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ABSTRACT

The phenomenon of acoustic streaming has been observed
and discussed for many years. One of the more interesting
aspects of the streaming near obstacles is its dependence
upon the geometry of the obstacle and the intensity and
frequency of the acoustic wave striking the obstacle. The
direction of the streaming motion has been observed to
change under certain conditions.

It is pointed out in this thesis that the type of
streaming which occurs is determined by two dimensionless
parameters, R = U a/v, and s/a, where U is the particle
velocity amplitude in the incident wave? s is the particle
displacement amplitude, a is the radius for the case of a
cylindrical obstacle and v is the kinematic viscosity of
the medium. Theoretical treatments are given for the limit-
ing cases of very large and very small R, and the calculated
flow patterns are in agreement with those observed experi-
mentally.

The treatment for large R is based upon the mathematical
theory of the boundary layer introduced by Prandtl. A
perturbation calculation is carried through to terms of
fourth order, and represents an extension of work done by
Schlichtingt The calculations are rather laborious and
involve several simple extensions of the perturbation tech-
nique. The resulting expression for the stationary stream-
ing flow is applied to several examples, including the flow
near a circular cylinder.

The treatment for small R is based upon the Oseen
approximation to the Navier-Stokes equations. A perturbation
technique is again used to calculate the streaming near a
circular cylinder.

Experiments have been conducted in the range of inter-
mediate values of R and indicate that stwo types of flow exist,

*H. Schlichting, Phys. Z. 3D, 327 (1932).



one corresponding to that calculated for large R and the
other- to that for small R. The transition point between
the two types of flow has been determined experimentally
for a circular cylinder as a function of the parameters
R and s/a.

A calculation of the rate at which energy is dissipated
viscously near a circular cylinder in an oscillating flow
for both the large and the small R cases is also included
in this thesis.

Thesis Supervisor: Uno Ingard

Title: Assistant Professor of Physics
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Chapter I

Introduction and History of Problem

When an acoustic wave is propagated in a viscous fluid,

under certain conditions time-independent currents appear

superimposed upon the periodic motion of the fluid. For

many years this phenomenon has been known and a number of

papers concerned with the subject have been published. The

phenomenon is often referred to as acoustic streaming, and

can occur both in the presence of solid obstacles and when

no boundary surfaces are present. The former type of stream-

ing has been observed to occur in tubes and in the neighbor-

hood of spheres, cylinders, orifices, and other obstacles in

a sound field. One of the first mathematical treatments of

2
this type of flow was given by Rayleigh in which he treated

the circulating flow in standing wave tubes. A general

analysis of streaming in the presence of boundaries appears

10
in a paper by Schuster and Matzo and is applied to the prob-

lem treated by Rayleigh. The treatment of Schuster and Matz

neglects the terms in the equations of motion which can give

rise to streaming in the absence of boundaries. Eckart11

seems to have been the first to discuss this latter type of

streaming, one example of which is the streaming occurring

in a medium in the vicinity of a narrow beam of sound (quartz

wind).

A list of references to the papers on acoustic streaming
1--22

is included in the bibliography of this thesis. Among the

- I -
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more recent papers on the subject, those of Westervelt,1 9

Nyborg,20 and Medwin and Rudnick21 are of considerable inter-

est. Each of these papers contains a brief review of the

general mathematical theory of acoustic streaming, beginning

with the Navier-Stokes equations for a viscous compressible

fluid, and points out how the streaming is generated by the

combination of viscous and nonlinear terms appearing in these

equations. Reference is made in these papers to earlier

mathematical treatments in the light of their approximations

and assumptions. In their paper Medwin and Rudnick21 dis-

tinguish explicitly between the volume source terms and the

surface source terms giving rise to the two types of stream-

ing discussed above. Westervelt gives a proof of the

physically apparent fact that the streaming motion is

solenoidal.

One of the more interesting aspects of the type of stream-

ing occurring near boundaries is that the nature of the stream-

ing seems to change with the intensity and frequency of the

incident sound wave producing the flow. In addition the shape

and direction of the steady circulating flows depend upon the

geometry of the obstacle interacting with the incident sound

field. For example, Carriere while studying the stream-

ing near a circular cylinder observed flow patterns which are

symmetric with respect to axes drawn through the cylinder in

directions parallel to and perpendicular to the direction of

propagation of the incident wave. He found the flow to be

-~1



directed toward the cylinder along the line of propagation.

Schlichting and Andrade studying the streaming near a

cylinder under somewhat different conditions observed a

steady flow qualitatively similar to that described by

Carriere, but which was moving in the opposite direction.

Bouasse8 has noted these two types of flow near obstacles of

a variety of shapes, and he has qualitatively correlated them

with the amplitude of the oscillating motion of the fluid near

the obstacle. Westervelt 9 more recently has again pointed

to the discrepancies between Carriere and Andrade and

Schlichting, and also has assigned them to differences in

the intensity of the wave incident upon the cylinder. Ingard

and Labate 3 in their experiments with various shapes and

sizes of orifices in a sound field, have noted these distinct

types of flow occurring as the amplitude of oscillation is

varied with respect to the dimensions of the orifice, and

they present "phase diagrams" indicating the onset of flow

reversal and turbulence as a function of frequency and

amplitude.

It has been recognized that the change in the nature of

the circulating flow manifested as a reversal of flow must

be a consequence of the nonlinearity of the equations govern-

ing the motion of the fluid, but the theoretical treatment of

these equations is difficult, and cannot be carried out wilh -

out approximations. It is difficult to know just what type

of approximations are appropriate for a given experiment and
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the experiments cited do not seem to indicate any direction

of attack. If the parameters important in describing the

experiments were known, the type of approximation to be used

in the theoretical treatment could be more easily selected.

As seen in the experiments referred to above, the

intensity and frequency of the incident wave as well as the

geometry of the obstacle seem to play a vital role. In this

thesis it is pointed out that the situation in any given case

can be completely specified in terms of two dimensionless

parameters. This can be seen from an application of the

elements of dimensional analysis to the problem. Thus in

treating a streaming problem it makes sense to speak of the

conditions of the problem or experiment in terms of these

two dimensionless parameters. The variables, intensity,

frequency, etc., are absorbed into the dimensionless parame-

ters. The parameters which prove most useful in the analysis
U a

which follows are the Reynolds number, R = - and the ratio

s/a. The letter U0 stands for the velocity amplitude of the

incident wave, a represents the radius of the cylinder in

the problem treated, v is the kinematic viscosity coefficient,

and s represents the amplitude of the periodic particle

motion in the incident wave.

If one looks at the experiments above in terms of the

parameters R and s/a a theoretical approach to the problem

immediately suggests itself. It will be seen that the

experiment of Carriere corresponds to a small value of R,

- -M
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and the experiments of Andrade and Schlichting correspond to

large values of R. The streaming patterns which they observed

will be shown to agree qualitatively with patterns obtained

theoretically using the approximations valid in each of the

two cases. Thus, the case in which R is large can be attacked

by using the mathematical theory of the boundary layer.

Indeed Schlichting7 used this theory to calculate the steady

flow corresponding to his experiment. The small Reynolds

number case can be treated by using an approximation procedure

introduced by Oseen.27  In this thesis the Oseen approximation

is carried through to give the steady flow near a circular

cylinder, and the boundary layer treatment of Schlichting is

extended to include higher order terms. This latter treat-

ment shows the dependence of the streaming at high Reynolds

numbers upon the parameter s/a. It is possible to calculate

the rate at which energy is dissipated by viscosity in both

of these cases, and these calculations are also included in

the thesis. There is no known method by which the cases

involving Reynolds numbers which are neither large nor small

can be treated theoretically. A chapter is included in which

experimental data covering this middle range is presented

and discussed.

The accumulation of the material in this thesis did not

strictly follow the outline of the exposition just presented,

and it is of interest to trace the actual path that the

research followed.
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It was believed initially that the observed changes in

the circulatory motions with changes in incident wave inten-

sity could be explained by extending the treatment of

Schlichting so as to include higher order terms. In par-

ticular a statement by Westervelt19 to the effect that the

reversed circulations observed by Carriere occurred for large

incident wave intensities led to the hope that the higher

order calculation would predict such a reversal. When the

Schlichting treatment was carried to fourth order giving

terms in the steady velocity depending on intensity, it was

indeed seen that the resulting expressions indicated a change

in the sign of the velocity for sufficiently high intensity,

and the extension was regarded as successful. This sign

change is discussed in more detail later, and is now believed

to indicate the failure of the perturbation procedure when

s/a is increased beyond a certain point.

Attempts to observe a flow of the type described by

Carriere at high intensities proved futile. When the circu-

lation of smoke particles in the sound field near small

obstacles was observed, it was realized that this flow ob-

served by Carriere occurs for small incident wave intensities

instead of large and for cylinders of small radii. It was

then that the importance of the use of the parameters R and

s/a to describe the conditions of the experiment was recog-

nized, and the calculation for small R using the Oseen

approximation followed. The experiments describing the flows



for intermediate values of R were carried out to complete

the picture.

It is hoped that this work has indicated the value of

the parameters R and s/a in describing the interaction of

an acoustic wave with an obstacle. The problem of the flow

near a cylinder which is treated in this thesis is one of

the simpler problems illustrating the principles involved.

Perhaps the solutions for this example will be of use in a

treatment of the interaction of an acoustic wave with an

orifice, a sharp edged obstacle, or with the very fine fibers

in absorbent materials.

In the following chapters the material outlined here

will be examined in greater detail.



Chapter II

The Reynolds Number as an Important Parameter in

Streaming Problems

It is ordinarily assumed that acoustic motion can be

accurately described by the following equations of force and

continuity. 27

+ (v.V))v = -p + [' + VV-v - p x~xV (2.1)

and

at PV 0(2.2)

where ps is the dynamic shear viscosity, p' is the dynamic

bulk viscosity, p is the pressure, p is the density and V

the particle velocity, which vanishes at all rigid boundaries.

It has been assumed here that p' and p are constants of the

fluid. Several authors have recently considered p' and p to

have a density and/or time dependence in connection with

determining how acoustic streaming would behave (hypothetically)

under such circumstances,1 9 , 21 but it is not the concern of

this thesis to investigate these questions. We shall pri-

marily be concerned with streaming produced by the interaction

of sound waves with obstacles where the nonlinear and shear

viscosity terms play the major role in determining the fluid

motion.

8-
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Since these terms are present even for the case of an

incompressible fluid, we may still expect that the equations

obtained by setting p constant in (2.1) and (2.2) will give

rise to streaming in the presence of a boundary. In fact

time-independent streaming is observed for the case of

periodic flow around obstacles in liquids as well as in gases.

If the wave length of the incident sound wave is very

large compared with the size of the obstacle, compressibility

can be neglected in the acoustic case. Putting p constant

in (2.1) and (2.2) gives

+ ) - 7p - v7 xVxv (2.3)

V- = 0 (2.4)

where v = , and v = 0 on any boundary surface.
p

These equations, while appearing somewhat simpler than

(2.1) and (2.2) are still virtually impossible to solve

exactly except in special cases. Of course the main mathe-

matical difficulty lies in the fact that the equations are

not linear. In several of the exact solutions to these equa-

tions the quadratic terms appearing on the left side of (2.3)

are identically zero, viz., the case of Poiseulle flow

(laminar) through a pipe or the flow between rotating cylin-

ders. If the viscous term is neglected, the equations sim-

plify greatly and describe the general theory of inviscid

liquids. In the case of streaming near an obstacle it is
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the combination of both the viscous and nonlinear terms which

are important. Indeed Eckart11 and Fox and Herzfeld1 5 have

pointed out that both types of terms are essential to the

production of steady flow.

In the remainder of this thesis let us think in particu-

lar of the streaming produced by the periodic oscillation of

a liquid to and fro around a circular cylinder. Such a case

has been the subject of a number of experiments, and is per&

haps the most simple example to be treated theoretically.

Before examining equations (2.3) and (2.4) further,

certain considerations of a more general nature should be

made. These considerations will enable us to attack the

equations with a greater sense of purpose and direction.

Considered briefly the problem facing us is this. We have a

cylinder of radius a in a plane oscillatory field of angular

frequency a and velocity amplitude U0 , and in a liquid whose

kinematic viscosity coefficient is v. It has been observed

that a time-independent streaming exists under such circum-

stances, and in addition as pointed out in the introduction,

the streaming flow pattern may have a different shape or

direction of flow depending upon the value of U , w and a.

We want to determine theoretically how this can occur, and

obtain analytical expressions describing the behavior of the

streaming in terms of U0 , m and a, and compare our results

with experiment.

Dimensional analysis24 furnishes us with information on

how the parameters U0, w and a and v must fit together in any
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analytical description of the streaming, and also furnishes

us with a method of attacking the problem systematically.

Let us review this subject a bit.

Suppose that the streaming velocity at a point r/a and #

is denoted by q. Here r and 4 are the usual cylindrical posi-
tion coordinates, and r/a expresses the distance from the

cylinder in dimensionless form. Thus we have quantities

q(r/a,# ), U0 , a, o, and v. The dimensions of these quanti-

ties are given in the following table.

q(r/a, 4 ) LT 1

U 0 ~LT ow

a L

T' i

v L2T-l

We can thus construct three independent dimensionless

parameters

7 U0  
U 0a
U 0

1 2 a 73 V T
0

The Buckingham Pi Theorem24 tells us that a functional

relationship exists between these parameters. Thus

F(irl, ir2, 13r 0

or equivalently

1 f'(72' 73)



-12-

Thus

q(r/a,P) = U0 f(U0/oa, Uoa/v)

The streaming velocity, in dimensionless form, q/UQ, can be

written as a function of the two dimensionless parameters
UO U a

and . If we denote the particle oscillation amplitude
U a

by the letter s, and recognize -'- as the usual Reynolds

number R we can write

q(r/a,4 ) =U0 f(s/a, R) (2.5)

The construction of dimensionless parameters is not unique,

and an infinite number of choices can be made. The present

choice of R and s/a is especially convenient since these

quantities are a measure of the relative importance of the

terms in equat on (2.3). Thus the nonlinear term (7.v )V
YO vU0

is of order , the viscous term, --2", and the time deriva-

tive term of order wU . The ratio o he nonlinear term to
U a U a

the viscous term is thus of order a -- - = R while theteavU 0

ratio of the nonlinear term to the time derivative term is

U 2
amo a

What we can do with equations (2.3) and (2.4) now clearly

depends upon the relative size of the terms in (2.3), that is

upon the values of the parameters R and s/a. Since we have

seen that the values of R and s/a determine the streaming

velocity at any point, the conditions of any particular

I
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experiment will specify the value of R and s/a, and assist

us in deciding upon a theoretical approach to the problem.

As an example let us consider the experiments reported

by Carriere, Schlichting, and Andrade.4,6 ,7 For the case

reported by Carriere, co = 27r 50, s = .4 x lOi nm,

a = 1.25 x 10"On and v for air is 0.15 cm2/sec. Thus

R = V 10. In the experiment of Schlichting, a = 3.1,

s = 0.19 cm, a = 4 cm, and v = .0117 cm2/sec for water.

Thus R 1000. Andrade6 does not seem to specify the

value of s for the photographs shown in his article. For a

numerical estimate let us take s/a = .1. He gives: a = .24 cm,

Co = 4900, v = .15 cm2/sec and thus R = a - 200 for this
V a

experiment.

Comparing the value of R in the experiment of Carriere

with those reported for Andrade and Schlichting, it is not

surprising that the observed streaming patterns are different.

Fortunately equations (2.3) and (2.4) can be attacked and

solved for the two limiting cases of very small and very

large R, assuming that s/a is small. The flow observed by

Carrie're resembles the flow obtained from the solution for

small R, while the flow observed by Schlichting can be ob-

tained from the solution for large R. The appropriate

mathematical theory for the two cases is contained in the

so-called Oseen approximation for small R and in the Prandtl

boundary layer theory for large R.
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The Case for Small R

In two dimensions, and for rectangular coordinates

(2.3) and (2.4) can be written

S+ u + v = - + V72u

(2.6)

av+ UO + vv - + v2v

+ VVat Y y Pa
au av
ax ay

where u and v are the components of velocity in the x and y

directions respectively. The components u and v both vanish

on the rigid boundary surfaces. Since for small R the non-

linear terms are small compared with the viscous terms it

may be expected that the nonlinear terms can be partially

neglected in this case. In the absence of any obstacles we

would have a uniform flow field. This uniform field is per-

turbed by the obstacle, and the perturbation effects decrease

as the distance from the obstacle is increased. The expres-

sion for velocity can be split into two parts by writing

u = U(t) + u'

(2.7)
v = V'

where the primed quantities represent the perturbing field,

and the U(t) is the original uniform velocity field. If the

expressions (2.7) are substituted into (2.6) one obtains
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OU +du'+ 14' ulul vll +~ V2 Uel T ax dx ayx+Vax

(2.8)

U't+ a ax ;Y P ay 2

and + == 0ax ay

The Oseen approximation consists in neglecting the nonlinear

product terms in the primed quantities compared with the

viscous primed terms. This is valid if R, which represents

the relative magnitude of the terms, is small.

The linearized equations are

du aii' 8ut 1 a 2+ -+ ; =-IR+ V VU'

(2.9)

9T+Uti P a +

au' av'and + = 0

where u' + U = 0 and v' = 0 at the boundary surfaces. These

equations will be solved for the case of the circular cylinder

in an oscillating field, where U(t) = U0 cosot.

The Case for Large R

When R is large the inertial terms and the viscous terms

are of the same order of magnitude. The few exact solutions

for such a case seem to agree with what is usually observed,

in that the velocity of the fluid motion at high Reynolds
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numbers changes rapidly from its zero value at a solid wall

to its value in the main body of fluid. Even when the vis-

cosity of the fluid is low, the very rapid change in the

space derivatives of the velocity in the transition region

will give rise to viscous terms of magnitude comparable to

that of the inertial terms. Thus for a description of the

flow past obstacles at large Reynolds numbers, it is appro-

priate to look to the equations governing the fluid in a

layer in the immediate neighborhood of the body.

Prandtl26 in 1904 first suggested examining this

"boundary layer" and developed the equations of motion of

the fluid in this layer. These equations are ordinarily

developed by considering equations (2.6) and realizing that

within the boundary layer the terms involving derivatives

with respect to the direction normal to the boundary will be

much larger than derivatives in the direction along the

boundary.

Starting with equations (2.6) we take x along the

boundary and y normal to it. The velocities u and v vanish

at y = 0. The symbol 6 is taken to represent the thickness

of the boundary layer, i.e., the extent of the region in which

the inertial and viscous terms are of the same order. In this

distance 6 the velocity changes from its midstream value U(t)

to zero. Thus considering U of the order of unity and 6
2u '1aU2U au

small, * v6 ,u -2 in the boundary layer. u,, .

a-42 are all considered to be of order unity. The continuity
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equation says that ~v 1 and hence v v 6. Hence, a v av

are of order 6 and -2 -V6 . Now if equations (2.6)

are examined and all terms of order 6 and 62 are discarded,

the first equation becomes:

01_aa 2 U (2.10a)Fu + UV + v - -x +V_(.1_

The second gives

1 - .0 (2.10b)p Oy

and finally

9U+ av 0 (2.10c)
ax Sy

Thus in order that the inertial terms and viscous terms are

of the same order we must have v6-OW 1 or 6 -v vl/2. The

equation (2.10b) says that the total pressure change through

the boundary layer is of order 62. Thus the pressure gradient

- can be regarded as having the same value within the

boundary layer as outside. The limiting form of (2.10a) in

midstream gives

Oft 1 a a + TU (2.11)
pax at x

A non-dimensional derivation of these equations points

more clearly to their connection with large values of R. We

shall follow a development given by Goldstein.25

4 ; '
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Taking U0 as a typical velocity, d a typical length and
U 0d

R = , the expression arrived at earlier stating that

6 ^ vl/2 can be expressed non-dimensionally as R-1/2.

Thus as R increases the thickness of the boundary layer

decreases. In order to get a true representation of what

happens in the boundary layer as R -- *O, it is necessary to

multiply the scale of distances normal to the wall by R1/2

so that the region we are examining does not vanish in this

limit. Similarly, we multiply the normal velocity by R 1/2

This leads us to write:

x' X; y ' = R1/2 ;u u v' = R1/2 v
0 0

U0
t' =t-; ' =

pU0

If these are substituted into (2.6) the equations become

Su' ,u' ,1u' ' 2u' 2 U'
v+ ut.I + V,5y. +x +,

v' ,9V' V'I 84 1 2 v' a 2v'

+~ U y

d R Ox'

ax' T

Assuming that the derivatives appearing here remain finite

as R the limiting form of the equations is as R -r So ,
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?U' ,'I ,a 1 82u'f

0 ap (2.12)

au' dv'-X + 0

which are the non-dimensional forms of equations (2.10).

Strictly speaking the application of these boundary

layer equations does not require the presence of a wall.

The conditions for application are, expressed non-dimensionally,

that u/U0 change rapidly from one finite value to another over

a length normal to the basic streamline, of order R-"1/2d,

while changes in the direction of the streamline are not

d au u
rapid, i.e., , etc. are of order . Wherever the

0 0

curvature of the basic streamline or the rate of change of

that curvature becomes infinite the equations are no longer

valid.

From the preceding discussion and review we can make

several conclusions. We expect the boundary layer theory to

give us information in our problem of flow around a cylinder

when R is large. When R is small we expect the motion in

this problem to be determined by the equations obtained

through the use of the Oseen approximation (equation 2.9).

At the present time there is no formal mathematical means

by which the problem for intermediate values of R may be

attacked. For that reason, a portion of this thesis is
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devoted to observing experimentally what happens in this

range as a function of the parameters s/a and R. It is

important to determine the ranges over which the analytical

solutions for the extreme limits of R might be useful. The

transition between the two types of solution is also observed

experimentally, and seems to be related to the relative

stability of the two types of flow.



Chapter III

The Calculation for the Case of Large Reynolds Numbers

Starting with the Navier-Stokes equations for an

incompressible viscous fluid in two dimensions and the

equation of continuity, we have seen that it is possible to

obtain the Prandtl boundary layer equations which give a

valid description of the fluid motion near a rigid boundary

for the case of flow at high Reynolds numbers. The boundary

layer equations are

au + u- au + 2 u+ u. + ;ax y (3.1)

u+ av 0 (3.2)

where u and v are the x and y components of velocity, respec-

tively. The boundary conditions are u = v 0 at y = 0;

u = U(x,t) at y =co . The kinematic viscosity coefficient

is v,and p and p are the pressure and density. The coordinate

x is measured along the boundary and y in the direction normal

to the boundary. The function U(xt) represents the "outside"

stream velocity. We recall that the derivation of these

equations assumes that the boundary layer or transition

region near the wall in which the stream velocity goes from

free stream value to zero, has a thickness small compared to

a characteristic length of the boundary. In addition

- 21 -
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equation (3.1) is valid as long as the rate of change of the

radius of curvature along the boundary is small.

The term - 1 has been shown to be equivalent to
P ax

since to the order of approximation in deriving (3.1),

- 1 in the boundary layer is the same as in the outside
p ax

stream. Equation (3.3) can be looked upon as the limiting

form of (3.1) as one moves away from the boundary. The equa-

tions governing motion in the boundary layer are thus

+ Uu + v = + U

(3.4)

u+ v 0
;ax ?y

with the boundary conditions u = v = 0 at y = 0; u = U(x,t)

at y = co

It has been mentioned in the first chapter that Schlichting7

has used these boundary layer equations to calculate the

steady flow near a cylinder for the case corresponding to

large R, and has compared his results with experiment.

(R -- 1000.) Schlichting's calculation is based on a per-

turbation approach and considers terms to second order. In

this thesis the calculation is extended to terms in fourth

order and an expression for the steady flow stream function
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is obtained which shows a change in the flow pattern with

the parameter s/a.

Schlichting's Treatment

In treating the problem of oscillating flow along a

boundary, Schlichting assumes that the outside flow can be

represented by U(x,t) = U0 (x)cosot. The perturbation pro-

cedure is carried out by assuming that u and v can be ex-

panded in a power series in the parameter e. The first,

second, etc., powers of E correspond to the first, second,

etc., orders of the perturbation calculation. Thus the

expressions u = Eu1 + 62 U2 *. ; v = Gv1 + C2 2 ... are put

into equations (3.4) and the resulting expressions are sepa-

rated according to powers of e. The E., having served the

purpose of separating the various order terms, is finally

set equal to unity. Following this procedure and assuming

au TOthat is of first order while UaIJ is of second order,

Schlichting obtained the following equations.

SU 2 u i aA )ul av1
- v - - c(x)sinot; -+ (3.5)

du2  2 u2  U au--- = - (u * + v )

1 dU au U
= U0 (x)'((l+cos2wt) -(ua+x )

u2 av 2  (3.6)
+x - =



The solution to second order is then u = u1 + u2 ' V = V1 +v 2.
The boundary conditions for equations (3.5) and (3.6) are

u =v= 0 at y = 0, and u 1 =U0 (x) at y =o ; u2 =V 2=

at y = 0 and u2 is finite at y =cc . The imposition of

boundary conditions at y = o is a mathematical simplification

of the physical picture in which the velocities approach

"outside" stream values away from the boundary. Since the

velocity expressions consist of constant terms plus terms in

y which decrease very rapidly as y increases, this is a valid

simplification.

In solving the equations it is convenient to introduce

the variable ' = y FS where the quantity 6 is usually

considered to be a rough measure of the boundary layer thick-

ness. Since equations (3.5) and (3.6) are linear, the prin-

ciple of superposition may be used, and it is convenient to

write the time variation as the real part of an exponential,

i.e., eiGt for example. However, only real expressions can

be used in calculating the nonlinear inhomogeneous terms for

the next step.

The solutions to (3.5) and (3.6) are in appendix 1. The

solutions u1 and v to (3.5) are periodic with frequency w.

The solutions u2 and v2 to (3.6) have a D.C. part and a

periodic part of frequency 2m. The steady part of the solu-

tion u2 approaches a constant value as y -- e. This limiting
dU0value u2 (x,oo ,t) is - %-ax- which Schlichting interprets

as the steady velocity of the circulating fluid just outside

- 24 -



. 1Va.2st 1 dU
2st y w oax 2b"' (3.7)

aV2st 1 df2Ui0 dU 21
v2st X V (D x 0 + --) 2b l)a X3 dx -)

The functions and 2b are plotted as functions of in

figure 1.

The Higher Order Terms

In proceeding to a calculation of higher order terms we

shall write U(x,t) = A2 (x) + A4(x) + Uocosat, that is, include

a time-independent part in the 'butside" velocity. We shall

assume that A2 (x) is of second order and A4(x) of fourth

order, while U0 (x) is of first order. The expression for

is the same as before. = - COU sinot. The expression

for Ugj is modified by the inclusion of the terms A2 (x) and

A4 (x).

- 25 -

the boundary layer. At points where u2st = 0, i.e.,
dU0

U --g0-= 0, the flow becomes normal to the boundary. The

physical extent of the circulations at least along the

boundary is thus determined by his result.

The steady portions of u2 and v2 represented in terms

of a steady stream function are
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Figure 1 : The functions Lb, %zb which appear in the time inde-
pendent second order solutirn to the boundary layer equations,
p otted as a functirn f/ : = ( See equations 3.7)
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= .dU
1 dU(l + cos2mt)

dA2  dU dA2
+ ( + A2 )coSwt + A

+ (cross products of fifth, sixth, and eighth order)

2 dA2  4
Since A2(x)~ e and A2- ~ C a separation according to

powers of G gives for the equations governing the first four

orders of magnitude:

'' U21
a 2

at "bosincot
du

LlX (3.8)

1 dU 0
o(dx 1+ cos2at) -

?v2
+ = 0

dU
+ A2 - )cosOt

au12
lay

+ u 1
+ u2~j~~x + v23

(3.10)

+ y= 0

aul
+ u3~7~x

+ v33y]j

au 2
--t-

2u
-au au

(u - -+
avy

1 ) y (3.9)

au dA2
(U d

2u
-a U

+

au
2

- auV..-.-
y 2

=A dA 2
2 dx

u-
3 x

e)
+ v

du2+ v2~3~2

3v4
(3.11)

SU

St

av
+ay0

(U OU2
1 ax



___

The complete solution to fourth order is

U = 1 + U 2 + U 3 + v4

The boundary conditions can also be separated according to

powers of G. The condition u = v = 0 at y = 0 gives u , u2,

u3* U4 , v., v2, v3, v4 all equal to zero at y = 0 (r 0).

At y = cO the functions u 1, u2, u3 , u4 must remain finite,

and in addition u U0 coswt, u2 = A2 (x), u4 = A4 (x). The

solutions to (3.8) and (3.9) are the same as in the Schlichting

case. The condition that u,= A2 (x) at y = oo determines
dU

A2(x) = - 0 -c. and this is put into equations (3.10) and

(3.11).

Logically it seems that Schlichting should have included

the A2 (x) in the "outside" stream velocity. We have seen

from (3.8) and (3.9) that his equations (3.5) and (3.6) for

U11, u2 ' v1 ' v2 would have been unchanged. The steady portion

of u2 remaining finite at y = oO would not have been left

dangling, but would have been fitted into the scheme of

boundary conditions in a self-consistent manner as with

A2 (x) and A4 (x) here.

In calculating the higher order terms it is necessary

to assume the A(x) terms in the "outside" velocity in order

to obtain a solution. Had we not included these terms, the
dA2  au2term A2 ~-x- in (3.11) would be absent, and the term u2-a on



F-
the right-hand side of (3.11) which has a constant part would

dA
2

cause difficulty. The A2 -7- just cancels this constant term

which upon integration would have given a component for u4
2

which approached infinity as y

Since we are only interested in the time-independent part

of u4, the work can be simplified. One may note from the

expressions for u , u2, v., V2 in appendix 1 that the solu-

tion for u3, v3 in (3.10) will have no D.C. component. The

solution to (3.11) will have a D.C. component obtainable from

the time-independent portion of (3.11). The functions u3I

v3 will have terms in o and 3w. However, the w terms are the

only ones contributing to the steady part of u4, and it is

thus only necessary to obtain the w components of u3, v3 "
The results of the calculation for the "fundamental"

terms for u3 and v3 are given by:

U 3(w) = R.P' L

1+R.P. U0 ( ) 3

S 2 0 ()eit

2 dx

1 dU0 2T (y?)eiwt
2- 0 dx 3b

(3.12)

and

I
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+ 2U.
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dx7

dU
0

-[

+ 2U

d2U

dU

7J3a iO 

dU3
(ax) 3+

+

3b I

(3.13)

3b' 3a' 3b are given in appendix 1.

The equation for the time-independent part of u4 can be

written:

dA2
A2 x-

_t
( u SU U
( !a + u2 + u
1ax 2d 3+ax

_t

+ v CU2
+ u)

+3 aYIv
(3.14)

The solution is:

0 d o
dU 3

0 Ux 14b (1)

+ U 2
+U da7c

d2

t (i) 3 (3.15)

From the equation of continuity, we can introduce the strean

function

1p4st UF 3 U 4a() + U( ) 4b +

(3.16)

4 .

where 3a'

2 u4
-V

1

2 dU0
Sdx

where:

d2 U

dxU

I

a (7)u4st
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? V4 st =t94 P4st

The expressions 4a' 4b$ 4-' 4a' 4by 4. are given

in appendix 1. In the limit of large distances from the

boundary the functions 4a' 4b' approach constant

values

4a(00) 17,839 1.58
12,000 8i

69,367 74,161 25.4
4b 3,000 23,000Y_

4c 1,280,027 - 236,121 - 41-5
36,ooo 27,00'Y2

The functions 4a' 4b' 4c' 4a' 4b' 4c are plotted

in figures 2, 3, and 4.

The complete time-independent solution including both

the second order and fourth order terms is thus

41 8t = Uo-TX 2b Uo o4a(~ d2 r d 3 U

(3.17)
dU 2 dU0 d2U (11

Uo( ) 4b() + Uo dx dx2 4W

Ut st l dU0 3 A
at y - Ue--g b( - 4b U dx3 4a

dU , dU d2U (3.18)

+ U( 2 4b + Uo 24cC'?)]
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Figure 2: The functions q, Jy, which appear in the time inde-
pendent fourth order solution to the boundary layer equations,
plotted as a function of f y/5.
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Figure 3: The functions which appear in the time inde-
pendent fourth order solution to the boundary layer equations,
plotted as a function- of 7 = y 5 .
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Figure 4: The functions YC , qc I whiCh appear in the time inde-
pendent fourth order solutIon to the boundary layer equations,
plotted as a function ,f y .
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akst 1 d 2U dU 02

vst x ~1  x (- 2b7)

d U dU d3Uo
U + 32 d3 4

3%2 ~ -s--(3.19)
2

(dUo 2 dU dU
+ U ) + (-g- 4b

2 dU 0Au 2 d2Uo 2 dU0 )2 d 2U

dx dx dx / 0 dx)

The functions 2b' 4a' 4b' 4. appearing in (3.17) are

plotted together in figure 5.

For the example in which we are primarily interested,

i.e., the case of oscillating flow around a circular cylinder,

the function U(x,t) = 2U singcosot. Thus

U (x) = 2U sin = 2U sin 4 where x is measured a-long the

boundary from a stagnation point. In this case

dU0  2U x 2U d2U 2U
= - COS-=-acossi

a a a dx 2a2

d3U 2U d U0  2U0
x - --= Cos d3 + -- I- sin

dx3  a dx a'

The expressions for the stream function and the velocity

components become:
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a t sin2+ TbI + (. (3.20)

* 4a + 4. 0) sin2 + -4b co s2j

2U 2

ust asin2 2b + F

4a + 4 n 4bcos

v = (5o 2 (os2 2[( )sin 4st aco a )4a + 4c)

+ 4bcos - 3( 4a + 4b + 4.)sin 2cos2#1

The expression for the stream function can be written in terms

of dimensionless quantities as:

2
20 in2 -( ) (y.a) + (s)2

(3.21)

j( 4a + 14c)sin - 4bcos 24

6 F

When the fourth order terms are neglected, equation (3.21)

indicates that for a given value of a/6 the streamline patterns

are geometrically similar. Thus photographs taken of the flow
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lines should look identical if the value of a/6 is the same,

even though the absolute size of the pattern might differ.

When the fourth order terms are included it is necessary

that s/a and a/6 both be the same for two flows to be geomet-

rically similar. Thus, as long as s/a is small enough for

these higher order terms to be neglected, a/6 alone is enough,

and as s/a increases both s/a and a/6 are needed to specify

the geometry of the flow. The parameter a/6 can be written

a/6 = R' = . 0 , and can be looked upon as a

modified Reynolds number.

Another simple example to which the above calculation

may be applied is that of circulating flow in a Kundt's tube.

When standing waves are set up in such a tube the "outside"

velocity function can be represented by

U(xt) = U sin rxost

Thus,

2rx dU0  U 2x
U0(x) = U sinV 2 os

d2 2o 2x doU 8 2rx
- 2 inU 3 U0~003cos

dx A dx A

The expression for the stream function determining the flow

within the Kundt's tube is given by the expression
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Jst 2 0 ( ) in r 22b(7) + ( )2,

(3.22)

( + 4c 4bo A

In this example the size of the fourth order term is seen to

depend upon the ratio 0 r where c is the velocity

of sound. In most cases this ratio is extremely small, and

as a result the fourth order terms can be neglected. The

fact that these higher order terms may be significant in ore

case and not in another highlights the fact that the geometry

of the obstacle plays an important role in determining the

size of these terms.

Discussion

The streamlines given by the relation 4 st = constant,

are plotted in figures 6 and 7. In figure 6 the fourth order

terms are completely neglected. The flow consists of a small

circulating flow within the boundary layer itself and an outer

flow which is also rotational. The directiorsof rotation of

these flows are indicated and are seen to be in opposite

directions, as of course they must be. In figure 7 the fourth

order terms are taken into account. For this figure, a

has been taken to be 10 while the ratio of the oscillation

amplitude to the radius of the cylinder, s/a, has the value

1/10. It is seen from figure 7 that the presence of the

higher order terms distorts the flow somewhat in the direction

of oscillation. Indeed as s/a is increased the distortion is
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a~ =10

0
0 5 10 15

Figure 6: Steady flow streamlines produced by a sound wave
passing by a cylinder in the direction indicated by the double
arrow. Plotted from the stream function for large R neglect-
ing higher order terms.(See equation 3.20). The flow pattern
is symmetrIcal about the cylinder and only one quadrant is shown.



- 41 -

90 60*

30

-=10

S I
a 10

0 5 10 15
77

Figure 7: Steady flow streamlines produced by a sound wave
passing by a cylinder in the direction indicated by the double
arrow. Plotted from stream function for large R taking the fourth
order terms into account. (See equation 3.20). In this figure
s/a = 1/10 , and a/5 = 10.



increased further, and this may easily be seen to put a limit

upon the range of application of the calculations to this

particular example. As s/a increases, the distance from the

cylinder at which the streamline-q),t = 0 intersects the

0 line increases, and this intercept can be looked upon

as a measure of the distortion of the boundary layer circula-

tion. From equation (3.20) we see that for the streamline

*t = 0, the quantity

2b + () 2 [ 4a + 4c)sin - 5 4bcos]

must equal zero. For = 0 this becomes

2b 2 I 4b
= 0

and for values of I larger than 5 or 6 the expressions 2b

and %b can be approximated by

2b :- .75 + 2.30

4b =- 25 + 2.29

Thus

(251 + 2.29)()2 .75 + 2.30 0a.9)~

determines the point of intersection, and the value of

representing this point is given by

2.30

.75 - 25(g)

For the example of the cylinder this is seen to become

infinite when s/a reaches the value s/a = a = 0.17.

- 42 -
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Since this inner boundary circulation can be looked upon as

representing the boundary layer thickness, it is to be ex-

pected that the results of our boundary layer calculation

cannot be used to describe the steady motion in the neighbor-

hood of small 4 for values of greater than s/a = .17. It

will be remembered that the derivation of the boundary laysr

equations is based upon the assumption that the boundary

layer is very thin compared with the characteristic dimension

of the obstacle.

Some experimental observations of the flow near a circular

cylinder have been made for the large Reynolds number case

which indicate that as s/a is increased to a value in the

neighborhood of 0.2 the inner circulation is abruptly swept

away. Thus this observation may possibly correspond to the

theoretical indication that the inner circulation becomes

elongated along the axis of oscillation. More will be said

about this in the chapter on experiment.

A numerical example will give an estimate of the magnitude

of the steady velocities indicated by equation (3.20). Let

us consider just the first term of the expression for ust'

As the distance from the boundary increases the function

S2b() approaches the value - 3/4. Thus

2U 2

ust a an2 -- U( )sin2

Suppose that we have a plane sound wave of intensity 133 db

and frequency 500 cps incident upon a cylinder of radius 1 cm.
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Then s/a = 0.01 cm and R = 209. Thus the maximum value of

Ust is 0.47 cm/sec. The magnitude of this velocity is

directly proportional to the square of the particle velocity

of the incident wave, and is inversely proportional to the

frequency for a given U0 .

In concluding this chapter it is worth while to sum up

the assumptions made in the mathematical treatment presented

here. In the first place the Reynolds number R must be large

in order that the Prandtl boundary layer equations describe

the region near the obstacle satisfactorily. In addition

the curvature of the obstacle must not change too rapidly or

become too large. Finally, for the case of the cylindrical

obstacle, the parameter s/a must be small or the perturbation

solution of the boundary layer equations will break down.

We have seen that the maximum value it can take is of the

order of 0.2.

Values of R of the order of 1000 should give good agree-

ment with the calculations presented here as long as s/a is

less than the value 0.2. This means that for the case of a

circular cylinder in a sound field in air, the radius of the

cylinder should be of the order of 0.5 cm with frequencies

greater than several hundred cycles per second.



Chapter IV

The Calculation for the Case of Small Reynolds Numbers

In the last chapter a calculation was made for the case

of a cylinder in a periodic flow field for large values of R.
U a

Earlier R has been defined as , where U0 is the particle

velocity amplitude of the periodic flow, a is the radius of

the cylinder, and v is the kinematic viscosity coefficient.

In this chapter the corresponding problem will be

treated for the case when R is small. In chapter II the

equations governing this case were derived (equations 2.9)

through the use of the Oseen approximation. These equations

furnish our starting point here. If we introduce for U(t),

the expression:

U(t) = U0 cosaxt (4.1)

which represents a periodic flow, the equations governing

the motion become

aT(U coscot) + + U cosot at - + vV u'

+ U coscot x- P + vV v' (4.2)

Out +avi
ax ay

We now assume that u' and v' can be represented as

series of decreasing terms, i.e., u' = u1 + u
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V = v1 + v2 ... , where u is of frequency co, u2 contains

the frequency 2w and a time-independent part, and u3 has the

frequencies 3w and c, etc. The problem is to find the time-

independent part of u2 and v2, which represents the steady

streaming.

The equations for u1 , v1 are, from (4.2)

9(Uocosmt + u1 ) l ap 2
a t p axi +17u

v p+ 29 -- + v v1  (4.3)

p + Y
-+-=l 0'ax ay

In solving for u1 , v 1 it is convenient to introduce the

complex quantity eimt for the time dependence. In the ex-

pression for u2 and v2 it will be necessary to return to the

real quantities since several product terms appear. Equa-

tions (4.3) can be written

imU01 + iaq -- p, - v curl curl q

where

q= ulT + 1T. (, i, i are unit vectors)

This equation can be satisfied by:

q, U 0 U -i-- V + curl A (4.4)
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where

- curl curl 2i .2
V

and

2 p1 = 0.

In the case of cylindrical symmetry A has only one component

A z =l, which is an ordinary stream function. The first

order velocity q, is then given by

ul = Uo - +aU

1 9 Pi a3p1 (4.5)

Vi = -m a

where

2p = 0

and

~2q iw

Correspondingly the vorticity is

M curl q = curl curl A= 7 2 A - - (4.6)

Considering now the case of an oscillatory flow past a

cylinder of radius a, the boundary conditions imposed upon

the solution to equations (4.5) are

U+ U=0} for r = a
vi = 0(47)

u1 = V, =O for r = oo
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Once the solutions u1 and v1 have been found, the time-

independent part of u2 and v2 are found by taking the time

average of the equations (4.2) in which the real parts ulr

and vlr of u1 and v have been inserted, i.e.,

t t t
au lr 19 a2 2U coswt - - + v7 u20 ax P a x2

t t t(4.8)

Ulr 1 aP2  2U coswt- -4 + v7 v2

and
t

u2  V 2
-+ - =0d x Sy

To simplify the notation let us in the following omit the bars

and refer to the time average u2 and v2 by u2 and v2 them-

selves.

The equations (4.8) can then be written

t

UOcos t axr =- grad p 2 - v curl curl q 2

If we set

q2 = curl A2 = curl 12

and take the curl of this equation we find

U cost9 glrV = - v curl curl curl curl * 2 = - v 2 (4.9)
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The last step in (4.9) is justified in the case of cylindrical

and rectangular coordinates. The boundary condition is

q2 = 0 at r = a. (4.10)

The Velocities u1 and v

In cylindrical coordinates the appropriate solutions to

(4.4) are

p1 = ia)pU A logr - U iCOp cosn - iWPU rcos#n1 r

(4.11)

411 UO Bm Km (kr)sinm+

where

k2= c

The Km(kr) is the solution to the modified Bessel equa-

tion which approaches zero as r becomes infinite.

For matching the boundary conditions we write (4.4) in

cylindrical coordinates as

qr = - U cos u - +lr 0 ica r rd

1 p 1  dPl
q1 = = Uosin i -prat 8r

Inserting (4.11) and recalling the boundary conditions

q lr -~ cos 4 and q = Usin4 at r = a, we find
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A0 = 0

A1 = a 2 K2 (ka)

2 (4.12)
B1  kKo(ka)

An =Bn = 0 for n '7 1

In obtaining A1 the relations

K (z) + 1 = - K (z)z-K1 z 0

and

zKO(z) + 2K1 (z) = zK2(z)

were used.

From (4.11) and (4.12) the stream function for the

velocities u and v thus becomes

K (kr)
1 Oa kaK0 (ka) sin4 e (4.13)

where

k = 1/6 ; 6 =

The Velocities u2 and v2

Having found 1 we can now calculate the "driving" term

in equation (4.9). From (4.6)

k2 1 = - 21k K (kr) sin eicot0 R ) (k n4
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and, with

o1  Ca siCS 4(
6 x r r

we find, using the above recursion formula for K

C D eiot k 2 K2( kr) sin24<~ U eiwt[X + iY sin2c (4.14)

Hence

= (Xcosot - Ysinot)U sin2{

in which

X = Re K(k) Y = Im
K 0 kj

From (4.9) and (4.14)

t U 2

4 (01r 0
vV Y 2  - Uocosot - = -- - X sin24 (4.15)

Expressing X in terms of the functions kernx and kei x

defined by28

i-n K (E'T x) = kernx + ikei xn n n

equation (4.15) can be written

U2
4 2  r a k a

ke =e ke ke -.sin2P L.~
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where

A=ker 2 a + kei 2 a

and

6

The functions ker and kei do not satisfy the modified

Bessel's equation. Instead, as shown in appendix 2, they

satisfy the equations

v 4 (kei2 3 sin24) = k4kei2  sin24

4 r4 rV (ker2  sin2) =k ker2  sin24

Having proved this relationship a particular solution to (4.16)

can be written down immediately.

= - U- 2 sin2 + ker2  kei, a. - kei2  ker a (4.17)

The homogeneous solution P2h is a solution to the biharmonic

equation

V 42h 0

From physical reasoning we expect the angular dependence to

be expressed by sin24 so that t2h = R(r)sin24 - The equa-

tion for R(r) then becomes

4 d4 R 3 d3R 2 d2 R dRr -+ 2r -gR 9r -d+ 9r d 0
dr dr dr



found to be p = 0, + 2, and 4. The corresponding solution

for 4P2h is found to be

'2h = (- + C2 +C 3r2 + C 4 2

Hence, the complete stream function is

Cl+ C2 4
S2 2p + ZP 2h + -7 2 + 32 + Cyr

kI k k )

O(ker2 r kei~ a - kei2 r ker a .)}sin21

With the condition

v 2 a r =0 at

(4.18)

U 0
2

(4.19)

r =oo

we get

C3 =C C = 0

The other two constants are determined from the condition

v2r = 2C= 0 at r = a

Using the identities28

keix + kei2 ' x = - kei x

ker 2x + ker 2 x = - 0ker x

we get
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The roots to the corresponding indicial equation are



-54-

UT 2a3 aaa
C= (ker2' kei - kei2' i ker0 .)

C - U 2  a.kei ker , a- ker a kei , a]

Hence, the final expression forzj)2 is

-2 2 a a2 (ker2 ' I kei a - kei2 ' I .ker ) +

6(kei aker, a6 ker 6kei

2(ker2  'a kei a kei r ker a) sin242 a "6 0a~ Ver0 -6)

2 a(4.20)

ZP2 a - (,)6 i2

The streamlines of the steady streaming are given by

- 2 = constant.

In passing it might be mentioned that we now can

estimate q2/*1lwhich should give an indication of the

magnitude of the u2 and v2 terms compared with the u. and v

terms. From (4.20) and (4.13) it is seen thatt 2/zpln s/a.

In order that the series for u and v be made up of decreasing

terms as assumed earlier, s/a should be less than unity.

Discussion

The stream function appearing in (4.20) has been examined

in some detail. The function f( , a) has been plotted as a
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function of r/a for the values a/6 = 1, 2, 3, and 4 in

figure 8. It is apparent that the quantity a/6 determines

the general shape of the streamline pattern, as in the case

for large R, and in any examples where a/6 is the same and

the Reynolds number is small, one should expect to find a

geometrically similar flow pattern. Figures 9, 10 and 11

are plots of the steady flow stream lines for the different

values of R' = 1, 2, and 3. It is seen that for values of

R' less than three, an "eddy" is formed outside the cylinder.

When R' is increased the center of this "eddy" moves toward

the cylinder and decreases in size. At the point of its

disappearance (R' = 3), r/a is roughly 3 at the center of

the "eddy." When R' is greater than 3, (figure 11), none of

the flow lines close upon themselves for finite r/a.

Since

V 1 a4P2 v 2
2r r v21  ;ar

we can write

v2  fl:iaa )cos24 (4.21)

and

v2 g s f'(r/a, a/6 sin2 (4.22)

where the prime indicates differentiation with respect to

r/a. The functions f(r/a a/6) and f'(r/a, a/6) represent-

ing the radial and tangential stream velocities, are plotted

in figures 12 and 13 respectively for R' = 1, 2, and 3. It
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Figure 8: The radial part of the steady stream function,
f(r/a,a/5), which appears in the solution for small R,
plotted as a function of r/a. (See equation 4.20).
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Figure 9: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R <10). The parameter R' = a/6 has the
value 1 in this figure.
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Figure 10: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R< 10). The parameter R' = a/6 has the
value 2 in this figure.
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Figure 11: The steady flow pattern generated by a sound wave
passing by a cylinder in the direction indicated by the double
arrow for small R (R<10). The parameter R' = a/6 has the
value 3 in this figure.
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1.

I 4 7 10

(r/a)

Figure 12: The radial velocity function f(r/a,a/) for the
steady streaming shown in figures 9, 10, r/a 11,
plotted as a function of the distance from the cylinder for
several values of R' = a/5.
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Figure 13: The tangential velocity function f'(r/a,a/5) for
the steady streaming shown in figures 9, 10, 11, plotted
as a function of the distance from the cylinder for several
values of R'.
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is noted from (4.21) that v2r is negative for 0 between 0

and r/4. Thus the direction of the flow lines is toward the

cylinder in the direction of the sound propagation.

A numerical example will give an estimate of the magni-

tude of the steady velocities. Suppose an incident sound

wave of intensity 100 db and frequency 135 cps is travelling

by a cylinder of radius 4 x 10-2 cm. Then s = 0.79 x 10-3 cm.,

and R = 3. The radial and tangential velocities have maximum

values of

V2r = 0.8 x 10U-2U = 5.7 x 10-3 cm/see

* 2$= 1.1 x 10-2 U = 7.8 x 10-3 cm/sec

The magnitudes of these velocities are proportional to the

square of the particle velocity of the incident wave, and

decrease slowly with increasing frequency.

In concluding this chapter it is pointed out again that

the preceding analysis is valid only for certain values of

the parameters R and s/a, since the use of the Oseen approxi-

mation implies small values of R, and the analysis has

pointed out that s/a must be small (s/a < 1). Preliminary

experiments have shown that R should be less than 10 to get

the flow described by this analysis. On the other hand, a

typical value of R for which the reversed streaming exists

is of the order of several hundred.

A comparison of the results of this analysis to the flows

observed experimentally is given in chapter VI.



Chapter V

Calculation of the Viscous Dissipation due to an Obstacle

The calculation of the energy lost to viscous friction

in a fluid is of practical interest. In acoustics such a

calculation of the energy loss in periodic flow along a

surface, or through an orifice is of importance in determin-

ing the resistive portion of the acoustic impedance of these

configurations.

A distinction between the cases for large and small

values of the Reynolds number, R, must be made again here.

As has been previously pointed out, for the case of large R

the flow velocity changes very rapidly from its midstream

value to zero in a thin region near a boundary. Within the

thin boundary layer the forces of viscosity are appreciable,

and it might be expected that most of the energy lost due to

viscous forces would be lost in this layer. Thus for large

R the boundary layer is the region to be examined if a

theoretical treatment of viscous losses near surfaces is to

be made.

For the case of very small R there is no such sharp

transition zone in which the shear forces are very large.

As a consequence the total energy dissipated throughout the

entire medium must be computed.

Fortunately the calculations made in Chapters III and

IV have given all of the quantities needed for the calcula-

tion of the viscous dissipation due to the presence of a

- 63 -
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circular cylinder in an incompressible oscillating flow.

The following calculations can be regarded as by-products

of the earlier work.

The Case for Large R

In a viscous, incompressible fluid the rate at which

energy is dissipated is given by2 9

W = Lf(V xi)2dt + 2p ii.(ix(V XV)) 2 dS (5.1)

If the fluid is enclosed within fixed boundaries at which

V= 0 the surface integral of (5.1) is zero, for there is

assumed to be no slipping of viscous fluid at a fixed

boundary. In this case the rate of dissipation is:

W = 4 (V x) 2dt (5.2)

In two dimensions

curl == Ti(a - )u
ax ay

and

2 (OT)2 3u)2 _ _(curl v2)2  + - 2( x)( ) (5.3)

If the methods used in chapter II are applied and (5.3) is

examined as to the relative magnitude of the terms appearirg,

it is seen that in the boundary layer one can write

(curl V) 2 3u 2
(a)
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Let us assume that this relation is a valid description of

the situation in the boundary layer and calculate the rate

of dissipation of energy there which is

w = f (au)2d (5.4)

where the volume of interest is the boundary layer.

In earlier calculations (chapter III) we determined the

velocity u to terms of higher order in the amplitude of

oscillation. Thus consider u = u1 + U2 + u3 where u1 , u2,

U3 are of first, second and third order respectively, as

before. Then, to fourth order,

(OU) 2= ( )2 + 2( 1)("2) + 2( u)(3 ) (- 2)ay a y ay y a y ay '

(5.5)

all higher order terms having been omitted. In calculating

the dissipation, the quantity of importance is the time

average of the dissipation. It is to be recalled (see

appendix 1) that uI is periodic with frequency c; u2 has a

periodic part of frequency 2n and a DC part; u3 has an co and

a 3w component.

As a result, when the time average of (5.5) is taken it

is seen that

t

a yX ya y dy

and that
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(U) (U-)?y ay

contains a DC part only from the o component of u3 '

Since all of the quantities appearing in the expression

t I t t t

(--)2 2) + 2( 1 )( + ( 2)2ay ay yI ayI a y

are available from earlier calculation it is not difficult

to evaluate the integral giving the rate of viscous dissipa-

tion in an oscillating boundary layer.

t

( 1)2 = U2 1 r + 2 OD U 2  (5.6)

t

( u2 2 = 1 U2( dUo 02[ ,,2 ,,12 ,,12(57
(0 2)x 2ar + 2 + 2b(

t2
2 ul -au (DUO 2 d2Uo

* V _ a r 3dx2 3a lr 3a 1

+ dU 0)2( I I i (5.8)
+ U x (br )2+ O

It is convenient to consider separately the integrals of

(5.6), (5.7) and (5.8). The integral of (5.6)

t

IS - ( )2dT

is most easily treated. The function has the value
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''___+ e1~ I g

and thus

- i i
1 il =e

and

I L 2 V UO e dr

Now dT = dxdy = bdxd?

Thus

where T= yfi

IS fe U 2 dx d (5.9)

The integral over I can be taken from 0 to oO since there is

virtually no contribution to it outside the boundary layer,

and these limits simplify the integration. All kr integra-

tions are of the general form

e-a d 
n !
an+1

Thus

I 6m1fU 2 (x)dx = T-.P- fU 2(x)dx1 22vf (5.10)

The integral

.a-- i
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12 = 6s ( )2dxdi

Ms 1 U ( )2 dxf+ 
=fy f0L~-

is treated in detail in appendix 3. The result is that

12 -vc + U2P 12 dx6(D~ [ ~7200Y21 U2(O.2

Similarly

3 fff d dxdy

(5.11)

+ U0 2 )2 R 1P 1] dxdiy

and

( - +1
0dx2

(5.12)
( 3 - + 3 U 2 dU)2 dx1

45-0 + 36 0Y3-o

Combining 1I I2, and I3, one gets the power dissipated in

the boundary layer to be

W =VO .f' f U 2 dx- (.250) U 3 (d 2 ) dx

+ (.212)
2dU 2

U 2( )2dx
(5.13)Iij

2b dy

I3 = V - - 1-
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or with a partial integration

W S - U2dx - .250)U3

A (5.14)

- (0.538) U2 2 dx

The first term is the same as that often considered in

obtaining viscous dissipation near boundaries. It is usually

derived by considering the effect of viscosity upon the

oscillatory "shearing" motion of an infinite plane. The

other terms give an additional contribution to the dissipa-

tion which is a function of the amplitude of the oscillatory

motion and the form of the velocity function along the

boundary, U0 (x).

For the example of the cylinder in an oscillating flow

which has been treated in chapter III, we have

dU 0 2U
U (x) 2U sin = 2U sin4 U -cos4

d2U0  2U0

dx a

If these expressions are put into the integrals in (5.13)

one obtains

U2dx = 4a U 2 sin2  d 4aU2.

3 d2UO - 4 aU 0
Ue3 2dx = - 16a -- sin4 d+ -2 16- -

fO dx a a

moon& -- i
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U 2 ,02dx = 16a in2o cos2 d< 16' U 2 .
Jod' LJa a

for integrations over one fourth of the cylinder. The

expression for the power dissipated per unit length in the

boundary layer for this example is

W = -va)- P-.a~e+ - )2 (.760

(5.15)
= 4rv* -. U 2- a + (})2 6)

Vi+ (S) o~

This expression neglecting the higher order term is plotted

in figure 14. For the case of standing waves in a Kundt's

tube

2rx dUo 2rU 0 2rxU 0(x) = Uosin- 370  Cos2U 2

d2U 4YU0 0 2vrx
dp~ 2 sin

If we take the tube length to be L (2n ) and the tube

circumference as C, we get for the power dissipated

W = J -L__U02 -(2n + 1)-C 1 + ( 0)2(0.190) (5.16)

Numerical values for these cases will be given later.

The Case for Small R

For the case of small R we again must evaluate the

integral
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W = f ((curl v)2d.
Jv

where this time the volume considered is the entire volume

outside a cylinder of radius a. Only terms of first order

shall be considered, and we thus shall represent curl V

by curl vl.

From chapter IV equations (4.6) and (4.13) we have

that

Icurl V 2+1- kU k - 2nk Kin eitvi a;, Iao K 0 ka

Since we want the time average dissipation, we take for

(curl v,)2 the real part of w 1, squared, and averaged over

time. If we write

I = Ze iot= (x + iY)(cost + isimrxt)

Then

.. Xcosot - Ysinwt

and

(x2 + Y 2) = 2 ZZ*

4U 0 kk K,(kr)Kl(kr)
W = - Q V%

0JJ K 0 (ka)K0 (ka)

2 o _ _ K (kr)K (kr)
2t o V.f K (ka)K(ka)

2+rdrd +

Thus

(5.17)[R.P.(W )] 2



where

k = fi/6

Kl(kr) = K,(1({ r)

Kl(kr) = Kl(i R)

From Appendix 4 we have that:
CO

Kl(fi )Kl(f~T1 L)rdr = a6[ker1  kei - kei ker'

where the ker and kei functions are defined in chapter IV

by

kernx + ikeinx = i 'Kn(1' x)

Hence

a er kei . - keil a ker'
W=- 4rv U0  2 a 6 W i2

o ~kere 2 + kei2a
(5.18)

This expression is plotted in figure 14. Using several

identities relating to the ker, kei functions28 this may be

written:

Zk(a)
W - 4rv U 2 a 6

0 6 Xk(a)

where

Zk (a) = ker a ker' ~+kei 2 keil a
aU 2a -6 ei-0a 0 T

Xk( ) =ker2 a+ kei2a

The functions Zk(x) and Xk(x) are tabulated in a report of

the British Association for Advancement of Science.30

"NNW
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Figure 14: A plot of the viscous dissipation function W/4rv U2

as a function of a/6 for both the large R and small R 0
cases. The small R case is plotted from equation (5.18),
while the large R case is a plot of the first term of
equation (5.15).
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Discussion

It is useful to illustrate the above results through

the use of some numerical examples. For the large Reynolds

number case of a cylinder in an oscillating field, we can

use the same numerical example given at the end of chapter III.

In that case we had an incident plane sound wave of intensity

133 db and frequency 500 cps and a cylinder of radius 1 cm.

Thus s/a = 0.01 and R = 209. The second term appearing in

the bracket in expression (5.15) has the value 0.76 x 10-4.

This is really quite small compared with the unity term. An

increase of 10 db increases this term by a factor of 10, and

thus it still remains small except for very high intensities.

From the expression for the dissipation in a standing

wave tube, equation (5.16), we can write an expression for

the Q of such a system. Q is defined as

Etotal
A E per cycle

The total energy is given by

L

ET = 2 (K.E.) (K.E.)max 2 02 sin2 2rx- dx=

- ~ S2 . S- (2n + 1)

where S is the cross-sectional area of the tube. Also, from

(5.16):

LE/cycle -U -(2n + ).rC 1 + (Ua)2(.190)]
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Hence,

cR 1 R 1

Y2woa + (!o)2(.190) 6 + (0) 2(0190)

(5-19)

where 6 = is a measure of the boundary layer thickness

and R is the tube radius. The contribution of the nonlinear

viscous term to the total dissipation and to Q is negligible.

Even at 160 db the second term in the bracket is 1.5 x 0~4

compared to the unity term.

The expressions giving the dissipation in the presence

of a cylinder in an oscillating field are plotted for the

case of large and small R in figure 14 as a function of the

variable a/6. For air the constant 4irva has the value2

1.13 x 10-3 gm cm- sec-2. Thus for the example cited above

where R = 209, we have a/6 = 144.5, UO = 31.4 cm/sec and the

power dissipated per unit length is W = 113.6 ergs sec1 cm- .

For the numerical example cited in chapter IV in which we

had an incident sound wave of intensity 100 db and frequency

135 cps and a cylinder of radius 4 x 10-2 we had

s = 0.79 x 10-3 cm, UO = 0.67 cm/see and R = 3. Thus in

that case a/6 = 3 and the power dissipated per length is

-3 -1 -
1.33 x 10 ergs sec cm.

From the figure it is seen that the consideration of the

curvature adds a bit to the dissipation. When a/6 is small

as is usually the case for small R, this may be an appreciable
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fraction of the whole, but when a/6 is large as would be

the case for large R this contribution is negligible.

In closing this chapter perhaps a word should be men-

tioned about the viscous dissipation in orifices, since this

is a problem of some import in acoustics. The geometry of

orifices is not as simple as that of the cylinder problem

treated in this thesis, and theoretical treatment may be

seen to be quite complicated. For portions of the orifice

having small radii of curvature, such as at sharp edges,

the flow would be associated with small values of R. In

other portions, which have less curvature, the flow would

be characterized by a large value of R. In addition, as

the intensity of an acoustic wave which is interacting with

the orifice is changed, the nature of the flow in the dif-

ferent portions of the orifice may change from one type to

another. Furthermore, since the range of intermediate

values of R does not present itself to analytical attack,

one must conclude that a complete treatment of the nonlinear

orifice problem would be an impossible task.



Chapter VI

A Discussion of Certain Experimental Observations

This chapter contains a discussion of certain experi-

mental observations made of the streaming motion near

obstacles. Observations have been made of the streaming

near circular cylinders for intermediate values of R as

well as for the two limiting cases treated analytically in

earlier chapters. A rough quantitative criterion for the

transition point between the two types of flow will be given,

in addition to descriptions and photographs of the flows for

various combinations of R and s/a.

Experimental Setup

The experimental observations of the streaming around

cylinders were carried out within a duct. The duct is made

of three sections of aluminum tubing having a 3" inner

diameter and a 3 1/2" outside diameter. These sections are

(1) a driver section 18" in length, (2) a test section 10"

in length, and (3) a terminating section 36" in length. The

first two sections can be used together as a standing wave

apparatus by putting a rigid metal plug at the end of the

test section. (See figure 21.) The terminating section

contains a Fiberglas wedge, and is used when travelling

wave measurements are desired. (See figure 23.)

A fitting was machined with which a small horn driver

unit can be fastened to the driver section. (See figure 25.)
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This horn driver is designed to drive horn speakers on Navy

vessels and is capable of handling up to 35 watts of power,

with very little distortion. Its region of maximum effi-

ciency is in the neighborhood of 1000 cps, but it is quite

adequate as a sound source from 200 - 2000 cps. The driver

section also has a small wall opening into which an Altec

621B condenser microphone can be push-fitted. When in place

the microphone surface is flush with the inner wall of the

tube. Actually during the observations, this hole was used

for introducing smoke into the tube.

The driver section and the test section each contain

two windows, 1" x 4", located for viewing the interior from

points separated by 900. A small threaded hole is opposite

one of the windows in the test section, and it is through

this hole that the cylindrical obstacles are introduced.

(See figure 24.) Observations were made looking down upon

the axis of the cylindrical obstacle, and illumination was

provided through the window at the side. The source of

illumination was a spotlight consisting of a 6 volt,

18 ampere projection bulb and a single lens for focusing.

The beam was focused down to a 1/4 inch diameter at the

cylindrical obstacle. Even with this arrangement more light

would have been desirable, since considerable difficulty was

encountered in attempting to photograph the circulations. A

small water bath was inserted in the path of the light beam

to help minimize the radiant heating of the air within the
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tube. It was hoped that this might cut down the convection

currents which could interfere with the streaming currents.

The spotlight was left unlit except during actual observations.

The driver unit was supplied from a Hewlett-Packard

audio oscillator and a McIntosh 20 watt audio amplifier.

Since most of the observations were made using the system

as a standing wave tube, this arrangement furnished plenty

of power. A few observations made using travelling waves

indicated that some distortion occurred when the power input

to the speaker was increased to levels needed to produce

good streaming flows. This fact coupled with the fact that

more general drift of the air seemed to occur with the longer

termination made the resonance measurements more desirable.

The observations of the cylinder were made through a

microscope which has a focal length of 40 mm and which gives

a magnification of roughly 10. (See figure 22.) An eyepiece

containing a scale furnished a means of determining the

amplitude of oscillation of the smoke particles. When sub-

jected to a sound field the illuminated smoke particles

appear as shiny rods. It is actually rather difficult to

measure the amplitude accurately since the smoke particles

tend to obscure one another when large amplitudes are used.

In addition the "shiny rods" are usually moving so that it

is difficult to line them up with the scale in the ocular.

For photographing the particles through the microscope

an Exakta 35 mm camera was used. (Figure 21.) An attachment

- A _0 mm"NONNOW&
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whereby the image is focused by the microscope directly upon

a ground glass viewer made focusing quite easy. When the

exposure is made the ground glass of course flips up out of

the way.

A considerable amount of discussion is present in the

literature concerning the use of smokes and dusts as a means

of observing air flows. The article by Andrade6 dwells at

some length on this subject, and other references are given

in Beranek's book on "Acoustic Measurements." 3 1 When smoke

and dust particles are used to determine the amplitude of a

periodic motion, it is important to know whether the particle

is giving a true indication of the air motion. An expression

giving the ratio of the particle velocity to the air velocity

is given in Andrade's article. Thus:

0 1 + 3b + b 2 + b 3 + b

0 a + 3ab + b + b + 9b

where wo/vo is the ratio of the maximum velocity or amplitude

of the particle to that of the air, a = 2a + 1, b

a is the ratio of the particle density to that of air, R is

the particle radius, v the kinematic viscosity and f the

frequency. For smoke particles, which are mainly water vapor,

R = 5 x 10-5 cm and even when the frequency is as high as

2000 cps, w0/vo = 0.9988. The measuring technique is a much
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greater limitation of the accuracy in determining s/a, the

ratio of particle amplitude to cylinder radius, than is

the inability of the particle to follow the air motion.

Several types of smokes and dusts were tried during

the course of the experiments. Ordinary cigarette smoke is

the easiest to obtain and was used for most of the visual

observations. Such smoke is quite dense, i.e., there are

a great many particles in a given area of observation. As

a result, when the particle amplitudes become of the order

of several times the distance between the particles it is

difficult to keep a given particle located. Since the par-

ticles of cigarette smoke are very small, each particle does

not scatter much light. As a result such smoke particles

are difficult to photograph, especially when in motion.

Magnesium oxide formed by burning a strip of magnesium within

the tube, while scattering somewhat more light than cigarette

smoke, is too inconvenient to produce. It has a tendency to

coat the inner surface of the tube and windows making obser-

vation difficult.

Titanium tetrachloride was examined briefly and found

to produce smoke of the same density and light scattering

power as cigarette smoke. It possesses the advantage of not

smelling like cigarette smoke, but it is slightly corrosive,

and fouls the interior of the tube more than does either

magnesium oxide or cigarette smoke. Baby powder, a mixture

of talc and boric acid, was blown into the tube and was
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found to be much less dense than the smokes used. The

particles are also about three times larger in radius than

cigarette smoke particles, and consequently scatter more

light. This combination of low density, i.e., low number of

particles in a given area, plus the greater light scatterirg

from each particle, makes it possible to photograph an

individual particle track as it moves across the field simply

by leaving the shutter open.

It is felt that the photographs of the streaming should

give a picture of what is seen visually through the micro-

scope. Thus when the streaming motion is rapid and the eye

is unable to resolve individual particles, it is not neces-

sary to resolve them in the photograph either. This makes

photographing the large Reynolds number flow easy because

the shutter can be left open for several seconds. Cigarette

smoke can be photographed with these exposures, and was used

for the pictures of this type of flow.

For streaming at small R, the eye can follow the

individual particles, and it is desirable to resolve the

individual particles in the photographs also. Thus the

exposure time must be relatively short, i.e., short enough

so that the tracks do not interfere with one another, but

long enough so that some motion is indicated. Some experi-

ments were made using a high speed flash arrangement of the

type developed by Professor Edgerton at M.I.T. The flash

time for the bulb is too short to indicate any motion at all,
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and thus this type of illumination is not desirable for

streaming photographs. It was thought that the baby powder

would be suitable for the low R case. The shutter was left

open for 5 to 10 seconds and the relatively few particles

allowed to trace their paths upon the film. While very nice

pictures of the paths were obtained, they did not give a

true representation of the flow motion and could not be used.

The photographs for the low R case were finally made using

cigarette smoke with a 1/2 second exposure. This exposure

seemed to be short enough to prevent the many particles

from obscuring one another. In order to get enough light

it was necessary to overload the projection bulb, and during

the time of the exposure it was operated at 8 volts instead

of 6 volts (190 watts instead of 108 watts).

Pictures were taken using both Plus X and Super XX film.

These films were developed in fine grain developer (Kodak

Microdol). In focusing the image upon the film, it was found

necessary to compromise in the amount of magnification intro-

duced through the use of the microscope. If the magnification

is too great, the amount of light reaching the film from the

particles is too small to produce a record. If the magnifi-

cation is too small, the light intensity is quite adequate,

but the image of the smoke particles is of the order of the

film grain size. Some experimenting is necessary to determine

the optimum magnification in any case.

The cylinders used as obstacles were of a variety of

radii. The radii used were 0.0134 cm, 0.040 cm, 0.0828 cm,
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0.160 cm, 0.240 cm, and 0.330 cm. The smaller cylinders

were strands of wire, the intermediate were pieces of brazing

rod, and the larger were machined from brass stock. (See

figure 26.)

The resonant frequencies of the tube at which measure-

ments were made were 230, 46o, 1150, and 2100 cycles per

second. The cylinders were located as near an antinode as

possible. Any asymmetries observed were attributed to the

cylinder not being precisely at such a point, and also to

steady drifting of the smoke particles apparently resulting

from temperature gradients within the tube.

Observations

The observations of the streaming motion near a cylin-

drical obstacle indicate that two main types of flow exist.

For one range of s/a and R the flow qualitatively resembles

that calculated using the Oseen approximation. (See

figures 9, 10, 11, chapter IV.) Thus, a single circulating

"loop" is present in each quadrant, and the flow is directed

toward the cylinder along the line of oscillation (the axis

of the tube). As the ratio s/a and/or R is increased the

single circulation loops apparently become unstable, with

part of the flow splitting away from the loop and flowing

away from the cylinder along the axis of the tube. Thus an

"outer" circulation is present in addition to the initial

one, which now becomes the "inner" circulation. The flow
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now resembles that calculated using the large Reynolds

number approximation. (See figures 6, 7, chapter III.)

As R is further increased the inner circulation shrinks

down until it is confined to a thin region near the boundary

(boundary layer). The transition between the two types of

flow occurs rather sharply, and it is possible to determine

a value of s/a and R associated with a particular transition.

Photographs of the flow patterns for four combinations of

s/a and R have been included in the thesis, and give an idea

of the shapes and relative sizes of the circulations under

these different conditions. (See figures 16--19.)

When observations were made using the larger cylinders

(a , 0.1 cm) it was noted that another phenomenon occurred

for high intensities of the incident wave. At a particular

level, the inner circulation present in the boundary layer

seems to be "squeezed out" and swept downstream along the

axis of the tube (i.e., in the direction of oscillation).

It seems likely that this occurrence corresponds to the

point indicated in the higher order calculations of chapter IV,

at which the inner circulation is deformed outward in such a

manner. It is difficult to be conclusive on this point, how-

ever, since the air flow is nearly turbulent for the inten-

sities at which this "squeeze-out" takes place, and a deter-

mination of s/a is difficult. The phenomenon is quite definite,

however, for as the intensity is raised and lowered past the

critical point, the inner circulation alternately disappears
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and reappears. On some occasions a "flutter" between the

two situations is seen. The value of s/a at the critical

point seems to be of the order of 0.2 as the calculation

would indicate, being more nearly 0.2 as R is increased.

Several of the points at which this "squeeze-out" occurs

are indicated in figure 15, and before-after photographs

are included (Figures 20a, b).

Figure 15 can be looked upon as a map of the type of

flow occurring for various combinations of s/a and R. The

observed points of transition between the high and low

Reynolds number types of flow for the various combinations

of cylinder size and frequency are plotted in this figure.

A line passing through these points divides the map into

two parts. The points to the large R side of the line

correspond to flows qualitatively resembling the flows cal-

culated using the boundary layer approximation. The points

on the small R side of the line correspond to the flows

resembling the flows calculated using the Oseen approxima-

tion. In addition to the points observed by the author,

there are points included which are calculated from data in

6Andrade's article. All of these latter points, except one,

correspond to flow transitions for spheres instead of cylin-

ders. (The value of R is calculated using for a the radius

of the sphere.) They are included on the map for the sake

of completeness, and because the dividing line for the sphere

case seems to be nearly the same as for the cylinder case.

A
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Andrade does not explicitly identify his points with the

transition between the two general types of flow, but he

presents his points as representing what he calls the onset

of "vortex motion," characterized by the appearance of a jet

of air shooting outward from the obstacle. This "jet" ap-

parently corresponds to the point at which the "outer"

circulation of the large R flow begins. From figure 15 it

is seen that for a wide range of values of s/a, the transition

between the two types of flow takes place for R4lO. For the

sake of clarity, the regions throughout which the theoretical

treatments for large and small R are believed valid are also

indicated in figure 15. A brief table containing the experi-

mental data from which the points of transition and "squeeze-

out" were calculated, appears below.

It is felt that the presentation of the data in the fcrm

of a map of the regions of flow is a good way to sum up the

results of this thesis. Thus in figure 15 the manner in

which the streaming motion changes from one general type to

another is apparent at a glance. The regions throughout

which the theoretical calculations might be expected to be

valid are also indicated. Together with the photographs of

the flows at various points, the map gives an indication of

the flow behavior for large, medium and small values of R,

and large and small values of s/a.

Possible future studies of the streaming near obstacles

should include attempts to determine the line of transition
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with more accuracy, and a closer examination of the "squeeze-

out" phenomenon. Such measurements will require a more

refined experimental arrangement than the one used here.

Special attention should be given to a better means of

measuring s/a with the microscope and the elimination of

steady drifting of the smoke.

Tables

Experimental Data for

f, 6 x 102 am

230 1.02
460 .722

1150 .457
2100 .338

230 1.02
460 .722

1150 .457
2100 .338

230 1.02
460 .722

1150 .457
2100 .338

Points of

1.31
1.86
2.94
3.96
3.92
5.55
8.76

11.83
8.13

11.5

Transition

3.4
2.2
1.2
--. 6

.8
-37

-. 1
-. 05

Experimental Data for

f_ 6 x 10 2cm

460 .722
46o .722
46o .722

Points of "Squeeze-out"

af s/a

22 .5
33 .4
46 .34

NOW-

a cm

.0134

.040

.0828

R

5.85
7.6

10.4
'-9
12.1
11.3

-- 8.8

0 9
~6

a cm

.16

.24

.33

R

240
440
700

-4
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10

10 p 100 IC
Figure 15: A "phase diagram" plot in s/a, R space. The exper-
imental line of transition between the two types of flow, the
regions of the validity of the calculations made for large and
small R, and the experimental line of squeeze out of the inner
circulation are shown.

00

+- Cj'der

A Sphere (Andrade)

o Cgmnder(

- e Oseen ipprox.

< oundarg lager approx.

Trnsition line

for cjinder

- 5c ueeze-ouf 0
line

A

A.

A

0.1

0.01

0.0011

I



C41

,ider

s/ = .0 3 6

f =460~v
a .330cm.

0

Figure 16 a,b : A photograph and schematic sketch of the streaming flow for R = 75,
s/a = .036. The bright line indicates the edge of the cylinder. The double
arrow in the schematic indicates the direction of oscillation. The exposure was
2 seconds on Kodak Super XX film.
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Figure 17 a,b : A photograph and schematic sketch of the flow for R = 20, s/a = .65.
The edge of the cylinder is indicated by the dotted line on the photograph. The
double arrow in the schematic indicates the direction of oscillation. The exposure
was 2 seconds on Kodak Super XX film.
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Figure 18 a,b : A photograph and schematic sketch of the flow for R = 8, s/a = .8.
The edge of the cylinder is indicated by the dotted line on the photograph. The
double arrow in the schematic indicates the direction of oscillation. The smoke
particles tend to cluster at the points indicated by the four bright spots next to
the cylinder. The exposure was 1/2 second on Plus X film.
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Figure 19 a,b : A photograph and schematic sketch of the flow for R = 2, s/a = .5.The edge of the cylinder is indicated by the dotted line on the photograph. The
double arrow in the schematic indicates the direction of oscillation. The smoke
particles tend to cluster at the points indicated by the four bright spots next to
the cylinder. The exposure was 1/2 second on Super XX film.



Figure 20 a,b : Photographs indicating the flow pattern before and after the inner

boundary layer circulation is squeezed out and carried away. ( The flow is similar
to that in figure 16 a,b in direction and nature.) The squeeze out occurs for R = 270,
s/a = .55. The exposure was 2 seconds on Super XX film.
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Figure 21: Photograph showing the standing wave tube in which the -
streaming motions were observed. The camera and microscope arrangement
is set up ready for taking photographs of the flow. The light source,
amplifier, and audio oscillator are also shown.
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Figure 22: Photograph showing the apparatus set up for 4a.king visual
observations.
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Figure 23 : Photograph showing the driver section, test section and
termination section set up for making travelling wave observations.
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Figure 24 : A close-up photograph of the test section showing the
windows for observation and illumination as well as one of the
cylindrical obstacles in position.
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Figure 25 : Photograph showing the speaker unit and the fitting with
which it is coupled to the driver section.
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Figure 26: Photograph showing the cylindrical obstacles used for
the streaming observations. The test section is oriented to show
the hole through which the cylinders were introduced.
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Appendix 1

The solution to equation (3.5) in terms of a stream function is:

S R.P U. I (1 )

U,= r P [U I

V -j; + [ ,J .P

yTex-

The solution to equation (3.6) is
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The w component of the solution to the third order equations

is given by
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The time independent fourth order solution to equation (3.14) is
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Appendix 2

Differential equation for ker and kei functions

K (kr) sin p4) is a solution to the equation

(7 2 - k2) = 0 in cylindrical coordinates.

Thus

+ + 1 2  -k2 K (kr)sin p4 =0 (1)+ dcF 2 jp r

K P(kr) satisfies the equation

r2 + r (P2 + k2r2) Kp (kr) =0 (2)

In our case k is pure imaginary = ia2

Thus

2 d__ d 2
r2 + - (p + ia r K(0 (3)

dr

If we write Kd(imr) = Xp(ar) + Y(ar) where Xp and

Y are the real and imaginary parts of the function, then

we can separate the real and imaginary parts of (3) and get

2d2X dX 22
r2 p + r -- P - p2x + a2r2Y = 0

dr dr p

(4i)

2 d2Y dY 2 22

dr dr p

Or

-4
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S2 Xpsinp = - a2Y sinp 4

(5)
2 Ypsinp c = c2X psinp $

4Xpsinp - 2Y - - z4Xpsinp# = k4 xpsinp

(6)

V Ypsinp# = k psinp

In our case

K2 ( )=-ker 2 - kei2 =6 2 + i Y2 (7)

[ker 2  sin2 = k kerU sin2

4 ke sin2 ] = k 4 kei2 r sin24

(8)

Hence

Thus

and
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Appendix 3

An Evaluation of the Three Integrals

Discussed in Chapter V
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Appendix 4

Evaluation of the Integral f Kl(kr)K*(kr)rdr

Let u = Rno(k Pr) and v = Rn0 (k r) be two solutions of

the modified Bessel equation, i.e.

1 d(r) - (k 2 + )un 2 (1)

F (rdr) - (k + n7)v 0 (2)(k q r-.)=

Multiply (1) by rv, (2) by ru, subtract and integrate from

a to 00.

Thus:
000

(k 2 k 2 rvudr + - d (dv) drp )fla d +fa. v I Fr u~rr rC~

+ rdu dvi
+ [rvd- ruarl

a

This last step is obtained by an integration by parts. In

our case Rno(kr) = Kn(kr) which approaches zero as r becomes

infinite. Thus the upper limit terms vanish.

For n = 1, kp = fi , k 1 , (k 2 k 2 2
6 q )::q

Thus:

I =frK (1T r)Kl(~i r)dr
6 W (3)

-aK 1 (Y )K (J ) - a K(T )K1(F )

X+ iY
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Considering the first term in the bracket to be split into

real and imaginary parts X + iY, we see that the integral

has the value, I = -abY. Thus we need Y.

We have:

Kl(fI~ x) - kei1x + iker1 x

K1(fT1 x) = - keilx - ikerlx

Fi K1 (fi x) = - kei X+ iker1 x

Thus

itf K1(CT x)K (VY x) = kei x kei x + ker x ker x +

+ i(ker kei x - kei x ker x)1

Hence

Y = ker akei - kei 1  ker (4)

Thus finally:

00

frK1 (1i ()K 1(fT )dr = - a6 ker kei - kei ker1

(5)
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