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ABSTRACT

The phenomenon of acoustlie streaming has been observed
and discussed for many years. One of the more interesting
aspects of the streaming near obstacles is its dependence
upon the geometry of the obstacle and the Intensity and
frequency of the acoustic wave striking the obstacle. The
direction of the streaming motion has been observed to
change under certain conditions.

It 18 pointed out in this thesis that the type of
streaming which occurs is determined by two dimensionless
parameters, R = U_ a/v, and s/a, where U_ is the particle
veloeity amplitud8 in the incldent wave, s is the particle
displacement amplitude, a is the radius for the case of a
cylindrical obstacle and v is the kinematic viscosity of
the medium. Theoretical treatments are given for the limit-
ing cases of very large and very small R, and the calculated
flow patterns are in agreement with those observed experi-
mentally.

The treatment for large R 18 based upon the mathematical
theory of the boundary layer introduced by Prandtl. A
perturbation calculation is carried through to terms of
fourth order, and represents an extension of work done by
Schlichting¥ The calculations are rather laborious and
involve several simple extensions of the perturbation tech-
nique. The resulting expression for the stationary stream-
ing flow 1s applied to several examples, including the flow
near a circular cylinder.

The treatment for small R is based upon the Oseen
approximation to the Navier-Stokes equations. A perturbation
technique 18 agaln used to calculate the streaming near a
circular cylinder.

Experiments have been conducted in the range of inter-
mediate values of R and indicate that \two types of flow exist,
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one corresponding to that calculated for large R and the
other. to that for small R. The transition point between
the two types of flow has been determined experimentally
for a circular cylinder as a function of the parameters
R and s/a.

A calculation of the rate at which energy is dissipated
viscously near a circular cylinder in an oscillating flow

for both the large and the small R cases is also included
in this thesls.

Thesls Supervisor: Uno Ingard
Title: Assistant Professor of Physics
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Chapter I

Introduction and History of Problem

When an acoustic wave is propagated in a viscous fluid,
under certain conditions time-independent currents appear
superimposed upon the periodic motion of the fluid. For
many years this phenomenon has been known and a number of
papers concerned with the subJect have been published. The
phenomenon is often referred to as acoustic streaming, and
can occur both In the presence of sollid obstacles and when
no boundary surfaces are present. The former type of stream-
ing has been observed to occur in tubes and in the neighbor-
hood of spheres, cylinders, orifices, and other obstacles in
a sound fleld. One of the first mathematical treatments of
this type of flow was given by Rayleigh2 in which he treated
the circulating flow in standing wave tubes. A general
analysis of streaming in the presence of boundarles appears

in a paper by Schuster and Matz}o

and is applied to the prob-
lem treated by Raylelgh. The treatment of Schuster and Matz
neglects the terms'in the equations of motion which can give
rise to streaming in the absence of boundaries. Eckarti™
seems to have been the first to discuss this latter type of
streaming, one example of which is the streaming occurring
in a medium in the vieinity of a narrow beam of sound (quartz
wind).

A 1list of references to the papers on acoustic streaming

1--22
is included in the bibliography of this thesis. Among the
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more recent papers on the subject, those of Westervelt,l9

el are of conslderable inter-

Nyborg,ao and Medwin and Rudnick
est. Each of these papers contains a brief review of the
general mathematical theory of acoustic streamiﬁg, beginning
with the Navlier-Stokes equations for a viscous compressible
fluid, and points out how the streamihg is generated by the
combination of viscdus and nonlineér terms appearing 1n these
equations. Reference 1s made in these papers to earlier
mathematical treatments in the light of thelr approximations

21 dis-

and assumptions. In their paper Medwin and Rudnick
tingulsh explicitly between the volume source terms and the
surface source terms giving rise to the two types of stream-
ing discussed above. Westervelt gives a proof of the
physically apparent fact that the streaming motion 1s
solenoidal.

One of the more interesting aspects of the type of stream-
ing occurring near boundaries is that the néture of the stream-
ing seems to change with the intensity and frequency of the
incident sound wave producing the flow. In addition the shape
and direction of the steady circulating flows depend upon the
geometry of the obstacle interacting with the incident sound
field. For example, Carriéreu’s’g while studying the stream~
ing near a circular cylinder observed flow patterns which are
symmetric with respect to axes drawn through the cylinder in

directlons parallel to and perpendicular to the direction of

propagation of the incident wave. He found the flow to be
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directed toward the cylinder along the line of propagation.
Schlichting7 and Andrade6 studying the streaming near a
cylinder under somewhat different conditions observed a
steady flow qualitatively similar to that described by
Carriére, but which was moving in the opposite direction.
Bouasse8 has noted these two types of flow near obstacles of
a variety of shapes, and he has qualitatively correlated them
with the amplitude of the oscillating motion of the fluid near
the obstacle. Westerveltl9 more recently has agaln pointed
to the discrepancies between Carriére and Andrade and
Schliehting, and also has assigned them to differences in
the intensity of the wave incldent upon the cylinder. Ingard
and Labate}3 in their experiments with various shapes and
sizes of orifices in a sound field, have noted these distinct
types of flow occurring as the amplitude of osclllation is
varied with respect to the dimensions of the orifice, and
they present "phase diagrams” indicating the onset of flow
reversal and turbulence as a function of frequency and
amplitude.

It has been recognized that the change in the nature of
the circulating flow manifested as a reversal of flow must
be a consequence of the nonlinearity of the equations govern-—
ing the motion of the fluid, but the theoretical treatment of
these equations is difficult, and cannot be carried out with -
out approximations. It 1s difficult to know Just what type

of approximations are appropriate for a given experiment and
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the experiments cited do not seem to indicate any direction
of attack. If the parameters important in describing the
experiments were known, the type of approximation to be used
in the theoretical treatment could be more easily selected.
As seen in the experiments referred to above, the
intenslity and frequency of the incident wave as well as the
geometry of the obstacle seem to play a vital role. 1In this
thesis it is pointed out that the situation in any given case
can be completely specified in terms of two dimensionless
parameters. This can be seen from an application of the
elements of dimensional analysis to the problem. Thus in
treating a streaming problem i1t makes sense to speak of the
conditions of the problem or experiment in terms of these
two dimensionless parameters. The variables, intensity,
frequency, etc., are absorbed into the dimensionless parame-

ters. The parameters which prove most useful in the analysis

U a
which follows are the Reynolds number, R = —2— and the ratio

8/a. The letter U, stands for the velocity amplitude of the
incident wave, a represents the radius of the cylinder in
the problem treated, v is the kinematic viscosity coefficient,
and s represents the amplitude of the periodic particle
motlon in the incident wave.

If one looks at the expériments above in terms of the
parameters R and s8/a a theoretical approach to the problem
Immediately suggests 1tself. It will be seen that the

experiment of Carriere corresponds to a small value of R,
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and the experiments of Andrade and Schlichting correspond to
large values of R. The streaming patterns which they observed
will be shown to agree qualitatively with patterns obtained
theoretically using the approximations valid in each of the
two cases. Thus, the case in which R is large can be attacked
by using the mathematical theory of the boundary layer.
Indeed Schlichting7 used this theory to calculate the steady
flow corresponding to his experiment. The small Reynolds
number case can be treated by using an approximatlion procedure
introduced by Oseen.27 In this thesis the Oseen approximation
is carried through to give the steady flow near a circular
cylinder, and the boundary layer treatment of Schlichting is
extended to include higher order terms. This latter treat-
ment shows the dependence of the streaming at high Reynolds
numbers upon the parameter s/a. It 1s possible to calculate
the rate at which energy is dissipated by viscosity in both
of these cases, and these calculations are also included in
the theslis. There 1s no known method by which the cases
involving Reynolds numbers which are neither large nor small
can be treated theoreticaily. A chapter 1s included in which
experimental data covering this middle range is presented
and discussed.

- The accumulation of the material in this thesis did not
strictly follow the outline of the exposition just presented,
and 1t 1s of interest to trace the actual path that the

research followéd.
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It was believed initlially that the observed changes in
the circulatory motions with changes 1n incident wave inten-~
sity could be explained by extending the treatment of
Schlichting7 so as to include higher order terms. In par-
ticular a statement by Westervelt19 to the effect that the
reversed circulations observed by Carriere occurred for large
incident wave intensitles led to the hope that the higher
order calculation would predict such a reversal. When the
Schlichting treatment was carried to fourth order giving
terms 1n the steady velocity depending on intensity, it was
indeed seen that the resulting expressions indicated a change
in the sign of the velocity for sufficiently high intensity,
and the extension was regarded as successful. This sign
change 18 discussed in more detail later, and is now believed
to 1ndicate the fallure of the perturbation procedure when
8/a 1s increased beyond a certain point.

Attempts to observe a flow of the type described by
Carriere at high intensities proved futile. When the circu-
lation of smoke particles in the sound field near small
obstacles was observed, it was realized that this flow ob=-
served by Carriere ocours for small incldent wave intensities
instead of large and for cylinders of small radii. It was
then that the importance of the use of the parameters R and
s/a to describe the conditions of the experiment was recog-
nized, and the calculation for small R using the Oseen

approximation followed. The experiments deseribing the flows
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for intermediate values of R were carried out to complete
the picture.

It is hoped that this work has indicated the value of
the parameters R and s/a in describing the interaction of
an acoustle wave with an obstacle. The problem of the flow
near a cylinder which is treated in this thesis 1s one of
the simpler probléms illustrating the principles involved.
Perhaps the solutions for this example will be of use in a
treatment of the interaction of an acoustic wave with an
orifice, a sharp edged obstacle, or with the very fine fibers
in absorbent materilals.

In the following chapters the material outlined here

will be examined in greater detail.



Chapter II

The Reynolds Number as an Important Parameter in

Streaming Problems

It is ordinarily assumed that acoustic motion can be
accurately described by the following equations of force and

continuity.27

pX%'g ¢ G0)F) = T+ w0+ BVOT - wvxvE  21)
and
ap + V.pv =
5% -pv =0 (2.2)

where g is the dynamic shear viscosity, p' is the dynamic

bulk viscoslty, p 1s the pressure, p is the density and v

the particle velocity, which vanishes at all rigid boundaries.
It has been assumed here that ' and p are constants of the
fluid. Several authors have recently considered p' and p to
have a density and/or time dependence in connection with
determining how acoustic streaming would behave (hypothetically)

19, 21 but 1t 1s not the concern of

under such circumstances,
this thesis to investigate these questions. We shall pri-
marlily be concerned with streaming produced by the interaction
of sound waves with obstacles where the nonlinear and shear
viscosity terms play the major role in determining the fluid

motion.
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Since these terms are present even for the case of an
incompressible fluid, we may still expeet that the equations
obtained by setting p constant in (2.1) and (2.2) will give
rise to streaming in the presence of a boundary. In fact
time~independent streaming 1s observed for the case of
periodic flow around obstacles 1n liqulds as well as in gases.

If the wave length of the incident sound wave is very
large compared with the size of the obstacle, compressibillity
can be neglected in the acoustic case. Putting p constant

in (2.1) and (2.2) gives
ov - 1 -
3% + (v.V)v = - -‘-J~Vp - vwWxV xv (2.3)

V-v =0 (24)

where v = %, and v = O on any boundary surface.

These equations, while appearing somewhat simpler than
(2.1) and (2.2) are still virtually impossible to solve
exactly except 1in speéial cases. Of course the main mathe-
matical difficulty lies in the fact that the equations are
not linear. In several of the exact solutions to these equa-
tions the quadratic terms appearing on the left side of (2.3)
are ildentically zero, viz., the case of Polseulle flow
(laminar) through a pipe or the flow between rotating cylin-
ders., If the viscous term is neglected, the equations sim-
plify greatly and describe the general theory of inviscid

liquids. In the case of streaming near an obstacle it is
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the combination of both the viscous and nonlinear terms which
are Important. Indeed Eckartll and Fox and Herzfeld15 have
pointed out that both types of terms are essential to the
production of steady flow.

In the remainder of this thesis let us think in particu-
lar of the streaming produced by the periodic oscillation of
a liquid to and fro around a circular cylinder. Such a case
has been the subject of a number of experiments, and is per-~
haps the most simple example to be treated theoretically.

Before examining equations (2.3) and (2.4) further,
certain considerations of a more general nature should be
made. These considerations will enable us to attack the
equations with a greater sense of purpose and direction.
- Considered briefly the problem facing us 1s this. We have a
cylinder of radius a in a plane osclllatory field of angular
frequency o and velocity amplitude Uo, and in a liquid whose
kinematic viscosity coefficient 1s v. It has been observed
that a time-independent streaming exists under such circum-
stances, and in additlion as pointed out in the introduction,
the streaming flow pattern may have a different shape or
direction of flow depending upon the value of Ho, w and 2,4’6’7
We want to determine'theoretically how this can occur, and
obtaln analytical expressions describing the behavior of the
streaming in terms of Uo’ o and a, and compare our results
with experiment.

24

Dimensional analysis furnishes us with information on

how the parameters UO, ®w and a and v must fit together in any
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analytical description of the streaming, and also furnishes
us with a method of attacking the problem systematically.
Let us review this subject a bit.

Suppose that the streaming velocity at a point r/a and o
is denoted by q. Here r and ¢ are the usual cylindrical posi~
tion coordinates, and r/é expresses the distance from the
cylinder in dimensionless form. Thus we have quantitles
al(r/a,9 ), U, 2, w, and v. The dimensions of these quanti-

ties are given in the following table.

a(r/a, ¢ ) ¥
U, L™t
a L

® | g1

v 12p~1

We can thus construct three independent dimensionless

parameters

U
= = -—2 W cewm—
= %o' T2 = w 357y

The Buckingham P1 ‘f[‘heor'emgll tells us that a functional

relationship exists between these parameters. Thus
F(rl, Tos w3) = 0

or equivalently
™= f(v2, w3)
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Thus

a(r/a,$ ) = v, £(U /wa, U a/v)

The streaming velocity, in dimensionless form, q/UO, can be

written as a functlion of the two dimensionless parameters

1) U.a
Eg-and ~%—. If we denote the particle oscillation amplitude
U_a

by the letter s, and recognize —%—»as the usual Reynolds

number R we can write
a(r/a,¢) = U, £(s/a, R) (2.5)

The construction of dimensionless parameters is not unique,
and an infinlte number of cholces can be made. The present
cholce of R and s/h is especially convenlent since these
quantities are a measure of the relative importance of the
terms in equatéon (2.3). fThus the egnlinear term (V.V )v

is of order 4%—3 the viscous term, ;Eg’ and the time deriva-

tive term of order wUO. The ratlo o§ Ehe nonlinear term to

Uo a an
the viscous term is thus of order avo =—= R while the
o
ratio of the nonlinear term to the time derivative term is
2
Uo _s
Eﬁﬁ; = a

what we can do with equations (2.3) and (2.4) now clearly
depends upon the relative size of the terms in (2.3), that is
upon the values of the parameters R and s/a. Since we have
seen that thé values of R and s/a determine the streaming

velocity at any point, the conditions of any particular
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experiment will specify the value of R and s/a, and assist
us in deciding upon a theoretical approach to the problem.

As an example let us consider the experiments reported
by Carriére, Schlichting, and Andrade.4’6’7 For the case
reported by Carridre, o = 27 50, s = .4 x 10 tem,

1

a2 =1.25 x 10 omand v for air is 0.15 cm>/sec. Thus

R = Q%E = 10. In the experiment of Schlichting, o = 3.1,

s =0.19 cm, a =4 em, and v = ,0117 cme/bec for water.
Thus R = Q%E-:ZIOOO. Andrade6 does not seem to specify the
value of s for the photographs shown in his article. For a

numerical estimate let us take s/a = .1. He gives: a = .24 cm,
2

® = 4900, v = .15 cm°/sec and thus R = 82 5 200 for this
experiment.

Comparing the value of R in the’experiment of Carriere
with those reported for Andrade and Schlichting, it is not
surprising that the observed streaming patterns are different.
Fortunately equations (2.3) and (2.4) can be attacked and
solved for the two limiting cases of very small and very
large R, assuming that s/a is small. The flow observed by
Carriére resembles the flow obtailned from the golution for
small R, while the flow observed by Schlichting can be ob-
talned from the solution for large R. The appropriate
mathematical theory for the two cases 1s contalned in the
So~-called Oseen approximation for small R and in the Prandtl

boundary layer theory for large R.
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The Case for Small R

In two dimensions, and for rectangular coordinates

(2.3) and (2.4) can be written

(2.6)
g—g—+u%+v—g—§-=-%—g—§+v72v
g_.}.‘l..l..?-%:o

where u and v are the components of velocity in the x and y
directions respectively. The components u and v both vanish
on the rigid boundary surfaces. Since for small R the non-
linear terms are small compared with the viscous terms it
may be expected that the nonlinear terms can be partially
neglected in this case. 1In the absence of any obstacles we
would have a uniform flow fileld. This uniform field is per-
turbed by the obstacle, and the perturbation effects decrease
as the distance from the obstacle is increased. The expres-

silon for velocity can be split into two parts by writing

u = U(t) + u'
(2.7)

v=yv'
where the primed quantities represent the perturbing field,
and the U(t) is the original uniform velocity field. If the

expressions (2.7) are substituted into (2.6) one obtains
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2U 2u'+ua +":t'?-}-“-~t-val’ll -!'—22+vvzu'

getat s it Vay T T pax
(2.8)
ov' v’ ov! av'_ 12 2
Tt U gz Ve = -55§+vv v!
and %%4_2\” 0

The Oseen approximation consists in neglecting the nonlinear
product terms in the primed quantities compared with the
viscous primed terms. This 1s valld if R, which represents
the relatlve magnitude of the terms, 1is small.

The linearized equations are

SO TS SN
(2.9)
a Ug-!::—.:.].'.-a-g.{.vv v!
55 Ix pay
2u', av'_
and é—f+—§,—~—0

where ' + U = 0 and v! = Q0 at the boundary surfaces. These
equations will be solved for the case of the circular cylinder

in an oscillating field, where U(t) = U, coswt.

The Case for Large R

When R is large the inertial terms and the viscous terms
are of the same order of magnitude. The few exact solutions
for such a case seem to agree with what is usually observed,

in that the velocity of the fluid motion at high Reynolds
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numbers changes rapidly from its zero value at a solid wall
to its value in the main body of fluid. Even when the vis-
cosity of the fluid is low, the very rapid change in the
space derivatives of the velocity in the transition region
will give rise to viscous terms of magnitude comparable to
that of the inertial terms. Thus for a description of the
flow past obstacles at large Reynolds numbers, it is appro-
priate to look to the equations governing the fluid in a
layer in the immediate neighborhood of the body.

6 in 1904 first suggested examining this

Prandt12
"boundary layer" and developed the equations of motion of
the fluld in this layer. These equations are ordinarily
developed by considering equations (2.6) and realizing that
within the boundary layer the terms involving derivatives
with respect to the direction normal to the boundary will be
much larger than derivatives In the dlirection along the
boundary.

Starting with equations (2.6) we take x along the
boundary and y normal to it. The velocities u and v vanish
at y = 0. The symbol & is taken to represent the thickness
of the boundary layer, l1.e., the extent of the region in which
the inertial and viscous terms are of the same order. In this

distance & the velocity changes from its midstream value U(t)

to zero. Thus considering U of the order of unity and &

2,
smal1, £2 ~ 57, 3—-‘% ~572 1n the boundary layer. u, 2%, 23,
y

2
a------‘El-alre all considered to be of order unity. The continuity

2 x
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v v
equation says that 3—-};— ~ 1 and hence v ~ 5. Hence, %—L—’—, g—;—:—,
a—-gzv are of order b am:la-——-;_s-V ~ 51, Now if equations (2.6)
dx 2y '

are examined and all terms of order 5 and 52 are discarded,

the first equation becomes:

2
au du dJu _ _19p 2 u
5t + umax + Vay o 7x + V‘a——y-g (2.108.)

The second gives

la e
- 29 .1
5 5y 0 (2.10b)
and finally
du , av _
3% + 3y 0 (2.10¢)

Thus in order that the inertial terms and viscous terms are

2fv 1l or 6~ vl/é. The

of the same order we must have vo
equation (2.10b) says that the total pressure change through
the boundary layer 1s of order 62. Thus the pressure gradlent
- %g—% can be regarded as having the same value within the
boundary layer as outside. The limiting form of (2.10a) in

midstream gives

-1dp .90 , ydU
S5x "5 +Uax (2.11)

A non-dimensional derivation of these equations polnts

more clearly to their connectlion with large values of R. We

shall follow a development given by Goldstein.25



- 18 -

Taking U as a typical velocity, d a typlcal length and

R = Uzd, the expression arrived at earlier stating that

6 ~ v1/2 can be expressed non-dimensionally as ng R‘l/?.
Thus as R increases the thickness of the boundary layer
decreases. In order to get a true representation of what
happens in the boundary layer as R—~ «©, 1t 1s necessary to
multiply the scale of distances normal to the wall by Rl/?
80 that the region we are examining does not vanish in this

limit. Similarly, we multiply the normal velocity by Rl/?.

This leads us to write:

x' = %3 y' = R1

£ = -
UO UO
UO
PY%

au' du!' du' ap' ., 13% 3%

Tr+u' x! +v’ay' = -5%' +ﬁax~|§+ay:2
1 3v'+119v + yr2v! ]3 _2p' L1 aev'4.lagv'
R [9tT Ix" 5-? a2y ?thz R9y12

Assuming that the derlivatives appearing here remain finite

as R the limiting form of the equations 1ls as R—> o0,



2
Ju' ou' du' _ _3p' , 2w
gert uoxT ¥ VayT = 5§T+ay.
= -2 ! |
0 5%- (2.12)
du' B av'

which are the non-dimensional forms of equations (2.10).
Strictly speaking the application of these boundary

layer equations does not require the presence of a wall.

The conditions for application are, expressed non-dimensionally,

“that u/Uo change rapidly from one finite value to another over

a length normal to the basic streamline, of order R“l/?d,

while changes in the directién of the streamline are not

rapid, i.e., %—g—%, etc. are of order %—- Wherever the
o

curvature of the basic streamline or theorate of change of
that curvature becomes'infinite the equations are no longer
valid.

From the preceding discussion and review we can make
several conclusions. We expect the boundary layer theory to
give us information in our problem of flow around a cylinder
when R 1s large. When R is small we expect the motion in
this problem to be determined by the equations obtained
through the use of the Oseen approximation (equation 2.9).
At the present time there 1s no formal mathematical means

by which the problem for Intermediate values of R may be

attacked. For that reason, a portion of this thesis is
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devoted to observing experimentally what happens in this
range as a function of the parameters s/a and R. It is
important to determine the ranges over which the analytical
solutions for the extreme limits of R might be useful. The
transition between the two types of solution 1is also observed
experimentally, and seems to be related to the relative

stability of the two types of flow.



Chapter III

The Calculation for the Case of lLarge Reynolds Numbers

Starting with the Navier-Stokes equations for an
incompressible viscous fluild in two dimensions and the
equation of continuity, we have seen that it is possible to
obtain the Prandtl boundary layer equations which give a
valid description of the fluid motion near a rigid boundary
for the case of flow at high Reynolds numbers. The boundary

layer equations are

du du Au 12 3°u
-a-f+u—a-i-+vé—§~=~5-5§‘+v§;§ (3-1)
-’;—%+§§~=0 (3.2)

where u and v are the x and y components of velocity, respec-
tively. The boundary conditions are u = v = 0 at y = 0;

u = U(x,t) at y = . The kinematic viscosity coefficient

is v and p and p are the pressure and density. The coordinate
X is measured along the boundary and y in the direction normal
to the boundary. The function U(x,t) represents the "outside"
stream velocity. We recall that the derivation of these
equations assumes that the boundary layer or transition

region near the wall in which the stream velocity goes from
free stream value to zero, has a thickness small compared to

a characterlistic length of the boundary. In addition

- 21 -
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equation (3.1) is valid as long as the rate of change of the
radius of curvature along the boundary 1is small.
The term = %% has been shown to be equivalent to
- -];a-E = ) e—
pax 3t * U (3.3)

since to the order of approximation in deriving (3.1),

- %-%% in the boundary layer is the same as in the outside
stream. Equation (3.3) can be looked upon as the limiting
form of (3.1) as one moves away from the boundary. The equa-

tions governing motion in the boundary layer are thus

2
ou du ou _ 29U U 27u
ﬁ*%?”ﬁéﬁ“%*ﬁp
(3.4)
da av
x Yoy = ©

with the boundary conditions u = v = 0 at y = 0; u = U(x,t)

at y =c0 .,

It has been mentlioned in the first chapter that Schlichting7
has used these boundary layer equatlions to calculate the
steady flow near a cylinder for the case corresponding to
large R, and has compared his results with experiment.
(R ~ 1000.) Sechlichting's calculation is based on a per-
turbation approach and consliders terms to second order. In
this thesis the calculation is extended to terms in fourth

order and an expression for the steady flow stream function
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is obtained which shows a change in the flow pattern with

the parameter s/a.

Schlichting's Treatment

In treating the problem of oscillating flow along a
boundary, Schlichting assumes that the outside flow can be
represented by U(x,t) = Uo(x)coswt. The perturbation pro=-
cedure‘is carried out by assuming that u and v can be ex-
panded in a power serles in the parameter €. The first,
second, etc., powers of € correspond to the first, second,
etc., orders of the perturbation calculation. Thus the
expressions u =€1yl4—62u2 cese 3 V= le +-62v2 ... are put
into equations (3.4) and the resulting expressions are sepa=-
rated according to powers of €. The €, having served the
purpose of separating the various order terms, 1s finally
set equal to unity. Followlng this procedure and assuming

that @—IEI- is of first order while Ug—g- is of second order,
Schlichting obtained the following equations.

=
b

v
+la0 (3.5)

2
ou QU 3
5*“]"’ - V*-E}- 3%—% = - a)Uo(X)sincnti 5

L\
«
b

- U Uy Yy
IT T V5T = Ugx - (w3t iy

au1 244
lax lay)

(3.6)

1 dU
= 50, (x)3z —2(1 + cos2wt) - (u, ==
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The solution to second order is then u = u; +uy, Vo= v1-+v2.
The boundary conditions for equations (3.5) and (3.6) are

Wy =V, = O at y = 0, and u, s-égzii at y =0 ; U, = v, = 0

at y = 0 and u, is finite at y = . The imposition of
boundary conditions at y = ® is a mathematical simplification
of the physical picture in which the velocities approach
"outside" stream values away from the boundary. Since the
velocity expressions consist of constant terms plus terms in

¥y which decrease very rapidly as y increases, this is a valid
simplification.

In soiVing the equations it is convenient to introduce
the variable 7 = yvﬁ§1 where the quantity yg;- 6 is usually
considered to be a rough measure of the boundary layer thick-
ness. Since equations (3.5) and (3.6) are linear, the prin-
ciple of superposition may be used, and it is convenient to
write the time variation as the real part of an exponential,

ot for example. However, only real expressions can

i.e., e
be used in calculating the nonlinear inhomogeneous terms for
the next step. |

The solutions to (3.5) and (3.6) are in appendix 1. The
solutions u; and v, to (3.5) are periodic with frequency w.
The solutions u, and v, to (3.6) have a D.C. part and a
periodic part of frequency 2w. The steady part of the solu-
tion u, approaches a const;gt value as y —» . This limiting
value nE(x,OO,t) is = REUO—aﬁ-uhich Schlichting interprets

as the steady veloeity of the circulating fluid Just outside
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the boundary layer. At points where Upoe = 0, i.e.,

dau,

o dx
physical extent of the circulations at least along the

1) = 0, the flow becomes normal to the boundary. The

boundary is thus determined by his result.
The steady portions of u, and Vo represented in terms

of a steady stream function are

Y 2st "’yg'l Uo'a" Yeb(w

d¥2st _ 14 %o g
Yost = 5y = & Voax b 2n(T)

2
hd a7,
V23t='—§g%£z-g'c}> [o"‘“"ﬁ"'(r) 1§2b(7)

(3.7)

The functions \§2t'> andg op 8Te plotted as functions of ¥ 1in

figure 1.

The Higher Order Terms

In proceeding to a calculation of higher order terms we
shall write U(x,t) = Ag(x) + Ah(x) + U coswt, that is, include
a time-independent part in the ‘butside” velocity. We shall
assume that A,(x) is of second order and Ay(x) of fourth

order, while U (x) is of first order. The expression for

U 2U _ _ ‘
3% is the same as before. 3t = mUosinmt. The expression
for Ugg-is modified by the inclusion of the terms Az(x) and

Au(X).
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Figure 1 : The functions gzb,gzb which appear in the time inde-
pendent second order solution to the boundary layer equations,
plotted as a function of ? = y/5 . ( See equations 3.7)
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U 1 dUO dA2 dUo dA2
U‘é-i- = ?UO—H-].C_(I + cos?a)t) + (a—x—uo + Ae—ai-)coswt + Aa—-a-i-

+ (cross products of fifth, sixth, and eighth order)

dA
2 2 4
Since Ag(x),v €~ and A2713E ~ € , a separation according to

powers of € gives for the equations governing the first four

orders of magnitude:

2
vy 27y, du v
2—-;5-—"' VW=~%= -(DUOSiIKDt 2—3'(—]"+—'y"1""'0 (3'8)

V)
\\>

(\S)
)

. o _
du, du, , AU du, vy
5T - 95;2_. = §-UO---a-J-E-(l+ cos2wt ) - (ul-g-;c-+vl-§-§-) (3.9)

9% 2 _

ox *3
du, 5%u aA, av_
ot~ "é;zi = (Uggx + Azgx)cosat

Yy %o vy au
- (ul—é—f + Vl-é-—&- + ‘(12--9-—)-(- + V2°a—%-)

Ju v (3.10)
33+73 0
%y 27wy dA Ju 3
— -y = p o2 U, Ju
2t 342 A= [ulax'+u23x'*u§5%
9 us % 2y
+ Vlay + V2ay + v33y (3 11)
du, vy )
>x *tay ~°
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The complete solution to fourth order is
u=u; +u, + ug + Uy
V=V b, + v3 + vy

The boundary conditlons can also be separated according to
powers of €. The conditionu =v =0 at y = 0 gives Uy, Uy,
Uz, Uy, Vi, Vo, V3, Vy all equal to zero at y =0 (g =0).

At y = <© the functions Uy, Uy, u3, uy must remain finite,

and in addition u, = U coswt, u, = Aa(x), u, = Au(x). The
solutions to (3.8) and (3.9) are the same as in the Schlichting
case. The condition that u, = A2(x) at y = o© determines

Ay(x) = - %uofg-% and this 1s put into equations (3.10) and
(3.11).

Logically it seems that Schlichting should have included
the Az(x) in the "outside" stream velocity. We have seen
from (3.8) and (3.9) that his equations (3.5) and (3.6) for
Uy, Ups V35 Vo, would have been unchanged. The steady portion
of u, remalning finite at y = ¢® would not have been left
dangling, but would have been fitted into the scheme of
boundary conditions in a self-consistent manner as with
Aa(x) and Au(x) here.

In calculating the higher order terms it 1s necessary
to assume the A(x) terms in the "outside" velocity in order
to obtaln a solution. Had we not included these terms, the

dA2 au,
term Ay—— in (3.11) would be absent, and the term uy55 on
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the right-hand side of (3.11) which has a constant part would
da

cause difficulty. The A2‘H§ Just cancels this constant term

which upon integration would have given a component for uy

which approached infinity as y2.

Since we are only interested in the time-lndependent part
of Uy, the work can be simplified. One may note from the
expressions for Uy Uys Vi, Vo, in appendix 1 that the solu~
tion for uz, Vg in (3.10) will have no D.C. component. The
solution to (3.11) will have a D.C. component obtainable from
the time-independent portion of (3.11). The functions us,
v3 will have terms in o and 3w. However, the o terms are the
only ones contrlibuting to the steady part of Uy, and it is
thus only necessary to obtain the o components of u3, v3.

The results of the calculation for the "fundamental"

terms for u3 and v3 are glven by:

a~u
v 1 2 0 ot
LETO I i AR ["o aZ 3alle

au
+ Uo(a'ig')2§3b( 7 )emt]

1%y 1ot (3.12)
- 1.2 ol '{p)e ®
U 3(q) R.P.{ 5;-200 — Y?’a
) lot
-3y o\ ¥, e
2m2 o(dx ) 3b(7) ]

and



a3y au_ a%y
v 1 2 o o o) lot
3(e) = R'P'E o5.2% 73 "W a 3z k&a(‘()e -
2
av_d%u_  au
v 1 0 o 0,3 iot
ol 52 L2Uodx a2 +(dx)k3b(7)e ?

where ‘ éa’ g éb’ %3&1’ §3b are given in appendix 1.

The equation for the time-independent part of u, can be

written:
+
2 hd
"y dA, du AN vy
TV5E CheE C (9153 + Vpge + ugzy)
au, Ju, gu, (33
”(Vlgy'+V§§§'*v§3?)

The solution 1s:

d dau
Uyst = - ;i;'{no3 5232'§&a(7) * UO(I:T';'E'O"')3 Yib(7)
2

; , .1
.y o AU, d Uo §' o) (3.15)
o dx dxé 4e '\l

From the equation of continuity, we can introduce the stream

function
a3vu au, -
du_ a%u ¢ (3.16)
2 %o 2% ()]
0 dx x 40 7

where:
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v. = behst u zayphst
4 o x b 3V

t 1 t
The expressions f 4a? X 4p? Y be? g 4a? g Up? Y 4o BaTre given
in appendix 1. 1In the limit of large distances from the

f t
boundary the functions Y ha? f 4p? y he approach constant

values

' 17,839 -
Yu_a(oo) 12,000 + -8—1.—-? 1.58

69,367 74,161
oD = e #J - ] = e 2 .L‘.
3 yp(e) 3,000  23,000V2 >

- . 1,280,027 _ 236,121 _ _ .,
§ 4o 36,000 27,0002 2

. 1 1 1 ’
The functions ﬁ ha? Y I X he? Y na? g ib? f ye are plotted
in figures 2, 3, and 4.

The complete time-independent solution including both

the second order and fourth order terms 18 thus

a3y
Y st "’Y:n mi OTYEb('() " el [003 5;-3‘-’*&&(7)

5 (3.17)
au av_. 4d"U
+ U T 00) + 0% 52 ;;%Ywﬂ
le 1 1 au ' d3U 1
Ust = 33 = E{UO-E%YQb('() - Elﬁ'iuo3 ’5’;’3’9'?4&1
(3.18)

au, d2U
+ U, (=% dx) fub + UOT"_—?'KILC('?)]
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Figure 2: The functions ih,ﬁu which appear in the time inde-
pendent fourth order solution to the boundary layer equations,
plotted as a function of ¥ = y/5.
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Flgure 3: The functions ﬁb,r which appear in the time inde-
pendent fourth order solutlon to the boundary layer equations,
plotted as a function of = y/B



- 34 -

U

(7
h -
O

4C »

20

30

40 N

50

U
H
@]

60

70

80

n

]
Figure 4: The functions J:a,ch which appear in the time inde—
pendent fourth order solution to the boundary layer equations,
plotted as a function of ¥=y/6
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Figure 5: The functions .)ozb ,ﬁ/q . ﬁ/e , ﬁrc which appear in the
complete time independent stream function. ( See equation 3.17)
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2

3ZP d U, U
Vg =~ a:t N "yg‘i‘i[" ox 5+ (30 )] ‘§2b(7)

)

1 5470, , AU, a0
"Nt m + 3 a""—g")ha(‘f)
(2.19)

a4y

39, (dUO 20 + (dk )r4b(7)

, dU, adu, L d%u_ Wy 2 d2U
HU g~ + U, (=) + 2Uo(dx Yuc(7

dx dx
The functions Y ob? K 4a’ Y Ub? f 4y @ppearing in (3.17) are
plotted together in figure 5.

For the example in which we are primarily interested,
i.e., the case of oscillating flow around a circular cylinder,
the function U(x,t) = 2Uosin§cosmt. Thus

X
Uo(x) = 2U0s1n5 = 2Uosin<§ where x 1s measured along the

boundary from a2 stagnation point. In this case

d3Uo 20, 6 d”UO 20 "
-§~ = - -3— cos ~—3~ = 4 - sin
dx a dx a

The expressions for the stream function and the velocity

components become:
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2y 2
Y st ”Y%' 2 '31“24321)(’1) + (*2")2‘ (3.20)
{05 aa + fucrstne - Tueos?y]]

2“02 ! 8,2
Ugy = sinQCpg‘geb(r{) + (3)°

[0 imrte -y oo

yy ° |
Vst = -Y% m——%—c032¢2‘2b(7) - (%)2{( rua +ruc)sin4¢

T R T PR )]

The expression for the stream function can be written in terms

of dimensionless quantities as:

2y 2
R S A RECE

.[( §ua + hc)sm2¢ - Y4b°032¢]l (3.21)

= X
o = Y

When the fourth order terms are neglected, equation (3.21)
indicates that for a given value of a/ﬁ the streamline patterns

are geometrically similar. Thus photographs taken of the flow
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lines should look identical if the value of a/b is the same,
even though the absolute slze of the pattern might differ.
When the fourth order terms are included it 1is necessary

that s/a and a/6 both be the same for two flows to be geomet-
rically similar. Thus, as long as s/a is small enough for
these higher order terms to be neglected, a/b6 alone is enough,
and as s/a lncreases both s/a and a/5 are needed to specify

the geometry of the flow. The parameter a/b6 can be written

Va Uoa ya
a/6 = R' = sV = 3 B , and can be looked upon as a

modified Reynolds number.

Another simple example to which the above calculation
may be applied 1s that of circulating flow in a Kundt's tube.
When standing waves are set up in such a tube the "outside"

velocity function can be represented by

. 27X
U(x,t) = U, sin=5—coswt

Thus,
dau U
. _ 2wx o _ 0 21X
Uo(x) = Uosi T a_f_ = 21TT—COST
a%y 4@y adu 3
o _ _ 0g1n2TX o_ _8&r U, 0082l
dx! AQV A dx3 k3 ﬂ

The expression for the stream function determining the flow

within the Kundt's tube is given by the expression
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- U
Y st "’ng’oz%’x) smﬂ%gtfeb(?) + (5%2)2‘

2 27x 2 2wx (3.22)
‘{(Ha + §u)sin” E - § ype0s Tn

In this example the size of the fourth order term is seen to
Uo1r 8T Uo
depend upon the ratio ry S where ¢ is the velocity

c
of sound. In mostAcases this ratio is extbemely small, and
as a result the fourth order terms can be neglected. The
fact that these higher order terms may be significant in ore
case and not in another highlights the fact that the geometry
of the obstacle plays an important role in determining the

size of these terms.

Discussion

The streamlines gliven by the relation.‘l/)st = ¢onstant,
are plotted in figures 6 and 7. In figure 6 the fourth order
terms are completely neglected. The flow consists of a small
cilrculating flow within the boundary layer 1tself and an outer
flow which 1s also rotational. The directiorms of rotation of
these flows are indicated and are seen to be in opposite
directions, as of course they must be. In figure 7 the fourth
order terms are taken into account. For this figure, é{%;
"has been taken to be 10 while the ratio of the oscillation
amplitude to the radius of the cylinder, s/a, has the value
1/10. It 1s seen from filgure 7 that the presence of the
higher order terms distorts the flow somewhat in the direction

of oscillation. Indeed as s/a 1s increased the distortion is
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Figure 6: Steady flow streamlines produced by a sound wave
passing by a cylinder in the direction indicated by the double
arrow. Plotted from the stream function for large R neglect-
ing higher order terms.(See equation 3.20). The flow pattern

is symmetrical about the cylinder and only one quadrant is shown.
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Figure 7: Steady flow streamlines produced by a sound wave

passing by a cylinder in the direction indicated by the double
arrow. Plotted from stream function for large R taking the fourth
order terms into account. (See equation 3.20). In this figure

s/a = 1/10 , and a/6 = 10. '
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increased further, and this may easily be seen to put a limit
upon the range of application of the calculations to this
particular example. As s/é increases, the distance from the
cylinder at which the st:rea.mlirw:—4)55,c = 0 Intersects the

¢ = 0 line increases, and this intercept can be looked upon
as a measure of the distortion of the boundary layer circula-
tion. From equation (3.20) we see that for the streamline

Vust = 0, the quantity

§2b(7) + (-és-)e[( Y ba +§4c)sin2¢ - § abcoszcb]

must equal zero. For<b = 0 this becomes

Voolp) - (928, =0

and for values of ¥ larger than 5 or 6 the expressions § ob

and gl&b can be approximated by

§2b ~ = .75 + 2.30
gab x - 25 + 2.29

Thus
(257 + 2.29)(%02 - .757 + 2.30 =0

determines the point of intersection, and the value of v
representing this point is given by

pe¥ 2.30
° s - 25(8)°

For the example of the cylinder this is seen to become

infinite when s/a reaches the value s/a = yigﬁ' = 0.17.
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Since this inner boundary circulation can be looked upon as
representing the boundary layer thickness, it 1s to be ex-
pected that the results of our boundary layer calculation
cannot be used to describe the steady motion in the neighbor-
hood of small ¢ for values of greater than s/a = .17. It
wlll be remembered that the derivation of the boundary layer
equations 1s based upon the assumption that the boundary
layer 1s very thin compared with the characteristic dimension
of the obstacle.

Some experimental observations of the flow near a circular
cylinder have been made for the large Reynolds number case
which indicate that as s/a is increased to a value in the
nelghborhood of 0.2 the inner circulation 1s abruptly swept
away. Thus this observation may possibly correspond to the
theoretical indication that the inner circulation becomes
elongated along the axls of oscillation. More will be said
about this in the chapter on experiment.

A numerical example will give an estimate of the magnitude
of the steady velocities indicated by equation (3.20). Let
us consider just the flrst term of the expression for Uy
As the distance from the boundary increases the function
X éb(q) approaches the value - 3/4. Thus

2y 2
ugp = - %; —-é-g—ain2¢ = - %IJO(g)sin2¢
Suppose that we have a plane sound wave of intensity 133 db

and frequency 500 ¢ps incident upon a cylinder of radius 1 cm.
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Then s/a = 0.01 cm and R = 209. Thus the maximum value of
ug, is 0.47 cm/sec. The magnitude of this velocity is
directly proportional to the square of the particle velocity
of the incident wave, and is 1lnversely proportional to the
frequency for a given UO.

In concluding this chapter 1t 1s worth while to sum up
the assumptions made in the mathematical treatment presented
“here. In the first place the Reynolds number R must be large
in order that the Prandtl boundary layer equations describe

the region near the obstacle satisfactorily. In addition

the curvature of the obstacle must not change too rapidly or
become too large. Finally, for the case of the cylindrical
obstacle, the parameter s/a must be small or the perturbation
solution of the boundary layer equations will break down.

We have seen that the maximum value it can take is of the
order of 0.2.

Values of R of the order of 1000 should give good agree=-
ment with the calculations presented here as long as s/a 1is
less than the value 0.2. This means that for the case of a
¢ircular cylinder in a sound field in air, the radius of the
cylinder should be of the order of 0.5 cm with frequencies

greater than several hundred cycles per second.



Chapter 1V
The Calculation for the Case of Small Reynolds Numbers

In the last chapter a calculation was made for the case
of a cylinder in a periodic flow field for large values of R.
Earlier R has been defined as E%i, where Uo is the particle
velocity amplitude of the perlodic flow, a 1s the radius of
the cylinder, and v is the kinematic viscosity coefficient.

In this chapter the correspondling problem will be
treated for the case when R is small. In chapter II the
equations governing this case were derived (equations 2.9)
through the use of the Oseen approximation. These equations

furnish our starting point here. If we introduce for U(t),

the expression:

u(t) = U_coswt (4.1)

which represents a periodic flow, the equations governing

the motion become

at(U coswt ) +3t + U coswtg—)—c——'— = - %—gﬁ- + szu'
gt +U cos.cm;ax = - %g-g- + vV2v' (4.2)
du' A AN 0
ax T oy

We now assume that u' and v' can be represented as

series of decreasing terms, i.e., u' = U + Uy ey,

- 45 -
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v! = V1 + Vo vees where U, is of frequency w, u, contains
the frequency 2w and a time-independent part, and u3 has the
frequencies 3w and w, etc. The problem is to find the time-
independent part of u, and Vo which represents the steady
streaming.

The equations for u;, v, are, from (4.2)

9(Uo°f_i“°t +u,) ) apl ' vw iy
at T pax 1
av ap
1 __ 1971
3 Py + vV vy (4.3)
aul AR o
ax T3y
In solving for Uy, vy it is convenient to introduce the
complex quantity eimt for the time dependence. 1In the ex-

pression for u2 and Vo it will be necessary to return to the
real quantities since several product terms appear. Equa~

tions (4.3) can be written

— -_ 1 —
iwvoi + 1a:ql = - FVpl - v curl curl a,

where

Q, = ulf + vy, (5, J, k are unit vectors)
This equation can be satisfied by:

— - 1

q; = - U1 - iprpl + curl A (4.4)



where

- curl curlXaVQKné—%)—K

and

2
vV plzo‘

In the case of cylindrical symmetry A has only one component

AZ =Y which is an ordinary stream function. The first

order velocity ai is then given by

o evU - 1 9P 3
Y1 o lowp 2 X 2y
(4.5)
__ 1392 ¥
Vi lop d Y 2x
where
2
V pl"'o
and
2 i
vy =30
Correspondingly the vorticity is
pre = . e 2— lor i
®; = curl q; = curl curl & = -V R=-2"K=-22%, (4.6)

Considering now the case of an osclllatory flow past a
cylinder of radius a, the boundary conditions imposed upon
the solution to equations (4.5) are

u1+u==o}

vV, = 0
1 (4.7)

u; = vy = 0 for r = o0

for r = a
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Once the solutions uy and vy have been found, the time-
independent part of u, and v, are found by taking the time

average of the equations (4.2) in which the real parts LI

and Vip of u, and vy have been inserted, l.e.,
t £ t
Ju ap
1lr 1 2
Uocosmtax =-B~2—x—~ + vy u,
(4.8)
t t t
9Vip 19 Py 2
UOCOS(Dt-?T- = - B'é-— + vy Vo
and
t
a...:i... + ?..‘1.2. =
ax 2 N

To simplify the notation let us in the following omit the bars
and refer to the time average Eé and ?é by u, and v, them-
selves.

The equations (4.8) can then be written

ct

ta'~

1 —
Uocosaagiqlr = - ° grad Py - ¥ curl curl ds

If we set

Eé = curl Ké = curlyb2 k

and take the curl of this equation we find

4
7% - 4
UjcosmtLw) . = - v curl curl curl curly, K = - vy ', (4.9)
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The last step in (4.9) 1s Justified in the case of cylindrical

and rectangular coordinates. The boundary condition is

9, =0 at r =a. (4.10)

The Velocities u, and vy

In cylindrical coordinates the appropriate solutions to
(4.4) are

An cosn¢
P, = 1monAologr - Uoiwp z;a ’Ef”*;ﬁ” - imonrcos¢

(4.11)
Y, =T, Zl B, K, (kr)sinm ¢
M=

where

2 _ io
k- = v

The Km(kr) 1s the solution to the modified Bessel equa-
tion which approaches zero as r becomes infinite.
For matching the boundary conditions we write (4.4) in

cylindrical coordinates as

ap

1 9P 19¥1

Up =~ U5 - psr tF 56
1 9P g¥

qld) = Uoszln I I‘a¢- ERS

Inserting (4.11) and recalling the boundary conditions
a;, = - U,cos ¢ and Qg = U sind at r = a, we find
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A =0

_ .2
a® K,(ka)

>
]
I

(4.12)

1 kKo a

An = Bn =0 for n7> 1

In obtaining A, the relation328

and

zKO(z) + 2K1(z) = zxg(z)

were used.

From (4.11) and (4.12) the stream function for the

veloclties u1 and vl thus becomes

Kl(kr) imt

yDl = 20 a EEK;TEET sind e (4.13)

where

kzi/ﬁ;&ny'v/m

The Velocities u, and Vo

Having found'¢)l we can now calculate the "driving" term

in equation (4.9). From (4.6)
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and, with

do 9% sing 9%
3% "7 %% - Tr 3%

we find, using the above recursion formula for K

2
9o k°K, (kr)
e erimt[ 2 }sinaep = eri‘”t[x + iY] sin2d (4.14)

X Koikaj
Hence
d a’lr
5% = (Xcoswt - Ysimnt)Uosin2¢
in which

From (4.9) and (4.14)

t
2
: o U
VVALPQ = - Uocosa)ta ir = - —-g—- X sin2¢ (4.15)

Expressing X in terms of the functions kernx and keinx

defined by2°

-n »
i Kn(ﬁ' x) = ker x + lkei x

equation (4.15) can be written

| 2
4 Uo r a r a
v, = m ker, & kel Z - kel, £ ker % sin2¢  (4.16)



- 52 -

where

2 a 2 a
A = ker = + kel “ §

and

v
5‘V<‘6

The functions ker and kel do not satisfy the modifiled
Bessel's equation. Instead, as shown in appendix 2, they

satlisfy the equations

\Y} 4(ke12  sin2d) = k*

r
5 ke12 5 sin2¢>

Vh(kere % sin2¢) = kuker2 % sin2

Having proved this relationship a particular solution to (4.16)

can be written down immediately.

2
U_“sin2¢
..o r a _ r a
-(_Pep = —ﬂ-—[kere g keio '6' k312 5 kero 5} (4.17)

The homogeneous solution ybgh is a solution to the biharmonic

equation
4
V ¥on =0

From physical reasoning we expect the angular dependence to
be expressed by sin2¢ so that "‘Pgh = R(r)sin2¢ . The equa-

tion for R(r) then becomes

4 .3 2

4 47r 3 4°R 2 d°R dR

r =y + 2r —x - 9r” —p + 9r 557 = 0
dr dr dr r
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The roots to the corresponding indicial equation are
found to be p = 0, + 2, and 4. The corresponding solution

for Y, 1is found to be

Cc
Yo = (F+Cy + Cgr? 4 cyr’) sin2é (4.18)

r
Hence, the complete stream function is

-, 4 I e P S M
Yo 2p +¥ 2n B T S 2o A

(4.19)
. (ke.%r2 %— kel % - kei, -g— ker fg—)] sin2¢

With the condition

a¥ 2

v2¢ = - 3T =0 at r =00

we get

The other two constants are determined from the condition
v2r=--v2c!> =0 at r = a

‘ 28

Using the 1identities

X x
keizx + ﬁ-keiz' X = -5 keio' x

x - _ X
ker2x + 5 kerg' X = = kero' X

we get



2.3
¢ =~U°a' (ker,' £ kei & - kei,.' & ker
1 17N 2 B %% B "2 B oF

2
U
' [3) a a a a a
°2 = "I 5 E[“eio 5 Kero' B - ker, g kely! s}

Hence, the final expression for /), 1s

2
s la aa

a
LAYy

1 2 a _ a
(kere 5 kel  § - kei,' ¥ ker ¥) +

%(keio % ker ! % - ker % kel ' %) +
ra a ra a
2(ke1:'2 7§ kel ¥ - kel 7§ ker, 3-)] sin2¢
5 (4.20)
U r a
Yo = - g £(G §) sin2¢

The streamlines of the steady streaming are given by

zp2 = constant.

In passing it might be mentioned that we now can
estimate QU2/4)1 which should give an indication of the
magnitude of the u, and Vo terms compared wlith the uy and Vi
terms. PFrom (4.20) and (4.13) it is seen that'd)e/qvlzx s/a.
In order that the series for u and v be made up of decreasing

terms as assumed earlier, s/a should be less than unity.

Discussion

The stream function appearing in (4.20) has been examined

in some detall. The function f(g, %) has been plotted as a
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function of r/a for the values a/% =1, 2, 3, and 4 in
figure 8. It is apparent that the quantity a/% determines
the general shape of the streamline pattern, as in the case
for large R, and in any examples where a/b is the same and
the Reynolds number is small, one should expect to find a
geometrically similar flow pattern. Figures 9, 10 and 11
are plots of the steady flow stream lines for the different
values of R' = 1, 2, and 3. It is seen that for values of
R' less than three, an "eddy" 1s formed outside the cylinder.
When R' is increased the center of this "eddy" moves toward
the cylinder and decreases in size. At the point of its
disappearance (R' = 3), r/a is roughly 3 at the center of
the "eddy." When R' 1s greater than 3, (figure 11), none of

the flow lines close upon themselves for finite r/a.

Since

v - 13%2 L.

2r T T 3¢ 2¢ T T Pr
we can write

U

Vop = - ﬁg"gif(r/?7a a/ﬁy}cosz¢ (4.21)

and
U
Vo4™ E-Q-g [f'(r/a, a/‘d)] sin2¢ (4.22)

where the prime indicates differentiation with respect to

r/a. The functions f(r/i7aa/6) and f'(r/a, a/b) represent-

ing the radial and tangential stream velocitles, are plotted

in figures 12 and 13 respectively for R' =1, 2, and 3. It
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Figure 8: The radial part of the steady stream function,
f(r/a,a/6), which appears in the solution for small R,
plotted as a function of r/a. (See equation 4.20).
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90° 60°
30°
g
‘ 0°

Figure 9: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R<10). The parameter R' = a/b6 has the
value 1 in this figure.
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Figure 10: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R<10). The parameter R' = a/b has the
value 2 in this figure. ‘
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Figure 11: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R<10). The parameter R' = a/56 has the
value 3 in this figure.
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Figure 12: The radial velocity function f£(r/a,a/5) for the
steady streaming shown in figures 9, 10, r/a 11

plotted as a function of the distance from the cylinder‘fér
several values of R' = a/b,
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Figure 13: The tangential velocity function f'(r/a,a/6) for
the steady streaming shown 1n figures 9, 10, 11, plotted
as a funetion of the distance from the cylinder for several

values of R'.
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is noted from (4.21) that Vo, 18 negative for ¢ between O
and 7/4. Thus the direction of the flow lines is toward the
cylinder in the direction of the sound propagation.

A numerical example will give an estimate of the magni-
tude of the steady velocities. ’Suppose an lncident sound
wave of intensity 100 db and frequency 135 e¢ps is travelling
by a eylinder of radius 4 x 1072 cm. Then s = 0.79 x 1073 cm.,

and R = 3. The radial and tangential veloclities have maximum

values of

-2 -3
Vop = 0.8 x 10 U, =5.7x 10~ cm/sec

- -2 - -3
24 1.1 x 10 “U, = 7.8 x 10 ° em/sec

The magnitudes of these velocitlies are proportional to the
square of the particle velocity of the incident wave, and
decrease slowly with increasing frequency.

In concluding this chapter it is pointed out again that
the preceding analysis is valid only for certain values of
the parameters R and s/a, since the use of the Oseen approxi-
mation implies small values of R, and the analysis has
pointed out that s/a must be small (s/a < 1). Preliminary
experiments have shown that R should be less than 10 to get
the flow described by this analysis. On the other hand, a
typical value of R for which the reversed streaming exists
is of the order of several hundred.

A comparison of the results of this analysis to the flows

observed experimentally is given in chapter VI.



Chapter V

Calculation of the Viscous Dissipation due to an Obstacle

The calculation of the energy lost to viscous friction
in a fluid is of practical interest. In acoustics such a
calculation of the energy loss in periodic flow along a
surface, or through an orifice is of importance 1in determin-
ing the reslistive portion of the acoustic impedance of these
configurations.

A distinction between the cases for large and small
values of the Reynolds number, R, must be made agalin here.
As has been previously pointed out, for the case of large R
the flow velocity changes very rapidly from its midstream
value to zero in a thin region near a boundary. Within the
thin boundary layer the forces of viscosity are appreciable,
and it might be expected that most of the energy lost due to
viscous forces would be lost in this layer. Thus for large
R the boundary layer is the region to be examined if a
theoretical treatment of viscous losses near surfaces is to
be made.

For the case of very small R there is no such sharp
transition zone in which the shear forces ére very large.

As a consequence the total energy dissipated throughout the
entire medium must be computed.

Fortunately the calculations made in Chapters III and
IV have given all of the quantities needed for the calcula-

tion of the viscous dissipation due to the presence of a
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c¢ircular cylinder in an incompressible oscillating flow.
The following calculations can be regarded as by-products

of the earlier work.

The Case for Large R

In a viscous, incompressible fluid the rate at which

energy is dissipated is given by29
—2 — — 192
W= u.f(V xv)“dr + 2p {n-(vx(V xv)) - 5 é—-ﬁ-}ds (5.1)
v s

If the fluid is enclosed within fixed boundaries at which
v = O the surface integral of (5.1) is zero, for there is
assumed to be no slipping of viscous fluid at a fixed

boundary. In this case the rate of dissipation is:

W o= uJ(V xv)%ar (5.2)
v
In two dimensions
= v _2u
curl v = k(ax 5y
and
)2 = @Y)2 , w2 _ ,u, v

If the methods used in chapter II are applied and (5.3) is
examined as to the relative magnitude of the terms appearirng,

it 1s seen that in the boundary layer one can write

...2~ _3_22
(curl v)< o (ay)
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Let us assume that thls relation is a valid description of
the situation in the boundary layer and calculate the rate
of dissipation of energy there which is

Wo=p (%1;-)2617 (5.4)
v

where the volume of interest i1s the boundary layer.

In earlier calculations (chapter III) we determined the
velocity u to terms of higher order in the amplitude of
oscillation. Thus consider u = u, + u, + u3 where U, u,,
u3 are of first, second and third order respectively, as
before. Then, to fourth order,
22 - 332 v 2@ 32 + 253D + G202+

(5.5)

all higher order terms having been omitted. In calculating
the dissipation, the quant;ty of importance is the time
average of the dissipation. It 1s to be recalled (see
appendix 1) that uy is periodic with frequency wo; u, has a
periodie part of frequency 2w and a DC part; u3 has an o and
a 3w component.

As a result, when the time average of (5.5) is taken it

1s seen that

AR A )
GyEy =0

and that



contains a DC part only from the w component of u3.

Since all of the quantities appearing in the expression

4 4~ 4+
v W

G2 - G2 +23hH 33y « §2)°

[

are avallable from earlier calculation it is not difficult
to evaluate the integral giving the rate of viscous dissipa-

tion in an oscillating boundary layer.

) 112 2 e ot
(ﬁ) ﬂ%UOQ(er + fli ) = 2v "0231 %1 (5.6)

1 dU |l2 112
=2v 7 o (a"') [ 2ar+ §2ai+ $ 2 ] (5.7)

o~
Q)
=
N
~—
N
8
<

aul au o Uo 2 d U te (]
25359 - - % a?[ 0 ‘f3ary1r * K3ai‘g 11)
au (5.8)
o 2 vt tt it tt
+ U (5 (S 30r § 10+ S0 11)]
It is convenient to consider separately the integrals of

(5.6), (5.7) and (5.8). The integral of (5.6)

1
I, = J( 1)2ax

is most easlly treated. The function ¥ i' has the value




and thus
and

Now dr = dxdy = bdxdy where /7= y@ u%—

Thus
- YE?
I, = t‘mf (e 2 u,? ax ay (5.9)
X
7

The integral over # can be taken from O to <o since there 1is
virtually no contribution to it outside the boundary layer,
and these limits simplify the integration. All » integra-

tions are of the general form

o0

[rmeen - i
(o]
Thus

I, = g %.—-»é_(uog(x)dx = Vv & %[Uoz(x)dx (5.10)
b S X

The integral
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Ty 5
I, = 5u (-~) dxdq

Tt 'f2
“’5“2‘“"2IU (dx f{feagea‘*bb]d’?

is treated in detall in appendix 3. The result is that

24U,
I, = fvo-R 1. |- 2 3829 2 ax 5.11

Similarly

2
1 3dU te Ty
H RP{ 3b_'§”]dxd7}

2
- Tvo-§-25 [('zzr*'—&r)f g—ggdx

and

X

193 437 2,905 2 (5.12)
+ (- 50 *+ ggag?;{[’ o (a;—) dx ]

Combining Il’ 12, and I3, one gets the power dissipated in

the boundary layer to be
& = [u,? lg[( {[‘ 3(ff§2>
W o= |vo. =|U ~ dx - .250 U dx
o o
P . ® X ax

du (5.13)
+ (.212)jU02(a—f9-)2dx] }
X
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or with a partial integration

av_ m
W= m'%g%gtlogdx - igk.eso)vo3(§3) "
x - (5.14)
- (0.538) gUog(a-i—Q—)a dx]i
X

The first term is the same as that often considered in
obtaining viscous dissipation near boundaries. It is usually
derived by considering the effect‘of viscosity upon the
oscillatory "shearing" motion of an infinite plane. The
other terms give an additional contribution to the dissipa-
tion which is a function of the amplitude of the oscillatory
motion and the form of the velocity function along the
boundary, U (x).

For the example of the cylinder in an oscillating flow

which has been treated in chapter III, we have

x dUo EUO
UO(I) = 2“081115- = 20081n 4) ax = —a—COS 43
a%y 2y A
— = - -§sin
dx a

If these expressions are put into the integrals in (5.13)

one obtains
L7

2 2 2 21w
LUO dx = 4a | U_sin“¢ d¢ = Lau 5

0
[+] ﬂ/Z
i 4
4%y U
“fﬁo3 E—ggdx = - 16a —%~ﬁinu¢ a$ = - —~%~-l6-gw%
x a
X

]
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1'/2 4 4
o)

qau
2
[’er(a'ig)edx = 16a[ —E—Bin243 cos Cb dq: = 16a;—§—-.é..%

for integrations over one fourth of the cylinder. The
expression for the power dissipated per unit length in the

boundary layer for this example is
W o=Vve-Loau 2 8 [1 4 (20)2 760)|
2% 'V2 wa’ \°

= 1rv-§0 2 21+ (92(.760)

This expression neglecting the higher order term 1ls plotted

(5.15)

in figure 14. PFor the case of standing waves in a Kundt's

tube

2rX 0 o) 2mX
Uo(x) = U sin=5= I = T °os%y

2
a U, _ uv U singwx
dxé AQ A

If we take the tube length to be L = ngm%}lll-and the tube

circumference as C, we get for the power dissipated

W o= V;E'g.% U 2 (2n + 1)7 [1 + (

NS ) 2(0. 190)] (5.16)

Numerical values for these cases will be given later.

The Case for Small R

For the case of small R we agaln must evaluate the

integral
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W = u.f(curi V)ad'r
\'

where this time the volume consldered is the entire volume
outside a cylinder of radius a. Only terms of first order
shall be considered, and we thus shall represent curl v
by curl vy

From chapter IV equations (4.6) and (4.13) we have

that
Kl(kr)

|eur1 ¥1|=|&,|= - K, = - 20k KoTE) sind 10t

Since we want the time average dissipation, we take for
(curl v1)2 the real part of o;, squared, and averaged over

time. If we write

w, = 2e™®" = (X + 1¥)(cosat + Lsinmt)

Then
R.P.[wll = Xcoswt - Ysinwt
and
£
2
Ror-)]? =3 0F+v?) - pat (5.17)
Thus w 2T
4y, e K (kr)K (kr)
% % sin®rdrd ¢
K, (ka)K (ka)

rdr

v

-2, 2@ (Kl(kr)Kl(kr)
Ko(ka)Ko(ka)
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where
k= Vi/6
K, (kr) = K (V1 §)
K (kr) = K;(FI )

From Appendix 4 we have that:
ol

T r . a ''a _ a ''a
JKl(H E)Kl(v"i girdr = aa[kerl 5 lncei1 § - kei; ¥ ker, '6']
a
where the ker and kel functions are defined in chapter IV
by

-n
ker x + ikei x =1 ,Kn(YI'x)

Hence

a ''a a 'a
~ 2 o [¥er; Ekel) ¥ - ket) §ker) 2]
W= - 4rv g-Uo £ = 53 (5.18)
[kero ’6-4' k&io '5']
Thils expression is plotted in figure 1l4. Using several
identities relating to the ker, kel func‘cions28 thls may be
written:
Zk(%)
W= - Uy g-Uo2 % 5
a
Xk(¥)
where
ay _ a ''a a ''a
Zk(g) = ker 7 ker, g + kei = kel =

xe(2) = ker02 2, ke102 2

The functions Zk(x) and Xk(x) are tabulated in a report of

the Brlitish Association for Advancement of Science.30
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Figure 14: A plot of the viscous dissipation function W/4vv% vl
as a function of a/b for both the large R and small R ©
cases. The small R case is plotted from equation (5.18),

while the large R case 1s a plot of the first term of

equation (5.15).
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Discusslion

It 1s useful to 1llustrate the above results through
the use of some numerical examples. For the large Reynolds
number case of,a cylinder in an osclllating field, we can
use the same numerical example given at the end of chapter III.
In that case we had an incldent plane sound wave of intensity
133 db and frequency 500 c¢ps and a cylinder of radius 1 cm.
Thus s/a = 0.01 and R = 209. The second term appearing in
the bracket in expression (5.15) has the value 0.76 x 10'4.
This is really quite small compared with the unity term. An
increase of 16 db increases this term by a factor of 10, and
thus it still remaihs small except for very high intensities.
From the expression for the dissipation in a standing
wave tube, equation (5.16), we can write an expression for
the Q of such a system. Q is defined as

ftotal
A E per cycle

2r

The total energy ls given by

E

T

2 (K.E.),, = (K.E.) o = 5 U, Jsm = dx
[v]

2

A 1 i

where S is the cross-sectional area of the tube. Also, from

(5.16):

U
AE/cycle = m-%-ﬁ’-}noe- en + 1) .21 [1 + (5-9-)2(.190)]

ney ®
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Hence,

1
]
[1 + (52)2(0.190$]
(5.19)

1 =

®R 1
2w 14 (-2‘-’-)2(.190)] r

R,
5

Q =

where § z\ﬂg- is a measure of the boundary layer thickness
and R 1s the tube radius. The contribution of the nonlinear
viscous term to the total dissipation and to Q 1s negligible.
Even at 160 db the second term in the bracket is 1.5 x 10'4
compared to the unity term.

The expressions giving the dissipation in the presence
of a cylinder in an oscillating field are plotted for the
case of large and small R in figure 14 as a function of the
variable a/6. FPFor air the constant vag- has the value
1.13 x 10"3 gm cm"l sec"a. Thus for the example cited above
where R = 209, we have a/b6 = 144.5, U = 31.4 cm/sec and the
power dissipated per unit length is W = 113.6 ergs s’,ecz"1 cm’l.
For the numerical example cited in chapter IV in which we
had an incident sound wave of intensity 100 db and frequency

2 we had

135 e¢ps and a cylinder of radius 4 x 10~
s = 0.79 x 10"3 em, U, = 0.67 cm/sec and R = 3. Thus in
that case a/b = 3 and the power dissipated per length 1is

3 ergs sec™t em™L,

1.33 x 10~
From the figure it 1s seen that the consideration of the
curvature adds a bit to the dissipation. When a/8 is small

as 1s usually the case for small R, this may be an appreclable
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fraction of the whole, but when a/ﬁ is large as would be
the case for large R this contribution 1s negligible.

In closing this chapter perhaps a word should be men-
tioned about the viscous dissipation 1n orifices, since this
is a problem of some import in acoustics. The geometry of
orifices is not as simple as that of the cylinder problem
treated in this thesls, and theoretical treatment may be
seen to be quite complicated. For portions of the orifice
having small radii of curvature, such as at sharp edges,
the flow would be assoclated with small values of R. 1In
other portions, which have less curvature, the flow would
be characterized by a large value of R. In addition, as
the intensity of an acoustic wave which is interacting with
the orifice 1is changed, the nature of the flow in the dif-
ferent portions of the orifice may change from one type to
another. Furthermore, since the range of intermediate
values of R does not present itself to analytical attack,
one must conclude that a complete treatment of the nonlinear

orifice problem would be an impossible task.



Chapter VI

A Discussion of Certaln Experimental Observations

This chapter contains a discussion of certaln experi-
mental observations made of the streaming motion near
obstacles. Observations have been made of the streaming
near circular ¢ylinders for intermediate values of R as
well as for the two limiting cases treated analytically in
earlier chapters. A rough quantitative criterion for the
transition point between the two types of flow will be given,
in addition to descriptions and photographs of the flows for

various combinations of R and s/a.

Experimental Setup

The experimental observations of the streaming around
cylinders were carried out within a duct. The duct 1s made
of three sections of aluminum tubing having a 3" inner
diameter and a 3 1/2" outside diameter. These sections are
(1) a driver section 18" in length, (2) a test section 10"
in length, and (3) a terminating section 36" in length. The
first two sectlons can be used together as a standing wave
apparatus by putting a rigid metal plug at the end of the
test section. (See figure 21.) The terminating section
contains a Fiberglas wedge, and is used when travelling
wave measurements are desired. (See figure 23.)

A fitting was machined with which a small horn driver

unit can be fastened to the driver section. (See figure 25.)
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This horn driver is designed to drive horn speakers on Navy
vessels and is capable of handling up to 35 watts of power,
with very little distortion. Its region of maximum effi-
ciency is in the neighborhood of 100C cps, but 1t 1s quite
adequate as a sound source from 200 - 2000 eps. The driver
section also has a small wall opening into which an Altec
621B condenser microphone can be push-fitted. When in place
the microphone surface 1s flush with the inner wall of the
tube. Actually during the observations, thlis hole was used
for introducing smoke into the tube.

The driver section and the test section each contain
two windows, 1" x 4", located for viewing the interior from
points separated by 90°. A small threaded hole is opposite
one of the windows in the test section, and it 1s through
this hole that the cylindrical obstacles are introduced.
(See figure 24.) Observations were made looking down upon
the axis of the cylindrical obstacle, and illumination was
provided through the window at the side. The source of
illumination was a spotlight consisting of a 6 volt,

18 ampere projection bulb and a single lens for focusing.
The beam was focused down to a 1/4 inch diameter at the
cylindrical obstacle. Even with this arrangement more light
would have been desirable, since conslderable difficulty was
encountered in attempting to photograph the circulations. A
small water bath was inserted in the path of the light beam
to help minimize the radiant heating of the air within the
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tube. It was hoped that this might cut down the convection
currents which could interfere with the streaming currents.
The spotlight was left unlit except during actual observations.
The driver unit was supplied from a Hewlett-Packard
audio oscillator and a McIntosh 20 watt audio amplifier.
Since most of the observatlons were made using the system
as a standing wave tube, this arrangement furnished plenty
of power. A few observatlons made using travelling waves
indicated that some distortion occurred when the power input
to the speaker was increased to levels needed to produce
good streaming flows. This fact coupled with the fact that
more general drift of the air seemed to occur with the longer
termination made the resonance measurements more desirable.
The observations of the cylinder were made through a
microscope which has a focal length of 40 mm and which glves
a magnification of roughly 10. (See figure 22.) An eyepiece
containing a scale furnished a means of determining the
amplitude of oscillation of the smoke particles. When sub-
Jected to a sound field the illuminated smoke particles
appear as shiny rods. It is actually rather difficult to
measure the amplitude accurately since the smoke particles
tend to obscure one another when large amplitudes are used.
In addition the "shiny rods" are usually moving so that it
is difficult to line them up with the scale in the ocular.
For photographing the particles through the microscope

an Exakta 35 mm camera was used. (Figure 21.) An attachment
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whereby the image 1s focused by the microscope directly upon
a ground glass viewer made focusing quite easy. When the
exposure is made the ground glass of course flips up out of
the way.

A considerable amount of discussion 1s present in the
literature concerning the use of smokes and dusts as a means
of observing air flows. The article by Andrade6 dwells at
some length on this snbject, and other references are given

n31

'~ in Beranek's book on "Acoustic Measurements. When smoke
and dust particles are used to determine the amplitude of a
periodic motion, it 1s important to know whether the particle
is giving a true indication of the air motion. An expression
giving the ratlio of the particle veloclty to the air velocity

is given in Andrade's article. Thus:

where wo/vo is the ratio of the maximum velocity or amplitude
of the particle to that of the air, a = gg~i—l, b = 1 1—,

3 R|»f
¢ 1s the ratio of the particle density to that of air, R 1s
the particle radius, v the kinematlic viscosity and f the
frequency. For smoke partiecles, which are mainly water vapor,
R~ 5 x 10™2 cm and even when the frequency is as high as

2000 cps, wo/vo = 0.9988. The measuring technique 1is a much
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greater limitation of the accuracy in determining s/a, the
ratio of particle amplitude to cylinder radlus, than is
the inabllity of the particle to follow the air motion.

Several types of smokes and dusts were tried during
the course of the experiments. Ordinary cigarette smoke is
the easiest to obtain and was used for most of the visual
observations. Such smoke 1s quite dense, i1.e., there are
a great many particles in a given area of observation. As
a result, when the particle amplitudes become of the order
of several times the distance between the particles it is
difficult to keep a given particle located. Since the par-
ticles of cigarette smoke are very small, each particle does
not scatter much light. As a result such smoke particles
are difficult to photograph, especially when in motion.
Magnesium oxide formed by burning a strip of magnesium within
the tube, while scattering somewhat more light than cigarette
smoke, 18 too inconvenlient to produce. It has a tendency to
coat the inner surface of the tube and windows making obser-
vation difficult.

Titanium tetrachloride was examined briefly and found
to produce smoke of the same density and light scattering
power as cigarette smoke. It possesses the advantage of not
smelling like cigarette smoke, but it is slightly corrosive,
and fouls the interior of the tube more than does either |
magnesium oxlde or cigarette smoke. Baby powder, a mixture

of talc and boric acid, was blown into the tube and was
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found to be much less dense than the smokes used. The
particles are also about three times larger in radius than
cigarette smoke particles, and consequently scatter more
light. This combination of low density, l.e., low number of
particles in a given area, plus the greater light scatterirg
from each particle, makes it possible to photograph an
individual particle track as it moves across the field simply
by leaving the shutter open.

It is felt that the photographs of the streaming should
give a picture of what 1s seen visually through the micro-
scope. Thus when the streaming motion 1s rapid and the eye
is unable to resolve individual particles, it is not neces-
sary to resolve them in the photograph either. This makes
photographing the large Reynolds number flow easy because
the shutter can be left open for several seconds. Cigarette
smoke can be photographed with these exposures, and was used
for the pictures of this type of flow.

For streaming at small R, the eye can follow the
individual particles, and it 1s desirable to resolve the
individual particles in the photographs also. Thus the
exposure time must be relatively short, i.e., short enough
so that the tracks do not interfere with one another, but
long enough so that some motion 1s indicated. Some experi-
ments were made using a high speed flash arrangement of the
type developed by Professor Edgerton at M.I.T. The flash

time for the bulb is too short to indicate any motlon at all,
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and thus this type of illumination is not desirable for
streaming photographs. It was thought that the baby powder
would be suitable for the low R case. The shutter was left
open for 5 to 10 seconds and the relatively few particles
allowed to trace their paths upon the film. While very nice
pictures of the paths were obtained, they did not give a
true representation of the flow motion and could not be used.
The photographs for the low R case were finally made using
cigarette smoke with a 1/2 second exposure. This exposure
seemed to be short enough to prevent the many particles

from obscuring one another. 1In order to get enough light

it was necessary to overload the projection bulb, and during
the time of the exposure it was operated at 8 volts instead
of 6 volts (190 watts instead of 108 watts).

Pictures were taken using‘both Plus X and Super XX film.
These films were developed in fine grain developer (Kodak
Microdol). 1In focusing the image upon the film, it was found
necessary to compromise in the amount of magnification intro-
duced through the use of the microscope. If the magnification
is too great, the amount of light reaching the film from the
particles 1s too small to produce a record. If the magnifi-
cation is too small, the light intensity is quite adequate,
but the image of the smoke particles is of the order of the
film grain size. Some experimenting is necessary to determine
the optimum magnification in any case.

The cylinders used as obstacles were of a variety of

radii. The radii used were 0.0134 cm, 0.040 cm, 0.0828 cm,
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0.160 em, 0.240 em, and 0.330 cm. The smaller cylinders

were strands of wire, the intermediate were pieces of brazing
rod, and the larger were machined from brass stock. (See
figure 26.)

The resonant frequenciles of the tube at which measure-
ments were made were 230, 460, 1150, and 2100 cycles per
second. The cylinders were located as near an antinode as
possible. Any asymmetries observed were attributed to the
cylinder not being precisely at such a point, and also to
steady drifting of the smoke particles apparently resulting

from temperature gradients within the tube.

Observatlons

The observations of the streaming motion near a cylin-
drical obstacle indicate that two main types of flow exist.
For one range of s/a and R the flow gqualitatively resembles
that calculated using the Oseen approximation. (See
figures 9, 10, 11, chapter IV.) Thus, a single circulating
"loop" is present in each quadrant, and the flow is directed
toward the cylinder along the line of oscillation (the axis
of the tube). As the ratio s/a and/or R is increased the
single circulation loops apparently become unstable, with
part of the flow splitting away from the loop and flowing
away from the cylinder along the axls of the tube. Thus an
"outer" circulation is present in addition to the initial

one, which now becomes the "inner" circulation. The flow
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now resembles that calculated using the large Reynolds
number approximation. (see figures 6, T, chapter III.)
As R is further increased the inner circulation shrinks
down until it 1s confined to a thin region near the boundary
(boundary layer). The transition between the two types of
flow occurs rather sharply, and it 1s possible to determine
a value of 8/a and R assocliated with a particular transition.
Photographs of the flow patterns for four combinations of
s/h and R have been included in the thesis, and give an idea
of the shapes and relative sizes of the circulations under
these different conditions. (See figures 16--19.)

When observations were made using the larger cylinders
(g > 0.1 em) 1t was noted that another phenomenon occurred
for high intensities of the incident wave. At a particular
level, the inner circulation present in the boundary layer
seems to be "squeezed out" and swept downstream along the
axis of the tube (i.e., in the direction of oscillation).
It seems likely that thils occurrence corresponds to the
point indicated in the higher order calculations of chapter IV,
at which the inner circulation is deformed outward in such a
manner. It is difficult to be conclusive on this point, how-
ever, since the air flow is nearly turbulent for the inten-
sities at which this "squeeze-out" takes place, and a deter-
mination of s/a is difficult. The phenomenon is quite definite,
however, for as the intensity is ralsed and lowered past the

critical point, the inner circulation alternately disappears
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and reappears. On some occasions a "flutter" between the
two situations is seen. The value of s8/a at the critical
point seems to be of the order of 0.2 as the calculation

would indicate, beling more nearly 0.2 as R 1is increased.

Several of the points at which this "squeeze-out" ocecurs

are indicated in figure 15, and before-after photographs

are included (Figures 20a, b).

Figure 15 can be looked upon as a map of the type of
flow occurring for varlous combinations of s/a and R. The
observed points of transition between the high and low
Reynolds number types of flow for the various combinations
of cylinder size and frequency are plotted in this figure.
A line passing through these points divides the map into
two parts. The points to the large R side of the line
correspond to flows qualitatively resembling the flows cal-
culated using the boundary layer approximation. The points
on the small R side of the line correspond to the flows
resembling the flows calculated using the Oseen approxima-
tion. 1In addition to the points observed by the author,
there are points included which are calculated from data in
Andrade's article§ All of these latter points, except one,
correspond to flow transitions for spheres instead of cylin-
ders. (The value of R is calculated using for a the radius
of the sphere.) They are included on the map for the sake
of completeness, and because the dividing line for the sphere

case seems to be nearly the same as for the cylinder case.
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Andrade does not expliclitly identify his points with the
transition between the two general types of flow, but he
presents his points as representing what he calls the onset
of "vortex motion," characterized by the appearance of a jet
of air shooting outward from the obstacle. This "Jjet" ap-
parently corresponds to the point at which the "outer"
circulation of the large R flow begins. From figure 15 it

is seen that for a wide range of vglues of 8/a, the transition
between the two types of flow takes place for R~ 10. For the
sake of clarity, the regions throughout which the theoretical
treatments for large and small R are believed valid are also
indicated in figure 15. A brief table containing the experi-
mental data from which the pdints of transition and "squeeze-
out" were calculated, appears below.

It is felt that the presentation of the data in the fam
of a map of the regions of flow is a good way to sum up the
results of this thesis. Thus in figure 15 the manner in
which the streaming motion changes from one general type to
another is apparent at a glance. The regions throughout
which the theoretical calculations might be expected to be
valid are also indicated. Together with the photographs of
the flows at various points, the map gives an indication of
the flow behavior for large, medium and small values of R,
and large and small values of s/a.

Possible future studies of the streaming near obstacles

should include attempts to determine the line of transition
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with more accuracy, and a closer examination of the "squeeze-
out" phenomenon. Such measurements will require a more
refined experimental arrangement than the one used here.
Special attentlion should be given to a better means of
measuring s/a with the microscope and the elimination of

steady drifting of the smoke.

Tables

Experimental Data for Points of Transition

a_cm £~ 5 x 10%cm a/b s/a R
.0134 230 1.02 1.31 3.4 5.85
460 722 1.86 2.2 7.6
1150 457 2.94 1.2 10.4
2100 .338 3.96 ~.6 ~9
.040 230 1.02 3.92 .8 12.1
460 722 5.55 .37 11.3
1150 457 8.76 ~.1 ~ 8.8
2100 .338 11.83 - —
.0828 230 ~1.02 8.13 ~.1 ~ 9
460 .T22 11.5 ~ .05 ~ 6
1150 457 -— N
2100 .338 ——— —

Experimental Data for Points of "Squeeze-out"

a_cm f~ 5 x 10%m a/d s/a R
.16 460 122 22 5 240
.24 460 .722 33 N 440
.33 460 .722 46 .34 700
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Figure 15: A "phase diagram" plot in s/a, R space. The exper-
imental line of transition between the two types of flow, the

regions of the validity of the calculations made for large and
small R, and the experimental line of squeeze out of the inner

¢irculation are shown.
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Figure 16 a,b : A photograph and schematic sketch of the streaming flow for R = 75,
s/a = .036. The bright line indicates the edge of the cylinder. The double

arrow 1n the schematic indicates the direction of oscillation. The exposure was
2 seconds on Kodak Super XX film.
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Eigure 17 a,b : A photograph and schematic sketch of the flow for R = 20, s/a = .65.
The edge of the cylinder is indicated by the dotted line on the photograph. The

double arrow in the schematic indicates the direction of oscillation.

was 2 seconds on Kodak Super XX film.
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Figure 18 a,b : A photograph and schematic sketch of the flow for R = 8, s/a = .8.
The edge of the cylinder i1s indicated by the dotted line on the photograph. The
double arrow in the schematic indicates the direction of oscillation. The smoke
particles tend to cluster at the points indicated by the four bright spots next to

the cylinder.

The exposure was 1/2 second on Plus X film.
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Figure 19 a,b : A photograph and schematic sketch of the flow for R = 2, s/a = .5.
The edge of the cylinder 1s indicated by the dotted line on the photograph. The
double arrow in the schematic lndicates the direction of oscillation. The smoke
particles tend to cluster at the points indicated by the four bright spots next to
the eylinder. The exposure was 1/2 second on Super XX film.
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Figure 20 a,b : Photographs indicating the flow patﬁern before and after the inner
boundary layer circulation is squeezed out and carried away. ( The flow is similar
to that in figure 16 a,b in direction and nature.) The squeeze out occurs for R = 270,

s8/a = .55.

The exposure was 2 seconds on Super XX film.
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Figure 21: Photograph showing the standing wave tube in which the
streaming motions were observed. The camera and microscope arrangement

is set up ready for taking photographs of the flow. The light source,
amplifier, and audio oscillator are also shown.
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Figure 22: Photograph showing the apparatus set up for making visual
observations.
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Figure 23 : Photograph showing the driver section, test section and
termination section set up for making travelling wave observations.
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Figure 24 : A close-up photograph of the test section showing the
windows for observation and illumination as well as one of the
eylindrical obstacles in position.



Figure 25 : Photograph showing the speaker unit and the fitting
which it is coupled to the driver section.

with
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Figure 26: Photograph showing the cylindrical obstacles used for
the streaming observations. The test section is orilented to show
the hole through which the cylinders were introduced.
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Appendix 1

t
The solutlion to equation (3.5) Iin terms of a stream function is:

\H:R.P[Vf:) U, § eiw{] ()

The solution to equation (3.6) 1is

1-P v—_— w U du P gzae’izw{— + g‘Zb] (Z)
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The o component of the solution to the third order equations (3.9)

i1s given by
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The time 1ndependent fourth order solution to equation (3.14) 1is
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Appendix 2

Differential equation for ker and kei functions

Kp(kr) sin p$ 1s a solution to the equation
(v e k2)4) = 0 in cylindrical coordinates.
Thus

a2
a2

"Sm!i—’

- kz}K (kr)sin p$ =0 (1)
- P

ae 19
[ﬁ‘f?;‘f*

Kp(kr) satisfies the equation
2

[r2 §;§ + ra% - (p2 + k2r2{1xp(kr) = 0 (2)

In our case k2 is pure imaginary = 1a2

Thus
2 4° d 2 2 2
i E;? + Tar - (p© + 1a“r®) Kp(iar) =0 (3)

If we write Kp(iar) = Xp(ar) + 1Yp(ar) where X, and

Yp are the real and imaginary parts of the function, then

we can separate the real and imaginary parts of (3) and get

2
a~Xx ax
2 p 2 2.2
r —~§2 +r “PX 4+ar¥ =0
dr dr p p
5 (%)
a“y day
2
I'.__EE.'.r__.E-pY -a2r2x = ()
P
dr dr

Or
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2 2
V X sinp¢ = - o Y sinp ¢

(5)

V2Ypsinp ¢ = azxpsinp ¢

Hence
L‘x sinp¢ = - a2 2Y sinpd; = - a.ux sinp(‘D = kux sinp(t’
vV *p V 'p P P
(6)
4 4
V Ysinpé =k ¥ sinp ¢
In our case
r r - -.r.: -3
K (11 §) = - ker, F-kel, g =X, +1¥%, (7)
Thus
“ler, L sin2¢] = k* ker, = sin2 ¢
V [ 2 ® 2%
and (8)

4 r

4 r
7 ‘[ket, § sin2¢| = k' kei, § sin2 ¢
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Appendix 3

An Evaluation of the Three Integrals I1 , 12 , and 13

Discussed in Chapter V

[=8p22 fU dx f(§.,+ ?“z)d.(

Since, § ' g - gn _ c

(")

gz: —z“ = [— (_*'_'_,,] {0+)-(1-%)ilr
-l - (-'—I.Q'z]e"[(”“*')"“‘*z’ i [l -0« Lnt]e®

\z - .
s . =_‘§_ iy [(—3#(:) (‘;'2—-')"(*'11]3’6(“’)‘

(3443 | (1-24) L] Gy -
i LA ¥ A (E O NER RCT
el (A

34»:)‘1

[(‘ :v’ *n]e + 4 2%' + g]e-rz'»(

+
"

L V'-— [‘fsz + 7zoor' fU @2)
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Appendix 4
oD

Evaluation of the Integral‘/’ Kl(kr)K;(kr)rdr

a

o 5 0
Let u = R (kpr) and v = R, (qu) be two solutions of

the modified Bessel equation, i.e.

2
F a0 - g+ Bpu =0 (2)
1d (. dv 2 n?
7 artTar) " (k" + v =0 (2)

Multiply (1) by rv, (2) by ru, subtract and integrate from

a to ©,
Thus:
O o0
2 2 d du d v
o n e+ [t -
a a

o0
du dv
= + [I‘Va'f; - I'ua-—]
a
This last step is obtained by an integration by parts. In
our case Rno(kr) = Kn(kr) which approaches zero as r becomes

infinite. Thus the upper limit terms vanish.

_ 2y . 2L
For n = 1, k, = V1 & 5 Ky =71 5, (k - k%) = 2

Thus: o

I afrxl(ff 2K (11 Far = 3)

- - 8201 K, (FT 2, &) - VT 5, (1T D, (1T 3)]
w

X + 1Y
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Considering the first term in the bracket to be split into
real and imaginary parts X + 1Y, we see that the integral

has the value, I = -ab¥. Thus we need Y.

We have:
K; (Y1 x) = - kel;x + lker x
K, (V-1 x) = - kel;x - iker,x
VI'Ki(VT x) = - kel X+ 1kerix
Thus

B

1 t !
i Kl(v-i x)Kl(VT x) {keilx kel,x + ker;x ker;x +

' 't
+ 1(ker kel x - kei x ker x) ]

Hence

(4)

of

- a a _ a
Y = kerl 5 keil 5 kei1 5 kerl

Thus finally:

o

r T r - a 'a _ a ''a
J(rKl(TI E)Kl(v i 6)dr aﬁ[kerl § kel ¥ - kel g-kerl 3]
[/

(5)
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