lesser extent. We believe that these differences in performance stem from the low

volatility of both bonds and T-Bills, causing the heuristics to be triggered less frequently.

The comparative patterns of Sharpe ratios while trading the GSCI under the influ-

ence of the heuristics look surprisingly similar to those of the S&P 500. Once again,

the long-term losses heuristic improves investor performance, especially in the presence
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of the short-term gains heuristic and the missing out heuristic. However, performance

deteriorates in other situations, particularly when the recent decline heuristic is involved.

This can be explained by trends in the index, since the monthly serial correlation in GSCI

monthly returns is 15.8%, even stronger than in the S&P 500.

Finally, the US Dollar Index strategy is positively influenced by the long-term losses

heuristic and the binary streak heuristic. This is quite striking, since the long-term losses

heuristic is extrapolative in nature, while the binary streak heuristic is contrarian. On

the other hand, both the contrarian short-term gains heuristic and the contrarian recent

decline heuristic significantly hurt investor performance. This may be caused by different

dynamics of the US Dollar Index operating at different time horizons: trending dynamics

over horizons longer than one year, and mean reversion over shorter ones. However, it

must be kept in mind that the US Dollar Index loses money over the 1990 - 2014 period,

so staying out of this risky asset and switching to T-Bills is of benefit to the investor,

unlike the other four strategies, where the risky asset outperforms the risk-free one.

To summarize, the long-term losses heuristic and the short-term gains heuristic im-

prove performance for all the historical investment strategies under consideration. While

these heuristics are often viewed as irrational from a classical finance perspective, they

actually benefit investors in these cases. Other heuristics are generally detrimental to

returns, especially the recent decline heuristic and the short-term losses heuristic. As

with our earlier simulations, the historical performance of an investor portfolio under the

influence of these heuristics can often be explained by the contrarian or extrapolative

nature of the heuristics, and whether the underlying risky asset returns “match" these

dynamics.

3.5.2 Empirical Heuristic Correlations

As with our earlier simulations, we now study the interactions between heuristics in

our historical portfolio returns. Recall that this analysis assumes that all the heuristics

are active, each having a weight of 𝛾𝑖,𝑡 = 20%. The value 𝜌(𝑧𝑖𝑡, 𝑧
𝑗
𝑡 ) measures the correlation

between two heuristics, and signifies how often the heuristics cause the investor portfolio

to move in the same direction. We find that the patterns of correlation are generally

similar to those found in our simulations; however, for some particular pairs, there are

substantial differences.
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Table 3.8 lists the correlations between the heuristics. The long-term losses heuristic

and long-term gains heuristic have a significant positive correlation, as do the short-term

heuristics. However, unlike our simulated processes, this correlation is generally low in

our historical returns, and particularly low for the 60% Bonds/40% T-Bills and the 60%

Dollar Index/40% T-Bills investment strategies. A possible explanation may be that the

volatility is lower for these two strategies, causing many periods when both heuristics are

inactive, which would dampen the correlation.

We observe a negative correlation between every short-term heuristic and every long-

term heuristic. This correlation is particularly low between the long-term losses heuristic

and short-term losses heuristic. Furthermore, this is consistent across all asset classes

in our investment strategies. Recall that the negative correlation stems from the fact

that the short-term heuristics are contrarian in nature, while the long-term heuristics are

extrapolative.

The missing out heuristic has a low correlation with other heuristics. In fact, for the

investment strategies not involving the S&P 500, this heuristic is never actually active,

so its correlations with other heuristics cannot be calculated. The recent decline heuristic

has a large negative correlation with both the long-term gains heuristic and the long-term

losses heuristic, and an adequate positive correlation with the short-term gains heuristic,

similar to what we observed in our simulations.

Finally, the binary streak heuristic in our historical investment strategies has larger

correlations than the observed correlations in our earlier simulations. These correlations

are positive with respect to the long-term heuristics, negative with respect to the short-

term ones, and positive again with respect to the recent decline heuristic. When we look

at the historical data, the binary streak heuristic interacts more with the other heuristics

in general. There may be a non-obvious dependence between the conditions that give

rise to the binary streak heuristic and the other heuristics, given that the dynamics of

historical returns must necessarily be more complicated than in our simulated processes.

We briefly discuss how these correlations compare between different investment strate-

gies. Broadly speaking, these patterns are similar to the correlations in performance we

observed when looking at pairs of heuristics. Once again, the S&P 500 and Bonds strat-

egy, the S&P 500 and T-Bills strategy, and the GSCI and T-Bills strategy each show a

similar picture. Similarly, the patterns of correlation in the US Bonds and T-Bills strategy
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and the Dollar Index and T-Bills strategy closely resemble each other, but depart quite

a bit from the patterns found in the first three strategies. This is due to the fact that

the volatility for the last two strategies is low, and the dynamics of US T-Bills returns

play a more important role than in the strategies trading the the S&P 500 or the GSCI,

where these assets’ returns overwhelm the returns of US T-Bills.

We find the patterns of correlations are very similar to those we observed in our ear-

lier simulations, with every pair of contrarian heuristics and every pair of trend-following

heuristics typically moving the investor portfolio in the same direction. Similarly, every

mixed pair of contrarian and trend-following heuristics had a negative correlation with

each other when using historical data. Particularly large values of correlations are ob-

served for the S&P 500 and US T-Bills strategy, the S&P 500 and US Bonds strategy,

and the GSCI and US T-Bills strategy.

3.6 Model Inference

In this section, we demonstrate a potential approach to estimate the model parameters

from trading data. We show that a Metropolis-Hastings algorithm with Gibbs sampling

provides relatively accurate estimation performance for several of the parameters, includ-

ing the default allocation, the allocation noise, and the weights of the heuristics. We first

outline the framework for performing the estimation and the proposed distributions for

each variable. Next we consider the different cases for the true distributions of the heuris-

tic parameters and active heuristics, and investigate how close our parameter estimates

are to the true values.

3.6.1 Modeling Framework

Recall the deterministic version of the investor allocation problem:

𝑤1,𝑡 = 𝑥1,𝑡 +
𝐾∑︁
𝑗=1

𝛾𝑗,𝑡𝑧
𝑗
𝑡 (18)

We assume there are two assets, with the first asset being the risky one, so that 𝑤1,𝑡

is the allocation to the risky asset. The variable 𝑥1,𝑡 is the default strategy, 𝛾𝑗,𝑡 is the

heuristic weight, and 𝑧𝑗𝑡 is the allocation due to the heuristic. The default strategy and
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the heuristic weights are assumed to be constant, so that 𝑥1,𝑡 = 𝛼 and 𝛽𝑗 = 𝛾𝑗,𝑡. The

heuristics take on the functional forms described earlier, with allocation 𝑧𝑗𝑡 being defined

by parameters 𝜃𝑗 that stay constant throughout the investment horizon.

The “big picture" problem is: given the observed portfolio balances and asset prices

for a large sample of investors, how do we estimate the parameters 𝛼, 𝛽𝑗, 𝜃𝑗?

We make one enhancement to our deterministic framework by introducing noise into

the investment decision. After this modification, the investor allocation becomes:

𝑤1,𝑡 = 𝑥1,𝑡 +
𝐾∑︁
𝑗=1

𝛾𝑗,𝑡𝑧
𝑗
𝑡 + 𝜖𝑡 (19)

where 𝜖𝑡 ∼ 𝑁(0, 𝜎2) is a noise term for an investor; we assume the standard deviation 𝜎

remains constant and is another parameter we need to estimate.

While we will investigate the estimation performance for a single investor, we also

need to think about the case when there are many investors. There are two reasons this

is important. The first is prosaic enough: estimates for one particular investor may not

be very accurate. For example, if we obtain 10 years of historical monthly allocations,

then we still only have 120 observations, a relatively small number. Furthermore, indi-

vidual investors usually trade infrequently, making the estimation problem even harder.

The second reason for considering a sample of many investors is investigative. We are

interested in modeling how investors trade as a group, and we would like to discover this

group’s cross-sectional distribution of parameters.

We handle multiple investors by assuming each investor 𝑖 has his own set of param-

eters 𝛼𝑖, 𝛽𝑖,𝑗, 𝜃𝑖,𝑗 for 𝑖 = 1, 2, . . . , 𝑁 . We also make assumptions on the cross-sectional

distribution of these parameters, described below.

Denote by 𝑇𝑁(𝜇, 𝜎2, 𝑎, 𝑏) the truncated normal distribution, which is the distribution

of a normal random variable sampled from 𝑁(𝜇, 𝜎2), conditional on the variable falling

into the range [𝑎, 𝑏]. Denote by 𝑈(𝑎, 𝑏) the uniform discrete distribution, restricted to

the range [𝑎, 𝑏].

We can combine all of the parameters for a particular investor into one vector 𝑣𝑖.

The order of these parameters is the same for each investor. For example, the first two

parameters can be the default allocation and the allocation noise, followed by a vector of

parameters for the long-term losses heuristic and its weight, which is followed by a vector

126



of parameters for the long-term gains heuristic and its weight, etc. The vector includes

the continuous parameters, such as the default allocation, the noise, the weight for a

particular heuristic, and the threshold for a particular heuristic (e.g. the threshold on

losses for the long-term losses heuristic). It also includes the discrete parameters, such as

the past horizon over which the investor considers portfolio and/or asset returns, as well

as the horizon for the duration of the heuristic. Denote by 𝐼 the index set of continuous

parameters and by 𝐽 the set of discrete ones.

For every continuous parameter 𝑣𝑖,𝑘 (with 𝑘 ∈ 𝐼) we assume the truncated normal

distribution 𝑇𝑁(𝜇𝑘, 𝜎
2
𝑘, 𝑎𝑘, 𝑏𝑘). For every discrete parameter 𝑣𝑖,𝑙 (with 𝑙 ∈ 𝐽) we assume

the uniform distribution 𝑈(𝑎𝑙, 𝑏𝑙).

The full set of parameters for a cross-section of investors is the individual parameters

𝑣𝑖, for 𝑖 = 1, 2, . . . , 𝑛 and the sampling parameters : the mean and standard deviation

𝜇𝑘, 𝜎𝑘 for the continuous parameters, as well as the bounds 𝑎𝑘, 𝑏𝑘 for both the continuous

and the discrete parameters.

3.6.2 MCMC Estimation

To estimate our parameters, we employ a particular class of Markov chain Monte

Carlo (MCMC) algorithms called the Metropolis-Hastings within Gibbs sampler. We use

a “one-at-a-time" component sampling approach for this algorithm. The idea is that we

are trying to estimate a multi-dimensional vector 𝑥 by repeatedly proposing new sampleŝ︂𝑥𝑡+1 which differ from the previous sample ̂︀𝑥𝑡 in exactly one vector component.

The general algorithm works as follows. Assume that we have data 𝑧 on historical

balances and prices for investors, and that we intend to estimate a vector 𝑣 of parameters.

Our aim is to construct a Markov chain {𝑣𝑡}𝑡=1,...,𝑇 of samples, which resembles samples

from the true distribution of 𝑣 for large values of 𝑡.

We introduce some more notation. Let 𝑣𝑡 be the vector of components we have at the

end of step 𝑡. We assume it has dimension 𝐷; define 𝑣𝑖,𝑡 as the component 𝑖 of 𝑣𝑡. Define

𝜋(𝑣) = 𝑓(𝑧|𝑣) as the likelihood function on the data for parameters 𝑣. For component 𝑣𝑖,𝑡

we use the proposal density 𝑞𝑖(·|𝑣) that has support [𝑎𝑖, 𝑏𝑖]; we will outline the densities

we use a little later. The algorithm works as follows.

Step 1: Choose initial values 𝑣0 for the vector. Component 𝑣𝑖,0 is chosen to be an

arbitrary real number in the range [𝑎𝑖, 𝑏𝑖] in the case of continuous components, and an
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arbitrary integer in the range [𝑎𝑖, 𝑏𝑖] in the case of discrete components.

Steps 2, . . . , T: Given a sample 𝑣1,𝑡, . . . , 𝑣𝐷,𝑡 we choose the new sample as follows.

Define 𝑣𝑜𝑙𝑑 to be the vector with component 𝑗 equal to 𝑣𝑗,𝑡 for 𝑗 ≤ 𝑖 and equal to 𝑣𝑗+1,𝑡

for 𝑗 > 𝑖. For 𝑖 = 1, . . . , 𝐷 we propose a new value 𝑤 ∼ 𝑞(·|𝑣𝑜𝑙𝑑). Define 𝑣𝑛𝑒𝑤 to be the

same vector as 𝑣𝑜𝑙𝑑, but that has component 𝑖 equal to 𝑤. Sample a uniform [0, 1] random

variable 𝑈 . We set 𝑣𝑖,𝑡+1 = 𝑤 if:

𝑈 <
𝜋(𝑣𝑛𝑒𝑤)

𝜋(𝑣𝑜𝑙𝑑)
× 𝑞(𝑣𝑖,𝑡|𝑣𝑛𝑒𝑤)

𝑞(𝑤|𝑣𝑜𝑙𝑑)
(20)

Otherwise we set 𝑣𝑖,𝑡+1 = 𝑣𝑖,𝑡.

After the full path {𝑣𝑡}𝑡=1,...,𝑇 is generated, we discard the first𝑀 samples as a “burn-

in” and average the rest to get our estimates:

̂︀𝑣𝑡 =

∑︀𝑇
𝑡=𝑀+1 𝑣𝑖,𝑡

𝑇 −𝑀
(21)

3.6.3 Single Investor

In the case of a single investor, we observe the historical allocations 𝑤𝑡 and the prices

of the risky assets 𝑝𝑡. Our goal is to estimate the investor parameters 𝑥 and 𝜎, and the

heuristic parameters 𝜃𝑗.

We assume the parameters are independent of each other. This way, whenever we

propose a new value 𝑤 for a parameter 𝑖 whose past value is 𝑣𝑖,𝑡, the conditional distri-

bution only depends on 𝑤 and 𝑣𝑖,𝑡, and not on the other parameters. This significantly

simplifies our calculations.

The initial values for the parameters are listed in Table 3.19 in the Appendix. These

are “reasonable" initial values, deliberately set to be distinct from the true values that

we will consider later.

Table 3.19 shows the proposal density for each parameter. In the case of continuous

parameters, we use a conditional normal distribution, centered at the previous value of the

parameter and with relatively wide bounds. More specifically, if for parameter 𝑖, the most

recent MCMC sampled value is 𝑣𝑖,𝑡, then we propose a new value 𝑤 ∼ 𝑇𝑁(𝑣𝑖,𝑡, 𝜎
2
𝑖 , 𝑎𝑖, 𝑏𝑖),

where 𝜎𝑖, 𝑎𝑖, 𝑏𝑖 are prespecified. For discrete parameters we use a uniform distribution in

a prespecified range, conditional on the outcome being not equal to the previous value.
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More specifically, the proposal distribution is 𝑈(𝑎𝑖, 𝑏𝑖) conditional on the fact that the

sampled value 𝑤 is distinct from the last sampled value 𝑣𝑖,𝑡.

Our choice of prespecified parameters is made by taking into account the nature of

the parameters we are estimating. For example, it is natural to assume the plausible

range of default allocations is [0, 100%], while the range of thresholds for the long-term

losses heuristic is [−30%, 0%].

Each iteration of the algorithm for each parameter involves the calculation of the ac-

cept/reject probability in (20). The factor due to the parameter proposal 𝑞(𝑣𝑖,𝑡|𝑣𝑛𝑒𝑤)/𝑞(𝑤|𝑣𝑜𝑙𝑑)

is quite easy to compute, due to our initial assumption. However, the computation of

likelihoods 𝜋(𝑣𝑛𝑒𝑤) and 𝜋(𝑣𝑜𝑙𝑑) is more complicated. We present the formula for this

likelihood and discuss how we manage to significantly speed up its computation.

Suppose we have a sample of parameters ̂︀𝑣, and we need to compute likelihood 𝜋.

Following (19), the investor allocation is 𝑤𝑡 = 𝑤𝑡 + 𝜖𝑡, where 𝑤𝑡 is the deterministic

component of allocation and 𝜖𝑡 is white noise with variance 𝜎2. This is assumed to be

constrained to [0, 1], so the distribution is 𝑤𝑡 ∼ 𝑇𝑁(𝑤𝑡, 𝜎
2, 0, 1). Therefore, if we have

estimates ̂︀𝑤𝑡 of the deterministic component and an estimate ̂︀𝜎 of the allocation noise,

the log likelihood function becomes:

log 𝜋(̂︀𝑣) =
𝑇∑︁
𝑡=1

[︁ 1̂︀𝜎√2𝜋

(𝑤𝑡 − ̂︀𝑤𝑡)
2̂︀𝜎2

⧸︁
(Φ(

1 − 𝑤𝑡̂︀𝜎 ) − Φ(
0 − 𝑤𝑡̂︀𝜎 ))

]︁
(22)

where Φ is the cumulative distribution function for a standard normal random variable.

We now turn to the hardest part, which is the calculation of ̂︀𝑤𝑡. Recall the determin-

istic framework: ̂︀𝑤𝑡 = ̂︀𝑥+
𝐾∑︁
𝑗=1

̂︀𝛾𝑗̂︀𝑧𝑗𝑡 (23)

To compute the above sum, we require the balances and trades up to time 𝑡, as well as

the active heuristics up to time 𝑡, to identify the active heuristics at time 𝑡 and their

associated trades ̂︀𝛾𝑗̂︀𝑧𝑗𝑡 . This is a time-consuming exercise, even when the number of

trades is as small as one hundred. Without any special “tricks”, we would need to repeat

this procedure for each parameter, on every run, as many as 100,000 times, estimating

only a modest ten parameters over 10,000 MCMC runs.

However, the above computation can be sped up significantly. Because we are only

changing one parameter at a time, not all of the components of (23) will change if only
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one parameter is updated. For example, if only the default strategy ̂︀𝑥 is changed, the

allocation due to the heuristics will remain the same, and so does not need to be recom-

puted. Similarly, if a parameter for one particular heuristic is updated, the allocation due

to the other heuristics will remain the same, and we only need to compute the historical

allocations due to that particular heuristic. Therefore, if at every step 𝑘 of the MCMC

estimation we store the variables ̂︀𝑥, ̂︀𝛾𝑗, ̂︀𝑧𝑗𝑡 then we need to recompute only one of these

variables whenever a new parameter is updated in order to find ̂︀𝑤𝑡.

To develop an intuition about the performance of the MCMC method, we consider

a simple situation where there is only one investor who is affected by a single, known

heuristic. We present results only for the long-term losses heuristic; the results are

similar for other heuristics. We vary the number of historical observations available

to the procedure, as well as the true parameters of the investor.

A brief discussion of the data used in the estimation process is called for. We consider

three different sample paths for the prices of the risky asset. The lengths of the sample

paths are 1000, 500, and 100. Each sample is generated by simulating returns that

follow a random walk with annual mean of 6% and volatility of 19%; these are the same

parameters as estimated for the historical S&P 500 returns in Table 3.2. The frequency

of returns is assumed to be monthly. The return on the risk-free asset is assumed to be

zero. Once the prices are generated, we simulate the investor allocations according to the

model 19 and the specified parameters.

There are two caveats to keep in mind. First, we cannot start generating the heuristic

allocations immediately, because there are no historical prices and balances to consider.

Therefore, we use a “burn-in” period of 30 months, during which the investor allocates

according to the default strategy, and no heuristics come into play. Following this period,

we generate the full model. When we make our estimates, we assume this burn-in period,

and only past this point do we use historical allocations.

For the MCMC run, we draw 20,000 samples, and discard the first 10,000 of them.

The second caveat to keep in mind is that we generate the prices and allocations

only once. This makes our results dependent on the particular path generated. However,

we feel these results will still give us a good intuition about the performance of the

algorithm, and we believe they will not significantly change from the average performance

over several independent samples. (Also, at this early stage, we simply want to develop
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an initial intuition for the process.)

For each of three sample paths, we consider 13 variations for the true parameter

values. These are created by taking a default set of true parameters, and perturbing one

of the six parameters involved, while keeping the remainder unchanged. We consider two

alternative values for each of the six parameters.

Table 3.9 presents the estimation performance when 1000 historical observations are

available. We see that our parameter estimates are extremely accurate, with most esti-

mates being within 1% of the true value for the continuous parameters, and being exactly

equal to the true value for most discrete parameters. We also see that a significant change

in the true value for the default strategy or the heuristic weight leads to significantly worse

estimates; changing the true value for other parameters does not have such an effect.

We repeat the same exercise for samples of 500 and 100 historical observations, and

report the results in Tables 3.21 and 3.22 in the Appendix. For a sample of 500 observa-

tions, our results are still good, although now most continuous parameters estimates are

within 5% rather than 1% of the true value. For a sample of 100 observations, however,

our estimates are quite poor. The only continuous parameters for which we get adequate

estimates (i.e. within 20% of the true value) are the default strategy and the allocation

noise. The estimates for other parameters are off by more than 20% in most cases. Table

3.10 summarizes the estimation performance for all 13 variations of each of the three

sampled cases.

We conclude that when the number of historical observations is relatively large, we

can estimate the parameters for a single heuristic quite well. However, if this number is

small, our estimates tend to be poor. Assuming a monthly frequency in our method, 100

observations corresponds to about 8 years, close to the typical sample we observe in our

data. Going forward, we will assume that there will be only 100 historical observations

available. With a large cross-section of investors, however, our estimates will improve

significantly, as we will demonstrate shortly.
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Table 3.10: Summary of Estimation Performance for Long-Term Losses
Heuristic Only

Path Length Good Decent Poor

1000 69% 23% 8%

500 71% 23% 6%

100 36% 24% 40%

% Parameter Estimates

This table shows the performance of our MCMC procedure in estimating the true parameters.
We assume only the long-term losses heuristic is active. We use three different sample sizes of
historical observations of prices and portfolio balances: 100, 500, and 1000. For each sample
size, we consider 13 different subcases for the values of the true parameters; these are listed
in Tables 3.9, 3.21, and 3.22. Across all cases and all parameters, we count the proportion of
parameters for which the estimate is within 5% of the true value (good estimates), for which
the estimate is within 20% of the true value (adequate estimates), and for which the estimate is
more than 20% away from the true value (poor estimates); for discrete parameters, an estimate
is good if we get the parameter exactly right, it is adequate if we are off by 1, and it is poor if
we are off by more than 1.

3.6.4 Multiple Investors

We now extend the estimation procedure to a cross-section of multiple investors.

There are two approaches we can use. The first approach involves performing a single

MCMC run, during which we simultaneously estimate all of the individual parameters for

all investors jointly with the sampling parameters. In the second approach, we estimate

individual parameters separately for each investor, and then combine the estimates across

investors to obtain the sampling parameters.

We discuss the joint MCMC approach first, where we estimate all the parameters at

once. Within each MCMC run, we first update the sampling parameters, and then update

the individual parameters for each investor. We assume all the individual parameters are

independent of each other, and that they are independent across investors.

Updating Individual Parameters: Updating individual parameters with multiple in-

vestors is similar to the single investor case. Suppose we are updating a particular param-

eter 𝑣𝑖,𝑘,𝑡, where 𝑖 is the parameter index, 𝑘 is the investor index, and 𝑡 is the MCMC stage.

If this is a continuous parameter, then the proposal density is 𝑤 ∼ 𝑇𝑁(𝑣𝑖,𝑘,𝑡, 𝜎
2
𝑖 , 𝑎𝑖, 𝑏𝑖),

where 𝑎𝑖, 𝑏𝑖 are the sampling parameters for the upper and lower bounds and 𝜎2
𝑖 is pre-

specified. For a discrete parameter, the proposal density is 𝑤 ∼ 𝑈(𝑎𝑖, 𝑏𝑖), conditional on

the fact that the sampled value 𝑤 is distinct from the last sampled value 𝑣𝑖,𝑘,𝑡; 𝑎𝑖, 𝑏𝑖 are
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the sampling parameters for the upper and lower bounds.

One change is that the log likelihood function log 𝜋 is now made up of two compo-

nents. The first comes from the density of the parameters based on the observed data,

shown in (22). The second part comes from the conditional distribution of the individual

parameters based on the sampling parameters:

log 𝑓𝑐𝑜𝑛𝑑 =
𝑁∑︁
𝑘=1

𝐷∑︁
𝑖=1

log 𝑓(𝑣𝑖,𝑘,𝑡|𝑧𝑖) (24)

where 𝑁 is the number of investors, 𝐷 is the number of parameters, and 𝑓(𝑣𝑖,𝑘,𝑡|𝑧𝑖) is the

density of the individual parameter 𝑣𝑖,𝑘,𝑡 based on the sampling parameter 𝑧𝑖. Recall that

in the case of continuous parameters, 𝑧𝑖 = (𝜇𝑖, 𝜎
2
𝑖 , 𝑎𝑖, 𝑏𝑖) and 𝑣𝑖,𝑘,𝑡 ∼ 𝑇𝑁(𝜇𝑖, 𝜎

2
𝑖 , 𝑎𝑖, 𝑏𝑖),

while for discrete parameters 𝑧𝑖 = (𝑎𝑖, 𝑏𝑖) and 𝑣𝑖,𝑘,𝑡 ∼ 𝑈(𝑎𝑖, 𝑏𝑖).

While the above conditional likelihood expression involves many terms when the num-

ber of investors is large, only one term changes when one individual parameter is updated.

Therefore, as long as we keep track of the previous log likelihood function, computing

the new function is straightforward.

Updating Sampling Parameters: Here, we assume the sampling parameters are inde-

pendent of each other. In Table 3.20 in the Appendix we present the initial values and

the proposal densities for each of the continuous parameters. Note that we only include

the mean and variance parameters, not the bounds.

Unfortunately, we have not been able to develop a good method for estimating the

bounds 𝑎𝑖, 𝑏𝑖. This stems from the fact that these bounds depend on the individual

parameters, and have a high likelihood of becoming more extreme over time. For example,

the upper bound 𝑏𝑖 on a particular parameter 𝑣𝑖,𝑘 for each individual investor 𝑘 must

satisfy the condition that 𝑏𝑖 ≥ 𝑣𝑖,𝑘 for all 𝑘. If at least one of the individual parameters

𝑣𝑖,𝑘 is close to 𝑏𝑖, then whenever we sample a new value for 𝑏𝑖, it can only decrease slightly

(as it cannot drop below 𝑣𝑖,𝑘) but it can increase instead. Therefore, over more runs, the

MCMC sampled value 𝑏𝑖,𝑡 has a tendency to become larger and larger, leading to more

imprecision in the estimates.

An exactly analogous issue occurs when estimating the bounds 𝑎𝑖, 𝑏𝑖 for the discrete

parameters.

To mitigate this phenomenon, we have decided to assume that we know the true

134



values of the bounds for each parameter, and we investigate how well we can estimate the

continuous sampling parameters within those bounds. The true values for the bounds

are the same as the bounds of the distributions listed in Table 3.19.

In the “separated" MCMC estimation approach, individual parameters for each in-

vestor are estimated separately and for each investor, we create a separate MCMC chain

{𝑣𝑖,𝑘,𝑡}𝑡=1,...,𝑇 of parameter estimates. The chain is created using the same initial values

and proposal distributions as in Table 3.19. Based on this chain, the estimates of the

individual parameters are produced as in (21).

We next turn to the more difficult question, the estimation of the sampling parameters.

Once again, we focus on the continuous sampling parameters. The general problem is,

for a particular parameter 𝑖, we need to estimate its cross-sectional mean 𝜇𝑖 and variance

𝜎2
𝑖 across investors.

The true model is 𝑣𝑖,𝑘 = 𝜇𝑖 + 𝜂𝑖,𝑘 where 𝜂𝑖,𝑘 ∼ 𝑁(0, 𝜎2
𝑖 ). We have noisy estimates 𝑣𝑖,𝑘,𝑡

of 𝑣𝑖,𝑘, which, under reasonable assumptions, converge to some value ̂︀𝑣𝑖,𝑘. The relation

between these is:

𝑣𝑖,𝑘,𝑡 = ̂︀𝑣𝑖,𝑘 + 𝜉𝑖,𝑘,𝑡; ̂︀𝑣𝑖,𝑘 = 𝑣𝑖,𝑘 + 𝜓𝑖,𝑘

where 𝜉𝑖,𝑘,𝑡 ∼ 𝑁(0, 𝜎2
𝑖,𝑘(𝜉)) and 𝜓𝑖,𝑘 ∼ 𝑁(0, 𝜎2

𝑖,𝑘(𝜓)). Therefore, we have:

𝑣𝑖,𝑘,𝑡 = 𝜇𝑖 + 𝜉𝑖,𝑘,𝑡 + 𝜓𝑖,𝑘 + 𝜂𝑖,𝑘 (25)

We can “remove" the noise 𝜉𝑖,𝑘,𝑡 by averaging across time 𝑡. However, we cannot separate

the noise 𝜓𝑖,𝑘 from 𝜂𝑖,𝑘, and therefore, our estimates of volatility will be inflated. One

possible way to adjust for this inflation is to perform a separate estimation for 𝜎2
𝑖,𝑘(𝜓),

where the true value of the parameter 𝑣𝑖,𝑘 is fixed, run a large number of MCMC chains

to get different samples ̂︀𝑣𝑖,𝑘, and then take their sample variance. However, this is beyond
the scope of our study.

Based on the above analysis, our estimators are:

̂︀𝜇𝑖 =
1

𝑁

𝑁∑︁
𝑘=1

[︁ 1

𝑇 −𝑀

𝑇∑︁
𝑡=𝑀+1

𝑣𝑖,𝑘,𝑡

]︁
(26)

̂︀𝜎2
𝑖 =

1

𝑁 − 1

𝑁∑︁
𝑘=1

(̂︀𝑣𝑖,𝑘 − 𝑣𝑖)
2 (27)
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where: ̂︀𝑣𝑖,𝑘 =

∑︀𝑇
𝑡=𝑀+1 𝑣𝑖,𝑘,𝑡

𝑇 −𝑀
; 𝑣𝑖 =

1

𝑁

𝑁∑︁
𝑘=1

̂︀𝑣𝑖,𝑘
We investigate the performance of the above algorithm in estimating the true param-

eters for a cross-section of investors. We assume that data on 1000 investors is available,

with 100 historical observations for each. (These are realistic numbers; on a real dataset,

we would likely have even more investors.) We start with the simplest case, when only

one heuristic is active, then move on to cases when two heuristics are active, and finally

consider the case when all the heuristics are active. We find that the separated MCMC

algorithm outperforms the joint algorithm in terms of estimation accuracy. Overall, we

consistently produce good estimates of the means for the default strategy and the alloca-

tion noise, and adequate estimates of many of the heuristic weights. However, estimating

the means for the remaining heuristic weights, the heuristic thresholds, and the volatilities

of the sampling distributions is challenging.

Throughout this section, we will focus only on estimating the continuous sampling

parameters. We know from our analysis of the case of only one investor that 100 obser-

vations are not enough to get good estimates for the individual parameters. This time,

however, we have a large number of different investors, with individual parameters drawn

from a sampling distribution. We should potentially be able to estimate this distribution

quite well.

We first consider the case where only the long-term losses heuristic is present. This

is analogous to the single investor case in the previous section. There are six individual

parameters for each investor, and of these, four are continuous: the default strategy, the

allocation noise, the stop-loss threshold, and the heuristic weight. For each of these, we

have four parameters that describe the sampling distribution (a truncated normal): the

mean, the volatility, and the lower and upper bounds. As we have seen, estimating the

bounds is difficult. However, since their effect on the distribution is small, we concentrate

instead on the mean and the volatility. In total, we estimate eight parameters: two

parameters for each of the four sampling distributions.

We look at nine different cases for the true parameter values: a default case, and two

cases from each of the four sampling distributions, varying the mean for those distribu-

tions, while keeping all other parameters unchanged.

Using the joint MCMC estimation approach, Table 3.11 lists the true parameter val-
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ues with their corresponding estimates. Only the default strategy mean is estimated

consistently well, while estimates for the other parameters are predominantly poor. In

some cases, however, we are successful in estimating the heuristic weight. Additionally,

when the allocation noise is low, our estimates for the loss threshold and the heuristic

weight means are very close to the true values.

Table 3.12 looks at the same estimation problem employing a separated MCMC ap-

proach. As can be seen, our results are much better. In almost every case, and across all

parameters, the estimates for the mean are within 20% of the true values, and in many

cases within 5%. However, our estimates for volatility still tend to be poor, and higher

than the true distribution volatility. As discussed earlier, this is due to the “extra" noise

that comes from the estimation of the individual parameters that cannot be isolated from

the cross-sectional volatility in the sampling distribution.

We repeat the same exercise, this time assuming only the long-term gains heuristic is

active. Tables 3.23 and 3.24 list the estimation performance of the joint and the separated

approaches, respectively. Once again, the separated approach does much better than the

joint approach, with most estimates of the mean being within 20% of the true values,

and often within 5%.

Based on the above results, we conclude that the separated approach is better than

the joint approach, and consequently we employ this method in the following, more

complicated cases.

We turn our attention to three cases in which exactly two heuristics are active; in

particular, the two long-term heuristics, the two short-term heuristics, and the combi-

nation of the long-term losses heuristic and the short-term losses heuristic. In each of

these, we look at 13 subcases, varying the mean for each of the six continuous sampling

distributions, while keeping the other parameters unchanged.

Tables 3.15 and 3.16 summarize the estimation performance for the means and the

volatilities, respectively. The estimates of the means are within 20% of the true values

over 50% of the time, and within 5% of the true values over 25% of the time. However, the

estimates of the volatility are still predominantly poor. Our estimates are less accurate

than the single heuristic cases, not only because we are now estimating more parameters,

but also because the heuristics are potentially interacting with one another.

When we compare the estimation performance across the three pairs of heuristics, we
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find that the algorithm best estimates the parameters for the pair of short-term heuristics.

For this pair, our estimates of the means are within 5% of the true values 44% of the

time, and within 20% of the true values 79% of the time. This performance is due to the

short time horizons of the shorter-term heuristics. Since these heuristics are active over

shorter horizons, they tend to be activated more frequently, leading to a greater number

of observations of the investor portfolio. Since the true parameters for these heuristics are

smaller in absolute value that the others (i.e. for horizon values and heuristic thresholds),

it is also less likely that this procedure will markedly misestimate these parameters at

the individual investor level.

The worst performing pair of heuristics in our estimation process is the pair consisting

of the short-term losses heuristic and the long-term losses heuristic. These heuristics are

often triggered at the same time, following a large loss, and since they pull the investor

portfolio in opposite directions, 7 they cancel each other out. As a result, we observe an

unchanged allocation, even though both heuristics are active, which is detrimental to our

estimation performance.

In our final analysis of pairs of active heuristics, we investigate which parameters are

estimated more accurately in closer detail. Table 3.13 lists the true parameter values

and their corresponding estimates for each of the 13 subcases when both the long-term

losses heuristic and the long-term gains heuristic are active. Our focus here is only on the

means of these estimates. In almost all cases, the estimates of the default strategy and

the allocation noise are within 10% of the true values, with the estimates of the default

strategy being slightly more accurate. The estimates for the weights of the two heuristics

are also usually adequate. Unfortunately, estimating the threshold values still tends to

be problematic. We find similar levels of performance for the other two pairs of heuristics

(the pair of short-term heuristics and the pair of losses heuristics).

Finally, we look at the most complicated case, in which all heuristics are active.

In the default subcase there are seven heuristics, each with a weight of 20%. We also

consider two subcases, one changing the default strategy mean from 60% to 20%, the

other changing the allocation noise mean from 10% to 2%. We look at seven additional

subcases, where we change the mean of the weight of each of the seven heuristics, one by

one, from 20% to 5%, while keeping all other parameters unchanged.

7The long-term losses heuristic decreases equity allocation, while the short-term losses heuristic in-
creases it.
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Table 3.14 shows the estimation performance for the parameter means across all sub-

cases. In this case, estimation performance is now significantly less accurate than before.

We are still able to estimate the default strategy and the allocation noise means quite

well. For other parameters, however, our estimates tend to be poor. However, we do

have some success in estimating the weights for three of the heuristics, in particular, the

weights of the short-term losses heuristic, the short-term gains heuristic, and the missing

out heuristic. Since these three heuristics tend to be triggered more frequently, there are

more observations where the heuristic weights affect portfolio allocation. We are also able

to get accurate estimates for some of the thresholds, namely, for the short-term losses

heuristic, the missing out heuristic, and the recent decline heuristic. Our intuition here is

that the starting values are reasonably close to the true parameter estimates; for different

starting parameter values, these estimates may be less accurate.

In the subcases where a heuristic weight is changed from 20% to 5%, the estimate

for the new low weight is significantly different from the true estimate. We hypothesize

that when the algorithm initially assumes all heuristics are active, it may have trouble

identifying when only a subset of heuristics is active, because it may find an attractive

alternative linear combination where all heuristics are present that produces a similar

trading behavior.

We note two subcases that highlight the interactions between the heuristics and es-

timation performance. When the weight of the long-term losses heuristic is reduced to

5%, we have more accurate estimates of the short-term losses heuristic weight and the

recent decline heuristic weight. These two heuristics are triggered at the same time as the

long-term losses heuristic, but affect the risky asset allocation in the opposite direction.

Similarly, when the weight of the short-term gains heuristic is reduced to 5%, we have

more accurate estimates of the long-term gains heuristic weight, since these two heuristics

are also triggered in similar situations yet have opposite effects on allocation.

We conclude that the separated MCMC approach is able to provide good estimates

for some sampling parameters. The means of the default strategy and the allocation

noise sampling distributions are estimated consistently well even when all the heuristics

are active. The means of the heuristic weights also tend to be estimated well, but less

consistently, since these estimates are often poor in the scenario where all heuristics

are active. Estimating the means of the thresholds and the volatilities of all sampling
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distributions tends to be very problematic. Finally, estimates for the heuristics which act

over shorter time horizons – the short-term losses heuristic, the short-term gains heuristic,

and the binary streak heuristic – are more accurate since these heuristics are triggered

more frequently.
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Table 3.14: MCMC Estimates When All Heuristics Are Active

Parameter Actual Est. Actual Est. Actual Est. Actual Est. Actual Est.

Default Strategy 60.0% 57.4% 20.0% 30.1% 60.0% 58.7% 60.0% 60.2% 60.0% 54.7%

Allocation Noise 10.0% 10.5% 10.0% 11.0% 2.0% 4.4% 10.0% 8.7% 10.0% 10.1%

LL Threshold -5.0% -10.3% -5.0% -9.0% -5.0% -8.8% -5.0% -11.0% -5.0% -10.7%

LL Heuristic Weight 20.0% 9.8% 20.0% 13.0% 20.0% 11.8% 5.0% 7.9% 20.0% 9.2%

LG Threshold 15.0% 10.8% 15.0% 14.8% 15.0% 10.6% 15.0% 11.4% 15.0% 10.1%

LG Heuristic Weight 20.0% 15.3% 20.0% 10.9% 20.0% 17.6% 20.0% 16.0% 5.0% 10.1%

SL Threshold -3.0% -4.1% -3.0% -5.8% -3.0% -3.7% -3.0% -3.6% -3.0% -3.9%

SL Heuristic Weight 20.0% 17.3% 20.0% 13.4% 20.0% 18.2% 20.0% 20.7% 20.0% 16.4%

SG Threshold 5.0% 5.0% 5.0% 1.1% 5.0% 5.0% 5.0% 5.1% 5.0% 5.1%

SG Heuristic Weight 20.0% 15.9% 20.0% 19.1% 20.0% 18.0% 20.0% 17.2% 20.0% 17.9%

M Bal Threshold 2.0% 1.6% 2.0% 1.7% 2.0% 1.8% 2.0% 1.6% 2.0% 1.6%

M Prc Threshold 10.0% 12.0% 10.0% 12.1% 10.0% 11.9% 10.0% 11.9% 10.0% 11.9%

M Heuristic Weight 20.0% 12.8% 20.0% 13.1% 20.0% 13.1% 20.0% 12.5% 20.0% 12.9%

D Threshold -20.0% -16.4% -20.0% -18.0% -20.0% -16.9% -20.0% -17.4% -20.0% -18.9%

D Heuristic Weight 20.0% 14.8% 20.0% 12.3% 20.0% 15.2% 20.0% 19.9% 20.0% 17.0%

B Heuristic Weight 20.0% 17.1% 20.0% 16.2% 20.0% 18.2% 20.0% 17.2% 20.0% 16.5%

Parameter Actual Est. Actual Est. Actual Est. Actual Est. Actual Est.

Default Strategy 60.0% 54.7% 60.0% 60.1% 60.0% 57.0% 60.0% 53.5% 60.0% 56.9%

Allocation Noise 10.0% 11.0% 10.0% 9.9% 10.0% 10.2% 10.0% 11.3% 10.0% 11.2%

LL Threshold -5.0% -9.9% -5.0% -10.1% -5.0% -10.3% -5.0% -9.2% -5.0% -10.9%

LL Heuristic Weight 20.0% 11.1% 20.0% 10.3% 20.0% 9.7% 20.0% 12.8% 20.0% 10.4%

LG Threshold 15.0% 11.3% 15.0% 10.4% 15.0% 10.9% 15.0% 10.7% 15.0% 10.1%

LG Heuristic Weight 20.0% 15.0% 20.0% 18.0% 20.0% 15.9% 20.0% 17.4% 20.0% 15.4%

SL Threshold -3.0% -4.8% -3.0% -4.9% -3.0% -4.0% -3.0% -3.8% -3.0% -3.9%

SL Heuristic Weight 5.0% 10.9% 20.0% 15.3% 20.0% 17.4% 20.0% 14.8% 20.0% 15.9%

SG Threshold 5.0% 5.4% 5.0% 5.3% 5.0% 4.9% 5.0% 5.4% 5.0% 4.7%

SG Heuristic Weight 20.0% 13.2% 5.0% 8.5% 20.0% 15.7% 20.0% 15.4% 20.0% 15.1%

M Bal Threshold 2.0% 1.6% 2.0% 1.6% 2.0% 1.7% 2.0% 1.6% 2.0% 1.6%

M Prc Threshold 10.0% 12.2% 10.0% 12.0% 10.0% 12.1% 10.0% 12.2% 10.0% 12.1%

M Heuristic Weight 20.0% 12.6% 20.0% 13.2% 5.0% 13.1% 20.0% 13.3% 20.0% 12.5%

D Threshold -20.0% -16.5% -20.0% -17.2% -20.0% -16.9% -20.0% -15.5% -20.0% -16.5%

D Heuristic Weight 20.0% 13.2% 20.0% 15.7% 20.0% 15.0% 5.0% 10.2% 20.0% 14.6%

B Heuristic Weight 20.0% 16.0% 20.0% 16.1% 20.0% 17.7% 20.0% 16.6% 5.0% 10.4%

Color Codes: Parameter varied Parameter Difference:

under 5%

under 10%

under 20%

20% or more

under 1%

This table presents the MCMC sampling parameter estimates for the case when all heuristics are
active. The separated MCMC approach is used for estimation. Only the estimates of the means
are included. There are 10 different subcases for the true sampling parameters considered. In
each subcase we vary only one parameter (shown in turquoise) while keeping the rest unchanged.
We list both the true and the estimated parameters for each case. LL stands for long-term losses,
and LG stands for long-term gains, SL stands for short-term losses, SG stands for short-term
gains, M stands for missing out, D stands for recent decline, and B stands for binary streak.
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Table 3.15: Estimation Performance for Sampling Parameter Means for a
Cross-Section of Investors, Different Heuristic Cases

Good Decent Poor

Long-term Losses Joint 25% 28% 47%

Long-term Losses Separated 50% 42% 8%

Long-term Gains Joint 25% 25% 50%

Long-term Gains Separated 42% 31% 28%

LL and LG Biases Separated 26% 37% 37%

SL and SG Biases Separated 44% 36% 21%

LL and SL Biases Separated 26% 28% 46%

All Biases Separated 11% 33% 57%

Heuristics Active
Estimation

Approach

% Parameter Estimates

This table shows how well our MCMC procedure estimates the means of sampling distributions
when historical trading data for a cross-section of investors is available. The first column lists
which heuristics are active. The second specifies if a joint or a separated MCMC approach is
used for estimation. For each specification of active heuristics, we consider several subcases for
the true values of these parameters; these are listed in tables 3.11–3.14 and in tables 3.23–3.24.
Across all cases and all parameters, we count the portion of parameters for which the estimate
is within 5% of the true value (good estimates), for which the estimate is between 5% and 20%
of the true value (adequate estimates), and for which the estimate is more than 20% away from
the true value (poor estimates). Note that we consider only continuous sampling parameters
here.
LL stands for long-term losses, LG stands for long-term gains, SL stands for short-term losses,
and SG stands for short-term gains.

Table 3.16: Estimation Performance for Sampling Parameter Volatilities for
a Cross-Section of Investors, Different Heuristic Cases

Good Decent Poor

Long-term Losses Joint 3% 0% 97%

Long-term Losses Separated 6% 25% 69%

Long-term Gains Joint 0% 8% 92%

Long-term Gains Separated 8% 25% 67%

LL and LG Biases Separated 1% 8% 91%

SL and SG Biases Separated 3% 4% 94%

LL and SL Biases Separated 3% 12% 86%

All Biases Separated 2% 5% 93%

Heuristics Active
Estimation

Approach

% Parameter Estimates

This table lists the estimation performance in the same form as table 3.15, except for estimating
the volatilities of the sampling distributions for the continuous parameters.
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3.7 Predictive Analytics

Our ultimate goal is to construct a model that can be used to predict individual

investor behavior. Given this goal, it makes sense to see how the MCMC approach

performs in predicting investor allocations based on historical data, and to compare this

performance to the more traditional regression-based approaches, such as Grinblatt and

Keloharju (2001) and Feng and Seasholes (2005). We find that our approach is usually

inferior to regression at predicting allocations at the individual level. For predicting

aggregate risky asset allocation, however, the MCMC algorithm tends to outperform

regression.

3.7.1 The Prediction Problem

We outline the setting of the prediction problem. Assume we have data on historical

asset allocations for 1000 investors, and 150 observations for each investor. This data

corresponds to the allocation between a risk-free asset, with a return of 0%, and a risky

asset, which we choose to be the S&P 500 from June 2003 to November 2015. The

frequency of returns and allocations is monthly, a total of 150 observations. We use the

first 100 observations of this data for our models and the last 50 for out-of-sample testing.

Figure 3-1 plots the S&P 500 returns over the full period.

For each investor, we predict their allocation to the risky asset for each period in

the test sample. The calibrated model applies the data on investor balances and asset

returns up until the end of period 𝑡 to predict the allocation in period 𝑡 + 1. For the

MCMC approach, the model is estimated using only the training sample (although we

consider a more advanced approach later). For the regression, the model is estimated

using all allocations up to period 𝑡 and balances and returns up to period 𝑡− 1, so that

as 𝑡 increases, more historical observations are used.

In many real-world settings, we are interested in the aggregate demand. We are able to

calculate the aggregate allocation to the risky asset by summing the total dollar amount

allocated to the risky asset across investors and dividing it by the total of investor bal-

ances. This allows us to combine our individual allocation predictions to get an aggregate

allocation value, in both the MCMC approach and the individual regression approach.

We also consider an “aggregate regression" method, which uses only the lagged aggregate
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allocation and lagged asset returns to predict future aggregate allocation.

3.7.2 Performance Measures

We consider three different possible measures of prediction accuracy. The first mea-

sure is the root mean squared error (RMSE) calculated over all investors and all periods

in the test sample, comparing the allocation predicted by the model to the actual in-

dividual allocation. The second measure performs the same calculation, but compares

the prediction to the actual individual allocation without the noise term in the model.

Recall from Equation (19) that the allocation in each period is composed of the allocation

determined by the default strategy and the heuristics, and a noise term independent of

historical data; therefore, comparing the prediction to the allocation without using the

noise term should give a clearer idea of the quality of the prediction relative to the true

model. The third measure looks at the RMSE at the aggregate level, comparing the

predicted allocation to the actual aggregate allocation over all periods in the test sample.

We use the following features in the regression-based approaches for predicting allo-

cation to the risky asset:

∙ changes in portfolio balance over the past 3, 6, and 12 periods (three variables)

∙ changes in risky asset price over the past 3, 6, and 12 periods (three variables)

∙ risky asset allocation in the previous period 8

More rigorously, if we denote by 𝑃𝑡 the price of the risky asset and 𝐵𝑡 the portfolio balance

at the end of period 𝑡, and we assume 𝑤𝑡 is the risky asset allocation set at the start of

period 𝑡, then the regression model is:

𝑤𝑡+1 = 𝛽0 + 𝛽1(
𝑃𝑡

𝑃𝑡−3

− 1) + 𝛽2(
𝑃𝑡

𝑃𝑡−6

− 1) + 𝛽3(
𝑃𝑡

𝑃𝑡−12

− 1)+ (28)

𝛽4(
𝐵𝑡

𝐵𝑡−3

− 1) + 𝛽5(
𝐵𝑡

𝐵𝑡−6

− 1) + 𝛽6(
𝐵𝑡

𝐵𝑡−12

− 1) + 𝛽7𝑤𝑡 + 𝜖𝑡

For our comparison, we consider the following ten cases which include active heuristics.

The first two are rather simple: we assume that both short-term heuristics are active in

8This corresponds to a “lag 1" observation for an AR(1) model. We have considered the case that uses
the allocation two periods ago, corresponding to an AR(2) model. The results change very marginally,
so we do not include them here.
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one case, and that both long-term heuristics are active in the other. As in the estimation

section, we assume that the MCMC algorithm is aware that only those two heuristics

are active. We then consider the more complicated case where all heuristics are active,

each having a weight of 20%. We create seven additional cases by changing the weight for

each of the heuristics one by one from 20% to 5%, while leaving the remaining parameters

unchanged. Overall, we look at 10 cases in total.

In all of these cases, we use simulated data, where we simulate investor allocations to

the S&P 500 and their resulting portfolio balances using the model in Equation (19). It

is important to note that the MCMC approach has a “home-court” advantage here, since

it already has the correct model specification, unlike the regression approaches under

consideration. For more conclusive evidence of the prediction accuracy of the MCMC

approach we would need to look at historical trading data; however, this is beyond the

scope of the paper.

3.7.3 Predictive Accuracy of Single and Pairwise Heuristics

Table 3.17 lists the prediction accuracy of the different approaches. When only the two

short-term heuristics are active, the MCMC approach performs extremely well, yielding

only 1.12% RMSE in predicting aggregate allocation, and beating both the individual

and the aggregate regression approaches. The MCMC approach also does better than

either regression in predicting individual allocations; the RMSE for predicting the actual

allocation is 12.68%, which is quite close to the actual noise of 10.04% in the model. This

good performance is consistent with our earlier estimation results, where we found that

the MCMC approach provides accurate estimates of the short-term heuristics’ sampling

parameters.

When only the two long-term heuristics are active, the MCMC estimation performance

is adequate (a 2.12% RMSE for predicting aggregate allocation); however, this is a worse

performance than the regression-based approaches. This can be explained by the fact

that the MCMC method is relatively poor at estimating the weights and thresholds for

long-term heuristics, resulting in worse predictions than in the short-term heuristic case.
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3.7.4 Predictive Accuracy for All Heuristics

We now shift our attention to the out-of-sample prediction performance for the eight

cases when all heuristics are active. In most cases, the MCMC-based predictions are more

accurate than the regression-based ones, except for the cases where the weights of the

short-term heuristics was lowered from 20% to 5%. This makes intuitive sense, because

the algorithm estimates the parameters for short-term heuristics very well when they

have significant influence on the investor portfolio. When their weight is reduced, the

estimates and resulting predictions naturally become less accurate. On the other hand,

when the weight of the heuristics acting over longer time horizons is reduced, the MCMC

algorithm does better at estimating the short-term heuristic parameters, which produces

more accurate predictions overall. This is evident in the fact that the RMSE for the

MCMC-based predictions is significantly lower than the RMSE for the regression-based

ones in the cases where the weight of the long-term losses heuristic and the recent decline

heuristic is reduced.

For robustness, we include the sampling parameter mean estimates for these eight

cases in Table 3.25. These results are consistent with our earlier results on the estimation

performance, namely that the algorithm does well at estimating the default strategy, the

allocation noise, the weights of the short-term heuristics and the binary streak heuristic,

as well as a few of the heuristic thresholds. In most cases, the estimates for the other

parameters are inaccurate. However, it is important to mention that, even though we

have poor estimates for many parameters, our aggregate demand predictions are still very

good, with an RMSE ranging from 3.3% to 5.4% across all cases.

When it comes to predicting individual asset allocations, the regression method consis-

tently beats the MCMC one. The RMSE between the predicted and the actual allocation

is between 15.3% and 16.2% for regression-based predictions, compared to errors between

16.6% and 19.5% when using MCMC. We believe this larger error is due to extremely

poor parameter estimates for a few investors, resulting in highly inaccurate predictions.

In the section on estimation, we saw that estimation on 100 historical observations is

problematic, even when only one heuristic is active.

As discussed earlier, the regression-based approach expands the estimation window

with each new available historical observation, while the MCMC-based approach only

uses the training period. Therefore, regressions have the “home-court” advantage of more
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available data, especially when predicting allocations in periods later in the test sample.

For example, for predicting the allocation in period 145, the regression approach uses

144 observations to calibrate the model, while the MCMC approach employs only 100.

To understand the possible improvement in prediction, we allow the MCMC approach

to expand the estimation window. We use the following “MCMC expanding window"

method: after every 5 new historical observations, we recalibrate the model by appending

them to the estimation window. For example, we use the first 100 observations to predict

the allocations in periods 101–105, the first 105 observations to predict the allocations in

periods 106–110, and so on.

The last row of Table 3.17 presents the prediction accuracy of this new approach. We

see that the RMSE for predicting aggregate allocation declines significantly from 5.41%

to 4.03%, with the latter number substantially beating the regression-based prediction

errors of 5.96% and 5.57%. The RMSE for predicting individual allocation also improves,

although still not enough to beat individual regressions. We believe that if this approach

was extended further to recalibrate the model following every new observation, prediction

would improve even more. However, the drawback of the MCMC algorithm is it takes

a long time to run. 9 Recalibrating too frequently may be impractical. In practice, one

would need to consider the tradeoff between improved accuracy and run-time.

To better visualize our prediction accuracy, Figure 3-2 compares the out-of-sample

aggregate allocation predictions of the MCMC approach, the aggregate regression ap-

proach, and the MCMC expanding window approach. In the early parts of our test

period, from October 2011 to December 2012, the predictions of all three approaches are

quite close to the actual allocation, the MCMC-based ones performing the best. By June

2013, all three approaches tend to give excessively high predictions, the predictions of the

simple MCMC approach quite poor relative to the other two. After January 2014, the

MCMC expanding window approach starts giving extremely good predictions, since by

that point it can use the new historical observations to produce a more accurate model.

Over the final months of the sample, between February 2015 and November 2015, the

aggregate regression approach seems to perform better, although the MCMC expanding

window model, once recalibrated, gives very good predictions over the last few months,

9The time to run MCMC estimation for all heuristics on a sample of 1000 investors, with 100 obser-
vations each, is approximately 90 minutes in Matlab on 16 cores of 2.0 GHz CPUs with 64GB RAM,
assuming that 20,000 MCMC runs are performed.
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from July 2015 onwards. This repeated improvement in prediction accuracy following

model recalibration highlights the importance of expanding the estimation window when

using the MCMC method.

We conclude that our MCMC algorithm does well at predicting aggregate investor

allocation to the risky asset, especially if we use an expanding estimation window. It tends

to beat the regression-based approaches even when all heuristics are active, except for the

cases where the short-term heuristics have little effect on allocations in the true model.

When it comes to predicting individual allocations, however, the MCMC approach is quite

poor and worse than regression-based methods. Therefore, we conclude it is reasonable

to employ MCMC methods for modeling aggregate demand, although regression-based

methods are still worthwhile to consider, especially considering their speed.

3.8 Conclusion

We have presented a new framework for modeling investor decision-making, where we

translate well-known behavioral heuristics into simple systematic investment strategies.

We cover seven different heuristics, all of which are motivated by existing examples in

the literature, using evidence obtained both in experimental settings and from real-world

data. Each heuristic involves a trigger, i.e. a set of conditions that must hold for per-

formance on the investor portfolio and the market in order for the heuristic to become

active, and thus affect an investor’s decision-making process. Each heuristic has an as-

sociated trade, which defines how the heuristic adjusts the investor’s portfolio allocation

when active.

Based on simulations of different returns processes and historical data, we find that the

effect of a heuristic on portfolio performance is often determined by whether a heuristic

is contrarian or trend-following in nature, and how well the underlying returns process

favors those dynamics. The long-term losses heuristic and the long-term gains heuristic

can both be viewed as trend-following, since they encourage the investor to decrease his

allocation following poor returns on the risky asset, and increase it should the risky asset

experience good returns. In contrast, the short-term losses heuristic and the short-term

gains heuristic are contrarian in nature, as the investor would do the opposite in those

situations, except at shorter time horizons. A similar logic argues that the recent decline
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heuristic and the binary streak heuristic are also contrarian.

The results of our simulated heuristics are as follows. As measured by the Sharpe

ratio with respect to the buy-and-hold strategy, behavioral heuristics are detrimental to

performance in almost all cases, and for all five processes under consideration: for a ran-

dom walk process, for two AR(1) processes with serial correlation of 20% and −20%, and

for two Markov regime-switching processes, one corresponding to S&P 500 returns, and

the other modeling rare crash scenarios. We find only two exceptions to this detrimen-

tal performance: the AR(1) process with a serial correlation of −20%, where contrarian

heuristics tend to improve performance; and the MRS S&P 500 process, where the long-

term losses heuristic gives an improvement over the buy-and-hold strategy.

Considering the interactions between heuristics, we show that trend-following heuris-

tics tend to produce similar directional shifts to the investor portfolio, and these are

opposite to the direction contrarian heuristics shift the investor allocation. The correla-

tions between the heuristics are consistent across different returns processes, and are also

largely consistent across historical returns applied to different asset classes.

Finally, we looked at the historical performance of an investor’s portfolio under the

influence of these heuristics. The loss aversion heuristic does very well, improving the

performance for all five investment strategies under consideration, in large part because

the risky assets in these strategies are indices which exhibit a positive serial correlation in

returns, so there is a benefit to a buy-and-hold strategy with an extrapolative heuristic.

The contrarian heuristics, on the other hand, are detrimental to performance, especially

the short-term losses heuristic, the recent decline heuristic, and the binary streak heuris-

tic. The effects of the heuristics are similar in the strategies that invest in the S&P 500

and the GSCI, but are different in strategies that involve US Corporate Bonds and the

US Dollar Index, partly because the volatility of the those asset classes is lower, which

means that the heuristics are triggered less frequently.

We have also developed a framework for estimating the parameters of our model. A

Metropolis-Hastings algorithm with Gibbs sampling provides relatively accurate sampling

parameter estimates using data from a large cross-section of investors. Even though the

estimation of parameters at the individual level is problematic due to the lack of necessary

observations per investor, aggregating these individual parameters gives reasonably good

estimates of the sampling distribution. We obtain accurate estimates for the sampling
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means of the default strategy, the heuristic weights, and the allocation noise. Also, the

estimates of the short-term heuristic parameters are improved because these heuristics are

triggered more frequently, and thus there are more historical observations during which

they are active.

Finally, we compare the MCMC estimation approach with simple regression-based

methods for predicting future investor allocations. The MCMC method tends to do better

than regressions at predicting aggregate demand. At the level of the individual investor,

however, the MCMC approach underperforms regressions because it badly misestimates

the parameters for some investors.

While this is beyond the scope of the paper, it would be very interesting to apply

our framework and estimation techniques to real-world data, such as historical trading

records. The results could then be used to produce enhanced models of investor trading

behavior, and to gain insight into how historical actors would react in various market

scenarios. More practically, financial advisors and investors could use systematic behav-

ioral models to identify cases when they themselves are more prone to making irrational

decisions, and to avoid these cases should they arise. This would create a more robust in-

vestment process for all parties, and a greater chance for them to achieve their long-term

financial goals.
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Table 3.17: RMSE for Predicting S&P 500 Allocation, Different Approaches

MCMC Ind Reg Agg Reg MCMC Ind Reg MCMC Ind Reg

SL SG Heuristics 1.12% 3.12% 2.55% 12.68% 12.89% 7.77% 8.10% 10.04%

LL LG Heuristics 2.12% 2.22% 1.61% 14.07% 12.31% 9.89% 7.17% 10.04%

All at 20% 5.41% 5.96% 5.57% 19.54% 16.21% 16.71% 12.84% 10.07%

LL Heuristic at 5% 4.78% 5.44% 4.90% 18.37% 15.76% 15.51% 12.32% 10.00%

LG Heuristic at 5% 3.03% 5.74% 4.97% 16.66% 15.39% 13.16% 11.59% 10.19%

SL Heuristic at 5% 5.32% 5.70% 5.29% 18.74% 15.91% 15.81% 12.40% 10.04%

SG Heuristic at 5% 7.45% 5.25% 5.08% 19.31% 15.33% 16.49% 11.64% 10.15%

M Heuristic at 5% 5.07% 5.78% 5.33% 18.95% 15.93% 16.21% 12.61% 10.05%

D Heuristic at 5% 3.32% 5.93% 5.23% 18.23% 15.96% 15.19% 12.47% 10.09%

B Heuristic at 5% 3.95% 4.84% 4.69% 19.03% 15.54% 16.13% 11.73% 10.26%

Exp. Window 4.03% 5.96% 5.57% 17.48% 16.21% 14.38% 12.84% 10.07%

Allocation

Noise

Aggregate Allocation
Individual Allocation

A
ll 

H
eu

ri
st

ic
s 

A
ct

iv
e

Two Heuristics

Active

Case for Which

Heuristics Are Active
Actual Allocation Proposed Allocation

This table compares the prediction accuracy in modeling allocation to the S&P 500 when the
true model is the one described in (19). We use monthly returns on the S&P 500 over the June
2003 – November 2015 period, with the first 100 returns used for estimation and the last 50 used
for out-of-sample prediction.
Each row corresponds to a different active heuristic case. We look at predictions of individual
allocations using the MCMC approach (labeled as MCMC ) and the individual regression ap-
proach (labeled as Ind Reg), where we estimate the regression model (28) on all data up to the
end of period 𝑡 to predict the allocation in period 𝑡+1. We compute the RMSE of the predicted
allocation relative to the actual allocation across all investors and all periods in the test sample.
As a reference point, in the rightmost column of the table, we show the RMSE of the proposed
allocation (without the noise term) relative to the actual allocation. We also compute the RMSE
of the predicted allocation relative to the proposed allocation across all investors and all periods.
For each case, the cells corresponding to the approach giving the lowest RMSE are highlighted.
We also use three approaches to predict the aggregate allocation to the risky asset. The first two
are derived from aggregating individual allocation predictions using the MCMC and individual
regression approaches across all investors. The third approach (labeled as Agg Reg) estimates
the regression model (28) using the aggregate balance of all investors and the lagged aggregate
allocation to predict future aggregate allocation. Again, the RMSE of the predicted aggregate
allocation relative to the actual one is used for measuring accuracy. For each case, the cells
corresponding to the approach giving the lowest RMSE are highlighted.
Ten cases of active heuristic are considered. In the first two cases, only two heuristics are active.
In the third case, all heuristics are active and have a weight of 20%. In the remaining seven
cases we change the weight of each heuristic, one by one, from 20% to 5% while leaving the other
parameters unchanged; the table specifies which heuristic in each case. LL stands for long-term
losses, LG stands for long-term gains, SL stands for short-term losses, SG stands for short-term
gains, M stands for missing out, D stands for recent decline, and B stands for binary streak.
Finally, the last row shows the prediction performance in the case where all heuristics have a
weight of 20%, but a more advanced MCMC approach is used for estimation. Instead of using
only the 100 observations in the training sample, for every 5 new available historical observations,
those observations are appended to the estimation window and the model is recalibrated. This
way, the MCMC estimation procedure is performed 10 separate times.
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Figure 3-1: Cumulative Returns on the S&P 500 used by the MCMC and regression-based
approaches for estimation and prediction.
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Figure 3-2: This figure plots the actual aggregate allocation to the S&P 500 for the out-of-
sample period along with the time series of predicted allocations obtained using three different
approaches. MCMC is our MCMC approach where the model is estimated on the training set
only. MCMC Exp. uses the same approach but recalibrates the model by expanding the estima-
tion window every 5 new available historical observations (so that a new estimation is performed
on the first 100, 105, 110, etc. observations). Agg Reg is the regression approach, where the
model (28) is estimated using the aggregate balance of all investors and lagged aggregate al-
location. For this model the estimation window is expanded for every new available historical
observation.
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LT Losses 0.25 0.28 0.22 0.46 0.24 0.72 0.67 1.05 0.31 0.69

LT Gains 0.30 0.30 0.30 0.39 0.28 0.45 0.42 0.98 0.24 0.46

ST Losses 0.32 0.25 0.41 0.35 0.30 0.37 0.35 0.97 0.24 0.40

ST Gains 0.30 0.22 0.40 0.40 0.28 0.52 0.56 1.10 0.18 0.64

Missing Out 0.32 0.31 0.34 0.41 0.31 0.49 0.45 1.03 0.24 0.57

Recent Decline 0.31 0.29 0.34 0.35 0.30 0.30 0.30 0.80 0.10 0.37

Binary Streak 0.30 0.20 0.38 0.32 0.29 0.29 0.27 0.89 0.27 0.41

60/40 Strategy 0.32 0.31 0.34 0.41 0.31 0.49 0.45 1.03 0.24 0.57

Sharpe Ratios for One Heuristic, All Processes and Strategies

Heuristic

Color Code

Better by 20%

Better by 10%

Worse by 10%

Worse by 20%

Simulated Process Historical Strategy

Table 3.18: Sharpe Ratios of portfolio returns when exactly one heuristic is active, with a
weight of 80%. We consider five simulated processes and five historical investment strategies.
Each cell is color-coded according to how the Sharpe ratio in the cell compares to the Sharpe
ratio for the benchmark 60/40 strategy in the same column.
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Table 3.19: Initial values and proposal distributions for one investor. For each parameter to
be estimated, we specify the parameter, the “group" of parameters to which it belongs, as well
as whether it is continuous or not. For the missing out heuristic, Port. Gain Threshold is the
threshold on the return on the portfolio of the investor, while the Price Gain Threshold is the
threshold on the return of the risky asset. For the recent decline heuristic, Price Loss Threshold
is the threshold on the return of the risky asset. For the binary streak heuristic, Same Sign

Thresh. is the threshold for how many returns of the same signs need to be observed over the
past horizon to trigger the heuristic.

Parameter
Group

Parameter Continuous?
Initial
Value

Proposal
Density

Investor
Parameters

Default Strategy Yes 50% 𝑇𝑁(·, 0.1%, 0%, 100%)
Allocation Noise Yes 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Long-Term
Losses

Past Horizon No 10 𝑈(·, 6, 18)
Loss Threshold Yes −7% 𝑇𝑁(·, 0.1%,−30%, 0%)
Active Horizon No 2 𝑈(·, 1, 4)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Long-Term
Gains

Past Horizon No 10 𝑈(·, 6, 18)
Gain Threshold Yes 7% 𝑇𝑁(·, 0.1%, 0%, 30%)
Active Horizon No 2 𝑈(·, 1, 4)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Short-Term
Losses

Past Horizon No 4 𝑈(·, 2, 6)
Losses Threshold Yes −7% 𝑇𝑁(·, 0.1%,−15%, 5%)
Active Horizon No 2 𝑈(·, 1, 2)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Short-Term
Gains

Past Horizon No 4 𝑈(·, 2, 6)
Gains Threshold Yes 7% 𝑇𝑁(·, 0.1%,−5%, 15%)
Active Horizon No 2 𝑈(·, 1, 2)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Missing Out

Past Horizon No 10 𝑈(·, 6, 18)
Port. Gain Threshold Yes 2% 𝑇𝑁(·, 0.1%,−2%, 5%)
Price Gain Threshold Yes 8% 𝑇𝑁(·, 0.1%, 5%, 20%)

Active Horizon No 2 𝑈(·, 1, 4)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Recent
Decline

Past Horizon No 21 𝑈(·, 20, 28)
Price Loss Threshold Yes −15% 𝑇𝑁(·, 0.1%,−40%, 0%)

Active Horizon No 5 𝑈(·, 4, 8)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Binary
Streak

Past Horizon No 7 𝑈(·, 6, 8)
Same Sign Thresh. No 5 𝑈(·, 4, 5)
Heuristic Weight Yes 10% 𝑇𝑁(·, 0.1%, 0%, 100%)
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Table 3.20: Initial values and proposal distributions for the continuous sampling param-
eters. Each parameter corresponds to either the mean or the standard deviation for a
particular individual parameter. The parameters corresponding to the same heuristic are
grouped together. For the missing out heuristic, Port. Gain Threshold is the threshold
on the return on the portfolio of the investor, whereas the Price Gain Threshold is the
threshold on the return of the risky asset. For the recent decline heuristic, Price Loss
Threshold is the threshold on the return of the risky asset.

Parameter
Group

Parameter
Mean/

Std. Dev.?
Initial
Value

Proposal
Density

Investor
Parameters

Default Strategy
Mean 50% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 3% 𝑇𝑁(·, 0.1%, 0%, 100%)

Allocation Noise
Mean 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Long-Term
Losses

Loss Threshold
Mean −10% 𝑇𝑁(·, 0.1%,−30%, 0%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Long-Term
Gains

Gain Threshold
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 30%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Short-Term
Losses

Loss Threshold
Mean −6% 𝑇𝑁(·, 0.1%,−15%, 5%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Short-Term
Gains

Gain Threshold
Mean 6% 𝑇𝑁(·, 0.1%, 5%, 15%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Missing Out

Port. Gain Threshold
Mean 3% 𝑇𝑁(·, 0.1%,−2%, 5%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Price Gain Threshold
Mean 9% 𝑇𝑁(·, 0.1%, 5%, 20%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Recent
Decline

Price Loss Threshold
Mean −16% 𝑇𝑁(·, 0.1%,−40%, 0%)

Std. Dev. 5% 𝑇𝑁(·, 0.1%, 0%, 100%)

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)

Binary
Streak

Heuristic Weight
Mean 10% 𝑇𝑁(·, 0.1%, 0%, 100%)

Std. Dev. 1% 𝑇𝑁(·, 0.1%, 0%, 100%)
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Table 3.25: MCMC Estimates When All Heuristics Are Active; S&P 500
Risky Asset

Parameter Actual Est. Actual Est. Actual Est. Actual Est.

Default Strategy 60.0% 55.2% 60.0% 58.2% 60.0% 53.6% 60.0% 52.7%

Allocation Noise 10.0% 11.3% 10.0% 10.0% 10.0% 11.0% 10.0% 11.4%

LL Threshold -5.0% -8.7% -5.0% -10.4% -5.0% -9.2% -5.0% -7.7%

LL Heuristic Weight 20.0% 13.4% 5.0% 8.9% 20.0% 11.7% 20.0% 15.5%

LG Threshold 15.0% 9.2% 15.0% 11.0% 15.0% 9.1% 15.0% 9.3%

LG Heuristic Weight 20.0% 17.8% 20.0% 15.5% 5.0% 12.8% 20.0% 17.4%

SL Threshold -3.0% -4.3% -3.0% -3.4% -3.0% -4.2% -3.0% -5.0%

SL Heuristic Weight 20.0% 18.8% 20.0% 21.1% 20.0% 18.2% 5.0% 13.0%

SG Threshold 5.0% 5.7% 5.0% 5.5% 5.0% 5.6% 5.0% 6.1%

SG Heuristic Weight 20.0% 19.5% 20.0% 19.0% 20.0% 19.5% 20.0% 17.5%

M Bal Threshold 2.0% 1.9% 2.0% 1.7% 2.0% 1.8% 2.0% 1.8%

M Prc Threshold 10.0% 11.7% 10.0% 11.9% 10.0% 11.9% 10.0% 11.8%

M Heuristic Weight 20.0% 14.4% 20.0% 13.6% 20.0% 13.3% 20.0% 13.6%

D Threshold -20.0% -18.4% -20.0% -18.5% -20.0% -18.3% -20.0% -18.5%

D Heuristic Weight 20.0% 18.5% 20.0% 21.9% 20.0% 18.6% 20.0% 17.0%

B Heuristic Weight 20.0% 15.9% 20.0% 17.2% 20.0% 16.0% 20.0% 13.5%

Parameter Actual Est. Actual Est. Actual Est. Actual Est.

Default Strategy 60.0% 57.8% 60.0% 55.5% 60.0% 52.2% 60.0% 55.0%

Allocation Noise 10.0% 10.3% 10.0% 11.1% 10.0% 11.4% 10.0% 11.4%

LL Threshold -5.0% -8.4% -5.0% -8.2% -5.0% -8.7% -5.0% -8.6%

LL Heuristic Weight 20.0% 13.3% 20.0% 12.8% 20.0% 15.4% 20.0% 13.3%

LG Threshold 15.0% 9.0% 15.0% 10.1% 15.0% 9.0% 15.0% 9.5%

LG Heuristic Weight 20.0% 18.7% 20.0% 16.8% 20.0% 16.2% 20.0% 18.5%

SL Threshold -3.0% -4.7% -3.0% -3.9% -3.0% -3.1% -3.0% -3.8%

SL Heuristic Weight 20.0% 17.0% 20.0% 19.0% 20.0% 16.6% 20.0% 17.4%

SG Threshold 5.0% 7.1% 5.0% 5.6% 5.0% 5.6% 5.0% 6.1%

SG Heuristic Weight 5.0% 13.6% 20.0% 19.1% 20.0% 20.6% 20.0% 17.8%

M Bal Threshold 2.0% 1.7% 2.0% 1.8% 2.0% 2.0% 2.0% 1.7%

M Prc Threshold 10.0% 12.0% 10.0% 11.7% 10.0% 11.6% 10.0% 12.0%

M Heuristic Weight 20.0% 13.1% 5.0% 14.5% 20.0% 14.2% 20.0% 14.0%

D Threshold -20.0% -18.1% -20.0% -17.9% -20.0% -16.1% -20.0% -18.7%

D Heuristic Weight 20.0% 19.8% 20.0% 17.9% 5.0% 11.2% 20.0% 19.1%

B Heuristic Weight 20.0% 14.9% 20.0% 16.3% 20.0% 16.4% 5.0% 8.8%

Color Codes: Param. varied

under 20%

20% or more

Parameter Difference:

under 1%

under 5%

under 10%

This table presents the MCMC sampling parameter estimates using historical observations of
investor allocations to the S&P 500 over the June 2003 – September 2011 period. All heuristics
are active, and eight different cases for sampling parameters are considered. The first is the
default case and in the other seven cases we vary only one parameter (shown in turquoise) while
keeping the rest unchanged. We list both the true and the estimated parameters for each case.
Only estimates for the means are included.
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Chapter 4

Preliminary Analysis of Trading Data

(joint work with Daniel Elkind and Andrew W. Lo)

4.1 Introduction

A crucial ingredient for building models of investor behavior is good trading data.

Unfortunately, this data was obtained very late during my Ph.D. studies and so we can

only include preliminary results here. The results pertain to understanding the overall

trading distribution at the security and the portfolio level, as well as how this distribution

depends on past performance and trading. We replicate the phenomenon documented

by Ben-David and Hirshleifer (2012) whereby the probability that at investor trades

increases in the past returns on the investor’s positions. We obtain further insights into

this result by looking at what trades were made in the past as well varying the lengths

of the horizons over which we measure returns and trading.

The dataset we are using is very good. It includes trading records in over 1,000,000

accounts at a large U.S. retail broker over the 2003–2015 period. We have records of

all trades made by these accounts, as well as snapshots of positions and flows into the

accounts at monthly frequency. The large number of investors in the dataset would

enable us to apply machine-learning methods that tend to require large amounts of data.

Furthermore, the sample period of 13 years is a long one; we have not found other studies

in the literature that have granular trading data available over such a long timespan. The

advantage of a long sample period is that it incorporates different market environments

so that we are able to analyze how people behave during various trading conditions.
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We briefly review the major papers that have also analyzed investor trading data.

Barber and Odean have carried out comprehensive studies of individual investors demon-

strating the disposition effect (Odean, 1998), poor trading performance (Barber and

Odean, 2000), more frequent trading by men (Barber and Odean, 2001), increased like-

lihood of buying attention-grabbing stocks (Barber and Odean, 2008), and reluctance

to buy stocks for which investors previously lost money and/or missed out on gains

(Strahilevitz, Odean, and Barber, 2011). Grinblatt and Keloharju have studied the de-

tailed Finnish dataset; they identify different investor types (Grinblatt and Keloharju,

2000), investigate the effects of familiarity in terms of distance, language, and culture

of firms on the likelihood of trading their shares by investors (Grinblatt and Keloharju,

2001a), and find increased propensity to trade by overconfident and “sensation-seeking"

investors (Grinblatt and Keloharju, 2009). While these papers document important fea-

tures of how people trade, they do not address the question of how these features interact

with each other and to which extent they allow for predicting future trading decisions.

A few studies have employed a regression approach to address the question of predict-

ing trading. Grinblatt and Keloharju (2001b) were the first to conduct a major study of

how investor trading is related to past returns by running logit regressions of the hold/sell

indicator variable on values of past returns, as well as on investor characteristics. They

also analyze the sell vs. buy decision in similar manner. It is important to note that

they restrict their observation days to only those when an investor buys or sells a stock.

While this approach gives valuable insights on how trading in an investor’s portfolio on

those days relates to past features, it does not account for situations where these features

(such as large losses or large gains) were present, but no subsequent trading took place.

Therefore, the method is not enough to predict future trading behavior.

Feng and Seasholes (2005) address this drawback by modeling the survival of stock

holdings in the investor’s portfolio. They estimate the “survival" function for how long

a stock is held before being sold, as well as investigate the effects of specific features,

such as past returns, on the hazard rate for selling the stock. Agnew, Balduzzi, and

Sunden (2003) consider asset allocations and frequency of trading in investor 401(k)

plans, however they focus more on broad statistics such as cross-sectional averages and

their relation to investor characteristics, as well as correlations of allocation changes with

past performance.
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Our study will build on the existing research in several regards. The general goal is to

produce a more in-depth analysis of how investor characteristics, market performance, and

past portfolio performance give rise to certain features, which in turn influence the trading

of an investor that ultimately affects the profit-and-losst dynamics of their portfolios.

We hope to track the path dependence of an investor’s experience over time and across a

variety of environments so as to develop a more complete perspective of investor behavior

in practically relevant contexts. The large size of the dataset, the longer time horizon

it spans, and the increased computing power available today will enable us to effectively

apply machine-learning approaches where this was not possible in earlier studies. We

believe that these approaches will provide improved predictive ability over regressions,

while at the same time allowing to identify relevant features in a more systematic fashion.

4.2 Data Description

We go into more detail about the data we are using. As mentioned before, it comes

from a U.S. retail brokerage firm. Besides data on trades and positions, we also have

records of flows into the accounts and investor demographics. The broker initially sent

us all trading records for 2015 and only one snapshot of positions corresponding to the

end of December 2015. While we will analyze the full 13-year dataset later in the project,

the preliminary results pertain only to the 2015 dataset.

Table 4.1 summarizes the trading activity of all investors that are included in the

positions snapshot. There are approximately 566,000 investors in total, carrying out

over 6 million trades. A lot of these investors are inactive; only 45% of all investors

made at least one trade in 2015. This lack of trading activity could be explained by

investors holding passive investments, as well as by those who have a small balance of

funds remaining with the broker and no longer use their account (while still having it

open). For the investors who did trade at least once in 2015, we report the mean, the

median, and percentiles for the distribution of the number of trades and the average trade.

We again see that a large part of these investors are passive (40% of them traded 4 times

or less in 2015), and at the same time there is presence of very active investors – those in

the 95th percentile traded 83 times or more in 2015. There is also a wide dispersion in

the size of trades carried out. The average trade for the median investor is $5,000, while
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Table 4.1: Summary of Investor Trading in 2015

565,914        

6,357,800     

11.2

45%

Number 

of Trades

Average 

Trade

24.9         13,568$        

6               5,000$          

1% 1               49$                

5% 1               256$              

10% 1               535$              

20% 2               1,247$          

40% 4               3,381$          

60% 9               7,044$          

80% 29            15,957$        

90% 55            29,034$        

95% 83            48,603$        

99% 261          132,602$      

# Trades

# Trades per Investor
% Investors who traded

at least once in 2015

Cond. on at least one trade in 2015:

# Investors (Dec 2015)

Across Investors:

Mean

Median

P
er

ce
n

ti
le

This table summarizes the trading activity of all investors for whom we have positions on record
at the end of December 2015. Besides providing statistics for the whole dataset, we also look at
the subset of investors who traded at least once in 2015, and summarize the distribution of the
number of trades and average trade per investor for the whole year.

average trade for investors in the 95th percentile is almost $50,000. This dispersion in

trading frequencies and sizes suggests that there are different classes of investors. The

identification of these classes is beyond the scope of this thesis but is definitely something

we plan to carry out later in our analysis.

An important initial part of the project has involved building the infrastructure to

transform the raw data into a pre-processed format at which point the calculation of

relevant features and subsequent analytics become much easier. More specifically, for

each investor we want to know the number of shares held and the price of each security in

their portfolio on each trading day. Our infrastructure is able to calculate these numbers

by taking the portfolio positions snapshot and iteratively “rolling back" these positions

to obtain the portfolio snapshot on the previous trading day. The roll-back procedure

involves using the information on trades (which we have from the broker) and on historical

prices.

CRSP is currently the only data source for prices that we are using. This obviously

restricts us to how much of the investor’s portfolio we can price, considering that there
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are significant holdings and trading activity in other asset classes, such as fixed income

and mutual funds. However, we can still obtain insights at the portfolio level by looking

at just the equity holdings in an investor’s portfolio.1

We restrict our analysis only to those investors for whom we can price all their equity

holdings in the December 2015 portfolio snapshot. This filter still leaves us with a large

dataset of 256,986 investors and 7,632 distinct securities for which we have prices avail-

able in CRSP. We note that there is an implicit survivorship bias associated with this

procedure whereby we use end of year data and filters to look at trading activity earlier

in the year. Unfortunately, we cannot do better since we only have the portfolio snapshot

for December 2015. That being said, the bias should not be too big since investors rarely

close their accounts, while the CRSP universe captures most of the equity securities (and

almost all U.S. common stocks).

In the rest of the paper we will refer to a portfolio as the collection of all equity

securities held by the investor; we do not include cash here.

4.3 Trading Distribution Analysis Methodology

We are interested in analyzing how past portfolio and security returns relate to subse-

quent trading. This is done by calculating the distribution of the net trade by an investor

over a specified future horizon 𝑓 conditional on past returns measured over a specified

past horizon 𝑏. We also condition on if a trade took place over the past horizon or not. We

next outline how the past returns, the net trade, and the trading indicator are computed.

4.3.1 Computing Past Returns

There are two popular ways for calculating portfolio return: the time-weighted return

approach and the modified Dietz approach.

For calculating the time-weighted return we look at the change in portfolio balance in

each period excluding cash flows, and compound these changes over time. Denote by 𝐵𝑡

the portfolio balance at the end of day 𝑡 and by 𝐶𝐹𝑡 is the cash flow attributed to day 𝑡.

1Each trade and position in the dataset includes an asset group classification for the security associated
with that trade/position. This makes it easy to identify all equity holdings and trades.
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The return over a particular horizon, e.g. from day 𝑡− 𝑏 to day 𝑡, is deifned as:

𝑟𝑡 =

𝑡∏︁
𝑠=𝑡−𝑏+1

𝐵𝑠 − 𝐶𝐹𝑠

𝐵𝑠−1

− 1 (1)

The advantage of this formula is that is gives an accurate measure for the return on

the assets held in the portfolio. The disadvantage is that is does not account for the

fact that some daily returns may contribute more to the overall return than others. For

example, consider the following two cases. In both cases an investor holds one share of

stock 𝐴 worth $10 on day 0, which returns 0% on day 1 and 100% on day 2. In the

first case the investor does not make any trades, so their portfolio at the end of day 2 is

worth $20. In the second case the investor buys four more shares of 𝐴 at the end of day

1, so their portfolio at the end of day 2 is worth $100. Even though the time-weighted

return formula gives the same number in both cases, it is clear that the investor has a

significantly greater portfolio return in the second case.

The modified Dietz approach addresses the above short-coming as follows. It aggre-

gates all cash flows at once, giving a higher weight to the ones that have been held in the

portfolio for longer. The formula is:

𝑟𝑡 =
𝐵𝑡 −𝐵𝑡−𝑏 −

∑︀𝑡
𝑠=𝑡−𝑏+1𝐶𝐹𝑠

𝐵𝑡−𝑏 +
∑︀𝑡

𝑠=𝑡−𝑏+1𝑤𝑠𝐶𝐹𝑠

(2)

where 𝑤𝑠 = (𝑡−𝑠)/𝑏 is the weight corresponding to the cash flow on day 𝑠. It is important

to note that this formula is an approximation since it does not look at the incremental

changes in portfolio level (which is done for the time-weighted return).

Which formula should be used? This depends on the application at hand. Here,

we are dealing with the equity portion of an retail investor’s portfolio, where it is not

uncommon to see large cash flows (as we will show later). Furthermore, it is important

to understand how the investors themselves go about computing their portfolio returns,

since this is what ultimately drives their decision-making. Again, since this is a retail

group, it is reasonable to assume that most investors just focus on the levels of equity

balances rather than the granular cash flows adjustments that appear in the time-weighted

formula. Based on this intuition we employ the modified Dietz method for computing

past returns.
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We go into more detail about how formula (2) is computed in our setting. The balance

𝐵𝑡 is just the dollar value of an investor’s equity portfolio at the close of day 𝑡, which is

the total dollar amount of all equity security positions in their portfolio. Cash flows are

calculated by accounting for all trades made over the period.2 More specifically, if we

denote by 𝑞𝑗,𝑠 the number of shares held in security 𝑗 at the end of day 𝑠, and by 𝑝𝑗,𝑠 its

closing price, then the cash flow on day 𝑠 is:

𝐶𝐹𝑠 =
𝑁∑︁
𝑗=1

(𝑞𝑗,𝑠 − 𝑞𝑗,𝑠−1)𝑝𝑗,𝑠 (3)

where the securities in the equity portfolio are indexed from 1 to 𝑁 . This way, the

cash flow is equal to the aggregate dollar trade across all securities on a particular day.

For security level analysis, the above formula still applies. For calculating the return

for a particular security 𝑗, we use for the balance 𝐵𝑡 just the position in that security,

calculated as 𝑞𝑗,𝑡 × 𝑝𝑗,𝑡. For the cash flows calculation we use the trades in that security

only.

4.3.2 Computing Net Trade

We next turn to quantifying trading behavior. Let us denote by a net trade as the

shift in an investor’s portfolio as a result of trading. In particular, a low (and negative)

number should correspond to an investor selling their holdings, whereas a higher (and

positive) number should correspond to adding to existing positions and/or buying new

securities.

At the security level, this measure is very intuitive. We restrict our analysis to cases

in which an investor is holding a positive number of shares in a security on day 𝑡. We

then look at the percent change in the number of shares over the future horizon:

𝑑𝑡 =
𝑞𝑗,𝑡+𝑓 − 𝑞𝑗,𝑡

𝑞𝑗,𝑡
(4)

Note that if this formula gives a value of 0%, this corresponds to no change in the position,

2We do not need to consider dividends with this formula. This is because if a dividend is not reinvested,
it would move into the cash portion of the portfolio and not affect the equity portfolio balance, and if it
is reinvested, then the number of shares held would be adjusted and would then be reflected directly in
the portfolio balance. Also, dividends will generally only marginally affect the whole investor portfolio
balance.
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whereas as value of −100% corresponds to a liquidation of a position.

At the portfolio level things are more complicated since there are multiple securities

with potentially substantially different prices. There are two approaches that we consider.

The first generalizes the security level formula (4) by weighting the percent changes in

holdings of securities by their current balance in the portfolio:

𝑑𝑡 =
𝑁∑︁
𝑗=1

𝑤𝑗
𝑞𝑗,𝑡+𝑓 − 𝑞𝑗,𝑡

𝑞𝑗,𝑡
(5)

where 𝑤𝑗 = (𝑞𝑗,𝑡 × 𝑝𝑗,𝑡)/𝐵𝑡 is the security weight in the portfolio at day 𝑡. We need to

slightly modify this formula to account for securities that are not held in the portfolio on

the current day but traded sometime over the future horizon. The modification involves

weighting the share changes in holdings of securities by their current prices :

𝑑𝑡 =

∑︀𝑁
𝑗=1(𝑞𝑗,𝑡+𝑓 − 𝑞𝑗,𝑡)𝑝𝑗,𝑡

𝐵𝑡

(6)

where we now sum over all securities that are held in the portfolio on at least one day

from the current day to the future horizon, and not just the ones held on the current

day.3 Again, it is not hard to show that the net trade in (6) is equal to −100% if and

only if an investor completely liquidates their portfolio.

We also propose an alternative approach which aggregates trading at the dollar level.

This measure is useful since it explicitly links cash flows to their effect on the portfolio. It

is important to adjust for security returns when aggregating the cash flows. For example,

consider the following situation. An investor is holding one share of stock 𝐴 worth $10 on

day 0, which returns 100% on day 1. At the end of day 1 the investor completely liquidates

their position, corresponding to a trade of −$20. This trade is equal to −200% of the

day 0 portfolio balance, even though the investor traded only 100% of their portfolio.

To make the cash flows on different days comparable to each other, we discount all

cash flows by the time-weighted portfolio return. We then add the discounted cash flows

and divide by the portfolio balance to give a measure of net trade. The formula is:

𝑑𝑡 =

∑︀𝑡+𝑓
𝑠=𝑡+1 𝑣𝑠𝐶𝐹𝑠

𝐵𝑡

(7)

3If no price if available for a security on day 𝑡 (e.g. due to an IPO that occurs later in the sample),
we assume this price is equal to the first price in the future that is available.
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where:

𝑣𝑠 =
[︁ 𝑠∏︁
𝑢=𝑡+1

𝐵𝑢 − 𝐶𝐹𝑢

𝐵𝑢−1

]︁−1

(8)

This formula is equivalent to the shared-based formula (6) if we discount the cash flows

for each security by the corresponding time-weighted returns on the security position.

Which of the two discounting approaches to use comes down to the prior on investor

behavior – i.e. when an investor decides on a trade in one security, do they care about

the portfolio level or just the position in that security. We will investigate the performance

of both methods in the next section.

4.3.3 Computing Trading Indicator

Past trading behavior is another important feature that should be considered when

predicting future trading. Barberis and Xiong (2012) propose the idea of realization

utility, whereby investors experience shocks to their utility after realizing losses and gains

due to trading. It may also be the case that following a trade in a security, investors start

paying more attention to it (at least in the short-term).

We quantify past trading in a very simple fashion by computing a trading indicator,

which takes the value of 1 if an investor traded at least once over the past horizon, and

a value of 0 otherwise. Of course, the case in which a person made at least one trade

may involve very distinct scenarios, such as exactly one large purchase of a security,

several trades in the same direction corresponding to building of a position, or regular

frequent trading by an active investor. Stratifying past trading history into more cases

is something we plan to do later in the project.

4.3.4 Computing Conditional Distributions

Finally, we discuss how the conditional distributions are computed. Out of our filtered

sample of 256,986 investors we exclude the ones who never traded in 2015. A lot of these

are likely inactive accounts, and while we introduce a further look-ahead bias with this

filter, in the end we are interested in characterizing the behavior of people who do trade. If

we include inactive accounts in the sample, then we will be systematically underestimating

the conditional probabilities of trading. We have checked that the empirical results and

conclusions do not change significantly depending on whether or not we enforce this filter.
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Distributions across investors are computed by assigning past returns and net trades

to disjoint intervals. We discuss these intervals in the Appendix.

At the security level, for each of the 132,665 investors in the resulting sample, we look

at all securities that they traded in 2015 and that we can price in CRSP. For every such

investor-security pair, we look at each trading day 𝑡 and compute the past return and the

net trade over the future horizon for all observations where the number of shares held is

positive. We also compute the trading indicator as outlined before. We then count the

observations corresponding to:

∙ Each past horizon interval

∙ Each future net trade interval

∙ Each trading indicator

Based on the observation counts the conditional distributions are straightforward to com-

pute. For portfolio level analysis the procedure is similar. The only difference is that we

impose a further filter whereby among the 132,665 investors from before we only consider

those for whom we can also price all the equity securities they traded in 2015. The filter

results in 125,724 investors, still a very large sample. After that we compute the portfolio

past return and net trade on each trading day 𝑡 for each investor. The trading indicator

is also now measured at the portfolio level (taking the value 1 if the person traded at

least once in the equity portfolio).

4.4 Trading Distribution

Having outlined our methodology for quantifying trading behavior, we are ready to

explore the distribution of net trades. We start by looking at the unconditional distri-

bution, both at the security and at the portfolo level. We find that trades in individual

securities predominantly comprise of position liquidations, whereas trades in portfolios

are more clustered around 0% of the portfolio notional. We provide potential explanations

on how to reconcile this difference in distributions.

Figure 4-1 plots the distribution of net trades at the security level assuming that a non-

zero net trade occurred. We see that liquidating a position is a very common trade; it cor-

responds to just over 35% of observations for a 1-day horizon and almost 45% of observa-
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tions for a 60-day horizon.4 We also observe a high probability of net trades being around

−50% and around 50%, as well as in the right tail around 100%, 150%, 200%, 300%, and

400%. This is driven by two factors. The first is trading in round lots, which is quite

well-documented in the literature; see, for example, Moulton (2005) and Alexander and

Peterson (2007). If an investor is currently holding 100 shares in a stock, and they trade

a round number of shares, then any change in their position would be a “simple" fraction,

such as 20% if they buy 20 shares or −40% if they sell 40 shares. We believe another

important factor is the use of behavioral heuristics by investors. An investor who decides

to put on a trade will often not calculate the optimal change in his position, but rather

choose some round intuitive number representing a proportion of their position, such as

one half or one third, or some integer multiple.

In Figure 4-1 we examine the right tail of the distribution, for trades greater than

100%. The total mass of the distribution in this tail is substantial, making up around 5%

of all observations, both at the 1-day and the 60-day horizons. Furthermore, investors

increase their positions by more than 500% about 0.7% of the time for the 1-day horizon

and 0.8% of the time for the 60-day horizon. This again is a significant proportion of

observations.

While we calculate the distribution over all trades in the sample, one may think that

the distribution is skewed by the population of active investors since they carry out more

trades. For robustness, we have repeated the exercise for investors who traded less than

10 times in 2015 and separately for investors whose average number of trades per security

is less than 3. In both cases the results don’t materially change.

We next move to the portfolio level analysis. Figure 4-2 plots the trade distribution

when we use the share-based measure in (6) for calculating the net trade. The distribution

shows a very heavy clustering of mass around a 0% change in the portfolio and a monotone

decrease in the likelihood as we move away from 0%. This distribution is at a stark

contrast with what we saw for individual securities, suggesting that the decision-making

process is very different depending on if an investor is thinking how much to trade in

one security versus how much to trade as a proportion of their entire portfolio. Another

reason why we are getting a different distribution is that at the portfolio level we are now

accounting for buying of new securities.5

4We observe the same result when considering horizons at 5, 10, 15, . . . , 55 days.
5At the security level we assume the current position is positive, so we only restrict to securities
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The tails are also important in the portfolio net trade distribution. From Figure 4-2

we see that portfolio liquidation is still apparent, although to a much smaller extent than

for securities. For a 1-day horizon, liquidation occurs 1.8% of the time; this drops to 1.2%

for a 60-day horizon. The right tail is thicker than for the security level distribution; at

the 60-day horizon there are over 6% of observations corresponding to net trades greater

than 100%, and almost 1.4% of observations corresponding to net trades greater than

500%. This increased right tail is likely caused by purchases of new securities.

We also examine how the dollar-based net trade measure performs at the portfolio

level; Figure 4-7 in the Appendix plots its distribution. The distribution looks very similar

to what we saw with the share-based approach, both in terms of the shape and in terms of

magnitudes. There is a slight difference in the left tail, whereby we now see a few trades

that are less than −100% of the portfolio. (Recall that with the share-based method these

trades never occur in absence of shorting). The right tail is substantially different and

much larger; at the 60-day horizon over 7.5% of net traders are greater than 100%, and

almost 3.6% are greater than 500%. This is likely due to the fact that discounting by the

time-weighted portfolio return overweights new purchases in securities that significantly

rise in price over the future horizon – in comparison to the share-weighted approach in

which such purchases are discounted by the security price return.

Overall, it is fair to conclude that the share-based and the dollar-based measures are

similar to each other, and which one to use depends on how we want to model the tail

behavior of net trades. For the remainder of this paper we will always employ the share-

based measure, in part because it provides a more consistent comparison between the

portfolio and the security level trading.

We discuss some reasons for why there is such a difference between the trading distri-

butions at the portfolio and at the security levels. The first is the existence of “reshuffling"

in investor portfolios, whereby investors will at times choose to close out positions in se-

curities they no longer wish to hold and replace them with other securities instead. This

is related to the rank effect documented by Hartzmark (2015), whereby investors tend to

predominantly sell extreme performers in their portfolios. Another reason could be the

presence of managed accounts in the sample, which tend to systematically rebalance in a

similar fashion as to what an institutional investor would do. Furthermore, a large part

already held in the investor’s portfolio.
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of the trades have a fixed dollar commission associated with them, which may encourage

investors to trade in large quantities rather than to gradually adjust their portfolios. We

plan to explore these aspects in more detail later on, especially when we get the full

dataset.

To provide further validation that the two distributions are different, we split the net

trade distribution at the security level into two cases: when an investor traded exactly

one security in 2015 and when they traded at least two securities. Figure 4-3 plots the

resulting distributions, both at the 1-day and the 60-day future horizons. It is evident that

the net trade distribution for the case when at least two securities were traded looks very

similar to the overall security distribution in Figure 4-1. In contrast, when an investor

traded exactly one security, the distribution of their trades resembles the portfolio level

distribution; this is especially apparent as we get to the longer horizon of 60 days. This

suggests that an investor with just one security in their portfolio views their trading as

occurring at the portfolio level (even though they are trading just one security). This

may be rational behavior if the security they are holding is diversified in itself, such as a

broad market ETF. At the same time, if an investor holds 20 different single name stocks,

it may make sense for them to liquidate one of these stocks and replace it with another

when they wish to rebalance.

To summarize, our insights into the overall trading distribution are as follows. A

very large proportion (as much as 45%) of trades in individual securities are position

liquidations. We also observe trading at round fractions and multiples of positions at the

security level, which may in part be explained by behavioral investor heuristics. When it

comes to portfolio level trading, most trades are close to 0% of portfolio notional, although

we still see a non-trivial amount of liquidations and substantial increases in portfolio

positions. We may attribute the stark difference in the portfolio and security level trading

distributions to the fact that investors liquidate positions in some securities and replace

them with other securities. Further work is needed to understand this behavior and to

investigate other reasons for the difference.
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Figure 4-1: Net Trade Distribution at Security Level

(a) Whole Distribution, 1-Day Horizon (b) Whole Distribution, 60-Day Horizon

(c) Right Tail Distribution, 1-Day Horizon (d) Right Tail Distribution, 60-Day Horizon
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Net Trade

This figure plots the unconditional distribution of the net trades over the future horizon. Analysis
is done at the security level. We consider the 1-day and the 60-day future horizon. The net
trade is measured as the change in number of shares held in the security, divided by current
number of shares.
The top two charts show the distribution over the whole interval (−∞,∞), whereas the bottom
two show the right tail distribution over the interval (100%,∞). For each chart the distribution
is computed by calculating the probability of the net trade falling into a particular interval. The
endpoints of the intervals are shown on the 𝑥−axis.
All intervals have length of 8% except the following. For the top charts, the left-most interval
corresponds to a net trade of less than −100%, the second left-most interval corresponds to a
net trade exactly equal to −100%, while the right-most interval corresponds to a net trade of
greater than 100%. For the bottom charts the right-most interval corresponds to a net trade of
greater than 500%. Standard errors for the empirical probability corresponding to each interval
are at most 0.02% (except the 1-day liquidation probability at 0.04%) and are not shown in the
charts.
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Figure 4-2: Net Trade Distribution at Portfolio Level
Share-Based Approach

(a) Whole Distribution, 1-Day Horizon (b) Whole Distribution, 60-Day Horizon

(c) Right Tail Distribution, 1-Day Horizon (d) Right Tail Distribution, 60-Day Horizon
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Net Trade

This figure plots the unconditional distribution of the net trade over the future horizon. Analysis
is done at the portfolio level. We consider the 1-day and the 60-day future horizon. The net
trade is calculated as an average change in number of shares held in each security, weighted by
its current price, as in equation (6).
The top two charts show the distribution over the whole interval (−∞,∞), whereas the bottom
two show the right tail distribution over the interval (100%,∞). For each chart the distribution
is computed by calculating the probability of the net trade falling into a particular interval. The
endpoints of the intervals are shown on the 𝑥−axis.
All intervals have length of 8% except the following. For the top charts, the left-most interval
corresponds to a net trade of less than −100%, the second left-most interval corresponds to a
net trade exactly equal to −100%, while the right-most interval corresponds to a net trade of
greater than 100%. For the bottom charts the right-most interval corresponds to a net trade of
greater than 500%. Standard errors for the empirical probability corresponding to each interval
are at most 0.02% (except for the intervals between −12% and 12%, where the bound is 0.05%)
and are not shown in the charts.
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Figure 4-3: Comparison of Net Trade Distribution at Security Level
Depending on Number of Securities Traded in 2015

(a) 2+ Securities Traded, 1-Day Horizon (b) 1 Security Traded, 1-Day Horizon

(c) 2+ Securities Traded, 60-Day Horizon (d) 1 Security Traded, 60-Day Horizon
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Net Trade

This figure plots the trading distribution at the security level for two scenarios: when an investor
traded at least two securities in 2015 and when they traded exactly one security. We consider
the 1-day and the 60-day future horizon. The net trade is measured as the change in number of
shares held in the security, divided by current number of shares.
For each chart the distribution is computed by calculating the probability of the net trade falling
into a particular interval. The endpoints of the intervals are shown on the 𝑥−axis. All intervals
have length of 8% except the following. For the top charts, the left-most interval corresponds to
a net trade of less than −100%, the second left-most interval corresponds to a net trade exactly
equal to −100%, while the right-most interval corresponds to a net trade of greater than 100%.
For the bottom charts the right-most interval corresponds to a net trade of greater than 500%.
Standard errors for the empirical probability corresponding to each interval are at most 0.32%
and are not shown in the charts.
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4.5 Dependence on Past History

In order to build predictive models of investor behavior, we need to decide on what

features to include in the models. Here, we focus on two important features – past returns

and past trading behavior – and analyze the distribution of net trades conditional on these

two attributes. The key result is that the probabilities of liquidation and of significant

increases in positions are much larger following extreme returns; this is consistent with

earlier work by Ben-David and Hirshleifer (2012). We also investigate how these reactions

to large losses and large gains depend on whether or not an investor traded in the past,

as well as what horizons are used for measuring past returns and subsequent trading.

We start by stratifying the distribution of net trades by the returns over the past

horizon; we use 120 days for the past horizon and 60 days for the future horizon. Table

4.2 shows the resulting conditional distributions at the security level. Overall, the dis-

tributions all look similar to the unconditional distribution we discussed earlier in Table

4-1, namely that there is a large concentration of trades corresponding to position liq-

uidations, as well as some concentration around 0% and in the right tail. However, by

comparing the different rows in the table, we see that following more extreme returns,

liquidations make up a much larger proportion of all trades: 57% following a loss of −39%

or more and 52% following a gain of 39% or more, in comparison with just 35% following

past returns in the range (−3%, 3%]. It is also evident that large buys, which we define

as increases in position by 100% or more, make up a larger proportion of all trades after

large losses or large gains. At the same time, the proportion of trades that are close to

0% declines substantially.

We repeat the same exercise at the portfolio level; Table 4.3 presents the results.

While the distributions are now more clustered around 0% (a phenomenon we observed

earlier when looking at the unconditional distribution in Table 4-2), we again see the

distribution mass shifting to the tails following returns that are larger in magnitude. For

example, if past returns are in the range (−3%, 3%], then 59% of non-zero trades fall into

the (−10%, 10%) interval. This number drops to just 18% if past returns are less than

−39% and to 21% if past returns are greater than 39%. Consistent with this behavior,

we also see that the proportion of trades corresponding to portfolio liquidations and to

large buys increases after extreme returns.

To verify that this result holds for other choices of past and future horizons, we repeat
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the same exercise for four other horizon cases and plot the results in three-dimensional

charts in Figures 4-8 and 4-9 in the Appendix. We see that the dependence of the

distributions on past returns is very similar (and holds even if we split into two separate

cases for whether a trade was made over the past horizon).

So far we have restricted our observations to those where the net trade is non-zero.

We now look at all observations following a particular past return and ask the question of

how many of those observations correspond to a certain trade. This is the more important

question from a predictive perspective, since we want to forecast if an investor will make

a trade (or a trade of a certain kind) based on past history. For this paper we will focus

on two trades: a net trade of −100% corresponding to a liquidation, and a net trade of

100% or more corresponding to a large buy.6

Figure 4-4 plots the probability of security liquidation conditional on past returns.

This probability is much higher following large losses and large gains. Following losses of

over 39% over the past 20 days, the conditional probability of liquidation over the next

60 days is 19%, in comparison to just 7% following past returns between −3% and 3%.

The conditional probability following gains of 39% or more is also very high, at 22%. A

conditional probability number around 20% is actually impressive in magnitude, because

it means that by conditioning just on one feature of past data, we can predict with 20%

probability that a person will make a very specific and an important trade over the future

horizon.

For robustness, we also plot the conditional probability if we measure net trade over

the next 5 days instead of the next 60 days; we again see more extreme reactions following

large returns. The same phenomenon is observed for probabilities of large buying, also

shown in Figure 4-4; the overall levels are lower than for liquidation probabilities, since

buying additional shares of a security is quite rare. We thus see a very consistent “V-

shaped" curve for selling and buying probabilities conditional on past returns. Ben-

David and Hirshleifer (2012) document this result and note that it lies in contrast with

predictions due to the disposition effect, whereby investors are reluctant to realize losses

and hold on to losing investments for too long while selling winning ones too soon.

The result also holds if we look at the portfolio level conditional probabilities; see

6While these two trades are important, there are other types one may be interested in, especially at
the portfolio level – such as increases in positions by 10% or more or decreases by 10% or more. This is
beyond the scope of the paper.
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Figure 4-10 in the Appendix. The probabilities of large buys are now higher since for

portfolios we account for buying of new securities.

We next investigate the dependence of net trades on another historical feature, which

is past investor trading. In Figure 4-5 we plot the probability of liquidation conditional

on past returns for two cases: if at least one trade was made over the past horizon and if

there were no trades. We see that if an investor traded in the past, they are a lot more

likely to liquidate their position. In more detail, for a past horizon of 20 days and future

horizon of 60 days, the probability of liquidation after a loss of −39% or more is 31% if a

trade was made, and 11% is no trade was made in the past. A similar picture if observed

if we consider the shorter future horizon of 5 days; the correspoding probabilities are 8%

if a trade was made in the past, and just 1% if no trade was made. We obtain the same

result if we compare the probabilities of large buys for the two cases in Figure 4-5.

In Figure 4-6 we repeat the same procedure at the portfolio level. Overall, the result

still holds, with past trading leading to a higher probability of trading in the future. We

next compare the probabilities of liquidation conditional on past returns for securities

and for portfolios. The levels of the probabilities are higher for securities, which is

consistent with the unconditional distribution comparison from before. However, we see

an interesting phenomenon whereby the liquidation probability after large losses relative

to flat returns is greater at the portfolio than at the security level, where we define large

losses as past returns less than or equal to −39% and flat returns as past returns falling

in the (−3%, 3%] interval. For example, take the case when an investor traded in the

past, the past horizon is 20 days, and the future horizon is 60 days. (The results for other

cases are similar). From Figure 4-5(a) we see that the probability of security liquidation

following large losses is 31%, a three-fold increase over the probability of 11% following

flat returns. In contrast, from Figure 4-6(a) for portfolios, the liquidation probability after

large losses is 4.4%, which is over 8 times higher than this probability after flat returns of

just 0.5%. Furthermore, this means that in “normal conditions" of past portfolio returns

that are flat, investors very rarely liquidate their whole portfolios, whereas when their

portfolio returns are extreme, the liquidation probability becomes substantial.

We can further extend the comparison of probabilities to other situations, such as

looking at buying vs. selling behavior or looking at reactions to losses vs. gains. We

do not yet have a conclusive approach to this question but want to provide our initial
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thoughts here. There are a few different quantitative measures one could use for the

comparison, such as the average net trade following a particular return, or the dispersion

of net trades. Another idea is to “summarize" the shape of the conditional probability

“V-curve", for example by looking at if the curve is higher for large gains or large losses,

or by “scaling" the curve so that it corresponds to a probability distribution, and then

comparing this distribution to a uniform one (because one may set the null hypothesis

as an investor’s decision being independent of past returns).

We go into more detail about one way to summarize the V-shape, which is to measure

its steepness. We can formally define the steepness of the liquidation probability curve on

the losses side as the conditional probability of liquidation following large losses divided

by the conditional probability of liquidation following flat returns. We then analyze how

this steepness varies for various choices of past and future horizons and present the results

in Figure 4.4 at both the security and the portfolio level. We see that the V-shapes are

steeper for shorter horizons and flatter for longer horizons; the steepness is also more

pronounced for portfolios than for securities, which is what we saw earlier. Of course,

more work needs to be done to investigate the effects of returns at different horizons on

trading.
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Table 4.2: Net Trade Distribution Conditional on Past Security Returns
Past Horizon 120 Days, Future Horizon 60 Days
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0.96 9.331.91 2.93 1.93 0.97
-39%
-33%

0.3657.18 0.43

55.97 0.60

Conditional

Distribution

in rows

Net Security Trade over Next 60 Days

6
0
%

7
0
%

8
0
%

2.09 3.53 2.46 2.72 1.743.53 1.15 1.26 1.03 0.90

0.42 0.40

1
0
0
%

7.34

7.15

9.93

7.20

13.34

10.49

0.36 0.66 1.75

-8
0
%

-7
0
%

-6
0
%

-5
0
%

0.81 1.95 1.40 1.33 1.43 1.23 1.22 3.26 4.53 3.24

This table lists the distribution of the net trade over the future horizon conditional
on past returns. Analysis is done at the security level. We assume the long horizon
scenario, with a past horizon of 120 days and a future horizon of 60 days.
Each row corresponds to a conditional distribution of trades following the return
over the past horizon falling into a particular interval. The partition points for
these intervals are shown in the second column and range from −39% to 39%. The
distribution itself is computed by calculating the conditional probability of the
net trade falling into a particular interval. The partition points for the net trade
intervals are shown in the second row and range from −100% to 100%. The cells
contain the conditional probabilities as percentages without the percentage sign.
We provide the color coding of the cells to the right of this caption.
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Table 4.3: Net Trade Distribution Conditional on Past Portfolio Returns
Past Horizon 120 Days, Future Horizon 60 Days
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2.58 1.36 1.21 1.30
27%
33%
39%
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2.28 2.03 1.59 1.467.32 4.88 2.97 2.57 2.574.84 2.85 0.86

-27%
-21%
-15%
-9%
-3%
3%
9%
15%

1.28 2.21 2.79 2.72 3.25 4.24 6.19 9.89 10.90

2.95 4.09 4.64 6.87 1.292.75 1.71 2.23 1.77 1.413.71 1.90 1.17 2.16 2.01

1.36 1.223.74 3.17 2.29 1.96 1.183.13 1.72 1.14 1.33 2.26 2.68

13.07 12.68 6.87 5.40 3.163.27

2.85 4.56 4.37 6.46 13.09 14.16 7.29 5.88

7.87 5.9212.97 16.61

9.882.58 2.06 1.81 1.50 1.11

1.86 1.61 1.24 1.07 12.312.87 2.162.08 2.83 3.11 4.11 4.48 6.86

1.79 1.42 1.13 1.20 1.77

0.72 0.713.59 2.43 1.89 1.41 1.151.28 1.14 0.85 1.02 1.28 2.05

14.21 19.91 8.76 5.52 3.712.50

2.45 3.27 4.61 7.53 16.66 24.01 9.41 5.27

9.49 4.8021.33 26.76

0.43 3.621.52 1.05 0.74 0.60 0.47

1.11 0.86 0.62 0.63 5.123.10 1.98 1.45

29.63 29.83 7.68 3.85 2.401.58 2.20 3.45 6.69

0.95 0.87 0.72 0.74 1.15 1.60 2.11 2.75 4.24 7.63

0.53 0.62 0.54 0.53 0.84 1.20

0.44 0.412.29 1.57 1.04 0.75 0.600.40 0.58 0.48 0.58 0.83 1.17 1.56 2.34 3.71 6.97 23.14 35.88 7.85 3.87

8.23 4.1921.12 33.04

0.77 8.132.59 1.77 1.44 1.20 0.90

0.88 0.76 0.56 0.48 4.652.61 1.83 1.17

16.78 22.70 9.08 5.39 3.772.47 3.34 4.89 7.91

0.42 0.65 0.56 0.64 0.91 1.34 1.80 2.59 4.10 7.46

0.78 1.05 0.85 0.93 1.37 1.87

2.18 1.71 1.421.12 1.48 0.93 1.16 1.56 2.05

1.37

1.81 1.61 1.29 1.05 12.39

2.75 3.55 4.95 7.70 13.83 18.86 9.28 5.63

8.70 5.39 4.96 3.34 2.59

4.77

1.28 0.974.82 2.88

20.173.23 2.83 2.23 1.62 1.23

1.74 1.59 1.05 1.34 1.80 2.31 2.96 3.39 5.29 7.36 12.25 15.80

1.21 14.813.79 2.94 2.17 1.61
-39%
-33%

1.503.34 2.04

2.44 1.82

Conditional

Distribution

in rows

Net Portfolio Trade over Next 60 Days

6
0
%

7
0
%

8
0
%

10.17 7.29 5.66 4.35 3.843.06 3.64 4.30 5.86 8.11

1.36 1.31

1
0
0
%

3.53

9.86

14.16

7.26

20.30

14.90

1.47 1.86 2.17

-8
0
%

-7
0
%

-6
0
%

-5
0
%

1.97 2.01 2.99 3.33 4.73 6.81 10.74 14.17 7.76 5.90

This table lists the distribution of the net trade over the future horizon conditional
on past returns. Analysis is done at the portfolio level. We assume the long horizon
scenario, with a past horizon of 120 days and a future horizon of 60 days.
Each row corresponds to a conditional distribution of trades following the return
over the past horizon falling into a particular interval. The partition points for
these intervals are shown in the second column and range from −39% to 39%. The
distribution itself is computed by calculating the conditional probability of the
net trade falling into a particular interval. The partition points for the net trade
intervals are shown in the second row and range from −100% to 100%. The cells
contain the conditional probabilities as percentages without the percentage sign.
We provide the color coding of the cells to the right of this caption.
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Figure 4-4: Probabilities of Security Liquidation and Large Buy
Conditional on Past Returns

Past Horizon: 20 days, Future Horizon: 60 days

(d) Probability of Large Buy

Past Horizon: 20 days, Future Horizon: 5 days

(a) Probability of Liquidation (b) Probability of Liquidation

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(c) Probability of Large Buy

0%

5%

10%

15%

20%

25%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

0%

1%

2%

3%

4%

5%

6%

7%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

0%

1%

2%

3%

4%

5%

6%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

This figure plots the probability of liquidation and the probability of large buy conditional on
returns over the past horizon. Analysis is done at the security level. Liquidation corresponds to
a net trade of −100%, and a large buy corresponds to a net trade of 100% or more. We set the
past horizon at 20 days and consider two cases for the future horizon: 60 days and 5 days.
All past return intervals have length 6%, except for the first interval that corresponds to a return
of −39% or less and the last interval that corresponds to a return of over 39%. For each interval
we calculate the conditional probability by dividing the number of observations corresponding
to the particular net trade and past return falling into a particular interval by the total number
of observations corresponding to the past return interval.
Standard errors do not exceed 0.08% for all conditional sell probabilities, and do not exceed
0.04% for all conditional buy probabilities. The confidence intervals are not plotted on the
charts because they are very narrow.
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Figure 4-5: Probabilities of Security Liquidation and Large Buy
Conditional on Past Returns and Past Trading

Past Horizon: 20 days, Future Horizon: 60 days

(d) Probability of Large Buy, Trade vs. No Trade

Past Horizon: 20 days, Future Horizon: 5 days

(a) Probability of Liquidation, Trade vs. No Trade (b) Probability of Liquidation, Trade vs. No Trade

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(c) Probability of Large Buy, Trade vs. No Trade

0%

5%

10%

15%

20%

25%

30%

35%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

1+ Trade

No Trade

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

1+ Trade

No Trade

0%

1%

2%

3%

4%

5%

6%

7%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

1+ Trade

No Trade

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

Past Return

1+ Trade

No Trade

This figure plots the probability of liquidation and the probability of large buy conditional on
returns and whether an investor traded over the past horizon. Analysis is done at the security
level. Liquidation corresponds to a net trade of −100%, and a large buy corresponds to a net
trade of 100% or more. We set the past horizon at 20 days and consider two cases for the future
horizon: 60 days and 5 days. We split past trading behavior into two cases: when no trade was
made over the past horizon and when at least one trade was made over the past horizon.
All past return intervals have length 6%, except for the first interval that corresponds to a return
of −39% or less and the last interval that corresponds to a return of over 39%. For each interval
we calculate the conditional probability by dividing the number of observations corresponding
to the particular net trade and past return falling into a particular interval by the total number
of observations corresponding to the past return interval.
Standard errors do not exceed 0.19% for all conditional sell probabilities, and do not exceed
0.10% for all conditional buy probabilities. The confidence intervals are not plotted on the
charts because they are very narrow.
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Figure 4-6: Probabilities of Portfolio Liquidation and Large Buy
Conditional on Past Returns and Past Trading

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(a) Probability of Liquidation, Trade vs. No Trade (b) Probability of Liquidation, Trade vs. No Trade

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(c) Probability of Large Buy, Trade vs. No Trade (d) Probability of Large Buy, Trade vs. No Trade
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This figure plots the probability of liquidation and the probability of large buy conditional on
returns and whether an investor traded over the past horizon. Analysis is done at the portfolio
level. Liquidation corresponds to a net trade of −100%, and a large buy corresponds to a net
trade of 100% or more. We set the past horizon at 20 days and consider two cases for the future
horizon: 60 days and 5 days. We split past trading behavior into two cases: when no trade was
made over the past horizon and when at least one trade was made over the past horizon.
All past return intervals have length 6%, except for the first interval that corresponds to a return
of −39% or less and the last interval that corresponds to a return of over 39%. For each interval
we calculate the conditional probability by dividing the number of observations corresponding
to the particular net trade and past return falling into a particular interval by the total number
of observations corresponding to the past return interval.
We plot the upper and lower bounds for the probability confidence intervals at the ±2 standard
error level; these are shown in light dashed lines.
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Table 4.4: Steepness of Liquidation Prob. V-shape for Losses vs. Flat
Returns

(a) Security Liquidations

5 10 15 20 25 30 35 40 45 50 55 60

10 6.79 5.33 4.89 4.53 4.20 3.93 3.72 3.51 3.37 3.24 3.11 3.04

20 6.11 5.11 4.63 4.29 4.01 3.76 3.49 3.30 3.17 3.06 2.95 2.83

30 5.88 4.83 4.24 3.87 3.64 3.41 3.17 3.05 2.93 2.80 2.67 2.58

40 5.39 4.63 4.17 3.82 3.60 3.40 3.18 3.02 2.89 2.76 2.65 2.56

50 5.09 4.25 3.88 3.60 3.39 3.21 3.02 2.86 2.72 2.58 2.48 2.42

60 4.61 3.99 3.73 3.48 3.28 3.08 2.88 2.75 2.63 2.52 2.42 2.38

70 4.55 3.92 3.60 3.37 3.17 2.95 2.75 2.60 2.48 2.40 2.34 2.35

80 4.39 3.86 3.53 3.23 3.00 2.79 2.62 2.48 2.38 2.30 2.25 2.26

90 4.07 3.56 3.27 3.02 2.85 2.69 2.51 2.38 2.30 2.22 2.13 2.11

100 4.05 3.51 3.30 3.10 2.91 2.73 2.54 2.38 2.27 2.19 2.11 2.09

110 4.21 3.69 3.45 3.20 2.96 2.77 2.55 2.37 2.29 2.19 2.10 2.11

120 4.39 3.75 3.39 3.15 2.89 2.67 2.50 2.30 2.22 2.14 2.09 2.05

P
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Future Horizon (days)Liquidation

Losses / Flat

(b) Portfolio Liquidations

5 10 15 20 25 30 35 40 45 50 55 60

10 11.22 9.20 8.84 8.98 8.20 8.85 9.25 7.95 7.79 8.65 8.19 7.68

20 12.93 10.47 9.50 9.32 8.40 7.79 6.83 6.29 6.57 6.54 6.56 6.18

30 11.04 9.08 8.59 7.71 6.92 6.70 5.99 6.02 6.21 6.31 6.20 5.72

40 10.49 8.98 7.53 6.90 6.44 6.04 5.84 5.81 5.78 5.44 5.07 4.85

50 10.08 8.32 7.41 6.78 6.31 6.20 6.00 5.65 5.33 4.94 4.50 4.36

60 9.96 7.94 7.35 6.87 6.45 6.03 5.64 5.26 4.79 4.36 4.01 3.89

70 10.36 8.41 7.73 6.98 6.28 5.70 5.18 4.74 4.37 4.00 3.72 3.64

80 9.87 8.26 7.40 6.52 5.84 5.30 4.74 4.45 4.02 3.68 3.56 3.59

90 9.16 7.70 6.89 6.18 5.50 4.90 4.53 4.19 3.93 3.76 3.71 3.77

100 7.93 6.79 6.22 5.67 5.11 4.60 4.27 4.10 3.94 3.82 3.86 4.01

110 7.53 6.33 5.71 5.26 4.71 4.34 4.13 4.07 3.92 3.98 4.12 4.38

120 6.52 5.60 5.04 4.84 4.62 4.30 4.17 4.22 4.20 4.16 4.28 4.52

Liquidation

Losses / Flat
Future Horizon (days)
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These tables list the “steepness" of the V-shaped liquidation probability curve calculated as the
conditional probability of liquidation following losses of −39% or more divided by the probability
of liquidation following returns between between −3% and 3%. Analysis is done at the security
level for the top table and at the portfolio level for the bottom table. We consider past horizons
ranging from 10 to 120 days, and future horizons ranging from 5 to 60 days.
The cells in the table are color-coded according to their values, with green corresponding to
higher values and red corresponding to lower values.
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4.6 Conclusion and Next Steps

In conclusion, we have developed initial intuition that that will help us build models of

trading behavior later in the project. We analyze the distribution of net trades and find

that is it very distinct at the security and at the portfolio level. When trading securities,

investors very frequently liquidate their positions, as well as often shift their positions by

±50% or integer multiples. For portfolios, most trades make up 0% to 10% of portfolio

notional; we also observe substantial buying behavior. One of the reasons for this drastic

difference in distributions could be portfolio “reshuffling", which constitutes liquidations

of some securities and buying of other securities instead. The most important implication

is that we should be considering two different models for security and for portfolio trading.

If we aim to construct one “generic" model, then we need to incorporate factors from both

the portfolio and the security level paradigms.

We have also looked at the probabilities of liquidation and large buys conditional on

past returns. Investors tend to carry out more selling and buying following more extreme

returns on their holdings, leading to “V-shaped" conditional probabilities for large net

trades as a function of past returns. These reactions are more pronounced in situations

where at least one trade was carried out over the past horizon, in comparison to when no

trades were made. This behavior is consistent across different choices of past and future

horizons, with shorter horizons leading to steeper V-shaped probability curves.

Of course, to get more robust conclusions along the lines of the above results, we

would need to carry out a regression analysis, or potentially a classification scheme, such

as CART or logistic regression. This approach would also allow us to account for more

types of past trading behavior, so that we would not just use an indicator for if a trade

was made in the past or not, but several variables describing past trading, including the

number of trades, the trade dispersion in terms of sign, the timing of the trades, and

how much of the investor portfolio they made up. We would also want to incorporate

more features in the model, such as general market movements, investor demographics,

and other variables describing past security and portfolio returns behavior at various

horizons. Classification of investors into distinct types is also an important task, since

it may be appropriate to develop separate models for different investor classes. Finally,

we aim to apply machine-learning methods to this large dataset to hopefully obtain even

better predictions of future investor behavior.
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4.7 Appendix

4.7.1 Return and Net Trade Intervals

As discussed in the methodology, we calculate distributions by assigning net trades

and past returns to disjoint intervals. For past returns we construct 15 intervals:

(−∞,−39%], (−39%,−33%], (−33%,−27%], . . . , (−3%, 3%], . . . , (33%, 39%], (39%,∞)

The choice of the bounds −39% and 39% is rather arbitrary but is done to capture the

majority of possible past price moves. We ensure all intervals except the first and the

last have the same interval length, so that it is easier to compare conditional probabilities

across different buckets.

For the unconditional distribution of net trades we use 78 intervals:

(−∞,−100%), [−100%,−100%], (−100%,−92%], (−92%,−84%], . . . ,

(−12%,−4%], (−4%, 4%], (4%, 12%], . . . , (492%, 500%], (500%,∞)

All intervals have length 8% except the following. The left-most interval of (−∞,−100%)

corresponds to shorting, or very extreme selling in the case of the dollar-based net trade

measure. Since we exclude shorting from the sample (it is a very rare occurrence in the

retail dataset), then the only way to get a net trade value of −100% or less is if an

investor liquidated their position/portfolio; in that case the value is exactly −100%. For

the dollar-based measure it is possible to get values less than −100%. We separate out

the [−100%, 100%] interval since it corresponds to liquidations. The right-most interval

of (500%,∞) corresponds to increasing the position(s) by a factor of five or more, and

while the choice of the 500% bound is rather arbitrary, we believe that it allows us to

capture almost all of the trading behavior, while still being able to investigate the right

tail in detail.

For the conditional distributions we only use the share-based net trade measure, and

therefore do not need to worry about values less than −100%. We also do not consider

the right tail in as much detail as for the unconditional distribution, and therefore set

the upper bound at 100%. Finally, since trades may happen at round numbers, we make

sure that our intervals are symmetric around 0%. Based on this intuition, we use the
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following intervals:

[−100%,−100%], (−100%,−90%], (−90%,−80%], . . . ,

(−10%, 0%), [0%, 0%], (0%, 10%), [10%, 20%), . . . , [90%, 100%), [100%,∞)

We separate out the [−100%,−100%] interval since it corresponds to liquidations. We also

separate out the [0%, 0%] interval since it corresponds to no change in position. Note

that we do not need to separate out this interval when calculating the unconditional

distribution, since for that calculation, we restrict our observations to cases where an

investor changed their position and therefore would never get 0% for the net trade.
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Figure 4-7: Net Trade Distribution at Portfolio Level
Dollar-Based Approach

(a) Whole Distribution, 1-Day Horizon (b) Whole Distribution, 60-Day Horizon

(c) Right Tail Distribution, 1-Day Horizon (d) Right Tail Distribution, 60 Day Horizon
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This figure plots the unconditional distribution of the net trade over the future horizon. Analysis
is done at the portfolio level. We consider the 1-day and the 60-day future horizon. The net
trade is calculated as the sum of (signed) dollar amounts traded, discounted by the time-weighted
portfolio returns, as in equation (7).
The top two charts show the distribution over the whole interval (−∞,∞), whereas the bottom
two show the right tail distribution over the interval (100%,∞). For each chart the distribution
is computed by calculating the probability of the net trade falling into a particular interval. The
endpoints of the intervals are shown on the 𝑥−axis.
All intervals have length of 8% except the following. For the top charts, the left-most interval
corresponds to a net trade of less than −100%, the second left-most interval corresponds to a
net trade exactly equal to −100%, while the right-most interval corresponds to a net trade of
greater than 100%. For the bottom charts the right-most interval corresponds to a net trade of
greater than 500%. Standard errors for the empirical probability corresponding to each interval
are at most 0.02% (except for the intervals between −12% and 12%, where the bound is 0.05%)
and are not shown in the charts.

194



Figure 4-8: Security Trade Distribution Conditional on Past Returns and
Trading

 

 

 
This figure plots the distribution of the net trade at the security level conditional on past returns
and whether or not a trade was made over the past horizon. We consider four different cases for
the past and future horizons. The heat map corresponding to each horizon case is constructed
in the same way as in Table 4.2. We restrict our observations to those where the net trade is
non-zero.
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Figure 4-9: Portfolio Trade Distribution Cond. on Past Returns and Trading

 

 

 
This figure plots the distribution of the net trade at the portfolio level conditional on past returns
and whether or not a trade was made over the past horizon. We consider four different cases for
the past and future horizons. The heat map corresponding to each horizon case is constructed
in the same way as in Table 4.3. We restrict our observations to those where the net trade is
non-zero.
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Figure 4-10: Probabilities of Portfolio Liquidation and Large Buy
Conditional on Past Returns

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(a) Probability of Liquidation (b) Probability of Liquidation

Past Horizon: 20 days, Future Horizon: 60 days Past Horizon: 20 days, Future Horizon: 5 days

(c) Probability of Large Buy (d) Probability of Large Buy
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This figure plots the probability of liquidation and the probability of large buy conditional on
returns over the past horizon. Analysis is done at the portfolio level. Liquidation corresponds
to a net trade of −100%, and a large buy corresponds to a net trade of 100% or more. We set
the past horizon at 20 days and consider two cases for the future horizon: 60 days and 5 days.
All past return intervals have length 6%, except for the first interval that corresponds to a return
of −39% or less and the last interval that corresponds to a return of over 39%. For each interval
we calculate the conditional probability by dividing the number of observations corresponding
to the particular net trade and past return falling into a particular interval by the total number
of observations corresponding to the past return interval.
We plot the upper and lower bounds for the probability confidence intervals at the ±2 standard
error level; these are shown in light dashed lines.
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