
The Data Science Machine:
Emulating Human Intelligence in Data Science

Endeavors

by

Max Kanter

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22nd, 2015

Certified by. .
Kalyan Veeramachaneni

Research Scientist
Thesis Supervisor

Accepted by .
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

The Data Science Machine:

Emulating Human Intelligence in Data Science Endeavors

by

Max Kanter

Submitted to the Department of Electrical Engineering and Computer Science
on May 22nd, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Data scientists are responsible for many tasks in the data analysis process including
formulating the question, generating features, building a model, and disseminating
the results. The Data Science Machine is a automated system that emulates a human
data scientist’s ability to generate predictive models from raw data.

In this thesis, we propose the Deep Feature Synthesis algorithm for automatically
generating features for relational datasets. We implement this algorithm and test it
on 3 data science competitions that have participation from nearly 1000 data science
enthusiasts. In 2 of the 3 competitions we beat a majority of competitors, and in the
third, we achieve 94% of the best competitor’s score.

Finally, we take steps towards incorporating the Data Science Machine into the
data science process by implementing and evaluating an interface for users to interact
with the Data Science Machine.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist

3

4

Acknowledgments

There a lot of people that made this thesis possible.

First, I’d like to acknowledge my adviser, Kalyan. When I started working with

him well over a year ago as an undergraduate researcher, I had never worked on a

research project at MIT. Reflecting now on all the time I’ve now spent in lab, it’s easy

to remember so many moments where his knowledge and passion inspired and led me.

I’m truly grateful for all of his key ideas that positively impacted the direction of this

thesis.

I’d especially like to thank my parents for being my biggest supporters. Feeling

their continued encouragement and love has meant an immeasurable amount to me

over the years. Without their good example, I wouldn’t be turning in this thesis

today.

Also, thank you to my labmates for being a pleasure to work with this year. I

really enjoyed our conversations and the breaks we took to play pool in the CSAIL

Recreation Zone. I’m excited to see what the future has in store for everyone.

Finally, I must say thank you to everyone I’ve lived with on Burton Third over

the last four years. All the late nights and good memories have made my time at

MIT very special.

5

6

Contents

1 Introduction 17

1.1 What is Data Science? . 18

1.2 Why automate? . 20

1.3 Contributions . 21

2 Overview 23

2.1 Design Goals . 24

3 Deep Feature Synthesis: Artificial Intelligence 27

3.1 Motivating Deep Feature Synthesis 27

3.2 Deep Feature Synthesis algorithm . 29

3.2.1 Mathematical operators/functions 29

3.2.2 Feature synthesis . 30

3.2.3 Recursion for relational features synthesis 32

3.3 Deep Feature Synthesis : recursive algorithm 33

3.4 Summary . 35

4 Deep Feature Synthesis: System Engineering 37

4.1 Platform . 37

4.2 Example . 39

4.3 Features: functions, storage, naming and metadata 41

4.3.1 Feature Functions . 41

4.3.2 Feature storage . 42

7

4.3.3 Naming features . 43

4.3.4 Metadata . 44

4.4 Filtering data . 44

4.5 Generating queries . 46

4.6 User configuration . 48

4.6.1 Dataset level . 48

4.6.2 Entity level . 48

4.6.3 Feature level . 49

4.7 Summary . 50

5 Predictive Machine Learning Pipeline 51

5.1 Defining a prediction problem . 51

5.2 Feature assembly framework . 52

5.3 Reusable machine learning pathways 53

5.4 Summary . 56

6 Parameter Tuning 57

6.1 Bayesian parameter optimization using Gaussian Copula Processes . . 57

6.1.1 Model-Sample-Optimize . 58

7 Human-Data Interaction 61

7.1 Features . 62

7.2 Pathway parameters . 63

7.3 Experiments . 64

8 Experimental Results 65

8.1 Datasets . 65

8.2 Deep Feature Synthesis . 67

8.3 Parameter tuning . 67

8.4 Competition results . 69

8

9 Discussion 73

9.1 Creating valuable synthesized features 73

9.2 Auto tuning effectiveness . 74

9.3 Human value . 76

9.4 Human-data interaction . 77

9.5 Implications for Data Scientists . 78

10 Related Work 81

10.1 Automated feature engineering . 81

10.2 Working with related data . 82

10.3 End-to-end system . 83

11 Conclusion 85

11.1 Future work . 85

9

10

List of Figures

1-1 A typical data science endeavor. Previously, it started with an ana-

lyst positing a question: Could we predict if 𝑥 or 𝑦 is correlated to 𝑧?

These questions are usually defined based on some need of the business

or entity holding the data. Second, given a prediction problem, a data

engineer posits explanatory variables and writes scripts to extract those

variables. Given these variables/features and representations, the ma-

chine learning researcher builds models for given predictive goals and

iterates over different modeling techniques. Choices are made within

the space of modeling approaches to identify the best generalizable ap-

proach for the prediction problem at hand. A data scientist can span

the entire process and take on the entire challenge: that is, positing the

question and forming variables for building, iterating, and validating

the models. 19

2-1 An overview of the process to automatically analyze relational data to

produce predictions. The input to the system is a relational database,

and the output is a predictions for a prediction problem. The predic-

tion problem may be supplied by the user or determined automatically.

The system achieves this using the Deep Feature Synthesis algorithm

which is a capable of automatically generating features for machine

learning algorithms to use. Parameters of the system are automati-

cally optimized to achieve generalized performance across a variety of

problems. 23

11

3-1 The data model for the KDD Cup 2014 problem. There are 9 entities. 28

3-2 An example of backward and forward relationship. In this exam-

ple, projects entity has a backward relationship with donations entity.

There are multiple donations for the same project. While donations

entity has a forward relationship with the projects. 32

4-1 The mapping of abstractions in the Data Science Machine. 39

4-2 An illustration of relationship between the three entities in KDD cup

2014: Projects (Pr), Donations(Do) and Donors (Dr). Projects have a

backward relationship with donations (since a project may have mul-

tiple donations), a donor has a backward relationship with donations

(since a donor can be associated with with multiple donations). . . . 40

5-1 Reusable parameterized machine learning pipeline. The pipeline first

performs truncated SVD (TSVD) and selects top 𝛾 percent of the fea-

tures. Then for modeling there are currently two paths. In the first a

random forest classifier is built and in the second one the training data

is first clustered into k clusters and then a random forest classifiers is

built for every clusters. The list of parameters for this pipeline are

presented in Table 5.1. In the next section we present an automatic

tuning method to tune the parameters to maximize cross validation

accuracy. 53

6-1 Illustration of transformation of the output value 𝑓(𝑝). The trans-

formed value is then modeled by the regular Copula process. 59

7-1 The dialog users first see when they begin using the Data Science

Machine. 62

7-2 The feature selector component of the interface where users can choose

features to build a predictive model with. 63

7-3 Interface for users to modify pathway parameters 63

12

7-4 Interface for user to view experiments. Experiments are started in the

background and the score is populated when they finish. 64

8-1 Three different data science competitions held during the period of

2014-2015. On the left is the data model for KDD Cup 2014, at the

bottom center is the data model for IJCAI, and on the right is the

data model of KDD Cup 2015. A total of 906 teams took part in

these competitions. We note that two out of three competitions are

ongoing and predictions from the Data Science Machine solution were

submitted and the results are reported in this paper. 66

8-2 the maximum cross validation AUC score found by iteration for all

three datasets. From top to bottom: KDD Cup 2014, IJCAI, KDD

Cup 2015 . 68

8-3 AUC scores vs % participant achieving that score. The vertical line

indicates where the Data Science Machine ranked, From top to bottom:

KDD Cup 2014, IJCAI, KDD Cup 2015 71

9-1 The cumulative number of submissions made as leader board rank in-

creases in KDD Cup 2014. We can see the total number of submissions

made by competitors increased exponentially as we move up the leader

board. 76

13

14

List of Tables

3.1 Rich features extracted when recursive feature synthesis algorithm is

used on the KDD Cup 2014 dataset. In this table we give the example

of the computation and a simple English explanation and intuition

that may actually lead the data scientist to extract the feature from

the data for a particular project. 33

5.1 Summary of parameters in the machine learning pipeline. These pa-

rameters are tuned in automatically by the Data Science Machine. . . 53

8.1 The number of rows per entity in each dataset. The uncompressed sizes

of the KDD Cup 2014, IJCAI, and KDD Cup 2015 are approximately

3.1 GB, 1.9 GB, and 1.0 GB, respectively. 67

8.2 The number of synthesized features per entity for in each dataset. . . 68

8.3 Optimized pathway parameters from running GCP by dataset 69

8.4 The AUC scores achieved by the Data Science Machine. The "Default"

score is the score achieved using the default parameters for the machine

learning pathway. The "Local" score is the result of running k-folds

(k=3) cross validation on the training set. The "Online" score is the

score received when the result was uploaded for assessment by the

competition. 70

15

8.5 How the Data Science Machine compares to human efforts. "% of Best"

is the proportion of the best score the Data Science Machine achieved.

"% Better" indicates the percentage of teams that out performed the

Data Science Machine submission, while "# Submissions worse" is the

count of all submissions made by teams that the Data Science Ma-

chine outperformed. To calculate "# Days Saved", we used the rule

in KDD Cup 2014 and KDD Cup 2015 that teams could make up to 5

submissions a day. Using this rule, we make a lower bound estimate of

the number of days spent by teams that rank below the Data Science

Machine. We do not have data on number of submissions for IJCAI.

KDD Cup 2015 is still an on going competition, so this is a snapshot

from May 18th, 2015. 70

16

Chapter 1

Introduction

Data science is an endeavor of deriving insights, knowledge, and predictive models

from data. The endeavor also includes cleaning and curating at one end with dissemi-

nation of results at the other. Data collection and assimilation methods are sometimes

included. Subsequent to development and proliferation of systems and software that

are able to efficiently store, retrieve, and process data, attention has now shifted to

analytics, both predictive and correlative. As a result, the number of scientists that

companies are looking to hire has increased exponentially [1]. To address the im-

mense shortage of data scientists, businesses are resorting to any means of acquiring

data science solutions. Prominent among them is crowd sourcing. Kaggle and other

well-reputed data science conferences have become venues for organizing predictive

analytics competitions. For example, during the course of writing this thesis, three

top-tier machine learning conferences, IJCAI, ECML and ACM-RecSys1, have re-

leased datasets and announced competitions for building accurate, and generalizable

predictive models. This is in addition to the ACM KDD cup organized by SIGKDD

every year. Hence, our goal is to make these endeavor more efficient, enjoyable, and

successful.

Many of these challenges posited either on Kaggle or via conferences have a few

common properties. First, the data is structured and relational, usually presented

1IJCAI is the International Joint Conference on Artificial Intelligence. ECML is the European
Machine Learning. ACM-RecSys is the ACM Conference on Recommender Systems.

17

as a set of tables with relational links. Second, the data captures some aspect of

human interactions with a complex system. Third, the presented problem attempts to

predict some aspect of our behavior, decisions, or activities (e.g., to predict whether

a customer will buy again after a sale [IJCAI], whether a project will get funded

by donors [KDD Cup 2014], or even taxi ride destinations [ECML]). In this thesis,

we argue that data science endeavors for relational, human behavioral data remain

iterative, human-intuition driven, challenging, and hence, time consuming.

1.1 What is Data Science?

To understand the challenges of an end-to-end data science endeavor for this type of

data, we next ask: What does a typical data scientist do? and What steps does it

entail?. To answer these questions, we draw from numerous data science exercises of

our own, and in Fig. 1.1, we present the multiple activities a data scientist does when

given a linked (relational) data source for working through a typical data science

endeavor. Based on this, we delineate the following steps a data scientist takes:

Formulation of a question: The first task is to formulate an impactful question,

either predictive or correlative. This is often an iterative process in itself. As-

sessment of whether or not the data could answer the question or whether the

predictive problem defined is valuable often go hand-in-hand; therefore, it is of-

ten helpful to know apriori that the information needed to solve the predictive

problem is in the captured data.

Feature synthesis: The next task is forming variables, otherwise known as features.

This task is iterative in nature. The data scientist may start by using some

static fields (e.g., gender, age, etc.) from the tables as features, then form some

specialized features based on intuition of what might predict the outcome. With

these simple features at hand, the scientist may, for example, resort to features

that transform these raw features into a different space-percentile of a certain

feature. The result of this step is usually an entity-feature matrix, which has

18

Organize

Analyst

<Scripts>Think of
explanations

Data Engineer Machine Learning
Researcher

Formulate ML approach
Shape transform data
Build models
RefineExtract Variables

Formulate labels

Predict x?
Correlation to y?

Interpret Model

Ti
m

e
se

rie
s

D
is

cr
im

in
at

or
y

St
ac

ke
d

Represent

Flat

t=2 t=3

Figure 1-1: A typical data science endeavor. Previously, it started with an analyst
positing a question: Could we predict if 𝑥 or 𝑦 is correlated to 𝑧? These questions
are usually defined based on some need of the business or entity holding the data.
Second, given a prediction problem, a data engineer posits explanatory variables
and writes scripts to extract those variables. Given these variables/features and
representations, the machine learning researcher builds models for given predictive
goals and iterates over different modeling techniques. Choices are made within the
space of modeling approaches to identify the best generalizable approach for the
prediction problem at hand. A data scientist can span the entire process and take on
the entire challenge: that is, positing the question and forming variables for building,
iterating, and validating the models.

19

entities such as transactions, trips, customers as rows and features/variables as

columns. If the data is longitudinal in nature, the matrix is assembled for each

time slice.

Solve and refine using the machine learning approach: Once features are

synthesized, the data scientist uses a machine learning approach. If the problem

is of classification, a number of feature selection and classification approaches are

available. The scientist may engage in classification methodology selection (svm,

neural networks, etc.) and fine tune parameters. For a longitudinal problem, an

alternative approach can be developed based on hidden Markov models and/or a

stacked model where state probabilities from the learned hidden Markov model

are used as features. Another alternative often pursued is to cluster the data and

build cluster-wise models. In this step, one also engages in testing, validating,

and reporting accuracy of the predictive model.

Communicate and disseminate results: Finally, the data scientist engages in

disseminating outcomes and results. This often is beyond just predictive accu-

racy and involves identifying variables that were most predictive, interpreting

the models, and evaluating model accuracy under a variety of scenarios, for

example, different costs for false positives and negatives.

1.2 Why automate?

Through this thesis, we ask the following foundational questions: “Can we build

a machine to perform most data science activities?”, “What sort of technologies and

steps are required to be able to automate these activities?”, “How could automation aid

in better discovery and enable people to have better and more rewarding interactions

with the data?”, “If built, how shall we measure success in developing a general-

purpose data science machine?”. If such a machine is built, identifying the roles

humans/scientists will play is also critical.

We begin by noticing that much of feature formation, creating hypotheses to test,

20

and modeling could be automated, albeit that automation exposes many choices. To

demonstrate this, we first present an automatic feature synthesis algorithm we call

Deep Feature Synthesis. We show that while being automatic in nature, the algorithm

captures features that are usually supported by human intuition. Once such features

are generated for a dataset, we can then formulate questions, such as: “Is this feature

correlated with other features?" or “Can this subset of features predict the value for

this feature?". When a time series is present in the data, we can ask, “Can we predict

the future value of a particular time series?" These automated question generation

mechanisms can, to a significant degree, create many questions that may be of interest

to human who is trying to understand the data.

Once data is represented as variables with a supervised prediction problem, much

data analysis could be automated. For example, once data is assembled and organized,

we can invoke a classification system to build a classifier. If we have a time series

problem, we can use a hidden Markov model, train the model, and use it to make

predictions.

1.3 Contributions

The contributions in this thesis are as follows:

1. Designed Deep Feature Synthesis algorithm that is capable of generating fea-

tures that express a rich feature space

2. Developed an end-to-end Data Science Machine with can

(a) posit a data science question

(b) automatically generate features via Deep Feature Synthesis

(c) autotune a machine learning pathway to extract the most out of synthe-

sized features

3. Matched human level performance competing in data science competition using

the Data Science Machine

21

4. Designed and implemented an interface to test new challenges in human-data

interaction

22

Chapter 2

Overview

The Data Science Machine is a automated system for generating predictive models

from raw data. It starts with data in the form of a relational database and automat-

ically generates features to be used for predictive modeling. Most parameters of the

system are optimized automatically in pursuit of good general purpose performance.

Figure 2-1 shows an overview of the of the system.

Dataset Deep Feature Synthesis Machine Learning Pathway

ID, Pred

Figure 2-1: An overview of the process to automatically analyze relational data to
produce predictions. The input to the system is a relational database, and the output
is a predictions for a prediction problem. The prediction problem may be supplied
by the user or determined automatically. The system achieves this using the Deep
Feature Synthesis algorithm which is a capable of automatically generating features
for machine learning algorithms to use. Parameters of the system are automatically
optimized to achieve generalized performance across a variety of problems.

23

2.1 Design Goals

The Data Science Machine has ambitions in artificial intelligence, systems engineering,

and human-data interaction. In this thesis, we aim to achieve all three of these ends.

Approaching all three domains is necessary to successfully explore a new paradigm of

data science. Without accomplishing our artificial intelligence goals we cannot design

useful abstractions. If there is no effort put into a generalizable implementation, it

would be difficult to iterate towards better designs of the AI system. Finally, if we

do not consider how humans interact with the system, we would not have a way to

fit the Data Science Machine in to the lives of data scientists. Because this research

spans various disciplines of computer science, it challenged us to critically assess our

priorities at each stage.

Artificial Intelligence Goal: Emulate human actions in data science endeavors

We must design an approach that emulates the same expertise of human data

scientists. The most important aspect of this is to develop a way to synthesize

features that best describe the data. In Chapter 3, we describe the Deep Fea-

ture Synthesis algorithm. Then, in Chapter 5 we discuss how to employ these

features to solve a particular data science problem.

System Level Goals: Automate processing An implementation serves the pur-

pose of testing our theories in practice. By automating the process from start

to finish, we can learn more, improve our design faster, and test the system

on real world problems. In Chapter 4, we discuss the implementation of the

Deep Feature Synthesis . In Chapter 6, we present an automated method for

parameter tuning that enables the full pathway to work.

Human-Data Interaction: Enable human creativity We must communicate how

the system functions to help users learn how to interact with it. A user can

know the inputs and outputs of the system, but exposing the right parts of the

inner workings of the system will enable us to tap into human intelligence. We

present a step towards realizing this goal in Chapter 7.

24

Ultimately, the greatest challenge the Data Science Machine faces is to gener-

alize across a variety of problems, datasets, and situations. Without touching all

components of the data science process, it would fall short of this goal.

25

26

Chapter 3

Deep Feature Synthesis: Artificial

Intelligence

The efficacy of a machine learning algorithm relies heavily on the input features [11].

Transforming raw data into useful features for a machine learning algorithm is the

challenge known as feature engineering. Data scientists typically rely on their past

experience or expert knowledge when brainstorming features. However, the time

and effort it takes to implement a feature idea puts constraints on how many ideas

are explored and which ideas are explored first. As a result, data scientists face the

challenge of not only determining which ideas to implement first, but also when to stop

trying ideas in order to focus on other parts of their job. Deep Feature Synthesis is the

result of decomposing the features that data scientists construct into the generalized

processes they follow to make them. In this Chapter, we explain the motivations for

Deep Feature Synthesis , explain the feature generation abstractions, and present the

pseudocode for running Deep Feature Synthesis .

3.1 Motivating Deep Feature Synthesis

To explain various components of our system, we make use of example data problems.

In this example, we look at the dataset for the KDD Cup 2014. In Figure 3-1, we

see the 9 related entities in the dataset and how they are related. The entities

27

are projects, schools, teachers, donations, donors, resources, vendors, essays, and

outcomes. Projects are associated with one school, one teacher, one essay and a

set of donations. Each donation is made by a specific donor. Every project has a

outcome that contains details for fundraising campaigns that have completed. The

goal is to predict whether or not a particular project is exciting (as specified by the

Outcome entity) before knowing any information about its funding. To do this, data

scientists first resort to generating features that can be used a predictors in the model

Donors

Teacher

ResourcesVendors Donations

Schools Projects Outcomes

Essays

Figure 3-1: The data model for the KDD Cup 2014 problem. There are 9 entities.

If we are to think like a data scientist, we might start by asking questions that

could be translated into features that describe a project. There are several questions

we could ask, but a reasonable line of questioning might be: "how much money is

this project requesting?", "is that amount of money more or less than average?", "do

projects started in some part of the school year perform better than others?" We might

also look at entities related to a project and ask questions about them. For instance,

"do successful past projects by the same school or teacher make it more likely that

this project will be successful?" or "does the average income of students’ families

at the school related to projects success?". These questions are then turned into

features by following relationships, aggregating values, and calculating new features.

Deep Feature Synthesis is a algorithm that can generate the calculations that result

in these types of feature or can as proxy quantities to these ideas.

28

3.2 Deep Feature Synthesis algorithm

The input to Deep Feature Synthesis is a set of interconnected entities. Each entity

has a primary key, which is a unique identifier for each instance of an entity that the

table is based on. Optionally, an entity has a foreign key, which uniquely references

an instance of a related entity. An instance of the entity has fields which fall into one

the following data types: numeric, categorical , timestamps and freetext .

Notationally, for a given database, we have entities given by 𝐸1...𝐽 , where each

entity table has fields which we denote by 𝑥1...|𝐸𝑗 |. 𝑥𝑖𝑗 represents the array of values

for field 𝑖 in entity 𝑗. Each value in this array corresponds to an instance of the entity

𝑗. 𝑓𝑖𝑗 represents an array that contains the feature values generated from values of

field 𝑖 in entity 𝑗.

3.2.1 Mathematical operators/functions

Our feature synthesis algorithm relies on commonly used mathematical operations and

functions that used by data scientists to generate features. We formalize these types

of mathematical functions below. With this formalization, we allow extensibility as

more functions can be added. Given a library of these functions we will next present

how to apply these functions to synthesize features and provide examples for the

dataset above.

Direct: These functions do a direct translation of a field to a feature. Often times

this simple translation includes operations like conversion of a categorical string

datatype to a unique numeric value, which could then be used as a feature. In

other cases, it is simply an exact reflection of a numerical value. Hence the

input to these functions is a vectors 𝑥𝑖𝑗 and it returns 𝑓𝑖𝑗, where 𝑓𝑖𝑗 = 𝑑(𝑥𝑖𝑗),

where 𝑑 is the direct computation function.

Simple: These are predefined computation functions that translate an existing field

in an entity table into another type of value. Some example computations are

the translation of a time stamp into 4 distinct features - weekday (1-7), day of

29

the month (1-30/31), month of the year (1-12) or hour of the day (1-24). Hence

this transformation is given by {𝑓 1
𝑖𝑗, . . . 𝑓

𝑘
𝑖𝑗} = 𝑠(𝑥𝑖𝑗), that is when passed of

array of values for field 𝑥𝑖𝑗 it returns a set of 𝑘 features for each entity. Other

examples of such simple computation functions are binning a numeric value into

a finite set of discrete bins.

cdf : Cumulative distribution function based features form a density function over

𝑥𝑖𝑗, and then for each entry in 𝑥𝑖𝑗, they evaluate the cumulative density value

(a. k. a. percentile) thus forming a new feature 𝑓𝑐𝑑𝑓 = 𝑐𝑑𝑓(𝑥𝑖𝑗) (𝑖𝑗 is dropped

in the notation for 𝑓 for convenience). We can also extract cumulative density

in a multivariate sense given by 𝑓𝑐𝑑𝑓 = 𝑐𝑑𝑓(𝑥𝑖, 𝑥𝑗).

r-agg: Relational aggregation features (r-agg) are derived for an instance 𝑒𝑗 of entity

𝐸𝑗 by applying a mathematical function to ⃗𝑥𝑖𝑙|𝑒𝑗 which is a collection of values

for field 𝑥𝑖 in related entity 𝐸𝑙, where the collection is assembled by extracting

all the values for field 𝑖 in entity 𝐸𝑙 which are related to the instance 𝑒𝑗 in

Entity 𝐸𝑗. This transformation is given by 𝑟 − 𝑎𝑔𝑔(⃗𝑥𝑖𝑙|𝑒𝑗). Some examples of

r-agg functions are min, max, and count.

r-dist: r-dist features are derived from the conditional distribution 𝑃 (𝑥⃗𝑖𝑙|𝑒𝑗). These

are usually different moments of the distribution. Examples include: mean,

median, std among others.

3.2.2 Feature synthesis

Next we apply these mathematical functions at two different levels: at the entity level

and at the relational level. Consider an entity 𝐸𝑗 for which we are assembling the

features. Below we present the two levels and examples.

Entity level: These are features calculated by solely considering the fields values

in the table corresponding to the entity 𝑗 alone. In this situation, we can apply

direct, simple, and cdf operations on each of the fields in the table. Figure 3-2

shows the expansion of the original entity with features {𝑓1, . . . 𝑓𝑘} by applying

30

these operations. At this level we cannot apply r-agg and r-dist operations

since we are not considering any of the relationships this entity has with other

entities in the dataset.

Example 3.2.1 For the project entity, examples of these features are day-of-

the-week the project was posted or percentile relative to other projects of total

students reached.

Relational level: These features are derived by jointly analyzing a related entity

𝐸𝑙 to the entity 𝐸𝑗 currently under consideration. There are two possible cat-

egories of relationships between these two entities: forward and backward. An

illustration of these two types of relationships is shown in Figure 3-2

Forward:A forward relationship is between an instance of entity 𝐸𝑗, 𝑒𝑗, and

a single instance of another entity 𝐸𝑙. This is considered the forward

relationship because 𝑒𝑗 has an explicit dependence on 𝑒𝑙. In this case we

can apply direct operations on the fields 𝑥1 ... 𝑥|𝐸𝑙| in 𝐸𝑙 and add them

as features of 𝐸𝑗. This is logical because an instance 𝑒𝑗 uniquely refers to

a single 𝑒𝑙 meaning that all fields of 𝑒𝑙 are also legal features for 𝑒𝑗.

Backward: The backward relation is the relationship from an instance 𝑒𝑗 to all

instances 𝑒𝑖 that have forward relationship to 𝑒𝑗. In the case of backward

relation, we can apply r-agg and r-dist operations. These function are

appropriate in this relationship because every target entity has a collection

of values associated with it in the related entity.

Example 3.2.2 For a project, let us consider the entity school that has a

backward relationship with projects. That is, teachers and schools can be

associated with multiple projects. An example of a relational level feature

is then the number of projects associated with each school, evaluated us

School.COUNT(Projects). Another feature could be the average number

of students reached, and total number of students reached by projects for

this school.

31

Project ID Donation ID Donationamount

1243 64

92

$343.00

$490.00

...

..
..

..

..
..

..

..
..

..

Project ID

1243

1243

Figure 3-2: An example of backward and forward relationship. In this example,
projects entity has a backward relationship with donations entity. There are multiple
donations for the same project. While donations entity has a forward relationship
with the projects.

3.2.3 Recursion for relational features synthesis

Now, what if before we created all these features for the project entity, we created

features for every entity related to Projects? If features for donors and donations are

made first, we would add the following feature:

Example 3.2.3 Of the donors to this project, the average number of donations by

each donor across all projects. This is evaluated as AVG(Donations.Donor.COUNT(DONATIONS)).

Table 3.1 presents some features generated by recursively extracting features for the

projects. We can see that computing features as above for each of the related enti-

ties first before computing the features for each project may create richer features.

Generically, let us consider three related entities. That is, consider entity 𝐸𝑗 that has

a relationship with entity 𝐸𝑙 that has a relationship with entity 𝐸𝑝. To define this

relationship, we define a notion of depth. 𝐸𝑝 is at depth 2 with regards to entity 𝐸𝑗.

32

Mathematical Expression Language Expression and intuition

SUM(Donations.Donor.COUNT(DONATIONS)) The total number donations across all

projects made by donors to this project

AVG(Donations.Donor.COUNT(DONATIONS)) Of the donors to this project, the average

number of donations by each donor across

all projects

SUM(Donations.Donor.SUM(Donations.amount)) The total amount donated across all

projects by donors to this project

AVG(Donations.Donor.SUM(Donations.amount)) For the donors to this project, the average

total amount donated across all projects

AVG(Donations.Donor.AVG(Donations.amount)) The average donation amount donors to

this project made on average to all projects.

Intuition: Did they donate more to this

project then they do on average?

Table 3.1: Rich features extracted when recursive feature synthesis algorithm is used

on the KDD Cup 2014 dataset. In this table we give the example of the computa-

tion and a simple English explanation and intuition that may actually lead the data

scientist to extract the feature from the data for a particular project.

3.3 Deep Feature Synthesis: recursive algorithm

Next we describe the recursive algorithm to generate to generate feature vectors for

a target entity. Consider that the dataset has 𝑀 entities, denoted as 𝐸1...𝑀 . Let us

consider that our goal is to extract features for the entity 𝐸𝑖.

To generate the features for a given entity 𝐸𝑖, we first identify all the entities

with which this entity has forward relationship with and all the entities with which

this entity has backward relationship with. These are denoted by sets 𝐸𝐹 and

𝐸𝐵. We must then recursively call the feature generation for all entities 𝐸𝐵 that

are in backward relationship. While it is traversing through the graph of backward

33

relationships the algorithm keeps track of the entities it already visited in the set 𝐸𝑉 .

Algorithm 1 Generating features for target entity

1: function Make_Features(𝐸𝑖, 𝐸1:𝑀 , 𝐸𝑉)
2: 𝐸𝑉 = 𝐸𝑉 ∪ 𝐸𝑖

3: 𝐸𝐵 = Backward(𝐸𝑖, 𝐸1...𝑀)
4: 𝐸𝐹 = Forward(𝐸𝑖, 𝐸1...𝑀)
5: for 𝐸𝑗 ∈ 𝐸𝐵 do
6: Make_Features(𝐸𝑗, 𝐸1...𝑀 , 𝐸𝑉)
7: 𝐹𝑗 =RFeat(𝐸𝑖, 𝐸𝑗)

8: 𝐹𝑖 = EFeat(𝐸𝑖)
9: for 𝐸𝑗 ∈ 𝐸𝐹 do

10: if 𝐸𝑗 ∈ 𝐸𝑉 then
11: exit
12: Make_Features(𝐸𝑗, 𝐸1...𝑀 , 𝐸𝑉)
13: 𝐹𝑖 = 𝐹𝑖∪ REFLECT(𝐸𝑖, 𝐸𝑗)

The algorithm pseudocode for Make_Features is presented above. The algo-

rithm stores and returns enough information to calculate the synthesized feature. This

information includes not only feature values, but also metadata about base feature

and function that were combined,

Next, we present Rfeat, which describes how relational features are generated

given two entities 𝐸𝑖 and 𝐸𝑗 where 𝐸𝑖 has a backward relationship with 𝐸𝑗. We

assume that there are set of relational level functions ℛ that can be applied. Some

are describe in Section 4.3.1

Algorithm 2 Generating relational features

1: function Rfeat(𝐸𝑖, 𝐸𝑗)
2: 𝐹𝑖 = {}
3: for ∇ ∈ ℛ do
4: for 𝑥𝑗 ∈ 𝐸𝑗 do
5: if Canapply(∇, 𝑥𝑗) then 𝐹𝑖 = 𝐹𝑖 ∪∇(𝐸𝑖, 𝐸𝑗)

To apply relational level features for entity 𝐸𝑖 using entity 𝐸𝑗, Deep Feature Syn-

thesis looks at all r-agg and r-dist functions that are defined in the Data Science

Machine denoted by the set ℛ. It then determines which columns to apply these

functions to. To do this it first iterates through functions ∈ ℛ one by one. For each

34

function ∇, it looks at every feature in 𝐸𝑗 to determine if the function can be applied

to that feature. If the function can be applied to the feature, it is applied and the

created features are added to the set of features of 𝐹𝑖. For example, a function to

take the average of another columns is defined to only be applied to numeric columns.

When this function is applied to a backward relationship between 𝐸𝑖 and 𝐸𝑗, it will

add the average of each numerical feature in 𝐸𝑗 to the feature set of 𝐸𝑖.

If a particular entity has a second feature it can be filtered by, Deep Feature

Synthesis will apply the function multiple times, each time filtering for one of the

distinct values in the second feature.

3.4 Summary

(a) It is possible to automatically generate features that have human level interpre-

tation or map to human intuition.

(b) We are able to generate rich features with the recursive algorithm, Deep Feature

Synthesis .

(c) By designing the proper abstractions, the algorithm is extensible with new

mathematical functions.

35

36

Chapter 4

Deep Feature Synthesis: System

Engineering

Our goal when implementing Deep Feature Synthesis is to enable us to rapidly deploy

the Data Science Machine and evaluate the features when it encounters a new dataset.

As such, it is important to design a system that is agnostic to the dataset. Once we

establish that the input to the system will be a relational database, we must address a

variety of challenges to make it generalizable. In this chapter, we present th challenges

that this brings about and how we address them.

As we argued in Chapter 2, having a system that can automatically generate

features given a new relational dataset not only makes the system ready to be used

by data scientists, but it also enables us iterate on our AI system because with each

new dataset the system can be improved.

4.1 Platform

The Data Science Machine and accompanying Deep Feature Synthesis algorithm are

built on top of the MySQL database using the InnoDB engine for tables. MySQL

was chosen for its maturity as a database. With this choice, all raw datasets were

manually converted to a MySQL schema for processing by the Data Science Machine.

We implement the logic for calculating, managing, and manipulating the synthesized

37

features in Python.

Dataset, Entity, Feature Abstractions: We chose to use a relational database

due to the natural parallels in how they store data and the requirements of Deep

Feature Synthesis . There are a three key components in the Deep Feature Synthesis

that must be represented in the implementation. Figure 4.1 shows how those are

mapped to a relational database. A dataset is represented by an entire database.

Within a dataset there are several entities that represent different "objects" in the

dataset. Each entity is represented by a specific table in the database. Finally, each

entity contains features. A single feature is represented by a single column in the

database.

When we discussed the AI component of the system we spoke in terms of datasets,

entities, and features. However, when we discuss the system component, it is often

convenient to speak in terms of databases, tables, and columns.

The challenges for the platform are:

What platform do we build this on? The Deep Feature Synthesis has require-

ments for the type of data it must store and how it will access it. We must pick

a platform that fits these requirements.

How do we represent, store, and features? The features in a dataset may vary

in datatype and quantity. We need to have a general way of storing features.

How do we filter the data? There needs to be an easy way to access the data

we want. Different datasets may require slicing data in different ways and our

system should flexibly handle that.

How do we generate queries? We cannot have expectations for how data is la-

beled and organized other than that it is in a relational database. We must be

able to generate queries without making assumption about naming or organi-

zation conventions.

How do we let the user help the system? Automating parts of the system may

be time consuming for little practical gain. For these aspects, we should let the

38

Customer

Customer

COUNT (purchases)

Merchant

Product

Dataset

Database

Entity Table

Features

Column

Figure 4-1: The mapping of abstractions in the Data Science Machine.

user provide information to aid the system.

4.2 Example

Let us consider an example feature for the Projects entity in the KDD Cup 2014

dataset: AVG(Donations.Donor.SUM(Donations.amount)). Ultimately, we must

construct a database query that extracts this value. In this example, the final fea-

ture is actually constructed using synthesized features. To take advantage of this,

our approach is to calculate and store those intermediate features rather than creat-

ing a monolithic query. This allows reuse of intermediate values and simplifies the

implementation.

39

Pr Do Dr

Figure 4-2: An illustration of relationship between the three entities in KDD cup
2014: Projects (Pr), Donations(Do) and Donors (Dr). Projects have a backward
relationship with donations (since a project may have multiple donations), a donor
has a backward relationship with donations (since a donor can be associated with
with multiple donations).

Figure 4.2 shows the relationship between the three entities under consideration.

The process starts with following entity relationships as described in Section 3.3.

Starting with projects it recurses to the donations entity and since donations by itself

does not have any backward relationships, it considers its forward relationship with

donors.

Once we reach the Donor entity, we consider its backward relationship with dona-

tions and begin to apply the Rfeat algorithm presented in Section 3.3. The algorithm

iterates over Feature Functions which each specify a calculation and rules about when

it should be applied. At this level, when the algorithm considers SUM, the SQL query

to generate features for the donors is created automatically as shown below:

UPDATE ‘ Donors_1 ‘ target_table

LEFT JOIN (SELECT ‘ donor_acctid ‘ , SUM (‘ amount ‘) as val

FROM Donations rt

GROUP BY ‘ donor_acctid ‘

) b

ON ‘b ‘ . ‘ donor_acctid ‘ = ‘ target_table ‘ . ‘ donor_acctid ‘

SET ‘ target_table ‘ . ‘ Donors_1__100 ‘ = ‘b ‘ . val

WHERE ‘b ‘ . ‘ donor_acctid ‘ = ‘ target_table ‘ . ‘ donor_acctid ‘

After calculating the feature, we store the feature values as a new column in the

Donors table, as well as store the metadata to use later in the process. The metadata

contains information such as the base column (Donations.amount) and the function

applied (SUM). At this stage we have synthesized the feature SUM(Donations.amount),

40

considering all the donations that this donor has in the donations table.

With a new feature synthesized for each donor in the dataset1, we build features for

each donation. Because each donation uniquely references a single donor, we just re-

flect the feature we just calculated to the Donation table. When we reflect this feature

we do not actually copy the value. Instead, using the same metadata object men-

tioned above, we notate where the true feature values are actually stored. In this case,

it is in the Donors table. We now have the feature Donor.SUM(Donations.amount)

for every donation.

The final step is to generate features for the original entity, Projects. Now, con-

sidering its backward relationship with donations, we begin to apply the AVG Feature

Function (via the RFEAT algorithm). This is similar to applying the Feature Func-

tion before except that the feature we want to aggregate isn’t actually stored in the

entity it is associated with. However, using the information in the metadata object

we know where in the database a feature is actually stored. With this information we

can create a subquery that joins the appropriate tables together to make the feature

columns available. After the join, we can construct the query as we did before,

If at any point, we only want a subset of of data, we use Filter Objects. For

example, if we wish to calculate the same feature above, but only for Donors that live

in Massachuseets, we could create a Filter Object with the triple ("state", "=",

"MA"). This Filter Object is then serialized and used in the query.

4.3 Features: functions, storage, naming and meta-

data

4.3.1 Feature Functions

The functions described in 3.2.1 are implemented as Python classes, and they all

provide a Feature Function interface. A Feature Function takes one or two entities

as inputs depending on the type of feature. Two entities are required in the case of

1and assuming we only have SUM in our function set

41

relational level features, and direct features where the source is another entity. The

function definition is responsible for determining whether or not it can be applied to

a certain columns using the column’s metadata (described below 4.3.4) and how to

calculate the output value. For example, some Feature Functions specify they should

only be applied to date fields. Because features are often calculated using synthesised

features, Feature Functions may also specify rules that govern what mathematical

functions can be applied to synthesized features. For example, a rule limits the

standard deviation Feature Function from being appled to a feature synthesized using

the standard deviation Feature Function.

For performance reasons, the Data Science Machine builds Feature Functions on

top of the functions provided by MySQL. Currently, the Data Science Machine im-

plements the following relational level functions: AVG(), MAX(), MIN(), SUM(), STD(),

and COUNT(). In addition to those functions, the system implements the following

simple functions: length() function to calculate the number of character in a text

field, WEEKDAY() to convert dates to the day of the week they occurred, and MONTH()

to do the same for the month. Despite their simplicity, this small base of functions is

enough to create a wide range of features for us to evaluate the Data Science Machine.

4.3.2 Feature storage

All features are stored as columns in the database. As the Data Science Machine

creates new features, it uses new columns to store the data. Successively altering

table columns on a large MySQL table using the ALTER TABLE command is expensive

because MySQL must create a temporary copy of the original table while also locking

the original [2]. Because of this overhead in creating the temporary table each time a

new column is created, it is infact cheaper to create multiple columns simultaneously.

Thus, while creating the first new column for a table, the Data Science Machine

actually creates multiple new columns. To manage these new columns, the Data

Science Machine implements a Column Broker. By default the Column Broker creates

500 new columns at a time and specifies the data types for 80% of them as floats and

the rest 20% as integers. These settings are configurable using the configuration file

42

mentioned later in Section 4.6.

The Column Broker maintains a list of the free columns of each type. Using

the Column Broker, Deep Feature Synthesis then can request a column of a fea-

ture’s datatype on demand without the latency of issuing the ALTER TABLE command.

Without this optimization, creating hundreds of new features would take a prohibitive

amount of time.

If the Column Broker does not have a column of the requested datatype, then it

will create a copy of the original table that has the same fields as the original table and

initialize multiple new columns again. Even though these columns are in a separate

table, by copying the original columns, we maintain the primary key information for

each row. Using the primary key we can join the original table with its copies when

we need access to specific features. MySQL limits InnoDB tables to have 1000 column

max. Thus, without this implementation the Data Science Machine would be limited

in the number of features it could synthesize for a given entity.

4.3.3 Naming features

A challenge faced by the Data Science Machine is displaying synthesized features in

a human understandable way. In part, this is because simply describing a calculation

does not necessarily resemble the intuitive description a human would give. The solu-

tion is to use a standardized mathematical notation. Table 3.1 shows some examples

of features names and their natural language descriptions. The relationship between

the name of the feature and English description is often not immediately clear.

A feature name is constructed by surrounding another feature name with the

function that was applied to it. If the function is omitted, it is assumed to have been

a direct function that reflected the value of the feature in a forward relationship.

For example, Table 3.1 shows examples of this where Donor reflects a feature from

Donations. Because the notation definition for a feature name is defined by another

feature name, we get the recursive effect of functions inside functions.

43

4.3.4 Metadata

An important aspect to being able to use the features created by Deep Feature Syn-

thesis is to understand how it came about. To accomplish this, every feature contains

a metadata object.

The metadata object has the following fields:

Field Purpose

entity the entity this feature is for

real_name a name that encodes what the feature is. eg

School.MAX(Projects.SUM(Dontations.total)) which

means largest amount raised by a project at this school)

path list of path nodes that describe how this feature was calcu-

lated

A path is a list of nodes which are defined as follows:

Field Purpose

Base column the column this feature was derived from and its metadata

feature_type the type of feature this is, eg direct, r-agg, etc

feature_type_func the name of the function that was applied

filter the Filter Object used by the query that generates it.

4.4 Filtering data

The Data Science Machine needs a flexible way to select subsets of data. Filter Objects

play an important role for relational level Feature Functions by enabling calculations

over subsets of instances. They are implemented to enable construction of new Filter

Objects by combining Filter Objects using logical operators such as “and” or “or”.

Using Filter Objects, a Feature Function is able to select which instances of an entity

to include in a calculation.

44

Filter Objects implement two methods for the query generation process described

in 4.5.

1. to_where_statement(). This converts a Filter Object to a MySQl where state-

ment to be included in a query. For example, FilterObject([("state", "=",

"MA"), ("age", ">=", 18)]) serializes to WHERE ‘state‘ = MA AND ‘age‘

> 18.

2. get_involved_columns(). This returns all the columns that this filter will be

applied to. This is used by the query generation algorithm to ensure they are

selected before applying the WHERE statement.

Filter Objects are used to implement two useful pieces of functionality for Deep

Feature Synthesis : conditional distributions and time intervals.

Conditional distributions Filter Objects can be used to condition a Feature Func-

tion. This is important because there are many scenarios where the conditional

distribution exposes important information in a dataset. A guiding example is

making features for customers of an ecommerce website. Without Filter Ob-

jects, Deep Feature Synthesis could create a feature for each customer that is

the total amount of money that customer spent on the site by summing up all

the purchases the customer made. However, this might not differentiate cus-

tomers that spent the same amount of money, but in different ways. Instead, we

might want to create features for the total amount spent in each of the product

categories such as electronics or apparel. This is accomplished by using different

Filter Objects that each select only the purchases from a single category before

applying the Feature Function.

Time intervals For some prediction problems, we want to calculate the same set of

features across many time intervals. This allows use to model time series data.

A time interval Filter Object is implemented as a logical combination of two

Filter Objects. One Filter Object selects instances that occur after a certain

time and one Filter Object selects instances that occur before a certain time.

45

When these two functions are combined using the AND operator, they specify a

single time interval.

When creating intervals there are 4 important parameters.

1. The column that stores the time interval

2. The time to start creating time intervals

3. The length of the time interval

4. The number of intervals.

When supplied with these four parameters, Deep Feature Synthesis is capable of

creating time interval-based features for a target entity. Deep Feature Synthesis

maintains metadata about the creation of each feature that can be used by a

learning algorithm to determine the features associated with each time interval.

4.5 Generating queries

In order to extract features, the Data Science Machine constructs MySQL database

queries on the fly. As the data required to calculate a feature may be stored in

multiple tables, a process for joining tables together is necessary. All columns in the

SELECT clause or WHERE clause of a query must be accessible for a query to work.

MySQL supports Views, which are virtual tables composed of columns from other

tables or views. While these would simplify the design of the query generation, in

the Data Science Machine design we choose to manually implement the logic to join

tables together. We did this for two reasons. First, the workload of the Deep Feature

Synthesis iteratively adds columns to tables. The changing structure of tables would

mean redefining a new view each time a new column is added as MySQL views are

frozen at the time of creation[3]. Second, while we may join the same tables together

to make different features, we often will be selecting different columns from the joined

result. To use a view for this would lead to unnecessary columns at times in our select,

resulting in a potential performance hit.

46

To improve performance further, a query is constructed to perform multiple cal-

culations at once. This works by cutting down on the number of times the query

builder performs joins, as well reducing the number of times Deep Feature Synthesis

has to iterate over every row in a table. A query is constructed in the following three

steps:

Collect Columns The first step is determining all columns that are involved in the

query. Columns may be involved in a query because they are part of the actual

calculation or because the query contains a Filter Object.

Determine join path The actual source of a column may be in different table than

the target of the calculation, but the column metadata stores the path to the

column. Using this path data we can construct a join path, which is a series

of MySQL JOIN statements that assemble a subquery for the query to execute

on. If we collected multiple columns for the query, we can have many different

paths, some of which share parts. The join path is constructed by first sorting

the involved columns by path length. Then, starting with the longest path, we

join tables in the path beginning with the table we wish to add the feature to.

We proceed column by column in this sorted order. For each new column we

only add tables from its path if they branch from the path that has already

been constructed. By iterating over the columns according to path length, we

ensure the paths with the most constraints are handled first.

Build Query With the subquery to build the joined table, the final step is to put

the desired functions of the columns in a SELECT statement, turn the Filter

Object into a WHERE clause using the defined API, and group by the primary

key of the target entity. The GROUP BY is what collects the rows for relational

level functions.

47

4.6 User configuration

The Data Science Machine takes a configuration file for specifying dataset specific

options. The configuration file presents options at the tree levels of abstractions in

the data science machine: dataset, entity, and feature. The Data Science Machine

will infer some of these parameters to the best of its ability or revert to a sensible

default value if inference is difficult or computational expensive.

4.6.1 Dataset level

Option Purpose

max_depth the maximum recursion depth of the deep feature

synthesis algorithm

max_categorical_filter the maximum number of categorical filters to apply

along a feature pathway

4.6.2 Entity level

Every entity in the dataset has a copy of the following parameters

Option Purpose

one_to_one list of entity names that are in a one-to-one rela-

tionship with this entity. Since the one-to-one re-

lationship goes both ways, a given pair only needs

to be notated in at least one entity

included_functions white list of Feature Functions to apply to an entity

excluded_functions black list of Feature Functions to apply to an entity

train_filter parameters for a Filter Object that specifies which

instances of this entity may be used for training

One-to-one relationship are inferred by counting the number of backward relation-

ship for every entity in a table. Backward relationships are defined in section 3.2.2.

48

If the number of backward relationships is one for every instance then it is considered

to be part of a one-to-one relationship. This calculation is expensive in the current

system, so it is cached and only performed once for each relationship. Additionally,

it is also not performed on entities that contain more the 𝑡 rows, where 𝑡 is currently

set to 10 million.

If not specified, included_functions is assumed to be every function available.

Therefore included_functions and excluded_functions can be used as a white list and

black list for Feature Functions. Typically this is used to avoid performing expensive

computations that the user expects to not contribute to successful feature generation.

4.6.3 Feature level

Every feature in the dataset has a copy of the following parameters

Option Purpose

categorical boolean indicating whether or not this variable is

categorical

categorical_filter boolean indicating whether or not to use distinct

values of this feature as Filter Object

numeric boolean indicating whether or not this variable is

numeric

ignore boolean indicating whether or not to ignore a fea-

ture. this is used when the metadata is necessary

for some other computation and the column isn’t

actually a feature such as label test or train data.

Categorical can often be inferred. Right now, the Data Science Machine assumes

columns that have exactly two distinct values to be categorical. The Data Science

Machine avoids being too liberal in calling features categorical because they lead to

an growth in the feature space during the machine learning pipeline. For example,

the zip code of a customer is categorical, but could create thousands of new features

49

during One Hot Encoding (explained in Section 5.3).

Numeric is assumed if the database column type is specified as a numeric type.

This includes integers, floats, doubles, decimals, smallints, and mediumint in MySQL.

4.7 Summary

(a) We implemented Deep Feature Synthesis using MySQL and Python.

(b) The implementation make no assumptions about the input beyond it is a rela-

tional database.

(c) We allow for humans to guide the system as needed with a configuration file on

a per dataset basis.

50

Chapter 5

Predictive Machine Learning Pipeline

To use the features created by Deep Feature Synthesis , we must implement a gen-

eralized machine learning path. For this, we have at our disposal a representation of

the data as tuples given by < 𝑒, 𝑓𝑛, 𝑓𝑣, 𝑡 > where 𝑒 is entity, 𝑓𝑛 is the feature name,

𝑓𝑣 is the feature value, and 𝑡 is the time interval id. To build a predictive modeling

framework we next design three components: an automatic prediction problem for-

mulator, a feature assembly framework, and a machine learning framework. We use

the open source scikit-learn [15] to aid the development of this pathway. In the next

two subsections we describe these three components.

5.1 Defining a prediction problem

The first step is to formulate a prediction problem. This means selecting one of the

features in the dataset to model. The feature could be one that already exists in the

dataset or one that was generated while running Deep Feature Synthesis . Additionally,

the feature may be a continuous value such as the the total amount of money donated

by a donors or a categorical value such as whether or not a project was fully funded.

We call this feature we wish to predict the target value.

For some cases, the target value is known before the analysis begin, in which case

this information can be supplied to the Data Science Machine. This is the case for

51

the competitions we test the system on.

In other cases, when the target value is not externally provided, Data Science

Machine can run the machine learning pipeline for several potential target value and

suggest high performing results. To prioritize which ones to pick as target value and

show the results to the user, Data Science Machine applies some basic heuristics. At

this time, these heuristics are

∙ Preference for variables that are not derived via feature synthesis algorithm

∙ Categorical variables with a small number of distinct categories

∙ Numeric features with high variance

5.2 Feature assembly framework

After a target value is selected, we next assemble the features that are appropriate

for use in prediction. We call these features predictors. For a given target value, some

predictors might be invalid because they were calculated with the common base data

or have an invalid time relationship. For instance, if the target value to predict is

the average donation amount made by a donor, it would be invalid to predict that

using the total amount the donor donated and the number of donations they made.

A feature could invalid temporally, if it relies on the data that did not exist at the

time of the target value. For example, if we want to predict how many donations a

project will receive in it’s first week, it is invalid to predict that using a feature that

is the total sum of the donations for that project.

To accomplish the task of assembling features for a valid prediction problem,

the Data Science Machine maintains a database of metadata associated with each

entity-feature. This metadata contains information about the source fields in the

original database that were used to form this feature, as well as any time dependencies

contained with in it. Using this metadata, the Data Science Machine assembles a list of

all features that were used to calculate the target feature. The Data Science Machine

makes this same list for all candidate predicting features. A feature is only usable

52

if these lists contain no overlaps. To handle time dependencies, the Data Science

Machine excludes any feature that is assigned an interval number higher than the

target feature.

5.3 Reusable machine learning pathways

Table 5.1: Summary of parameters in the machine learning pipeline. These parame-
ters are tuned in automatically by the Data Science Machine.

Param Default Range Function
𝑘 1 [1, 6] The number of clusters to make
𝑛𝑐 100 [10, 500] The number of SVD dimensions
𝛾 100 [10, 100] The percentage of top feature selected
𝑟𝑟 1 [1, 10] The ratio to re-weight underrepresented

classes in classification problems
𝑛 200 [50, 500] The number of decision trees to create when

training a random forest
𝑚𝑑 None [1, 20] The maximum depth of the decision trees
𝛽 50 [1, 100] The maximum percentage of features that

are used in decision trees

Clus
ter

(k)

Tr
ain

 C
las

si�
er

(n,
 β,

 rr
, m

d
)

TSV
D

(n c
) k-p

erc
ent

ile

γ
Tr

ain
 cl

ass
i�e

r

(n,
 β,

 rr
, m

d
)

Pr
edi

ct

Ev
alu

ate

Pr
edi

ct

Ev
alu

ate

Figure 5-1: Reusable parameterized machine learning pipeline. The pipeline first
performs truncated SVD (TSVD) and selects top 𝛾 percent of the features. Then
for modeling there are currently two paths. In the first a random forest classifier is
built and in the second one the training data is first clustered into k clusters and
then a random forest classifiers is built for every clusters. The list of parameters for
this pipeline are presented in Table 5.1. In the next section we present an automatic
tuning method to tune the parameters to maximize cross validation accuracy.

With a target feature and predictors selected, the Data Science Machine imple-

ments a parametrized pathway for data preprocessing, feature selection, dimension-

53

ality reduction, modeling, and evaluation. To tune the paramters, he Data Science

Machine provides a tool for performing intelligent parameter optimization. The fol-

lowing steps are followed for machine learning and building predictive models:

Data preprocessing

The importance of the data preprocessing step is to normalize data before continuing

along the pathway. To preprocess the data, we assemble a matrix using the tuples

< 𝑒, 𝑓𝑛, 𝑓𝑣, 𝑡 > for the target 𝑓𝑛 and each 𝑓𝑛 that was chosen to be a predictor. In

this matrix, each row corresponds to an instance of 𝐸 and each column contains the

values 𝑓𝑣 for the corresponding 𝑓𝑛.

There are several steps normalize the data

∙ Null values: We must convert null values. If a feature is a continuous value,

the null value is converted to the median value of the feature. If the feature is

categorical, the null value is converted to an unknown class.

∙ Categorical variables: Categorical variables are sometimes represented in

this matrix as string. So, first we must convert each distinct string to a distinct

integer. Next, we use One Hot Encoding to convert the categorical variable into

several binary variables. If there are 𝑛 classes for the categorical variable, we

create n binary features in which only one is positive for each instance.

∙ Feature scaling: Different features are often at different scales depending on

their unit. To prevent certain features from dominating a model, each feature

column is scaled to have a mean of 0 and unit variance.

Feature selection and dimensionality reduction

Deep Feature Synthesis generates a large number of features per entity. Even after

removing the features that may be invalid for predicting the target value, we are still

left with a large number of predictors that we can use for predicting the target value.

Many of these features may not have any predictive value, or even if they have little

predictive value, could diminish the value of the good predictors because they increase

the dimensionality. To overcome this, it is important to have a process of selecting the

54

useful features before learning the final model. The Data Science Machine employs

two techniques for reducing the size of the feature space.

Truncated SVD transformation In the first method, the Data Science Machine

applies Singular value decompositions to the feature matrix. Then the dimen-

sionality of the problem is reduced by selecting 𝑛𝑐 components of the SVD. This

introduces a parameter 𝑛𝑐 in the pathway.

k-Best: In the second method, the Data Science Machine ranks each feature by

calculating its f-value w.r.t to the target value. The f-value is the ratio of two

mean square values. If the null hypothesis is true, you expect F to have a value

close to 1.0 most of the time. A large f-value means that the variation among

group means is more than you’d expect to see by chance. It then selects the

𝛾% best features. This introduces a parameter 𝛾 in the pathway.

Modeling

The Data Science Machine models support both continuous (regression) and categor-

ical features (classification) as a target value. In both cases, the system uses random

forests to model the relationship between the predictors and the target feature. A

random forest is created by using 𝑛 random decision trees. Each decision tree has a

depth of 𝑚𝑑 and uses a fraction of the features denoted by 𝛽 .

In classification problems, sometimes one of the target value classes is under-

represented. In order to compensate for this, the modeling stage can re-weight an

underrepresented class by a factor of 𝑟𝑟.

Hence, at the modeling stage we have introduced four parameters: 𝑛, 𝑚𝑑, 𝛽, 𝑟𝑟.

Clusterwise modeling

In many datasets, it can be powerful to have a separate model for different data

points. To incorporate this concept into the Data Science Machine, the system builds

a KMeans classifier to separate training points into 𝑘 clusters. Then, the Data Science

Machine trains a distinct random forest for each cluster. When the Data Science

55

Machine predicts a label for a test sample, the trained cluster classifier assigns the

label to a cluster and then applies the corresponding model.

At this stage, a final parameter 𝑘, the number of clusters, is introduced. If 𝑘 = 1

then the the pathway functions as if no cluster-wise modeling was applied.

5.4 Summary

(a) We extract value from synthesised features using a machine learning pathway

(b) It is important to expose as many parameters as possible in the pathway in

order to make it generalizable to many datasets.

(c) It is possible to formulate predictive problems automatically

56

Chapter 6

Parameter Tuning

Many stages of the machine learning pipeline have parameters that could be tuned.

Tuning these parameters has a noticeable impact on the model performance. A naive

grid search of the space of parameters is not feasible. If we consider all possible combi-

nations of parameters values, there are approximately 6*490*90*10*450*20*100 =

2, 381, 400, 000, 000 (two trillion, three hundred eighty-one billion, four hundred mil-

lion) possibilities that the Data Science Machine could use for the pathway described

in Chapter 5. To aid in the exploration of this space, we use a Gaussian Copula

Process to model the relationship between parameter choices and the performance of

the whole pathway.

6.1 Bayesian parameter optimization using Gaussian

Copula Processes

To aid in the exploration of the parameter space, we used a Gaussian Copula Process

(GCP) to model the relationship between parameter choices and the performance of

the whole pathway and then used the model to identify better choices. Previously, a

Gaussian Processes has been used to tune parameters of classifiers whose values can

have huge impacts on the final performances of the model. [18] proposed to abstract

this as the Bayesian optimization of a "black box" function. Our tuning system is

57

much broader then simply tuning a classifier parameters (or hyperparameters) and

we expect non-linear relations and correlations within the parameters themselves

and between parameters and the performance. Below we describe the Model-sample-

optimize approach.

6.1.1 Model-Sample-Optimize

The first step in finding the right parameters is to model a function 𝑓 that captures the

relationship between the parameters and the model’s performance. Then we sample

new parameters and predict what their performance would be using the model’s

performance. We then apply selection strategies to choose what next to sample.

Below we describe each of these steps in detail.

Model: The function 𝑓 models the performances of the end-to-end Data Science

Machine as a function of the parameters that are chosen. The basic idea of

Gaussian processes is to model 𝑓 such that for any finite set of 𝑁 points 𝑝1...𝑛 in

𝒳 , { 𝑓(𝑝𝑖) }𝑁𝑖=1 has a multivariate Gaussian distribution on 𝑅𝑁 . The properties

of such a process is determined by the mean function (commonly taken as zero

for centered data) and the covariance function 𝐾 : 𝑃×𝑃 → 𝑅. For an extensive

review of Gaussian Processes, see Rasmussen and Williams [17], while their use

in Bayesian optimization is largely explained in [7].

In this thesis, we introduce a novel approach for parameter optimization based

on Copula processes. In particular, we focus on Gaussian Copula Processes

(GCP), as defined by Wilson et al. in [21] through warping the output space.

Gaussian Copula Processes: In Gaussian Copula Process, as introduced in

[21], instead of a Gaussian Process to model the multivariate distribution of {

𝑓(𝑝𝑖) }𝑁𝑖=1, it is done through a mapping Ψ : 𝑅 → 𝑅 that transforms { 𝑓(𝑝𝑖)

}𝑁𝑖=1 in { Ψ ∘ 𝑓(𝑝𝑖) }𝑁𝑖=1 which is then modeled as a Gaussian Process. By doing

this, we actually change the assumed Gaussian marginal distribution of each

𝑓(𝑝) into a more complex one.

58

Parameters Performance Step 1 Step 2 Step 3 Observations' distribution
after transformationf(p)

3.2 4.1
4.6 3.8
11 4

2.3 6.8

... ...

... ...

... ...

...
... ...

18
7
34

C
D

F

66

...

...

... ...

p1 pm

f(p)

f(p)

f(p)

cdf(f(p))

0.25
0.1
0.28

0.86

...

Ψ-1(cdf(f(p)))

-0.67
-1.28
-0.58

1.08

...

Figure 6-1: Illustration of transformation of the output value 𝑓(𝑝). The transformed
value is then modeled by the regular Copula process.

The mapping function: In [21], a parametrized mapping is learned so that

the transformed output is best modelled by a Gaussian Process. However,

we have found that such a mapping was unstable : for many experiments

on a same dataset, different mappings where learned. Moreover, the in-

duced univariate distribution was most of the time almost Gaussian and

the parametrized mapping could not offer a greater flexibility.

To overcome this, we introduce a novel approach where a marginal distri-

bution is learned from the observed data through kernel density estimation
1. More specifically, consider the parameters 𝑝 = {𝑝1 . . . 𝑝𝑚} and the per-

formance function be 𝑓(𝑝). Our first step in the transformation models

the density of { 𝑓(𝑝𝑖) }𝑁𝑖=1 using a kernel density estimator and then it

estimates the 𝑐𝑑𝑓 of this density. We then generate the 𝑐𝑑𝑓 values for each

value of { 𝑓(𝑝𝑖) }𝑁𝑖=1 shown in Step 2 of Figure 6.1.1 and are given by

𝑔 = 𝑐𝑑𝑓(𝑓(𝑝)). Assuming that 𝑔 is a sample from a standard normal we

apply 𝜓−1 to values in 𝑔 to generate the final values shown in Step 3 of

Figure 6.1.1 and given by ℎ = 𝜓−1(𝑔). ℎ represents the transformation

of 𝑓(.) which we wish to model using a regular Gaussian process. Hence

the input to the Gaussian process modeling is 𝑝1...𝑛 and the corresponding

ℎ1...𝑛 values.
1At the time of writing of this thesis, this method was currently under development by Se-

bastien Dubois and Kalyan Veeramachaneni. Author acknowledges Sebastien Dubois for sharing
this method, and also providing writeup and help in integrating this tool into the Data Science
Machine workflow.

59

Fitting the covariance function The covariance function used is :

𝐾(𝑝, 𝑝′) = 𝜃0.𝐾0(𝑝, 𝑝
′) + 𝜃1.𝐾1(𝑝, 𝑝

′) + 𝜃2.𝐾2(𝑝, 𝑝
′) (6.1)

with :

𝑝 = [𝑝1, ..., 𝑝𝑚]𝑇 ,

and :

𝐾0(𝑝, 𝑝
′) = 𝑒𝑥𝑝(−

𝑚∑︁
𝑖=1

𝜃3,𝑖.(𝑝𝑖 − 𝑝′𝑖)
2) (6.2)

𝐾1(𝑝, 𝑝
′) = 𝑒𝑥𝑝(−

𝑚∑︁
𝑖=1

(𝑝𝑖 − 𝑝′𝑖)
2

2.𝜃4,𝑖
−

𝑚∑︁
𝑖=1

2
(︁sin(𝜋(𝑝𝑖 − 𝑝′𝑖))

𝜃5,𝑖

)︁2

) (6.3)

𝐾2(𝑝, 𝑝
′) =

𝑚∏︁
𝑖=1

(︁
1 +

(𝑝𝑖 − 𝑝′𝑖)
2

𝜃7,𝑖

)︁−𝜃6,𝑖
(6.4)

Sample The practical method to find the maximum point 𝑝* is to sample iteratively

some points in 𝒫 , compute their corresponding value 𝑓(𝑝), and then decide

which point to sample next.

Optimize This final step is usually made by maximizing the acquisition function 𝑎.

The inputs to this function are derived from 𝑓 to balance between exploration -

testing points in unexplored area of the input space 𝒫 - and exploitation - testing

points for which we predict a high 𝑓(𝑝) value. In particular this enable us to

avoid concentrating on the search near local optima. Given a set of observations

(𝑝1...𝑛,𝑓(𝑝𝑛)), we can thus randomly sample 𝑝′𝑖 in 𝒫 , predict their output 𝑓 ′
𝑖 and

choose the 𝑝′* that maximizes 𝑎.

60

Chapter 7

Human-Data Interaction

The Data Science Machine investigates the potential for automatic feature creation in

data science. Previously, we described how we can automatically harness the power

of these features using the machine learning pathway (Chapter 5) and auto tuning

(Chapter 6). In this form, the system is very much a black box. To utilize the power

of true human intelligence, it is worth exploring how we can expose the inner workings

of the Data Science Machine.

The main challenges stem from the large number of features produced by Deep

Feature Synthesis . For many datasets, the Data Science Machine creates hundreds of

features. This large set of feature causes issues for users who must localize themselves

in the feature space before interacting with the features. Even more, the modeling

pathway contains numerous parameters that have complex relationships with each

other. These issues pose interesting challenges when designing an interface to allow

human interaction with the Data Science Machine. With these challenges in mind,

we built the interface with the following goals:

Explain and organize features We must inform users of all the features at their

disposal in an accessible manner. Even more, the interface should provide func-

tionality for a user to discover the features they want to use through recom-

mendations and filtering

Expose pathway parameters We should allow users to manually tweak modeling

61

parameters while still exposing the power of feature optimization in the Data

Science Machine.

Enable human creativity One of the greatest human strengths is to understand

problems in creative ways that escape machine intelligence. The system should

give users a way to experiment with ideas and use those results in a positive

feedback loop.

7.1 Features

To explain and organize features, the interface tries to slowly introduce the users to

the feature space, while visually demonstrating that it is synthesising features on a

per entity basis.

To help users get a sense of the features they have to work with, when they

begin using the tool, an animated dialog appears that summarizes the results of Deep

Feature Synthesis . This dialog is animated to appear as if all features are being

generated at that moment. This dialog is pictured in Figure 7-1.

Figure 7-1: The dialog users first see when they begin using the Data Science Machine.

62

Figure 7-2: The feature selector component of the interface where users can choose

features to build a predictive model with.

After clicking "continue" in the dialog, the user is introduced to the feature selector

as seen in Figure 7-2. The goal of the feature selector is to provide the user with a

quick way to discover and select the features to use in a prediction problem. The

feature selector organizes features by entity, so users can ize themselves in the feature

space as they navigate features. To help with the discovery of useful features, all

features are given a score based on their estimated predication quality. Currently,

this estimate is based on how well just that single feature predicts the target label.

Using this score, the feature selector creates a "Recommended" features tab that sorts

all features by score. If a user has an idea of a feature he or she wants to use, there

is a textbox to filter the feature list in each tab. Additionally, selection of multiple

features is simplified with a drag to select mechanism. At any time, a user can reset

by clicking "Unselect All".

7.2 Pathway parameters

Figure 7-3: Interface for users to modify pathway parameters

63

The interface exposes all pathway parameters described in Table 5.1. Each parameter

is initialized with the default value. From here, the user can manually change each

parameter. Alternatively, a user can click "auto tune" and the parameter will be

optimized by the same tuning process as the fully automated Data Science Machine.

If a user does not want to modify parameters, this component of the interface is

designed to not get in the way.

7.3 Experiments

Figure 7-4: Interface for user to view experiments. Experiments are started in the

background and the score is populated when they finish.

The interface for experiments is meant to encourage designing experiments, evaluating

the results, and iterating on new insights. To this end, the experiments section lays

out all experiments the user is currently running and has ran in the past. When

a user starts a new experiment, the Data Science Machine server asynchronously

runs the experiment. This means that a user can submit multiple experiments at

a time. When an experiment finishes, the user is notified via a unobtrusive dialog.

Each experiment returns with the a cross validated evaluation score depending on the

settings for the problem. To facilitate the process of incorporating the results of the

best experiments, a user can click on a past experiment and repopulate the feature

selector and tuning parameters with the settings from that experiment.

64

Chapter 8

Experimental Results

With the Data Science Machine being first of its kind, we wish to address a number

of questions that are at the intersection of “how well did the machine do?”, “did it

produce any interpretable features?”, and “did automation work?”. In the following

sections we answer these questions systematically.

8.1 Datasets

In order to demonstrate the efficacy of the Data Science Machine, we will test the

Data Science Machine on 3 contemporary prediction problems posed by competitive

venues - KDD Cup 2014, IJCAI (ongoing), and KDD Cup 2015 (ongoing). In each one

of these competitions, hundreds of data science enthusiasts participate in modeling

the prediction problem defined by the organizers. To compete, data scientists engage

in feature engineering, modeling, and tuning. All three activities can be performed by

the Data Science Machine.

The diagrams in Figure 8-1 show the entities for each dataset. Table 8.1 summa-

rizes the number of rows for each entity, and below we describe each of the problems

briefly.

KDD Cup 2014: Project Excitement Using past projects’ histories on DonorsChoose.org,

predict if a crowd-funded project is "exciting". This is the example used throughout

this thesis.

65

IJCAI: Repeat Buyer Prediction Using past merchant and customer shopping

data, predict if a customer making a purchase with a promotion will turn into a repeat

buyer.

KDD Cup 2015: Student Dropout Using student interaction with resources on

an online course, predict if they will dropout in next 10 days.

Donors

Teacher

ResourcesVendors Donations

Schools Projects Outcomes

Essays

Event Type

Log UserObject

Object
children Outcome Enrollment

Course

Outcome

User

BehaviorMerchant Action Type

Brand Item Category

Figure 8-1: Three different data science competitions held during the period of 2014-
2015. On the left is the data model for KDD Cup 2014, at the bottom center is the
data model for IJCAI, and on the right is the data model of KDD Cup 2015. A
total of 906 teams took part in these competitions. We note that two out of three
competitions are ongoing and predictions from the Data Science Machine solution
were submitted and the results are reported in this paper.

66

KDD Cup 2014 IJCAI KDD Cup 2015

Entity # Rows Entity # Rows Entity # Rows

Projects 664,098 Merchants 4995 Enrollments 2,000,904

Schools 57,004 Users 424,170 Users 112,448

Teachers 249,555 Behaviors 54,925,330 Courses 39

Donations 2,716,319 Categories 1,658 Outcomes 120,542

Donors 1,282,092 Items 1,090,390 Log 13,545,124

Resources 3,667,217 Brands 8,443 Objects 26,750

Vendors 357 ActionType 5 ObjectChildren 26,033

Outcomes 619,326 Outcomes 522,341 EventTypes 7

Essays 664,098

Table 8.1: The number of rows per entity in each dataset. The uncompressed sizes of

the KDD Cup 2014, IJCAI, and KDD Cup 2015 are approximately 3.1 GB, 1.9 GB,

and 1.0 GB, respectively.

8.2 Deep Feature Synthesis

We ran Deep Feature Synthesis on all three datasets. For KDD Cup 2014, we also

constructed time interval features, and for IJCAI and KDD Cup 2015 we created a

few categorical filters. These decisions were not made on the expected effectiveness,

but on the constraints of dataset size. The results of running Deep Feature Synthesis

are presented in Table 8.2.

8.3 Parameter tuning

To determine the optimal parameters for the machine learning pathway, the Data

Science Machine runs a Gaussian Copula Process to model the relationship between

parameter selection and model performance. At each iteration the optimization pro-

cedure must balance exploration and exploitation. The plots in Figure 8-2 show the

maximum cross validation score obtained by iteration for all three datasets. The

67

KDD Cup 2014 IJCAI KDD Cup 2015
Entity # Features Entity # Features Entity # Features
Projects 935 Merchants 43 Enrollments 450
Schools 430 Users 37 Users 202
Teachers 417 Behaviors 147 Courses 178
Donations 21 Categories 12 Outcomes 3
Donors 4 Items 60 Log 263
Resources 20 Merchants 43 Objects 304
Vendors 13 ActionType 36 ObjectChildren 3
Outcomes 13 Outcomes 82 EventTypes 2
Essays 9 Brands 12

Table 8.2: The number of synthesized features per entity for in each dataset.

parameters of the best run are shown in Table 8.3.

Figure 8-2: the maximum cross validation AUC score found by iteration for all three

datasets. From top to bottom: KDD Cup 2014, IJCAI, KDD Cup 2015

0 20 40 60 80 100
0.58

0.6

0.62

0.64

Iteration

M
ax

im
um

A
U

C
O

bs
er

ve
d

0 20 40 60 80 100 120 140
0.62

0.63

0.64

0.65

0.66

Iteration

M
ax

im
um

A
U

C
O

bs
er

ve
d

0 20 40 60 80 100
0.84

0.85

0.86

0.87

Iteration

M
ax

im
um

A
U

C
O

bs
er

ve
d

68

Table 8.3: Optimized pathway parameters from running GCP by dataset
Parameter KDD Cup 2014 IJCAI KDD Cup 2015

k 1 1 2

𝑛𝑐 389 271 420

𝛾 32 65 18

𝑟𝑟 4 8 1

𝑛 387 453 480

𝑚𝑑 19 10 10

𝛽 32 51 34

8.4 Competition results

We demonstrate the effectiveness of the Data Science Machine by applying it to the

datasets where many data scientists are competing for the best results. We compare

the results from our experiments with the public performance in these competitions

to help us answer the question of "How does the performance of the Data Science

Machine compare to human performance?".

To this end, we ran Data Science Machine with fully automated feature genera-

tion (Deep Feature Synthesis), feature selection, machine learning, and model tuning.

There is no human involvement in the analysis of data beyond setting initial parame-

ters of the Data Science Machine such that the computational limits are maximized.

The results of running the Data Science Machine are presented in Table 8.4.

69

Parameter Selection KDD Cup 2014 IJCAI KDD Cup 2015

Local Online Local Online Local Online

Default .6059 .55481 .6439 .6313 .8444 .5000

GCP Optimized .6321 .5863 .6540 .6606 .8672 .8621

Table 8.4: The AUC scores achieved by the Data Science Machine. The "Default"

score is the score achieved using the default parameters for the machine learning

pathway. The "Local" score is the result of running k-folds (k=3) cross validation

on the training set. The "Online" score is the score received when the result was

uploaded for assessment by the competition.

Table 8.5 shows how the Data Science Machine did relative to other competitors

on the leader board. The table presents some basic information about the teams that

beat and the teams beaten by the Data Science Machine. To put these scores in

perspective, Figure 8-3 shows how the Data Science Machine score compares to other

competitors at each percentile of the leader board.

Dataset Teams % of Best % Better # Submissions worse # Days Saved

KDD Cup 2014 473 86.5% 30.7% 3873 929

IJCAI 156 93.7% 67.3% n\a n\a

KDD Cup 2015 277 95.7 14.4% 1319 377

Table 8.5: How the Data Science Machine compares to human efforts. "% of Best"

is the proportion of the best score the Data Science Machine achieved. "% Better"

indicates the percentage of teams that out performed the Data Science Machine sub-

mission, while "# Submissions worse" is the count of all submissions made by teams

that the Data Science Machine outperformed. To calculate "# Days Saved", we used

the rule in KDD Cup 2014 and KDD Cup 2015 that teams could make up to 5 sub-

missions a day. Using this rule, we make a lower bound estimate of the number of

days spent by teams that rank below the Data Science Machine. We do not have data

on number of submissions for IJCAI. KDD Cup 2015 is still an on going competition,

so this is a snapshot from May 18th, 2015.

70

Figure 8-3: AUC scores vs % participant achieving that score. The vertical line
indicates where the Data Science Machine ranked, From top to bottom: KDD Cup
2014, IJCAI, KDD Cup 2015

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
r

th
e

R
O

C
cu

rv
e

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
r

th
e

R
O

C
cu

rv
e

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

% Participants

A
re

a
un

de
r

th
e

R
O

C
cu

rv
e

71

72

Chapter 9

Discussion

In many regards, the Data Science Machine is the first of its kind to emulate human

aspects of the data science endeavor. In following sections, we discuss how results on

all three datasets reflect the effectiveness of the Data Science Machine in emulating

a data scientist.

9.1 Creating valuable synthesized features

If the synthesized features had no value, we would not expect the Data Science Ma-

chine to perform so well in the three competitions. In its best performance, it beat

approximately 86% of other competitors. These results demonstrate that Data Sci-

ence Machine can produce new features that at least have some value.

Even in the competition where the highest percentage of competitors beat the

Data Science Machine (IJCAI), it is clear from the results that the system captured

information about the problem similar to human intelligence. During the IJCAI

competition, the sponsors released a benchmark model. The proposed model used a

customer’s history at merchants that are similar to the merchant that the customer

is currently shopping at to make predictions. To do this, they proposed one way to

measure merchant similarity. The sponsors claimed that this method would achieve

an AUC of at least .65. This is noteworthy, because the Data Science Machine GCP

optimized solution achieved an AUC of more than .66. This means that the Data

73

Science Machine was able to automatically derive a model that was at least as good

as the human proposed one. Even more, if you look at the rate of improvement as

a competitor’s rank increases, the Data Science Machine score is just at the point

where score improvement plateaus. This suggests that the Data Science Machine

features captured the major aspects of the dataset while simply missing out on minor

improvements.

In the other two competitions, the Data Science Machine features are enough for

the Data Science Machine to beat a majority of competitors. Similar to IJCAI, the

Data Science Machine is on the plateau of score improvement in KDD Cup 2015.

Again, this makes a good case that the features synthesized by the Data Science

Machine capture important aspects of the prediction problem. In KDD Cup 2014,

the Data Science Machine features are good enough to perform better than most

competitors but yet fall short of the top competitors as the rate of improvement does

not plateau. We discuss the significance of this phenomena in Section 9.3.

9.2 Auto tuning effectiveness

The previous section discussed whether or not the Data Science Machine creates

features of value. However, an important part of the Data Science Machine is selecting

which of those features to use and how to tune the model to best use them. To solve

this, the Data Science Machine employs an auto-tuning process. We can see across all

three datasets that the Data Science Machine was able to increase its score, locally

and online, by using auto tuning. By using an auto-tuning process, the Data Science

Machine is able to design a machine learning pathway that can adapt itself to a range

of problems rather than depend on the proper default parameters.

The testing with the KDD Cup 2015 dataset brought about an interesting insight

with regard to the default parameters that highlights the significance of auto tuning.

With the default parameters, the local cross-validation score seemed to produce a

good result. However, when the predictions were uploaded to the competition web-

site, the results were as good as if the Data Science Machine had guessed randomly.

74

This caused suspicions as to if there was something wrong with the training setup.

However, as part of the troubleshooting process, we used the interface described in

Chapter 7 to examine features the Data Science Machine created and to play around

with machine learning pathway parameters. Using this interface, we were able to

conclude that the issue was with the default parameters rather than with the training

pathway itself.

We reached this conclusion by first turning off all features except for the simplest

ones. This reduced the number of features that the modeling pathway considered

by an order of magnitude. When we reran the the modeling pathway with default

parameters, a cross-validation score was obtained as before, but when we uploaded it

online, we observed an online score that had matched, unlike before.

Next, we re-enabled all features one by one and changed the value of each parame-

ter from the default. When we did this, we observed that changing all parameters but

one had no effect on mismatch with the online score. However, when we increased the

parameter that controlled the number of trees in the random forest, the online score

matched the local, cross-validated score. This suggested that our default value of 200

trees was not enough for the full dataset. Because each tree selects a small subset of

features, when we had a lot of features, results did not show good generalizability.

Decreasing the number of the features or increasing the number of trees solved this

problem.

The process we followed is similar to the process of a practicing data scientist.

First, we experimented with what features to include in our system, and then we

experimented with parameters of the machine learning process.

This is noteworthy because the auto-tuning process employed by the Data Science

Machine did not encounter the issue described above. And, as we see in the results,

it performed very well relative to competitors in KDD Cup 2015 when it came to

selecting features and tuning parameters. The implication of this is that the Data

Science Machine essentially removed hours of debugging from the work flow. Addi-

tionally, it highlights the difficulty in picking default parameters for machine learning

algorithms. Without the auto-tuning process, the Data Science Machine would not

75

have achieved its goals.

9.3 Human value

The KDD Cup 2014 competition shows a good example of how human intelligence is

still important. If we look at score growth by percentile, we can see that the top 10%

of competitors significantly outperformed everyone else. The competition provides

enough information to see that these top submissions were often made by teams of

people and that the individuals involved have significant professional data science

education and experience. Beyond this, the competitors clearly invested a lot of time

refining their models. In the competition, 4 out of 5 of the top teams made over 200

submissions, representing well over a month of of thinking about the problem, as the

competition only allowed 5 submission per day. Thus, it is reasonable to assume that

top performers’ gain over the other 90% of competitors were due to their "expert"

knowledge of data science and close understanding of the problem domain.

Figure 9-1: The cumulative number of submissions made as leader board rank in-

creases in KDD Cup 2014. We can see the total number of submissions made by

competitors increased exponentially as we move up the leader board.

0

0.2

0.4

0.6

0.8

1

1.2
·104

Rank on leader board

C
um

ul
at

iv
e

su
bm

iss
io

ns

The Data Science Machine still performs very well against competitors who were

76

not able to figure out the insights that put the "experts" so far above everyone else.

We can see this in Figure 8-3, where the Data Science Machine scores toward the end

of the plateau. At some point, moving up the leader board might not be worth the

cost required to do so. The large human effort to move up the leader board is shown

in Figure 9-1.

9.4 Human-data interaction

The interface for the Data Science Machine is a first attempt at presenting a new

paradigm to data scientists. It faced new challenges in explaining and organizing a

large number of synthesized features. These challenges were, in many ways, unex-

pectedly hard, but they led to constructive insights.

1. Determining a systematic way to name features proved difficult. The solution

proposed by the Data Science Machine works for user who invests the time to

understand feature notation, but it is not welcoming to new users.

2. The feature selector interface is successful in organizing features by entity, but

it is cumbersome when entities have hundreds of features. The scoring system

that we implemented alleviates this to some extent, but its simplicity means it

falls short of making good recommendations in problems where features must

be combined for best performance.

3. The pathway parameter selection is successful at exposing raw parameters to

the user, but it is unclear in which situations a user can do a better job choosing

parameters than can a computer. It provides the option to do auto tuning, but

further work is need to understand how to best expose parameters to users.

Additionally, the current design of showing all parameters to the user will not

scale if more parameters are added to the system.

4. The most successful concept in the interface is the encouragement of work flow

based on designing experiments, evaluating the results, and iterating on new

77

insights. This process very much replicates the work flow of a data scientist but

cuts out the part of the process where they have to go back to the data and

extract new features. This enables faster iteration. By successfully making it

easier for data scientists to test ideas, the Data Science Machine has used its

algorithm to enable human creativity.

9.5 Implications for Data Scientists

The competitive success of the Data Science Machine suggests it has a role alongside

data scientists. Currently, data scientists are very involved in the feature generation

and selection process. However, our results show that we can automatically create

features of value and figure out how to use those features in creating a model. Still,

in all datasets, humans beat the Data Science Machine. However, the amount of

effort put in by top competitors was likely high. Furthermore, there were probably

competitors who performed worse even when they put in large amounts of effort.

Thus, there seems to be a place for the Data Science Machine in data science.

First, the Data Science Machine can be used to set a benchmark. Just as the

IJCAI organizers published a benchmark for competitors to use as reference, the

Data Science Machine could be a performance reference for practicing data scientists.

If the Data Science Machine performance is adequate for the purposes of the problem,

no further work is necessary. This situation would save a lot of time if the dataset

is similar to KDD Cup 2015 or IJCAI where most gains are achieved by the Data

Science Machine, but further human work has diminishing marginal return. In the

case of KDD Cup 2014 where further gains are significant, they appear to come at

a high cost. The Data Science Machine solution with a cost-benefit analysis could

make a significant impact on the time spent modeling predictive problems.

Second, the Data Science Machine can be used as a tool to enable data science

creativity. The Data Science Machine works by exploring a large space of potential

features and models for a problem in an attempt to find the best one. Data scientists

often face the problem of having more ideas to consider than resources to test. Com-

78

bining these situations, we reach a proposal for the Data Science Machine. Rather

than iterating on which features to select, the Data Science Machine can simply enu-

merate potential features and let data scientist iterate on feature selection. This

suggests that the Data Science Machine can be the first step for data scientists to

explore a problem. A data scientist can start with the Data Science Machine solution

and then apply their expert knowledge to refine it. The interface we built is the first

step toward this goal.

79

80

Chapter 10

Related Work

The key components of the Data Science Machine are

∙ Automated feature engineering

∙ Working with related data

∙ End-to-end system from data to predictions

Many related works have some of these components.

10.1 Automated feature engineering

Machine learning researchers and data scientists have long understood that feature

engineering is the difference between success and failure. Generalized feature extrac-

tion algorithms have been well studied in various machine learning domains such

as machine vision and natural language processing to solve this problem. In these

domains, there are many examples of algorithms that perform well over a range of

problems.

In machine vision, an early concept was Scale-invariant feature transform (SIFT)

[13]. These types of features had success in generalizing to many problems and ap-

plications in machine vision such as object recognition and panorama stitching [8].

Other generalized feature extraction techniques have also emerged in machine vision

81

such as Histograms of oriented gradients [10] that perform well in other situations.

In many cases, these generalized features have enabled machine vision researchers to

spend less time deriving descriptive features for every new problem.

Similarly, in natural language processing, there are generalized features generation

techniques. One simple model is term frequency-inverse document frequency (tf-idf),

which is the ratio of how frequently a word shows up in a document to how often it

shows up in the whole corpus of documents. This feature type has played an important

role in text mining endeavours due to how easy it is to calculate and how well it

performs [16]. Like vision, there has been a lot of development in generalized features

to describe text. Latent Dirichlet Allocation (LDA) is a more recent technique that

transforms a corpus of documents into document-topic mappings[6]. LDA has proven

to be general purpose enough to be useful in many document classification tasks such

as spam filtering [4] or article recommendation [20].

Importantly, while we consider these generalized algorithms to be useful, they still

have to be tuned for best performance. For example, in LDA, choosing the number

of topics in the corpus is a challenge big enough to encourage further research [6].

However, it is hard to call it a shortcoming when we consider all the success the basic

LDA model has had. However, the importance of these algorithms is that they are

a technique to generically capture information about type of data. But as we note

in the next section, less work has been made toward extracting features from related

data.

10.2 Working with related data

While the Data Science Machine focuses on data where we simply know that a relation

between entities exists, the field of linked data strengthens these assumptions. In

linked data [5], the data is structured such that it can be accessed with semantic

queries. The field of automated feature generation for linked data an active area of

research.

82

Cheng et al. developed an automated feature generation algorithm for data or-

ganized in a domain-specific knowledge base. This data is organized as entity-

relationship-entity triples. For example, the Yago [19] knowledge base contains the

following triple: (Natalie Portman, hasActedIn, Black Swan). Using knowledge

bases, the authors create a graph based language for generating features. In one exam-

ple, they use natural language techniques to extract entities in tweets and relate them

to entities in Yago. By relating tweets to entities, they can automatically generate

new features with semantic meaning. Using this technique, they show some improve-

ment in prediction results with their automatic semantic features. However, they

conclude further improvement will likely come from more domain-specific knowledge

bases and information retrieval techniques.

Other works have also focused on extracting features from knowledge bases. While

Cheng et al. require the user to specify the feature type, Paulheim and Fümkranz focus

on an unsupervised approach where they define 6 different generic feature generators.

Some of their generic functions generate features that are not useful. To filter out these

features, they apply the heuristic that removes features that have a lot of undefined

values or few unique values.

Both of these works are limited to datasets that are structured in knowledge bases

or can be mined for entities that are in knowledge bases. Many datasets do not fit

these constraints, yet still have related entities. Developing an automated feature

generation algorithm and system for making predictions in these cases are goals of

the Data Science Machine.

10.3 End-to-end system

The Automatic Statistician project automatically models regression problems and

produces human readable reports [12]. Their approach uses non parametric Gaussian

processes to model regression functions. They demonstrate their system performing

well on 13 different time series datasets, suggesting a certain level of generalizable.

Their system is noteworthy in several regards. First, like the Data Science Machine,

83

it focuses on an input of relatively untransformed data into the system. In the case of

the Automatic Statistician, it is time series data rather than relational data. Second,

the approach of composing explanations one by one is similar to how a data scientist

might analyze time series to generate the overall model. Finally, they demonstrate

generating a report to explain the resulting model so the system can be understood

by non-experts.

84

Chapter 11

Conclusion

We have presented the Data Science Machine: an end-to-end system for doing data

science with relational data. At its core is Deep Feature Synthesis , an algorithm

for automatically synthesizing features for machine learning. We demonstrated the

expressiveness of the generated features on 3 datasets from different domains. By

implementing an autotuning process, we optimize the whole pathway without human

involvement, enabling it to generalize to different datasets. Overall, the system is

competitive with human solutions to the datasets we tested on. We view this success

as an indicator that the Data Science Machine has a role in the data science process.

11.1 Future work

We see the future direction of the Data Science Machine as a tool to empower data

scientists. To this end, there are three important directions for future work.

User interface and Human-Data Interaction We took the first steps to expos-

ing the functionality of the Data Science Machine to a user. In the discussion,

we highlight several places where this succeeded and failed. Moving forward, we

need to further explore how a data scientist could use our system. This should

involve extensive user testing and iteration.

More datasets The Data Science Machine was tested on 3 different datasets, but

85

more datasets are will help us develop the generalizability to make the Data

Science Machine the best tool for data science.

Improved performance A fast system enables us to iterate on new functional-

ity and analyses new datasets efficiently. The performance level of this initial

system suited our purposes, but improving performance will enable the Data

Science Machine to be test on more and larger datasets.

86

Bibliography

[1] "data science" job trends. http://www.indeed.com/jobtrends?q=\%22Data+
Science\%22&l=. Accessed: 2015-05-22.

[2] Mysql 5.6 reference manual: Alter table syntax, 2015. URL https://dev.
mysql.com/doc/refman/5.6/en/alter-table.html.

[3] Mysql 5.6 reference manual: Create view syntax, 2015. URL https://dev.
mysql.com/doc/refman/5.6/en/create-view.html.

[4] István Bíró, Jácint Szabó, and András A. Benczúr. Latent dirichlet allocation
in web spam filtering. In Proceedings of the 4th International Workshop on
Adversarial Information Retrieval on the Web, AIRWeb ’08, pages 29–32, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-159-0. doi: 10.1145/1451983.
1451991. URL http://doi.acm.org/10.1145/1451983.1451991.

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

[7] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010. URL http:
//arxiv.org/abs/1012.2599.

[8] M. Brown and D.G. Lowe. Recognising panoramas. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, pages 1218–1225 vol.2,
Oct 2003. doi: 10.1109/ICCV.2003.1238630.

[9] Weiwei Cheng, Gjergji Kasneci, Thore Graepel, David Stern, and Ralf Herbrich.
Automated feature generation from structured knowledge. In Proceedings of the
20th ACM international conference on Information and knowledge management,
pages 1395–1404. ACM, 2011.

[10] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

87

[11] Pedro Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78–87, 2012.

[12] James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Automatic construction and Natural-Language description
of nonparametric regression models. In Association for the Advancement of Ar-
tificial Intelligence (AAAI), 2014.

[13] D.G. Lowe. Object recognition from local scale-invariant features. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
volume 2, pages 1150–1157 vol.2, 1999. doi: 10.1109/ICCV.1999.790410.

[14] Heiko Paulheim and Johannes Fümkranz. Unsupervised generation of data min-
ing features from linked open data. In Proceedings of the 2Nd International
Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pages 31:1–
31:12, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0915-8. doi: 10.1145/
2254129.2254168. URL http://doi.acm.org/10.1145/2254129.2254168.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[16] Anand Rajaraman and Jeffrey David Ullman. Data mining. In Mining of Massive
Datasets, pages 1–17. Cambridge University Press, 2011. ISBN 9781139058452.
URL http://dx.doi.org/10.1017/CBO9781139058452.002. Cambridge Books
Online.

[17] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[18] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in Neural Information
Processing Systems, pages 2951–2959, 2012.

[19] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web, pages 697–706. ACM, 2007.

[20] Chong Wang and David M Blei. Collaborative topic modeling for recommend-
ing scientific articles. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 448–456. ACM, 2011.

[21] Andrew Wilson and Zoubin Ghahramani. Copula processes. In Advances in
Neural Information Processing Systems, pages 2460–2468, 2010.

88

