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Abstract 

Characterizing and controlling process variations in semiconductor manufacturing processes is 
crucial to ensure the extremely low defect and scrap rates that are needed for semiconductor 
manufacturing companies to maximize profitability. As semiconductor device critical 
dimensions become smaller and chips become more complex, and with customers enquiring 
about process capability metrics to make sure they get the highest quality product, there is a need 
for chip manufacturers to thoroughly analyze and define their process capabilities. The work in 
this thesis done in collaboration with Analog Devices Inc., a leading chip manufacturer, shows 
how the concept of design of experiments (DOE) and statistical regression modeling techniques 
can be implemented in a practical industrial setting to rigorously understand and mathematically 
characterize process variations in a semiconductor fabrication process (plasma ashing).  

New approaches are introduced to Analog Devices Inc. in calculating wafer statistics. 
Methodologies are developed that will help the company to choose the right experimental 
designs based on the objective (e.g. accurate prediction of the response variable, process 
optimization, process robustness, etc.) while taking into account the process, time, and cost 
constraints. Multiple regression modeling techniques are utilized to analyze the outcomes of the 
experiment and the results of these techniques are compared to each other in order to choose the 
right model needed to satisfy the objective. The statistical software JMP is used to tease out 
subtle implications of the outcomes of the DOE and formulate hypotheses about any anomalies. 
The DOEs are performed on two Gasonics Aura 3010 machines that carry out the plasma ashing 
process using the same process parameters in order to highlight not only the similarities but also 
the differences in the machines which come from factors like the intrinsic build and state of the 
machines. The findings and results identify opportunities for the development of new process 
improvement strategies, faster root cause analysis of failures, methods to systematically calibrate 
new equipment, update standard operating procedures, and opportunities for machine matching. 
The purpose of this thesis is to serve as a pedagogical document and template for the process 
engineers at Analog Devices Inc. in the future to perform DOEs on other processes and machines 
in the fabrication center. 
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Chapter 1: Introduction 
 

The work in this thesis presents a methodology to systematically perform design of 

experiments (DOE) analyses on a semiconductor plasma ashing process. It lays out the necessary 

tools required to build a statistical regression model and demonstrates potential implications and 

analyses that could be used to better understand, improve or optimize the process for various 

parameters of interest. This is an industrial thesis and the work was done in collaboration with 

Analog Devices Inc. in their Wilmington, MA fabrication center. Analog Devices Inc. is a world 

leader in the design, manufacture, and marketing of high performance analog, mixed-signal, and 

digital signal processing integrated circuits used in a broad range of electronic applications and is 

headquartered in Norwood, MA [1]. Currently, there is a need in the company to rigorously 

analyze various processes and machine capabilities in an effort to improve yield, throughput, and 

reduce machine downtime through early detection of equipment anomalies. The purpose of this 

chapter is to provide background information on Analog Devices Inc., an introduction to the 

plasma ashing process that was studied in this work, and the problem statement that this thesis 

attempts to address. 

1.1 Background Information on Analog Devices Inc.  
 

Analog Devices Inc. is an American multinational company that specializes in the design, 

manufacture, and marketing of high performance analog, mixed-signal, and digital signal 

processing integrated circuits used in a broad range of electronic applications. The company’s 

products play a fundamental role in converting, conditioning, and processing real-world 

phenomena such as temperature, pressure, sound, light, speed, and motion into electrical signals 

to be used in a wide array of electronic devices [2].  

The company was founded in 1965 by Ray Stata and Matthew Lorber and is 

headquartered in Norwood, MA. Analog Devices Inc. has operations in 23 countries and serves 

over 100,000 customers from various industries like consumer electronics, automotive, and 

defense to name a few. The annual revenue of the company in the fiscal year 2015 was 

approximately $3.44 billion [2].  
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The manufacturing and assembly of Analog Devices Inc.’s products is conducted in 

several locations worldwide. Figure 1-1 [2] shows an overview of the location and functions of 

the company’s manufacturing and assembly facilities.  

 

Figure 1-1: Overview of manufacturing operations at Analog Devices Inc.’s facilities. 

 

The experiments in this thesis are carried out on the Gasonics Aura 3010 plasma ashing 

process tools in the Wilmington, MA fabrication center. This thesis is written in conjunction with 

the works of Tan Nilgianskul [3] and Feyza Haskaraman [4], and several sections and 

descriptions in this thesis are written in common with their works. 

1.2 General Semiconductor Fabrication Process 

  
Pre-doped wafers are supplied to the Wilmington, MA fabrication center as the starting 

material. The Wilmington, MA fabrication site is divided into five main sub-departments: thin-

films, etch, photolithography, diffusion, and CMP (chemical mechanical polymerization). A key 

procedure used at many points in the manufacturing of a device is photolithography where 

photoresist is deposited and patterned on the surface of the wafer. In photolithography, 

photoresist is spun onto the wafer surface and exposed and developed to create open access to 
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the surface in some regions, and in other regions the photoresist remains as a blocking mask. The 

diffusion team then selectively implants impurity ions or the thin-films group deposits metals 

onto the designated parts of the silicon wafer. The etch group then strips the unwanted 

photoresist off from these wafers. The function of the CMP group is to use chemical-mechanical 

reaction techniques to smoothen the surface of the deposited materials. Figure 1-2 [5] gives an 

overview of the steps and processes involved in semiconductor fabrication. 

 

Figure 1-2: General semiconductor fabrication process. 

 

These procedures do not have to go in any particular order. Different types of devices 

require different configurations of material layers with repeated sequences of photolithography, 

etch, implantation, deposition, and other process steps. The flexibility of these process steps is 

what enables the fabrication center to produce customizable electronic parts on a customer’s 

short-term order. 

1.3 Plasma Ashing Process 
 

For the purpose of this thesis, the plasma ashing process is investigated. This process is 

used to remove photoresist (light sensitive mask) from an etched wafer using a monoatomic 

reactive species that reacts with the photoresist to form ash, which is removed from the vicinity 

of the wafer using a vacuum pump. The reactive species is generated by exposing a gas such as 
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oxygen or fluorine to high power radio or microwaves, which ionizes the gas to form 

monoatomic species [6], [7].  Figure 1-3 [6] shows a general schematic of the plasma ashing 

process with the key components indicated. 

 

Figure 1-3: Schematic of the plasma ashing process. 

 

Analog Devices Inc. uses the Gasonics Aura 3010 machines (hence forth will be referred 

to as Gasonics tools or Gasonics machines) to carry out the plasma ashing process. The reactive 

gas used by the company is oxygen and microwaves are used to ionize the gas. The Gasonics 

tool allows for the change of several variables including wafer temperature, chamber pressure, 

and power that make up a recipe to allow for different photoresist removal rates that may be 

needed for different products.  

1.4 The Gasonics Aura 3010 Plasma Ashing Machine 
 

The Gasonics Aura 3010 machine is used by Analog Devices Inc.’s Wilmington, MA 

fabrication center for photoresist ashing and cleaning of semiconductor wafers by creating a low-

pressure and low-temperature glow discharge, which reacts chemically with the surface of the 

wafer [8]. The Gasonics system is composed of three main components: 
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i. The reactor chamber that contains the system controller, the electro-luminescent display, 

wafer handling robot, the microwave generator, and the gas box. 

ii. The power enclosure wall box. 

iii. The vacuum pump.  

 

Figure 1-4 [9] below shows a picture of the Gasonics Aura 3010 machine. 

 

 

Figure 1-4: A file photo of the Gasonics tool. 

 

The machine is equipped with a three axis of motion wafer handling robot that picks up a 

single wafer from a twenty five wafer holding cassette and places it in the process chamber to 

execute the photoresist stripping process. After a particular recipe is executed, the robot removes 

the wafer and places it on a cooling station if required before returning the wafer back to its slot 

in the cassette. Inside the process chamber, the wafer rests on three sapphire rods and a closed 

loop temperature control (CLTC) probe which includes a thermocouple to measure the 

temperature of the wafer during the ashing process. Twelve chamber cartridges embedded in the 

chamber wall heat the process chamber. During the plasma ashing process, eight halogen lamps 

heat the wafer to the required process temperature. The process gases (oxygen or nitrogen) are 

mixed and delivered to a quartz plasma tube in the waveguide assembly where microwave 

energy generated by a magnetron ionize the gases into the monoatomic reactive species. The 
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machine is designed in a way to only allow the lower-energy free radicals and neutrals to come 

in contact with the wafer surface as higher energy radicals can damage the wafer. After the wafer 

has been stripped, the halogen lamps, microwave power, and the process gas flows are turned off 

and the process chamber is then purged with nitrogen before being vented to the atmosphere for 

wafer removal. The door to the process chamber is then opened and the robot removes the wafer 

to either place it on the cooling station or put it back in the cassette slot [8]. 

Analog Devices Inc.’s Wilmington, MA fabrication center has seven Gasonics machines 

which have a codename of GX3000 where X is a number between 1 and 7. The experiments and 

analysis that are presented in this work were conducted on G53000 and G63000 machines. 

1.5 Partial Recipe and Process Parameters 
 

A recipe is defined as a set of input settings that can be adjusted over an operating range 

on a tool or machine to execute a desired manufacturing process at those settings. For example, 

consider Figure 1-5 [8] which shows a sample recipe on the display screen of the Gasonics 

machine. The machine allows the operator to vary the quantities under the column 

“PARAMETER”. The process engineers in the company are responsible for proposing and 

executing an optimal recipe taking into account product quality, throughput, and cost constraints. 

In addition to designing recipes for production wafers, Analog Devices Inc. also designs recipes 

to run qualification tests. Qualification tests are used to periodically monitor product quality and 

verify machine calibrations. In this thesis, the qualification test recipe that has been studied is 

named “partial” by Analog Devices Inc. 
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Figure 1-5: A sample recipe on the display screen of the Gasonics tool. 

 

The partial recipe is used as a qualification test to calibrate the rate of photoresist removal 

on the Gasonics machine. The recipe is designed such that the photoresist mask is not completely 

removed from the wafer after the process. This is intentionally done so that the amount of 

photoresist removed and the time taken to do so can be recorded. An ideal Gasonics machine 

would remove 6000 Angstroms of resist in eight seconds. The entire process with the partial 

recipe takes approximately 63 seconds with the first 20 seconds being allocated to heating the 

wafer to the necessary conditions and bringing the machine to steady state (step-1), the next eight 

seconds being allocated to the stripping process (step-2), and the last 35 seconds being allocated 

to cooling the wafer. Table 1-1 shows the necessary machine parameters needed for the partial 

recipe. 
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Table 1-1: Controllable process parameters of the partial recipe. 

 

The description of the partial recipe process parameters listed in Table 1-1 is as follows: 

i. Temperature:  This is the temperature to which the wafer is heated to and maintained 

during the plasma ashing process. 

ii. Pressure: This is the pressure of the gases present inside the reacting chamber of the 

Gasonics machine during the plasma ashing process. 

iii. Power: This is the power needed by the magnetron to generate the necessary 

microwave energy to ionize the reacting gases. 

iv. Blower and Main Vacuum Pump Speeds: The main vacuum pump speed refers to 

the rate at which the residue ash and excess gases are removed from the reacting 

chamber. The blower pump is an addition to the main pump aiding in increasing the 

removal rate of the residue ash and gases. The speed of the main pump is kept 

constant while the speed of the blower pump is varied from recipe to recipe.  

v. Oxygen Gas Flow: This is the rate at which oxygen gas is allowed to flow into the 

reacting chamber during the process. The unit of measurement is standard cubic 

centimeter per minute (SCCM) 

vi. Nitrogen Gas Flow: This is the rate at which nitrogen gas is allowed to flow into the 

reacting chamber during the process. The unit of measurement is SCCM. 

vii. Step Term:  This is the duration of each step in the plasma ashing process. 

 

Machine	Parameter	 Step-1	 Step-2	
Temperature	(Celsius)	 215	 235	
Pressure	(mTorr)	 2000	 2000	
Power	(Wa9s)	 0	 1400	
Blower	Vacuum	Pump	Speed	(k/min)	 6	 6	
Main	Vacuum	Pump	Speed	(k/min)	 5.5	 5.5	
Oxygen	Gas	Flow	(SCCM)	 3750	 3750	
Nitrogen	Gas	Flow	(SCCM)	 375	 375	
Step	Term	(Seconds)	 20	 8	
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1.6 Data Collection and Logging 
 

The key parameters that need to be measured in the plasma ashing process are the amount 

of photoresist removed from the wafer and the wafer non-uniformity after the process has been 

completed. The amount of photoresist removed divided by the time for which the Gasonics tool 

was set to function gives the photoresist removal rate, which Analog Devices Inc. uses to infer 

machine health. The tool used to measure the amount of photoresist removed in Analog Devices 

Inc.’s Wilmington fabrication center is the Nanospec 9200 measuring tool (Nanospec). The 

Nanospec tool has the capability to accurately measure wafer thicknesses in the Angstrom range. 

The Nanospec tool is programmed to measure nine sites on each wafer. Figures 1-6 and 1-7 

shows the spatial distribution as well as the co-ordinate ordered pair values of the nine sites on 

each wafer. In the spatial distribution diagram, the blue dots indicate the sites where the 

measurements are taken. 

 
Figure 1-6: Spatial distribution of the nine 

measured sites on a wafer. 

 
Figure 1-7: Co-ordinate values of the nine 

measured sites on a wafer. 

The measurement procedure of the thickness of the photoresist of the nine sites using the 

Nanospec tool is as follows: 

i. The thickness of the photoresist is measured and recorded before the wafer undergoes 

the plasma ashing process. These are known as “pre-measurements”. 
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ii. The thickness of the photoresist is measured and recorded after the wafer undergoes 

the plasma ashing process. These are known as “post-measurements”. 

iii. The difference between the pre-measurements and post-measurements gives the 

amount of photoresist removed during the process. 

iv. The amount of photoresist removed can be divided by the duration of the plasma 

ashing process to give the rate of resist removal. The duration of the plasma ashing 

process is included as an input and monitored by the Gasonics tool. 

 

The amount of photoresist removed for each of the nine sites on a single wafer is recorded in 

an excel spreadsheet on which further analysis can done. An example of the excel spreadsheet 

can be seen in Table 1-2. In Table 1-2, the columns in the spreadsheet represent the 

measurements taken on the nine sites within a single wafer while the rows represent different 

wafers measured. The Nanospec tool also logs the date and time of the measurement, which is 

very useful in anomaly detection. 

 

 

Table 1-2: Nanospec data logging spreadsheet. 
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1.7 Calculation of Basic Statistics 
 

The raw data collected from the Nanospec 9200 tool as shown in Table 1-2 needs to be 

manipulated further in order to make meaningful implications of the underlying trends and 

patterns. This section introduces the method that is used to calculate three statistical quantities: 

i. The mean thickness of the nine sites on a single wafer (𝑥∗) 

ii. The standard deviation of the nine sites on a single wafer (𝑠) 

iii. The wafer non-uniformity parameter (NU) 

 

  The nine sites that the Nanospec 9200 tool measures on a single wafer are distributed in a 

radial pattern from the center as can be seen in the spatial distribution diagram in Figure 1-6. 

Generally, in a radial distribution wafer measuring pattern, the calculation of any statistics on the 

sites measured on a wafer have to take into account the wafer area represented by each site for 

accurate analysis [10]. Figure 1-8 shows the wafer areal representation of each site on a nine site 

radial distribution pattern. The wafers used for the purposes of this study have a diameter of six 

inches. 

 

Figure 1-8: Areal Representation Ratio of nine sites on the wafer. 
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In Figure 1-8, site 3 represents the area bounded by the green circle (4% of the total wafer 

area), sites 2, 4, 7, and 8 each represent the area bounded by the red segments (32% of the total 

wafer area), and sites 1, 6, 5, and 9 each represent the area bounded by the orange segments 

(64% of the total wafer area). 

The mean (𝑥∗) [11] taking into account the areal representation of each site is calculated 

as follows: 

𝑥∗ =
𝑤!𝑥!!

!!!

𝑤!!
!!!

 

Equation 1-1 

where 𝑥! is the wafer thickness measured at each site, 𝑤! is the weighted area associated with 

that site and 𝑁 is the number of sites. 

The standard deviation (𝑠) [11] taking into account the areal representation of each site is 

calculated as follows: 

𝑠 =  
𝑤!!

!!!

𝑤!!
!!!

! − 𝑤!!!
!!!

∙ 𝑤! 𝑥! − 𝑥∗ !

!

!!!

 

Equation 1-2 

where 𝑥! is the wafer thickness measured at each site, 𝑤! is the weighted area associated with 

that site, 𝑁 is the number of sites, and 𝑥∗ is the mean. 

The wafer non-uniformity parameter (NU) [12] taking into account the areal 

representation of each site is calculated as follows: 

𝑁𝑈 =
𝑠
𝑥∗ 

Equation 1-3 

where 𝑠 is the standard deviation and 𝑥∗is the mean. The wafer non-uniformity parameter will be 

henceforth expressed as a percentage. 
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1.8 Problem Statement 
 

Semiconductor fabrication facilities need to maintain extremely high yields in order to 

maximize profitability. As a result, fabrication centers need to have a thorough understanding of 

their process capabilities and implement strategies that will minimize process variations to the 

best of their ability. Characterization and control of process variations in semiconductor 

manufacturing processes is the most challenging and crucial aspect for any fabrication facility 

given the dimensions (nanometers) at which chips are currently made. Small process variations 

can completely destroy modern devices. Moreover, many etching and deposition processes have 

multiple inputs and process steps where each input and process step can be a source of variation. 

This can quickly lead to a variation stack up if process control methods are not implemented 

appropriately. In semiconductor manufacturing, process variations manifest in multiple and 

interconnected ways, including variations observed within each wafer (wafer non-uniformity), 

variations between wafers (run-to-run), variations between batches of wafers (batch-to batch), 

and variation between machines executing the same process with the same parameters (machine-

to-machine).  An example of wafer non-uniformity and run-to-run variation in the plasma ashing 

process done on a Gasonics machine is shown in Figure 1-9. The columns represent the amount 

of photoresist removed at each site on a wafer while the rows represent the measurements taken 

on different wafers. The ideal scenario is that a target of 6000 Angstroms of photoresist stripped 

is achieved on every site of every wafer. 

 

Figure 1-9: An example of within-wafer non-uniformity and run-to-run variation observed on 

the plasma ashing process. 
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The combined effect of the shrinking of device critical dimensions, increase in 

component density per chip, and more complex functionality requirements has resulted in 

semiconductor manufacturers needing to seek new methods to continuously monitor, update, and 

improve their process capabilities.  Analog Devices Inc. is in a similar situation where the 

company is revaluating its current process control capabilities and wants to incorporate newer 

methods including real-time process control, automatic feedback control, and cloud-based 

analytics to improve its process monitoring capabilities. Currently the company uses traditional 

control charts to monitor its processes, but the process engineers at the company are convinced 

that the current charts are deficient in timely detection of unnatural drifts and mean shifts that 

could have negative consequences on future product lines. An “x-bar” control chart for tracking 

the average amount of photoresist removed during the plasma ashing process on the Gasonics 

tool with the current control limits is shown in Figure 1-10. There are clear mean shifts and 

variations are as high as 20% in the process that are not being detected by the current limits 

which is a cause of concern. 

 

Figure 1-10: X-bar control chart monitoring the plasma ashing process showing clear mean 

shifts. 

 

The goal of this project is to introduce Analog Devices Inc. to new process control 

methodologies that will provide them with a rigorous analysis and understanding of their current 
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process capabilities on the plasma ashing process done on the Gasonics tool. The three main 

areas of focus are as follows: 

i. Recalculate and propose new control limits on current charts or develop new charts 

monitoring new variables that are a true representation of the natural variation of the 

plasma ashing process (Nilgianskul’s thesis [3]).	

ii. Characterize and quantify the response of the amount of photoresist removed and the 

spatial uniformity of the wafer in the plasma ashing process with respect to the 

controllable input parameters on an individual machine basis (The focus of this thesis).	

iii. Compare the performance of two Gasonics machines and propose machine-matching 

strategies to reduce or eliminate the differences in their performances and ensure that the 

machines function at their optimal level (Haskaraman’s thesis [4]). 

 

Analog Devices Inc. will then use the proposed methods, results, and findings to improve 

process capabilities on other tools and processes in the fabrication center. 

1.9 Outline of Thesis 
 

Chapter 1 is the introduction that provides background information on Analog Devices Inc. 

and introduces the reader to general semiconductor fabrication processes, the plasma ashing 

process, and the problem statement that this thesis aims to address. Chapter 2 provides a 

theoretical review of the key concepts and mathematical techniques of statistical process control, 

design of experiments, and statistical hypothesis testing which have been compiled from various 

literature sources. Chapter 3 discusses the motivation, the methods, and the reasoning behind 

selecting the necessary experimental designs and formulating the statistical regression models 

that can predict the behavior of the response variable to a high degree of confidence over a range 

of the controllable factors. Chapter 4 provides a comprehensive analysis on the outcomes of the 

experiments performed using the methods outlined in Chapter 3. Chapter 5 outlines the specific 

contributions made to Analog Devices Inc. from the insights obtained from the design of 

experiments analysis. Chapter 6 presents the conclusion of the thesis and the scope for future 

work. 
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Chapter 2: Theoretical Review of Key Concepts 
 

This chapter will give a brief introduction to the theory behind key concepts that are relevant 

to the construction of this thesis and the overall project in general. The ideas presented in this 

chapter have been compiled from a variety of literature sources. The key topics described are 

statistical process control, analysis of variance, design of experiments, and statistical hypothesis 

testing. 

2.1 Statistical Process Control  
 

Statistical process control (SPC) is used to monitor and control variations in a 

manufacturing process. Controlling process variations is important in a manufacturing 

environment because decreased variability in a process reduces scrap and rework rates leading to 

lower costs and improved product quality. 

2.1.1 Origin of SPC 
 

Walter A. Shewhart at Bell Laboratories introduced the SPC method in the early 1920s. 

Later in 1924, Shewhart developed the control chart and coined the phrase “a state of statistical 

control” which can actually be derived from the concept of exchangeability developed by 

logician William Ernest Johnson in the same year in one of his works called Logic, Part III: The 

Logical Foundations of Science [13]. The theory was first put in use in 1934 at the Picatinny 

arsenal, an American military research and manufacturing facility located in New Jersey. After 

seeing the success of this project, the US military further enforced statistical process control 

methods among its other divisions and contractors during the outbreak of the Second World War 

[14]. 
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2.1.2 Shewhart Control Charts 
 

A Shewhart control chart plots a measured parameter that is an indicator of the process 

performance over a period of time. These plots are then bounded by control limits which are, as a 

rule-of-thumb, three standard deviations away from the mean on either side. An example of a 

control chart is shown in Figure 2-1 [15]. 

 

Figure 2-1: Example of a Shewhart control chart. Points marked with X’s are points that 

would be rejected based on Western Electric rules. 

 

Control charts can either be plotted as a run chart or an x-bar chart. The run chart plots 

each measurement separately while the x-bar control chart plots the average of several 

measurements. Other statistics like variance, range, and standard deviation are also plotted in 

addition to the x-bar chart. 

The goal of plotting control charts is to monitor the state of the manufacturing process 

and detect when it is out of control. Assuming that the data plotted is normally distributed, which 

is the case for most processes, the chance that any single point would lie above the upper control 

limit (UCL) or below the lower control limit (LCL) (three standard deviations above or below 

the mean) would be less than 0.3%. Assuming that a set of data is normally distributed with 

mean µ and variance σ 2, UCL and LCL can be expressed as: 
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𝑈𝐶𝐿 = 𝜇 + 3𝜎 

Equation 2-1 

𝐿𝐶𝐿 = 𝜇 − 3𝜎 

Equation 2-2 

The probability of a point lying beyond the limits for any normally distributed data set can be 

solved for. 

𝑃 𝑋 > 𝑈𝐶𝐿 = 𝑃 𝑍 >
𝑈𝐶𝐿 − 𝜇

𝜎 = 𝑃 𝑍 > 3 ≈ 0.0013 

𝑃 𝑋 < 𝑈𝐶𝐿 = 𝑃 𝑍 <
𝜇 − 𝐿𝐶𝐿

𝜎 = 𝑃 𝑍 < 3 ≈ 0.0013 

𝑃(𝑋 > 𝑈𝐶𝐿| 𝑋 < 𝐿𝐶𝐿 = 𝑃 𝑋 > 𝑈𝐶𝐿 + 𝑃 𝑋 < 𝐿𝐶𝐿 ≈ 0.0013+ 0.0013 ≈ 0.0027   

𝑃(point lies outside control limit) ~ 0.3% 

Equation 2-3 

Besides the upper and lower control limit rule, there are other rules (Western Electric) 

that could be used as guidelines to suspect when the process is out of control. These include 1) if 

two out of three consecutive points lie either two standard deviations above or below the mean 2) 

four out of five consecutive points lie either a standard deviation above or below the mean 3) 

nine consecutive points fall on the same side of the centerline/mean [15]. 

2.2 Analysis of Variance 
 

Analysis of variance (ANOVA) is a statistical hypothesis testing method used to compare 

the mean values of populations at more than two levels of a factor to determine the effect of that 

factor.  The methodology for a “fixed effects model ANOVA”(assume a constant effect τ 

between the levels of the factor) for a single factor at a levels is presented below and equal 

number of observations n are taken at each level. The observed response yij where j is the 

observation number and i is the level of the factor can be modeled statistically as: 
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𝑦!" = 𝜇 + 𝜏! + 𝜀!" 

Equation 2-4 

where 𝜇 is the overall mean of the population,  𝜏! is the fixed effect at level i of the factor and 𝜀!" 

is the random error term (i=1,2,…,a and j=1,2,…,n) [16]. The hypothesis that will be tested is as 

follows: 

𝐻! = 𝜏!, 𝜏!,… , 𝜏! = 0 (Null Hypothesis) 

𝐻!: 𝜏! ≠ 0 for atleast 1 𝑖 

Equation 2-5 

If the null hypothesis is true, changing the levels of the factor has no influence on the 

overall mean of the response. The total variation in the data can be measured by the total sum of 

squares (SStotal) which can be partitioned in the ANOVA analysis into the differences between 

the sum of squares (SStreatments) of the level means (𝑦! =
!!"
!

!!!
!!! ) and overall population mean 

(𝑦 = !!"
!"

!!!
!!!

!!!
!!! ) and the differences of sum of squares (SSerror) of observations within a level 

(yij) and the level mean (𝑦!). As a result of this partitioning, one can understand the effect of 

different levels of a factor from SStreatments and the variation due to random error within a level 

due to SSerror. An important assumption in the ANOVA analysis is that the variances of 

observations across all levels of the factor must be the same. Using the above information the 

standard ANOVA table can be constructed as shown in Table 2-1 [16]. 

Variation Source Sum of Squares Degrees of 

Freedom 

Mean Square F-value 

Between Levels SStreatments=𝑛 (𝑦! − 𝑦)!!!!
!!!  a-1 MStreatments=

!!!"#$!%#&!'
!!!

 𝑀𝑆!"#$!%#&!'
𝑀𝑆!""#"

 

Within Levels SSerror= (𝑦!" − 𝑦!)!
!!!
!!!

!!!
!!!  a(n-1) MSerror=

!!!""#"
!(!!!)

  

Total SStotal= SStreatments+ SSerror an-1   

Table 2-1: A standard ANOVA table for a single factor fixed effect model. 
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The F-test can then be used to test the hypothesis described in Equation 2-5 at a chosen 

significance level. The standard ANOVA table and method can be extended to include more than 

one factor which then is known as multivariate analysis of variance (MANOVA). MANOVA is 

extensively used in design of experiments analysis to test for the significance of factor effects on 

a response variable. Statistical software programs like JMP and Minitab are used to construct the 

ANOVA and MANOVA tables [17], [18]. 

In semiconductor manufacturing, extra attention will be paid to the concept of nested 

analysis of variance. In nested variance analysis, the fixed effect assumption no longer holds 

true. Nested variance analysis will determine the significance of the variance between and within 

groups and subgroups of data [19]. For instance, assume there are W groups of data (an example 

would be observations made wafer-to-wafer) with M data points in each of those groups 

(observations made within each wafer), the mean squared sum between groups (MSW) and within 

groups (MSE) can be calculated as follows. 

𝑀𝑆! =
𝑆𝑆!
𝑊 − 1 

Equation 2-6 

𝑀𝑆! =
𝑆𝑆!

𝑊 𝑀 − 1  

Equation 2-7 

where: 

𝑆𝑆! = squared sum of deviations of group means from grand mean 

𝑆𝑆! = squared sum of deviations of each data point from its group mean 

Note that 𝑆𝑆! sums up the grand-group mean deviation for every individual point. So in 

this case, each squared difference between grand to group mean difference is multiplied by M 

before summing them together. The significance of the between-group variation could then be 

determined, given that the ratio 𝑀𝑆!/𝑀𝑆! approximately follows the F-distribution. 

It is important to note that the observed variance of the group averages does not reflect 

the actual wafer-to-wafer variance because of the existence of sub-variation (group variance). 
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The observed variation between the group averages 𝜎!!  can be written as a linear combination of 

the true variance 𝜎!!  and the group variance 𝜎!! . 

𝜎!! = 𝜎!! +
𝜎!!

𝑀  

Equation 2-8 

Hence the true group-to-group variance can be expressed as: 

𝜎!! = 𝜎!! −
𝜎!!

𝑀  

Equation 2-9 

From this, both the group-to-group component and the within-group component can be 

expressed as a percentage of the total variance.  This variance decomposition is useful in 

differentiating between measurements made among wafers and within wafers. 

2.3 Design of Experiments 
 

Design of experiments (DOE) is a statistical method used to quantify the effects of 

process input parameters on the process output parameter (response variable). The output 

parameter should give a strong indication of the process performance for a DOE analysis to be 

useful. DOEs are powerful in identifying process causality within a certain manufacturing 

process. This information could then be used to tune the process inputs in order to optimize the 

outputs to achieve production goals. The focus of a DOE analysis is on planning a series of 

experiments in order to characterize the process in the most efficient manner.  Several 

experimental designs have been proposed and developed over the years for a variety of different 

purposes like screening insignificant process parameters, optimizing a response variable, and 

making a process less vulnerable to nuisance factors. 

Factorial experimental designs used in this thesis allow for the modeling and analysis of 

several factors and their interactions. These designs are built upon the foundation of analysis of 

variance and orthogonality. An analysis of variance table or the normal probability plot of the 

factor effects is used to identify the most significant factor effects on the response variable. 
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Orthogonality is defined as the relative independence of multiple variables that is vital to 

deciding which parameters can be varied simultaneously to get the same response of the output 

parameter. Regression analysis is used for model building purposes [16], [20]. 

Full factorial experiments are time consuming and may not be always possible to do in a 

practical industrial setting. Therefore to reduce the number of runs, fractional factorial 

experimental designs are used. Such designs are good for effects screening purposes but not all 

of the terms can be modeled in a fractional factorial experiment. These designs require aliasing 

or confounding of main effects and interactions and this may reduce the fidelity of the regression 

model. In most cases, the higher order interactions are typically less significant than lower-order 

interactions and so smart decisions in choosing the aliasing relationships can significantly 

improve the outcome of the experiment. Table 2-2 shows the full factorial (23) experimental 

design for a process with three variable input parameters (A, B, and C) varied at two levels (23) 

[16].  

Run	 A	 B	 AB	 C	 AC	 BC	 ABC	

1	 -1	 -1	 +1	 -1	 +1	 +1	 -1	

2	 +1	 -1	 -1	 -1	 -1	 +1	 +1	

3	 -1	 +1	 -1	 -1	 +1	 -1	 +1	

4	 +1	 +1	 +1	 -1	 -1	 -1	 -1	

5	 -1	 -1	 +1	 +1	 -1	 -1	 +1	

6	 +1	 -1	 -1	 +1	 +1	 -1	 -1	

7	 -1	 +1	 -1	 +1	 -1	 +1	 -1	

8	 +1	 +1	 +1	 +1	 +1	 +1	 +1	

Table 2-2: 23 full factorial experimental design. -1 indicates a low setting while +1 represents 

the high setting of the input parameter. 

By defining the following identity relation and aliases: 

I = ABC 

A = BC 

B = AC 
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C = AB 

a fractional factorial experimental design can be constructed out of the full factorial design in 

Table 2-2. Table 2-3 shows the fractional factorial design. If through prior process knowledge it 

is determined that only the main effects need to be modeled, then the design in Table 2-3 is more 

practical than the full factorial experiment. 

Run	 Factors	

A	 B	 C	

1	 -1	 -1	 +1	

2	 +1	 -1	 -1	

3	 -1	 +1	 -1	

4	 +1	 +1	 +1	

Table 2-3: 23-1 factorial experimental design. 

2.4 Statistical Hypothesis Testing 
 

A statistical hypothesis test compares at least two sets of data that can be modeled by 

known distributions. Then assuming that those data follow the proposed distributions, the 

probability that a particular statistic calculated from the data occurs in a given range can be 

determined. This probability is also referred to as the Pvalue and is ultimately the basis to either 

accept or reject the current state or the null hypothesis. The acceptance/rejection cutoff is marked 

by a pre-determined “significance level”. Generally, the decision as to what significance level to 

use would depend on the consequences of either rejecting a true null hypothesis (type I error) 

versus accepting a false null hypothesis (type II error) [16]. The three upcoming sub-sections 

will outline the statistical hypothesis tests used in this project. 

2.4.1 Z-Test for Detecting Mean Shift 
 

The Z-test refers to any hypothesis test whereby the distribution of the test statistic under 

the null hypothesis is modeled by the normal distribution. This becomes useful in many cases 
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(including this project) because of the central limit theorem. With the central limit theorem, 

means of a large number of samples of independent random variables approximately follow a 

normal distribution. Mathematically, the sample mean of any distribution of mean 𝜇 of sample 

size n and standard deviation 𝜎 would be normally distributed with the same mean and standard 

deviation !
!
 , or  ~𝑁 𝜇, !

!
. 

For instance, when testing for whether the mean of a given process (with default mean µ 

and standard deviation σ) has shifted, the following hypotheses can be formed [16]. 

𝐻!: 𝜇 = 𝜇! 

𝐻!: 𝜇 ≠ 𝜇! 

Equation 2-10 

The null hypothesis H0 is assumed to hold with the true mean µ being equal to the assumed mean 

µ0. Now given a set of data with sample mean 𝑥 > 𝜇!, the test statistic Z could be calculated. 

𝑍 =
𝑥 − 𝜇!
𝜎/ 𝑛

 

Equation 2-11 

The Pvalue can then be deduced as follows. 

𝑃!"#$% = 𝑃 𝑥 > 𝜇! = 𝑃 𝑧 > 𝑍  

Equation 2-12 

Given a significance level α, the null hypothesis would be rejected if Pvalue < α/2 or, equivalently, 

if Z > Zα/2 then the alternative hypothesis H1 would be accepted indicating that the mean has 

shifted.  

The probability of encountering a type I error would be the significance level α itself, i.e. 

P (Type I Error) = α. Given an alternative mean 𝜇!, the distribution of the alternative hypothesis 

could be written as 𝑥~𝑁 𝜇!,𝜎/ 𝑛 . Hence the probability of making a type II error could be 

calculated as 
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𝑃 Type II Error = 𝑃 𝑥 < 𝑥!"#$#!%&  

Equation 2-13 

where 𝑥!"#$#!%& is the 𝑥 that corresponds to Z1-α/2 under the old mean 𝜇!. 

𝑥!"#$#!%& = 𝜇! + 𝑍!!!!
∙ 𝜎 

Equation 2-14 

Therefore, continuing from Equation 2-14 

𝑃 Type II Error = 𝑃 𝑍 <
𝜇! − 𝜇!
𝜎 + 𝑍!!!!

 

Equation 2-15 

As previously mentioned, the significance level would depend on the tolerance for these 

two errors. For instance, if the detection of a mean shift would trigger an alarm and it is very 

costly to encounter a false alarm, then a lower α would be desired in order to minimize P (Type I 

Error). However, if it is very crucial to detect the mean shift even at the cost of incurring several 

false alarms, then a higher α would be desirable to minimize P (Type II Error). 

Note that the example presented is a two-sided test because the Pvalue is tested against the 

probability of the sample mean being too far from the mean on either side. If it was a one sided 

test, then the alternative hypothesis would be 𝐻!: 𝜇 > 𝜇! or 𝐻!: 𝜇 < 𝜇!, the Pvalue would be 

compared to α and the null hypothesis would be rejected if Z0 > Zα (no ½ factor on α). The 

format of other tests will follow a similar structure to the example above but with different 

formulas for calculating the test statistics and their probabilities. 

2.4.2 F-test 
 

Rather than detecting a mean shift, the F-test determines whether the ratio of the variance 

of two sets of data is statistically significant. Following the same method as in the previous Z-

test example, the F-test begins with formulating hypotheses around the variance (s1
2 and s2

2) of 

two sets of data [16]. 
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𝐻!: 𝑠!! = 𝑠!! 

𝐻!: 𝑠!! ≠ 𝑠!! 

Equation 2-16 

The test statistic F0 in this case is simply the ratio of the variances where the numerator is the 

greater of the two variances, s1
2 > s2

2. F0 can approximately be modeled by the F-distribution. 

𝐹! =
𝑠!!

𝑠!!
 

Equation 2-17 

The null hypothesis H0 would be rejected under a certain significance level α if 

𝐹! > 𝐹!!!!,!!!!,! where n1 and n2 represent the sample sizes of the first and second data sets 

respectively. Alternatively, the Pvalue could be calculated and tested directly against the 

significance level. The calculation of the Pvalue is shown in Equation 2-18 below. 

𝑃!"#$% = 𝑃 𝐹 > 𝐹!  

Equation 2-18 

This is a one-sided test. To modify this into a two-tailed test, F0 would simply be 

compared with 𝐹!!!!,!!!!,!/!. Typically for testing whether or not two variances are different, a 

two-tailed test would not be used. 

2.4.3 Bartlett’s Test 
 

Bartlett’s test is used to determine whether k samples are sampled from distributions with 

equal variances. The null and alternative hypotheses can be formulated as follows. 

𝐻!: 𝑠!! = 𝑠!! = 𝑠!!… = 𝑠!! 

        𝐻!: 𝑠!! ≠ 𝑠!!, for at least one pair (𝑖, 𝑗) 

Equation 2-19  



 41 

Given the k samples with sample sizes ni, and sample variances si
2, the test statistic T can be 

written as follows [21]. 

𝑇 =
𝑁 − 𝑘 ln 𝑠!! − 𝑛! − 1!

!!! ln 𝑠!!

1+ 1
3 𝑘 − 1

1
𝑛! − 1

− 1
𝑁 − 𝑘

!
!!!

 

Equation 2-20 

where N is the total number of data points combined and sp
2 is the pooled estimated variance. 

𝑁 = 𝑛!
!

!!!
 

Equation 2-21 

𝑠!! =
1

𝑁 − 𝑘 𝑛! − 1 𝑠!!
!

!
 

Equation 2-22 

T can be approximated by the chi-squared distribution. H0 would therefore be rejected under a 

significance level α if 𝑇 > 𝜒!!!,!! . 
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Chapter 3: Design of Experiments - Methodology 
 

This chapter discusses the motivation, the method, and the thought process of selecting the 

necessary experimental designs and formulating the statistical regression models that can model 

the response of the output variable to a high degree of confidence over a range of input 

parameters or factors. The DOEs studied in this thesis were conducted using the partial 

qualification recipes on two Gasonics machines. The response variables under consideration are 

the amount of photoresist removed and the wafer non-uniformity parameter.  

3.1 Motivation and Need for Design of Experiments 
 

Variations are an inherent part of any manufacturing process, and an important objective 

of any process engineer is to develop a solid understanding of these variations so that significant 

improvements can be made in areas like throughput, product quality, and machine health. SPC 

techniques and Shewhart control charts discussed in Nilgianskul’s thesis [3] are important tools 

for detecting unnatural variations in a process. However, when an out-of-control point is detected 

on a control chart, it may be at times difficult, time consuming, and costly to identify and fix the 

root cause of the problem if there is a lack of understanding of the properties of the underlying 

process variations and input-output parameter relationships. This calls for a need to develop 

mathematical or statistical models, where the response of the output can be quantified with 

respect to each of the inputs that can be varied on a particular process as well as the interactions 

between these inputs. Developing such a quantitative model allows for the identification of the 

most significant factors or factor interactions that affect the output response of the process, 

thereby enabling effective root cause analysis of problems that leads to both time and cost 

savings. 

DOE is an effective and widely used statistical model building method applicable to 

many processes and industries. The basic principle of a DOE analysis is to use statistical 

methods including hypothesis testing, ANOVA, and regression analysis to model how systematic 

changes made to the inputs of a process affect the response of the output. DOEs have been 
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effectively used in screening factor effects, process optimization, process robustness, and 

determining process capability metrics [20].  

Processes in the semiconductor manufacturing industry have many variable input 

parameters that can affect the output of the process. For example, in the plasma ashing process 

using the partial ashing recipe, which is studied in this thesis, six distinct factors, are identified 

that could have a significant impact on the amount of photoresist removed from a wafer and the 

wafer non-uniformity. Variations in any of these factors or a combination of the factors could 

have a significant impact on both response variables, and this leads to complications in 

troubleshooting the root causes of problems if a rigorous analysis of the input-output parameter 

relationships is not conducted.  Figure 3-1 shows a block diagram which portrays how the input 

parameters relate to the output in the plasma ashing process on the Gasonics machine. A PID 

controller is used to keep the input parameters at their necessary set points throughout the 

duration of the process. 

 

             Figure 3-1: Plasma ashing process block diagram. 

 

Theoretical equations that take into account the physics and chemistry of the process, 

while useful as a starting point in root cause analysis or process optimization, generally do not 

provide a complete picture, as they fail to consider the inherent variations in a process such as 

those variations that come from the build of a machine or properties of raw materials ordered 

from different suppliers. Therefore, a DOE analysis that provides a statistical model to relate the 

input factors to the output, taking into account the process variations, is a preferred method for 
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factor screening, root cause analysis, and process optimization. For a theoretical review of DOE, 

refer to Section 2.3. 

Analog Devices Inc. is interested in formally implementing a DOE methodology on 

processes in their Wilmington, MA fabrication facility to aid in effective root cause analysis of 

unnatural process variations, and in strategies for designing recipes for optimal machine 

matching as outlined in Haskaraman’s thesis [4]. 

3.2 A Standard Methodology for Design of Experiments 
 

While DOEs are an effective tool in statistical model building, constructing a high 

fidelity model using a DOE method can be time consuming and draining on resources, especially 

in an industrial setting. Therefore smart assumptions and decisions must be made during the pre-

experimental planning stage, as described by Montgomery [16], that includes the stages of the 

choice of factors and levels, selection of the response variable, and the choice of the 

experimental design. 

When there are multiple factors of interest in a process that could significantly impact the 

response of the output, as is the case with the plasma ashing process on the Gasonics machine for 

the partial recipe (six factors as shown in Figure 3-1), a factorial experimental design (full or 

fractional) is used. In a full factorial experimental design, each replicate of the experiment is run 

at all possible combinations of the levels of the factors under consideration. Full factorial 

experiments are generally tedious, time consuming and not practical in an industry setting if the 

numbers of levels or factors are large. For example, if a full factorial experiment is performed on 

the plasma ashing process at two levels for each of the six process factors, then the total number 

of treatments that need to be run in a single replicate is 64 (26). Therefore fractional factorial 

experimental designs are much more common in such cases as they save both time and cost. 

Fractional factorial experimental designs may yield lower fidelity models than full factorial 

designs, but calculated decisions taken about choosing the runs in the design table (balanced and 

orthogonal designs) and the aliasing and confounding structure can overcome this challenge in 

most cases. The rules in statistics that work in favor of fractional factorial designs and that are 
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used in determining the aliasing and confounding structure to obtain a high fidelity model are as 

follows [20]: 

i. Sparsity of Effects: This principle states that there usually are only a small number of 

factors that explain the majority of the variance in a process if a large number of factors 

are under consideration. 

ii. Hierarchy of Effects: This principle states that usually lower order factors and 

interactions will contribute more to the response of the output than the higher order 

terms. For example, main effects are usually more significant than two factor interactions 

and two factor interactions are more significant than three factor interactions, etc. 

iii. Inheritance of Effects: This principle states that the interactions between factors are 

most likely to have a strong influence on the response of the output if those individual 

factors each have a strong influence on the response of the output. 

 

The most common approach to doing a DOE analysis that involves multiple factors is to 

choose a fractional factorial experimental design that helps model the main effects and lower 

order interactions, and that aliases the higher order interactions. Such an experiment is used to 

identify the most significant factors affecting the response of the output, and if required, further 

experiments can be done to refine the model using only the significant factors.  

In the case of the partial plasma ashing recipe on the Gasonics machine, Analog Devices Inc. 

is primarily interested in determining the most significant factors that could affect the amount of 

photoresist removed and the non-uniformity across the wafer. The company is also interested in 

quantifying how a unit change in one of the significant factors or a combination of factors can 

affect the amount of photoresist removed at each of the nine sites measured on the wafer as 

described Section 1.6, and if there is an optimal set of parameters that would minimize the non-

uniformity within each wafer while maintaining the target photoresist removal of 6000 

Angstroms. 

The general methodology of conducting a DOE analysis, keeping in mind the semiconductor 

industry and what was recommended to Analog Devices Inc., is outlined below. These 

recommendations are focused on DOE analysis particularly for screening non-significant factors 

and process characterization [16].   



 46 

i. Selection of the process and response variable: There should be a clear understanding 

about the shortcomings of a particular process and ways in which a DOE analysis can be 

effective in alleviating some parts or all of the current shortcomings. It is important to 

choose a response variable that can provide the most useful information about the process 

under study, and that the response variable is a measured quantity with good gauge 

repeatability and capability. Using a measured quantity directly as a response variable as 

opposed to a quantity that is calculated using a theoretical equation is preferable because 

of potential errors in the theoretical equation assumptions. As a result, the derived 

quantity may not be a pure mathematical transformation of the measured value. 

ii. Selection of the factors and levels: The choice of input factors to be studied, the range 

over which each input factor is varied, and the levels at which they are investigated are 

key steps in a DOE analysis. Leveraging prior process knowledge both in the theoretical 

and practical sense is important in this step. Generally, if the experiment is being done for 

screening or process characterization purposes then the number of factor levels is kept 

low. However, if a high fidelity model is needed, then the number of factor levels and 

replicates required may be more. The tradeoff between model accuracy and the time and 

cost of running the experiments must be considered during the stage of selecting the 

factors and levels. 

iii.  Experimental design choice: This step is linked with the purpose of the experiment. If 

the experiment is run with the purpose of screening factors or process characterization,  

then a fractional factorial design with an acceptable resolution and aliasing structure is 

generally chosen and preferred. However, if a more accurate statistical model is needed 

or a response surface needs to be generated, then a full factorial design or other available 

designs like the central composite design must be chosen [20]. This stage also involves 

choosing the number of replicates needed, running center points to determine lack of fit, 

randomizing the run order, and accounting for restrictions such as blocking. 

iv. Performing the experiment and data collection: Before performing the experimental 

runs it is crucial to check the process equipment and tool conditions and to make sure 

everything is functioning as per expectations. The gauge capability of the measuring tools 

should also be verified. A few test and validation runs before running the actual 

experiments may be useful for gauge and machine validation.  While performing the 
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experiments, it is necessary to monitor the process for any anomalies that could 

jeopardize the DOE. Clear instructions in the form of standard operating procedures must 

be given to the operators running the experiments to avoid any human error.  

v. Data analysis and model validity: Several statistical software packages exist for 

analyzing the results of a DOE. In this thesis, the results were analyzed using the JMP 

software [17]. The key statistical concepts behind a DOE analysis are discussed in 

Section 2.3. Regression analysis is used to fit a model to the data obtained from a DOE 

[16]. For validating the model, analytical techniques (residual analysis and lack of fit 

analysis) as well as physical validation like post experimental runs are recommended. 

vi. Reiteration of the experiment: If the data analysis shows that the results are not 

satisfactory or the model is not accurate enough, then a refinement of the model may be 

necessary. The general approach to refining a model is to select the most significant 

factors deduced from the previous analysis and redesign a new DOE based on those 

factors either by doing a full factorial analysis or if a significant lack of fit exists, 

choosing a design that allows the calculation of higher order terms (central composite 

design, three level factorial design, etc.). 

3.3 Experimental Designs for Linear Models 
 

The partial recipe for the plasma ashing process as described in Section 1.5 has six 

controllable factors that could have a significant impact on the amount of photoresist removed 

and the wafer non-uniformity. Since a full factorial experimental design at two levels would have 

needed 64 runs for each replicate, it was therefore decided to do a 26-2 resolution IV fractional 

factorial experiment with center points to test for curvature. Each run including the center point 

would be replicated three times. Table 3-1 shows the six factors and the specific levels at which 

the experimental runs are performed, while Table 3-2 shows the fractional factorial design run 

table. 
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Table 3-1: The controllable factors and the levels at which they are run. 

 

 

 

Table 3-2: The 26-2 resolution IV factorial design run table. 

 

The main purpose of doing the 26-2 resolution IV fractional factorial design experiment is 

to screen out the non-significant factors and formulate a regression model for the amount of 

Parameter	 Variable	 Low(-1)	 High(+1)	 Center	(0)	
Temperature	 A(Celsius)	 220	 250	 235	
Pressure	 B	(mTorr)	 1600	 2400	 2000	
Power	 C	(Wa=s)	 1100	 1400	 1250	

Pump	Speed	 D	(k/min)	 4.8	 7.2	 6	
O2	 E	(SCCM)	 3000	 4500	 3750	
N2	 F	(SCCM)	 300	 450	 375	

Temperature	 Pressure	 Power	 Pump	speed	 O2	 N2	
Treatment	 A		 B		 C		 D		 E		 F		

1	 -1	 -1	 -1	 -1	 -1	 -1	
2	 +1	 -1	 -1	 -1	 +1	 -1	
3	 -1	 +1	 -1	 -1	 +1	 +1	
4	 +1	 +1	 -1	 -1	 -1	 +1	
5	 -1	 -1	 +1	 -1	 +1	 +1	
6	 +1	 -1	 +1	 -1	 -1	 +1	
7	 -1	 +1	 +1	 -1	 -1	 -1	
8	 +1	 +1	 +1	 -1	 +1	 -1	
9	 -1	 -1	 -1	 +1	 -1	 +1	
10	 +1	 -1	 -1	 +1	 +1	 +1	
11	 -1	 +1	 -1	 +1	 +1	 -1	
12	 +1	 +1	 -1	 +1	 -1	 -1	
13	 -1	 -1	 +1	 +1	 +1	 -1	
14	 +1	 -1	 +1	 +1	 -1	 -1	
15	 -1	 +1	 +1	 +1	 -1	 +1	
16	 +1	 +1	 +1	 +1	 +1	 +1	
17	 0	 0	 0	 0	 0	 0	

Defining	Rela+on	

I=ABCE=BCDF=ADEF	
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photoresist removed and the within-wafer non-uniformity.  A resolution IV fractional factorial 

design allows for the modeling of the main effects and two factor interactions while confounding 

the higher order terms. A two level fractional factorial experimental design allows for the 

formulation of a linear regression model [16]. An example of a linear regression model that 

includes the two factor interaction terms is shown below: 

𝑦 = 𝛽! + 𝛽!𝑥!

!!!

!!!

+ 𝛽!"𝑥!𝑥!

!!!

!!!

!!!

!!!

+ 𝜀 

Equation 3-1 

where 𝑥! is a main factor effect, 𝑥!𝑥! is a two factor interaction effect, 𝜀 is the random error 

term, and 𝛽!, 𝛽!, 𝛽!" are the model coefficients. Regression analysis aims to minimize the 

random error term 𝜀 and provide the best estimate of the response variable 𝑦. Therefore the 

prediction equation becomes: 

𝑦 = 𝛽! + 𝛽!𝑥!

!!!

!!!

+ 𝛽!"𝑥!𝑥!

!!!

!!!

!!!

!!!

 

Equation 3-2 

where 𝑦 is the estimate of the response variable 𝑦 and the rest of the terms are the same as 

described in equation 3-1.  

As discussed in Section 1.6, the Nanospec 9200 tool measures and records the amount of 

photoresist removed from nine sites on a single wafer. Therefore it is possible to build a 

regression model for the amount of photoresist removed from each site from a single DOE 

analysis. From a practical process-monitoring standpoint, looking at nine different regression 

models for each of the nine sites is tedious and difficult, and therefore it may be necessary to 

combine each of the nine models into a single model that would be the best predictor of the 

amount of photoresist removed and wafer non-uniformity during a particular run.  Guo and 

Sachs have proposed the multiple response surface methodology which will be one of the 

approaches explored in this thesis to combine each of the nine regression models into a single 
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model for predicting the average amount of photoresist removed and the wafer non-uniformity 

[12]. The methodology is outlined below. 

i. Build a regression model for the amount of photoresist removed from each of the nine 

sites on a single wafer from the results of the DOE as shown below. 

 

𝑦! = 𝛽!" + 𝛽!!𝐴 + 𝛽!"𝐵 +⋯+ 𝛽!!𝐹 + 𝛽!!𝐴𝐵 +⋯+ 𝛽!!𝐸𝐹 

𝑦! = 𝛽!" + 𝛽!"𝐴 + 𝛽!!𝐵 +⋯+ 𝛽!!𝐹 + 𝛽!!𝐴𝐵 +⋯+ 𝛽!!𝐸𝐹 

. 

. 

. 

𝑦! = 𝛽!" + 𝛽!"𝐴 + 𝛽!"𝐵 +⋯+ 𝛽!!𝐹 + 𝛽!!𝐴𝐵 +⋯+ 𝛽!!𝐸𝐹 

Equation 3-3 

where 𝑦!, 𝑦!…𝑦! are the estimates of the response variable at each site which is the 

amount of photoresist removed. A, B, …, F and AB, …, EF are the variables that 

represent the main factor effects and two factor interactions and have been defined in 

Table 3-2. 𝛽!", 𝛽!!, …,𝛽!! are the model coefficients for site 1, and a similar notation is 

adopted for the model coefficients of the other sites. 

ii. Combine the nine models outlined above to best represent and estimate the average 

amount of photoresist removed from a wafer and the within-wafer non-uniformity based 

on the methods outlined in Section 1.7. The following equations demonstrate the 

methodology of using the areal representation of the sites in the calculation of the 

combined model. 

 

𝑦 =
𝑤!𝑦!!!!

!!!

𝑤!!!!
!!!

 

Equation 3-4 
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where 𝑦 is the combined model for predicting the average amount of photoresist removed 

from a single wafer, 𝑦! is the individual site regression model, and 𝑤! is the weighted area 

factor associated with that site [11], [12]. 

𝑠 =  
𝑤!!!!

!!!

𝑤!!!!
!!!

! − 𝑤!!!!!
!!!

∙ 𝑤! 𝑦! − 𝑦 !

!!!

!!!

 

Equation 3-5 

where 𝑠 is the standard deviation of the estimates of the amount of photoresist removed at 

each site, 𝑦 is the combined model for predicting the average amount of photoresist 

removed from a single wafer, 𝑦! is the individual site regression model, and 𝑤! is the 

weighted area factor associated with that site [11], [12]. 

𝑁𝑈 =
𝑠 
𝑦  

Equation 3-6 

where 𝑁𝑈 (will be expressed as a percentage) is the estimate of the within-wafer non-

uniformity, 𝑠 is the standard deviation of the estimates of the amount of photoresist 

removed at each site, and 𝑦 is the combined model for predicting the average amount of 

photoresist removed from a single wafer [12]. 

 

Another approach to modeling the within-wafer non-uniformity is the single response 

surface methodology described by Guo and Sachs [12]. In this method, the same 26-2 resolution 

IV fractional factorial design experiment outlined in Table 3-2 is used, but instead of using the 

amount of photoresist removed as the response variable, the within-wafer non-uniformity will be 

used as the response variable. This means that the within-wafer non-uniformity will be calculated 

for each experimental run and a regression equation would be directly fit to those calculated 

values. 
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Chapter 4 presents a comprehensive analysis of both the single response surface and 

multiple response surface methods on the plasma ashing process and recommendations are made 

to Analog Devices Inc. on the best method to adopt. 

3.4 Experimental Designs for Non-Linear Models 
 

While two level fractional factorial experiments are valuable in determining the most 

significant factors, the regression models that are generated from such designs may be severely 

deficient in accuracy. In most cases, the lack of accuracy can be attributed to either a significant 

factor that was not considered during the experiment or the existence of curvature (higher order 

terms) that models obtained from a two level fractional factorial experimental design cannot 

generally account for. Therefore, it is critical to perform replicated center point tests when 

performing a two level fractional factorial experiment to test for the presence of curvature. 

If it is determined from the center point tests that curvature exists, then the model must be 

refined to account for the higher order terms if precise prediction of the response variable is the 

objective. Several experimental designs like the central composite design are available and 

widely used to build non-linear regression models [20]. A three or higher-level factorial design 

experiment can also be used to account for the non-linear terms in a regression model.  

The initial regression model formulated with the single response surface approach for the 

wafer non-uniformity using the 26-2 resolution IV fractional factorial design experiment needs 

further refinement. It is observed from the screening experiment that the wafer temperature and 

the oxygen gas flow are the two most significant factors affecting the wafer non-uniformity in 

the plasma ashing process (Chapter 4).  To refine the model, a three level full factorial 

experiment is done using only wafer temperature and oxygen gas flow as the two factors. The 

other four controllable factors were kept constant at the values outlined in the partial recipe 

(Table 1-1). The levels of each of the factors are shown in Table 3-3 while the 32 full factorial 

design table is shown in Table 3-4. 
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Table 3-3: The controllable factors and specific levels at which the 32 full factorial 

experiments are run. 

 

 

Table 3-4: 32 full factorial design run table. 

  

Doing a 32 full factorial experiment allows for the modeling of quadratic terms to account 

for the curvature in the response surface and this generally improves the fidelity of the model. 

The regression model relating the best estimate of the within-wafer non-uniformity (𝑁𝑈) to the 

wafer temperature (A) and oxygen gas flow (B) is as follows: 

𝑁𝑈 = 𝛽! + 𝛽!𝐴 + 𝛽!𝐵 + 𝛽!𝐴𝐵 + 𝛽!𝐴! + 𝛽!𝐵! 

Equation 3-7 

An in-depth analysis of the results of this experiment is presented in Chapter 4. 

 

 

Parameter	 Variable	 Low	(0)	 Mid(1)	 High(2)	
Temperature	 A	(Celsius)	 220	 235	 250	

O2	 B	(SCCM)	 3000	 3750	 4500	

Temperature	 O2	
Treatment	 A		 B	

1	 0	 0	
2	 1	 0	
3	 2	 0	
4	 0	 1	
5	 1	 1	
6	 2	 1	
7	 0	 2	
8	 1	 2	
9	 2	 2	
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Chapter 4: Design of Experiments - Analysis 
 

This chapter provides a comprehensive analysis of the outcomes of the DOEs that are 

described in Chapter 3. It explains the methods and the strategies needed to build and validate 

the statistical regression models. JMP statistical software and MATLAB are used to carry out the 

analysis [17], [22].  

The DOEs are conducted on two separate Gasonics machines that are codenamed G53000 

and G63000.  Sufficient care is taken to keep the experimental conditions and run orders the 

same for both the machines. This is important because one of the broader goals of this project is 

to document the similarities and contrasts between machines running the same process with the 

same recipe. This chapter also comments on the similarities and contrasts between the G53000 

and G63000 machines running the plasma ashing process with the partial recipe. Haskaraman’s 

work [4] describes strategies for machine matching or ways in which the contrasts between the 

two machines can be reduced or eliminated. 

The response variables that are under study are the amount of photoresist removed and the 

within-wafer non-uniformity. The within-wafer non-uniformity is modeled using both the 

multiple response surface and the single response surface methods described by Guo and Sachs 

[12]. The outcomes from both these methods have also been compared in this chapter. A 

methodology for conducting a thorough analysis of the outcomes of a DOE experiment has also 

been presented to Analog Devices Inc. 

4.1 G53000: Multiple Response Surface Model 
 

The multiple response surface approach combines the nine individual site models for the 

amount of photoresist removed from a wafer into a single model using equations 3-4 and 3-5. 

The wafer non-uniformity response can also be predicted from the individual site models using 

equation 3-6. The formulation of the regression models for each site is done in JMP. The in-

depth analysis and diagrams that are presented in this section are only for site 3 which is the 

center of the wafer unless other wise mentioned, as all of the nine site models share similar 
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characteristics and properties. Important information or any anomalies from the other site models 

are highlighted appropriately. Table 4-1 shows the replicate runs, replicate mean, and the 

replicate variance of the amount of photoresist removed from site 3 in each treatment 

combination of the 26-2 resolution IV factorial design table (Table 3-2).  

 

Table 4-1: Values of replicate runs, replicate mean, and replicate variance for amount of 

photoresist stripped from a wafer in the G53000 machine. 

 

The 26-2 resolution IV factorial design table is cataloged as one of the standard designs in 

JMP. The value for the amount of photoresist removed for each treatment combination and 

replicate is tabulated in JMP and the model script is run with the “standard least squares” 

personality and “effects screening” emphasis. The treatment combination pattern in Table 4-1 

follows the pattern outlined in Table 3-2. Figure 4-1 shows the JMP screen that aids in 

configuring the regression model parameters. 

Run	Number	 Treatment	 Replicate-1	 Replicate-2	 Replicate-3	
Replicate	
Mean	

Replicate	
Variance	

1	 [-−-−-−]	 4856.76	 5034.65	 5015.66	 4969.0	 9542.4	
2	 [+−−-+−]	 7086.73	 7215.62	 7000.04	 7100.8	 11767.1	
3	 [-+−−++]	 4838.02	 4950.27	 4870.11	 4886.1	 3342.6	
4	 [++-−-+]	 6755.86	 6855.54	 6820.59	 6810.7	 2557.9	
5	 [--+-++]	 5125.77	 5286.27	 5205.1	 5205.7	 6440.3	
6	 [+−+−-+]	 7676.91	 7772.08	 7706.86	 7718.6	 2368.0	
7	 [−++-−−]	 5358.5	 5451.42	 5455.37	 5421.8	 3005.6	
8	 [+++−+-]	 7564.78	 7646.79	 7636.46	 7616.0	 1995.1	
9	 [++−+−−]	 4920.65	 4852.84	 4989.95	 4921.1	 4700.0	
10	 [+−−+++]	 6800.71	 6891.25	 6896.94	 6863.0	 2915.0	
11	 [−+−++−]	 4827.51	 4953.79	 4968.08	 4916.5	 5985.1	
12	 [++-+−-]	 6863.56	 6886.65	 6950.7	 6900.3	 2038.2	
13	 [−−+++-]	 5095.41	 5113.55	 5302.28	 5170.4	 13123.9	
14	 [+-++-−]	 7751.52	 7705.83	 7881.85	 7779.7	 8342.8	
15	 [-+++−+]	 5306.48	 5121.4	 5379.1	 5269.0	 17656.3	
16	 [++++++]	 7351.49	 7428	 7413.61	 7397.7	 1653.3	

Center	 [000000]	 5976.93	 5896.23	 6097.22	 5990.1	 10229.9	
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Figure 4-1: Specifying model parameters in JMP. 

 

After all the terms of the model have been specified and the model is run, JMP compiles and 

generates an analysis report with the coefficients of the regression model. The key features that 

must be looked at in the JMP analysis report for a fractional factorial screening design in order to 

make sure that the DOE is valid and can be used to draw meaningful implications are as follows. 

i. Effects Screening Assumptions 

Screening designs assume that the effects under consideration are uncorrelated and if the 

design is replicated, then the variances across all runs must be equal [20]. If both these 

assumptions hold, then multivariate analysis of variance (MANOVA) can be used to screen out 

the non-significant factors as some software packages do. However, there may be cases where 

either one or both of these assumptions do not hold. JMP is capable of testing for both these 

assumptions in the analysis report and adjusting for any deficiencies if they exist. In the 

regression model report of site 3, JMP concludes that all the factors are uncorrelated but the 

variances across all runs are not equal. However, a Bartlett’s test for equal variances done at a 
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95% confidence level shows that the variances are equal (T = 7.66, 𝜒!.!",!"! = 7.96). JMP allows 

the option of screening factors with or without adjusting for the assumption of equal variances. 

The effects screening normal probability plot for both the cases is shown in Figure 4-2 and 4-3. 

Both the plots show the same significant factors with the same hierarchy so the Bartlett’s test 

conclusion is not wrong and MANOVA could have been used to screen factors in this case. It 

can be concluded that JMP tests for equality of variance at a higher confidence level than the 

95% confidence level used in the Bartlett’s test. If some other statistical software package is used 

that uses MANOVA to screen factors, the Bartlett’s test is useful to test the equality of variance 

hypothesis, while a principle component analysis can be used to test for correlation among 

multiple factors [23].  In subsequent analysis in this thesis, the JMP conclusions will be used to 

validate the effects screening assumptions. 

 
Figure 4-2: Normal probability plot of 

effects affecting photoresist strip rate 

standardized to have equal variances across 

all runs in the G53000 machine. 

 
Figure 4-3: Normal probability plot of 

effects affecting photoresist strip rate not 

standardized that have unequal variances 

across all runs in G53000 machine. 

 

The most significant effects are the ones that violate the normality assumption. The greater 

the violation from the normality assumption, the greater is the significance of the effect [16]. 

Wafer temperature, power, and the two factor interaction between wafer temperature and power 
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are the most significant effects that influence the amount of photoresist removed in the plasma 

ashing process on the G53000 machine. 

ii. Alias Structure and Singularity 

It is important to validate the alias structure and singularity terms in a fractional factorial 

screening design experiment. The alias structure is specified while making the initial DOE run 

table. The aim of the 26-2 resolution IV factorial design experiment is to model all the main 

effects and two factor interactions [16]. However, there does exist a singularity term as shown in 

Figure 4-4 where there is a linear dependency between the interaction of wafer temperature and 

oxygen flow and the interaction of chamber pressure and power. 

 

Figure 4-4: Singularity report as seen in JMP. 

 

Singularity terms indicate confounding between factors or interactions, and one must be 

cautious while including them in a regression model should they be significant. Engineering 

judgment must be applied in such cases. In the case of the regression model for site 3, it is 

unlikely that the two factor interaction between temperature and oxygen and the two factor 

interaction between pressure and power will have a significant impact on the predicted outcome. 

This is because the main effects of oxygen and pressure have virtually no impact on the amount 

of photoresist removed as shown by the normal probability plots, and based on both the 

principles of hierarchy of effects and inheritance of effects, it is even more unlikely that the 

singularity terms in this model will have a significant impact on the amount of photoresist 

removed. However, should a singularity term be deemed to be statistically significant and should 

they be interaction terms between the main effects, then the choice of the interaction term to be 

selected should be the one with the most significant main effects. For example, in this case the 

interaction between wafer temperature and oxygen will be chosen over the interaction between 

the chamber pressure and power, since the effect of temperature is more significant than the 

effect of power and the effect of oxygen is more significant than the effect of chamber pressure. 



 59 

iii. Lack of Fit Analysis 

The analysis report in JMP contains a graph that plots the values predicted by the regression 

model versus the actual values obtained from the experiment and fits a curve to it as shown in 

Figure 4-5.  

 

Figure 4-5: Observed values versus model predicted values plot for amount of photoresist 

removed from site 3 of the wafer in the G53000 machine. 

 

The adjusted R2 value for this plot is 0.992 which indicates that there is very little 

variation of the data not explained by the model, confirming that the model has good precision. 

The actual values of the residuals, however, must be checked for model accuracy analysis. A low 

R2 value would have indicated that the regression model either has significant curvature or a 

missing factor leading to poor precision. If center points are entered in the design table, JMP also 

performs the curvature test. In this case there is some curvature especially around the center 

points as can be seen from Figure 4-5 and the residual analysis, but these center points do not 

deviate much from the overall natural variation in the process and therefore the lack of fit can be 

ignored. Table 4-2 gives the adjusted R2 values for each site model for the observed values 

versus the predicted values plot for the amount of photoresist removed. 
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Table 4-2: Adjusted R2 values for observed versus predicted plot for the amount of photoresist 

removed from all sites on a wafer in the G53000 machine. 

 

It can be concluded from the adjusted R2 values, that the regression models for each site show 

good precision over the specified range of the input factors in the DOE.   

iv. Model Coefficients 

The analysis report in JMP also provides the regression model coefficients for the factors in 

decreasing order of significance as shown in Figure 4-6. The model is restricted to main effects 

and two factor interactions and second order (squared) terms are excluded based on the results of 

the lack of fit analysis. The “Estimate” column gives the model coefficients for each factor. 

 

Figure 4-6: Model coefficients and hierarchy of significance of factors affecting the amount 

of photoresist removed from a wafer in the G53000 machine (site 3 of wafer). 

 

Sites	 Adjusted	R^2	Value	
Site-1	 0.993	
Site-2	 0.993	
Site-3	 0.993	
Site-4	 0.994	
Site-5	 0.988	
Site-6	 0.993	
Site-7	 0.995	
Site-8	 0.986	
Site-9	 0.989	
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This regression model assumes that the values entered for each factor as an input will be 

“coded”, i.e., all the inputs entered into the model for each factor must be between -1 and +1. 

JMP also has a feature called “prediction expression” that shows the regression model without 

the coded inputs, allowing a user to enter absolute values of the input factors if required. The 

intercept value or the 𝛽! term for the site 3 regression model is 6172.739. This value is provided 

in a separate table in JMP and must not be accidently ignored when building the regression 

model. As expected, the two factor interactions of temperature and oxygen and pressure and 

power are confounded because of the singularity and alias structure. In this case, the pressure and 

power interaction is zeroed and the temperature and oxygen term is retained but may be biased 

due to this term also potentially containing some of the zeroed term’s effects. 

JMP analyzes the significance of factors by calculating the t-ratio as shown in the “t-

ratio” column in Figure 4-6. The greater the magnitude of the absolute t-ratio from 0, the more 

significant is the factor and the t-test hypothesis is tested at a 1% (orange) and 5% (red) 

significance level.  The bar chart in Figure 4-6 shows the t-ratio with vertical lines at a 0.05 

significance level. Pvalues can also be used to determine the significance of effects and in this case 

the lower the Pvalue, the more significant that effect is. JMP also has a separate table in the 

analysis report where one can compare the significance of effects using the Pvalues. 

Table 4-3 shows the main effects at a 1% (red) and 5% (orange) significance level and 

the model coefficients for each of the nine sites. The “x” symbol indicates those factors that were 

not significant to the site regression model. 

 

Table 4-3: Model coefficients for all nine sites for the amount of photoresist removed from a 

wafer in the G53000 machine. 

Sites	 Temperature	 Pressure	 Power	 Pumping	Speed	 Oxygen	 Nitrogen	
Site	1	 1107.2	 x	 243.9	 x	 x	 -38.3	
Site	2	 1081.5	 x	 253.6	 x	 -37.56	 -46.48	
Site	3	 1089.2	 -31.9	 263.2	 -31.9	 -39.6	 -50.2	
Site	4	 1078.8	 -37.5	 250.8	 -41.3	 x	 -47.5	
Site	5	 1111.3	 x	 273.8	 -62.8	 x	 -42.1	
Site	6	 1078.3	 x	 213.9	 x	 x	 -50.1	
Site	7	 1077.4	 x	 253.1	 -33.1	 -27.5	 -44.9	
Site	8	 1050.6	 -39.7	 272.6	 -47	 -53.7	 -43.6	
Site	9	 1023.2	 x	 225.7	 -39.1	 x	 -31.7	
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It can be clearly seen that wafer temperature and power are the most significant effects in 

all nine sites. The model coefficients give an idea of the hierarchy of significance. Table 4-4 

shows the most significant two factor interaction effects on the amount of photoresist removed. It 

is also observed that the two factor interaction between wafer temperature and power is the most 

significant effect and present in all of the nine sites. This is consistent with the inheritance of 

effects principle because the main factors of wafer temperature and power have the most 

significant effect on the amount of photoresist removed in the plasma ashing process. 

 

 

Table 4-4: List of significant two factor interactions for the amount of photoresist removed 

from a wafer in the G53000 machine. 

 

v. Residual Analysis 

A residual is defined as the difference between the predicted model value and the observed 

value [16]. A residual analysis gives an idea of the stochastic or random error, while the 

regression coefficients account for the deterministic portion of the model [24]. Consistent low 

values of the residuals can give some reassurance about the accuracy of the regression model. A 

residual analysis includes the following tests [16], [24]. 

1. Checking if the residuals follow a normal distribution, as they are indicative of random 

error. 

Sites	 Significant	2-factor	interac1ons	

Site-1	 Temperature*Power,	Temperature*O2,	
Temperature*Pressure	

Site-2	 Temperature*Power,	Temperature*Pressure	
Site-3	 Temperature*Power,	Temperature*Pressure	
Site-4	 Temperature*Power,	Temperature*Pressure	

Site-5	 Temperature*Power,	
Temperature*O2,Temperature*Pressure	

Site-6	 Temperature*Power,	Temperature*Pressure	

Site-7	 Temperature*Power,	Temperature*Pressure,	
Temperature*N2	

Site-8	 Temperature*Power,	Temperature*Pressure	

Site-9	 Temperature*Power,	Temperature*Pressure,	
Temperature*N2	
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2. Plotting residual versus predicted values to look for any trends or patterns. The residuals 

should be randomly scattered in this plot and should be centered on the zero line 

throughout the range of fitted values in the ideal case, and should not be systematically 

high or low. Depending on a case-by-case basis, other residual plots such as residual 

versus run order (time series), residual versus a particular input factor, etc. may also be 

generated to obtain more specific information about the process behavior.  

 

Figures 4-7 and 4-8 show the normal probability plot of the residuals and the residual versus 

predicted plot for site 3. 

 
Figure 4-7: Normal probability plot of 

residuals for amount of photoresist 

removed from a wafer in the G53000 

machine (site 3). 

 
Figure 4-8: Residual versus predicted plot 

for amount of photoresist removed from a 

wafer in the G53000 machine (site 3). 

 

The normal probability plot of the residuals indicates that there seems to be no significant 

deviation from the normality assumption for the residuals. The residual versus predicted plot 

indicates that the residuals are randomly scattered around the zero line everywhere except the 

center points where a consistent negative trend is observed. This indicates the presence of 

curvature in the model and higher order terms are required to fine-tune the model if further 

model accuracy is required. However, if the extreme value among the three center point residuals 

is considered, the model is off by 276 Angstroms in this worst case, which is 4.7% of the target 

value of 6000 Angstroms. From a practical perspective, this value was acceptable to Analog 
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Devices Inc. and there was no need to do an additional DOE to refine the model. In such cases 

engineering judgment must be used to determine if the model needs refinement or not. 

vi. Post Experiment Physical Validations 

Once the experiment was completed and the regression model was formulated, additional 

wafers were run on the G53000 machine at various combinations of the input factors, and the 

observed values are compared with the values obtained from the regression model. The model 

accurately predicts the response at all the sites for most of the test cases within 150 Angstroms, 

which is within the range of the stochastic error, and the worst-case error is a center point at 350 

Angstroms. Doing such additional runs after the experiment further validates the regression 

model. 

vii. Modeling of the within-wafer non-uniformity  

After all of the regression models for the individual sites are formulated and validated, the 

models can be combined to give a single value of the average amount of photoresist removed 

from a wafer according to equation 3-4. Using the regression models of the nine sites, the within-

wafer non-uniformity can also be predicted according to equations 3-5 and 3-6. The within-wafer 

non-uniformity has spatial characteristics and in most cases a regression model formulated with 

the wafer non-uniformity as the response variable using traditional methods is non-linear [12]. 

The hope is that the structure of equations 3-5 and 3-6 may be able to account for the non-linear 

terms. Table 4-5 below shows a number of test cases that are used to check the accuracy of 

predicting the within-wafer non-uniformity using the multiple response surface methodology. 

The key column of interest is the “% Difference” which is calculated as follows: 

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 ∗ 100 

Equation 4-1 
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Table 4-5: Test cases for a variety of treatment combinations to validate the wafer non-

uniformity model using the multiple response surface method. 

 

The treatment combination codes (-, +, 0) refer to the low, high, and center point values 

of the 26-2 resolution IV factorial design run table shown in Table 3-2. The values highlighted in 

red in the % Difference column refer to those runs where the difference between the observed 

values (i.e., non-uniformity calculated from the actual measurements done on a wafer after it has 

undergone the ashing process for a particular treatment combination) and the predicted values 

(i.e., non-uniformity predicted by combining the nine site regression models for a particular 

treatment combination) exceeded by 10%. As can be seen from the table above, the multiple 

response surface model for the wafer non-uniformity predicts some values with good accuracy 

but most of the values are off by more than 5% with the worst-case scenario being 35.05%. The 

model does predict the general trend correctly which proves that some of the non-linearity is 

being accounted for, however, the model is not accurate enough and should not be used for 

predictive purposes. There are several possible hypotheses as to why this could be the case. The 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	 %	Difference	

1	 [-−-−-−]	 3.99	 4.05	 0.06	 1.47	
2	 [+−−-+−]	 3.14	 2.78	 -0.36	 11.45	
3	 [-+−−++]	 3.35	 2.99	 -0.36	 10.75	
4	 [++-−-+]	 3.06	 2.84	 -0.22	 7.28	
5	 [--+-++]	 3.94	 3.91	 -0.03	 0.80	
6	 [+−+−-+]	 3.31	 3.42	 0.11	 3.30	
7	 [−++-−−]	 3.98	 4.15	 0.17	 4.36	
8	 [+++−+-]	 2.82	 2.8	 -0.02	 0.56	
9	 [-+−+−−]	 4.09	 3.32	 -0.77	 18.75	
10	 [+−−+++]	 2.92	 2.61	 -0.31	 10.47	
11	 [−+−++−]	 3.16	 2.46	 -0.70	 22.23	
12	 [++-+−-]	 3.02	 2.51	 -0.51	 16.88	
13	 [−−+++-]	 3.68	 3.52	 -0.16	 4.28	
14	 [+-++-−]	 3.46	 3	 -0.46	 13.40	
15	 [-+++−+]	 3.80	 3.55	 -0.25	 6.49	
16	 [++++++]	 2.80	 2.57	 -0.23	 8.13	
17	 [000000]	 3.01	 2.99	 -0.02	 0.66	
18	 [-0+0+0]	 3.75	 3.46	 -0.29	 7.73	
19	 	[00+000]		 2.81	 3.19	 0.38	 13.52	
20	 	[+0+0+0]		 4.28	 2.78	 -1.50	 35.05	
21	 [+0+000]	 3.21	 2.9	 -0.31	 9.66	
22	 [-0+0-0]	 3.83	 4.02	 0.19	 4.96	
23	 [00+0+0]	 3.37	 3.02	 -0.35	 10.39	
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first one is that certain factors that may be statistically significant for modeling the response of 

the within-wafer non-uniformity may not be significant for modeling the response of the amount 

of photoresist removed. Therefore ignoring these factors could lead to a deficiency in the model 

for the within-wafer non-uniformity since this model was based off the regression models for the 

amount of photoresist removed. The second hypothesis is that certain non-linearity terms may 

not have been captured by the structure of equations 3-5 and 3-6 leading to the model deficiency. 

A third hypothesis is that the lack of fit created by neglecting the second order curvature terms in 

the site models more severely impacts the non-uniformity prediction. Another hypothesis, that 

seems to be the most likely case, is that the replication error in each of the nine site models could 

have a substantial effect on the predicted outcome of the within-wafer non-uniformity. It may 

therefore be necessary to review the calculation of the non-uniformity parameter and this 

hypothesis is explored further. 

The wafer non-uniformity parameter calculated from the multiple response surface 

method is a ratio of two random variables: the weighted standard deviation of the amount of 

photoresist removed from the nine sites on the wafer, and the weighted average of the amount of 

photoresist removed from the nine sites on the wafer. The site regression models are combined to 

predict the wafer non-uniformity according to equations 3-4, 3-5, and 3-6. The errors associated 

in predicting both the random variables can therefore stack up and be more profound in the non-

uniformity prediction. Figures 4-9, 4-10, 4-11, and 4-12 show the observed and predicted values 

at each site for the amount of photoresist removed and the non-uniformity prediction error (% 

Difference column in Table 4-5) associated with that treatment combination for the best case, 

worst case, and two intermediate scenarios. It can be seen that the non-uniformity prediction 

error is the lowest if the observed and prediction curves overlap at each site (Figure 4-9). 

Differences in the mean and the standard deviation between the two curves increase the non-

uniformity prediction error. In Figure 4-10, the values for the amount of photoresist removed are 

consistently over predicted because the treatment combination for that run is near the center 

point where some curvature exists. These plots also indicate that significant differences in the 

shapes of the observed and predicted curves (Figure 4-12) have a stronger influence on the non-

uniformity prediction error than shifts in the mean (Figure 4-10). The graphs also indicate that 

the site models are better at predicting the shape or the variation in the amount of photoresist 

removed from a wafer than the mean value. 
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Figure 4-9: Observed and predicted values of 

the amount of photoresist stripped at each 

site for treatment combination [--+-++]. The 

non-uniformity prediction error is 0.8%. 

 
Figure 4-10: Observed and predicted 

values of the amount of photoresist 

stripped at each site for treatment 

combination [00+000]. The non-

uniformity prediction error is 13.52%. 

 

 
Figure 4-11: Observed and predicted values 

of the amount of photoresist stripped at each 

site for treatment combination [+---+-]. The 

non-uniformity prediction error is 11.45%. 

 

 

 
Figure 4-12: Observed and predicted 

values of the amount of photoresist 

stripped at each site for treatment 

combination [+0+0+0]. The non-

uniformity prediction error is 35.05%. 
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A possible alternative for future consideration is to use the weighted standard deviation 

as the within-wafer non-uniformity metric, rather than normalizing the standard deviation to the 

mean. This would decouple the error in the within-wafer variation shape from the error in the 

mean, and enable more robust analysis of the two parameters separately.  

An alternative to the multiple response surface method explored next is to model the 

within-wafer non-uniformity using the single response surface method in the hope of achieving 

greater accuracy. 

4.2 G53000: Single Response Surface Model 
 

To formulate a more accurate model and to better understand the factors that have a 

significant impact on the within-wafer non-uniformity, the single response surface method is 

used where the within-wafer non-uniformity parameter is calculated for each of the experimental 

runs of the 26-2 resolution IV factorial design table and a regression model is directly fit on these 

values. Table 4-6 shows the individual replicates, the replicate means and the replicate variances 

that are used to construct the design table. A similar method of analysis as outlined in Section 4.2 

for modeling the individual nine site regression models will be followed. 
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Table 4-6: Values of replicate runs, replicate mean, and replicate variance for wafer non-

uniformity observed on the G53000 machine.  

 

i. Effects Screening Assumptions 

JMP indicates that the factor effects are not correlated but the equality of variance 

assumption across all experimental runs does not hold. JMP accounts for this in the normal 

probability plot shown in Figure 4-13 that is used to screen out the less significant factors.  The 

wafer temperature, oxygen gas flow, and chamber pressure are the most significant effects 

affecting the within-wafer non-uniformity on the G53000 machine. 

 

Run	Number	 Treatment	 Replicate-1	 Replicate-2	 Replicate-3	
Replicate	
Mean	

Replicate	
Variance	

1	 [-−-−-−]	 3.99	 3.56	 3.90	 3.82	 0.053	
2	 [+−−-+−]	 3.14	 3.06	 2.99	 3.06	 0.005	
3	 [-+−−++]	 3.35	 3.31	 3.18	 3.28	 0.008	
4	 [++-−-+]	 3.06	 3.05	 3.07	 3.06	 0.000	
5	 [--+-++]	 3.94	 3.76	 3.61	 3.77	 0.027	
6	 [+−+−-+]	 3.31	 3.32	 3.46	 3.36	 0.007	
7	 [−++-−−]	 3.98	 3.96	 3.92	 3.95	 0.001	
8	 [+++−+-]	 2.82	 2.78	 2.70	 2.77	 0.004	
9	 [++−+−−]	 4.09	 3.67	 3.63	 3.80	 0.063	
10	 [+−−+++]	 2.92	 3.19	 2.88	 2.99	 0.029	
11	 [−+−++−]	 3.16	 3.40	 3.40	 3.32	 0.019	
12	 [++-+−-]	 3.02	 2.90	 3.10	 3.01	 0.010	
13	 [−−+++-]	 3.68	 3.58	 3.99	 3.75	 0.047	
14	 [+-++-−]	 3.46	 3.11	 3.42	 3.33	 0.038	
15	 [-+++−+]	 3.80	 3.25	 3.73	 3.59	 0.090	
16	 [++++++]	 2.80	 2.72	 2.62	 2.71	 0.008	

Center	 [000000]	 3.01	 2.88	 3.37	 3.09	 0.063	
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Figure 4-13: Normal probability plot of effects affecting wafer non-uniformity standardized to 

have equal variances across all runs in the G53000 machine. 

 

ii. Alias Structure and Singularity 

The alias structure is analyzed and there is a singularity term in the model which results from 

the linear dependency between the two factor interactions of temperature and oxygen and power 

and pressure. Since temperature and oxygen are both very significant factors that influence the 

within-wafer non-uniformity, the two factor interaction between temperature and oxygen will be 

included in the model if this potentially biased term is deemed to be statistically significant at a 

5% significance level. 

iii. Lack of Fit Analysis 

The plot of the observed values versus the predicted values for the within-wafer non-

uniformity is shown in Figure 4-14. The adjusted R2 value for the linear fit in the plot is 0.80. 

The acceptance of this fit depends upon the precision needed in predicting the response variable. 

The adjusted R2 value indicates that this model cannot accurately account for as much as 20% of 

the variation in the data and therefore it cannot be used if a highly precise model is needed. This 

plot also indicates that including higher order terms may better fit the data and lead to more 

precise predictions. 
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Figure 4-14: Observed values versus model predicted values plot for the wafer non-uniformity 

observed on the G53000 machine. 

 

iv. Model Coefficients 

The summary of the model coefficients in the hierarchy of their significance is shown in 

Figure 4-15. The value of the intercept term is 3.33 and this regression model also assumes that 

the values entered as inputs will be coded. Wafer temperature, oxygen, and chamber pressure are 

the main effects that are highly significant followed by power. 

 

 
Figure 4-15: Model coefficients and hierarchy of significance of factors affecting the wafer 

uniformity observed on the G53000 machine. 
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v. Residual Analysis 

Figures 4-16 and 4-17 show the normal probability plot of the residuals and the residual 

versus predicted plot for the within-wafer non-uniformity model. 

 

 
Figure 4-16: Normal probability plot of 

residuals for wafer non-uniformity observed on 

the G53000 machine. 

 
Figure 4-17: Residual versus predicted plot for 

wafer non-uniformity observed on the G53000 

machine. 

 

By looking at the normal probability plot of the residuals, it can be seen that plotted points 

appear to bend up and to the left of the normal line indicating that the distribution has a long tail 

to the right (right skew) [25].  However, since most of the residual points lie either on or close to 

the normal line, the deviation from the normality assumption is not that substantial and the 

residuals can be assumed to follow a normal distribution. In the residual versus the fitted value 

plot, an interesting trend is observed. The variance of the residuals about the zero line increases 

with the increase in the fitted values of the within-wafer non-uniformity. This means that the 

current linear model is better at predicting the wafer non-uniformity at lower values than at 

higher values and therefore this model cannot be used to predict the wafer non-uniformity 

response across the range of the input factors. This indicates that the model has room for 

improvement either by considering additional factors or including non-linear terms. 
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vi. Post Experiment Validation Runs 

The post experiment validation runs were done primarily to compare this single response 

surface linear model to the multiple response surface model and to check if there are any 

improvements in predicting the response of the within-wafer non-uniformity. The same treatment 

combinations are used and the residuals and the % Difference are calculated and the results 

tabulated in Table 4-7. 

 

Table 4-7: Test cases for a variety of treatment combinations to validate the wafer non-

uniformity model using the single response surface method on the G53000 machine. 

 

Comparing the values of % Difference in Table 4-5 and Table 4-7, the single response 

surface model is definitely the better predictor of within-wafer non-uniformity than the multiple 

response surface model. However runs 17, 19, and 20 in Table 4-7 do lead to an error of more 

than 10% in the model and this indicates that there are areas over the range of the input factors 

where the model fails. It is interesting to note that chamber pressure and oxygen, which 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	 %	Difference	

1	 [-−-−-−]	 3.99	 3.87	 -0.12	 3.09	
2	 [+−−-+−]	 3.14	 3.03	 -0.11	 3.63	
3	 [-+−−++]	 3.35	 3.30	 -0.05	 1.52	
4	 [++-−-+]	 3.06	 3.06	 0.00	 0.16	
5	 [--+-++]	 3.94	 3.72	 -0.22	 5.53	
6	 [+−+−-+]	 3.31	 3.34	 0.02	 0.75	
7	 [−++-−−]	 3.98	 3.87	 -0.11	 2.69	
8	 [+++−+-]	 2.82	 2.77	 -0.04	 1.54	
9	 [-+−+−−]	 4.09	 3.71	 -0.37	 9.15	
10	 [+−−+++]	 2.92	 3.00	 0.08	 2.91	
11	 [−+−++−]	 3.16	 3.27	 0.11	 3.45	
12	 [++-+−-]	 3.02	 2.98	 -0.04	 1.30	
13	 [−−+++-]	 3.68	 3.77	 0.09	 2.48	
14	 [+-++-−]	 3.46	 3.33	 -0.13	 3.88	
15	 [-+++−+]	 3.80	 3.64	 -0.15	 4.06	
16	 [++++++]	 2.80	 2.68	 -0.12	 4.37	
17	 [000000]	 3.01	 3.33	 0.32	 10.74	
18	 [-0+0+0]	 3.75	 3.6	 -0.15	 4.00	
19	 	[00+0+0]		 2.81	 3.39	 0.58	 20.64	
20	 	[+0+0+0]		 4.28	 2.89	 -1.39	 32.48	
21	 [+0+000]	 3.21	 3.02	 -0.19	 5.92	
22	 [-0+0-0]	 3.83	 3.89	 0.06	 1.57	
23	 [00+0+0]	 3.37	 3.25	 -0.12	 3.56	
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significantly affect the within-wafer non-uniformity (Figure 4-11), were not included in building 

the regression models of six out of nine sites and five out of nine sites respectively (Table 4-3) as 

they did not significantly impact the amount of photoresist removed. This may have also added 

to the loss of adequacy of the multiple response surface model in addition to the replication error 

in the mean value. 

4.3 G53000: Quadratic Response Surface Model 
 

The failure of the single response surface linear model and the multiple response surface 

model to predict the wafer non-uniformity with reasonable accuracy at some instances over the 

range of the input factors indicates that the lack of explicit higher order terms can have a 

negative impact. If the regression model for the wafer non-uniformity is to be further improved, 

then these higher order terms need to be included in the model. After consulting with the process 

engineers at Analog Devices Inc., it was decided that a 32 full factorial DOE (Table 3-4) with a 

single replicate would be done using the single response surface method. The two input factors 

chosen are the wafer temperature and oxygen (Table 3-3) as these two are the most significant 

factors determined from the screening experiment. The other parameters are kept constant at the 

values outlined in the partial recipe (Table 1-1). The initial analysis of the response of the within-

wafer non-uniformity from previous models showed that the wafer non-uniformity varied only 

between 3%-4% over the acceptable range of the input parameters. Therefore, there was no need 

to build a highly precise model to predict the within-wafer non-uniformity. However, the 

engineers at Analog Devices Inc. were interested in seeing if the within-wafer non-uniformity 

could be minimized and if so, at what values of the input factors could this be achieved. A 32 full 

factorial DOE would allow for the modeling of a quadratic response surface that is capable of 

detecting maxima or minima [20]. This experiment only required nine runs and this was 

important because there were constraints on the amount of time the machine could be switched 

off from the active production state and the availability schedules of the team performing the 

experiments. Table 4-8 shows the within-wafer non-uniformity response of each run. 
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Table 4-8: Values of wafer non-uniformity obtained from the 32 full factorial experimental 

runs done on the G53000 machine. 

 

To analyze the outcomes of the above experiment, the following steps are taken:  

i. Lack of Fit Analysis 

The plot of the observed values versus the predicted values for the within-wafer non-

uniformity is shown in Figure 4-18. The adjusted R2 value for the plot is 0.66 indicating a poor 

fit.  It was anticipated that the quadratic model would improve on the single response surface 

linear model but this was not the case. A reason for this anomaly could be the exclusion of the 

factors of chamber pressure and power, which significantly affect the response of the within-

wafer non-uniformity as seen in Figure 4-15. This indicates that excluding key factors from a 

DOE can significantly reduce the fidelity of the regression model formulated from that DOE.  

 

Run	Number	 Treatment		 Non-Uniformity	
1	 [0,2]	 3.76	
2	 [2,1]	 3.21	
3	 [0,0]	 3.82	
4	 [1,0]	 3.55	
5	 [1,1]	 2.81	
6	 [2,0]	 3.18	
7	 [1,2]	 3.37	
8	 [2,2]	 4.28	
9	 [0,1]	 3.43	
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Figure 4-18: Observed values versus model predicted values plot for the wafer non-uniformity 

quadratic model obtained from the experiments done on the G53000 machine. 

 

ii. Model Coefficients 

The summary of the model coefficients obtained from this DOE is shown in Figure 4-19. It is 

to be noted that the model coefficients in this case represent the absolute values of the input 

parameters and not the coded variables, as was the case in the screening designs. In a full 

factorial experiment with three or more levels, JMP automatically accounts for the coded values 

which was not the case with the previous screening designs and this difference must be noted. 

 

 

Figure 4-19: Quadratic model coefficients of factors affecting the wafer non-uniformity 

observed on the G53000 machine. 
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iii. Residual Analysis 

Figures 4-20 and 4-21 show the normal probability plot of the residuals and the residual 

versus predicted plot for the within-wafer non-uniformity quadratic model. 

 
Figure 4-20: Normal probability plot of 

residuals for wafer non-uniformity 

observed on the G53000 machine 

(quadratic model). 

 
Figure 4-21: Residual versus predicted plot 

for wafer non-uniformity observed on the 

G53000 machine (quadratic model). 

 

These plots show that the residuals do follow a normal distribution and are randomly 

distributed above and below the zero line, indicating that a quadratic model is a good fit for the 

within-wafer non-uniformity and further indicates that the lack of accuracy in predictions comes 

from not including the significant factors of pressure and power.  The values of the individual 

residuals and the % Difference between the predicted values and the observed values is tabulated 

in Table 4-9. 
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Table 4-9: Test cases for a variety of treatment combinations to validate the wafer non-

uniformity quadratic model obtained from the experiments done on the G53000 machine. 

 

iv. Response Surface and Optimal Parameters 

One advantage of doing a DOE that includes interaction or higher order terms is the ability to 

plot a multivariate response surface [16], [20]. These response surfaces are particularly useful in 

process optimizations when a response variable needs to be maximized or minimized over a 

certain range of the input parameters. In this case, the goal is to minimize the within-wafer non-

uniformity, and with the help of the “prediction profiler” and “surface profiler” tools in JMP, the 

response surface can be plotted and the response variable can be optimized. Figure 4-22 shows 

the 3-D quadratic response surface of the within-wafer non-uniformity in relation to the 

controllable factors of wafer temperature and oxygen, while Figure 4-23 shows the prediction 

profiler where a user can manually vary the input factors over the operational range and see how 

the response variable changes. 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	 %	Difference	

1	 [0,2]	 3.76	 3.69	 -0.07	 1.75	
2	 [2,1]	 3.21	 3.22	 0.01	 0.18	
3	 [0,0]	 3.82	 3.99	 0.16	 4.31	
4	 [1,0]	 3.55	 3.27	 -0.28	 7.82	
5	 [1,1]	 2.81	 2.91	 0.09	 3.31	
6	 [2,0]	 3.18	 3.29	 0.11	 3.54	
7	 [1,2]	 3.37	 3.56	 0.18	 5.46	
8	 [2,2]	 4.28	 4.16	 -0.12	 2.76	
9	 [0,1]	 3.43	 3.34	 -0.10	 2.88	
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Figure 4-22: Quadratic response surface for wafer non-uniformity with temperature and 

oxygen as controllable factors obtained from the experiments done on the G53000 machine. 

 

Figure 4-23: Prediction profiler for the response of wafer non-uniformity to temperature and 

oxygen for the G53000 machine. 

 

The optimal value of the within-wafer non-uniformity is found to be 2.89% at a wafer 

temperature value of 236.67 degrees Celsius and oxygen gas flow value of 3617 SCCM while all 

of the other factors are kept at the values outlined in the partial recipe (Table 1-1).  
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4.4 G63000: Multiple Response Surface Model 
 

The same experimental design and analysis approach that was used in Section 4.1 to 

build the regression models for the amount of photoresist removed and the within-wafer non-

uniformity in the plasma ashing process using the multiple response surface method (Section 3.3) 

will be used on another Gasonics machine codenamed G63000. In this case too, the detailed 

analysis and diagrams presented in this section are for site 3 which is at the center of the wafer 

unless stated otherwise. The individual nine site models share similar characteristics and 

properties and any anomalies are highlighted appropriately. Table 4-10 shows the mean and the 

variance of the amount of photoresist removed from site 3 in each treatment combination of the 

26-2 resolution IV factorial design table (Table 3-2).  

 

Table 4-10: Values of replicate runs, replicate mean, and replicate variance for amount of 

photoresist stripped from a wafer in the G63000 machine. 

 

Run	Number	 Treatment	 Replicate-1	 Replicate-2	 Replicate-3	
Replicate	
Mean	

Replicate	
Variance	

1	 [-−-−-−]	 4468.55	 4629.97	 4399.69	 4499.40	 13971.17	
2	 [+−−-+−]	 6533.5	 6664.9	 6547.99	 6582.13	 5190.64	
3	 [-+−−++]	 4606.59	 4650.73	 4588.86	 4615.39	 1015.10	
4	 [++-−-+]	 6114.31	 6235.44	 6177.72	 6175.82	 3670.82	
5	 [--+-++]	 4841.56	 4923.26	 4927.19	 4897.34	 2337.14	
6	 [+−+−-+]	 6992.5	 7189.87	 6976.87	 7053.08	 14094.70	
7	 [−++-−−]	 5025.61	 4990.73	 4931.65	 4982.66	 2255.92	
8	 [+++−+-]	 7004.75	 7012.77	 7070.95	 7029.49	 1305.28	
9	 [++−+−−]	 4557.47	 4492.56	 4502.06	 4517.36	 1228.97	
10	 [+−−+++]	 6568.45	 6381.02	 6590.1	 6513.19	 13218.86	
11	 [−+−++−]	 4761.13	 4619.5	 4628.48	 4669.70	 6289.29	
12	 [++-+−-]	 6354.05	 6199.38	 6267.8	 6273.74	 6007.19	
13	 [−−+++-]	 4911.02	 4768.62	 5197.33	 4958.99	 47673.91	
14	 [+-++-−]	 7389.92	 7137.32	 7182.26	 7236.50	 18158.17	
15	 [-+++−+]	 4997.5	 4807.37	 4994.29	 4933.05	 11849.80	
16	 [++++++]	 6983.06	 6807.88	 6987.86	 6926.27	 10517.31	

Center	 [000000]	 5676.67	 5988.34	 5927.83	 5864.28	 10229.90	
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The values in Table 4-10 are tabulated in JMP and the analysis report is generated. Since this 

is a fractional factorial screening design, the following features are analyzed to validate the 

DOE:  

i. Effects Screening Assumptions 

The JMP analysis report concludes that all the factors are uncorrelated but the variances of 

the replicates across all the runs are not the same. Therefore the condition of unequal variances 

must be accounted for in determining the significance of the factors under consideration. Figure 

4-24 shows the normal probability plot of the effects for site 3.  

 

Figure 4-24: Normal probability plot of effects affecting photoresist strip rate standardized to 

have equal variances across all runs in the G63000 machine. 

 

Wafer temperature, power, and the two factor interaction between wafer temperature and 

power are the most significant effects that influence the amount of photoresist removed in the 

plasma ashing process on the G63000 machine. These are the same factors in the same hierarchy 

that influenced the amount of photoresist removed on the G53000 machine. 

ii. Alias Structure and Singularity 

The alias structure is validated while making the design table in JMP and the JMP analysis 

report shows that there exists a singularity term where there is a linear dependency between the 

interaction of wafer temperature and oxygen and the interaction of chamber pressure and power. 
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In this case too, the interaction between wafer temperature and oxygen is chosen over the 

interaction between the chamber pressure and power, since the effect of temperature is more 

significant than the effect of power, and the effect of oxygen is more significant than the effect of 

chamber pressure, if any of the singularity terms are deemed to be statistically significant. 

iii. Lack of Fit Analysis 

The values predicted by the regression model versus the observed values from the 

experiment are plotted in Figure 4-25.  

 

Figure 4-25: Observed values versus model predicted values plot for amount of photoresist 

removed from site 3 of the wafer in the G63000 machine. 

 

A linear function is fitted to the values plotted on the graph and the adjusted R2 value is 

0.989 indicating that the regression model for site 3 is a precise model. The center point 

curvature test did not indicate the presence of any statistically significant non-linearity. This was 

not the case with the G53000 machine. Table 4-11 gives the adjusted R2 values for each site 

model for the observed values versus the predicted values plot for the amount of photoresist 

removed. 
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Table 4-11: Adjusted R2 values for observed values versus predicted values plot for the amount 

of photoresist removed from all sites on a wafer in the G63000 machine. 

 

It can be concluded from the adjusted R2 values, that the regression models for each site are 

precise models over the specified range of the input factors in the DOE.  The accuracy of the 

models must be confirmed from the residual analysis. 

iv. Model Coefficients 

The regression model coefficients for the factors in decreasing order of significance are 

shown in Figure 4-26. 

 

Figure 4-26: Model coefficients and hierarchy of significance of factors affecting the amount 

of photoresist removed from a wafer in the G63000 machine (site 3 of wafer.) 

 

Sites	 Adjusted	R^2	Value	
Site-1	 0.99	
Site-2	 0.99	
Site-3	 0.989	
Site-4	 0.987	
Site-5	 0.983	
Site-6	 0.99	
Site-7	 0.989	
Site-8	 0.989	
Site-9	 0.988	
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In this case too, JMP expects the input values to be entered as coded variables where each 

factor is varied from -1 to +1. The intercept value or the 𝛽! term for the site 3 regression model 

is 5748.73. Wafer temperature and power are the most significant main effects while the 

interactions between wafer temperature and pressure and the wafer temperature and power are 

the most significant two factor interactions. 

Table 4-12 shows the main effects at a 1% (red) and 5% (orange) significance level and the 

model coefficients for each of the nine sites. The “x” symbol indicates the non-significant terms 

in the regression models. Wafer temperature and power are the most significant main effects in 

all the nine sites. It is interesting to note that the vacuum pump speed has no significant effect at 

all on the amount of photoresist removed in the plasma ashing process using the partial recipe on 

the G63000 machine. 

 

Table 4-12: Model coefficients for all nine sites for the amount of photoresist removed from a 

wafer in the G63000 machine. 

 

Table 4-13 shows the most significant two factor interaction effects on the amount of 

photoresist removed. The two factor interaction between the wafer temperature and power is a 

significant effect in every site thus consistent with the inheritance of effects principle. 

Sites	 Temperature	 Pressure	 Power	 Pumping	Speed	 Oxygen	 Nitrogen	
Site	1	 1026.3	 -37.9	 246.2	 x	 42.6	 -34.2	
Site	2	 985.1	 -55.3	 256.4	 x	 x	 -39.2	
Site	3	 982.3	 -40.7	 260.7	 x	 32.5	 -37.6	
Site	4	 939.5	 -37.5	 245.5	 x	 72.9	 x	
Site	5	 913.9	 x	 233.2	 x	 134.5	 x	
Site	6	 934.9	 x	 227.9	 x	 181.6	 x	
Site	7	 960	 -36.2	 247.5	 x	 93.4	 -31.8	
Site	8	 970	 x	 259.6	 x	 x	 -38.3	
Site	9	 959.3	 x	 249.8	 x	 31.4	 -32	
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Table 4-13: List of significant two factor interactions for the amount of photoresist removed 

from a wafer in the G63000 machine. 

 

v. Residual Analysis 

Figures 4-27 and 4-28 show the normal probability plot of the residuals and the residual 

versus predicted plot for site 3. The normal probability plot of the residuals indicates that there 

seems to be no significant deviation from the normality assumption for the residuals as all of the 

residuals lie on or close to the normal line. The residual versus the predicted plot indicates that 

the residuals are randomly scattered around the zero line and no significant obvious trend is 

observed. The stochastic error in the plasma ashing process carried out on the G63000 machine 

is around 220 Angstroms which is more than what was observed on the G53000 machine (150-

180 Angstroms). 

 

Sites	 Significant	2-factor	interac1ons	

Site-1	 Temperature*Power,	Temperature*Pressure	

Site-2	 Temperature*Pressure,	Temperature*Power	
Site-3	 Temperature*Pressure,	Temperature*Power	
Site-4	 Temperature*Power,	Temperature*Pressure	

Site-5	 Temperature*Power,	Temperature*Pressure,	
Temperature*O2	

Site-6	 Temperature*Power,	Temperature*O2,	
Temperature*Pressure	

Site-7	 Temperature*Power,	Temperature*Pressure	

Site-8	 Temperature*Pressure,	Temperature*Power	

Site-9	 Temperature*Power,	Temperature*Pressure	
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Figure 4-27: Normal probability plot of 

residuals for amount of photoresist 

removed from a wafer in the G63000 

machine (site 3). 

 
Figure 4-28: Residual versus predicted plot for 

amount of photoresist removed from a wafer in 

the G63000 machine (site 3). 

 

vi. Post Experiment Validation Runs 

After the experiment was completed and the regression model was formulated, a few 

additional wafers were processed in the G63000 machine at various combinations of the input 

factors and the observed values are compared with the values obtained from the regression 

model. The model accurately predicts all the values within the stochastic error of the process of 

220 Angstroms.  

 

vii. Modeling of the within-wafer non-uniformity 

The individual regression models are again combined to give a single value of the amount of 

photoresist removed from a wafer and the within-wafer non-uniformity according to equations 3-

4, 3-5, and 3-6. Again, a number of test cases are formulated to check the accuracy of predicting 

the within-wafer non-uniformity using the multiple response surface methodology. The key 

column of interest % Difference is calculated using equation 4-1. 
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Table 4-14: Test cases for a variety of treatment combinations to validate wafer non-

uniformity model obtained from the experiments done on the G63000 machine. 

 

The treatment combination codes (-, +, 0) refer to the low, high, and center point values 

of the 26-2 resolution IV factorial design run table shown in Table 3-2. The values highlighted in 

red in the % Difference column refer to those runs where the difference between the observed 

values and the predicted values exceeded 10%.  In the case of the G63000 machine, the model to 

predict the within-wafer non-uniformity using the multiple response surface method is extremely 

poor. Most of the test cases show significant differences between the predicted values and the 

observed values. The main reasons as to why this may be the case is that the non-linear response 

surface described by the prediction model is completely different from what the actual response 

surface may be or there could be strong effects of factors that affect the within-wafer non-

uniformity that were not a part of the DOE. The failure of the multiple response surface model to 

accurately predict the wafer non-uniformity on the G63000 machine indicates that there are 

significant differences in the mean and standard deviation between the actual amount of 

photoresist removed from the nine sites and the predicted amount of photoresist removed from 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	%	Difference	

1	 [-−-−-−]	 3.67	 4.50	 0.83	 22.74	
2	 [+−−-+−]	 2.09	 4.53	 2.44	 117.06	
3	 [-+−−++]	 1.82	 3.69	 1.87	 102.86	
4	 [++-−-+]	 3.50	 3.97	 0.47	 13.50	
5	 [--+-++]	 2.42	 4.50	 2.08	 85.89	
6	 [+−+−-+]	 3.95	 4.43	 0.48	 12.19	
7	 [−++-−−]	 4.68	 4.87	 0.19	 4.11	
8	 [+++−+-]	 1.22	 3.73	 2.51	 206.04	
9	 [-+−+−−]	 3.47	 3.92	 0.45	 12.99	
10	 [+−−+++]	 2.00	 4.20	 2.20	 110.11	
11	 [−+−++−]	 1.92	 3.46	 1.54	 79.85	
12	 [++-+−-]	 4.22	 3.65	 -0.57	 13.56	
13	 [−−+++-]	 2.45	 4.23	 1.78	 72.86	
14	 [+-++-−]	 4.00	 4.17	 0.17	 4.25	
15	 [-+++−+]	 4.57	 4.07	 -0.50	 11.03	
16	 [++++++]	 1.08	 3.34	 2.26	 209.19	
17	 [000000]	 2.60	 3.94	 1.34	 51.61	
18	 [-0+0+0]	 2.37	 3.6	 1.23	 51.90	
19	 	[00+000]		 2.84	 3.99	 1.15	 40.49	
20	 	[+0+0+0]		 2.37	 3.83	 1.46	 61.60	
21	 [+0+000]	 2.79	 3.88	 1.09	 39.07	
22	 [-0+0-0]	 4.50	 4.44	 -0.06	 1.33	
23	 [00+0+0]	 2.69	 3.94	 1.25	 46.47	



 88 

the nine sites.  Figures 4-29, 4-30, 4-31, and 4-32 show the observed and predicted values at each 

site for the amount of photoresist removed and the non-uniformity prediction error (% Difference 

in Table 4-14) associated with that treatment combination for the best case, worst case, and two 

intermediate scenarios. 

The non-uniformity prediction error is lower when the observed and predicted curves 

overlap. The plots also indicate that differences in standard deviation (Figure 4-32) have a 

stronger influence on the non-uniformity prediction error than the differences in the mean. It is 

consistently observed that there are significant differences in the observed and predicted values 

of the amount of photoresist removed at site 8 of the wafer in all treatment combinations and this 

must be investigated further as there may be some other factors relating to the current state of the 

machine near site 8 (e.g. gas flow leaks) which may have jeopardized the prediction capability of 

the site regression model. The plots also show that the site models are capable of capturing the 

shape of the variation in the amount of photoresist removed from a wafer. Again a possible 

alternative for future consideration is to use the weighted standard deviation as the within-wafer 

non-uniformity metric, rather than normalizing the standard deviation to the mean. This will help 

to decouple the errors in the models for both the standard deviation and the mean, and enable 

more robust analysis of the parameters. 
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Figure 4-29: Observed and predicted values 

of the amount of photoresist stripped at each 

site for treatment combination [-++---]. The 

non-uniformity prediction error is 4.11%. 

 
Figure 4-30: Observed and predicted 

values of the amount of photoresist 

stripped at each site for treatment 

combination [000000]. The non-uniformity 

prediction error is 51.61%. 

 

 
Figure 4-31: Observed and predicted values 

of amount of the photoresist stripped at each 

site for treatment combination [++-+--]. The 

non-uniformity prediction error is 13.56%. 

 
Figure 4-32: Observed and predicted 

values of amount of the photoresist 

stripped at each site for treatment 

combination [++++++]. The non-

uniformity prediction error is 209.19%. 
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Another approach to model the within-wafer non-uniformity is to use the single response 

surface method and is presented next. This model may provide a better understanding of the 

significant factors affecting the response of the wafer non-uniformity on the G63000 machine. 

4.5 G63000: Single Response Surface Model 
 

In an effort to better understand the significant factors that affect the wafer non-

uniformity on the G63000 machine, the single response surface method described in Section 3.3 

is used to model the wafer non-uniformity using the 26-2 resolution IV factorial design table.  

Table 4-15 shows the individual replicates, the replicate means and the replicate variances that 

are used to construct the design table. The same structure of analysis that was used in previous 

screening designs will be followed. 

 

 

Table 4-15: Values of replicate runs, replicate mean, and replicate variance for wafer non-

uniformity observed on the G63000 machine. 

 

Run	Number	 Treatment	 Replicate-1	 Replicate-2	 Replicate-3	
Replicate	
Mean	

Replicate	
Variance	

1	 [-−-−-−]	 3.67	 3.96	 4.05	 3.89	 0.04	
2	 [+−−-+−]	 2.09	 2.56	 2.67	 2.44	 0.09	
3	 [-+−−++]	 1.82	 2	 2.1	 1.97	 0.02	
4	 [++-−-+]	 3.5	 4.14	 4.43	 4.02	 0.23	
5	 [--+-++]	 2.42	 2.72	 2.74	 2.63	 0.03	
6	 [+−+−-+]	 3.95	 4.56	 4.48	 4.33	 0.11	
7	 [−++-−−]	 4.68	 5.13	 4.92	 4.91	 0.05	
8	 [+++−+-]	 1.22	 1.84	 1.67	 1.58	 0.10	
9	 [++−+−−]	 3.47	 3.86	 3.6	 3.64	 0.04	
10	 [+−−+++]	 2	 2.74	 2.39	 2.38	 0.14	
11	 [−+−++−]	 1.92	 2.18	 2.34	 2.15	 0.04	
12	 [++-+−-]	 4.22	 4.7	 4.5	 4.48	 0.06	
13	 [−−+++-]	 2.45	 2.89	 2.74	 2.69	 0.05	
14	 [+-++-−]	 4	 4.69	 4.48	 4.39	 0.13	
15	 [-+++−+]	 4.57	 4.47	 4.61	 4.55	 0.01	
16	 [++++++]	 1.08	 1.87	 1.47	 1.47	 0.16	

Center	 [000000]	 2.6	 3.27	 3.09	 2.99	 0.12	
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i. Effects Screening Assumptions 

In this case too, JMP concludes that the effects are not correlated but the equality of variance 

assumption across all experimental runs does not hold. Therefore, this was accounted for in the 

normal probability plot shown in Figure 4-25. The oxygen flow is the only significant main 

effect affecting the within wafer non-uniformity on the G63000 machine, followed by the two 

factor interaction between wafer temperature and power. 

 

 

Figure 4-33: Normal probability plot of effects affecting wafer non-uniformity standardized to 

have equal variances across all runs in the G63000 machine. 

 

ii. Alias Structure and Singularity 

The alias structure is verified when constructing the design table and there is a singularity 

term in the model which is the linear dependency between the two factor interactions of wafer 

temperature and oxygen and power and pressure. Since oxygen is the most significant factor that 

influences the within-wafer non-uniformity, the two factor interaction between temperature and 

oxygen will be included in the model if the biased term is deemed to be statistically significant at 

a 5% significance level. 
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iii. Lack of Fit Analysis 

The plot of the observed values versus the predicted values with a linear fit curve for the 

within-wafer non-uniformity is shown in Figure 4-34. The adjusted R2 value for the linear fit in 

the plot is 0.94 which indicates that this model cannot account for as much as 6% of the variation 

in the data over the range of the input factors. The linear model using the single response surface 

method is a significant improvement on the previous model that was formulated using the 

multiple response surface method. While this linear model can be used to obtain a general idea of 

the within-wafer non-uniformity for different combinations of the input factors, a non-linear 

response surface is still needed to optimize the process.  

 

 

Figure 4-34: Observed values versus model predicted values plot for the wafer non-uniformity 

observed on the G63000 machine. 
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iv. Model Coefficients 

The summary of the model coefficients in the hierarchy of their significance is shown in 

Figure 4-35. The value of the intercept term is 3.21 and this regression model also assumes that 

the values entered as inputs will be coded.  Oxygen flow is the single most significant main 

effect by looking at the absolute t-ratio and small variations in oxygen flow over the wafer in the 

G63000 machine can significantly alter the within-wafer non-uniformity parameter. 

 

 

Figure 4-35: Model coefficients and hierarchy of significance of factors affecting the wafer 

non-uniformity observed on the G63000 machine. 

 

v. Residual Analysis 

Figures 4-36 and 4-37 show the normal probability plot of the residuals and the residual 

versus predicted plot for the within-wafer non-uniformity model. By looking at the plots, one can 

conclude that the residuals are normally distributed and the error is stochastic.  This indicates 

that the failure of the linear model to account for the 6% of the variation may be due to 

additional factors at work since there is no obvious trend in the residual pattern that suggests lack 

of fit. If one is convinced through prior process knowledge that all the process parameter factors 

were accounted for in the experiment, then the machine must be checked for other factors that 

could jeopardize the results of the DOE like potential gas flow leaks, sensor failure, etc. 
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Figure 4-36: Normal probability plot of 

residuals for wafer non-uniformity observed 

on the G63000 machine. 

 
Figure 4-37: Residual versus predicted plot for 

wafer non-uniformity observed on the G63000 

machine. 

 

vi. Post Experiment Validation Runs 

The post experiment validation runs were done primarily to see the improvement of using 

the single response surface method over the multiple response surface method using the same 

treatment combinations over the range of the input factors. Table 4-16 shows the calculated 

residuals and % Difference. Table 4-16 clearly shows that the single response surface model is a 

far better predictor of the within-wafer non-uniformity than the multiple response surface model, 

but some of the treatment combination runs do show significant differences between the 

observed values and the predicted values. For the G63000 machine, the effect of oxygen flow 

over the wafer was much more significant to the response of both the amount of photoresist 

removed from each site as well as the within-wafer non-uniformity when compared with the 

G53000 machine. The quadratic response surface model presented next may be an improvement 

over the single response surface model due to the addition of non-linear terms. 
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Table 4-16: Test cases for a variety of treatment combinations to validate the wafer non-

uniformity model using the single response surface method from the experiments done on the 

G63000 machine. 

 

4.6 G63000: Quadratic Response Surface Model 
 

As was the case with G53000 machine, the process engineers at Analog Devices Inc. 

were interested in understanding at what combination of input parameters could the within-wafer 

non-uniformity be minimized. The analysis of the previous models on the G63000 machine 

showed that the within-wafer non-uniformity varied between 1.5%-5%, which is substantial.  

Therefore it was decided to build a quadratic response surface of the within-wafer non-

uniformity by doing a 32 full factorial DOE in the hope of finding the minima. The two factors 

chosen were oxygen and temperature because of their significance in having an impact on the 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	%	Difference	

1	 [-−-−-−]	 3.67	 3.93	 0.26	 7.13	
2	 [+−−-+−]	 2.09	 2.46	 0.37	 17.67	
3	 [-+−−++]	 1.82	 1.96	 0.15	 7.98	
4	 [++-−-+]	 3.50	 4.09	 0.59	 16.80	
5	 [--+-++]	 2.42	 2.61	 0.19	 7.71	
6	 [+−+−-+]	 3.95	 4.24	 0.29	 7.38	
7	 [−++-−−]	 4.68	 4.85	 0.17	 3.62	
8	 [+++−+-]	 1.22	 1.53	 0.31	 25.69	
9	 [-+−+−−]	 3.47	 3.58	 0.11	 3.19	
10	 [+−−+++]	 2.00	 2.33	 0.33	 16.53	
11	 [−+−++−]	 1.92	 2.13	 0.20	 10.62	
12	 [++-+−-]	 4.22	 4.38	 0.16	 3.84	
13	 [−−+++-]	 2.45	 2.68	 0.24	 9.68	
14	 [+-++-−]	 4.00	 4.45	 0.45	 11.32	
15	 [-+++−+]	 4.57	 4.59	 0.01	 0.26	
16	 [++++++]	 1.08	 1.49	 0.41	 38.18	
17	 [000000]	 2.60	 3.21	 0.61	 23.37	
18	 [-0+0+0]	 2.37	 2.62	 0.25	 10.55	
19	 	[00+000]		 2.84	 3.31	 0.47	 16.55	
20	 	[+0+0+0]		 2.37	 1.87	 -0.50	 21.10	
21	 [+0+000]	 2.79	 2.93	 0.14	 5.02	
22	 [-0+0-0]	 4.50	 4.74	 0.24	 5.33	
23	 [00+0+0]	 2.69	 2.25	 -0.44	 16.36	
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within-wafer non-uniformity (Table 3-4). Table 4-17 shows the within-wafer non-uniformity 

response of each run. 

 

Table 4-17: Values of wafer non-uniformity obtained from the 32 full factorial experimental 

runs in the G63000 machine. 

 

To analyze the outcome of the above experiment, the following steps are taken.  

i. Lack of Fit Analysis 

The plot of the observed values versus the predicted values for the within-wafer non-

uniformity is shown in Figure 4-38. The adjusted R2 value for the plot is 0.99 indicating a very 

strong fit. This indicates that there exists some amount of curvature in the response of the within-

wafer non-uniformity that the previous models could have failed to take into account. 

 

Run	Number	 Treatment		
Non-

Uniformity	
1	 [0,2]	 2.37	
2	 [2,1]	 2.79	
3	 [0,0]	 4.50	
4	 [1,0]	 4.52	
5	 [1,1]	 2.84	
6	 [2,0]	 4.52	
7	 [1,2]	 2.69	
8	 [2,2]	 2.37	
9	 [0,1]	 2.79	
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Figure 4-38: Observed values versus model predicted values plot for the wafer non-uniformity 

quadratic model obtained from the experiments done on the G63000 machine. 

 

ii. Model Coefficients 

The summary of the model coefficients obtained from this DOE is shown in Figure 4-31. It 

should again be noted that the model coefficients in this case represent the absolute values of the 

input parameters and not the coded variables. These coefficients again indicate that the within-

wafer non-uniformity is primarily driven by the oxygen gas flow over the wafer in the G63000 

machine. 

 

 

Figure 4-39: Quadratic model coefficients of factors affecting the wafer non-uniformity 

observed on the G63000 machine. 
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iii. Residual Analysis 

Figures 4-40 and 4-41 show the normal probability plot of the residuals and the residual 

versus predicted plot for the within-wafer non-uniformity quadratic model. The residuals in this 

case do not follow a normal distribution while the residuals versus predicted plot shows higher 

variation of the residuals at lower values of the within-wafer non-uniformity.  The deviation 

from the normality assumption in the residuals suggests that there was some significant factor 

that was not considered in the DOE. These factors may not necessarily be the process parameters 

and could stem from deficiencies in the current state of the machine like gas leaks, faulty 

sensors, and equipment nearing failure. In such cases, it is advisable to thoroughly investigate the 

machine for any sign of potential breakdown or failure. 

 
Figure 4-40: Normal probability plot of 

residuals for wafer non-uniformity observed on 

the G63000 machine (quadratic model). 

 
Figure 4-41: Residual versus predicted plot for 

wafer non-uniformity observed on the G63000 

machine (quadratic model). 

 

The values of the individual residuals and the % Difference between the predicted values 

and the observed values is tabulated in Table 4-18. The quadratic model is the most accurate 

predictor of the within-wafer non-uniformity when compared to the single response surface and 

multiple response surface models. 
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Table 4-18: Test cases for a variety of treatment combinations to validate the wafer non-

uniformity quadratic model obtained from the experiments done on the G63000 machine. 

 

iv. Response Surface and Optimal Parameters 

In this case too, the goal of the DOE was to minimize the within-wafer non-uniformity. 

With the help of the prediction profiler and surface profiler tools in JMP, the response 

surface can be plotted and the within-wafer non-uniformity can be optimized. Figure 4-42 

shows the 3-D quadratic response surface of the within-wafer non-uniformity in relation to 

the controllable factors of wafer temperature and oxygen, while Figure 4-43 shows the 

prediction profiler where a user can manually vary the input factors over the operational 

range and see how the response variable changes. The skewed shape of the response surface 

of the wafer non-uniformity in relation to the oxygen gas flow (Figure 4-42) and the 

deviation from the normality assumption of the residuals (Figure 4-40) suggest that there is 

some factor that was not captured by the DOE regarding the gas flows over the wafer during 

the plasma ashing process. A probable hypothesis is that the reacting chamber of the G63000 

machine is not sealed properly resulting in a gas flow leak. It was recommended to the 

equipment engineers at Analog Devices Inc. to investigate the state of the G63000 machine 

further before putting the machine back online to run the product wafers. 

Run	Number	 Treatment		
Observed	Non-
Uniformity	

Predicted	Non-
Uniformity	 Residuals	 %	Difference	

1	 [0,2]	 2.37	 2.43	 0.07	 2.81	
2	 [2,1]	 2.79	 2.77	 -0.02	 0.79	
3	 [0,0]	 4.50	 4.47	 -0.04	 0.80	
4	 [1,0]	 4.52	 4.60	 0.08	 1.68	
5	 [1,1]	 2.84	 2.89	 0.05	 1.85	
6	 [2,0]	 4.52	 4.48	 -0.04	 0.89	
7	 [1,2]	 2.69	 2.56	 -0.13	 4.78	
8	 [2,2]	 2.37	 2.44	 0.06	 2.62	
9	 [0,1]	 2.79	 2.76	 -0.03	 1.09	
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Figure 4-42: Quadratic response surface for wafer non-uniformity with temperature and 

oxygen as controllable factors obtained from the experiments done on the G63000 machine. 

 

 

Figure 4-43: Prediction profiler for the response of wafer non-uniformity to temperature and 

oxygen for the G63000 machine. 

The optimal value of the within-wafer non-uniformity was found to be 2.38% at a wafer 

temperature value of 220 degrees Celsius and oxygen value of 4367 SCCM while all of the other 

factors are kept at the values outlined in the partial recipe (Table 1-1).  
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4.8 Comparison between G53000 and G63000 Machines 
 

The analysis of the DOEs done on the machines clearly show that differences exist between 

them even though the same process with the same recipe was run on both of them. The G53000 

machine on an average consistently stripped 400-600 Angstroms of photoresist more than the 

G63000 machine, which is a significant and substantial difference. The response of the within-

wafer non-uniformity parameter was completely different for both machines. Such variations 

between the same machines that run the same process mainly come from the intrinsic build and 

current state of the machines. The multiple response surface model is a better predictor of the 

wafer non-uniformity on the G53000 machine than the G63000 machine. Chapter 5 explains 

some of the reasons as to why these differences may occur between the machines while 

Haskaraman’s work [4] describes strategies to match the performance of these machines. 
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Chapter 5: Contributions to Analog Devices Inc. 
 

This chapter highlights the specific contributions made to Analog Devices Inc. from the 

insights obtained from the DOE analysis. Contributions were made in introducing the company 

to new methodologies for calculating wafer statistics, using the DOE analysis for detecting and 

eliminating root causes of problems, and developing new process improvement strategies. 

5.1 New Methodologies for Wafer Statistics Calculation 
 

The process engineers at Analog Devices Inc. were introduced to the concept of calculating 

the mean, standard deviation, and within-wafer non-uniformity by taking into account the areal 

representation of sites as shown by the equations in Section 1.7.  Maintaining a high level of 

spatial uniformity in a wafer fabrication process is a key metric for many semiconductor 

companies. However, the correct uniformity of the wafer must be discerned by measuring only a 

few sites on the wafer due to time and cost considerations. It is therefore important to adopt a 

robust method for wafer measurement and qualification purposes that can be validated. For 

etching processes, Analog Devices Inc. uses the Nanospec 9200 tool to measure the thickness of 

wafers and in most of the processes the sites are measured in a radial pattern. The following 

method is proposed and validated for the plasma ashing process using the partial recipe done on 

the Gasonics Aura 3010 machines: 

i. Measure 49 points in a radial pattern on a wafer and plot a spatial map developed by 

Haskaraman [4] as shown in Figure 5-1 and 5-2, when the machine of interest is believed 

to be in the state of process control. Also measure the same wafer using the standard 

measurement method that is currently used to measure the wafer non-uniformity. For the 

plasma ashing process using the partial recipe, the standard method is to measure nine 

sites in a radial pattern. 
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Figure 5-1: Spatial map of a wafer 

showing the distribution of sites. This 

spatial map represents a wafer that has 

undergone a forming test process on a 

Gasonics machine. 

 

 
Figure 5-2: 3-D plot of a wafer showing the 

amount of photoresist removed at each of the 

49 sites. X and Y-axes show the co-ordinate 

position of a site and the Z-axis plots the 

amount of photoresist removed at that site. 

 

ii. Calculate the non-uniformity of this wafer using the 49-point data and the standard 

measurement data. In general, the statistics for calculating the site data in a radial pattern 

should take into account the areal representation of sites since the distribution of sites is 

such that each point does not represent the same area of the wafer [10]. However, it can 

be seen in Figure 5-1 that the number of sites is different for different rings and in this 

case, each site is considered to approximately represent equal areas and no weighting is 

necessary. 

 

iii. Compare the two measured non-uniformities. If their magnitudes are similar then the 

current measurement method is a good representation of the wafer non-uniformity. It is 

also recommended to compare the non-uniformity of a few additional wafer runs that are 

measured using the standard method to the non-uniformity measured from the 49-point 

data for further validation.  
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The above method is used to validate the wafer non-uniformities after the plasma ashing 

process had been completed using the partial recipe on both the G53000 and G63000 machine. 

The wafer non-uniformity from the 49-point data on the G53000 machine is 3.04% and the 

G63000 machine is 3.09%. The current nine site measurement method taking into account the 

areal representation of sites for multiple wafer runs gives a wafer non-uniformity range of 2.8%-

3.2% on both the machines. This validates the fact that the current nine site measurement method 

with the areal representation of sites is a good representation of the wafer non-uniformity for the 

plasma ashing process on the Gasonics tools. Using the 49-point data to construct a spatial map 

diagram is also useful in visualizing the non-uniformity of the wafer and can be used in anomaly 

detection. The Nanospec 9200 tool in Analog Devices Inc.’s fabrication center has been 

programmed to incorporate the 49-point measuring method. For processes, where the wafer non-

uniformity is determined by measuring sites in a square grid pattern, a 7x7 square grid (49 

points) has also been incorporated into the tool. 

5.2 Root Cause Analysis and Machine Diagnostics 
 

A DOE analysis provides insightful information on the behavior of various processes and 

machines taking into account the natural variation of the process and the intrinsic build and state 

of the machines. Information from a DOE analysis can be used to develop a structured 

framework and operating procedures to identify the root causes of failures and machine 

breakdowns, and take corrective measures in a timely and efficient way. The insights obtained 

from the DOE analysis done on the plasma ashing process exposed the following problems that 

could potentially have a detrimental impact on future product lines.  

i. Lack of Temperature Control  

Figures 5-3 and 5-4 show the spatial map of a wafer that has undergone the plasma ashing 

process using the partial recipe on the G53000 machine. The spatial map is generated by 

measuring the amount of photoresist removed from 49 sites on a single wafer. 
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Figure 5-3: Spatial distribution map of a 

wafer processed in the G53000 machine using 

the partial recipe. 

 

 
Figure 5-4: Map of the amount of photoresist 

removed from the wafer sites shown in Figure 

5-3. 

 

The above figure clearly shows that the amount of photoresist removed is more at and 

near the center of the wafer than it is at the edges of the wafer.  On measuring multiple wafers, it 

was noted than on an average the difference between the amounts of photoresist removed at the 

center and at the edge of a wafer was 700 Angstroms which is 12.6% of the target value of 6000 

Angstroms. It can also be seen that the G53000 machine strips much more that 6000 Angstroms 

of photoresist at many sites.  This behavior is a cause of concern. The DOE analysis showed that 

the most significant factor affecting the amount of photoresist removed is the wafer temperature. 

This suggests that even though the partial recipe specifies a set point of 235 degrees Celsius for 

the wafer temperature, the temperature at the edges of the wafer is less than the temperature at 

the center of the wafer. Using the prediction profiler feature in JMP, it can be determined that a 1 

degree Celsius increase in wafer temperature can remove approximately 80 Angstroms of 

photoresist more on the G53000 machine. This suggests that the difference in temperatures 

between the center and the edge of the wafer is approximately 8.75 degrees Celsius. To validate 

this hypothesis, a temperature-mapping wafer was inserted into the chamber of the G53000 

machine and the process was run to check the actual temperatures. Figure 5-5 shows the 

temperature profile of the wafer. 
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Figure 5-5: Temperature profile of a wafer being processed in the G53000 machine 

using the partial recipe. 

 

The temperature profile of the wafer follows a radial pattern, and clearly shows that there 

is a difference of 7 degrees Celsius between the center of the wafer and the edge sites, which is 

very close to what the DOE predicted. It can also be seen that even though the temperature set 

point for the G53000 machine was 235 degrees Celsius, the actual wafer temperature is much 

above 235 degrees Celsius, which explains why the G53000 machine strips more photoresist 

than the target. The actual temperature is 10 degrees Celsius higher than the set point 

temperature in the center of the wafer, while at the edge points it is 3 degrees Celsius higher. The 

DOE predicts a difference of 12.5 degrees Celsius (1000 Angstroms) between the actual 

temperature and set point temperature at the center, and 3.8 degrees Celsius (300 Angstroms) 

difference between the actual temperature and set point temperature at the edge points. 

The G63000 machine also shows similar trends. The spatial map of a wafer processed on 

the G63000 machine and the temperature profile obtained from the temperature-mapping wafer 

are shown in Figure 5-6 and Figure 5-7 respectively. 
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Figure 5-6: Spatial map of wafer processed in 

the G63000 machine using the partial recipe. 

 

 
Figure 5-7: Temperature profile of a 

wafer being processed in the G63000 

machine using the partial recipe. 

 
The G63000 machine strips on average 400-600 Angstroms of photoresist less than the 

G53000 machine, and looking at the temperature profiles of the two wafers, one can clearly see 

that the actual temperature of the wafer on the G63000 machine is much less than the actual 

temperature of the wafer on the G53000 machine. The prediction profiler tool in JMP concludes 

that a 1 degree Celsius change in wafer temperature on the G63000 machine strips 70 Angstroms 

more of photoresist from the wafer. The average amount of photoresist stripped by the G63000 

machine is around 300 Angstroms less than the target value of 6000 Angstroms. The difference 

between the wafer temperature and temperature set point at the center of the wafer is 6 degrees 

Celsius (DOE prediction is 4.3 degrees Celsius) and the overall average temperature difference 

between the wafers on the two machines is 13 degrees Celsius (DOE prediction is 8.25 degrees 

Celsius).  

This analysis shows that the current temperature controller on the machines fails to 

maintain the wafer temperature at its set point throughout the duration of the process. This is an 

issue because failure to maintain the wafer temperature at the set point has a significant effect on 

both the amount of photoresist removed from the wafer and the wafer non-uniformity. The 

analysis also validates the result of the DOE. 
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Analog Devices Inc. has five Gasonics tools in operation at their Wilmington, MA 

fabrication center. The actual historical production data over a period of nine months for the 

plasma ashing process using the partial recipe was analyzed and Table 5-1 shows the statistics of 

the data for each machine with the control chart limits for the amount of photoresist removed.  

 

Table 5-1: Statistics of nine month actual production data from the Gasonics tools with 

proposed control limits. 

 

It can be clearly seen that the G23000 machine is performing very poorly compared to the 

others. This anomaly was not detected until this table was made. The root cause of the issue on 

the machine was that the infrared heat lamps present in the machine chamber and used to heat 

the wafer to the desired temperature were not properly installed, showing once again that wafer 

temperature is the most significant factor in this process. Since the DOE analysis was already 

done, the process engineers instructed the equipment technicians to check the wafer temperature 

related equipment on the machine first, thus reducing considerable amount of machine downtime 

in resolving this issue. It is also important to note that the power of these heat lamps decreases 

over time leading to process drifts and mean shifts and therefore it is imperative to monitor this 

process using SPC charts over time. 

ii. Effects on Wafer Non-Uniformity due to Wafer Geometry and Gas Flows 

Figures 5-8 and 5-9 show the spatial maps of a wafer that has been processed by the G53000 

and G63000 machines. It is interesting to note the process behavior of the plasma ashing process 

done on both machines at the location of the flat of the wafer, which has been highlighted in the 

diagrams. 

Machine	
Average	

Photoresist	
Stripped	

UCL	
Photoresist	
Stripped	

LCL	
Photoresist	
Stripped	

Average	Non-
Uniformity	

G23000	 5367.18	 5695	 5039	 5.10%	
G43000	 5783.8	 6193	 5375	 2.70%	
G53000	 5669.75	 6166	 5175	 3.70%	
G63000	 5688.2	 6251	 5126	 3%	
G73000	 5735.13	 6139	 5332	 3.10%	
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Figure 5-8: Flat effect on wafer processed in 

the G53000 machine using the partial recipe. 

 

 
Figure 5-9: Flat effect on wafer processed in 

the G63000 machine using the partial recipe. 

 
It can be seen that there is more photoresist stripped at the location of the flats than what 

would be expected at the edge points. This is because the temperature profiles of wafers in both 

the machines as shown in Figure 5-5 and Figure 5-7 clearly indicate a uniform radial pattern, i.e., 

temperature at sites equidistant from the center of the wafer is the same, and ideally the 

photoresist strip pattern should have resembled a “bull’s eye” as seen in Figure 5-1. However, 

due to the change in geometry of the wafer at the flat, the fluid mechanics and the heat transfer 

mechanisms of the gas flows over the flat may be different compared to the other parts of the 

wafer leading to the anomalies. To validate the fact that the presence of the wafer flat was indeed 

the cause of the anomalies and not the intrinsic structure of the machines, the wafer orientations 

were changed (wafers rotated by 90, 180, and 270 degrees) in the chamber of the machines and 

the process was run but the outcome was the same. 

It is also interesting to note the right half of the spatial map of a wafer processed in the 

G63000 machine shown in Figure 5-6. The amount of photoresist removed on the right side of 

the wafer is much more than what would be expected given the uniform radial temperature 

profile. It is hypothesized that this is due to position of the vacuum pump on the machine which 

has an outlet close to the right hand side location of the wafer. This outlet is supposed to be 

sealed and the gases are to be purged from the chamber through an opening right below the 

wafer. However, in the case of the G63000 machine, there seems to be a leak in the outlet which 

is close to the right hand side of the wafer which is pulling the reacting gases towards it during 
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the chamber purging process leading to more photoresist stripping on the right hand side of the 

wafer. The equipment engineers at Analog Devices Inc. were in the process of investigating this 

anomaly more closely at the time this thesis was written. 

These anomalies were present in all wafer runs in the past year for the plasma ashing 

process using the partial recipe and even exist for multiple combinations of the controllable 

factors in the recipe. Figures 5-10 and 5-11 shows the graphs of the amount of photoresist 

removed at each site on multiple wafer runs done using the partial recipe on the G53000 and 

G63000 machine. 

 
Figure 5-10: Amount of photoresist 

removed from each site in the plasma 

ashing process using the partial recipe on 

the G53000 machine. 

 
Figure 5-11: Amount of photoresist removed 

from each site in the plasma ashing process 

using the partial recipe on the G63000 

machine. 

 
The edge points shown in each of the graphs show considerable difference in the amount of 

photoresist removed at each site which is due to the wafer geometry and gas flow effects. Site 1 

is on the topmost side of the wafer opposite the flat, site 5 lies in the wafer flat region, site 6 is on 

the leftmost side of the wafer, while site 9 is on the rightmost side of the wafer. It is therefore 

important to find a way to get rid of these effects if wafer uniformity is to be improved even 

further. A recommendation was made to Analog Devices Inc. to use circular wafers with notches 

instead of the wafers with flats but at the time this thesis was written, the company did not have 
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any six inch circular wafers with notches in stock and therefore the behavior of those wafers 

could not be tested. 

iii. Faulty Sensor Calibration 

The Gasonics tools rely on sensors and a PID controller to make sure that the recipe 

parameters are always maintained at their set points during the plasma ashing process. It is 

therefore necessary to ensure that these sensors are always functioning as expected.  These 

sensors are periodically upgraded or replaced during machine maintenance operations and need 

to be calibrated before they become operational. Typically the manufacturer of the sensor does 

provide the calibration constants that simply need to be entered in the machine computer. Analog 

Devices Inc. in the past has had issues where the manufacturer’s calibration constants were not 

correct. In those cases, the equipment engineers had to rely on their intrinsic process knowledge 

and use the method of trial and error to manually adjust the sensor calibration constants in the 

machine computer. Their only feedback was the SPC chart and they had to keep on running 

additional wafer runs until the process was back in control. This method was purely qualitative, 

time consuming, and costly to the company. A DOE analysis once again is useful in alleviating 

such issues. The prediction profiler feature in JMP provides a quantitative relationship as to how 

a unit change in any factor or input variable can affect the response of the output variable. Figure 

5-12 shows the prediction profiler graphs from the DOE analysis done on the G53000 machine 

to model the response of the amount of photoresist removed from site 1 of the wafer. 

 

Figure 5-12: Prediction profiler for the amount of photoresist removed from site 1 of the wafer 

in the G53000 machine. 
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The graphs clearly show that wafer temperature is the most significant factor followed by 

power in affecting the amount of photoresist removed. Using these graphs, charts can be made 

that can be included in the standard operating procedures of the equipment engineers that 

highlight the hierarchy of significance of factors and provide quantitative relationships between 

the input factors and the response variable that is plotted on the SPC charts, so that the engineers 

have a clear idea as to what look for in case the process goes out of control.  For example, should 

the plasma ashing process on the Gasonics tools go out of control, the equipment that controls 

the wafer temperature must be inspected first, followed by the equipment that controls the RF 

power as those two are the most significant factors affecting the process.  For the G53000 

machine, a unit increase in temperature results in approximately 80 Angstroms of photoresist 

being stripped more and a unit increase in power results in approximately 1 Angstrom of 

photoresist being stripped more. The other factors have negligible effects. 

5.3 Process Improvement Strategies 
 

A DOE analysis can be a powerful guide in developing strategies that can improve 

current processes either to save costs or optimize a response variable. For example, in the plasma 

ashing process, oxygen and nitrogen gases are considered as consumables. The DOE analysis for 

the G53000 machine shows that these gases have no significant impact on the amount of 

photoresist removed, therefore running these gases at their low levels (oxygen-3000 SCCM, 

nitrogen-300 SCCM) instead of their current levels (oxygen-3750 SCCM, nitrogen-375 SCCM) 

can save up to 413 SCC (partial ashing process takes about half a minute to complete, therefore 

the volume of combined gas used per wafer is half of 825 SCCM) of both gases combined per 

wafer, and the process will still achieve its target of removing 6000 Angstroms of photoresist 

from the wafer with a little bit of sacrifice in the wafer non-uniformity. Taking a simple 

hypothetical case, if the cost of in-house production and storage of both these gases was 

determined to be 1 cent per SCC, and 100 wafers are run everyday, and the fabrication center is 

open for 350 days a year, then the potential cost savings opportunity in this case would be 

$144,550 a year. While, the cost of consumables in the plasma ashing process is actually much 

less than this, in processes where the cost of consumables is high, a DOE analysis can definitely 

help in determining cost savings strategies.  
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In many processes, the input factors are generally run at higher levels to incorporate 

safety factors. Running equipment and tools at higher levels may cause frequent failures and 

breakdowns. A DOE analysis is again useful in making sure that the factors in a process are run 

at the appropriate levels, and this may prolong the life of equipment and tools. For example, in 

the DOE analysis of the G63000 machine it is determined that the vacuum pumping speed is not 

significant to either the amount of photoresist removed or the wafer non-uniformity. Again 

taking a hypothetical case, if it is observed that the vacuum pump on the G63000 machine needs 

frequent repair operating at its current level, then running the vacuum pump at its lower level 

may help in prolonging its life leading to less machine downtime and more cost savings. 

For process optimization purposes, doing DOEs to construct response surfaces as done for 

the wafer non-uniformity on both the G53000 and G63000 machines is a useful method.  Process 

time is another response variable that is frequently optimized to increase throughput rate. 
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Chapter 6: Conclusion and Future Work 
 

This chapter presents the conclusion of the thesis and the scope for future work that can be 

done by Analog Devices Inc. using the methods demonstrated in this thesis. 

6.1 Conclusion 

 

The goal of this thesis is to show the benefits of doing a DOE analysis in a practical 

industrial setting and ways in which insights obtained from this analysis can be used by Analog 

Devices Inc. to their advantage. This thesis presents the advantages and limitations of various 

design choices, design types, and modeling techniques. The thesis also aims to show how the 

behavior of two machines built to do the same process with the same process parameters can be 

substantially different and if not accounted for could lead to problems. The work in this thesis 

was done in a comprehensive manner over a period of two and a half months focusing on one 

type of machine and one process. While doing such a comprehensive analysis in an industrial 

setting is difficult, it is hoped that this document can serve as pedagogical tool for process 

engineers at Analog Devices Inc. as they try to characterize the process variations in the rest of 

the processes in the fabrication center. 

6.2 Future Work 
 

The DOEs done in this thesis do not take into account the process time as a factor in the 

plasma ashing process. Before the actual plasma ashing process begins, there is a warm up step 

of 20 seconds where the machine ramps up the process parameters close or equal to the actual 

values in the recipe. There is no RF power in the warm up step and thus the reactive gases are 

not ionized. It is observed that since the temperature of the wafer is ramped up to 215 degrees 

Celsius for 20 seconds in this stage, the wafer is baked and the photoresist shrinks by 

approximately 3000 Angstroms. The process engineers believe that this could be an issue for 

some products as the photoresist may change chemical properties during the shrinking process 
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and this could have unintended negative consequences. There is also a 35 second wafer cooling 

time after the ashing process has been completed. Both the warm up time and wafer cooling time 

have been arbitrarily decided keeping the notion of safety factor in mind. There is an opportunity 

to optimize both these times and reduce the overall process time by doing a DOE. Reducing 

process time could lead to a significant improvement in throughput.  It is also hoped that the 

process engineers at Analog Devices Inc. will use this document as a template to perform DOEs 

on other machines and processes in the fabrication center.  
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