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Abstract

Recently, it has been shown that graphene can be combined with a variety of nanoscale
systems, such as other two-dimensional crystals, to form novel electronic nanostruc-
tures. These systems inherit the unique characteristics of graphene, such as high
mobility, Berry phase, photoresponse mediated by hot carriers, and at the same time
aquire new features due to nanoscale heterogenities. In this thesis, I explore the novel
electronic behaviors which emerge in this fashion. I focus on two types of systems:
(i) vertically-stacked structures in which graphene layers are interspaced with insu-
lating materials and (ii) in-plane structures formed by spatially-varying electrostatic
potentials in graphene.

The outline of this thesis is as follows: first, I show that the vertical structures
grant access to distinct transport behaviors and new kinds of photoresponse. Those
include, in particular, photo-induced negative differential resistance, bistability, and
hysteretic I-V characteristics. This wide variety of behaviors is enabled by a number
of interesting physical phenomena which can be accessed in these structures, such as
resonant tunneling, thermionic emission and field emission. I explore the different
knobs which are available to control these phenomena and new ways to employ them
to design the I-V response.

Second, I study in-plane nanostructures such as pn junction rings induced by
local charges, and show that they enable confinement of electronic states in graphene.
Confined states in these graphene quantum dots arise due to constructive interference
of electronic waves scattered at the pn junction and inward-reflected from the ring
by the so-called Klein scattering process. Key fingerprints of confined states are
resonances appearing periodically in scanning tunneling spectroscopy maps. Besides
the novel mechanism for confinement, I also demonstrate that graphene quantum
dots can be exploited for accessing exotic and potentially useful behavior which is
not available in conventional quantum dots. An example of such behavior is a giant
non-reciprocal effect of quantum dot resonances which is induced by the Berry phase.

Third, I study manifestations of defects in the Raman spectral maps of disordered
graphene systems. Two salient Raman features, namely the D and D' bands, pro-
vide useful information about the nature of defects. I perform a detailed analysis
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of the origin of the Raman scattering cross section which is routinely measured in
experiments and discuss how it can be used to obtain information about defects.

Overall, this thesis demonstrates the versatility of graphene nanostructures. This
is manifested in numerous phenomena which have implications both in basic science,
e.g. Berry phase effects, as well as in applied research, e.g. photodetection in graphene
Schottky junctions. Furthermore, several of the ideas discussed here can be extended
to achieve other interesting and potentially useful effects, such as localized valley-
polarized states in graphene quantum dots and exciton confinement.

Thesis Supervisor: Mildred S. Dresselhaus
Title: Professor of Physics

Thesis Supervisor: Leonid S. Levitov
Title: Professor of Physics
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Index of Notation

Fundamental constants:

h: Planck's constant over 27r [= 1.054571800(13) x 10-34 J s].

e: electron charge [= 1.6021766208(98) x 10-19 C].

kB: Boltzmann constant [= 1.38064852(79) x 10-23 J/K].

c: speed of light (= 299792458 m/s).

me: electron rest mass [= 9.10938215(45) x 10-31 kg].

a: fine-structure constant (= e2/hc).

Graphene-related constants:

vF: graphene Fermi velocity (~ 10. m/s).

ao: carbon-carbon distance in graphene (= 1.42 A).

t: carbon-carbon nearest neighbor coupling strength (~ 2.8 eV).

p: graphene mass density (~ 7.6 x 10-" kg/cm- 2).

wo: optical phonon frequency (hwo ~ 0.2 eV).

cs: sound velocity (~~ 2 x 104 m/s).

Ns, Nv: spin and valley degeneracy (= 2).

Aabs: absorption coefficient (~ 2.3 %).

K, K': inequivalent corners of the graphene hexagonal Brillouin zone.

General notation:

o: Pauli matrices, o = (ax, ,, o).

r: position vector.

p, q, k: canonical momentum, kinetic momentum, and wavevector.

E: electron energy (also Ej when specifying quantum number i).
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m*: electron effective mass.

-y: particle lifetime.

m: azimuthal quantum number.

V), 4): two-component electronic wavefunction near the K and K' points.

T: four-component electronic wavefunction including sublattice and valley pseu-

dospin.

T, TO: electronic and lattice temperature.

p: chemical potential.

ni: graphene carrier density of layer i.

D: density of states.

Ai,,: electron spectral function of layer i and band s.

f, fB: Fermi-Dirac and Bose-Einstein distribution functions.

T: transmission probability.

A, U: vector and scalar electromagnetic potentials.

B: magnetic field.

E: electric field.

fB: magnetic length.

fu: characteristic length of electrostatic potential.

Ed: characteristic disorder length.

fwkb: WKB decay length.

S: system surface area.

V: system volume.

Nu: Number of unit cells in the graphene lattice.

Aq: Berry connection.

(B, SPorb: Berry phase and orbital phase.

C, S(C): semiclassical electron path and surface inside C.

m.: orbital magnetic moment.

v: Maslov index.

Electron operators

WO, W: bare and full Hamiltonian.
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Wer, +ep, Wd: electron-radiation, electron-phonon and electron-disorder coupling.

2j,2, cT ,: creation and destruction operators at i-unit cell, sublattice a = A, B.

,, 4 t, 4', 4 't: electron annihilation and creation operator at the K and K' points.

4, Ut: electron annihilation and creation operator.

Photon-related quantities and operators:

Q, A: photon wavevector and polarization mode.

eQ,A: photon polarization vector.

dQ, a \: photon annihilation and creation operators.

Phonon-related quantities and operators:

qph, #: phonon wavevector and phonon mode.

eqph,,: acoustic phonon polarization vector.

q,,,3: phonon frequency.

I>9ph43 ph,: phonon annihilation and creation operators.

F,: force constant.

UD: deformation potential energy.

Graphene nanostructure parameters:

Vb, Vg: bias and gate potential.

Eb: electric field between biased graphene layers.

(D: Schottky barrier height.

d: interlayer distance (also dij when specifying layers).

0: twist angle.

qA,B,C: K-point displacement in a twisted bilayer system.

SOA,B,C: angle of vector qA,B,C-

TE: tunneling coupling matrix element.

ng: carrier density in the gate.

Er: dielectric constant.

Transport variables:

t1 : tunneling coupling.

Iij: interlayer tunneling current between layers i and j

V j: bias potential between layers i and j.
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Oi/: electrostatic potential between layers i and j.

Gjj: interalayer tunneling conductance between layers i and j.

gil: interlayer tunneling conductance per unit area between layers i and j.

Pin, Pabs: incident and absorbed power per unit area.

Pac, Pd, Popt: acoustic, disorder-assisted and optical phonon cooling power (per

unit area).

Poss: power losses (per unit area).

Z: conductance ratio.

R, RO: optoelectronic responsivity and optimal responsivity.

X: dimensionless responsivity.

STM-induced graphene quantum dot:

Bc: critical magnetic field for spectral non-reciprocity.

r: curvature of the electrostatic potential.

r., E, B*: characteristic units of distance, energy and magnetic field.

Vcpd: contact potential difference.

R: STM tip radius.

Raman notation:

EL: laser energy.

ID, IG: Raman intensity of the D and G bands.

nd: defect concentration.

IDR: double resonance Raman probability.

.M4': interaction matrix element.
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Chapter 1

Introduction

Graphene is a monolayer of carbon atoms tightly packed into a two-dimensional (2D)

honeycomb lattice with exceptionally high crystal quality. Since it was first isolated

in 2004 [1], the graphene field burgeoned into a dynamic research area with several

thousands of papers published each year. Intrinsic graphene hosts a wide range of in-

triguing phenomena which result from its unique combination of electronic, chemical,

mechanical and optical properties. As recently shown, graphene-based nanostruc-

tures, which result from combining graphene with other nanoscale systems, host new

behaviors not present in bare graphene. In this chapter, I present a broad overview

of the graphene field, with special emphasis on the intrinsic properties of graphene

and the recent advances in nanostructure fabrication.

1.1 A brief overview of graphene

Despite the recent growth of the field, two of graphene's salient electronic character-

istics were predicted several decades ago, well before graphene was a reality [2-4].

First, in 1946, P. R. Wallace uncovered the unusual semimetallic behavior of graphite

monolayers. Although originally intended to describe graphite, Wallace's work set

the grounds to describe other carbon-based materials, such as fullerenes, carbon nan-

otubes and graphene itself. Forty years later, it was realized that graphene pro-

vides a condensed matter analogue of (2+1)-dimensional quantum electrodynamics
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(QED) [5-7]. In particular, electrons in graphene mimick the quantum electrodynam-

ics of massless fermions, except for the fact that in graphene Dirac fermions move

with a speed 300 times smaller than the speed of light.

These unique electronic properties of graphene are condensed in the low energy

Hamiltonian, valid for energies |e1 < 1 eV, describing charge carriers in graphene:

VF(a -p) (r) = E0 (r). (1.1)

Here VF ~ 106 m/s is the Fermi velocity for electrons and holes, and p = -ih,. is the

momentum operator. This effective Hamiltonian arises from the covalent bonding of

Pz orbitals in the hexagonal graphene lattice. As first pointed out by Wallace, the

Dirac Hamiltonian in Eq.(1.1) gives rise to a conical bandstructure Ek, = -hvF k j

with k the electron wavevector. Given that in neutral graphene the chemical potential

crosses exactly at the Dirac point, graphene is a zero-gap semiconductor, i.e. a

semimetal.

The close connection with QED is manifested in the two-component nature of

0(r) in Eq.(1.1): electronic states in graphene are composed of states belonging to

two different sublattices, and their relative contributions to the total wavefunction

0(r) needs to be taken into account. This is similar to the spin index in QED and,

therefore, is referred hereafter as sublattice pseudospin. Pseudospin-related effects in

graphene can dominate those due to the real spin. One such effect is the so-called

Klein tunneling, which allows unit transmission through classically forbidden regions.

In addition, graphene has a wide range of other interesting properties. The ex-

posed nature of graphene's 2D electronic states enables direct probing of such states.

This feature contrasts with conventional 2D materials such as GaAs heterostructures,

where the electronic states are deeply buried. Graphene is also characterized by a

pronounced ambipolar electric field effect [1], such that charge carriers can be tuned

continuously between electrons and holes in concentrations as high as 1013 cm-2.

This knob enables experimentalists to control, for instance, the strength of electron-

electron interactions or the electron-phonon scattering rate. Graphene also features
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micrometer scale ballistic transport at room temperature [8, 9] and low temperature

carrier mobilities in suspended devices on the order of - 106 cm2V-Is- 1 [10]. This

grants access to electron-optics behavior in graphene, such as electronic lenses and

resonators. When compared to ordinary electrons, electrons in graphene also behave

in unusual ways if subjected to magnetic fields. This leads to new physical phenom-

ena, such as the anomalous integer quantum hall effect which can be observed even

at room temperatures [11] (a further indication of the system's extreme electronic

quality).

1.2 Graphene-based nanostructures

The unique electronic behaviors of graphene have been the object of intense research

during the last decade. While many questions regarding intrinsic graphene remain

open, particularly in the many-body physics realm, the graphene field has by now

reached maturity. For this reason, and motivated by graphene's intrinsic stability,

researchers have applied graphene synthesis techniques to many layered materials

which can potentially be exfoliated.1 Successfully synthesized crystals include hBN,

MoS 2, WS2 , WSe 2 and MoSe 2.2 As a result, graphene can now be assembled into

designer electronic heterostructures made layer-by-layer in any determined sequence.

The resulting stack represents an artificial material assembled with blocks defined

with one atomic plane precision. While lateral covalent bonds provide in-plane sta-

bility, weak van der Waals forces keep the stack stable. This emerging research field,

graphene-based nanostructures, has been gaining momentum in the last few years.

There has already been important progress in this field. Graphene was first com-

bined with hBN, which was demonstrated to serve as a high-quality substrate for

graphene [14]. Afterwards, few layers of hBN, MoS 2 and WS2 were used as tunnel

barriers for two graphene electrodes in vertically-stacked devices. Fabricated with

'Of the thousands of materials that can potentially be exfoliated, not all are stable. In some
cases, the melting temperature is dramatically decreased for a nanometer scale thickness; in other
cases, the materials are highly reactive or corrosive.

2Some of these are interesting on their own; for instance, MoS 2 has broken centro-symmetry,
which allows efficient spin and valley polarization by optical pumping [12,13].
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atomic precision, such devices operated as field-effect transistors [15, 16], resonant

tunneling diodes [17,18] and photodetectors [19,20]. Such heterostructures also pro-

vided a platform to explore the Coulomb Drag effect [21] and the metal-insulator

transition [22].

More recently, crystallographic alignment of 2D monolayers (with an accuracy of

less than 10) became possible. This results in Moir6 patterns that depend on the

rotation angle between two adjacently stacked crystals and their lattice mismatch.

Two notable examples include twisted graphene bilayers [23,24] and graphene-hBN

superlattices [25,26]. The resulting van der Waals heterostructures exhibit optical and

electronic properties distinct from its constituent components as well as interesting

collective phenomena.

Graphene has also been combined with local charges to uncover exotic electronic

behaviors. One such example is the atomic collapse of electronic states [27]. This

unique behavior arises from the relativistic behavior of graphene charge carriers with

a fine-structure constant which is enhanced by a factor C/VF ~ 300 [28-30].

1.3 Thesis outline

In this thesis, I explore new electronic behaviors induced by nanoscale heterogeneity

in graphene nanostructures. In this direction, I explore two different ways to manip-

ulate electronic states: (i) by vertically stacking graphene in-between monolayers of

insulating materials and (ii) by patterning local electrostatic potentials in graphene.

As we will see, these systems inherit the unique electronic properties of graphene

(Chapter 2), and acquire new electronic behaviors due to nanoscale heterogeneity.

In Part 1, I explore the vertical transport in graphene nanostructures. Transport

in such structures feature a wide range of interesting regimes, such as resonant tun-

neling, thermionic emission and field emission (Chapter 3). Transition between these

regimes gives rise to distinctive behaviors which include intrinsic bistability (Chap-

ter 4), photo-induced negative differential resistance (Chapter 5) and highly-sensitive

photoresponse mediated by hot carriers (Chapter 6). I also explore the knobs which
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are available to control these phenomena. In particular, these knobs arise from the

various 2D insulating materials (e.g. hBN, MoS2, WSe 2) which can be combined with

graphene. Furthermore, I also stress that vertical nanostructures have other features

of interest. For instance, the short interlayer transport lengths facilitate extraction

of carriers, enabling ultra-fast response times while minimizing losses. In the context

of optoelectronics, vertical heterostructures can also exploit the entire active area of

graphene; this contrasts from graphene-based pn junction photodetectors where the

active area is a negligibly small stripe centered on the pn region.

In Part 2, I study optics-inspired behavior in graphene quantum dots. First, I show

that pn junction rings enable confinement of electronic states in graphene (Chapter 7).

Such pn rings, acting as the boundaries of the graphene quantum dot, are induced

by patterning an electrostatic potential in graphene, e.g. by local charges. I also

show that the pseudospin degrees of freedom grants access to novel behaviors which

are not available in conventional quantum dots. In particular, I predict a giant-

nonreciprocal effect of the quantum dot spectrum which is induced by the Berry

curvature in graphene (Chapter 8).

In Part 3, I consider the photophysics of disordered graphene systems. Disorder

produces distinctive Raman features in the optical spectra of graphene, namely the

D and D' bands. I perform a detailed analysis of the origin of the Raman scattering

cross section, which is routinely measured in experiments, and discuss how it can be

used to obtained information about disorder (Chapter 9).

Finally, in Chapter 10, the main results of this work are summarized and potential

extensions of our work are discussed.
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Chapter 2

Graphene theory

In this chapter, I introduce the basic theoretical aspects of the graphene theory which

will be recurrent in subsequent chapters. In addition to the electronic description

within the Dirac theory, recurrent topics include Dirac electrons embedded in elec-

tromagnetic fields and the interaction between graphene and light. Several sections

of this chapter are dedicated to discuss some of the peculiar phenomena that make

graphene a unique electronic system. Naturally, there are many excellent reviews on

every single topic discussed in this chapter [31-33]; special emphasis will be given to

the essential elements necessary to make this thesis self-contained. For the experts

in the field, this chapter serves as an introduction to the notation that will be used

hereafter (see also index of notation).

2.1, The graphene lattice

The graphene lattice is comprised of carbon atoms arranged in a two-dimensional

hexagonal structure [Fig.2-1(a)]. The carbon atoms are bound in-plane by sp2 hy-

bridization: one s orbital and two p orbitals (pxy) form a o- bond. The pz orbital,

which is perpendicular to the graphene plane, can also bind covalently with its near-

est neighbours and form the ir-bond. The o bond is mainly responsible for the large

stiffness and high crystal quality of the crystal, whereas the r-bond is responsible of

the unique electronic properties of graphene.
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Figure 2-1: Hexagonal graphene lattice and graphene band structure. (a) Shown

is the hexagonal lattice comprised of sublattice A (open circles) and B (closed circles).

with translation vector a1 ,2 . The vector T1,2,3 indicate the nearest neighbor vectors with

magnitude ao ~ 1.42 A. (b) Hexagonal Brillouin zone of graphene displaying high symmetry

points: the zone-center F-point. the zone boundary M-point. and the two inequivalent

corners K and K'. Here b1 ,2 are the reciprocal lattice vectors. (c) Electronic band structure

corresponding to the pz orbital in carbon (i.e. the 7r band). Notably. the band structure is

conical in the vicinity of the K and K' points. with this behavior persisting up ~1 eV.

The hexagonal structure can be described as a triangular lattice with a two atom

basis. The two elements of the basis

closed circles in Fig.2-1(a) - are lal

- two carbon atoms indicated with open and

belled A and B. Each atom in sublattice A is

surrounded by three atoms in sublattice B with nearest neighbour vectors

ao( 3/2, 1/2), r2 = ao(- 3/2, 1/2), 3= ao(0, -1),

where ao = 1.42 A is the carbon-carbon distance in graphene. In addition, the trans-

lation vectors for the A and B sublattices are

a1 = ao(3/2, 3/2), a2 = ao( 3/2, -3/2).

In reciprocal space, the hexagonal lattice defines a hexagonal Brillouin zone (BZ),

which is rotated 900 with respect to the unit cell [see Fig.2-1(b)]. The reciprocal

vectors of the BZ are

b = 47 ( 3/2,1/2),
3aO

28
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(2.3)
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Of special importance in graphene are the six corners of the hexagonal BZ, the so-

called Dirac points. It is clear that, because b, and b2 connect one corner of the BZ

with another two [Fig.2-1(b)], the six corners of the BZ fall into two groups. For

each group, labelled K and K' in Fig.2-1(b), only two distinct coordinates need to be

considered:
4wr

K = (1,0), K'=-K. (2.4)

As we will see, most of the interesting physics in graphene occurs in the vicinity of

these points.

2.2 Graphene electrons

The simplest model to describe graphene electrons is a one-parameter tight-binding

model that couples nearest-neighbor p, orbitals:

= -t 4 , + h.c.. (2.5)
(01j)

Here j,, ( t) is the annihilation (creation) operator of an electron in a pz orbital

located in the i-th unit cell, sublattice a (a = A, B), t ~ 2.8 eV is the nearest neighbor

coupling strength and Z0ij) denotes summation over nearest neighbours. Given that

only spin-independent phenomena will be considered, I exclude the spin index in the

notation and include spin degeneracy at the end of the calculations.

Importantly, the simple tight-binding description in Eq. (2.5) works because the

bands associated with the p,y and - orbitals have relatively large energies EPX,'PYU r

3 eV referred to the Fermi level. Therefore, these bands have negligible contributions

to all the phenomena of interest in this thesis, such as transport or interaction with

light.

Replacing the operators i,A and &i,B in Eq. (2.5) with their Fourier transforms,

1 ik~ri,,& Z :AB 26
Ck,a e co, a=AB26
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results in

Wk Z~~,aI3C1,,,k,3, WHk 0 ( o k , k = t ei i. (2.7)
k,a3 YZ 0/ j=1,2,3

Here k is a wavevector within the BZ, N, is the number of unit cells in the graphene

crystal, and ri,Q is the position of the atom in the i-th unit cell, sublattice o. The

energy spectrum of W, shown in Fig.2-1(c), is

Ek,= k, (2.8)

where the plus sign corresponds to the electron band and the minus sign to the hole

band. Importantly, given that 7k = 0 only at k = K or k = K', the zero energy

surface Ek, = 0 cuts the band structure only at the K and K' points. In particular,

in the vicinity of the Dirac points, k = K + 6k and k = K' + 6k , the spectrum is

linear with wavevector,

EK+6k, = EK+6k, hV6k (2.9)

where VF = 3tao/2h ~ 10 im/s is the Fermi velocity. The linear spectrum yields a

linear density of states close to the Dirac points,

D(E) = N ,,E (2.10)
27r(hvF)

2
(

where N, = 2 and N, = 2 is the spin and valley degeneracy, respectively. Interestingly,

the linear density of states in Eq. (2.10) is different from the 1/.F dependence observed

in nanotubes and the constant density of states in conventional 2D metals.

Another significant feature of the graphene band structure is that, since the energy

band is exactly symmetric about the point Ek, = 0, the Fermi level at half-filling lies

exactly at the Dirac point. The half-filling condition is exactly satisfied in the case of

undoped graphene. This occurs because there is one electron per p, orbital combined

with the N, = 2 spin degeneracy. As such, the hole band in undoped graphene is
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completely filled and graphene is a semimetal.

Because of the semimetallic nature of graphene, it is necessary to find an effective

(long-wavelength) Hamiltonian which is valid close to the Dirac points. The procedure

for deriving such an effective theory consists on expanding "Kk at the K-point, which

yields -K+k ~ 3at(kx - iky )2 + 0(k 2 ). Using this expansion of -Yk on Eq.(2.7), and

redefining CK+k,a for small k values as Vlk, the effective Hamiltonian

N = -hvF4 k (2.11)
k

is obtained. Similarly, in the vicinity of K' the expansion of Yk yields -YK'+k =

-kx - iky, resulting in the effective Hamiltonian

NV =' ZhFb(& k)~ ~ (2.12)

k

where & = (-a-x, o-y) and ' denotes the annihilation operator in the vicinity of the

K'-point. The presence of two valleys allows us to define a valley degree of freedom,

or valley pseudospin; this makes the graphene wavefunction a four component spinor

described by the Hamiltonian

h t o - k 0
N = hvF (k, k (2.13)

k 0O ~kjk

The eigenstate solutions of (2.11) and (2.12) are

j~k / I ' e k/ 2  / 1' k eik/ 2  ) ~(.4
1 kk 2 eiO,/ 1 v/' k e -io,/2

with eigenvalues Ek,+ = hvFlkl. The signs correspond to the electron (+) and

hole (-) bands, and #k is the polar angle of k, i.e. #k = atan(kx/kV).

A salient feature of the wavefunctions is that, if #k is shifted by 2, then the wave-

function changes sign. This change of sign under rotations is characteristic of spinors:

the wavefunction in each valley is a two-component spinor, just as the electron spin.

31



In particular, the pseudospin | 4 'k, ) represents a spin locked in the x-y plane with

direction k, or opposite to it (see Sec.2.3).

The real space representation of the Dirac equation is obtained by identifing hk

in Eqs.(2.11)-(2.12) with the momentum operator, p = -ihVr. This results in the

eigenvalue equations

VF(0' )'/)Nr, = ~r, VF(E5' = 6',.. (2.15)

2.2.1 Static electromagnetic fields

The effective Hamiltonian describing graphene electrons in electromagnetic fields is

obtained by a combination of Peierls substitution p -+ p - eA/c, with A the vector

potential, and inclusion of a scalar potential U(r):

R = VF a - (p - eA/c) + U(r). (2.16)

The scalar term U(r) describes an external electrostatic potential which acts on-site

in the tight-binding description. For Eq.(2.16) to be valid, U(r) needs to vary on a

scale much larger than the lattice constant ao. If this condition fails, then intervalley

scattering may occur and a coupling between 4 and 0' arises.

Electrostatic potentials play an important role in the physics of graphene insofar

as they allow local control of the Fermi energy (or Fermi wavelength) in graphene. Es-

sential for this work, electrostatic potentials also allow researchers to create interfaces

between regions with opposite polarity, i.e. pn interfaces. Such pn interfaces have

peculiar scattering properties induced by the chiral nature of graphene carriers, as

will be discussed in more detail in Sec.2.3. The electrostatic potential is characterized

by the lengthscale

hVFhv= (2.17)
SVrUI

The value of fU at the pn junction quantifies its sharpness. Typical values achievable

in laboratory for fu can go as low as several tens of nm. Two chapters (Chapters 7
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and 8) are devoted to study the physics of confined Dirac electrons inside pn rings.

The Dirac equation (2.16) is also characterized by a second length scale, the

magnetic length:
hc 26 nm

fBB T (2.18)
eB /B [T]'

where B = IV, x Al. Magnetic fields induce cyclotron motion with a characteristic

energy hwc = v'2hVF/fB- [31] The behavior of graphene electrons in the presence

of strong magnetic fields, eB < fu, is distinct from the behavior of non-relativistic

electrons. For instance, the cyclotron energy scales as IB, which is different from

the linear B-dependence in the non-relativistic case. In addition, the energy scales

associated with the cyclotron motion are rather different in each case: for fields

B ~ 10 T, the cyclotron energy for a typical 2D electron gas is on the order of 10 K,

whereas in graphene the cyclotron energy is on the order of 1000 K. As a result,

the quantum Hall effect can be observed in graphene even at room temperature [11].

Finally, the energy of the Landau levels in graphene are not equally spaced; instead,

they follow a square root dependence e,, = hw/, with n a positive integer, and

feature a zero-energy state (n = 0) which is responsible for the anomalies observed in

the quantum Hall effect. Magnetic fields do play an important role in this work (see

Chapter 8), but we will always be limited to the small field regime fU < B-

2.3 Chiral nature of graphene carriers

Besides the light-like behavior, graphene charge carriers also feature a pseudospin de-

gree of freedom which is associated to the A, B sublattice components of the graphene

wavefunction. This pseudospin is locked to the direction of propagation, i.e. graphene

electrons have a well-defined chirality. In this section I discuss the concept of helicity

and its manifestations on the physics of graphene. These effects will play a central role

in the creation of graphene quantum dots (Chapter 7) and their anomalous behavior

in magnetic fields (Chapter 8).
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2.3.1 Helicity

Electrons in graphene are described by the same equations as an ultra-relativistic (or

massless) particle. By analogy to QED, one can then introduce a relevant operator,

the helicity ^, that characterizes the Dirac eigenfunctions. In particular, ^ is defined

as the projection of the momentum operator along the pseudospin direction:

' =(2.19)
2 |p|

This definition differs from the one in QED in which i acts on the real spin of the

electron. The eigenvalues of i are

7JI|'k, ) = 10k, ), (2.20)2

and similarly for K' but with an inversed sign. This imples that the pseudospin a

has its two eigenvalues in the direction (or against) the momentum.1 Crucially, the

concepts of helicity and pseudospin are important because many electronic processes

in graphene, e.g. Klein tunneling and the absence of backscattering, result from the

conservation of these quantities.

2.3.2 Absence of backscattering and Klein tunneling

Both the absence of backscattering and Klein tunneling arise from the sublattice

pseudspin a being aligned with the wavevector k. Such alignment results in pseu-

dospin phase cancellations of the form (0-k, Il/k, ) = 0. For instance, in the case

of long-ranged disorder, the scattering potential has the same strength in both sub-

lattices. As a result, the scattering matrix element (/-k, iUl4k, ) = 0 vanishes

and electrons cannot be backscattered. This effect arising from the chiral nature of

graphene electrons was first studied in the context of carbon nanotubes [34,35].

Similar arguments lead to Klein tunneling, the unit transmission of massless Dirac

'It is important to keep in mind that the helicity values in Eq. (2.20) are good quantum numbers
so long as the Dirac Hamiltonian is valid, i.e. at small enough energies.
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electrons at normal incidence. A simple semiclassical way to understand Klein tun-

neling in the context of graphene is as follows: because the Fermi velocity VF in

graphene is energy-independent, an electron moving along the field lines cannot be

backscattered as that would imply that VF = 0 at the classical return point. Such

behavior, which implies that electron trajectories are deflected for py # 0 but are per-

fectly transmitted for py = 0, is schematically shown in Fig.2-2(a) for the electrostatic

potential U(x) = eEx. The reason why an electron is able to propagate through an

arbitrarily large potential barrier is because the electron can make a transition from

the conduction band to the valence band. In this transition, the electron is able to

continue moving in the same direction along the field lines even when its momentum

goes through zero and changes sign.

Quantum-mechanically, not only can electrons avoid backscattering at py = 0 but

also at small but finite py; in this case, interband tunneling occurs. In particular, the

transmission probability TK(pv) has an exponential dependence on p :

TK(py) = exp(-7VFp2/hE), (2.21)

which is valid if JpxJ > 1py, VhE/vF [36]. Transmission is also unity at normal inci-

dence in a pnp junction [37], in marked contrast with conventional resonant tunneling

through a double-barrier junction.

Interestingly, Klein tunneling is a direct consequence of the so-called Klein para-

dox [38], which was predicted in 1929 by Oskar Klein in the context of high-energy

physics. The Klein paradox presented a quantum mechanical objection to the no-

tion of electronic confinement inside a nucleus. Specifically, Klein showed that if the

potential barrier V is much larger than the electron mass energy, moc2 , then the

potential barrier is transparent.

Klein tunneling plays an imporant role in several situations. One example is

Veselago lensing [39], which enables the focusing of transmitted hole states emerging

from an electron source [Fig.2-2(b)]. This behavior is analogous to photons moving

in a medium with a negative refractive index. A second example is electron transport
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Figure 2-2: Klein tunneling of Dirac electrons. (a) Semiclassical trajectories of

a massless Dirac electron in the presence of a uniform electric field. displaying distinct

behavior between normal and oblique incidence. Oblique trajectories (red) are backscattered
at the pn juntion: because the velocity for massless particless is constant. normal trajectories

cannot be backscattered and are thus perfectly transmitted. (b) The p interface mimicks

materials with negative refractive index. This has motivated the idea of focusing electronic

waves [39]. (c) At charge neutrality. transport is dorninated by the transmission of Dirac

electrons across electron-hole puddles. As such. transport is governed by Klein scattering.

in disordered graphene at half-filling. Because of disorder, graphene can be divided

in puddles with n and p doping. [Fig.2-2(c)]. As such. transport is mainly governed

by the transmission across the pn junctions between these pud(les [40. 41]. A final

example. which will be important in this work. are graphene quantum dots. where the

inner and outer regions contain electrons and holes, respectively. Interestingly. the

fact that electrostatic barriers do not impede the transmission of normally incident

electrons does not preclude the existence of sharp resonances due to confinement of

graphene electrons. This leads to the possibility of fabricating quantum (lots with

electrostatic potential barriers, as will be discussed in Chapter 7 and 8.

2.3.3 Berry phase and semiclassical quantization

The sublattice pseudospin is also manifested via the Berry phase. Berry phase effects

have permeated through all branches of physics [42]; in solid-state physics, they lead to

profound effects such as orbital magnetism and various Hall effects [33]. As we will see.

the Berry phase in graphene will have dramatic manifestations in the energy spectrum

of confined electronic states. In particular. these effects leat to exotic manifestations
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which are not available for confined electrons in conventional electronic systems.

In essence, the Berry phase can be understood as the quantum phase acquired by

a specific state as it evolves adiabatically via a time-dependent Hamiltonian f[h(t)].

Here h(t) are N time-dependent parameters h(t) = [hi(t),... , hN(t)], and the n-th

eigenstate and eigenvalue of W are denoted as Jh(t), n) and En[h(t)], respectively.

If the Hamiltonian returns to the same initial point at time T, the time-dependent

eigenstate jh(t), n) acquires, in addition to the usual phase fJ" dtEn[h(t)], the extra

(Berry) phase

(B= j dh Ah, Ah = i(h, nVhl h, n). (2.22)
C

Here C denotes a closed path in parameter space along which h evolves and Ah, the

Berry connection, resembles a vector potential in parameter space. 2 For Eq.(2.22) to

be meaningful, it is necessary to pick a gauge such that |h(t), n) is a smooth function

of h along the path C. 3

The Berry phase OB has three key properties. First, the Berry phase is geometrical.

This means that PB depends only on the path C, but is independent of the rate

of change of h(t). Second, the Berry phase is gauge invariant. As such, a gauge

transformation fh, n) -- eig(h)h, n), with g(h) a smooth function of h, does not

modify the value of Y9B. Third, the Berry phase features close connections to gauge

field theories thus providing Berry-phase-related phenomena with a rich mathematical

structure.

In solid-state physics, there are several ways to create 'closed' paths in momentum

space. One simple way is to apply a magnetic field. In this case, the induced cyclotron

motion results in closed orbits both in real and momentum space. Similarly, closed

orbits can also be created using electrostatic potentials, as will be studied in great

detail in Chapters 7 and 8.

2 For Eq.(2.22) to be valid, two important conditions must be met. First, the time scale in which
h(t) varies must be large compared to h/k, with 6E the typical eigenvalue separation of 'W (i.e. the
adiabatic condition). In this case, as the system evolves, there is no mixing between the Ih, n) state
and other Ih, m) states. Second, the state Ih, n) has to be non-degenerate throughout the evolution
of h; otherwise, a more general non-abelian formulation is required [43].

3 1n general, finding a smooth gauge along C is possible; therefore, this condition does not pose
any limitation to the concept of Berry phase.
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In the context of confined electronic states, the Berry phase enters naturally as

a shift to the classical action, affecting the energies of the quantized levels. Indeed,

for integrable semiclassical dynamics, such as Bloch oscillations and cyclotron orbits,

one can use the Bohr-Sommerfeld quantization rule,

dr - k + 0B = 27r(n + v), (2.23)

which includes the Berry phase contribution SOB. Here C is the semiclassical trajecto-

ries and v is a constant which depends on the potential'slope at the classical return

point. Equation (2.23) is crucial to find energy levels of confined electronic systems,

such as those studied in Chapters 7 and 8.4

For two-band systems as in graphene, Ah resembles the vector potential of a

magnetic monopole centered at the Dirac point. Furthermore, because of the chiral

nature of graphene electrons, the Berry phase in graphene can only take multiple

values of 7r. Indeed, a general two-band Hamiltonian can be described in terms of

four parameters:

-(h) = . h + ho, 'Njh ) = (+Ih + ho)lh ), (2.24)

where, in general, h = (hr, hy, h_) and ho can be functions of position, momentum

and time. Note that the scalar term ho only affects the Hamiltonian eigenvalues but

not the eigenstates Jh ). As such, ho does not play any role in the Berry phase. In

particular, the eigenstates of Eq.(2.24) are

(e-eiqh/2 cos(6h/2) ( e-h/2 sin(Oh/2) (
ei /2 sin(6,/2) e eiz/ 2 cos(6h/2)

where Oh is the polar angle and #h the azimuthal angle of the vector h. It can

be shown that the Berry connection Ah = i(h+Vhlh+) corresponds to a magnetic

41n Chapter 8, a small variation of Eq. (2.23) is used in which C are curves defined on an invariant
tori. This method, called EBK quantization, is geometric in nature (i.e., it is coordinate independent)
and is applicable even in chaotic systems.
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monopole at the Dirac point in h-space: B = Vh x Ah = h/21h|3 . As a result, S0B

is proportional to the solid angle subtended by h along C:

WPB = icdh-Aft ffjs(C d 2 h -h/21h 13 = S(C)/2. (2.26)
ic J Js(C)

Because h is locked to the x-y plane in gapless Dirac systems as in graphene, S(C)

can only be multiples of 27r; thus PB is a multiple of 7r. For gapped Dirac systems,

because h is no longer locked to the x-y plane, PB can vary continuously.

2.4 Graphene-light interaction

The optical response of graphene features a unique combination of characteristics

which sets graphene apart from any other optoelectronic system. For instance,

graphene is characterized by a universal light absorption coefficient which is propor-

tional to the fine structure constant. Furthermore, the energy absorbed from light can

be efficiently redistributed between the electronic degrees of freedom thus resulting

in a long-living hot carrier distribution which governs the graphene photoresponse.

These effects will be crucial to understand the photoresponse of vertically-stacked

graphene nanostructures (Chapters 5 and 6). Other important effects which are not

discussed in this thesis are, for instance, the giant Faraday rotation [44,45] and the

unique plasmonic response in graphene [46].

2.4.1 Universal light absorption coefficient

An important characteristic of gapless two-dimensional electronic systems is the uni-

versal light absorption coefficient. In graphene, the absorption coefficient is propor-

tional to the fine structure constant a:

abs Pabs e2(2.27)

Pin hc
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where Pi (Pabs) denotes incident (absorbed) power. This results from using Fermi

Golden's rule, Pabs = (27/h)lIMer12 D(hw/2)hw, to calculate absorbed energy by di-

rect electron-hole transitions. Here D(hw/2) is the density of states at the optical

transition energy and Mer is the electron-light matrix element. The matrix element

Mer is obtained from the electron-photon coupling, which is obtained from the Peierls

substitution p -+ p - eA/c:

tere jdr(.,..A) (2.28)

In general, photon-induced transitions are momentum-conserving. This occurs be-

cause the photon wavevector 1Q| = w/c for frequencies in the visible range or be-

low is much smaller than the unit cell length scale 1/ao; this results in Mer =

-ievF(/k,+0 Aj0k,-). Equation (2.27) then follows from using Pj = cE2 /47r,

with E = -iwA.

Interestingly, Aabs is independent of material properties, i.e. independent of the

Fermi velocity VF- In the case of a zero-gap semiconductor with a parabolic spectrum,

the same analysis leads to Aabs = 27ra. In other words, the optical properties of

graphene are due to the gapless 2D nature of electrons and not due to the conical

band structure.

2.4.2 Electron lattice cooling and hot carriers

In addition to the special universal light absorption coefficient, graphene also features

an unusual kind of intrinsic photoresponse. Such a photoresponse, which is mediated

by hot carriers, originates from the quenching of electron-lattice cooling when the

system is close to charge-neutrality [47,48]. Quenching of cooling mechanisms occurs

for two reasons: (i) the small phase space available for momentum transfer into

acoustic phonon states and (ii) the exceptionally large optical phonon energies hwo ~

0.2 eV. Given the intrinsic inability of graphene to relax energy into the lattice by

electron-phonon interactions, the absorbed energy is quicky redistributed between
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the electronic degrees of freedom by fast electron relaxation mediated by electron-

electron interactions. As a result, an exceptionally long-lived hot carrier distribution

proliferates across the entire system [49-51].

Because of the fast relaxation mediated by electron-electron interactions, graphene

can be described by a two-temperature model characterizing the electron and lattice

subsystems by two different temperatures, T and To. In pump probe experiments,

typical hot carrier temperatures can be on the order of T ~ 103 K.

Although small, it is important to quantify electron-lattice cooling in order to

understand the thermal imbalance in graphene. Electron cooling in graphene is dom-

inated by three main mechanisms: acoustic and optical phonon emission [47,48, and

disorder-assisted acoustic phonon emission [52]. The two acoustic phonon mechanisms

are limited by the small phase space available for scattering and the small acoustic

phonon energies which can be transfered per scattering event. As such, both the in-

trinsic and disorder-assisted cooling power, Pac and Pdis, feature a strong dependence

on Fermi energy:

Pac,d 0c pa(Tb - Tb), (2.29)

which is valid in the degenerate limit y > kBT. In Eq.(2.29), a and b are constants

that depend on the cooling mechanism. Optical phonon cooling, on the other hand, is

limited by the large phonon frequencies hwo ~ 0.2 eV, making this cooling mechanism

thermally activated. In the degenerate limit, the optical phonon cooling power Ppt

behaves as

Popt c [e-w/okBT _ e-wolkB TO (2.30)

The explicit dependence of Pac, Pd and Popt on model parameters will be discussed

in Sec.5.6.

Naturally, in realistic scenarios all three mechanisms are acting simultaneously.

The dominant cooling mechanism will be determined by the specific experimental

condition, namely the Fermi energy and power pumped into the system. To illustrate

such an interplay between the different cooling mechanisms, the dominant cooling

mechanisms is plotted in Fig.2-3(a) for various pump powers and Fermi energies.
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Figure 2-3: Dominant cooling mechanism in graphene. (a) Shown are the dominant

cooling mechanisms as a function of cooling power and Fermii energy. The explicit depen-

dence of each cooling mechanism on model parameters is discussed in Sec.5.6. (b) Tempera-

ture dependence of graphene as a function of Fermi energy at constant input power. includ-

ing the three dominant coolingi mehanisms involving optical phonons. acoustic phonons an(d

disorder-assisted cooling mechanisms. The red curve indicates a typical Pabs = 10 pAW/pi2

and the blue curve indicates Pabs = 2pV/pmmm2

Close to the charge neutrality point (p = 0). both acoustic phonon cooling inecha-

nisms are quenched and optical phonon cooling dominates. At lower temperature.

given the therimally-activated nature of Pop,. this cooling process is quenched and

acoustic mechanisms dominate. Figure 2-3(b) shows the temperature for two linecuts

of (a) at constant P. Because of the poor electron-phonon cooling, a spike in the

electronic temperature is obtained at charge neutrality.

2.5 Electrostatic doping and quantum capacitance

The vanishingly small carrier density close to the neutrality i i graphene leads to

unusual electrostatic behaviors. In particular. graphene charge carriers are unable to

efficiently screen external charges thus resulting in the permeation of the electric field

across the graphene layers. As such. inefficient screening leads to nonlinear charge-bias

relations, distinct from the typical linear behavior observed in conventional capacitors.

Such effects are relevant in the study of gralphene-based nanostructures (Chapters 3-6)

as well as in lateral nanostructures (Chapters 7-8).

There are three reasons why it is important to accurately model electrostatic
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Figure 2-4: Quantum capacitance effects in graphene nanostructures. (a) Shown

is a gated graphene device: a gate (17g) and bias (Vb) potentials are used to vary the top (n 1 )

and bottom (n 2 ) carrier densities as well as the gate charge (og). (b) Poor screening of the

gate charge by the middle graphene layer. Shown is the gate-induced carrier concentrations

i) in graphene as a function of n0 . for 1  = 0. see Eqs.(2.31).(2.32) [d =1 m. c,

5]. (c) Nonlinear charge-bias relation for a graphene capacitor. (Hg 0). Close to the

neutrality point. carrier concentration behave as n2 _C V . differelit from the usual a1.2 x
1 t dependence.

doping. First, several phenomena in graplhelle. such as electron-lattice cooling. are

sensitive to variations in the Fermi energy. Second. in the context of graphene-to-

graphene tunneling. the unscreened electric field between layers determine the energy

offset between the band structures of' the two layers. Third, the electrostatic field

determines the potential barrier shape and. as such, modifies the tunneling coupling

in graphene nanostruct ures.

To illustrate the non-linear screening, I consider a ty)pical gated deviced comprised

of two stacked graphene layers, as shown in Fig.2-4(a). The bias-induced carrier

density n1 2 in the graphene layers. as well as the electric field El, between the layers,

can be described by simple electrostatic considerations. First. the neutrality condition

relates the charge densities in the different regions of the device:

Hi + n2 + ", = 0- (2.31)

where ng is taken as a fixed charge at the gate (i.e. the gate potential V is adjusted

so that og is constant). A bias voltage V between the graphene layers results in a
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Fermi energy offset

eV = pt(ni) - p(n 2) + eEbd, (2.32)

where Eb = 4ren1 /cr is the interlayer electric field, Er is the dielectric constant of

the barrier, and p(n1 ,2 ) is the Fermi energy for a carrier density ni,2 . Here I use

the zero-temperature relation p(ni,2) = sign(ni,2)hvF 7r n,21, which provides a good

approximate model over most of the relevant carrier density range. The two unknown

variables, ni and n2 , can be found from equations (2.31) and (2.32), considering fixed

ng and V.

Inefficient screening and non-linear charge-bias relations are shown in Fig.2-4. In

particular, Fig.2-4(b) displays the inability of the middle graphene layer to screen the

charge of the gate [here V = 0 was used]. Figure 2-4(c) illustrates the non-linear bias-

charge relations for ng = 0. Interestingly, graphene is characterized by a quadratic

relation n1 , 2 Oc Vb2 in the vicinity of the neutrality point, distinct from the typical

nl, 2 oc V relation in a conventional capacitor. In both plots, I consider that both

graphene layers are at charge neutrality when ng = 0 and V = 0, and I used values

V = 0, d = 1 nm and Er = 5.
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Part I

Transport in vertical graphene

nanostructures
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Chapter 3

Interlayer transport in graphene

nanostructures

Vertical heterostructures comprising layers of van der Waals materials have recently

emerged as a platform for designer electronic systems [53]. Because of the remarkable

progress in nanoscale fabrication which allows layer-by-layer assembly, such nanos-

tructures feature highly tunable interlayer transport characteristics. This, combined

with the unique properties of bare graphene, makes graphene-based heterostructures

a fertile ground for novel physics.

Here I discuss the main features of interlayer transport between graphene layers in

vertically-stacked van der Waals heterostructures. One such feature is their tunabil-

ity which is manifested by numerous transport parameters which can be controlled

with high precision in experiments (Sec.3.1). This grants access to several transport

regimes, as will be discussed in Sec.3.2. In Sec.3.3, I discuss how different combina-

tions of nanostructure properties can lead to new phenomena. Such phenomena will

be the objective of Chapters 4-6.

3.1 Tunability of graphene heterostructures

As shown in Fig.3-1, graphene nanostructures are characterized by many tunable

parameters that govern interlayer transport; all of them can be controlled during
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fabrication, and some can be tuned in situ.

First, the contact between graphene and an insulating material X, such as Si, MoS2

or WSe 2, forms a g/X Schottky junction. Because the two-dimensional electronic

states in graphene are fully exposed, they are highly sensitive to the g/X interface

[15,16,54-60]. As shown in Table 3.1, different Schottky junctions are characterized by

Schottky barriers 4) that span two orders of magnitude D ~ 0.01-1 eV [15,54,55, 59].

Given that the chemical potential p in graphene can be controlled in situ with gate

potentials, the value of D can also be controlled within the same energy range ~

0.3 eV. The specific value of 4 is relevant for two important reasons: (i) (D controls

the activation energy for thermally driven thermionic emission of charge carriers; (ii)

(D controls the magnitude of the interlayer tunneling coupling.

Second, the interlayer distance d between graphene layers in Fig.3-1 can be con-

trolled by stacking monolayers of X in-between the graphenes. The value of d plays

two important roles: (i) d allows one to control the electrostatic coupling via the

capacitance effect (see Sec.2.5) and (ii) d provides a fine knob to tune the tunnel-

ing coupling. Indeed, the tunneling coupling is controlled by the WKB decay length

fwkb = h/ 2 meJ ~ 2 A, with me the effective mass in the barrier region (here I

considered typical values of (1~ 1 eV and me ~ 10-30 kg). The value of wkb~ 2 A is
comparable with a typical monolayer thickness do. As such, the tunneling coupling

can be smoothly varied in small steps of exp(-do/fwkb).

Third, the intrinsic properties of graphene can be controlled with carrier den-

sity. In particular, the electron-lattice coupling is very sensitive to Fermi energy and

becomes quenched at the Dirac point. Optical pumping, for instance, enables the

control of the electron temperature in each graphene layer.

Finally, interlayer transport is also sensitive to the details of the band structure

of the graphenes. In particular, a twist angle 0 between the graphene monolayers,

which can be controlled with 9 ~ 10 precision in experiments, induces a displacement

between the Dirac cones corresponding to each graphene layer. The magnituce of this

displacement is Jqol = (87r/3ao) sin(0/2). Twisted bandstructures activate a resonant

tunneling mechanism which dominates the I-V response, see below.
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Figure 3-1: Tunable parameters in graphene-based nanostructures. (a) Shown
are two graphene layers (1)lack) separated by stacked monolavers of an insulating material X

(green). The interlaver distance d between the graphenes can be tuned by adding nionolavers
of X with thickness dfl. Charge densities nJ2 as well as the Fermi level p can be adjusted by
using gate and bias potentials (I); variations in the Fermi level nodify the Schottky barrier
1 from its charge neutral value (1P. Given the poor electron-lattice cooling inechanism (see

Sec.2.4.2). the layer temperature T can be adjiusted by optical pumping P. A twist angle
0 between the graphene layers result in a graphene superlattice and a twisted electronic
bandstructure. In this case. the Dirac cones of layers 1 and 2 are is separated by a vector

qo. which defines an energy scale AO = TF qo -

Barrier Materials (1 [eV]-
WS9  0.05
MoS 2  0.15

Si 0.41
hBN 1.30

Ref.
[59]
[60]

[54, 55]
[15, 16]

Table 3.1: Schottky barriers for different graphene-dielectric structures. These
values should be understood as average values which can be tuned with electrostatic gating.
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3.2 Vertical transport regimes

The relevant energy scales, schematically shown in Fig.3-1, that characterize the

nanostructures are the Schottky potential eD, the bias potential eVb, the electronic

temperature kBT, the capacitor electrostatic energy UE = 6r(hVF )2 /2e 2d, and the

band structure displacement A0 = hvF IqO induced by the twist angle. The operating

interlayer transport regime is controlled by the ratio of the different variables. Using

the Schottky barrier height (P to non-dimensionalize all the variables, a diagram of

different transport regimes with four different regions is shown in Fig.3-2.

In the regime eVb/1 < 1, kBT/I < 1, direct tunneling between electrodes domi-

nates transport. Depending of the details of the model, e.g. twist angle, disorder and

bias potential value, transport can be momentum-conserving (resonant tunneling) or

can be assisted by phonons or disorder (assisted tunneling). The transition between

both regimes occurs at eVb ~ AO, where resonant tunneling is activated (see Chap-

ter 4). This transition enables interesting behaviors, such as Negative Differential

Resistance (NDR) and bistability in graphene nanostructures.

When eVb/@ < 1 and kBT/4 > 1, thermionic currents dominate over tunneling.

This is a thermally activated regime with the current governed by the activation

factor e-4/kBT.

When eVb/1 > 1, a large electric field between the graphene layers strongly reduce

the electrostatic barrier potential. As a results, the electronic current is driven by the

strong electric fields and temperature effects are negligible. This is the field emission

regime, as described by the Richardson's theory [61].

As discussed in Chapter 2, the factor Er(hvF )2 /2e 2d, which defines the capaci-

tance energy UE, mainly controls whether or not quantum capacitance [62] effects

are relevant; namely, UE affects the details of how doping varies with Vb. When the

capacitance energy is large, the shape of the I-V response is strongly affected but not

the underlying transport mechanism.
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Figure 3-2: Vertical transport regimes in stacked graphene-insulator-graphene

nanostructures. Shown are founr different vertical transport regimes which are sensitive

to tunable device parameters: the Schottky barrier <1. the electronic temperature T. the

capacitance energy UE and the characteristic energy of the twisted superlattice A 0 (see

Fig.3-1).

3.3 Features of vertical transport in graphene

The wide range of tunable parameters described in Sec.3.1. combilned with the differ-

cut transport regimes described in Sec.3.2. grants access to a wide spectrum of inter-

esting phenomena. In the following three chapters. I vill discuss several phenoiena

which arise due to different conbinations of these characteristics. In Chapter 4. I

discuss bistability arising from resonant tunneling and charge coupling in the sequen-

tial tunneling regime. In Chapter 5. I study a non-inonotonic I-V behavior induced

by the interplay between photogenerated hot carriers and charge coupling between

graphene layers. In Chapter 6. I show that graphene Schottky junctions. because of

the interplay between hot carriers and a tunable (b. can lead to uniquely sensitive

photodetectors operating in the infrared regime. Naturally, many other comnbina-

tions of interesting and potentially useful behaviors are possible, making grajphene

nanostru tures versatile designer electronic systems.
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Chapter 4

Resonant tunneling and intrinsic

bistability in twisted graphene

nanostructures

In this chapter, I show that vertical transport in nanostructures formed by twisted

graphene layers can exhibit a unique bistability mechanism.' Intrinsically bistable

I-V characteristics arise from resonant tunneling and interlayer charge coupling, en-

abling multiple stable states in the sequential tunneling regime. I focus on a simple

trilayer architecture, with the outer layers acting as source and drain and the middle

layer floating. As we will see, the middle layer can be either resonant or non-resonant

with the source and drain layers. Such nanostructures feature two notable properties.

First, the bistability is controlled by geometric device parameters easily tunable in

experiments. Second, the nanoscale architecture can enable uniquely fast switching

times.

'This chapter has been reproduced from J. F. Rodriguez-Nieva, M. S. Dresselhaus, L. S. Levitov,
Resonant Tunneling and Intrinsic Bistability in Twisted Graphene Structures, Physical Review B
[in production] Copyright (2015) by the American Physical Society.
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4.1 Bistability in graphene nanostructures

Nanoscale systems that can switch between distinct macroscopic states upon varia-

tion pf some control parameter are of high demand in diverse areas of nanoscience

research. Bistable electronic systems which exhibit fast switching are of interest for

applications, such as low-power memory and logic [63]. Recently, the quest for new

realizations of intrinsically bistable system has been increasing at a rapid pace, both

in graphene [64-68] and in other systems [69-71]. In particular, van der Waals het-

erostructures comprising graphene layers sandwiched between insulating hexagonal

boron-nitride (hBN) layers afford electronic environments with tailored band struc-

tures and transport characteristics [53]. It was demonstrated that introducing a twist

between adjacent graphene layers in such heterostructures can result in a resonant

behavior of the tunneling current and non-monotonic I-V characteristics [18]. It

is therefore tempting to exploit these systems as a platform for bistable nanoscale

systems.

Here I predict intrinsic bistability and hysteretic I-V characteristics for vertical

transport in heterostructures formed by graphene monolayers separated by hBN bar-

riers, in a twisted arrangement similar to that described in Ref. [18]. Essential for this

bistability mechanism are resonances originating from momentum-conserving tunnel-

ing between linearly dispersing Dirac bands [72] and occurring when the bands are

aligned [17] [see Fig.4-1(b,c)]. Bistability arises due to current-induced charge accu-

mulation producing an interlayer bias that tunes the interband tunneling in and out

of resonance.

Below I focus on the simplest case of a two-step sequential tunneling in a device

comprising three graphene monolayers. Such trilayer architecture, pictured in Fig.4-

1(a), with the top and bottom layers acting as a source and drain and the middle

layer electrically decoupled (floating), is similar to previously studied double-barrier

quantum-well (QW) structures [73]. However, the graphene-based bistability mecha-

nism, originating from resonant tunneling between Dirac bands in graphene layers, is

distinct from that in the QW structures [73]. In our case, multiple stable states arise
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Figure 4-1: Bistable I-V response of a trilayer graphene heterostructure. (a)
Trilayer graphene heterostructure schematics. with layers labelled 1 to 3. Here Iij and dij
are the interlayer currents and distances. (b) Band structure of the twisted graphenes 1
(blue) and 2 (red). The twist angle 0 defines a characteristic energy AO [Eq.(4.1)] and three
superlattice wavectors qA,B,C [Eq.(4.15)]. (c) Bistable I-V characteristics. The resonant
and non-resonant bistable states are illustrated in the upper-left inset (details are discussed
in Fig.4-3). The procedure for finding bistable solutions is illustrated in the lower-right
inset [see Eq.(4.9) and accompanying discussion].
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because the decoupled layer can, for a fixed external bias, be either in a resonant (low

resistance) or a non-resonant (high resistance) state. This behavior is illustrated in

Fig.4-1 (c).

The bistability is governed by geometric parameters - the twist angle 0 and the

interlayer distances dij - which are easily tunable in experiments. The twist angle

controls the Dirac cones' displacement in the two layers and the energy at which the

cones intersect [see Fig.4-1(b)],

|9Aj = (81r/3ao) sin(0/2), zo = hVF qAl, (4.1)

where VF ~ 106 MS is the carrier velocity and ao ~ 2.46 A is the graphene lattice

constant. The distances dij, marked in Fig.4-1(a), determine the interlayer tunnel

conductance values Gij - e2 di//wkb, where twkb is the WKB length governing the

tunneling amplitude dependence on barrier width. In what follows, I will use the

conductance ratio

Z = G12/G23 r e 2 (d23-d12)/ewkb (4.2)

where Gij denotes the conductance between the corresponding ij layers.

The quantities 0 and dij ocurring in Eqs.(4.1) and (4.2) can be controlled with

a large degree of precision. The twist angle 9 can be tuned within ~ 1 during

fabrication [18], whereas dij can be varied by adding monolayers of dielectric materials,

such as hBN or undoped MoS 2 . Since typical values ewkb = h/(2medI )'/ 2 ~2 A,
estimated for the tunneling barrier height (D 1 IeV and the effective electron mass

e 10-30 kg, are comparable to the hBN or MoS 2 monolayer thickness, variation

in dij results in a fairly gradual change in the conductance ratio Z.

One appealing aspect of this system is the short interlayer transport length of a

nanometer scale, which can allow high operation speeds and fast switching times. This

is evident from an estimate for the RC time, TRC = Er/ 4 7rgd - 100 ns, where Er 1 I is

the dielectric constant, d 1 Inm is the interlayer separation, and g ~ 10-7 Q-1pm-2

is the interlayer conductance per unit area. The combinations of geometric tunabil-

ity and small transport lengths are not present in previously studied graphene-based
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bistable systems, such as graphene flash memories [64,65] or graphene resistive mem-

ories [66-68]. Small thicknesses can also enable large packing densities.

The steep electronic dispersion in graphene makes the bistable state properties

distinct from those in QW systems. In our case, the bistability is controlled by the

resonances arising due to band alignment. The corresponding bias value, which scales

as a power law of the energy Ao given in Eq.(4.1), can be as large as 6V - 100-500 mV

(see discussion in Sec.4.5). In QW systems, instead, the bias range where bistability

occurs is mainly controlled by the amount of charge nQw that can be stored in a

quantum well, 6V enQw/C, where C is the interlayer capacitance. Typical carrier

densities in the 'charged' and 'uncharged' states of a bistable QW system, which is

assessed by magnetic oscillation measurements [74], are on the order nQw ~ 101 /cm 2

and nQW - 0, respectively. These carrier densities yield typical values 6V - 50 mV

in double-barrier quantum wells with a width of tens of nanometers (C ~ 0.1-1 mF).

Such values of carrier densities can be as much as an order of magnitude smaller than

the above estimate predicts for the graphene case.

4.2 Sequential tunneling model

Vertical transport in our trilayer architecture can be described by a simple sequen-

tial model. The model validity relies on the interlayer tunnel coupling being weak

such that the inter-layer charge transfer is slow compared to the intra-layer electron

relaxation times. Indeed, the values TRC, estimated above, are much longer than typ-

ical thermalization times in graphene, Tth - lops [75]. The RC times, however, are

sufficiently fast to be competitive with the speeds of existing switching devices [63].

The interlayer transport mechanism is mainly governed by the twist angle 0, which

defines the K-point displacement qA between graphene lattices in adjacent layers, and

the interlayer bias. Under bias, the value IqAJ given in Eq.(4.1) determines the range of

momenta and energies for which momentum-conserving tunneling is allowed. Large

values of IqAJ hinders resonant tunneling given that phonon and defect scattering

are necessary to supply the large momentum mismatch between layers. Momentum-
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nonconserving transport can also occur if the top/bottom layers are made of a different

material so that there is a large mismatch between the unit cells of either of these

layers with respect to that of graphenes. For small IqA, on the other hand, momentum

conserving tunneling is possible for moderately small values of bias.

In the two-step sequential tunneling model, I treat the transport between layers 1

and 2 as momentum-conserving. The second step, between layers 2 and 3, is assumed

to be momentum-nonconserving and is described by Ohm's law. The latter assump-

tion allows us to simplify our discussion and focus on the essential aspects of bista-

bility. In addition, I also assume that the contact resistances are sufficiently small so

that all the potential voltage drop occurs predominantly between the graphene layers.

Turning to a systematic development of the model, the low energy Hamiltonian

- describing coherent transport between a pair of twisted graphene monolayers has

contributions 7- = 71-l + 7f12 + t12. Here 11,2 are the free-particle terms describing

massless Dirac particles in each graphene layer, and t 12 describes the interlayer due

to tunneling [76-78]. The free particle terms are

Wi = l,k[hvFU (k + qA/ 2 ) - p1]'1,k

W2 = S 2,k[hvFa' (k - qA/ 2 ) - /12i/2,k

k

where A1 ,2 are the Fermi energies measured relative to the Dirac point. For a small

twist angle 0, the large-wavenumber processes that couple different valleys to each

other can be neglected. In this case, it is sufficient to account for just one of the two

valleys (K or K') in each layer, as given below in Eq. (4.3). I adopt this approximation

as discussed next.

The tunneling coupling can be modeled as a local, periodic function of position

[76]:

t2= 5 I,TG 2,k+b + h.c.. (4.4)
k,b

The periodicity of the interlayer coupling, quantified by the > wavevectors, is deter-

mined by the hexagonal superlattice unit cell that is formed by the twisted graphene
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Figure 4-2: Hexagonal superlattice of twisted graphene layers. Twisted graphene

layers form a hexagonal superlattice with reciprocal superlattice vectors b 1 and b 2 [76].
The momentum conserving tunneling coupling the two layers has the periodicity of the

superlattice and can be decomposed into Fourier components b = nbi + mb 2. with n, m

integers. For a small twist angle 0. tunneling is dominated by the smallest wavevectors qG.

qB =qA - 6 1 and qC = qA - 6 2 - see Eq.(4.3).

layers as shown in Fig.4-2. For small 0, only the longest wavelength contributions

are relevant for tunneling. Referred from the Dirac point of layer 1, such long wave-

length components are given by wavevectors qA, qB = qA - 6 1 and qC = qA - 62

(see Fig.4-2)., where b1, 2 are the reciprocal vectors of the superlattice Brillouin zone

[smaller than the graphene Brillouin zone by a factor ~ sin 2 (0)]. Although shorter

wavelength Fourier components of the interlayer hopping potential also contribute

to tunneling, it can be shown that the hopping potential-related terms fall to zero

very rapidly on the reciprocal lattice vector inverse length scale [76, 77]. As such, the

tunneling Hamiltonian takes the simple form

T12 = '1'k Tj <)2.k+q3 + h.c. (4.5)
j=.4,B,C k

and t 12 cantains only three Fourier components. In this expression for 'T12 , the k

vectors are measured relative to the Dirac point of each layer, i.e. k - qA/2 -> k in

layer 1 and k + qA/2 -a k in layer 2.

As a side remark, the lattice of the dielectric material separating the graphene
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layers can produce slowly varying spatial modulation of the tunneling transition am-

plitude T in Eq. (4.3), giving rise to the effects resembling those due to a twist angle 0.

This would be the case when the dielectric and graphene are nearly lattice-matched,

as occurs e.g. in highly-oriented stacked hBN-graphene structures, which have a small

lattice mismatch of about 1.8% (a detailed discussion can be found in Ref. [79]). This

effect, if present, would alter the values qA(B,C) but otherwise would not change our

discussion in an essential way.

Under an interlayer bias potential V12, the tunneling current 112 is

112 = f z Tj1 (k) 12 f 2rAi,s(kw)
kss'j 4.6)

x A 2 ,s'(k + qj,) [fi(w) - f2(c)

where s (s') refers to the electron (+) and hole (-) bands of layer 1 (2), and N = 4 is

the spin and valley degeneracy. The functions fi(w) = 1/[ef 1-- +1] are the Fermi

distribution functions for each layer, with # = 1/kBT denoting the inverse thermal

energy and pi the Fermi energies of each layer. The function Ai,s is the spectral

function of layer i and band s. The energy for the quantities in layer 2 is offset by

C = w + e01 2 due to the built-up interlayer electrostatic potential # 1 2 [see Eq.(4.3)]

between layers 1 and 2.

Because of capacitance effects, the interlayer electrostatic and chemical potentials

are related to one another by

eV12 = 14 - A2 - e# 1 2 , (4.7)

where pi and q 1 2 are implicit functions of V12. The quantity T7S' in Eq.(4.6) denotes

the Hamiltonian coupling the two layers

T S/(k) = (k, s, IIT 3 Ik + qj, s', 2), 1k, s, i) = , (4.8)

where Ik, s, i) is the two-component eigenvectors of the coupling term 71,2 in Eq. (4.3)
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and 6 k is the k-vector polar angle.

The bistability can now be described by combining the relations (4.3) and (4.7)

as follows. In a steady state, there is zero net flow of carriers into the middle layer.

Therefore, when the external bias V = V12 +V23 between top and bottom layers is fixed

at V12 , the equilibrium current I is obtained by solving for V12 from the non-linear

equation

I(V) = 112 (V12 ) = I23 (V - V12 ). (4.9)

This procedure to obtain the I-V response is shown graphically in the inset of Fig.4-

1(c). The straight line describes transport between layers 2 and 3 which is assumed

to follow Ohm's law, so that 123 = G23V23 , where G 23 and V23 are the interlayer

conductance and interlayer bias potential between layers 2 and 3, respectively.

4.3 Electrostatic feedback

In order to include the electrostatic feedback, Eq.(4.9) needs to be complemented

with further electrostatic considerations that relate the variables for the voltage Vi,

the electrostatic potential #ij and the Fermi energy Mi. It is important to note that

all variables can be determined once the carrier densities in each layer, ni, n2 and n3 ,

are known. Indeed, assuming that there is no external gate, the neutrality condition

relates the charge densities in the different regions of the device through the relation

ni + n2 + n3 = 0. (4.10)

Furthermore, the application of an external bias potential V fixes the Fermi level

difference between layer 1 and layer 3 as

eV = Al - A3 + 47re2 (nid13 + n 2 d23). (4.11)
Er

Here dij is the interlayer distance between layer i and layer j, Er is the dielectric

constant of the barrier material, and pi = sgn(ni)hvFwFni. In Eq.(4.11), I implicitly
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assume that all layers are undoped at V = 0. Equations (4.9)-(4.11) then form a

closed set of equations from which ni1 , n2 and n3 can be obtained. The remaining

variables, Vi and #ij, are functions of ni. In particular, the electrostatic potentials

are

012= -47re 2di2ni/fr, 023 = 47re2 (nidi + n2d23)/Er, (4.12)

whereas the interlayer bias potentials are

V 12 = Al - (A2 + 012), V23 = (A2 + #12) - (A3 + #23). (4.13)

For simplicity, here I fix the Fermi energies in Eq. (4.6) to a constant value pi = p.

This is equivalent to turning off all capacitance effects. In this case, Vi = #i/ (see

Fig.4-3). This approximation is valid in the regime

4e2dijLAo/Cr(hVF)2 ~ 15 -dij[nm]Ao[eV]/Er > 1. (4.14)

In this regime, minimal changes in carrier concentration induce large interlayer elec-

trostatic potentials. The more realistic scenario which includes quantum capacitance

effects [62], such that the P1,2 is varying with V12, is here considered in Sec.4.6. How-

ever, this more realistic picture only introduces small corrections to the tunneling

current without major consequences to our bistability discussion.

4.4 Model parameters

In order to solve Eq.(4.9), I need to specify the matrix elements T in Eq.(4.8). A

simple and explicit model for T and the wavevectors qj is provided by Ref. [76]:

eiraj I
T = t) , q = - (sin oj -cos yj), (4.15)

(e-ivj eiwoj hVF

with 'PA = 0, 'PB = 27r/3, 'Pc = 47r/3. This representation is obtained for small

twisting angles after performing a 0 rotation of phase space in layer 2 (see details in
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Ref. [76]). It is also implicit in Eq.(4.15) that the top and bottom graphene lattices

have a common lattice point [76]; a rigid horizontal translation between lattices adds

an additional overall phase to the matrix T [77]. I stress, however, that relative

phases in T do not alter in any significant way the physics of tunneling in Eq. (4.6).

Furthermore, while the interlayer hopping amplitude tI is sensitive to several param-

eters, e.g. twist angle [78] and choice of dielectric material [79], its order of magnitude

is mainly governed by the wavefunction overlap between the graphene layers. Such

a dependence will be described below within the WKB approximation. Equations

(4.3) and (4.15) are expected to be accurate for twist angles 0 < 100, and energies of

1 eV [78].

For an estimation below, I use the value 0 = 20. This defines an energy scale

A 0 = 0.37 eV. Furthermore, I take a Lorentzian spectral function in Eq. (4.6) for both

layers, Aj, (k, w) = 2'y/ [(w - shvF Ik) 2 + y2 ] with the linewidth y ~ 10 meV. A finite

linewidth -y is necessary to have a finite value of the peak current when eV12 = A0 (see

Fig.4-3). The temperature and Fermi level of the system were taken to be T = 0 and

pi = 0, respectively. With reference to Eq.(4.6), I define the interlayer conductance

G12 = S912, 912 = N 2  (4.16)
(hVF h

where S is the surface area of the device. The value of 912 is sensitive to the twist

angle and the stacked dielectric material, if any, via the parameter t1 . Here I use

912 = 10 7 Q-1 pm~ 2. Similar values of 912 were measured in resonant tunneling

devices which contained 4 layers of BN in-between the graphene layers [72]. For Z, I

consider a value of Z = G12/G23 = 0.2.

4.5 Bistable characteristics

The bistable I-V characteristics are shown in Fig.4-1(c). For a sufficiently large bias,

eV > A0 , the current branches into two stable states. The low-resistance branch

in Fig.4-1(c) corresponds to two layers at resonance (i.e. eV12 ~ Ao), whereas the
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(a) eV1 2 < Ao (b) (112 = A0

... ..........

(c) CV 1 > A0 p < AO (d) CV 1 2 > AOp > AO

Pauli Blockin-g12

V1 2 c V,

Figure 4-3: Regions in k-space contributing to the resonant tunneling current

for fixed V. These regions. indicated with black dashed lines at the intersection of the

twisted Dirac cones. form conical paths in the k-plane: when CV12 < AO the lines form

hyperbolic curves. and when ('V12 > A0 the liles form ellipsoidal curves. When CV1 2 = AO-

a van-Hove singularity in the tunneling density of states is obtained. As shown in panel

(d). the non-resonant (high-resistance) bistable state (CV1 2 > Ao) can be Pauli-blocked by

adjusting the doping level. Doping thus affords a way to tune the current ratio between

bistable branches in Fig.4-1(a). In this work it is assumed that the Dirac cones are aligned

at V = 0 and capacitance effects are neglected. Layers are labelled 1-3 as in Fig.4-1(a).

high-resistance branch corresponds to a lion-resonant state (i.e. (V 1 2 > AO). I note

that a third solution is also possible. indicated with a dashed line in the I-V response

[see Fig.4-1(c)]. This solution. however, is unstable given that a small perturbation

in 6V 12 will push the system away from this state.

The bistable bias range can be estimated as 6V ~ (I1k)- )/G2 3 where k)

is the peak interlayer current and I is the valley interlaver current [see inset of

(pk)Fig.4-1(c)]. To estimate I12 and I("', I first note that the phase factor T, '(k)

varies, upon integration in k-space, in the range 0 < T"'(k) < 2t taking typical

values Tps'(k)~ t 1 . Thus. it is a good approximation to take energy band and

wavevector-inldepen(lent phase factors JT"' (k)I = T. Furthermore. in the typical case

scenario the model paraneters satisfy -(~ 10 meV) < Ao(~ 0.1 - 1 eV). With this

in mind. the integration of Eq.(4.6) allows an analytical expression in terms of line

integrals in conical surfaces (see Fig.4-3). Using P1.2 = 0 and V12 = 012, I find that
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the non-resonant interlayer current takes the simple form

112 (x) X 2 - 1/2 1(v) 3V'-T 2 G12z\ (4.17)

I 1 2(x2 _ )' 12 4 e

Here x = eVi2/Ao > 1 and Ij1) is the valley current obtained at x = 3/2. When

eVi2 /Ao = 1; however, at the peak the current is at resonance and reaches a maximum

value which is sensitive to -y. To leading order in 'y, I obtain (see below)

1 pk) 1  31) = r /Ao/ 27, (4.18)

where -y will in general depend on the amount and type of disorder and/or tem-

perature. Equations (4.17) and (4.18) yield e6V/o ~ 30/d 2Z[-2 L0/27 - 1]/4.

Importantly, very small values of Z (G 23 > G12 ) make the bistable bias range neg-

ligibly small, whereas large values of Z (G 23 < G1 2 ) would push the onset of the

bistability region to very large bias potentials. Optimally, values of Z ~ 1 and very

small -y would make the bistability effect more prominent.

Achieving a large current ratio between bistable states is desirable for applications;

this facilitates the reading process in a bistable device. From Eqs.(4.17) and (4.18),

we see that the current ratio between bistable branches is controlled by the parameter

ZN/ e/7. For realistic values of disorder, this ratio can be in the 1-20 ballpark. It is

interesting to note that these already high values can be boosted by means of Pauli

blocking. As shown in Fig.4-3(c,d), for sufficiently heavily doped samples, the non-

resonant bistable state (but not the resonant one) is Pauli-blocked. The degree of

current ratio enhancement depends on second order processes which assist tunneling,

such as carrier scattering with defects or disorder. These second order processes are

not considered here.

To derive Eqs. (4.17) and (4.18) above, I assume that the phase factors TS' in

Eq.(4.8) are independent of wavevector and band index, i.e. jTjs'(k)I = T. Under

this assumption, 12 depends only on the modulus of qj but not on its direction, and

i ITjs'(k)1 2 = 3T2. Given that y < Ao, when e 12 > A0 (non-resonant state) we
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can set 7 -+ 0 and thus take Ai,,(k, w) = 27r6(w - shvFlk-). The two delta-functions

appearing in Eq.(4.6) can then be integrated in k-w space, resulting in a ID integral

along the contour of an ellipse:

J( 2 J j6(W-ShvFkI)6(C- - s'hvFk+q

ss 2 W )2 - A2 2  (4.19)
os,_ o',+ o (0#12)- sin2

167r3(hvF )2J (1e p12)2 - A 2

Here I denote CD = w + e012 . In addition, the limits of integration on W are given by

Ui = e012 + /12 and w2 = Pi, whereas the limits of integration on W are

r/2, xj > 1

= sin- 1 (xi), -1 < Xi < 1 , X1,2 =2ii, 2  e .12  (4.20)

-7r/2, xi < -1

In obtaining Eq.(4.19), I parametrized k-space using coordinates kx = k, sin /2 and

= ' 2 cos p/2, with q conveniently aligned in the x-direction. The integra-

tion over kr absorbs the first delta function, setting kr = eol2 /hvF. Integration over

w absorbs the second delta function, fixing the limits of integration p1,2 in Eq. (4.20).

Importantly, because # 12 > AO, the two delta functions in Eq.(4.19) can only be

non-zero simultaneously when s = - and s' = + (i.e. holes of layer 1 tunnel into

electronic states of layer 2, see Fig.4-3). Using p,1 ,2 = 0 and V12 = q12, Eqs.(4.19) and

(4.20) result in Eq.(4.17).

When eO12 = A0 , it is necessary to restore the finite linewidth to the Lorentzian

spectral function Ai,,(k, w) = 2 -y/ [(w - shvFlk ) 2 + 2]. In this case, the integral for

the tunneling current yields

( 2I A,(k, w)A 2,8 (k + q, w) =
4S 12+I12 2r ( 4.21)

2  
4 dw w(w - A)f 1

/2 +
(hVF )2 I t 2

In obtaining Eq.(4.21), I transformed the integral of the spectral functions into a

66



dimensionless integral of the form Ires(c) = f d2 x [f(x) 2 + E][g(x) 2 + E]}-. The

functions f and g satisfy f(0) = g(0) = 0 and have a null Jacobian det[axf, axg](0) =

0 (here e = -y/Ao). It can be shown that Ires oc E 1 / 2, when E < 1. An expansion to

leading order in powers of E gives Eq.(4.21). Setting A 1 ,2 = 0 in Eq.(4.21), the peak

current INpk in Eq.(4.18) is obtained.

The geometric control of Z, an appealing aspect of our system, can be understood

from the Bardeen Transfer Hamiltonian Theory [80,81]. In this theory, the interlayer

coupling tI is calculated from the overlap of the wavefunctions of layers i and j in

the barrier region, t1 = (h2/2m*) f dS- (O*Voj - OjVO/), where dS is a surface area

element. Considering electrons tunneling across a square potential barrier of height

much larger than the electron kinetic energy, a tunneling matrix element of the form

t1 oc exp(-dij/fwkb) is obtained, where fwkb is the WKB decay length defined above.

The expression of Z in Eq. (4.2) results from assuming barriers between layers 1-2 and

2-3 to be of the same material, in combination with Eq.(7.6).

4.6 Quantum capacitance effects

Although electrostatic doping of the graphene layers is not essential for the physics

that I described in Sec.4.5, it is a convenient feature of bistability. In particular, for a

fixed external bias potential, each bistable state exhibits different carrier concentra-

tions. Thus, any in-plane measurement, such as conductance or magneto-transport,

will be able to distinguish two distinct bistable states. Indeed, from the inset of

Fig.4-1(c) we see that the interlayer bias potential for each bistable state differs by

an amount 6 V12 ~ Ao/e. Taking into account the capacitance of the layers, then the

induced carrier difference between both states is approximately 6n ~ Erdo/47re 2d12

(here the* quantum capacitance is not included). Using 6 = 20 between the two layers,

Er = 1 and d12 = 1 nm, I obtain a carrier density difference 6n - 1012 cm- 2 between

stable states. These large carrier density differentials can be used as a smoking gun

for detecting intrinsic bistability.

A more refined model of the I-V response includes a bias dependence of the Fermi
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Figure 4-4: Self-consistent bistable solutions including quantum capacitance
effects. For fixed V. I find n, and i) such that I = 12 - I23 = 0 [see Eqs.(4.10) (4.11)].
The bias isolines from Eq.(4.11) are marked with large dashed (V = 0) and small dotted
(finite V) lines. with an arrow pointing towards increasing V. The self-consistent I-V curve.
obtained from the intersection of 6I 0 and the V-isolines in (a). is plotted in panel (b).

energy. I numerically solve Eqs.(4.6)-(4.11). assuming a thin device separated by

dielectric barriers of thickness d1 = d23 = 1.4 nm (e.g. 4 layers of hBN) and dielectric

constant c, = 5. The procedure to solve self-consistently the I-V response is shown in

Fig.4-4(a). where 01 and 02 are taken as independent variables [03 is obtained from

Eq.(4.10)]. and I = I12 - I23 in Eq.(4.6) is nminerically calculated (color map). For

fixed V. indicated with dotted isolines in Fig.4-4a., the self-consistent solutions to the

equilibriun equations are given by the pair (nO02) such that I = 0.

The resulting I-V response is shown in Fig.4-4(b). Inportantly. the I-V charac-

teristics are qualitatively similar to those obtained by neglecting quantum1 capacitance

effects. Furthermore. by inspection of the oi and w2 axes in Fig.4-4(a). we see that

the difference in carrier concentration on between each bistable state is oii the order

of n ~ 10111012 cmd2 . These carrier concentration differences can easily be detected

by lateral transport measurements and may act as clear fingerprints of intrinsic bista-

bility.

4.7 Other graphene-based bistable systems

Although I considered here for siniplicity a two-step sequential tunneling structure

where only one pair of layers can be resonant. similar ideas apply to more coin-

plex structures. Interesting examples include a two-step resonant-resonant structure,
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opening the possibility for tristability, or multi-step 'cascade' devices. I also expect

bistable I-V characteristics to be possible in twisted graphene trilayers in the absence

of any dielectric material. Indeed, incommensurability between graphene lattices al-

ready suppresses interlayer hybridization, regardless of being spatially separated by a

fraction of a nanometer, thus enabling the sequential tunneling regime [77]. Further-

more, the massless Dirac spectrum, and thus Eq.(4.3) and the subsequent transport

model, remain valid but with a modified Fermi velocity [76]. I stress, however, that

stacked dielectric materials have two important advantages: (i) they enable tuning

the interlayer coupling and (ii) they facilitate the interlayer potential build-up in order

to achieve a resonant behavior.

4.8 Chapter summary

In summary, graphene-based van der Waals heterostructures afford a new platform to

realize devices with tunable I-V characteristics, in particular those with intrinsically

bistable and hysteretic behavior. System parameters required to realize the bistable

behavior are readily accessible in current experiments. The atomic scale interlayer

distances can result in a fast response and in large packing-densities, making these

heterostructures appealing for a variety of applications.
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Chapter 5

Thermionic emission and negative

dI/dV in photoactive graphene

heterostructures

Graphene, because of its unique characteristics, is of keen interest for optoelectronics

research in areas such as photodetection, solar cells and light-emitting devices [82-85].

Transport in photoactive graphene heterostructures, originating from the dynamics

of photogenerated hot carriers, is governed by the processes of thermionic emission,

electron-lattice thermal imbalance and cooling. These processes give rise to inter-

esting photoresponse effects. In this chapter1 I predict that interlayer transport in

graphene heterostructures operating in the hot-carrier regime leads to an unusual

type of photoresponse, namely, a negative differential resistance (NDR).

The mechanism for NDR relies on the interplay of two effects. First, the phase

space available for phonon scattering rapidly increases with doping, enhancing the

electron-lattice cooling and thereby altering the number of hot carriers in the system.

Second, the large capacitance of the atomically thin device renders the carrier density

in graphene layers sensitive to the interlayer potential difference. These two effects

'Reproduced with permission from J. F. Rodriguez-Nieva, M. S. Dresselhaus, L. S. Levitov,
Thermionic Emission and Negative dI/dV in Photoactive Graphene Heterostructures, Nano Letters
15, 1451 Copyright 2015 by the American Chemical Society.
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combined together result in a reduction of the electronic temperature and a suppres-

sion of thermionic current upon an increase of the bias potential V. The NDR effect

arises when this suppression overwhelms the increase in the field-effect transport un-

der bias. Such an NDR mechanism manifests itself as an enhanced photo-current

peaked at a bias potential well below the onset of the conventional field-emission

regime. This peak, combined with a gate-controlled closed-circuit current that is

present at zero bias voltage, serve as signatures of hot-carrier dominated transport.

Photoactive NDR architectures are a class of their own, and are well suited for

optoelectronic applications. In particular, the fast response and in situ tunability of

graphene devices make them ideal as photo-active switches or light-detectors with

high gain. The NDR effect in photo-active devices, analyzed below, is distinct from

the one in traditional NDR devices, such as Gunn diodes [86] or resonant tunneling

diodes [72, 87] which rely on non-linearities under the application of large electric

fields in the absence of light.

5.1 Thermionic transport

While in general both electrons and holes can contribute to thermionic transport,

in practice transport is often dominated by a single carrier type. In the case of

hBN, the barrier heights are 1e1 ~ 3.5 eV for electron transport and <Dh ~1.3 eV for

hole transport [88]. We can therefore treat the interlayer transport in an hBN-based

system as dominated by a single carrier type (holes).

Below I focus on the behavior in wide-barrier structures, where thermionic emis-

sion of thermally activated carriers dominates over direct tunneling. This is the case

for hBN thicknesses exceeding 4-5 monolayers (d - 1 nm) [16] at sufficiently high tem-

peratures. Thermionic currents are described by a particularly simple model when
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Figure 5-1: The Negative Differential Resistance (NDR) effect in a photoactive
heterostructure operated in the thermionic emission regime. Shown are (a) device
schematics. (b) electronic band structure with the quantities discussed in the text marked.
and (c) the I-V dependence under optical pumping obtained from Eqs. (5.4) -(5.7). The
bias voltage V1, controls the electron cooling through electrostatic doping of graphene layers.

An enhancement in the cooling power upon increased V, triggers the carrier temperature
dropping [marked T(1 2 -3 in (c)]: see also sinmulation results in Fig.5-4(a). The resulting
suppression of the thermionic current leads to negativc dI/dV (in the grey region). For
larger bias values. transport is dominated by field emission. yielding positive dI/dV outside
the grey region. Shown here are results for both graphene layers undoped at V1 = 0. Results
for nonzero doping are presented in Figs.5-2 and 5-3.
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both graphene layers are at neutrality at Vb = 0:2

I(Vb, T) = (gokBT/e)e</kBT sinh(eVb/2kBT), (5.1)

where I is the current density per unit area and the go value is estimated in Eq.(5.8).

This expression in Eq.(5.1) follows from a general microscopic model at not too high

bias Vb, such that the effect of anti-symmetric doping induced by b 3 0 is stronger

than the corresponding change in the barrier skewness [see derivation and discussion

in the paragraph before Eq.(5.17)]. For larger bias values, field corrections to the

barrier potential become important and must be accounted for; this is done in a

microscopic model developed below. I also note that the electronic distribution is

typically non-exponential when relaxation is slow. Slow relaxation would make the

distribution tails more pronounced, ultimately enhancing the thermionic effects.

5.2 Negative differential resistance (NDR)

The steep dependence of I on T and Vb in Eq.(5.1) leads to NDR by the following

mechanism. For electrons in thermal equilibrium with the lattice, Eq. (5.1) predicts

a monotonic I-V dependence. A very different behavior, which is key for NDR,

arises under pumping. As pictured schematically in Fig.5-1 (c) for three values TM >

T (> T 3 , in the hot-carrier regime the electron temperature T becomes highly

sensitive to Vb. The temperature-bias coupling arises because of the large interlayer

capacitance producing bias-dependent doping in the graphene layers. An increase

in carrier density leads to a faster electron-lattice cooling, which reduces thermal

imbalance 6T = T - To, with To the lattice temperature. The dependence in Eq. (5.1)

then predicts suppression of thermionic emission. If strong enough, this suppression

can lead to negative dI/dV. The NDR effect takes place in the grey region marked

2The expression for thermionic current density in Eq.(5.1) features a dependence on the external
bias and a power-law temperature dependence distinct from that known for the 3D case, where Ith Oc
T2e,/kBT. This reflects the difference in the transport processes at the interface. Conventional
thermionic emission (3D) is described as the flux of free particles with energies e > <1 in the direction
normal to the surface. In contrast, in our case transport depends on elastic scattering mechanisms
at the graphene/hBN interface generating an out-of-plane current, as described in the text.
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Figure 5-2: The closed-circuit current Ic, induced by optical pumping. In the

transport regime dominated by hot carriers, the value and polarity of Ic are sensitive to
the carrier densities ni. n ill the graphene layers. Shown are (a) experimental schematics.
and (b) the dependence Ic tvs. 1n1 and 'n2 for Pass= 10 pW/pn 2 and 1 = 0. The foiur-fold

pattern with multiple changes of the current polarity arises due to the strong cooling power
dependence on carrier concentration (a non-linear color scale is used to amplify the features
of interest).

in Fig.5-1(c).

The sensitivitv of the electron-lattice cooling to carrier concentration provides a

smoking gun for the regime dominated by hot carriers, helping distinguish it from the

conventional resonant tunneling NDR mechanisms. such as those discussed in Refs.

[17. 18]. In that regard. I mention that for the more general case of unequal carrier

densities (ii # 'n2 at , = 0). this analysis predicts that the interlaver thermionic

transport persists even at zero bias. As illustrated in Fig.5-2. this produces a closed-

circuit current at V) = 0 with a characteristic density dependence: a four-fold pattern

with multiple polarity changes. Such a pattern provides a characteristic signature of

hot-carrier dominated transport.

The strength of the hot-carrier effects, reflected in the response of T to 1V7 [see

Fig.5-4(a)]. can be characterized by the dimensionless quantity

(Ahc 4 T (5.2)
T d(cV;)

The value (tic depends mainly on the power Pat) pumped into the electronic syst Ciem

and on the thickness d of the iarrier via the capacitance effect. As we will see, ahc

governs the non-monotonic I-V dependence: the condition for NDR can be stated as
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ah, > 1/2. I will argue that values as large as ahc - 25 can be reached under realistic

conditions.

5.3 Thermionic transport model

For thermionic transport over the barrier, as well as for tunneling through it, I adopt

a quasi-elastic but momentum non-conserving approximation. Indeed, a number of

momentum scattering mechanisms at the interface are possible, such as scattering

by defects, intrinsic phonons, substrate phonons, etc. Typical energy exchange in

these processes is small on the barrier height scale (D. With this in mind, I use the

(quasi-elastic) WKB model for the interlayer transition matrix element:

t1 = foeS* p~x 2(X) = (- eEbx - e, (5.3)_L(E) toe-h2m*

for e < D, and t(6) = to for e > D, where to is an energy-independent prefactor which

depends on the barrier material properties. In Eq. (5.3), Eb is the electric field within

the barrier due to interlayer bias, see Eq.(5.7), m* is the electron effective mass in

the dielectric, and x, is the classical turning point for the skewed barrier potential,

X* = min[d, (D - E)/eEb], see Fig. 5-1(b). Here, for the sake of simplicity, I ignore

the effect of attraction to image charges, described by a -1/1xj - 1/x - dl potential.

For a large barrier width, this gives rise to the barrier height Schottky dependence on

the square root of Eb. The effect is less dramatic for the not-so-large barrier widths

analyzed below.

Assuming an elastic but momentum non-conserving interlayer transport, the ver-

tical current I(V) can be expressed through barrier transmission and carrier distri-

bution [81]:

I(V) = eZ jtij(E)2D1(e)D 2(E)[fi(E) - f2(E)], (5.4)

where, due to the built-in field between layers, the energy for the quantities in layer

2 is offset by E = E + eEbd [see Fig.5-1(b)]. Here I is the current per unit area and

fi(e) = [e(C /kB~ 1 - f[e-12)/kBT2 --]I are the Fermi distribution
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functions, the sum in Eq. (5.4) denotes integration over E and summation over spins

and valleys. I use tj(E) = 6ijt(E) defined in Eq.(5.3), and the density of states per

spin/valley D 1,2 (E) = cEJ/27r(hvF) 2. The temperatures established under pumping in

unequally doped layers are generally distinct, T1 $ T2, reflecting the cooling rates

density dependence. Also, importantly, the electrostatic potential between layers,

Ebd, is distinct from the bias voltage V. This is so because the quantum capacitance

effects, prominent at small carrier densities, [62] make the quantites u1 and P2 bias-

dependent. These effects are investigated below.

5.4 Electrostatic coupling model

A feature of our system which is key for NDR is the large mutual capacitance of

graphene layers, which couples V with the carrier density and makes the hot-carrier

properties of each layer tunable. This coupling acts as a knob producing big changes

in the hot-carrier photoresponse through modest changes of carrier concentration

on the order 6n - 1012 cm-2. 3  Such bias-induced doping changes are routine in

graphene/hBN systems [15].

The bias-induced changes in the carrier densities of graphene layers, as well as in

the electric field Eb between the layers, can be described by a simple electrostatic

model. I consider a dual-gated device with fixed charge densities nT, nB in the top

and bottom gates, respectively. The neutrality condition relates the charge densities

in the different regions of the device as

nT+ ni + n2+ nB = 0, (5.5)

where ni, n2 are carrier densities on the graphene layers. The field Eb is related to

3 Such carrier densities are sufficient to trigger the NDR regime. Indeed, I assume, for con-
creteness, that electron-lattice cooling is dominated by the disorder-assisted mechanism. Taking a
typical pump power value Pabs ~ 10 PW/Ytm 2 , equating it to Pdis, and using values kFfd - 100 and
T = 2TO ~ 600 K, then Eq. (5.13) yields typical carrier densities on the order of n ~ 10 12 cm-2.
Similar values are obtained for the acoustic phonon mechanism in the absence of disorder. The
hot-carrier transport regime is therefore realized when the carrier density is n < 1012 cm- 2 , whereas
field emission dominates for n > 1012 cm- 2
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these quantities through Gauss' law:

ErEb = 27re (nT + n - n2 - nB), (5.6)

where Er is the dielectric constant of the barrier. A bias voltage V applied between

the graphene layers results in

eV = pl - Y2 + eEd, (5.7)

where p, and A2 are the Fermi levels for layers 1 and 2. With doping-dependent P1,2 ,

Eq.(5.7) accounts for the quantum capacitance effects. Here I will use the T = 0

expression pi = sign(ni)hvF 7i7rrii, which provides a good model over most of the

relevant carrier density range.

The three unknown variables ni, n2 and Eb can now be found by solving the three

equations (5.5)-(5.7), once the external variables nT, nB and V are fixed. Throughout

this work I focus on the symmetric case when nT = nB = -no with no interlayer bias

applied (which corresponds to both graphene layers at neutrality when the gates are

uncharged). In this case, Eqs. (5.5),(5.6) can be restated as ni = no + 6n, n2 =

no - 6n, and erEb = 47re6n. Then, plugging these values into Eq. (5.7), the density

imbalance 6n can be obtained. The built-in field Eb matters in two different ways:

the electrostatic potential value eEbd enters the WKB model, Eq. (5.3), as well as in

the offset between D1 (e) and D 2 (e) in Eq. (5.4).

5.5 Current-bias characteristics

The I-V dependence for the case no = 0 is shown in Fig.5-1; for finite values nT =

nB = -no it is shown in Fig.5-3. In the simulation, I first determine [1,2 from

Eqs.(5.5)-(5.7) as a function of V and no. Using the [1,2 values, the electronic

temperatures T1 ,2 are determined from energy balance considerations, see Eq.(5.9)

below. Finally, using the calculated values [1,2, T1 ,2 , and Eb, the current is obtained

from Eq.(5.4). I use hBN barrier parameters for numerical estimates, with a (hole)
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barrier height 1 ~ 1.3eV [88], dielectric constant Er ~ 5, thickness d = 6nm (~ 20

monolayers). Room temperature is assumed, To = 300 K, unless stated otherwise.

The prefactor value F in Eq. (5.3) can be related to the measured conductance.

Physically, F accounts for the processes in which tunneling couples to phonons or

defects. The rates for these processes, which typically vary from interface to inter-

face, can be estimated from transport measurements. Linearizing Eq. (5.4) in eV for

kBT < 4, and accounting for the thermionic contribution due to E ~ ID, the zero-bias

conductance per unit area is

= 2- go 41rND (()D2 ( 2 h (5.8)
2 go () 1 h

where I take T = T2 . Here N = 4 is the spin/valley degeneracy, and go is a prefactor

in Eq. (5.1). The activation T dependence is consistent with that measured for

dark current [59]. Comparison with values G - 10- W-1pm- 2 measured at room

temperature, and 1 - 0.4eV [59], yields values go - 1- 1 pim-2 and F ~ 0.5 eVA.

5.6 Hot carrier effects

Next I discuss how hot-carrier effects result in a coupling between the electronic

temperature and the chemical potential for each graphene layer. In the continuous

wave regime, the power Pabs pumped into the electronic system is distributed among

the electron and lattice degrees of freedom. For simplicity, I use a two-temperature

model, describing electrons by a temperature distinct from the lattice temperature,

T > To, valid when the carrier-carrier scattering rate is faster than the electron-lattice

relaxation rate. Assuming spatially uniform in-plane temperatures and chemical po-

tentials, the total cooling power obeys the energy balance condition

Pabs = Pac(Pi, Ti) + Ppt(Ai , Ti) + Pdis (Pi, Ti), (5.9)

written separately for each layer i = 1, 2. Here I ignored effects such as direct inter-

layer energy transfer as well as the heat drained through the contacts. Equation (5.9)
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accounts for three cooling pathways intrinsic to graphene, mediated by acoustic and

optical phonons (Pa, Ppt) [47,48], and the disorder-assisted acoustic phonon mecha-

nism (Pis) [52]. The cooling rates in Eq.(5.9) also depend on the lattice temperature

To, however it suffices to treat To as a fixed parameter, since the heat capacity of the

lattice greatly exceeds that of the electron system.

The intralayer Joule heating is small and thus need not be included in Eq. (5.9).

Indeed, typical vertical current values obtained in devices of active area ~ 1 Pm2 and

under a bias V1 ~ 1V do not exceed a few nA [15,16,59]. This yields Joule heating

sources which are at least three orders of magnitude smaller than the powers pumped

optically. The interlayer energy transfer as well as the heat drained through contacts

can be ignored in the energy balance in Eq. (5.9) for similar reasons.

The cooling power is a strong function of doping for the acoustic-phonon contri-

butions Pac and Pdis. This is so because acoustic phonon scattering is dominated by

quasi-elastic scattering processes at the Fermi surface, and also because of the strong

dependence of the electron-phonon coupling on the phonon energy. The resulting

dependence on the chemical potential takes the form [47,52]

p oc /i4 (T - To), Pdis Oc P2(T3 - T03)/kFfd (5.10)

in the degenerate limit kBT < p. The factor 1/kFfd, where d is the disorder mean

free path, describes the dependence of Pdis on disorder strength. In contrast, the

contribution Ppt is essentially p-independent. Since the optical phonon energy in

graphene is quite large, hwo ~ 0.2eV, the value Ppt is quite small, behaving as

Popt oc exp(-hwo/kBT) for kBT, it p j hwo. The ratio Pac/Popt is therefore small

near charge neutrality but can be order-one for strongly doped graphene with typical

doping n - 1013 cm- 2 [47]. The cooling power strong dependence on p can trigger

the temperature dropping upon an increase in p, i.e. dT/dp < 0, see Fig.5-4(a).

Explicitly, the contribution to cooling power due to acoustic phonons, obtained
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for pristine graphene. is given by [47]

Pac = 4)ac(T - To) dr 3 [f (E-) + 1 hU) B
'ac 8 w )6

where f(c) LCe*- + 1] is the Fermi distribution function. UD is the deformation

potential. and p is the mass density of the graphenle monolayer. In the degenerate

limit, p/ksT > 1, the integral in Eq. (5.11) yields

Pac = acI4 (T (5.12)

This contribution to cooling, due to its strong dependence on ,. becomes very small

near the Dirac point.

Disorder-assisted acoustic phonon cooling originates from electron-phonon scat-

tering in the presence of disorder. such that part of phonion iiomentumi is absorbed by

disorder. Evaluated for a short-range disorder model. this mechanism yields cooling
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power [52]
_ 2UD kB

Pdis = UYis/2(T - T, -PCh(hVF) fd (5.13)

where kFfd is the dimensionless disorder mean free path parameter, cs is the speed

of sound in graphene, and the degenerate limit p > kBT is assumed. The quadratic

dependence of Pdis on i means that this contribution can dominate over P near the

Dirac point. For both Pa, and Pdis, I use values of UD ~ 20 eV, cs ~ 2 - 104 m/S,

p ~ 7.6. 10-11 kg/cm 2 and kFfd = 100-

Finally, the optical phonon cooling power is [47]

h(hwo) 3

Popt = p(hv)2  B(hwo/kBT) - fB(hwo/kBTo)] F(T, M), (5.14)47rpa 4(hv)2

where a flat optical phonon dispersion hwo = 0.2 eV is assumed. The quantity

fB(x) denotes the Bose-Einstein distribution [ex - 1]-1. The quantity F(T, p) is a

dimensionless integral

F(T, p) = dxjx(x - 1)1 [f(hwo(x - 1)) - f (hwox)]. (5.15)

For weak doping, p < hwo, and kBT < hwo, I can approximate f(E) by a step

function 0(-E). Integration in Eq. (5.15) then yields F(T, [t) ~~ 1/6, giving

h(ho )3
Popt = -yopt [fB(wAo/kBT) - fB(hwo/kBTo)], Yopt = 2 . (5.16)

247rpa 4(hVF )2

At temperatures T, To < hwo this gives a simple exponential dependence in Eq.(2.30).

The exponential temperature dependence in Popt makes this contribution small at low
4

temperatures

The transition between the hot-carrier dominated regime, and the conventional

field emission regime can be controlled by the power pumped into the electronic

system. In the simulation I used the values for Pabs typical of laboratory lasers below

saturation [89] (a few mW per a pm-wide spot). I take Pabs to represent the power

4 Although small, Popt can still dominate over the other cooling mechanisms, particularly near
the Dirac point where Pac oc p4 and Pdis oc p2
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absorbed in each graphene layer (2.3% of incident power [85]). The Pabs values used are

quoted in Figs.5-1 and 5-4 panels and in the captions of Figs.5-2 and 5-3. As shown

in Fig.5-1(c), a strictly monotonic I-V response obtained at Pabs = 0, is transformed

into an N-shaped NDR dependence upon growing pump power.

5.7 Zero bias doping effect

The impact of doping no (taken to be equal to each other on for both layers at V = 0)

on the I-V dependence is illustrated in Fig.5-3. In this figure we see that the current

peaks are shifted towards higher Vb values upon no growing more negative [compare

to Fig.5-1(c) which shows the no = 0 slice]. The peaks track the V values at which

the emitter layer is bias-doped to charge neutrality. This is to be expected since the

electron-lattice imbalance is maximal at neutrality. A peak-to-valley ratio (PVR) as

high as ~ 5 can be obtained (see Fig. 5-3 inset). For no > 0, in contrast, the emitter

layer is never at charge neutrality for any value of Vb, resulting in the N-shaped

dependence fading out.

The NDR effect is suppressed under a high bias potential when the field emission

of carriers with energies below the barrier height overwhelms thermionic emission. As

shown in Fig.5-1, the high bias region eVb/<b > 1 is characterized by I monotonically

growing with increasing Vb. This behavior arises because lowering the barrier height

facilitates tunneling and also because the growing carrier density results in a faster

cooling, thereby reducing the electron-lattice thermal imbalance [see Fig. 5-1(c) inset].

5.8 Criterion for NDR

Next, I proceed to derive a simple criterion for NDR. I will focus on the fully-neutral

case no = 0 (both graphene layers are undoped at V = 0) pictured in Fig.5-1. In

this case, due to symmetry, we have T, = T2 = T and ni = -n 2 for any eVb.

Further, assuming a small bias and/or a not-too-wide barrier, I can approximate the

bias-induced chemical potentials as pi,2 ~~ ieVb/2. This simple relation is valid for
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eV < Er(hv) 2 /e 2 d, corresponding to the last term in Eq.(5.7) much smaller than

Al - A2. Lastly, by accounting for the dominant role of thermionic emission, I model

transmission as a step function, It(E)1 2  ],2E(F - 1). I then integrate in Eq. (5.4)

over energies E > 4 > max[kBT, Vb], approximating D1,2 (e) as a constant and the

Fermi distribution tail as e-(,-j)/kBT. This yields Eq.(5.1) to leading order in Vb/1

and kBT/J with the prefactor go given in Eq.(5.8). While the validity of Eq.(5.1) is

limited to d which are not too small and also not too large, I find that this equation

predicts NDR to occur in the parameter range close to that found from the full

microscopic model used to produce Fig.5-1 through Fig.5-4.

The criterion for NDR can be derived by taking the derivative dI/dVb in Eq. (5.1)

and setting it equal to zero, giving

kBT X 1
1 + tanhx - = ,X = e/2kBT (5.17)

)/kBT 2ah' (

where ah, is the quantity -(@/eT)dT/dVb introduced above, describing the carrier

temperature dependence vs. Vb. The ahc value controls the NDR effect. Maximizing

the left-hand side of Eq. (5.17) in x I find the value f(A) = A1/ 2  (A - 1) tanh-' A- 1/ 2

parameterized with A = 1+ (1'/kBT) 1 , which is attained at x, = sinh- 1 /f/kBT. It

is straightforward to check that f(A) < 1 for all A > 1. This gives the NDR condition

ahc > 1/2. Below I use this condition, derived for no = 0, as an approximation for

the more general case of no # 0.

To estimate ahc as a function of the model parameters, it is convenient to factorize

a by applying the chain rule as ah, = aT - a,, giving

p dT ( dy
a( ,' a. (d) = e .dVb (5.18)

Here aT depends only on the cooling pathways through Eq. (5.9), while a, depends

only on the barrier properties through the quantum capacitance effect of Eq. (5.7).

Below I use Eq.(5.18) to estimate ahc and show that the NDR condition ah, > 1/2

can be readily met.

To estimate aT I analyze the degenerate regime p > kBT, where the doping-
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Figure 5-4: Photoresponse as a function of pump power and disorder. (a) The
electronic temperature T is plotted as a function of bias Vb for different pump power values

Pabs. The inset shows the dominant cooling pathways for different chemical potential and
pump power values [for To = 0 K. kFfd = 1001. (b) Current I vs. Vb for different kFfd
values, and Pabs = 10 PW/Pm 2 . The bias potential at which current peaks (Vpk) and the
peak-to-valley ratio (PVR) are sensitive to the amounts of disorder (see inset). Results
shown in this figure (except the inset of panel a) are obtained for the system undoped at
Vb = 0. as in Fig.5-1.
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dependent contributions Pa, and Pdis dominate over the roughly doping-independent

Ppt [see Fig.5-4(a) inset]. In this regime, the cooling power behaves as Pi = -Yip(Tb -

T1b), with a = 4, b = 1 for acoustic phonon cooling, and a = 2, b = 3 for disorder-

assisted cooling (here -y are constants that depend on the cooling pathways). I

assume, for simplicity, that a single cooling pathway dominates over other pathways.

Then Eq. (5.9) yields

aT= (a/b)[1 - (To/T)b]. (5.19)

This gives 0 < aT < a/b with the low and high values corresponding to T ~ To and

T > To, respectively. The crossover between these values occurs at a threshold pump

power P, - 0.5 [W/pm2 that marks the onset of the hot-carrier regime under typical

experimental conditions. I define P, as the value for Pabs at typical carrier densities

n ~ 1012 cm-2, To = 300 K, and kFfd = 100 such that (T - To)/To = 0.1. This yields

the above P, value. Maximum aT values found from Eq.(5.19) are 0.6 and 4 for the

Pdis and Pac pathways, respectively.

Next, I estimate a. as a function of the barrier width. From Eq. (5.7), specializing

to the case no = 0, I find

<b/2p 6.5
a 1 + (4e2 /ErhVF)kFd 1 + 0.3 d[nm(

where kF = P/hvF. Here I have used the hBN barrier value 4D ~ 1.3 eV and u ~ 0.1 eV

for typical bias-induced doping. This gives limiting values am(d < d,) ~ 6.5 and

am (d > d*) = 0, with the crossover value d* ~ 20 nm. From the above we see that

the quantity ah, = aT - a, can reach values as high as ah, ~ 25.

5.9 Additional comments

While the NDR criterion ahc > 1/2 is insensitive to the cooling mechanism (so long as

it is a strong function of carrier density, as discussed above), the form of the I-V de-

pendence may reflect the cooling mechanism specifics. This is illustrated in Fig.5-4(b)

for the Pdis mechanism. In particular, I consider the bias Vpk where the current peaks.
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From Eq. (5.17) I estimate eVpk ~ x, kBT. When the Pdis mechanism dominates

(kFfd < 10) and T > To, a power-law relation is obtained: Vpk c( [kFfd p/p2]1/ 3

Similar arguments lead to a disorder-controlled peak-to-valley ratio (PVR). This be-

havior is illustrated in Fig.5-4(b) inset.

I note that the NDR features may be somewhat smeared out by statistical fluctu-

ations induced by disorder or inhomogeneities. However, I do not expect these effects

to destroy NDR. Indeed, optical heating occurs in [m-wide areas and a typical car-

rier density is 1012 cm-2. At the same time, charge inhomogeneity lengthscales in

graphene/hBN are a few tens of nm, whereas typical density fluctuations are as low

as ~ 101 cm- 2 [41,90].

5.10 Chapter summary

To summarize, vertically-stacked graphene heterostructures afford a platform to re-

alize and explore a range of interesting optoelectronic phenomena due to photogen-

erated hot carriers. One such phenomenon is the light-induced NDR effect discussed

above, manifesting itself through the I-V dependence, acquiring an N-shaped char-

acter under optical pumping. Vertical heterostructures use the full graphene area as

a photoactive region, and possess a large degree of tunability. These properties make

the NDR effect potentially useful for designing new types of optical switches and

photodetectors. Our estimates show that the NDR regime, facilitated by graphene's

unique optical and thermal properties, can be readily accessed in wide-barrier het-

erostructures.
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Chapter 6

Thermionic- dominated

photoresponse in graphene

Schottky junctions

Vertical heterostructures of van der Waals materials enable new pathways to tune

charge and energy transport characteristics in nanoscale systems. In this chapter,1

I show that graphene Schottky junctions can host a special kind of photoresponse

which is characterized by strongly coupled heat and charge flows that run vertically

out of the graphene plane. This regime is accessed when vertical energy transport

mediated by thermionic emission of hot carriers overwhelms electron-lattice cooling

as well as lateral diffusive energy transport. As such, the power pumped into the

system is efficiently harvested across the entire graphene active area via thermionic

emission of hot carriers into a semiconductor material. I will also discuss the main

experimental signatures of this regime, which include a large and tunable internal

responsivity R with a non-monotonic temperature dependence. In particular, R

peaks at electronic temperatures on the order of the Schottky potential 4b and has

a large upper limit R < e/4D (e/4D = 10A/W when (D = 100meV). As such, this

proposal unveils a completely new paradigm for sensitive photodetectors, surpassing

'Reproduced with permission from Nano Letters, submitted for publication. Unpublished work
copyright 2016 by the American Chemical Society.
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ideal internal responsivities of photodetectors based on conventional transport, e.g.

the photovoltaic effect.

6.1 Electronic and optical properties of graphene

Schottky junctions

Vertical heterostructures comprising layers of van der Waals (vdW) materials have

recently emerged as a platform for designer electronic interfaces [53]. Of special

interest are heterostructures which feature tunable interlayer transport character-

istics, as exemplified by g/X Schottky junctions [15, 16, 54-60]; here 'g' denotes

graphene, and X is a semiconductor material, such as Si, MoS 2 or WSe 2. These

junctions are characterized by Schottky barriers 4) that span two orders of magnitude

~ 0.01 - 1 eV [15, 54, 55, 59] and exhibit in situ control by using gate poten-

tials. The relatively small 1 achievable across the g/X interface, combined with the

unique graphene photoresponse mediated by long-lived hot carriers (elevated elec-

tronic temperatures, T, different from those of the lattice, To [47, 48, 51, 52, 91, 92]),

make graphene Schottky junctions a prime target for accessing novel vertical energy

transport regimes.

Here I show that specially designed graphene Schottky junctions can host an

enhanced thermionic-dominated photoresponse driven by strongly coupled charge and

energy currents. Such a photoresponse proceeds, as illustrated in Fig. 6-1(a), via the

thermionic emission of graphene hot carriers with energy larger than the Schottky

barrier. At steady state, an equal number of cold carriers are injected at the Fermi

surface through an ohmic contact, giving a net flow of heat IQ out of the graphene

electronic system balancing the energy pumped into the system.

Strikingly, thermionic emission yields strong heat transport running vertically out

of the hot electron system, which dominates over more conventional electronic cooling

channels, e.g. electron-lattice cooling. Indeed, I find that IQ can be significant in

graphene [(see Fig. 6-1(c)] when kBT ~D/2, and dominates over acoustic and optical
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Figure 6-1: Thermionic-dominated heat transport in a graphene Schottky junc-
tion. (a) Schematic of the thermionic-dominated regime: hot carriers with energies 5 close
to the Schottkv barrier heioht J1 are thermionically emitted into a semiconductor material
in the out-of-plane direction . while cold carriers are injected through an Ohmic contact
at the Fermi level. p. generating a net vertical heat current Ig. (b) Normalized ideal

responsivity. x = R0o/c. is shown as a function of normalized graphene electronic temper-
ature. kLT/4. with e the electron charge [see Eq.(6.I)]. Curves are obtained for normalized

ambient temperature kBTo/4 0. 0.25, 0.5.0.75. 1.0. indicated with different colors for in-
creasing To- characteristic TRo c/4l) 10 A/W can be large (for P = 100 meV. see text).

(c) Thermionic cooling channel. IQ. compared with acoustic phonoii cooling (clean case).

Pac. disorder-assisted cooling. Pis. and optical phonon cooling Ppt [see text and Eq.(G.9)].
shown for ambient temperature To = 300 K (solid lines) and To = 0 (dotted lines). Note

that IQ overwhelms Pac and Pop, (clean case) arid is competitive with Pi, (dirty case). Pa-

rameter values used: p = ) = 100 meV. kF/d = 50. and Go = 10 mS/pm 2 . see Eqs. (6.5)
and (6.9).
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phonon cooling [47,48] in pristine graphene Schottky junctions; IQ also overwhelms in-

plane (lateral) diffusive energy transport. I find that the values of IQ are competitive

with disorder-assisted cooling [52,91,92] in more dirty devices.

Graphene is essential to the observation of these effects due to a unique combina-

tion of electronic characteristics. First, fast intraband Auger-type scattering [93,94]

allows the absorbed photon energy flux, P, to be efficiently captured as heat by

ambient carriers in graphene; this process results in a thermalized hot carrier dis-

tribution [93, 94]. Second, graphene is characterized by slow electron-lattice cooling

mechanisms [47,48, 51,52,91,92] which enables T > To to drive a strong thermionic

current. This is due to the large optical phonon energy in graphene [47,48] as well

as the weak electron-acoustic phonon coupling [for a detailed comparison between

cooling rates, see Eq.(6.9) below]. Third, the gate-tunable work function allows an

experimentally accessible way to optimize device operation, predicted to occur at

kBT - 4/2, for a range of technologically achievable temperatures and barrier mate-

rials. Indeed, whereas other Schottky junctions (e.g. Au/Si, Ag/Si) may also display

vertical energy currents, their large Schottky barriers ((J ~ 1 eV) and fast electron-

lattice cooling render the thermionic-dominated regime impractical for these systems.

An important optoelectronic figure of merit is the conversion between the absorbed

photon energy flux, Pabs, and the detected photocurrent, Ie, encoded in the (internal)

responsivity R = I,/Pabs. Importantly, our model yields a large upper limit for

R. Indeed, energy 1 is transported per carrier extracted across the g/X junction

[Fig. 6-1 (a)] yielding a limiting internal responsivity IZo, occurring in the thermionic-

dominated regime (i.e., IQ = Pabs) given by

7? < IZOJ 7?O = ex y(t to). (6.1)

Here e is the electron charge, t and to are the dimensionless graphene and ambient

temperatures (temperature of the lattice and semiconductor), respectively, and x is

a dimensionless function (see text below) plotted in Fig. 6-1(b). The function X can

take values close to unity, allowing RO to be on the order of e/1 = 10 A/W, for
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= 100 meV. For a discussion of net values of R in Eq.(6.1), see Fig.6-2(c).

Since the incident photon energy hw (e.g. in the visible) can be many multiples

of (, I anticipate that g/X Schottky photodetectors can provide significant gains

in the internal responsivity compared to those in conventional (photovoltaic-based)

photodetectors, which are limited by R1v < e/hw [95]. In particular, the ultra-fast

electron energy relaxation times in graphene yield multiple hot carriers per absorbed

photon [93, 94], in stark contrast to photovoltaic-based schemes that yield a sin-

gle electron-hole pair per absorbed photon. Naturally, the external responsivity of

the device is also affected by the absorption coefficient of the photoactive material.

Whereas the absorption coefficient of 2.3% per layer in graphene [85] is small com-

pared, for instance, to typical values of 10-50% in Si [96], this small value can be

increased using optical waveguides [56] and plasmon enhanced absoption [97]. These

external enhancement mechanisms will not be discussed here.

In addition, g/X photodetectors also enable a boosted photoresponse compared to

previous photothermoelectric-based schemes [51]. Indeed, the vertical structure allows

researchers to circumvent lateral electronic heat diffusion, which drastically reduces

the operating electronic temperatures and efficiencies in photothermoelectric-based

schemes.

Another important feature of the g/X photoresponse is the possibility of using the

temperature dependence of R as a diagnostic of thermionic-dominated photoresponse.

After including losses to the lattice via disorder-assisted cooling, R is found to be

non-monotonic, peaking at an optimal operating hot carrier temperature kBT ID/2

[Fig. 6-2(c)]. Since T can be controlled by the incident light power and 1 via gate

voltage, non-monotonic R as a function of T provides an easily accessible experimental

signature of the strongly coupled charge and energy thermionic transport that is

engineered across the g/X interface. Indeed, non-monotonic temperature behavior

does not occur in typical photovoltaic-based devices, where responsivity is mainly

independent of pump power or photon intensity.
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6.2 Vertical photocurrent model

I begin by modeling vertical transport across the g/X device, as depicted in Fig. 6-1(a).

Using the standard approach for modeling vertical graphene tunneling devices [98],

wherein energy is conserved but in-plane momentum is not, I write the electron and

heat current across the g/X Schottky junction as

[e ]= d e G(E) [f (e/kBT) - f (E/kBTo)], (6.2)

where
2wre2

G(e) = h D(E)Dc(E)IT(e)1 2 . (6.3)

Here G(E) is a parameter with units of electrical conductance which characterizes the

Schottky interface (see discussion below), D (D,) is the density of states of graphene

(the conduction band of the semiconductor), f(x) = 1/(ex + 1) is the Fermi distri-

bution function, T(E) is the energy-dependent tunneling transition matrix element

between graphene and the semiconductor electronic states, and energies E are refer-

enced from the Fermi energy p [see Fig. 6-1(a)]. The function T(e) contains all the

microscopic information about the relevant mechanisms that couple graphene with

material X, such as phonons or hot-spots formed by defects.

Two important assumptions are present in Eq.(6.2). First, I neglected hole trans-

port between graphene and the valence band of X assuming that the barrier height

for hole transport is much larger than the corresponding one for electron transport.

Secondly, I assume that the Fermi level and the temperature in graphene and in X are

spatially fixed. In a more realistic scenario, the pumping power may cause the tem-

perature and Fermi level to spatially vary in the out-of plane direction. In this case,

both quantities need to be determined self-consistently by appropriate balance equa-

tions. However, these do not introduce any new qualitative features to our simplified

model.

When light heats graphene electrons so that T > To, then Eq.(6.2) describes

the short-circuit charge current (photocurrent) and the energy current flow, shown
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schematically in Fig. 6-1(c). At steady state, T is determined by energy balance of

the incident absorbed power in graphene, Pi, and the energy being dissipated by the

graphene electronic system that includes both the thermionic channel, IQ, and other

dissipative channels, Pi10 s (e.g. electron-lattice cooling, and diffusive heat transport,

as discussed below). Explicitly, I have

Pabs = IQ(T, To) + Poss(T, To), (6.4)

where I have fixed To to the temperature of the ambient environment, i.e. there is

no backflow of hot electrons into graphene. The latter assumption results from the

large heat capacity and fast electron-lattice cooling in highly doped semiconductors

such as Si [99]. In what follows, I shall analyze the energy/charge characteristics of

g/X Schottky junctions as a function of T and To; naturally the T values displayed

can be attained via a suitably chosen Pin.

The depletion width, for example in g/Si interfaces [58], can be many times larger

than the electron wavelength. As a result, only electrons with energies above the

effective barrier <D formed at the g/X interface contribute to the current; in this way,

the photocurrent is thermally activated. Here I adopt a phenomenological approach

to capture the essential physics independent of the microscopic details of the device.

To this end, I approximate G(E) = GoE(E - b) in Eq.(6.2), with 8 the step-function,

in order to aggregate the microscopics of the junction into a single variable that

can be easily measured in experiment. I emphasize that this approximation does

not affect the qualitative behavior of Ie, IQ or X for the range of temperatures of

interest, kBT < <b; further, this approximation represents a conservative estimate of

the particle current, since G(E) is typically a monotonically increasing function due

to the larger density of states available for scattering at larger E in graphene. As a

side remark, I note that Go is not the zero-bias junction conductance; the latter is

suppressed by a factor e-/T, as discussed in the paragraph following Eq.(6.11).

Using a step-like transmission, heat and charge currents can then be expressed in
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Figure 6-2: Graphene/X Schottky junction photoresponse. (a) Schematic of the
hot carrier photodetector. where X respresents a semiconductor material with bandgap
Ax. Here I consider oraphene as the photoactive material for absorption. i.e. photon
energy hw < Ax. (b) Ratio = Piss/I2 modeled via Eq.(6.11) as a function of T. with

To = 0 (solid line) and T =300 K (empty circles). Note that the latter has a smaller
range. T > To. (c) The responsivity 7Z (solid lines) for the g/X junction exhibits a non-
monotonic electronic temperature dependence peaking at T ~ b/2kB. shown for ( modeled
in Eq.(6.11) [panel (b)] with ( 5.1.0.2 (blue. green. red. respectively): dimensionless 7z
is shown on the left vertical axis. The dashed line indicates an ideal case R = Ro. Here
I used values Go = 2. 10.50 mS/p m2 . p = <D = 100 meV and kF/Ad 50 yielding sizable 7

(right vertical axis).

terms of' non-dimensional integrals by defining x = / D in Eq.(6.2). yielding

CL) jdx Af (3).
C

IQ GoD2
Q~ C2

dx.'rA f (x). (6.5)

f(x/To). It is straight-forward to show that the integrals on

the right-hand side of Eq.(6.5) are related to the well-known complete Fermi integrals.

via f7 dxi"f(r/) = (2)AIMF(- 1

dx
S+-- 1

(6.6)

I/T). In the low temperature regime. T <

1. the value of F. behaves as Fk( 1/T) F F(k+1)( ., with F the Gamma function.

In the high temperature regime, i > 1. FA. takes values F0 (-1/T) ln(2) and

F1 (-1/ r12.
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6.3 Photoresponse in the ideal limit

A key feature of thermionic-dominated [PIOSS = 0] transport is the strong charge-

energy current coupling manifested in RO. Using Eq.(6.5) above, I obtain Eq.(6.1)

with x given by
T0) = fl dxAf(x)

J7 dxxAf (x) (6.7)

The general behavior of x(T, TO) can be most easily understood by first setting To = 0.

In this case, x in Eq.(6.1) adopts the simple form

-~~ ~ -; -1(-IT

Xo(T) = X(T, To = 0) 1 (6.8)
FO(-1/T)_

Importantly, Xo is a decreasing function of temperature T, as shown in the black

dashed curve of Fig. 6-1(b). In particular, for i < 1, Xo takes values Xo ~ (1 +

)-1 of order unity, and for i > 1, Xo decreases with inverse temperature as Xo ~

12log(2)/(7r 2 t) [see Fig. 6-1(b)]. This latter fact means that, although Ro is expressed

in units of e/(D in Eq.(6.1), Ro cannot grow indefinitely by making D smaller; RO

reaches a saturating value RO~ 12log(2)e/(7r2kBT) for kBT > D, as shown in Fig. 6-

1(c).

For finite values of To, the qualitative behavior of x does not depart significantly

from that of Xo. As shown in Fig. 6-1(b), where X(i, io) is obtained by numerical

integration of Eq.(6.7) for different values of To, the function X largely follows the

Xo curve and only shifts slightly from Xo with increasing To. Further, the range of

operating hot electron temperatures is now smaller, i > to, as illustrated in Fig. 6-

1(b) by curves that now start at i = to. Although x is finite at T = To, there is no

net current at equal temperatures [as indicated by the empty circles at the beginning

of the curves in Fig. 6-1(b)]; a non-vanishing X at t = to arises from the differential

ratio that characterizes the responsivity R.

97



6.4 Photoresponse in real systems

Considering losses, Eq. (6.5) yields IQ that can be sizable [see blue curves in Fig. 6-

1(c)]. In plotting Fig. 6-1(c), I numerically integrated Eq.(6.5) and used <I = 100 meV

and Go = 10 mS/pm2 (see below for Go estimates). Further, IQ compares favorably

with intrinsic electron-lattice cooling in graphene: (i) single-acoustic phonon cooling

for pristine graphene P (green curves), (ii) optical phonon cooling Ppt (magenta

curves), and (iii) disorder-assisted cooling Pdj, (red curves), where I consider the

degenerate limit (p > T) for all cases [47,48,52]:

Pa= P (T - To), Pdis = 7dis(T3 - T),

(6.9)

Popt =Yopt [fB(hwo/kBT) - fB(hwo/kBTo)]

The prefactors, which were defined in Sec. 2.4.2, are -yac = hUDp4 kB/87rp(hvF)6 ,

ydis = 2UIp 2k3/pC2 h(hF)4 kFfd and 7yopt = h2W3/247rpa v, with UD the deformation

potential, p the graphene mass density, kFfd the dimensionless disorder parameter,

ao the carbon-carbon distance, wo the optical phonon frequency, and N(x) the Bose

distribution. For the cooling mechanisms, I used p = 100 meV, UD = 20 eV, p =

7.6. 10- 7 kg/mI2 , kFfd = 50, ao = 1.4A and hwo = 0.2eV. Indeed, IQ overwhelms

both Pa and Ppt, and is competitive with Pdis, as shown in Fig. 6-1(c).

The hot carrier thermionic cooling channel, IQ, and the strong charge-energy

current coupling it produces [Eq. (6.1)], can manifest itself in large and non-monotonic

responsivities in g/X photodetectors [Fig. 6-2(a)]. Accounting for energy balance in

Eq.(6.4) I find a net responsivity given by

R = 1+$ , 1= (6.10)
1 + IQ

where ( quantifies losses. To estimate ( for actual devices, I consider the disorder-

assisted cooling power in graphene [52], Poss ~ Pdjs = Ydis(T 3 - T03) as an illustrative
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example, see Eq.(6.9). Adopting the same procedure as described above, then

~(TT0 ) 3 _ ejY3is2

((I, To) = ,x 0. 4 , (6.11)
fl dxxAf Go

is obtained, where the characteristic ( is set by e2 yadis4/Go. As expected, increasing

the prefactor -ydis, for Pdis, increases the losses to phonon scattering embodied in

(. Alternatively, increasing the conductance across the g/X interface enhances the

thermionic channel.

In calculating R in Eq.(6.10), I use the same parameter values as in Fig. 6-1:

S= ID = 100 meV and kFfd = 50. The value of Go can be estimated from con-

ductance measured in the dark state, GD, obtained in actual g/X devices at equi-

librium T = To (for example g/Si Schottky junctions in Refs. [54, 55]). Indeed,

under an infinitesimally small potential bias 6 V, I can approximate Af in Eq.(6.7)

as Af(x) = [ex/(ex + 1)2] x eSVb/To due to the small chemical potential difference

eWb between G and X. Integrating over x in Eq.(6.7), I obtain GD = Go/(1 + e'/To).

In a typical scenario kBTo < 4, the conductance in the dark state is exponentially

suppressed with increasing temperature as GD ~ Go exp(-D/kBTo), in agreement

with the qualitative behavior observed in Refs. [15,16,54-57,59]. To give an estimate

of the range of conductances achievable in g/X devices, GD in these experiments

report GD ~ 0.1 - several x pS/pm2 for Dsi ~ 0.3 eV with To at room tempera-

ture. This gives Go in the 1 - 100 mS/pm2 ballpark [for R in Fig. 6-2(c), I used

Go = 2,10, 5OmS/pm 2 , which correspond to (, = 5, 1, 0.2, see Eq.(6.11)].

As shown in Fig. 6-2(b), ( exhibits a clear non-monotonic dependence on T char-

acterized by two regimes: (i) small t < 1, IQ is exponentially suppressed by the

transport barrier 1D, and thus Pi dominates, (ii) large t > 1, I find that IQ scales

as T2 , and rises less steeply than the T 3 power law of supercollision cooling. Hence,

there is a "sweet spot" for observing a competitive thermionic channel IQ. The op-

timal value occurs for temperatures kBT/1 ~ 0.5 [see Fig. 6-2(b)], with minimum

(min ~ 1.85 x (*. This can be estimated from Eq.(6.11) in the limit t < 1 and

To = 0, where the above-mentioned optimal values are obtained from minimization
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of the equation t/ ~ 'Z2elt [Fig. 6-2(b)].

The responsivity R in Eq. (6.10) mirrors C to display a non-monotonic dependence

on T, peaking at a temperature kBT ~ D/2, as shown in Fig. 6-2(c). Peak responsiv-

ities in the range 1? ~ 1 - 10 A/W are obtained within our model. Indeed, for large

Go = 50 mS/tim2 (corresponding to (, = 0.2), R starts to approach the ideal case,

R = lZo (dashed black line). The non-monotonic dependence of R as a function of T

provides a clear fingerprint of the competition between thermionic energy transport

and conventional electron-phonon cooling. Since the Schottky barrier heights can be

tuned by the applied gate voltage, the peak temperature kBT ~ D/2 is gate tunable.

Further, the scaling of 4D and the device conductance Go also provides experimental

knobs with which to adjust the responsivity of the device.

Naturally, there are other mechanisms for losses that affect the responsivity. For

instance, lateral (in-plane) heat currents, I = -V - (KiIVT), can transport heat

towards the contacts in small devices. To estimate this effect, I use the Wiedemann-

Franz relation, -(T) = (7rB/3e2) x k'Ta, where a is the in-plane electrical conduc-

tivity of graphene. For the relevant regime of moderate to high temperatures, T ;> D,

I can approximate IQ ~ Gok2T2/e 2 = -y(T) x T [cf. Eq.(6.2)]. As a result, I find a

cooling length \I = im(T)/-(T) coming from the thermionic channel that is inde-

pendent of T. Using a uniform in-plane a ~1 mS [100] results in (1 ~ 0.6 pm, so that

vertical energy extraction dominates over in-plane thermal conduction for sufficiently

large devices with size L > 1i.

I note that interactions with the substrate can result in cooling via surface optical

phonons. These losses will vary for different substrate (X) choices and are only

significant when X is a polar material [101]. Importantly, I do not expect them to be

relevant in non-polar materials, e.g. X = silicon.

6.5 Important features of g/X photodetectors

The optimal responsivity ocurring at kBT ~ 4/2 is an important characteristic for

the design of graphene photodetectors. Indeed, given that T < 2000 K in realis-
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tic situations, Schottky barriers in the 100 meV ballpark allow operation of the g/X

photodetector near optimal responsivities (i.e. near minimum (). As a result, pho-

todetector fabrication should be targeted at van der Waals materials with relatively

small work function difference with respect to graphene, for instance WS 2 [59].

Although g/X photodetectors allow in situ control of 1 by electrostatic doping, it

is important to note that several parameters of the model vary implicitly with (D. On

the one hand, changes in 4 also induce changes in graphene doping, thus modifying

the electronic cooling power. Further, when 4 becomes smaller than the incoming

photon energies, photo-emission of primary carriers over the barrier competes with

thermalization by electron-electron interactions. In this case, a smaller amount of the

incident power is captured in the hot-carrier distribution.

Lastly, it is interesting to note that g/X photodetectors can also operate at low

photon energies, hw < 2p. In this regime, conventional Drude absorption from am-

bient carriers directly captures incident radiation. This contrasts with conventional

semiconductor photodetectors, that do not absorb light below the semiconductor

bandgap. A tantalizing possibility is to use g/X Schottky junctions within the mid

IR - THz bandwidth where presently-available technologies offer lackluster perfor-

mance [102,103].

6.6 Chapter summary

Graphene Schottky junctions host tunable interfaces across which energy transport

can be engineered, exemplified by thermionic-dominated transport regime wherein

energy and charge currents are strongly coupled. Fingerprints of the thermionic-

dominated regime include high responsivities on the order of R - 1-10 A/W, and

a non-monotonic dependence of R on electron temperature (or pump power) in g/X

photodetectors. The large degree of in situ tunability allows optimization of the

g/X interface for different applications and irradiation conditions; vertical hot carrier

convection opens up new vistas to efficiently harvest photon energies over a wide

spectral range, utilizing the entire exposed graphene area as a photoactive region.
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Part II

Electron-optics behavior in

graphene quantum dots
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Chapter 7

Graphene quantum dots

The design of high-finesse resonant cavities for electronic waves faces challenges due

to short electron coherence lengths in solids. In this chapter, I present a novel ap-

proach inspired by the peculiar acoustic phenomena in whispering galleries to confine

electronic states.1 Taking advantage of graphene's gate-tunable light-like carriers,

whispering-gallery mode (WGM) resonators are realized inside circular pn junctions.

The theory of graphene quantum dots described in this chapter was experimentally

demonstrated at NIST as a result of a collaborative work [104]. In their experimental

setup, a circular cavity is obtained and probed by the action of a scanning tunneling

microscope (STM) tip. This approach complements previous approaches to confine

electronic waves by carefully positioned adatoms at clean metallic surfaces, i.e. quan-

tum corrals [105]. Contrary to quantum corrals, graphene quantum dots enable in

situ tunability of the resonator size and the carrier concentration under the probe in

a back-gated graphene device over a wide range of sizes. The WGM-type confinement

and associated resonances, which will be described in detail below, are a new addition

to the quantum electron-optics toolbox.

'This chapter is reproduced in part from Y. Zhao, et al., Creating and probing electron
whispering-gallery modes in graphene, Science 348, 672 Copyright 2015 by the American Asso-
ciation for the Advancement of Scien'ce (AAAS).
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7.1 Whispering gallery modes in graphene

Charge carriers in graphene exhibit light-like dispersion resembling that of electro-

magnetic waves. Similar to photons, electrons in graphene nanostructures propagate

ballistically over micrometer distances, with the ballistic regime persisting up to room

temperatures [8]. This makes graphene an appealing platform for developing quantum

electron optics, which aims at controlling electron waves in a fully coherent fashion. In

particular, gate-tunable heterojunctions in graphene can be exploited to manipulate

electron refraction and transmission in the same way that optical interfaces in mir-

rors and lenses are used to manipulate light [37]. These properties have stimulated

ideas in optics-inspired graphene electronics. First came Fabry-Perot interferome-

ters [101], which have been fabricated in planar npn heterostructures in single-layer

graphene [106] and subsequently in bilayer [107] and trilayer graphene [108]. The

sharpness of the pn junctions achievable in graphene can enable precise focusing

of electronic rays across the junction, allowing for electronic lensing and hyperlens-

ing [39,109, 110].

In this chapter, I consider electron whispering-gallery mode (WGM) resonators,

an addition to the electron-optics toolbox. The WGM resonances are familiar for

classical wave fields confined in an enclosed geometry - as happens, famously, in

the whispering gallery of St. Paul's Cathedral in London. The WGM resonators for

electromagnetic fields are widely used in a vast array of applications requiring high-

finesse optical cavities [111-113]. Optical WGM resonators do not depend on movable

mirrors and thus lend themselves well to designs with a high quality factor. This can

render the WGM design advantageous over the Fabry-Perot design, despite challenges

in achieving tunability due to their monolithic (single-piece) character (see [111] for a

mechanically tunable optical WGM resonator). The system under study is free from

these limitations, representing a fully tunable WGM resonator in which the cavity

radius can be varied over a wide range by adjusting gate potentials. In contrast,

the best electronic resonators known to date - the nanometer-sized quantum corrals

designed by carefully positioning adatoms atop a clean metallic surface [105] - are
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Figure 7-1: Confined electronic states in microscopic electron cavities defined

by pa junction rings in graphene. (a) The rings are induced by the STM\ tip voltage bias
(Vj) and back-gate voltage (Vg). adjusted so as to reverse the carrier lpolarity beneath the

tip relative to the ambient polarity. The pa junction acts as a sharp boundary giving rise to
Klein scattering of electronic waves. producing mode confinemeiit via the whispering-gallery

mechanism. The cavity radius and the local carrier dsiyare illdependlently tunable by
tihe voltages lj) and V>. Electron resonances are mapped out by the ST1\J spectroscopy
measurements (see Fig.7-2). Shown are time STM tip potential U(r) and the quantities
discussed in the text: the ST1\1 tip radius (R). its dist ance from graphlelle (di). and the
local (/p0) and ambient (poc) Fermi levels with respect to the Dirac point. a and p label
the electron and hole regions. (b) Spatial profile of WGM resonances. Confhnement results
from interference of tile incident and reflected waves at the pa rinigs (dashed lines). The
confuimemnent is stroinger fbr the larger angular momentum m values, corresponding to more

oblicque wave incidence angles. This is illustrated for m = /2 (weak confinement) and
'i= 25/2 (strong confinement). Plotted is the quantity Re( Y). the real p~art of the second

spinor component ill Eq. (7.1).

not easily re configurable.

Further. although WGM resonators are ubicquitous ill ojtiCS and acoustics [111-

114]. only a few realizations of such resonators were obtained in non-optical and non-

acoustic systems. These include WGM for ineultroins [115]. as well as for electrons mu

organic molecules [116]. Here we explore a circular electroni cavity created beneath

a metallic tip. such as those in a scanning tunneling microscope, and we study the

WGM-type confinement of electronic modes. The cavity is defined by a tip-induced

circular pa junction ring, at which the reflection and refraction of electron waves are

governed by Kh-in scattering (Fig. 7-1). Klein scattering originates fronm the graphene

linear energy dispersion relat ion and opposite group velocities for conduct ion amnd

valence band carriers: Klein scattering at a pa junction features a strong angular

dependence with a lOO% probability for. transmission a~t normal incidence, as well as
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focusing properties resembling negative refractive index metamaterials [37, 39]. Al-

though Klein scattering is characterized by perfect transmission and no reflection for

normal incidence, it also gives rise to nearly perfect reflection for oblique incidence

occurring in the WGM regime [37]. As illustrated in Fig.7-1(b), this yields excellent

confinement and high-finesse WGM resonances for modes with high angular momen-

tum m and a less perfect confinement for non-WGM modes with lower m values.

Electron optical effects in graphene have so far been explored using transport

techniques, which lack spatial and angular resolution that would be indispensable for

studying confined electronic states and/or electron lensing. The use of a scanning

probe technique enables nanometer-scale spatial resolution. The STM probe has

a dual purpose: (i) creating a local pn junction ring, which serves as a confining

potential for electronic states, and (ii) probing the resonance states localized in this

potential by electron tunneling. The planar back gate and the STM tip, acting as a

circular micrometer-sized top gate, can change both the overall background carrier

density and the local carrier density under the tip. As such, pn and np circular

junctions centered under the probe tip [Fig.7-1(a)] can be tuned by means of the

tip-sample bias Vb and the back-gate voltage Vg. For the purpose of creating resonant

electronic modes inside the junction, this configuration enables in situ, independent

control over the carrier concentration beneath the STM tip and the pn ring radius.

The tunneling spectral maps from such a device obtained at NIST, show a series of

interference fringes as a function of the two knobs (Vb, Vg) (Fig.7-2). These fringes

originate from resonant quasi-bound states inside the pn ring.

The measured spacing between fringes (Ae) can be used to infer the cavity ra-

dius (r). Using the formula AE = 7rhvF/r and an estimate from Fig.7-2(a) (AE r

40 meV), we obtain r ~ 50 nm, a value considerably smaller than the STM tip radius

(R ~ 1 pm). This behavior can be understood from a simple electrostatic model of a

charged sphere proximal to the ground plane. When the sphere-to-plane distance d

is small compared with the sphere radius R, the induced image charge density cloud

p(r) behaves as p(r) oc 1/(d + r2 /2R) predicting a length scale s/2Rd < R. This

crude estimate is upheld, within an order of magnitude, by a more refined electrostatic
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modeling, which also gives a length scale much smaller than R (see below).

7.2 Description of the NIST experiment

The experimental results from NIST were obtained on a device consisting of a graphene

layer on top of hexagonal boron nitride, stacked on SiO 2 with a doped Si back gate.

Figure 7-2(a) shows a tunneling conductance map as a function of back-gate voltage

(V) on the horizontal axis and a sample bias (Vb) on the vertical axis. A series of

interference-like fringes forming a curved fan (labeled WGM') can be seen in the up-

per right of Fig.7-2(a). The center of the fan defines the charge neutrality point. This

point can be off (0, 0) in the (Vg, Vb) plane due to impurity doping of graphene (shift

along Vg) and the contact potential difference between the probe tip and graphene

(shift in Vb). Another interesting feature in such conductance maps is a (somewhat

less visible) second fan of fringes (labeled WGM"), which is crossing the primary

WGM' fan. The fringes in the WGM" fan follow the typical graphene dispersion with

respect to the Fermi energy, which varies with doping as oc -'IV9I, coming from higher

sample bias to lower as a function of Vg.

Figure 7-2(c) shows nine oscillations in a line cut across the WGM' fan along

the Vg axis. To understand the origin of these nine oscillations, two spectral line

cuts along the Vb axis in Fig.7-2(d) are plotted. The first spectrum in Fig.7-2(d) at

Vg = 11 V (blue curve) contains a group of resonances (labeled 1" to 3") near the

Fermi level (Vb = 0) with a spacing of 37.6 1.2mV. In the map in Fig.7-2(a),

these resonances can be seen to move to lower energies approximately following the

typical Dirac point dispersion oc N'IVg. Taking a vertical cut at a higher back-gate

voltage of Vg = 16V (red curve) shows resonances 1" and 2" shifted down in energy

in Fig. 7-2(d). Focusing now at slightly higher energies, the WGM' resonances appear

at positive energies in Fig.7-2(d) and are labeled 1' to 4' for Vg = 16 V. The average

spacing of these resonances is 116.9 7.5 mV.

A close examination of Fig.7-2(a) indicates the one-to-one correspondence between

the WGM" resonances 1", 2",... and the WGM' resonances 1', 2'..., suggesting their
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Figure 7-2: Confined electronic states probed by STM measurements from
NIST. (a) Differential tunneling conductance (dI/dI,) for a single-layer graphene device.
as a function of sample bias (j) and back-gate voltage (K,). The two fans of interference
features. marked WGM' and WGM". originate from WGM resonances in the DOS (see
text). (b) Interference features in dI/djh. calculated froin the relativistic Dirac model.
The features WGM' and WGM" in the (Vg. Aj ) map originate. respectively. from the con-
ditions = po and po + cA7, (see text). The boundaries of the WGM' (and WGI\I")
regions are marked by dashed (and dotted) white lines. (c) dI/dV spectra taken along
the horizontal line in (a) at Vb 230 nV. (d) dI/d'4 spectra taken along the two vertical
lines in the map in (a) at Vg 16 V (red line) and V,, 11 V (blue line. scaled x 3 and
offset for clarity) (see text for discussion).The four peaks at positive bias at V = 16 V are
fit to Gaussian functions. with the fits shown in the lower right of the figure. The peaks
labeled 1".2".3"... correspond to WGM resonances probed at the energy L = po + cV.
whereas the peaks labeled 1'.2'.3'.... are the same WGI resonances probed at the Fermi
level p =o. giving rise to the WGM" and WGM' fringes in the gate maps. respectively.
The resonance spacing of order 40 nV translates into a cavity radius of 50 nm. using the
relation At = r1F/FT/ (see text).
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common origin. As will be discussed below, the WGM" resonances correspond to

tunneling into the pn junction modes at energy E = po + eV [where po is the local

Fermi level, see Fig.7-1(a)], whereas the WGM' resonances reflect the action of the

STM tip as a top gate, allowing tunneling into the same resonance mode at e = A0.

7.3 Model for graphene whispering gallery modes

To clarify the WGM character of the STM resonances, we analyze graphene's Dirac

carriers in the presence of a potential induced by the STM tip described by the

Hamiltonian R = Wo + U(r), where Wo is the kinetic energy term and U(r) describes

the STM tip potential seen by charge carriers. Because relevant length scales -

the electron's Fermi wavelength and the pn ring radius - are much greater than

the atomic spacing, we focus on the low-energy states. We linearize the graphene

electron spectrum near the K and K' points, bringing Wo to the massless Dirac form:

[VFU -p+ U(r)IV(r) = EO(r), where p = ihV, and o = (o-, uy) are pseudospin Pauli

matrices. We take the tip potential to be radially symmetric, reflecting the STM tip

geometry. Furthermore, the distance from the tip to graphene (d) is considerably

smaller than the electrons Fermi wavelength and the pn ring radius, both of which

are smaller than the STM tip radius. We can therefore use a parabola to approximate

the tip potential, U(r) = Kr2 (where r is the off-center displacement). The potential

curvature K, which affects the energy spectrum of WGM resonances, can be tuned

with the bias and gate potentials, as discussed below.

The WGM states can be described by the polar decomposition ansatz

M(r, 0) = em uA(r)e (7.1)
UB (r) e iO/2

where m is a half-integer angular momentum quantum number, 0 is the polar angle,

and A, B label the two graphene sublattices. We nondimensionalize the Schr6dinger

equation using the characteristic length and energy scales (r, = IRd, e,, = hvF/ Rd)

to obtain the radial eigenvalue equation of the two-component spinor u(r) with com-
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Figure 7-3: Contributions of the WGM resonances with different mn to the DOS

for the relativistic Dirac model. (a) Colored curves represent partial-i contributions

from angular momentum values i = 1/2. 3/2. 5/2. 7/2. 9/2 [see Eq.(7.3)]. evaluated for

a confining potential U(r) = tr2 with curvature value K = s / = E,/Rd. Different curves

show the partial DOS contributions defined in Eq.(7.3). which are offset vertically for clarity.

The inset shows the total DOS versus particle energy 5 and the curvature K (see text). The

black curve shows the total DOS trace along the white line. (b) The Dirac wavefunction

for different NWGM states [see Eq.(7.1)]. Spatial structure is shown for several resonances in

the partial DOS (black dashed circles mark the pm junction rings). The quantity plotted.

Re(y1). is the same as in Fig.7-1(b).The length scale r, = v/N (the same in all panels) is

narked. Note the confinement strength increasing with o?.
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ponents UA(r) and uB(r):

-iXo, + (m/r)uo + Kr 2] u(r) = Eu(r). (7.2)

Here r is in units of r., E is in units of Eg, and r, is in units of K, = E,/r2. The

tunneling current, expressed through the local density of states (DOS), is modeled as

bto+eVb

I / dET(E, Vb) S Dm(E), (7.3)

which is valid for modest V values [117]. Here po is the Fermi energy under the tip,

which in general is different from ambient Fermi energy /i. as a result of gating by

the tip (see below). The transmission function T(E, Vb), which depends on the tip

geometry, work function and DOS, will be taken as energy-independent. The quantity

D(E) = Em Dm(E) represents the sum of partial-rn contributions to the total DOS

beneath the tip.

To find the eigenstates of the Hamiltonian, Eq.(7.2), we use the finite difference

method in the interval 0 < r < L with large enough L and with a large repulsive

potential at r = L in order to confine the eigentstates. We use a finite range -M <

m < M for the azimuthal quantum numbers with the value M chosen large enough

to represent accurately the states in the energy range of interest. The local density

of states beneath the tip, D(E) = Em Dm(E), used for modeling the conductance

maps, Eq. (7.6), is calculated from the eigenvalues and eigenstates of the Hamiltonian,

Eq.(7.2), as
2N

Dm() y (u(r = 0) 2) (7.4)
r (E - El)2 + 72

Here, the broadening parameter value -y is chosen to be a few times the level spacing,

S~ hl/L, 1 labels the radial eigenstates of Eq.(7.2), and the average (...)e denotes

(I U(r = 0)1 2 )f = f dr'tui(r') 2exp(-r'2 /2f') (7.5)

The Gaussian in Eq.(7.5) accounts for the finite size of the tunneling area due to the
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finite curvature radius of the STM tip and/or a residual asymmetry of the STM tip,

both of which allow electrons to tunnel some distance off the tip center. Spurious

states arising from the finite potential jumps at the boundaries, localized within a

few lattice sites of r = 0 and r = L and with energies roughly independent of ir, are

excluded from the sum in Eq. (7.4).

The WGM resonances for different partial-m contributions Din, which combine

into the total DOS (Fig.7-3), reveal that individual WGM states exhibit very differ-

ent behavior depending on the m value [see Figs.7-1(b) and 7-3(b)]. Klein scattering

at the circular pn junction produces confinement creating the WGMs, and the con-

finement is stronger for the large-m modes and weaker for small-m modes. The Klein

reflection probability R is strongly dependent on the angle of incidence 6 at the pn

interface, growing as R(6) ~ 1 - exp[- sin2(o)], where is a characteristic dimen-

sionless parameter [36]. The value of 0 grows with m as tan(9) c m. As a result,

larger values of m must translate into larger reflectivity and stronger confinement.

This trend is clearly demonstrated in Figs.7-1(b) and 7-3(b). Also, as m increases,

mode wavefunctions are being pushed away from the origin, becoming more localized

near the pn ring, in full accord with the WGM physics.

7.3.1 Fringe duplicity in the STM spectral maps

To understand how one family of WGM resonances gives rise to two distinct fans

of interference features seen in the data (Fig.7-2), we must account carefully for the

gating effect of the STM tip. We start with recalling that conventional STM spec-

troscopy probes features at energies En = [to + eVb, where En are the system energy

levels. This corresponds to the family WGM" in our measurements. However, as

discussed above, the tip bias variation causes the Fermi level beneath the tip to move

through system energy levels En, producing an additional family of interference fea-

tures (WGM') described by En = po To model this effect, we evaluate the differential

conductance G = dI/dVb from Eq. (7.3), taking into account the dependence [to versus

Vb . This gives

G oc (1 - ()D(po + eVb) + (D(po) (7.6)
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with ( = -apo/D(eVb). The two contributions in Eq.(7.6) describe the WGM' and

WGM" families. We note that the second family originates from the small electron

compressibility in graphene, resulting in a finite ( and would not show up in a system

with a vanishingly small ( (e.g., in a metal). We use Eq.(7.6) with a value ( = 1/2

to generate Fig.7-2(b). In doing so, we use electrostatic modeling described in the

following section to relate the parameters (e, r') in the Hamiltonian, Eq.(7.2), and the

experimental knobs (V4, Vg).

7.3.2 Electrostatic modeling

We use the Thomas-Fermi (TF) model to relate the parameters (e, K) in the Hamil-

tonian, Eq.(7.2), to the experimental knobs (Vb, Vg). Since the graphene-tip distance

d is much smaller than the tip radius R, d < R, the tip-induced carrier density in

graphene 6n = sgn(p)p 2/-F(hvF)2n, can be modeled as

sgn(p)p2  
_ e(Vb - Vcpd) + (.

7(hVF)2 - 47re2 (d - r 2 /2R)

Here, p is the position-dependent Fermi energy taken relative to the Dirac point, n,

is the carrier density far from the STM tip (controlled by the gate potential), and

Vpa is the contact potential difference between the tip and neutral graphene. The

right-hand side of Eq.(7.7), is obtained from a parallel-plate capacitor model with

slowly varying interplate-distance dt(r) ~ d + r2/2R, and neglecting the higher-order

corrections due to the curvature of the field lines. This yields a screening length scale

-/2Rd < R, as described in the main text. The carrier density far from the tip is

controlled by the gate potential as no, = Ere(Vg - V)/47re2dg, where Er and dg are

the dielectric constant and thickness of the dielectric substrate, respectively, and V19

accounts for residual doping in graphene at V = 0.

For instance, Fig.7-4(a) illustrates the influence of the sample-tip bias acting as a

local top gate; the potential profile sign reverses from local hole doping at large posi-

tive bias to electron doping at strong negative bias. Figure7-4(b), likewise, illustrates

the impact of the back gate potential that is mainly to modify the tails of the local
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potential induced by the tunneling tip. This procedure yields a very good agreement

with the measured dI/dVb [Fig.7-2(a) and (b)].

We analyze the nonlinear screening problem accounting for the fact that the spa-

tially varying carrier density may change polarity near the STM tip. This is done

with the help of the self-consistent Thomas Fermi (TF) model, Eq.(7.7), treated as

an algebraic equation for p. Parameters of interest for the microscopic model, PO and

K, are obtained directly from Eq.(7.7). The value of po = p(r = 0) is given by

13- /3 + 4|/ 2 (b, Vg)|
po (Vb, Vg) = 40 V g (7.8)2sgn [ 2 (Vb, Vg)]

where /1 and 12 are

1 = ( ,) 2 (Vb, Vg) = 31 e(V - Vc p) - e(Vg - V) (7.9)

The parameter K in our parabolic approximation for U(r) is calculated as , =

-p"(0)/2 and giving

r(Vb, V) = e (Vb--Vcd)+to(VbVg) (7.10)2Rd 12+4|02 (Vb ,Vg)I

Importantly, we note that the potential term in our model Hamiltonian, U(r) = Kr2

is unbounded, whereas in reality it has a maximum value U(Irl --+ oo) = po - M,

(see Fig.7-4). This constrains the regions in the (Vg, Vb) map where the WGMs are

expected to occur. In particular, states with energy JEj > 1po - p.l do not have a

bipolar character (i.e., do not form a pn junction). In order to include the finite value

for U(Irl -+ oc) in plotting Fig.7-2(b), we treat the value of K as given by Eq.(7.10)

when gEJ <po - pu, with sgn(E) = sgn(jto - ) and as K = 0 otherwise.

7.3.3 Model parameters

In our calculations, we use a system of size L/r, = 20. The interval 0 < r < L was

discretized with N = 1200 points, yielding a 2400 x 2400 matrix for each value of K
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and m. The azimuthal quantum number maximum value M = 17/2 was used. In

Eq.(7.4), we used the value of -y/E, = 0.2 for broadening and f = r, for the Gaussian

width parameter. The latter corresponds to an effective tunneling region of size

f ~ r, ~ 22 nm, where r is obtained for typical STM tip parameter values (see details

below). Such values for the tunneling region size, while they may seem to be a bit

on the high side, are in fact not unreasonable: For instance, the off-center tunneling

rate decays exponentially, governed by the WKB exponent ~ exp[-2dt(r)/2moD/h],

where dt is the local tip-graphene distance, mo is the effective electron mass and (D is

the work function. The spread for electrons away from the tip center can be estimated

from dt(r) ~ d(1 + r2 /2Rd), yielding an effective value of (r,/f)2 = 2d/2mo1/h - 5

(here we used the electron mass mo ~ 9.1 . 1031kg, D ~ 1eV, and d - 0.5 nm). We

expect fabrication-induced tip asymmetries to be in the same ballpark.

For parameter values that we use for our TF model, we take R ~ 1 pm, d ~ 0.5 nm,

and Vpa ~ 0.3 V. This yields characteristic length and energy scales r, e 22 nm and

E, ~ 30 meV, respectively. The backgate in our device is separated from graphene

by a dielectric of thickness dg ~ 300 nm and a dielectric constant E _ 5. We also

introduce a gate potential offset of V = 10 V to match the residual doping observed

in our experiments.

7.3.4 Other experimental features

In addition to explaining how the two sets of fringes, WGM' and WGM", originate

from the same family of WGM resonances, our model accounts for other key features

observed in the data. In particular, it explains the large difference in the WGM' and

WGM" periodicities noted above. It also correctly predicts the regions where fringes

occur [Fig.7-2(b)]. The bipolar regime in which pn junction rings and resonances in

the DOS occur (see fig.7-4) takes place for the probed energies E of the same sign

as the potential curvature. In the case of a parabola U(r) = ,r 2, this gives the

condition EK > 0, corresponding to the upper-right and lower-left quadrants in Fig.7-

3(a), inset. However, under experimental conditions, the potential is bounded by

U(Ir I - oc) = po - po [see Fig.7-1(a)], which constrains the regions in which WGMs
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Figure 7-4: Radial Fermi energy profile obtained from the Thomas-Fermi model.
(a) The profile is calculated from Eq.(7.7) as a function of bias voltage Vb varying from
500 mV to 500 mV in steps of 100 miV for a fixed gate voltage Vg = 0. and in (b) it was

calculated as a function of gate voltage Vg varying from -10 V to 10 V in steps of 2V for
fixed bias voltage Vb = 50 mV. In both panels. we included the effect of residual doping in

graphene by adding a gate potential offset of V0 = 10 V. see text. The tip-induced circularg
pn and np junctions appear when the potential profile crosses 0 eV (dotted lines). The pn
junction radius varies between 0 and 100 nm.

are actually observed. As discussed above, accounting for the finite value U(rl -+ DC)

yields the condition JEl < ,po - p,. with sgn(E) = sgn(K) = sgn(po - p,). This gives

the WGM' and WGM" regions in Fig.7-2(b) bounded by white dashed and white

dotted lines, respectively, and matching accurately the WGM' and WGM" location

in the measurements.

The range of to values that the NIST measurement can probe depends on the

specifics of the tunneling region at the STM tip. We believe that a wide range of

ri values can be accessed; however, we are currently unable to distinguish different

partial-n contributions, because the corresponding resonances are well aligned (Fig.7-

3). Different Tn. states may contribute if the tunneling center is not the same as the

geometric center of the tip, which is highly likely. As shown in [105], higher m.

states can be accessed by going off center by as little as 1 nu, which is likely in

our real experiment due to a residual asymmetry of the STM\ tip [we model this

effect by a Gaussian factor in Eq.(7.3)]. We note in this regard that different angular

mioment urn m'to values translate into different orbital magnetic moment values, opening

an opportunity to probe states with different m, by applying a magnetic field (see

Chap.8).
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7.4 Discussion

The explanation of the observed resonances in terms of the whispering-gallery ef-

fect in circular pn rings acting as tunable electronic WGM resonators has other no-

table ramifications. First, it can shed light on puzzling observations of resonances in

previous STM measurements [118-120], which hitherto remained unaddressed. Sec-

ond, a highly tunable setup in which the electron wavelength and cavity radius are

each controlled independently lends itself well to directly probing other fundamen-

tal electron-optical phenomena, such as negative refractive index for electron waves,

Veselago lensing [39], and Klein tunneling [37]. Further, we envision probing more

exotic phenomena such as the development of caustics, where an incident plane wave

is focused at a cusp [121-123], and special bound states for integrable classes of dy-

namics might be observed, where the electron path never approaches the confining

boundary at perpendicular incidence [124]. These advances will be enabled by the

distinct characteristics of graphene that allow for electronic states to be manipulated

at the microscale with unprecedented precision and tunability, thus opening a wide

vista of graphene-based quantum electron-optics.
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Chapter 8

Berry phase and giant

non-reciprocity in Dirac quantum

dots

In this chapter I show that recently created Dirac quantum dots [104] grant access to

exotic behavior not available in conventional quantum dots.1 In particular, I predict

giant non-reciprocity in the quantum dot resonance spectra induced by the Berry

phase. Arising in weak magnetic fields, non-reciprocity is manifest in anomalously

large splittings of quantum dot resonances which are degenerate at B = 0 due to time-

reversal symmetry. The resonance splitting, which is governed by a field-induced jump

in the Berry phase of confined electronic states, is strongest for gapless Dirac systems

and becomes quenched with increasing bandgaps. In the small bandgap regime, the

Berry phase splitting overwhelms the conventional orbital and spin-induced splitting.

The predicted giant non-reciprocity, available in the large family of two-dimensional

Dirac materials, is accessible via Faraday and Kerr optical rotation measurements

and scanning tunneling spectroscopy.

'Reproduced from J. F. Rodriguez-Nieva, L. S. Levitov, Berry phase and giant non-reciprocity
in Dirac quantum dots, submitted for publication in Phys. Rev. Lett. (arXiv:1508.06609).
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8.1 Non-reciprocity in Dirac quantum dots

Recently, a new class of quantum dots embedded in two-dimensional Dirac materials

has been introduced [104]. These Dirac quantum dots exploit nanoscale pn-junction

rings induced by electrostatic potentials as a vehicle for confinement of electronic

states [121,124-128]. Confined states in these ring-shaped electron resonators, mani-

fested through resonances appearing periodically in scanning tunneling spectroscopy

maps [104], arise due to the constructive interference of electronic waves scattered at

the pn junction [36,37] and inward-reflected from the ring. In this Chapter, I show

that the novel mechanism for electronic confinement can be exploited for accessing

exotic and potentially useful behavior, which is not available in conventional quantum

dots.

In particular, I predict that the Berry phase, a distinguishing topological feature of

Dirac materials [33,129-131], induces a strongly non-reciprocal spectrum of quantum

dot resonances,

En,m : En,-m, (8.1)

in the presence of a weak magnetic field B; here m and n denote the azimuthal

and radial quantum numbers, respectively. As we will see, resonance splittings of

the m states, which are degenerate at B = 0, grow precipitously with magnetic

field, approaching values as large as half the quantum dot resonance period Ae.

In particular, for the weak magnetic fields B of interest, the effect dominates over

conventional orbital and spin-induced splitting.

8.2 Non-reciprocity: semiclassical model

This anomalous behavior can be understood from a simple semiclassical picture de-

scribing confined electrons in a gapless two-band system. Considering a confining

potential with circular symmetry, the resonance spectrum En,m of the quantum dot

can be obtained from the WKB condition for Oorb = fc dr - k, the usual orbital phase
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Figure 8-1: Manipulation of the Berry phase 0B of confined Dirac electrons

using magnetic fields. Shown are semiclassical orbits of massless particles exhibiting

topologically distinct orbital behavior corresponding to (a) B < Bc and (b) B > Bc [see

critical field B, in Eq.(8.5)]. The Berry phase., determined by the solid angle subtended by

h = (h, hy, 1i2) in Eq.(8.3). jumps from OB = 0 to 0B = -r at B = Bc. see insets [for gapless

systems hY = v qxy and hz = 0. with q,,y the kinetic momentum (red vectors) and v the

Fermi velocity]. Here I used m = 1/2. energy E = 1.35 hVF/r*. with r, defined in Eq.(8.9).
B/Bc = 0.8 for (a) and B/Bc = 1.6 for (b).

accumulated along the classical path C:

1orb((E, M) + FB(E, i) = 27(n, + i), (8.2)

with v a constant [33, 131, 132]. Crucially, direct band coupling in Dirac materials

gives rise to a geometric gauge field which is manifested in Eq.(8.2) via the Berry

phase,

=Cdh. Kh 1h h+) S(C)/2. (8.3)

Here S(C) denotes the solid angle subtended by the vector h = (hr, hy, hz) along a

closed path C, with h defined in terms of the two-band Hamiltonian N = -h +ho [ho

is a scalar function and o = (o-, o 2) are Pauli matrices]. In Eq.(8.3), 1h+) is the

h-dependent electron-like eigenstate, with H h ) = ( hl + ho)lh ). Importantly

the Berry phase in a gapless system (hz = 0) can only take, in each semiclassical

period along C, values pB = 0 or -F. As shown in Fig.8-1, a small magnetic field can

switch from one case to the other. In particular, for B = 0 we find pB(E, m) - 0,

whereas in weak magnetic fields we find B(E, P-) = 7 and B(E, -M) = 0. As a

result, the WKB condition in Eq.(8.2) for the Tm. states is shifted by half a period
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and a large resonance splitting (Fig.8-2) emerges:

Fn,m - En,-m ~ AE/2. (gapless) (8.4)

While the same semiclassical picture applies to gapped Dirac systems (hz > 0),

there are important differences with respect to the gapless case. In particular, the solid

angle subtended by the vector h, which now points towards the upper hemisphere, is

strictly smaller than 27; non-reciprocity induced by the Berry phase which becomes

quenched at increasing bandgaps, as will be shown with a more detailed quantum

model in Fig.8-4. In the limit JhzJ >> Jh.,Y1, conventional orbital non-reciprocity

dominates.

8.3 Features of the non-reciprocal effect

The jump in Berry phase corresponds to a transition from convex orbits to skipping

orbits (Fig.8-1). This observation allows us to define the critical field B, that induces

giant non-reciprocity, i.e. the field necessary to reverse the electron velocity at the

outer classical return point. Taking as an example massless Dirac electrons in a

parabolic confining potential U(r) = r2,

Bc = , (8.5)
e E

is obtained, where e is the electron charge and c is the speed of light. Using typical

values obtained in recent experiments [104], r, 4- 10-6 eV/nm2 , 10 meV and

m = 1/2, we find values for B, on the order of 0.2 T.

Besides the splitting arising at B = Bc, another key fingerprint of the non-

reciprocal effect is the m-dependence of Bc shown in Eq.(8.5). This feature can be

understood by noticing that, for larger m, a larger B is necessary to induce skipping

orbits. As we will see, the m dependence of Bc gives rise to a peculiar branching pat-

tern of the quantum dot resonances which can be probed in spectral measurements

away from the quantum dot center, as shown in Fig.8-5.
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Figure 8-2: Magnetic response of quantum dot resonances in a gapless Dirac sys-
tem. The quantum dot is defined by the circular pn ring (dashed lines) induced by a radial
electrostatic potential U(r). (b) The magnetic response is dominated by the Berry-phase
splitting of magnitude AE/2. larger than the orbital splitting A-orb. The peak splitting is

calculated from Eq.(8.2) for n = 0, m = t1/2. and v = 0.6; B, is calculated from Eq.(8.5)
withE = EO, 1/2 ~ 2.6E, [see E, in Eq.(8.9)].

Importantly, the above semiclassical argument to explain the giant non-reciprocal

effect relies on B being negligibly small so that it has hardly any significant effect

on Oorb. This is particularly true for small m. values, given that it is easier to deflect

the orbital motion of charge carriers at the pn ring in a weak magnetic field. More

quantitatively, I show in Fig.8-2 the solution of Eq.(8.2) for n = 0 and n = 1/2.

For typical model parameters, the AF/2 splitting induced by the Berry phase jump

can be sizable and can dominate over the conventional orbital splitting AEorb. This

effect becomes more dramatic at larger n and smaller Tn.
2

Compared to previous mechansims for non-reciprocity in electronic systems, which

are highly sought for in photonics and plasmonics, our realization is perhaps the first

one which is inherent to Dirac materials. Indeed, Faraday and Kerr rotation, two

notable examples of non-reciprocity which can be sizable in two dimensional materials

such as graphene [44, 45], are also present in general semiconducting materials. The

same applies to magnetoplasmonic effects, e.g. unidirectional low frequency edge

modes [133-137], which are also present in generic two-dimensional structures [133].

2I note that the Zeeman splitting is negligibly small for the B fields of interest. The energy
Ez for Zeeman splitting due to the intrinsic spin of the electron, Ez/E* = (PBB*/E) - (B/B*) P
10- 3 _ (B/B*), is much smaller than the Berry phase splitting which is on the order of E* (here

PB 5.8 - 10-5 eV/T is the Bohr magneton).
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8.4 Non-reciprocity: quantum model

To contrast the simple semiclassical picture above with a more refined quantum model,

I consider the Dirac equation describing confined electrons under the influence of a

uniform magnetic field:

[v a -q + (Ag/2)uz + U(r)] 0(r) = EO(r). (8.6)

Here v is the band velocity for electrons, Ag the bandgap and q the kinematic momen-

tum with components qx,y = Pxy - eAx,y/c and qz = 0 (A.,, is the vector potential and

Px,y = -iho2,, is the momentum). Note that h in Eq.(8.3) corresponds to h = vq.

Because we are interested in eigenstates confined inside the pn ring, with radius

smaller than the characteristic length of the electrostatic potential, it is legitimate

to use a parabolic potential model U(r) ~ Kr2 . By preserving rotational symmetry

using the Coulomb gauge Ax = -By/2 and AY = Bx/2, the eigenstates of Eq. (8.6)

can be expressed using the polar decomposition ansatz,

Pm(r,60) = eimo ui(r)e-iO/2 (8.7)
N/ U2(r)e iO/2

with m a half-integer number. This decomposition allows us to rewrite Eq.(8.6) as

r2 _ E + Ag/2 &r + m/r - Br/2 U1 0 (8.8)

-Br + m/r - Br/2 r2 _ E _ Ag/2 U 2

Here r and B are in units of r, and B, respectively, whereas E and Ag are in units

of E, with

r= Vhv/IK 60nm, E*= V(hv)2i ~-.' 10meV,

(8.9)

B* (hc/e) - (K/hv)2 ~ 0.2 T.

In these estimates, I considered (gapped) graphene v = VF ~ 106 m/s as a model

system and used a typical value of K = 4. 10-6 eV/nm 2, see estimates below.
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A suitable diagnostics of non-reciprocity, allowing direct access to quantum dot

resonances, is the local density of states D(E) inside the quantum dot. Naturally, D(E)

can be obtained experimentally via the dI/dV in STS measurements as in Ref. [104].

The quantity D(E) at r = ro can be conveniently written as the sum of m-state

contributions D(E) = .. Dm(E), with

Dm(E) Z(fu(r = ro)j2)j6(E - Es). (8.10)

Here 1 labels the radial eigenstates of Eq.(8.8) for fixed m, and (jul(r = ro)j2)=

0( dr'juj(r')2e-(r'-ro)2 /22 represents a spatial average of the wavefunction centered

at r = ro. A gaussian weight is included in the density of states to account for the

finite size of the tunneling region in real STS measurements [104].

8.4.1 Electrostatic potential modeling

Estimates for r used in Eq.(8.6) can be obtained following the electrostatic model

developed in Chapter 7 describing a biased metallic sphere proximal to the graphene

plane [Fig.8-3(a)]. This portrays quite accurately a metallic STM tip on top of

graphene. As before, I denote R the metallic sphere radius, and d the sphere-graphene

distance. A potential bias differential 6 b between the sphere and graphene [see Fig.8-

3(b)-(c)] results in a spatially varying image charge density profile given by

6n(r) - (r) (8.11)
47re2 (d +r 2/2R)(

Here 6n(r) = sgn[p(r)] p(r)2 /7r(hvF) 2 - n, is the sphere-induced charge density varia-

tion on graphene, with p(r) the Fermi energy and n, the gate-induced carrier density

far from the center. Equation (8.11) is obtained from a parallel-plate capacitor model

with slowly varying interplate-distance dc (r) ~ d + r2/2R. Higher order terms arising

from the curvature of the electric field lines are neglected.
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(a) (b) Vacuum

R

Vb . (c)
------- ,t d

Figure 8-3: Modeling of the electrostatic potential. (a) Schematics of the electro-
static model. showing a metallic sphere of radius R separated by a distance d from the
graphene plane. A potential bias V applied on the sphere induces a local variation of the
carrier density. different from the carrier concentration density noc far from the sphere.
(b)-(c) Band structure schematics showing band alignment between the metallic sphere and
graphene for (b) large separation and (c) close proximity. Here Vcpd is the contact potential
difference between graphene and the metallic sphere. 6Vb Vb - Vcp., and po is the Fermi
energy under the sphere.

A straight-forward calculation yields a value of i'= -p"(0)/2 given by

e6Vb + /10
C6 V = -.(8.12)

2Rd1 + |

The variable po is the Fermi level under the sphere, and 0 is a dimensionless number:

(hvF ) 2 - 1+ 
P1o 8e 2d sgn(/3) 

(8.13)
-16e

2 d 2
16= 2 [c b- 4 2 dnoo).

-(hvF ) 2

Considering typical values of R 1 im, d ~ 5 nm, Vb- ~ 0.1 V and no~ 1 0-o cm-2

we obtain the value of -~ 4. 10-6 eV/nm 2 .

8.4.2 Details of the numerical simulation

To solve Eq.(8.8), I use the finite difference method in the interval 0 < r < L. The

azimuthal quantum numbers are chosen in a finite range, -M < m < M, with M

large enough to represent accurately the states in the energy range of interest. In the

calculations, I used a system of size L/r, = 12 discretized in N = 1100 lattice sites,

with maximum azimuthal quantum number M = 31/2.
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To calculate the density of states, Eq.(8.10), I approximate the delta-function 6(e)

by a Lorentzian 6(e) ~ y/7r(E 2 + ^. 2) and use a broadening -/, = 0.25, and set a

Gaussian weight /r, = 0.1 in the spatial average (.. of the wavefunctions.

8.4.3 Quantum model results

Figure 8-4 shows the resulting quantum dot spectrum as a function of B for gapless

and gapped [Ag/E, = 5] Dirac systems, exhibiting the B-induced splitting of quantum

dot resonances [here I used ro = 0, i/r, = 0.1 and plotted oD/DE in Eq. (8.10) in order

to enhance the spectral features]. In agreement with the semiclassical interpretation,

a half-period splitting is observed in the gapless spectral maps in Fig.8-4(a). The

splitting of the resonances for gapped systems, however, is less prominent; in particu-

lar, the splitting for a gapped Dirac system is dominated by the orbital contribution.

Indeed, the peak splitting for the low-energy resonances in gapped Dirac systems

(E > Ag) can be quantified using a simple non-relativistic model that is valid in the

limit Ag > E,. In this case, expansion of the Dirac Equation in powers of Ag results

in a massive Schr6dinger Equation for the first spinor component b1 (r):

[q 2 /2Ag + U(r) + A - eB/2cA] 7P1 = en,m,

(8.14)

En,m = hw (2n + lmI+ 1) - pAm+B.

Here En,m are the quantized eigenvalues, w = V2ri/A + e 2B2/4c 2A 2 , and m =

m i 1/2. Importantly, the orbital magnetic moment pA = ehv2 /2cA, which is 3/2

times larger that the orbital magnetic moment of a free, massive Dirac particle at the

Dirac point, induces the peak splitting observed in Fig.8-4(b).

Furthermore, because in Fig.8-4 the wavefunction is probed at the center of the

quantum dot, ro = 0, only small m states (m = +1/2) contribute to the spectral

maps. It is important to stress that large m states, which can be probed in off-centered

scanning tunneling spectroscopy measurements, are equally susceptible to the Berry

phase splitting. Figure 8-5 shows such spectral maps, in which the wavefunctions are
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Figure 8-4: Spectral maps showing the splitting of periodic time-reversed reso-
nances under weak magnetic fields in (a) gapless and (b) gapped Dirac quantum
dots. Resonance splitting is shown to be dominated by (a) a half-period jump in gapless
systems. and (b) orbital effects in gapped systems. The distinct behavior between (a) and
(b) are also shown in the partial m = 1/2 contribution to the spectral maps (see insets).
Characteristic units for the magnetic field. B,. is defined in Eq.(8.9). Plotted with dotted
lines in (a) is Eq.(8.5) for m = 1/2. To enhance the spectral features., I plot in both panels
the derivative of the local Density of States in Eq.(8.10) [ro = 0].
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Figure 8-5: Off-centered spectral maps for a gapless Dirac quantum dot display-
ing large m splitting of resonances in weak magnetic fields. Plotted with dotted

lines is Eq.(8.5) for half-integer m. The off-centered spectral map is qualitatively different

from the centered case in Fig.8-4. given that the centered spectral map is sensitive primarily

to m = 1/2 states.

probed at ro = r,. In this case. there is an overlap of the peak splitting at different

values of B, highlighted with fans of B, in Eq.(8.5) for varying mn (dotted lines).

8.5 Semiclassical quantization

I now turn to discuss the details of the semiclassical analysis above which ellucidates

several important aspects of the non-reciprocal effect. Here I focus on three aspects:

the topological origin of the non-reciprocal effect, the semiclassical quantization of

the quantum dot resonances and the derivation of the critical magnetic field Be in

Eq.(8.5). Firstly, to understand the topological origin of the non-reciprocal effect it

is necessary to map the momentum q to the surface of a torus, see Fig.8-6. This

is possible because, being circularly symmetric, the two-dimensional quantum dot is

integrable: confined Dirac electrons perform quasiperiodic orbits with constants of

motion E and rn.3 For the semiclassically bound orbits, I obtain q as a function of

3 At B = 0 bound quasiperiodic orbits exist if E/, > /27m,2/4; electrons then move in the
classically allowed region r1 < r < r2 .
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Figure 8-6: Topologically distinct mappings of q [Eq.(8.15)] to the surface of
a torus (a), plotted for (b) B < Bc and (c) B > Bc. Indicated with blue(red)

arrows is q along the curves CO(C,) shown in panel (a), where dotted lines/arrows indicate
a curve/vector in the bottom surface of the torus. At B = Bc, there is a transition between

trivial and non-trivial winding of q along C,. This results in a B-induced phase jump of the
Berry phase. Here I define q. = E,/hv and use the same parameter values as in Fig.8-1.

position given by

qr = kr = k [E - U(r)]2 - (m/r - Br/ 2) 2 ,

gO = ko - eAO = m.r - Br/2.

(8.15)

The distinct topology between the cases B > Bc and B < B, is shown in Fig.8-

6, where q is plotted along two curves: CO in the toroidal direction and C, in the

poloidal direction. For B < Bc, q always points towards the same toroidal direction.

For B > Bc, however, q acquires a non-trivial winding along Cr.

Secondly, the semiclassical quantization of quantum dot resonances in Eq. (8.2) can

be readily obtained using q in Eq.(8.15) evaluated on both C = CO and C = C,. 4 This

4 This method of quantization on the surface of an invariant tori is known as Einstein-Brillouin-
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yields two conditions which allows us to quantize both m and e. For simplicity, here

I consider Ag = 0. For C = Co, Eq.(8.2) yields m = no + vo - pB/2w, where yB = -7r

independently of B [see blue curves in panels (b) and (c) of Fig.8-6]. Using Vo = 0,

the anticipated quantization of angular momentum m=half-integer is obtained. For

C = Cr, instead, I obtain f" dr kr = 27(nr + v, - OB), where the limits of integration

r1 and r2 are the classical return points. As shown with red curves in Fig.8-6(b)-(c),

OB = 0 for B < Bc and VB = -7 for B > B,; as such, there is a discrete jump of

the Berry phase term ocurring at B = Bc which leads to the half period shift in the

quantization condition.5

Thirdly, the critical field B, in Eq.(8.5) can be obtained by noticing that reso-

nance splittings occur when qo changes sign at the outer classical return point. From

Eq.(8.15), I obtain qo = mh/r2(E) - eBcr2(E)/2c = 0, with r2 (E) = VfE corre-

sponding to the outer return point [i.e. q(r2) = 0]. This condition yields Bc in

Eq. (8.5).

8.6 Semiclassical analysis of quantum dot

resonances

As discussed above, several important features of the quantum model can be derived

from semiclassical considerations. These include the half-period shift of the quantum

dot resonances, Eq. (8.4), and the magnetic field B, necessary to induce a w-jump in

the Berry phase VB, Eq.(8.5). Not shown above is the excellent agreement between

the resonance dispersion obtained semiclassically and those obtained from the full

quantum model. Here I show such agreement for the dispersion of the quantum dot

Keller (EBK) quantization rule. It differs from the usual way of quantizing carrier motion using
closed orbits obtained from semiclassical equations of motion. The EBK method applies to com-
pletely integrable d-dimensional systems as well as chaotic systems. For more details, see Ref. [132].

5 1n gapped systems the 7r Berry flux, or Berry curvature, is non-zero over a finite region of
momentum space. As a result, for B > Br, the path C, does not cover the entire 7r Berry flux: the
jump in 9OB is smooth and smaller in magnitude than in the Ag = 0 case.
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Figure 8-7: Comparison between semiclassical and quantum models. (a) Plot of
the radial wavevector qr in Eq.(8.15), showing the classically allowed and forbidden regions
for B = 0 and m = 1/2. (b) Comparison between quantum dot resonances obtained from
the WKB interference conditions and from the full quantum model. Shown with solid lines
is the partial m = 1/2 contribution D1/ 2 (E) to the total density of states calculated from
the quantum model. Solutions to Eq.(8.16), with v = 0.6, are shown with dotted lines.
Resonances are here shown to be quasi-periodic in energy, with period ~ Ae.

resonances at B = 0 obtained from the WKB condition:

r2 /r.

dr' (&/e* - r'2 )2 - (m/r')2 = wr(n + v) - VB. (8.16)

In Eq.(8.16), r1 ,2 are the classical return points for confined orbits [see Fig.8-7(a)],

m is the azimuthal quantum number, r, and 6* are defined in Eq.(8.9), v was set to

V = 0.6 and, as discussed above, WB = 0 for B = 0. Resonances for quantum and

semiclassical model are compared in Fig.8-7(b) and excellent agreement is obtained.

Resonances are approximately equally spaced, with period AE; this results from the

obrbital phase in Eq.(8.16) being an approximately linear function of E over a wide

range E/* < 10, where E, is given in Eq.(8.9).

8.7 Semiclassical equations of motion

The semiclassical orbits in Fig.8-1 were obtained using the semiclassical theory of

Bloch electrons. This theory, which describes the motion of a narrow wavepacket,

is obtained by superimposing Bloch states driven by perturbations that vary in real

space. Considering a wavepacket parametrized in terms of the position r and mo-
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mentum k, the semiclassical equations of motion are

Vkh - k X Bk, (8.17)
hk = -eE - (e/c) x B.

Here Bk,z = Vk x A denotes the Berry curvature and Ek = Ek + mk . B denotes

a magnetically shifted energy. Both the Berry curvature and the orbital magnetic

moment mk are intrinsic properties of the band since they do not depends on the

shape and size of the wavefunction:

2 Ag/hVF eAg/3h
(g MhV = (8.18)

,z 3 [(Ag/hVF) 2 + 4k 2/3] 3/2 , m, g F)2+ 4k2 /3'

where the +(-) sign corresponds to the K(K')-point. For the semiclassical theory to

be valid, the perturbations have to be sufficiently weak such that transitions between

different electron energy bands can be neglected. In the particular case of graphene,

because Ag = 0, both Bk,z and mk,z are concentrated at the Dirac point and are

zero elsewhere.

8.8 Discussion

Given that our predictions only rely on direct band coupling, they can be tested in a

wide range of Dirac materials and metamaterials. In particular, the strong dependence

of resonance splitting on Ag can be explored using various material systems: graphene

is the prototypical material to explore the case Ag = 0; graphene on top of closely-

aligned hBN substrate allows us to explore the case Ag ~ 50 meV [25,26]; monolayers

of transition metal dichalcogenides such as MoS 2 allows us to explore Ag on the

eV ballpark [138-140]. Furthermore, the value of E, can also be tuned with the

electrostatic potential shape, as demonstrated in Ref. [104].

Interestingly, the anomalous strength of the non-reciprocal effect allows us to

envision a new class of optical devices, such as nanoscale isolators and circulators,

which are driven by the Berry phase. In particular, I expect photonic effects in Dirac
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quantum dots to be dramatic. Indeed, electrostatic doping can, via the Pauli blocking

mechanism, induce a strong and tunable electron-photon coupling. This, combined

with the in situ tunability of the resonance dispersion [104], can make Dirac quantum

dots critical components for miniaturizing nanophotonic systems.

I also stress that the non-reciprocal effect resonates with other exotic predictions

of the Berry phase manifestations in Dirac systems, such as Berry phase modification

to exciton spectra [141,142], optical gyrotropy induced by Berry's phase [143] and

chiral plasmons in gapped Dirac systems [144,145]. In realistic electronic systems,

however, electron decoherence usually hinders observation of such subtle effects. As

a result, I anticipate that readily available quantum dots states in Dirac materials

enable a new and optimal setting for locally probing Berry phase physics.

8.9 Chapter summary

To summarize, I predict that quantum dots embedded in Dirac materials grant access

to a novel non-reciprocity mechanism which is induced by the Berry phase. This

mechanism, which is unique to Dirac materials, leads to stronger non-reciprocity

than other known mechanisms. The anomalous strength of the effect and the in situ

tunability of the quantum dot resonance dispersion make Dirac quantum dots an

appealing platform for non-reciprocal nanophotonics. This, combined with the recent

introduction of Dirac quantum dots in graphene, makes the predictions easily testable

in on-going experiments.
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Part III

Photophysics in disordered

graphene systems
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Chapter 9

Disorder-induced Raman

spectroscopy

Raman spectroscopy is a powerful non-destructive characterization technique that

provides invaluable information about graphitic samples, [146-148] such as phonon

properties, [149-151] doping, [152,153] and the number of layers [154] for both few-

layer graphenes and carbon nanotubes. In particular, the D and D' bands (~ 1350 cm-1

and ~ 1620 cm- 1 for 2.4eV laser excitation energy, EL, respectively) originate from

the presence of defects in the sample, such as grain boundaries [155-157] or point de-

fects [158, 159]. For this reason, these defect-induced Raman features, distinct from

the defect-free G band (- 1585cm- 1 ) and the G' band (~ 2680 cm-1 ), have been

widely used to assess the graphene materials' quality when used in graphene-based

devices [150].

The origin of the interband D and intraband D' bands has been previously dis-

cussed by several authors by using the characteristics of the so-called double resonant

(DR) Raman scattering process [159-165]. This explanation has been successfully

applied to qualitatively describe some of the important aspects of the D and D'

bands. Most notably, the dispersive behavior of the D-band Raman shift [166,167]

as a function of EL was successfully explained within the DR picture.

Despite the numerous theoretical and experimental works on the DR process, some

of the most interesting and potentially useful questions about the characterization of
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defects in graphene remain to be answered. For instance, the distinguishing signatures

of the different types of defects regarding the Raman spectra remain an open problem.

Do edges or grain boundaries have different fingerprints in the Raman spectra than

those for point defects? Do all defects have the same laser energy dependence? Are

the D and D' bands affected differently by each type of point defect? Ultimately, the

open question that needs to be addressed is whether Raman spectroscopy can be used

as an accurate and non-destructive tool to, not only quantify, but also to distinguish

and characterize specific defects from one another in sp2 graphitic materials.

In this chapter, I present an analytical study of the double resonant Raman scat-

tering process in graphene. 1 In particular, I derive analytical expressions for the D

and D' integrated Raman intensities that explicitly show the dependencies on laser

energy, defect concentration, and electronic lifetime. Importantly, I find good agree-

ment between the analytical results and experimental measurements on samples with

increasing defect concentrations and at various laser excitation energies. In addition,

I also address several of the above-mentioned questions. For instance, comparison

between the models for the edge-induced and the disorder-induced D band intensity

suggests that edges or grain boundaries can be distinguished from disorder by the

different dependence of their Raman intensity on laser excitation energy. Similarly,

the type of disorder can potentially be identified not only by the intensity ratio ID/Ib,

but also by the laser energy dependence of the Raman feature. I also discuss in this

chapter the use of Raman spectroscopy to identify the nature of defects

9.1 Current status of the double resonance theory

Several experimental results have already paved the way for progress in understand-

ing the double resonance (DR) physics. For example,, the laser energy EL dependence

of the frequently used ID/IG ratio between the D-band and the G-band intensities

has been measured by many groups on samples with various types of defects [168]

'Reproduced from J. F. Rodriguez-Nieva, E. B. Barros, R. Saito, M. S. Dresselhaus, Disorder-
induced double resonant Raman process in graphene, Phys. Rev. B 90, 235410 Copyright 2014 by
the American Physical Society.
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and at different concentrations, thereby providing a large body of information about

defects. While some samples [158,159] show an ID/IG oc E" dependency [see Fig.9-

1(a)], other measurements have shown a weaker power-law exponent [169,170]. Fur-

thermore, it was recently shown by Eckmann et al. [170] that, even within a single

sample, the Raman intensities of the D and D' bands can have different laser energy

dependencies, as well as suggesting that the D and D' intensity ratio can be differ-

ent depending on the type of defect [171]. Since the D and D' bands originate from,

respectively, intervalley and intravalley elastic scattering of the photoexcited electron-

hole pair, the scattering potential should play an important role in determining the

Raman scattering amplitude.

In addition, several studies have focused on the dependence of the integrated

D-band intensity as a function of defect concentration [172,173]. In its simplest ap-

proximation, the integrated intensity depends linearly on the defect concentration.

However, experimental measurements show that ID reaches a peak value at a suffi-

ciently large concentration of defects [see Fig. 9-1(b)], when the average distance Ld

between defects is - 3 nm [173].

Numerical calculations of the Raman cross section have previously been the dom-

inant procedure used to model the features of the Raman spectra induced by several

types of defects. In this way, several authors studied the problem of disorder, [174]

edges, [175] grain boundaries, [176] and isotope impurities [177]. Given that the DR

process is a fourth-order process involving interactions between electrons, phonons,

photons, and defects, and requires knowledge of the phonon dispersion relations, elec-

tronic band structure, and electron lifetimes, numerical techniques provide a powerful

and effective way to address the defect problem. However, the above-mentioned ex-

perimental observations are difficult to understand directly from calculations.

Alternatively, analytic calculations require a series of approximations which affect

the predictive power of the resulting model, but allow for a more insightful analysis

into the underlying physics involved. One notable step in this direction was taken by

Basko [178-180]. There, the author obtained analytical expressions for the Raman

intensity for the G' band [178, 179] and for the edge-induced D band [180]. For
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Figure 9-1: Dependence of the integrated Raman intensity on laser energy and
impurity density. (a) Laser energy dependence of the integrated Raman intensity ratio
ID/IG between the D and G bands obtained from Eq.(9.16) (solid line), and experimental
points from Ref. [158]. For the IG intensity, I use the standard textbook dependence of
IG oc EL [178]. The dashed line indicates the frequently used ID/IG Oc EE4 fit. (b) The
integrated D-band intensity as a function of defect concentration nd obtained from Eq.(9.16)
(solid line), and experimental points of Ref. [172].

instance, power-law dependencies on the inverse electron lifetime -y of the integrated

Raman intensity of the G' band and its overtones were obtained, suggesting the use

of the ratio of these Raman intensities to indirectly measure the pertinent electronic

lifetimes [179].

Interestingly, both edges and disorder produce a D-band feature in the Raman

spectra. However, the description of the intermediate states in the edge-induced

Raman scattering case [180] already incorporates eigenstates in the presence of the

edge (i.e. scattered states, instead of plane waves), while the DR picture used to

describe the disorder-induced Raman scattering uses plane waves perturbed by an

external potential. Therefore, the edge-induced Raman scattering is studied as a

third-order process, [180] while the disorder-induced Raman scattering is studied as

a fourth-order process [161,162]. Then, a comparison between the predictions for the

D band induced by these two types of defects is necessary.

In this chapter, I perform a detailed analytical study of the DR theory which

brings to light the role played by the different parameters of the model, such as the

laser energy, scattering potential, and electronic lifetimes. For this purpose, I obtain

analytic expressions for the disorder-induced Raman intensity within the DR theory

using the effective Hamiltonian description. I then do a comparison between our

model and recent experimental measurements, and discuss the main features of our
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results in relation to the above-mentioned experimental observations. Furthermore,

I compare the results with the analytical models obtained for the edge-induced D

band [180]. This analysis yields, additionally, a quantitative discussion of phase

interference effects [160,174].

The outline of this chapter is as follows: In Sec.9.2 I briefly review the theory of the

DR Raman process. In Sec.9.3 I make a detailed analysis of the DR Raman intensity,

quantifying the contribution from each of several different scattering processes that

are possible, and the main results are summarized in Sec.9.4.

9.2 Raman intensity calculation

The DR process is understood as an inelastic fourth-order process that involves in-

teractions of photoexcited electron-hole pairs with phonons and defects. Referring to

Fig.9-2 and neglecting finite-temperature effects, I here consider only Stokes scatter-

ing. The photoabsorption in its initial state is described by an incoming photon with

momentum Qj, energy EL, and polarization Ai, and the graphene system (electrons

and phonons) is initially in its ground state. The possible final states are described

by the production of a phonon with momentum qph, mode 3, and frequency W ph

photon with momentum Qf and polarization Af, and the graphene electronic system

is back to its ground state. Elastic scattering with a defect is necessary in order to

guarantee momentum conservation in the DR process.

Here I compute the DR Raman scattering probability IDR, defined as the total

DR Raman probability of an incoming photon with momentum Qj and polarization

A1. The -electromagnetic field is assumed to be confined in a box of volume V = ALL,

where A is the area of the graphene layer and L, is the length of the box in the

direction normal to the graphene plane. Then, TDR is calculated (h = 1) as

XDR= 27rL, E M (qph, 0) 2 6(EL - CjQfj - Wqph,8), (9.1)
Qf,Af
qph,13

where c is the speed of light, EL = c IQj 1, and the matrix M (qph, 03) = EjP Mp (qph, /3)
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describing the Raman scattering arises from consideration of all possible Feynman

diagrams p for the interactions, shown in Fig.9-2. The Raman intensity IDR, which

is the magnitude measured in experiments, is related to IDR by the simple relation

IDR = 10 X TDR, where 1o is the intensity of incoming photons.

Following the notation introduced by Venezuela et al, [174] I label the aa processes

as those in which either only electrons or only holes participate in the scattering (left

column in Fig.9-2), while ab processes are those in which both electrons and holes

participate in the scattering (right column in Fig.9-2). Furthermore, I indicate in

Fig.9-2 the notation used individually for each process p.

I focus mostly on the calculation of the matrix Mp(qph, 1) for the ee and eh pro-

cesses throughout this paper, given that the extension to the remaining processes is

straightforward. Explicitly, the matrices Mee(qph,1) and Meh(qph,1) for the dia-

grams ee and eh in Fig.9-2, respectively, are given by

Mee (qphii, 13) z (Op,- NeRj lp,+) ('Vp,+ ep,, [Zp+qph,+) (P+/ph,+ 1, ed 10p,+)

pEBZ (EL - Wqph,/3 -
6 p,+ + p,- - i-y/2)(EL - 6 p+qph,+ + ep - iy/2)

(Op,+ eR,dkbp,-)

(EL -ep,+ + Ep- -iZ-/2)
(9.2)

and

(4'p+qph,- IlieRf 14p+qph,+) (Op,- liep,3 Lp+9ph,-

pEBZ (EL - Wqph, -p+ph,+ p+qph,- - i-y/2)

(EL - ("kp+qph,+ NedK-'p,+) (Op,+ lNeR,d kp,-)
(EL - 6p+qph, + 6p,- - i-y/2)(EL - Ep, + Ep,- - i7/2)

where the summation over electronic momentum p is taken over the graphene hexag-

onal Brillouin zone (BZ), 7 eR, 1ep, and 7 ied denote the electron-radiation, electron-

phonon, and electron-defect interactions, respectively, -(+) denotes the hole (elec-

tron) band, Ep,_ (ep,+) is the energy of a hole (electron) with wave vector p, and 7 is

the electronic broadening. In particular, I assume that 7 = -Yep + 7ed has contributions

from electron-phonon scattering (ep ~ meV) or electron-defect scattering (led ~

meV), and that, in comparison, the contribution from electron-photon scattering
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(7YeR ~ peV) can be neglected. At electronic energies comparable to those of photons

in the visible range, a value of Yep ~ 15 meV is obtained [181]. The value of Ned can

be calculated from Fermi's golden rule -Yed 27 pr PI (p',+ Ied Ikp,+) 2 j(EP, - E,),

where E,+ - EL/2 (see Sec.9.4.2 for details). Furthermore, I consider throughout

this work that -y(~ 10meV) < Wqph,O(~ 0.2 eV) < EL (- 2 eV), which is the typical

situation in experiments.

The characteristic feature of the DR process is that two of the three denominators

in Eqs.(9.2) and (9.3) can be simultaneously zero at specific points in phonon and

electronic phase space, and thus has the name double resonance [161]. This is different

than the G' band case (two-phonon scattering around 2700 cm-'), where a triple

resonance is possible [179], but not discussed here.

Raman measurements yield the number of outgoing photons coming to a detector

covering a solid angle Qf. In order to make direct comparison with experiments,

I express TDR in Eq.(9.1) per unit solid angle Qf. The summation over outgoing

photon momentum Qf can be written as an integral in spherical coordinates given

by ZQf = (V/87r3) f dQf f dQfQ', where dQf is the differential solid angle covered

by the outgoing photons. In Eq.(9.1), the matrix M only depends on the direction

Qf and polarization Af of the outgoing photon, but not on IQf , given its small value.

Then, energy conservation dictates cQf I = EL - Wqph,/, and the delta function in

Eq.(9.1) is absorbed upon integration on dQf. Therefore,

dIDR _ VLzEL' 1Mp(qph f3) 2 , (9.4)d~2f 47r2C4 qphIIf
qph,I

3
,Af p

is obtained, where I used clQfr ~ EL. The values of Mp obtained from the diagrams

in Fig.9-2 can be used as input for Eq.(9.4) to obtain dIDR/dQf. In the calculations

below, I assume unpolarized and normally incident photons, and the detection of

backscattered photons in all polarization directions. Furthermore, because the LO

and A, Raman-active modes produce a Raman shift much larger than their respective

linewidth, we can separate the contribution in Eq.(9.4) from each of these modes to

the integrated Raman intensity.
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9.2.1 Effective Hamiltonian description

To calculate the matrix elements in Eq. (9.4), the effective Hamiltonian developed in

Chapter 2 is used. Importantly, because in this effective description the wavefunctions

acquire a new pseudospin index s that labels the valley s =K, K', then it is necessary

to replace the summation sub-index in Eqs.(9.2) and (9.3) as ZpEBZ + Zks'

Similarly to the case of magnetic fields in Eq.(2.16), the electron-photon coupling

can be obtained as a result of the Peierls substitution p -+ p - eA/c. More explicitly,

the coupling between Dirac electrons and electromagnetic radiation can be described

by the term

eVF ^
Wer = jdr i (,.. (9.5)

C s0 A

In general, photon-induced transitions are momentum-conserving. This occurs be-

cause the photon wavevector 1Q1 = w/c for frequencies in the visible range or below

is much smaller than the unit cell length scale 1/ao. For electromagnetic plane waves,

A can be descibed as a superposition of photon states with wavevectors Q and po-

larization A:

A = (&QxeQ. + dt Qxe-ZQA) ez. (9.6)
Q, r

Note that, because photons live in three-dimensions, A is normalized by the system

volume V. Here eQA is the polarization vector of mode A, normal to Q, and &Q\(ti)

is the photon annihilation (creation) operator.

The electron-phonon interaction results from the change in the carbon-carbon

distance induced by lattice vibrations; this distance variation modifies the hopping

parameter t. The explicit form of the coupling Hamiltonian Lep depends specifically

on the symmetry of the phonon mode. For instance, two phonon modes that will play

an important role in Raman spectroscopy are the longitudinal optical (LO) phonon

mode in the center of the Brillouin zone, i.e. qph ~ 0, and the A 1 phonon mode in the

vicinity of the K-point qph ~ K. From symmetry considerations, it has been shown
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that the electron phonon coupling is given by [182,183]

Wep,LO = -iFLO jdr tr 0 ) 1 (9.7)
1s 0 -Or* X Ur

for the LO phonon mode, and

Rep,A1 = iFAI dr : w*r, ) r (9.8)

for the A1 mode [184]. Here ur and Wr represent an atomic displacement field for

each mode. The parameters FA1 and FLO (FLO = FA1 /v 2) are the corresponding

force constants for intervalley and intravalley scattering, respectively. In Eq.(9.7),

the zone-center displacement field ur caused by the LO phonon mode is given by

Ur (bqh,LOeqph -t ph,LO-ph iph.r

qph S WphLO

where p is the mass density of graphene, Wq,LO is the phonon mode frequency, and

eqph = (q9, q)/IqI is the LO polarization vector of the phonon amplitude. The zone-

boundary distortion Wr in Eq. (9.8) induced by the A1 phonon mode is given by

Wr ( bqbt q ph,K' )eiph-r (9.10)

qph S PWq ph, K

and couples eigenstates from valley K to eigenstates of valley K' [184].

The electron-disorder coupling is sensitive to the type of defects present in graphene.

In general, defects can be categorized into intrinsic and extrinsic. Intrisic sources of

disorder in graphene include ripples and topological defects. Extrinsic disorder include

adatoms, vacancies, charged defects and extended defects (edges). Furthermore, dis-

order can couple to electronic states in two different ways. The first is a local change

in the single site energy. On-site disorder acts as a local chemical potential change

which shifts the position of the Dirac point. Within the tight-binding description,
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on-site disorder can be expressed as

Nd = S U 4,A C,ACi,A + Ui,B C',IBCi,B, (9.11)

where Ui,a is the strength of the disorder potential at position ri,,. Note that the ma-

trix elements are diagonal in the sublatttice indices. Within the effective Hamiltonian

description, on-site disorder can be written as

Ur,A 0 r,,A 0

Rd drt -0 U,, 0 Ur,B ,,(9.12)
s r U,*, A 0 U,,A 0

\ CU*s 0 U'
0 Cr, B r, B

with intravalley components Ur,,0 at the K-point and U,'., at the K' point, and in-

tervalley components Ur,,. Intervalley components are only relevant if the defect is

short-ranged in the unit cell length scale; in this case, the defect can transfer a large

momentum to the scattered electrons on the order of 1/ao.

A second type of disorder is one that changes the distance or angles between the

Pz orbitals, thus affecting the hopping amplitude. These potentials are expressed via

the off-diagonal elements in Eq.(9.12). Structural defects of the honeycomb lattice,

such as pentagons, heptagons, or combinations of these defects (i.e. Stone-Wales

defects [185]), induce long-range deformations which modify electron trajectories. In

general, these defects can be accounted for by the introduction of a vector and scalar

potential in the Dirac Hamiltonian.

9.3 Phase interference effects: phonon momentum

selectivity and relevant diagrams

Although the D and D' bands probe phonons with general q 4 0, and several diagrams

need to be considered for the calculation of the matrix M = Z. Mp in Eq.(9.1),
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aa ab

ee: eh:

6eh

hh: he:

hh: he :

Electron/Hole
-4+ Photon

a Phonon
----. Defect

Figure 9-2: Feynman diagrams contributing to the double resonant Raman
scattering process. The notation ab (ab) indicates that the particle a (a = e, h) is
scattered first by a defect (phonon), and particle b (b = e, h) is scattered next by a phonon
(defect), and where e (h) stands for electron (hole).

only a very small region of phonon phase space and a small number of diagrams

contribute dominantly to the Raman intensity. In particular, numerical calculations

have previously shown that the Raman cross section is mostly due to a very small

region in phonon phase space associated with the backscattering of the resonant

photoexcited electron-hole pair [160] [see Fig.9-3(a)] and, additionally, dominated

by the ab diagrams [174] in the right column of Fig.9-2 [see Fig.9-3(c)]. These two

results were explained in terms of the so-called phase interference effects [160,174].

In this section, I quantitatively analyze these interference effects, which will allow us

to significantly simplify the analytical calculation of IDR in Eq. (9.1).

The fact that back-scattering of the photoexcited electron-hole pair dominates the

Raman cross-section is not straight-forward to obtain only by inspection of Eqs.(9.2)

and (9.3). A simple phase-space argument allows us to anticipate that two regions

of phonon phase space are relevant, namely, jqj ~ 0, and jqj ~ EL/VF [see Fig.9-

3(a)-(b)]. When jq| - 0, then a large number of electronic states with wave vector

k= EL/2VF in Eqs.(9.2) and (9.3) are doubly resonant, which may lead to a pro-
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(a) jql = EL/VF
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Figure 9-3: Dominant phonon modes contributing to the Raman peak. Because

of phase interference effects, only a small region of phonon phase space and a small number

of diagrams in Fig.9-2 contribute dominantly to the Raman probability. For instance.

(a) back-scattering of the photoexcited electron-hole pair by a phonon with momentum

qph = K + q., where Iql = EL/VF, provides a significantly larger contribution to the D-band

Raman intensity than (b) forward scattering with Iql = 0. [160] (c) The contribution to

the Raman matrix element IM12 = M,1 2 (black lines) is mainly due to ab diagrams

(colored solid lines) shown in the right column of Fig.9-2. [174] On the contrary, aa diagrams

(colored dashed lines) have matrix elements |Mp 2 smaller than those of ab processes by a

factor of (wq,f/2EL) 2 . At VFjqj = EL., for example. both the eh and he diagrams provide

the dominant contribution and. thus. I E Mp 2 is approximately four times the value of

Meh. Note also the cancellation of the peaks at VFtqj = EL - Wq,0/2, where all four ab

diagrams interfere destructively. The black dashed curve is obtained within our model from

Eq.(9.13). valid only in the vicinity of each peak.
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portionately large scattering amplitude. Alternatively, I note that the DR condition

can only be met at some point in electronic k space when jqj < EL/VF. Therefore,

when jqj - EL/VF, a singular behavior in the density of states between the photoex-

cited state and the back-scattered state is obtained. As shown in Sec.9.4.1, after

performing the k-variable integration in Eqs.(9.2) and (9.3), I obtain a significantly

larger value of IM((qI - EL/vF, 0)1 2 compared to IMp(q - 0, )12 by a factor of

2g,07/EL3 ~ 10--5.

Similarly to the G' band, ab diagrams play an important role in the Raman in-

tensity of the D and D' bands, as was first pointed out by Venezuela et at. [174]. In

Sec.9.4.1, I find that the poles in Eq.(9.2) are differently distributed in the upper and

lower complex planes from those of Eq.(9.3), resulting in a matrix element M, for

ab processes larger than those for aa processes by a factor ~ wq,8/2EL, as shown in

Fig.9-3. Thus, failure to include ab processes in the Raman calculations leads to a

Raman intensity reduced by a factor (Wq,8/2EL) 2  . 1-3.

A final simplification in the Raman intensity calculation is possible. As shown

in Fig.9-3(c), if I consider in detail the resonance conditions in the denominators of

Eq.(9.3), I find that the matrix elements Meh(q, 0) is peaked exactly at vFjqj =

EL (so-called incident light-resonance) and at vFjqj = EL - wq,/3/2 (here both the

first and third intermediate states in Eq.(9.3) are at resonance with the photon). A

similar conclusion holds for the he diagram. Alternatively, for eh and he, the peak

in the matrix element occurs at vFjqj = EL - Wq,#/2 and vFlql = EL (scattered light

resonance). Therefore, close to the wavevector vF q| I EL (vFlq ~ EL - wq,), only

the diagrams Meh + Mhe (Me- + Mkje) need to be calculated. In contrast, the large

contribution produced by each of the four ab diagrams at VFql = EL -Wq,/2 interfere

destructively, as shown in Fig.9-3 and discussed in Sec. 9.4.1.

9.4 Integrated Raman intensity

The two-peak shape of the Raman scattering matrix shown in Fig.9-3 and originating

from the diagrams eh + he at vFjqI = EL, and from eAh + he at vFjqj = EL - Wq,o,
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significantly simplifies the calculation of the integrated Raman intensity, since it is

now only necessary to study M (q, /) in the close vicinity of these peaks. For this

purpose, I calculate Meh(q, 1) + Mh,(q, 1) for wavevectors IqI = EL /VF + 6q, with

16ql < wq,,/vF- Calculation of M,-he(q, 1) + 13) can be done analogously. As

shown in Sec. 9.4.1, we find that Meh(q, 1) is given by

Meh(q,3) = - iAICqj' 2EL (9.13)8 v Wq, (vFlql - EL)+ iy/2'

where Aq,a is the product of the four matrix elements in the numerator of Eq.(9.3)

with initial wave vector k = -q/2, so that the electron-phonon interaction couples

electronic states with momentum q/2 and -q/2. Specifically, the value of Kq,3 is

given by
given by 2 r (evF)2 FpU e,[eQ x d [e *,f x ] ze i .r( .
K, p3 = , (9.14)

S'j VEL 3 pIq,3

where the term Uqe,, is the short-hand notation for the matrix element

U e,r =)q/2,+ IUqe iq-r )-q/2,+), UeK = (V# /2,+ I qeq0 -,q/2,+). (.)
IF~ = (V I ~ V 1 (9.15)

Importantly, in Eq.(9.14), both valleys contribute to Meh(q, F) for intravalley scat-

tering, whereas only one valley contributes to Mp(q, K) for intervalley scattering; the

creation of a phonon at the K-point allows an electronic transition from the K' to the

K point to occur, but not vice versa. A similar analysis can be done for Mhe(q, 1),
where hole scattering by the defects yields a matrix element Uth1, thereby resulting

in a total defect scattering matrix element Uq,3 = Uqe,- Uh,. Here the minus sign

is due to an overall minus sign in the electron phonon matrix element, when hole

scattering (as opposed to electron scattering) is considered.

In order to obtain the integrated Raman intensity, I sum Meh(q, 1) and MAhe(q, 1)
and insert the sum in Eq.(9.4). In the regime of uncorrelated defects, it is valid to

use Z,j ei*(r-rj')/A = nd, where nd is the defect concentration. Furthermore,

because of the isotropic nature of the Dirac Hamiltonian, I can assume that JUq', 2

depends only on the modulus of the wave vector q. Integration over all possible
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phonon momenta and photon polarization directions, and considering detection of

the backscattered photons, leads to the dimensionless Raman intensity

dI'R _ goy 2  F2 UF EL 2d lq,o 12 (W 2"DR- p2 8 V L2 In (9.16)
dQf 4 pwop C wq,/) VF

for the D (0 =K) and D' (o = F) Raman processes, where a = e2 /c is the fine-

structure constant, jqj = EL/VF, and the prefactors gr = 2 and YK = 1 appear due

to the different electron and phonon valley indices that appear in the summations

for intravalley and intervalley scattering processes, respectively (see details in Sec.

9.4.1).

9.4.1 Details of the Raman intensity calculations

Here I focus specifically on the calculation of the ee and eh diagrams in Fig.9-2.

Extension to the remaining processes is straight-forward. First I consider the most

relevant case of backscattering of the photoexcited electron-hole pair due to the pro-

duction of a phonon with wavevector qph = q3 + q (,3 = F, K), where Iql ~~ EL/VF,

qr = 0 and qK = K. Afterwards, I show that forward-scattering of the photoex-

cited electron-hole pair (i.e., jqj = 0) provides a negligible contribution to the total

intensity (this is shown rigorously for nanotubes in Ref. [160]).

Backscattering: vFjqj = EL

I evaluate first the matrix element Mp(q, 3) for a value of Iql = EL VF + 6q, where

16ql < WEJJ/VF. Given that trigonal warping effects are neglected, I can arbitrarily

align the k. direction in the integrals in Eqs.(9.2) and (9.3) with q, as shown in

Fig.9-4. Under the assumption -y < Wq,3 < EL, which is the typical situation in

experiments, most of the contribution to Mp(q, /) comes from the electronic phase-

space region in the vicinity of the point k ~ -q/2 (shaded regions in Fig.9-4). Given

the small region of phase space that needs to be considered, I: (a) expand to leading

order in the vicinity of k = -q/2 the three functions in the denominators of Eqs. (9.2)

and (9.3); (b) evaluate the matrix elements at k = -q/2; (c) perform the k-space
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Figure 9-4: Momenta where the double resonance conditions are satisfied. In-
dicated are the resonance conditions for each of the terms in the denominator of Eq.(9.3).
for the case ql = EL/VF. The shaded regions indicate the volume of electronic phase space

k that mostly contributes to the scattering amplitude.

integration.

After carrying out the steps (a) and (b) above, and conveniently normalizing the

integrals in Eqs.(9.2) and (9.3). one can then obtain

,(q, A) ~A x _ . (9.17)
872 t2EL EL

where I ( ) is given by

1
K- c - d CU.13/EL -1. e (9.18)

x
- 2y2 - iE)(- + X - iE)

and Cq,3 is described in Eq.(9.14). The + (-) sign in Eq.(9.18) corresponds to the

cc (chl) process, and c = -/2EL < 1.

The positions of the poles in the x variable are distributed differently in the upper

and lower-half planes for the 1 integrals, which results in 1+1 < |1- (i.e., the

dominant contribution comes from eh processes). In particular, calculation of I- in

Eq.(9.18) yields
_ ir 2 EL 2

2 (q E= .9 (9.19)

On the other hand, for the cc process, I+ = 0 is obtained when using the approxima-

tions discussed above. However, the leading-order correction to 1+ can be estimated
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to be order I+(0)/1_(0) ~ -i(wq,/2EL), which is consistent with the numerical

results in Fig.9-3. Therefore, the aa diagrams lead to a substantially smaller scat-

tering amplitude - (Wq,,/2EL) 2 when compared to the ab diagrams, and this feature

was previously pointed out in the work by Venezuela et al. [174]. Inserting A_ into

Eq.(9.17) yields Eq.(9.13).

At VFjqj = EL, the he process also contributes strongly to the Raman intensity,

while all remaining ab processes provide a small contribution (eh + he are peaked at

vFjqj = EL - wq,3). In order to calculate the integrated Raman intensity, I insert

Meh(q, 3) + Mhe(q, ,) into Eq.(9.4) to obtain

dI(R _ gc 2  F 2 v2 n ,412 EL eQA x 2 X 412
DR2 _ _ _ _ F d (9.20)dQf 16 pV~W q,)3 C 2 E Aw2 __________

qAf A ,,3 (VFlql - EL) 2 +(-y/2) 2

Here, a = e2 /c is the fine-structure constant, gr = 2, gK = 1, and where I used

the assumption of uncorrelated defects with a concentration nd. Different prefactors

g3 appear for intravalley and intervalley processes because, for zone-center phonons,

both valleys contribute to ]C,, as discussed in the main text, while for zone-boundary

phonons, only one valley contributes to each phonon mode i'n the vicinity of the K

and K' points.

Integration over momentum space q in Eq.(9.20) can be done in the vicinity of

a ring of radius EL/VF and angular direction Pq. Thus, I use polar coordinates

Eq ~ (A/27) f d(6q) f d(Pq(EL/VF). Furthermore, I assume normal and unpolarized

incident photons, and detection in both polarization directions. Then, the angular

integration of Eq.(9.20) yields

fegi X 412 2 + Cos2 , (9.21)

where Spf is the angle of the outgoing photon with respect to the normal to the

graphene sheet. Detection in the backscattering configuration (i.e., Sof = 7r) is as-

sumed in this work. The radial integration of Eq.(9.20), using a cutoff in the phonon

momentum of ~ wq,fl/2VF, which is the region of validity of Eq.(9.19) (see Fig.9-3),
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yields half the value of the integrated Raman intensity of Eq. (9.16). The other half

of the value of the integrated Raman intensity comes from considering the peak at

vFjq| = EL - wq,3 from the e + he diagrams.

I finally note that the peak at vFlql = EL-Wq,,/2 provides a negligible contribution

to E, Mp, as shown in Fig.9-3. In this case, the large contribution of Meh cancels

that of M- when each term is calculated separately as in Eqs.(9.17) and (9.18).

Similarly, the contribution Mhe cancels that of MI-e, yielding a negligible value of

M = EPM,.

Forward-Scattering: q = 0

Forward-scattering [Fig.9-3(b)] provides a negligible contribution to the D and D'-

band intensities because of the small scattering amplitude when compared to those

associated with the backward scattering case, vFjqj = EL. To show this point, I

compute the matrix element Meh(q -+ 0, F) for the zone-center phonon mode, which

is given by

Meh(q -+ 0, IF) = dk dp S(k/27r) - KC O'r(Pk)

fo 0 (EL - q,,3- 2vFk - i-y/2)(EL - 2vFk - i 2)2'
(9.22)

and where /Cq-+o,r((Pk) is

27r(evF) 2Fr Uq=o,r sin(pk) [eqgA x x][e* X ]ze

s,j VEL / 3  q
(9.23)

In Eqs.(9.22) and (9.23), Sk was chosen to be the angle beween the k-vector and

the atomic displacement u, and 0 = [cos(Vk), sin(pk)]. Integration of the radial and

angular components of Eq. (9.23) yields

Meh(q -- 0, F) = S(lCq-o,r),Ek (9.24)
4ELVF
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where (Kq-,r)4 = f(dAp/27)K1q-+o,F(P), and Lk is

EL EL ~ q,o i EL -2
Lk = 1 - In . (9.25)

Wq,0 Wq,0 EL - wq,,3 - Z$ _ ]

Considering the case -/ < wq,,3 < EL, then Lk ~ 1. By comparing Eq.(9.24) with

Eq.(9.19), I conclude that IMeh(q -+ 0, F) 2 is a factor of order W2 y/El ~ 10-

smaller than IMeh(lql = EL/yF, p) 2 at backscattering, for typical values y ~ 10 meV.

9.4.2 Comparison with experiments

Several experiments measured the Raman intensity ratio ID/IG as a function of laser

energy [158, 159, 169, 1701. The dependence of IDR on EL in Eq.(9.16) is affected

by several factors: (i) the resonant electronic and phonon phase space increases at

larger values of photon energies; (ii) Wq,, varies as the laser energy is changed because

of the dispersive behavior of the D and D' bands; (iii) the broadening 7 depends

on the energy of the resonant photoexcited electron hole pairs and, in the simplest

case, y behaves as -y oc EL; [181] (iv) the Raman process selects specific Fourier

components JU1qg 2 of the scattering potential, with jqj = EL/yF. Although (i) and

(ii) are factors associated with the intrinsic properties of graphene, (iii) and (iv) are

extrinsic and explain why different dependencies of the D-band intensity on laser

energy are measured experimentally under different sample conditions.

Considering a linear dependence of the inverse electronic lifetime with laser energy,

and the dispersion relation of the A1 phonon mode close to the K point, I plot in Fig.9-

1 the intensity ratio ID/IG as a function of EL for point-like defects (i.e., JU(qj32 is

taken as independent of q). The analytical results are compared with the experimental

integrated Raman intensity from Ref. [158]. For the IG Raman intensity, I use the

standard textbook dependence IG oc EL, [178] and typical values for the electronic

broadening 7 - 0.03EL. [181] Even within the simplifying assumptions made in the

model, there is good agreement between theory and the experiments.

Furthermore, it is interesting to note that, from Eq.(9.16), the disorder-induced

D and D'-band intensities do not necessarily have the same dependence on EL. In
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fact, recent experimental measurements [170] have shown that the ratio ID'/ID is a

slowly increasing function of laser energy. If we consider point-like defects and taking

into account that y < wqq, then the ratio ID'/ID obtained from Eq.(9.16) verifies

ID'/ID OC (Wq,K /Wq,') 3 , where jqj = EL/VF. Because the A, phonon mode near the K

point is more dispersive than the LO phonon mode near the I' point, then the ratio

ID/ID obtained from theory is a slowly increasing function of laser energy, which is

in agreement with the experiments.

I finally consider the dependence of the integrated Raman intensity on defect

concentration nd. Within the model in Eq.(9.16), two regimes exist: (i) when the

defect concentration nd is low enough such that the electron-phonon induced linewidth

ep ~ 15 meV [181] is larger than the defect induced linewidth -e, then ID OC nd; (ii)

however, when nd is sufficiently large such that -Yed > 'Yep, then -y is sensitive to

defect concentration nd and a non-linear dependence of 1DR as a function of nd is

obtained. The threshold value of nd separating both regimes can be estimated by

calculating the defect-induced broadening of the electronic states at Ek,+ ~ EL/2,

assuming uncorrelated short-range defects with a potential strength JUq,,3 = Uo. A

straight-forward calculation yields -Yed = ndIUo12EL/ 2 v . Taking Uo - 1 eV - nm 2

and EL - 2 eV, then the condition Yep ~ Yed is met at defect concentrations of

nd ~ 1012 cm-2.

In order to compare with experimental measurements, the dependence of ID on nd

is plotted in Fig.9-1(b) together with the experimental data from Ref. [172]. Here I

used Yep ~ 15 meV and -yed[meV] - 10 x nd [1012cm-2]. The theoretical model correctly

captures the saturating behavior of the D-band intensity, as obtained in experiments.

However, it is beyond the scope of this work to describe the highly defective limit,

such as that measured in Refs. [158, 159]. In this limit, the electronic states are

localized within small grains formed, for instance, after intense ion irradiation and

thus, the electronic states can no longer be described as eigenstates of the translational

invariant system.
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9.5 Discussion

The defect scattering potential plays an important role in determining the DR Raman

intensity, as shown in Eq.(9.16). However, most models to date typically assume

constant elastic scattering matrix elements. First, this is equivalent to assuming that

defects can scatter electrons or holes with equal strength throughout the BZ. Second,

this assumption neglects electronic phase factors associated with the sublattice and

valley pseudospin degrees of freedom. For instance, whether the on-site component

of the defect potential provides a significantly different contribution to the Raman

intensity than the hopping component have not been addressed in the literature.

Thus, further work on the analysis of the term JUl,4,2, which conveniently appears as

a numerical prefactor in Eq. (9.16), is necessary.

Experimental measurements for different types of defects have shown ID > ID'

[171]. By taking the ratio of Eq.(9.16) for the D and D' bands, I obtain

D KUqK 2.2 x Wq,' .2 (9.26)
ID' grF r2  Wq,K Uq,ir

Although theoretical calculations show Fr < FK (or more precisely, Fr/FK e 1/

[184,186,187]), this small difference cannot account for the large intensity ratio ob-

served experimentally. Additionally, the phonon frequencies verify wq,F/Wq,K ~ 1.3.

Then, Eq.(9.26) suggests that the origin of ID/ID' > 1 is primarily due to the scat-

tering potential term.

The fact that short-wave-vector intravalley scattering typically dominates over

long-wave-vector intervalley scattering suggests that there is a contradiction between

Eq.(9.26) and the typically measured relation ID/ID' > 1. In particular, when the

defect potential has a finite range, the short-wave-vector scattering components of

the matrix Uq,r are expected to be larger than the long-wave-vector scattering com-

ponents in Uq,K. However, this does not necessarily mean lUq,KI < lUq,r1. Because

graphene has internal pseudospin degrees of freedom, the internal phases of the pho-

toexcited electron (or hole) and the backscattered electron (or hole) play an impor-
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tant role. In particular, it is well-known from the behavior of the electronic trans-

port of graphene that intravalley backscattering of Dirac electrons is strongly sup-

pressed, [34, 35] thereby allowing lUq,K > Uq,r to be possible. Similar effects are

expected to occur from the DR theory, where backscattering of the photoexcited elec-

trons [see Fig.9-3(a)] makes the dominant contribution to the DR Raman intensity.

Further theoretical work in this direction is necessary and should be the subject of

future studies.

Using Raman spectroscopy to identify the nature of the defects may have attrac-

tive applications in the characterization of real graphene samples. For instance, it

has been previously found [180] that the edge-induced D-band intensity scales with

laser energy as ID c ELln(Wq,K/7), which is significantly different from the depen-

dence found in Eq.(9.16). Therefore, our result suggests a way to distinguish the

edge-induced D band from the disorder-induced D band. Alternatively, defects with

different ranges may be distinguished between each other by the different wave-vector

dependence of the term IUq,1 2 . In practice, however, extracting such information

may be difficult given that several parameters in Eq.(9.16) change simultaneously

with laser energy, thus making detailed experimental analysis rather complicated. It

is more likely, however, that use of the ratio ID/ID, is a more promising direction to

identify the nature of defects, as suggested by Eckmann et al. [171]

9.6 Chapter summary

A detailed analytical study of the disorder-induced double resonant (DR) Raman

process in graphene was presented in this chapter, and analytical expressions for the

Raman probability IDR for the D and D' bands are derived and discussed. Given

the large number of parameters required to describe the DR process, this study suc-

ceeds in explicitly showing how the Raman intensities depend on laser energy, defect

concentration, and electronic lifetime, within a single equation [Eq.(9.16)]. Further-

more, I here discussed quantitatively the so-called phase interference effects, [160,174]

which determine the most important phonon wave vectors and Feynman diagrams

160



in Fig.9-2 that contribute to the DR Raman intensity. It was also found that the

disorder-induced D-band Raman intensity has a different laser energy dependence

than the edge-induced D band, [180] which could potentially be used to distinguish

carrier scattering by boundaries from scattering due to lattice disorder.

Good agreement between our analytical results and experimental measurements is

obtained. As observed experimentally, it is shown in this chapter that the D- and D'-

band intensities have a different laser energy dependence [170] and, additionally, that

each of these dependencies can vary with the type of defect [158,159,169,170]. The

saturating behavior of the ID intensity with increasing defect concentrations measured

in experiments [172,173] is also discussed, and occurs when the defect collision rate is

faster than the electron-phonon collision rate. Further theoretical work is required to

better understand the role of the different parameters describing the defect scattering

potential, such as the range and the various components associated with the electronic

pseudo-spin degrees of freedom, on determining the ID/ID, ratio. The value of this

ratio could potentially make progress towards identifying the characteristic nature of

specific defect types in graphene [171].
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Chapter 10

Conclusions

Over twelve years have passed since graphene was first isolated. Despite the astro-

nomical number of graphene papers which have been published in such a brief period

of time, graphene does not cease to surprise us and undoubtedly still remains at

the forefront of science. Two fronts of graphene research remain vigorously pursued:

many-body physics in graphene and graphene-based electronic metamaterials. In this

thesis, I emphasized the latter front.

In particular, I explored two special pathways of achieving novel electronic be-

haviors in graphene nanostructures: vertically stacking monolayers of insulating ma-

terials (Chapters 3-6), and the creation of local electrostatic potentials (Chapters

7-9). While the former allows band structure engineering of graphene nanostructures,

the latter allows real space manipulation of electronic states in Dirac systems. The

tunability of electron characteristics which can be achieved using both methodologies

opens new possibilities to further advance the already-intriguing properties of bare

graphene, with implications both in basic research as well as applied research. Next,

I summarize the main results of this thesis and discuss possible extensions in the

future.

Band structure engineering of graphene nanostructures-Stacking graphene in-

between other 2D crystals has expanded the graphene field dramatically, well beyond

bare graphene. Here I showed how the large array of available two-dimensional in-

sulating materials enables the fabrication of electronic systems with pre-designed
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band structure characteristics. This feature, which enables control of different ver-

tical transport properties, is manifested by several device parameters which can be

tuned independently: the Schottky potential can be engineered at the interface of

graphene and an insulating material; resonances in the tunneling density of states

can be induced by a twist angle between two graphene layers; electronic temperature

can be locally controlled by shining light on graphene; interlayer separation between

graphene layers can be engineered with few A precision. As a result of all these

tunable parameters, graphene nanostructures can be exploited for a wide range of

applications, such as memory devices, photodetectors, solar harvesters, just to name

a few.

In particular, stacked graphene nanostructures exhibit great potential for photoac-

tive electronics. Indeed, vertical photoactive graphene nanostructures have various

advantages over lateral photoactive graphene nanostructures. In the vertical case, the

entire exposed surface area of graphene is being used to absorb and extract photon en-

ergy; this differs from graphene pn photodetectors where only a small region, e.g. the

pn interface, participates in photon energy absorption. Vertically-stacked devices are

also susceptible to optimization for different device applications. Furthermore, given

that the transport distances for photoexcited carrier extraction are much smaller for

vertical nanostructures (~ 1 nm) than in lateral structures (- 1 pm), losses in verti-

cally stacked systems are significantly smaller than in the lateral case. As a result,

device sensitivities and efficiencies can be orders of magnitude larger.

The phase space of device parameter which can be tuned is enormous. Indeed,

there are hundreds, if not thousands, of materials that can be potentially exfoliated

to form monolayers. Although it is unrealistic to think that all possible material

combinations and stacking orderings can be explored experimentally, it is crucial to

chart the basic properties of the various interfaces between graphene and other 2D

materials. For instance, the interface conductance, which depends on the bonding of

graphene with other 2D materials, is known for only a few systems. The same applies

to the Schottky barrier height. Material interfaces also induce extrinsic excitations,

such as surface phonons, which contribute to energy losses. Such losses need to be
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quantified for optimal device design. As such, plenty of work remains to be done in

characterizing, mainly electronically and optically, relevant device parameters that

are specially sensitive to interfaces.

Interactions in graphene nanostructures can also lead to other interesting behav-

iors. For instance, while our focus was on resonant, i.e. momentum-conserving,

tunneling, many important device parameters, such as the maximum-achivable peak-

to-valley ratio is sensitive to second-order processes. Examples of such processes

include inelastic phonon-assisted tunneling or disorder-assisted tunneling. Also in-

teresting is to explore novel electronic phases arising in graphene nanostructures by

creating interfaces of contrasting materials. Importantly, several bulk superconduct-

ing materials as well as magnetic materials can be either exfoliated or synthesized

with nanometer thicknesses.

Real space manipulation of electronic states-Besides tuning bandstructure char-

acteristics in reciprocal space, electronic states in graphene can also be locally ma-

nipulated in real space. Local gates enable a finer control of the electron wavelength

than the typical global gates. Local gates were here exploited to fabricate graphene

quantum dots. The formation of graphene quantum. dots, which was counterintuitive

because of Klein tunneling, is induced by oblique reflection of electron waves at the

pn interface.

I also made the important observation that graphene quantum dots are distinct

from conventional quantum dots. In particular, the pseudospin degrees of freedom

add new dimensions to graphene quantum dots. Because the electronic states in two-

dimensional Dirac materials are exposed, graphene quantum dots provide, in practice,

an ideal testbed to locally probe and manipulate pseudospins. In this direction, I

showed that the Berry phase in graphene, which arises from the sublattice pseudospin,

has striking manifestations on the quantum dot spectra, namely, it induces a giant

non-reciprocal effect.

In addition, graphene electrons have a valley pseudospin. Using localized elec-

tronic states in graphene quantum dots can be a convenient path for the coherent

control of the valley degree of freedom. This differs from the recently achieved valley-
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Hall effect in graphene where delocalized valley currents develop at the edges.

Because of the ballistic transport in graphene at the micrometer scale, combined

with graphene's linear electron dispersion, graphene is an ideal system for achieving

electron-optics behavior. It is now also possible to pattern quantum dots in any shape

and strength, enabling new systems in which to mimick electron optic behavior. In

addition to the famous example of electron focusing, other phenomena of interest in-

clude chaotic behavior in non-integrable systems and interactions in double quantum

dot systems.

Local gates can also lead to new interacting regimes in graphene quantum dots. An

interesting scenario is the possibility of a pseudospin Kondo effect in Dirac quantum

dots or to observe the Coulomb blockade effect. The study of excitonic states confined

inside the Dirac quantum dot, where the particle lifetime is dramatically enhanced

by exciton localization, is another promising pathway to pursue.

Many of the ideas explored here can potentially be implemented in other materials,

such as topological insulators, Weyl semimetals or transition metal dichalcogenides.

There are areas, however, where graphene will most likely remain irreplaceable. One

such example is electron-optics behavior, given the high purity of current graphene

samples. Another example is graphene-based photonics because of the unique pho-

toresponse of graphene. Naturally, there is still plenty of room for graphene research.

Graphene has excited the scientific community for over a decade now and hopefully

new phenomena remains to be uncovered.
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