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Abstract

Breakthroughs in sensing technology in the past decade have greatly improved the ca-
pability of robots to sense complicated, partially-known environments. For example,
RGB-D cameras and Velodyne scanners allow for the collection of massive amounts
of sensor data in real time. These new technologies enable many new possibilities
for mobile robots, such as driverless cars, drones, delivery robots, and autonomous
marines vehicles. While advances in sensing technology have enabled robots to ob-
tain data quickly and cheaply, robots are typically resource-constrained in storing and
processing all the of the data. New algorithmic challenges arise that how to process
data selectively to be directly useful for the robot tasks, and use sparse models to
meet resource constraints.

In many of the applications, a fundamental problem for autonomous systems is
the ability to simultaneously map the environment and localize within, especially
when there is no global reference. This problem is often referred to as Simultaneous
Localization and Mapping (SLAM). This thesis particularly studies three related key
technologies in SLAM, sparse mapping, autonomous path planning and interacting
with natural objects, but in the content of being task-driven and resource-constrained.
In part one, given a pre-collected dataset, only a subset of landmarks and measure-
ments of landmarks are carefully selected to build a sparse map, such that the robot
still achieves good navigation performance (minimal collision) with this sparse map.

Part two extends the robot's capability to plan its own trajectories while au-
tonomously exploring an unknown environment to build maps. A Topological Feature
Graph is developed to maintain sparsity of the map but still enable collision check
for path planning. The new approach uses a .unified information metric to explicitly
balance exploration of new environment and exploitation of mapped environments.

Part three uses deep neural networks to detect real-world objects as landmarks
for map building. The new algorithm explicitly takes into account false positives in
object detection, and performs object data association and SLAM simultaneously.

The proposed approaches are compared with existing methods using both de-
tailed simulations as well as real-world experiments. The results show that the new
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approaches have good navigation and mapping performance with significantly less
memory and computation resources.
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Chapter 1

Introduction

The past decade has seen a boom in robotics and related applications. The develop-

ment in smartphones and the gaming industry have significantly enhanced some the

sensing capabilities of everyday technology. Examples include high-resolution, light-

weight cameras for more accurate robot vision, RGB-D cameras that can be used to

reconstruct RGB 3D models, and cheap GPS/IMUs for navigation and localization.

On the other hand, robot-specific sensors also made great progress, such as Velodynes

that can make wide-angle 360' laser scans. With these devices, robots now can easily

obtain data at high speed and high resolution. These new sensing abilities give the

robots new potential to perform complex tasks in complicated environments. We

have seen many world-changing projects emerging, such as cars drive themselves on

the road, light aircrafts deliver packages, marine robots exploring remote sites, and

ground robots serving food and towels in hotels. However, many of these robots are

constrained on resources, such as computation, memory, communication and battery.

The fast growth in sensing technology also puts new challenges on big data storage,

fast processing and decision making, and real-time communication.

Among various applications, one of the core enabling capabilities for mobile robots

is the ability to operate in uncertain and GPS-denied environments. In such cases,

the robot would need to recognize landmarks, build a map of them, and localize itself

within. If the robot position was known, for example from accurate GPS, it can use

its own location information to infer landmark positions. This problem is referred
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to as mapping. On the other hand, if the landmarks were easily recognizable and

already mapped, the robot can use landmark information to infer its own location.

This problem is referred as localization. When both robot and landmark positions are

unknown, the problem of autonomous map building and localizing is often referred

to as Simultaneous Localization and Mapping (SLAM). This thesis will visit three

related topics in SLAM: sparse mapping, autonomous path planning, and natural

landmark recognition. But we put these three problems in the content of task-driven

perspective and resource constraints.

Building a map would involve using variables to represent the environment, then

use measurements to infer the value of these variables. As explored space grows, the

number of variables used to represent the map grows, the memory requirement will

grow. As exploration time grows, the number of measurements grows, the computa-

tion requirement for inference grows. Both of memory and computation scalability

issues will be problematic for robots with finite resources. To achieve scalability with

finite resources, both the variables and measurements must be reduced. When the

robot has specific tasks, building a detailed map of every inch of an environment

would quickly exhaust the robot's resources without contributing to the robot tasks.

We argue that the variables and measurements to be retained should be those which

are most important to achieve the desired tasks. This thesis first proposes a "fo-

cused mapping" technique that tackles both variable and measurement selection to

build sparse maps, under the task of minimal collision navigation. Given a dataset,

the new approach is conducted in two stages: the first stage selects a subset of the

"focused variables" for the task, which is minimizing the uncertainty of navigation.

The second stage uses a task-agnostic "focused inference" method to select a subset

of the measurements that maximizes the information over the focused variables. To

avoid resource expensive batch selection on big datasets, an incremental approach is

further developed where the two-stage procedure is conducted in a stream of batches.

The variable and measurement section on the current batch is based on prior result

computed from previous batch.

The developed focused mapping technique requires the availability of a pre-collected
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dataset to build sparse maps, which is collected by manually operating the robot in

the environment. However, in fully autonomous scenarios, the robot must generate

path plans without a prior map. Active SLAM is the task of actively generating and

following paths while simultaneously building a map and localizing within it. Plan-

ning while learning the map is challenging in that it is difficult to check the feasibility

and optimality of a path without knowing a model of the obstacles and landmarks.

The robot will also need to balance between exploring unknown regions to expand

maps and exploiting visited regions for map refinement. The second part of the thesis

proposes a Topological Feature Graph (TFG) map representation that maintains the

sparsity of maps developed in part one, but enables obstacle representation for path

feasibility check. An active focused mapping technique is developed to plan paths

with TFG. The proposed approach explicitly accounts for the fact that when the

robot moves to the frontiers of previously mapped regions, it can observe new land-

marks from unknown regions, thus gaining new information about the environment.

The information gain in observed landmarks and new landmarks is quantified with a

unified metric to facilitate a natural and principled balance between exploration and

exploitation.

SLAM with landmarks heavily relies on the identification of objects as unique

landmarks to localize the robot. SLAM with natural objects and landmarks is chal-

lenging, in that it further requires the robot to detect the objects first, and then assign

a unique identifier that can be recognized even when viewed from different perspec-

tives and in different images. Data association refers to the problem of associating

object detections to a unique identifier across different perspectives and images. The

data association and SLAM problems are, individually, well-studied in the literature.

But these two problems are inherently tightly coupled: Without accurate SLAM, the

number of possible data associations is combinatorial and becomes intractable quickly.

Without accurate data association, the error of SLAM algorithms diverges quickly.

The third part of the thesis proposes a novel nonparametric graph that models data

association and SLAM in a single framework. An algorithm is further introduced to

alternate between inferring data association and performing SLAM.
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1.1 Literature Review

This work is at the intersection of a number of robotics sub-domains. The thesis

will start with representations of SLAM problems, then review some of recent results

in related areas of map reduction, active SLAM, robust SLAM, object-based SLAM.

This section also includes a broad review of existing techniques in landmark selection,

planning with uncertainty with known maps.

1.1.1 Map Representation for SLAM

SLAM with various representations of the world and different sensors has been thor-

oughly studied in the literature. Occupancy grid map with LiDAR or laser range

finders is among the early successes that dates back to the 1980s [1-6]. In occupancy

based approaches, the world is represented by 2D/3D grids composed of free spaces

and occupied spaces. To build such occupancy grid maps, new scans from the Li-

DAR or laser range finders are compared and matched with existing grids and the

new observed parts are incrementally built into the map. This simplified represen-

tation of the world facilitates efficient computation, and thus real-time performance

can be achieved on relatively large scenes with a single CPU. However, the successful

matching of two scans relies on geometric features such as corners. In places that

lack such features, like long hallways, SLAM using occupancy grid maps tends to

fail [4]. In recent years, SLAM with 3D dense mapping and RGB-D cameras has

become more and more popular [7-101. This line of work is able to utilize both the

geometric information from depth cameras and the color information from RGB cam-

eras to reconstruct environments in 3D centimeter resolution. Incoming depth and

color images are converted into volumes [7] or deformation surfaces [8], then matched

with previously constructed volumes or surfaces to incrementally build the map. 3D

dense maps constructed from such procedures provide photographic details of the en-

vironment with millions of volumes or surfaces. However, they rely heavily on parallel

computation enabled by GPUs, and does not scale well to large size environments,

such as a building.
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Factor graphs are a different representations of the SLAM problem [11-141. In-

stead of using small units as grids, volumes, or surfaces, factor graphs encode the

poses of the robot and the observed landmarks at different poses. In a factor graph,

The robot poses and landmark positions are modeled as random variables. Each

factor represents a constraint on the relative poses either between two consecutive

robot poses or between a robot pose and a landmark. The variables are optimized by

maximizing the joint likelihood of the observed factors. To facilitate concise represen-

tation, mechanisms can be designed such that new factors are only added when there

are significant pose updates or new object measurements. As a result, factor graph

SLAM scales much better on bigger scenes than SLAM with occupancy grid maps or

3D dense maps. However, the convergence of factor graph SLAM algorithms relies

heavily on correct data association of the landmarks. Even a single false association

can cause the algorithm to diverge [15,16].

This thesis uses factor graphs as the map representation, which enables sparsity.

Furthermore, it explicitly considers data association while building maps.

1.1.2 Map Reduction

Recent work on map reduction has focused on minimizing the impact on the overall

quality of the map and robot trajectory.

Original filtering-based approaches for SLAM marginalize old poses at every time

step resulting in a dense information matrix, which would significantly delay inference

on large scale problems. Different approaches to mitigate this have been proposed.

For example, the sparse extended information filter (SEIF) is introduced to speed

up the SLAM solution [171 by breaking the weak links in the graph to improve the

sparsity of the information matrix.

An alternative, the exactly sparse extended information filter (ESEIF) developed

in [18] selectively discards data during the measurement update step. A less conserva-

tive is proposed in [191, where the sparsification process is formulated as a constrained

convex optimization to minimize the Kullback-Leibler (KL) divergence between the

sparse information matrix and full information matrix subject to the accuracy and
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sparsity constraints.

Graph-based optimization approaches [201 have become popular for SLAM prob-

lems. These methods provide a naturally sparse representation of the SLAM problem

that can be solved efficiently [211. Nevertheless, these methods do not scale con-

stantly with time of exploration and space traveled, and ultimately require some

form of graph reduction to enable prolonged operation.

Given the variables to be removed, blindly marginalizing them out induces a fully

connected subgraph over the Markov blanket of the marginalized variable, which leads

to dense graphs and significantly slows down inference on it. To avoid dense infor-

mation matrix, a convex optimization can be employed to maintain sparse graphs.

For example, similar to the method introduced in [191, the KL divergence between

the dense subgraph and a sparse approximation is minimized subject to a consistency

constraint. Carlevaris and Eustice [22] present the generic linear constraints (GLC)

method that sparsifies the dense subgraph using a Chow-Liu tree (CLT) approxima-

tion. Alternately, sparsity can be enforced through an fr-regularization term in the

KL divergence minimization [231, which is appealing because it does not impose a

specific graph structure on the sparse approximation (e.g., a CLT). More recently,

Mazuran et al. [24] improved upon previous methods by allowing non-linear measure-

ments to approximate the dense subgraph and then minimizing the KL divergence

with respect to the measurement, rather than variables or information matrix. This

method works better on factors with strong nonlinearity. However, these graph re-

duction techniques are not concerned with selecting the nodes to be removed from

the graph. Performance can degrade if the wrong landmarks are removed through

marginalization since they are no longer available for subsequent loop-closures.

Another set of work on map reduction does not remove any variables, but discards

measurements before they are processed by the SLAM optimizer. Kretzschmar et

al. [25] propose a pose-graph compression method where laser scans are selectively

removed by utilizing an approximate marginalization based on a CLT, and Ila et

al. [26] used an information criterion to remove uninformative loop closures.

Instead of reducing variables or measurements individually, The method proposed
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in this thesis reduces both variables and measurements. Furthermore, a task-focused

view is adopted, where both the variables and measurements are selected based on how

useful they are to support a specific task. When the robot has specific tasks, such as

minimal collision navigation in this work, we show that by focusing on improving map

quality in narrow passages, a significant higher compression rate could be achieved

without losing navigation performance.

1.1.3 Landmark Selection

When all landmarks are perfectly mapped and given as prior information, the notion

of selecting landmarks to support localization and/or mapping has been proposed

to accomplish a number of different objectives. For example, actively place sensors

to maximize coverage [271 and reduce navigation uncertainty [281. A popular appli-

cation in vision-based systems is to downsample landmarks based on some measure

of visual saliency in the hope of improving loop closure detection. Specific applica-

tions include map compression [291, active gaze control [301, area coverage [311, and

lifelong operation of service robots [321. More related to our motivation is resource-

constrained inference. For a localization objective, previously proposed approaches

include uniform landmark selection [331, and entropy-based landmark selection [341.

A small number of previous works have considered resource-constrained selection

of landmarks to support navigation. Strasdat et al. [351 proposed a reinforcement

learning based landmark selection policy to minimize the robot position error at the

goal. Lerner et al. [361 considered single camera frame based landmark selection in

terms of a "severity function." Sala et al. [37] chose a minimal set of landmarks such

that at least k are viewable from every point in the configuration space. None of

these previous works considered the existence of obstacles, obstacle uncertainty, or

probability of collision in the landmark selection process.

In contrast, this thesis selects landmarks in a SLAM setting. Landmarks are

selected without a prior map and their positions need to be established. Landmarks

are selected explicitly for the task of minimal collision navigation. Metric properties

of the map, such as constrictions and tight corridors, are taken into accounts in the
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selection process.

1.1.4 Planning under Uncertainty

In planning under uncertainty, the map is given a priori, but the robot pose has

uncertainties. Much of the current literature addresses the problem of finding collision

free paths in the presence of robot pose uncertainty. In the literature, the safety of

a path is commonly measured by the probability of collision between the robot and

an obstacle. Resulting paths can be chosen that balance the length of the paths and

risk of collisions [38, 391. In [40], an optimal path is found subject to a maximum

allowable probability of collision (typically called a "chance constraint"). In [41, 421,

measurement uncertainty is taken into account to compute a more accurate estimate

of the robot pose and collision probabilities. The path is planned in advance assuming

accurate stochastic models for motion dynamics and sensor measurements. Finally,

there is a small class of planning algorithms that consider map uncertainty as well

(e.g., [43]). However, these approaches are mainly limited to problems with small

discrete state, action, or measurement spaces thus do not scale well.

Perhaps the most relevant work to our present approach of navigation is the work

of Lambert and Le Fort-Piat [441. A set-bounding technique is used to ensure that

the robot pose estimate's 3- ellipse never comes into contact with an obstacle. This

is one of the few works to explicitly consider the pose, control, and map uncertainty

explicitly. The known shortcoming of such an approach is that it tends to be overly

conservative. Particularly, in the case of highly cluttered environments or tight cor-

ridors, the algorithms will fail to produce a feasible solution.

This thesis presents a focused mapping technology that is specifically designed to

be utilized in probabilistic navigation. We provide a rigorous treatment of the cou-

pling between trajectory and landmark map uncertainties, which is achieved within

memory and computational constraints, making our approach applicable to low-cost

robots operating with limited sensing in realistic environments.
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1.1.5 Active SLAM

Existing work on active exploration focuses on designing trajectories to reduce robot

pose uncertainty when the map is known or there exists a global position reference

[38, 40-42, 45]. There also exists work that maximizes myopic information gain on

the next action with partially known maps [46,47]. However, in this work, the goal

is to build a map of an unknown environment. The problem of actively plan path

to perform SLAM is referred to as active SLAM. In this thesis, active SLAM would

particularly focus on global map quality.

Previous work on active SLAM usually involves two types of actions that are

categorized by their purposes: exploration actions are used to guide the robot towards

unexplored regions of the map, and exploitation actions are used to drive the robots

towards already explored regions for map refinement. The fundamental challenge of

active SLAM is selecting the right metric to quantify the benefits of exploration and

exploitation. A common choice for such metric is entropy reduction. For example, the

work of Bourgault et al. [48] formulates the problem as a trade-off between information

gain about the map and entropy reduction over the robot pose:

u* = maxwlIsLAM (X, u) + w2I0G(X, u) -1
U

where IOG is the information gained over the occupancy grid (OG) map (grid of inde-

pendent binary random variables denoting occupancy) and ISLAM is the information

gained over of the robot poses (dependent Gaussian random variables). Similarly,

Stachniss et al. [51 use a Rao-Blackwellized particle filter (RBPF) to represent the

robot poses and the map, and then consider the informativeness of actions based on

the expected resultant information gain. Other information metrics within a sim-

ilar framework, such as the Cauchy-Schwarz quadratic mutual information [6], the

D-optimality criterion [491, and the KL divergence [501 have also been proposed re-

cently. These two information gains are computed separately and maintaining the

balance between them often requires careful parameter tuning on the weights w, and

w 2 -
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Recently, graph-based optimization approaches to the SLAM problem have be-

come very popular due to their ability to exploit the naturally sparse connectivity

between robot poses and landmarks in the map. These approaches have been proven

to have better scalability than the RBPF approaches, which ultimately suffer from

particle depletion as the size of the environment grows. Within the graph-based ap-

proaches there are two main flavors: pose graphs and landmark-based graphs. In the

pose-graph approaches, sensor data is used to generate relative transformation con-

straints between robot poses directly, and an underlying OG map is often required

to represent the environment. For example, [51, 52] optimize the robot trajectory

by iteratively computing transformations between laser scans, but still maintains

an underlying OG map and plans paths using sample-based approaches such as the

probabilistic roadmap or the RRT* algorithm. Leung et al. propose optimizing robot

trajectory with landmarks in a structured environment and also maintains an OG

for collision check [53]. Information quantification over the OG map representation

carries over known shortcomings of bad scalability and robustness [54]. The grid map

is also an approximation because the conditional dependencies between the grid cells

are discarded. For example, if there is significant drift in the robot's pose estimate,

this uncertainty is not reflected explicitly in the OG map. As a result, a straight

corridor will appear curved, but their relative map entropies will be equivalent. In

addition, OG maps also have large memory footprints.

To our knowledge, this thesis proposes the first active SLAM approach that plans

robot paths to directly optimize a global landmark-based representation of the map

without any underlying OG maps. The new representation is much sparser than an

OG map and gains huge advantage on scalability and computation efficiency, which

is important for resource-constrained systems.

1.1.6 Object SLAM

When objects are used as landmarks for SLAM, the algorithm would need to detect

the existence of objects of certain predefined classes in an image, and provide data

association across images. Data association of objects and SLAM are typically solved
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as decoupled problems in the literature. Pillai and Leonard [55] showed that when

a SLAM solution is known, and thus there is no uncertainty in robot poses, robot

poses provide good prior information about object locations and can achieve better

recalls than frame by frame detections. Song et al. [56] used a SLAM solver to build

a 3D map of a room, and then fixed the map and manually labeled objects in the

room. On the other hand, object detection can improve localization as well. Atanasov

et al. [571 pre-mapped doors and chairs as landmarks. During the navigation stage,

these pre-mapped objects are detected online and their location information is used

to localize the robot.

However, in this thesis, neither data association of objects nor robot poses are

perfectly known. The algorithm must associate object detections to unique identi-

fiers and perform SLAM simultaneously. Algorithms that solve object detection and

SLAM jointly can be categorized into front-end approaches and back-end approaches.

In front-end approaches, objects detected in a new image are compared with pre-

vious images. If matches between new and old images are found, then corresponding

objects are associated to the same unique identifier. These matches are typically

reliable as the disparity between two consecutive images are usually small. When the

robot comes back to a previously visited place after traversing a long distance, costly

global optimization must be performed to achieve global loop closures.

These data associations by front-end procedures are taken as reliable and true,

and then passed to a SLAM solver. SLAM++ [581 is one such front-end approach.

Full 3D scans of chairs and tables are created and used as templates. When new

point clouds are observed during testing, they are matched to pre-built templates.

Successfully matched detections are often of high credibility. A SLAM solver is then

run on these reliable detections to optimize object locations and camera poses. In

semantic SLAM [59], Civera et al. created a library of six objects, used SURF features

to detect these objects, and then ran an EKF to simultaneously localize robot and

map objects.

In this thesis, instead of creating exact templates for objects, deep learning is

used to detect objects in the environment. Deep learning generalizes much better
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than template-based approaches. It can leverage open source software (millions of

images already exist online to create models), scales easily to hundreds of object

classes instead of a handful of pre-tuned templates, and does not require the objects

in the scene to be exactly the same as the templates. However, the detections have a

significant ratio of false positives and partial occlusions, thus are very challenging for

front-end algorithms to produce reliable data associations.

1.1.7 Robust SLAM

Robust SLAM is a line of research that explicitly use back-end approaches to deal with

outliers in the data [16,60-641. In robust SLAM, most of the object measurements

are already correctly associated to unique identifiers. When some measurement is

incorrectly associated, it will be inconsistent with other object measurements of the

same identifier. Robust SLAM tries to identify these inconsistent measurements and

eliminate them. When the remaining measurements are consistent with each other,

standard SLAM solvers can be used to optimize poses.

It was demonstrated in [16] that directly using measurements with wrong iden-

tifiers leads to divergence of the pose graph SLAM solutions. The authors instead

maximized a set of measurements that are consistent with each other in both identi-

fiers and predicted locations. Only the consistent measurements are plugged into a

SLAM solver to recover the robot poses and landmark locations.

By nature robust SLAM relies on the assumption that inlier measurements with

unique identifier associations are the majority compared to outlier measurements.

Under this assumption, eliminating outliers can still give good SLAM results. How-

ever, in object SLAM, it is often the case that there are multiple instances of the

same object class. If all object measurements with same class are associated to the

same identifier, different object instances will always give inconsistent measurements.

In other words, in object SLAM, outliers are pervasive. If only one set of consistent

measurements for each object class is kept, the algorithm will eliminate the majority

of the data and fail to identify any repetitive instances of the same class.

The algorithm presented in this thesis is a back-end approach where there are
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multiple instances of the same object class. The data association of object measure-

ments to unique identifiers are considered unknown and must be established while

doing SLAM. We exploit the coupling between data association and SLAM, jointly

optimize both, and achieve better performance on both.

The thesis will be structured as follows: chapter 2 introduces graphical models,

which is the model to represent SLAM problem thus important for understanding

this thesis. Chapter 3 introduces a focused mapping technique that sub-selects both

variables and measurements to build sparse maps for the task of minimal-collision

navigation. Chapter 4 introduces a novel Topological Feature Graph that exploits

sparsity of model built in chapter 3, but further includes obstacle representations.

An active SLAM algorithm is developed with the new model to enable autonomous

path planning for unknown environment exploration. To interact with natural envi-

ronments, chapter 5 uses deep learning technique to detect objects as landmarks. A

new Nonparametric Graphical Model is proposed to explicitly account for ambiguous

data association and false positives. An inference algorithm is developed with this

new model to jointly perform SLAM and data association.

The contributions of the thesis are as follows:

" Evaluate information in sensing data by their relevance to the task of navigation,

develop a focused mapping technique that can build sparse models [65,661.

" Proposed Topological Feature Graph that exploits sparsity but also incorporate

obstacle representations. The resulting active mapping algorithm is able to

autonomously plan robot paths to builds maps of unknown environments [67].

" Create a Nonparametric Graphical model, and develop according inference al-

gorithm on it to associate ambiguous object detections and localize detected

objects at the same time [681.

" Conduct extensive simulation as well as real-world experiments to test the pro-

posed approaches. Results show the proposed algorithms has good task perfor-

mance with significantly less resources than existing technologies.
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Chapter 2

Graphical Models and SLAM

This chapter reviews background on graphical models, which is an important tool

for modeling high-dimension probabilistic variables. In particular, a factor graph is a

widely used model for large scale SLAM problem, which is important for understand-

ing this thesis.

2.1 Graphical Models

2.1.1 Factor Graph

A graphical model is a probabilistic model that expresses the conditional dependence

structure between random variables. Graphical models use a graph-based representa-

tion to encode a complete distribution over a high-dimensional space [691. It is also a

compact representation of independences between variables. Commonly used graph-

ical models include Bayesian networks, Markov Random Fields, and Factor Graphs.

A Bayesian network is represented as a directed acyclic graph, where edges represent

conditional probabilities. Marcov Random Field, on the other hand, is represented as

a undirected graph, where edges imply conditional dependencies between variables.

A factor graph is represented as a bipartite graph connecting variables and factors.

Each factor represents a joint function over the variables it is connected to. Figure 2-

1 gives an example of such a factor graph. Circles represent random variables and
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Figure 2-1: Factor graph. Squares denote factors: ?P12(X1, X2 ), 0 23 (X2, X 3 ), ?P13 (X1 , X3 ),

034 (X3 , X4 ), and 4'4 5 (X4 , X5 ).

squares represent factors.

For a factor graph, denote X = {X1, X, X} as the random variables. Denote

4'a(X(a1) as a factor among random variable in set {a}. The the joint probability can

be expressed as a product of factors:

p(X = X) OCJ O a (Xa = Xfa}) (2.1)
aEA

where A is the set of all factors. Each factor Oa(X{a}) maps the values of random

variables to a strictly positive real number representing the likelihood of the variables.

It also represents probabilistic dependences among the variables in the factor.

Factor graph is an efficient representation in that it captures sparsity among vari-

ables: two variables are independent of each other given all other variables if and only

if they do not belong to the same factor. The log likelihood, log p(x), can be written

equivalently as:

log p(x) 0c E Oa (X{a}) (2.2)
aEA

where Oa(Xfa}) = log 4(X{a}). With graphical models, there exist fast algorithms to

compute statistical properties such as rnarginalization, expectation, maximum likeli-

hood [691.

A Markov blanket of a variable is the set of variables that share factors with it.

For example, the Markov blanket of variable x 3 in Figure 2-1 is {x 1 , x 2 , X 4}. Typically,

marginalizing out a variable will introduce a new factor over its Markov blanket.
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2.1.2 Entropy

To quantify uncertainties in random variables, many information metrics have been

used, such as entropy, mutual information, and Kullback-Leibler(KL) divergence [70].

In this thesis, Shannon entropy [71] will be used as the information metric for quan-

tifying uncertainties.

Let X denote a random variable, and X denote the the set of values X can take.

The Shannon entropy is defined as:

H(X) = E [log p(x)] (2.3)

When X is discrete, the Shannon entropy is:

H(X) = - 7 p(xi) log(xi) (2.4)
XiEX

and when X is continuous, the Shannon entropy is as:

H(X) p(x)logp (x)dx (2.5)

In cases where X is a Gaussian random variable with covariance matrix A, Shan-

non entropy has a closed form solution:

1n I
H(X) = - In ((27re)"|A- 1 ) = - ln(27re) - -In JAl (2.6)

2 2 2

where A is the information matrix.

2.1.3 Gaussian Approximation

Quantifying the information gains on general factor graphs is hard, as it involves enu-

merating all values of all the variables. However, in the case of Gaussian distribution,

there is closed form solutions for information quantification. In this way, calculating

information gains can be done quickly, which is important for resource constrained
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systems. This section approximates the joint probability of all factors p(x) with a

Gaussian distribution.

We begin by applying the standard method [701 of approximating a distribution

over the variables using a second-order Taylor series expansion of the factors 01${a at

some initial guess x*, and denote the approximated factors as 4 {fa:1

p(x) ~ fi(x) oc exp{Z qafa})} (2.7)
aEA

exp{log p(X*) + (X) + 1 X *) log p(x*)(x -X*)

where

Ox logp(x*) = X
aEA

0x2 192PNa x 5 (2.8)-2log p(X*) = z 2a(X~a})) 28
aE A

are the gradient and Hessian of the log likelihood at point x*.

Note that the exponential component in (2.7) is quadratic in x, therefore the approx-

imation is a Gaussian distribution with information matrix, A, given by the Hessian:

P(x) = A((, A- 1 ) , A = - 2qa(ja). (2.9)
aEA 

X

Note that A is inherently dependent on the chosen linearization point x*. Typically

x* is chosen to be the maximum likelihood value of p(x), so the gradient is zero,

and P(x) is zero mean, more speci'fically ( = 0. However, computing the maximum

likelihood would require nonlinear optimization over p(x) and might be costly itself.

1The^ notation is used throughout to refer to the Gaussian approximation of corresponding terms
in the original factor graph.
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2.2 Pose Graph for SLAM

Pose graph is a widely used tool for SLAM problems in a probabilistic way. This

section introduces how SLAM problems could be modeled with pose graphs. We first

start with an assumption that there exist landmarks that the robot can identify to

localize itself.

Assumption 1. There exists a library of static landmarks to localize the robot in the

environment. The number and locations of these landmarks is not known a priori.

With the landmark assumption, when moving in the environment, the robot can

obtain measurements of these landmarks. Given a dataset, the robot trajectory is

represented as a discrete sequence of poses. Denote T as the total number of time

steps, and denote XO:T = X0, - - - , XT} as the robot's trajectory from the start to

the end. Each robot pose consists of a position and an orientation. Denote SE(2) as

the space of 2D poses and SE(3) as the space of 3D poses. Then Xt E SE(2) for 2D

cases and Xt E SE(3) in 3D cases. In GPS-denied environments these poses are not

directly observable. However, the robot can always measure the incremental change

between two sequential poses via an IMU or wheel encoder, which is referred to as

odometry. Denote ot as the odometry measurement between pose xt and pose xt_1.

Under the standard assumption that ot is corrupted by additive Gaussian noise, the

odometry measurement at time t can be represented as:

ot = Xt e Xt_1 + v, v ~ " (0, Q), (2.10)

where e represents an operator that takes two pose and return the relative pose

between then in SE(2) or SE(3), and Q is the odometry noise covariance matrix.

The likelihood of ot given the two poses is then:

p(ot; Xt, Xt_ 1) ~ A(Xt E Xt_1, Q) (2.11)

During navigation, the robot also observes landmarks from the environment. As-

suming that there exist M landmarks in the environment, which might be unknown
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ahead of time. The positions of the landmarks are denoted as L = {L 1, - - - , LN}-

In the 2D case Li E R 2, and in the 3D case Li E R3 . At time t, the robot ob-

tains Kt landmark measurements, denoted as zt = {zI, z2, - - - , z*}. Each measure-

ment is associated to a unique landmark identifiers, the associations are denoted as

Yt = {yII y, - * -yKt}, where y, E , - -- , M}. For example, at time 0, the robot

obtained two measurements, zo = {zo, z2}. And these 2 measurements are from

landmark 5 and 7, then yo = {yi, yj} = {5, 7}.

Using the standard model that object measurements zk are corrupted by additive

Gaussian noise:

Z = Li e Xt +w, w - K(0, R) (2.12)

where R is the measurement noise matrix. The likelihood of zt' given the robot pose,

the landmark association and landmark pose is then:

p(zk; Xt, LYk) ~.A(Lzk e Xt, R) (2.13)

Combining (2.10) and (2.12), the joint log likelihood of odometry and landmark

measurements is:

T T Kt

P(O1:T, zo:T; XO:T, L) = J7 p(ot; Xt_ 1, Xt) JJ f p(ztk; Xt, Lyk)
t=1 t=O k=1

and the log likelihood is:

T T Kt

log p(oi:T, zo:T; XO:T, L) = O(ot; Xt_1, Xt) + O #(zt; Xt, LY,) (2.14)
t=1 t=O k=1

where q(ot; Xt_ 1 , Xt) and #(zt; Xt, Lk) are odometry and landmark factors respec-

tively. Using the probability distribution formula for Gaussian noise, it can be shown

that each factor follows a quadratic form:

q(ot; Xt_ 1 , Xt) = -2 (Xt E Xt_ 1 - ot) Q-1 (Xt e Xt_1 - ot)

#(zt ; Xt, L k) = -I (Lk e Xt - z) R- 1 (Lk e Xt - Z (2.15)
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Figure 2-2: Pose Graph for SLAM. Xf denote robot poses, Li denote landmarks, blue

edges denote odometry and red edges denote landmark measurements.

Note that the log likelihood is nonlinear in X and Lt as e is a nonlinear operation

in (2.10) and (2.12).

A factor graph representation for SLAM is also referred to as a pose graph. Fig-

ure 2-2 illustrates such a pose graph. Variables represent either a robot pose or a

landmark. And factors are either odometry or landmark measurements.

The pose graph SLAM problem can be formulated as:

Problem 1. A pose graph SLAM problem is the problem of optimizing robot poses

XO:T and landmark locations L, such that the log likelihood of observed odometry and

landmark measurements is maximized

max log p(o1:T, ZO:T; XO:T, L). (2.16)

Notice the factors in the pose graph are nonlinear, therefore equation 2.16 is a non-

linear optimization problem. Approaches such as gradient descent could be used to

solve these problems [721. By utilizing sparsity of graphical models, such approaches

could scale to thousands of variables easily. However, with the growth of exploration

time and distance traveled by the robot, the number of variables and factors required

for real-world SLAM problems will quickly become intractable. Therefore, it is im-

portant to reduce the size of the graph to obtain fast optimization on such graphs.
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2.3 Summary

This chapter reviewed the background on factor graphs and their application in SLAM

problems. Next chapter will formulate the focused mapping problem with the factor

graph representation, and develop inference algorithms accordingly.
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Chapter 3

Focused Mapping for

Minimal-collision Navigation

3.1 Introduction

One of the core enabling capabilities for mobile robots operating in uncertain and

GPS-denied environments is simultaneous localization and mapping (SLAM). The

built map will subsequently be used to perform tasks. SLAM problems often require

high dimensional models to represent robot poses, landmarks, and obstacles. Graph-

ical models are a powerful tool in this case because they can explicitly represent

conditional independences between variables resulting in fast inference on large-scale

problems [69,73,74]. However, when the robot travels longer distance, the variables

required to represent robot poses grows and memory demand growths. And when the

robot stays longer in the environment, it obtains more and more measurements of the

landmarks and the computation demand on processing these measurements grows.

Naively applying all of the robot poses and measurements into graphical models can

result in an unbounded growth in memory and computational requirements, which

will ultimately result in failure to achieve the desired task.

On the other hand, given a task, the required fidelity and choice of map represen-

tation are, in general, task specific, and may not even be constant across the task.

Consider the following examples:
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Figure 3-1: Resource-Constrained Navigation - It is more important to localize landmarks

in narrow hallways than those in large rooms for the task of collision-free navigation. As

a result, along the trajectory of robot (gray dashed line), far fewer measurements (blue)

are required for landmarks (red stars) in the open area as compared with the narrow hall-

way. (Black and red dashed ellipses represent uncertainty in robot position and landmarks

position, respectively.)

" A robot is navigating through an unknown environment consisting of both open

areas and narrow hallways.

" An autonomous car is operating on a road network consisting of highways and

local roads without an accurate map.

" A marine robot is localizing a set of underwater mines amongst clutter.

When robots are operating in such complicated scenarios and have constrained on-

board resources, it is important to prioritize what variable and measurements are

maintained in the map. As illustrated in Figure 3-1, in the indoor navigation sce-

nario, the space consists of both narrow hallways and open areas. It is more important

to have accurate estimates of landmark locations in tight corridors, therefore the robot

has lower uncertainty in its poses and less chance of collisions compared with open

areas. Similarly on the road network, landmarks on highly traveled roads are more

useful [751 and in the underwater scenario it is more important that the robot local-

izes the mines as opposed to the clutter. Consequently, the robot can save resources,

such as memory and computational effort, by focusing the mapping operation to more
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Partial task execution, Collect data

Stage 1: Task-specific variable selection,
Section 3.3

Stage 2: Task-agnostic measurement selection,
Section 3.2

Map building with reduced variables/measurements

Figure 3-2: Two-stage focused inference

explicitly support the task.

This chapter presents a more flexible mapping framework that supports task-

driven prioritization. The framework is applied to the task of robot navigation. The

workflow for the general case is shown in Figure 3-2. The robot first navigates around

to to gathers some data. The next step is to select the focused variables that are

deemed important for subsequent navigation tasks. Section 3.3 discusses the specific

case of selecting landmarks to support collision-free navigation (the focused variables).

The third step is to select the subset of measurements that are most useful for esti-

mating the focused variables, as described in general terms in Section 3.2. The last

step is to build a map using the reduced set of variables and measurements. The

robot continues in this loop until the task is finished or its resources are exhausted.

In the incremental approach, the robot will obtain new data each time it executes the

task. The reduced map from old data is taken as an input to the two-stage variable

and measurement reduction algorithm with new collected data to further update the

map.

3.2 Measurement Sparsification on Focused Variables

We begin by assuming that the selection of focused variables has already been per-

formed, and then proceed to formulate the problem of measurement selection to

support inference over these focused variables. This section leaves the formulation

as general as possible with regards to task execution and focused variable selection,

which will be discussed in the following sections.
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In general, there are two ways to approach sparsifying measurements. The first

one is forward selection where the map starts with no measurements and adds mea-

surements when they are deemed important [26]. The other way is backward map

reduction where the map starts with an optimized graph with full measurements,

then removes measurements when they are deemed redundant [19]. In our resource-

constrained scenario, an optimized map over full variables and measurements is not

available a priori. Furthermore, the number of measurements to retain is very small

compared to the total number of measurements available. If each steps only adds

or removes one measurement, then backwards map reduction will involve much more

steps of operations than that of forward selection. Therefore, a forward selection

approach is used in our resource-constrained setting here.

3.2.1 Problem Formulation

Denote X = {X 1 , - , XN } as a set of hidden random variables that are (partially)

observable through measurements z = {z1 , - - - , ZK} which are collected in the initial

data collection phase, where K can be very large.

Then, in its most general form, the measurement selection problem can be posed

as follows:

Problem 2. Unfocused Measurement Selection: Select the subset of measure-

ments zR = {Z .... , zfR} C z, such that some information metric f(.) over the

hidden variables X is maximized, subject to some cost function g(.) constraint on the

measurement set:

max f(X;zR)
zRCz (3.1)

s. t. g(Z R ) c

Commonly used information metrics include entropy, mutual information, and

KL divergence. In this thesis, the cost function used is the cardinality of the set

g(zR) = ZR, in practice, the number of measurements often relates to the model
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complexity, thus the computation cost. Therefore the resource budget c could be

selected based on computation resource available.

Here, instead of quantifying information gain on all variables in Problem 2, the

robot has specific tasks, such as navigation. In such cases, not all variables are

equally important. For example, in order to navigate through some environment

without collision, landmarks in narrow passages would be more important for the

robot to accurately localize itself. Assume we already obtained such a set of important

variables, the "focused" variables X 1, which are a more compact representation of

the variables in X: X = {i, - - -Xk}, with N < N. To maintain generality, we

represent the mapping from the unfocused variables to the focused variables by a

prioritization function:

Definition 1. Prioritization Function The function w : lN _ 7zi that maps the

set of unfocused variables onto the set of focused variables.

For example, in the degenerate case of variable selection, X = w(X) = WX where

W is an N x N matrix with a single 1 in each row. However, the formulation allows

for more complex mappings from the unfocused to the focused set.

The problem of focused neasurement selection consists of choosing the best subset

of the full measurement set z to optimally localize the focused variables.

Problem 3. Focused Measurement Selection: Select the subset of measurements

zR - {z 1?, -. - -z,} C z, such that some information metric f(-) over the focused

hidden variables X is maximized, subject to some cost function g(-) constraint on the

measurement set:

max f (5f; zR)
zRCz (3.2)

s.t. zRI < C

When a factor graph is used to model X, the joint log posterior can be expressed

'The-notation is used throughout to refer to the focused set of variables.
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as sum of factors Oa (xja}):

p(xIzR) oc exp Oa(X{al) (3.3)
1aEA A

where A is the set of all factors, Xfa} are the variables in factor a.

The reduction from the full set of variables to the focused variables is achieved

by mapping the posterior through the prioritization function z = w(x) to produce a

new posterior over the focused variables:

p(rIz) oc exp { a (Za {a}) , =w(x) (3.4)
aEl

where C is the new (smaller) set of factors over X, and c are the resulting factor

functions.

If we define the function f(-) in (3.2) to be the Shannon entropy of the conditional

distribution:

H(X jzR) = E lR [- logp( zR)] (3.5)

where E is the expectation operator, then we obtain the resulting equation for the

entropy of the focused variables, X conditional on the subset of measurements zR as:

f(.; ZR) = H(XkzR) = ExIR C, (3.6)
aE A

where C is a constant.

Note that computing the transformation from # to q may be hard in general.

Furthermore, in general the graph over X will be much denser than the graph of

X, and computing H(kIzR) may be computationally expensive. However, it will be

shown that H(X zR) can be computed in closed form given two assumptions:

Assumption 2. The clique potentials can be approximated as Gaussian distributions.
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Assumption 3. The prioritization function w(.) is an affine transformation.

Assumption 2 is, in fact, less limiting than the standard additive Gaussian noise

assumption in the SLAM literature, since even in the case of robust cost functions we

can always approximate the posterior as a Gaussian distribution using the Laplacian

approximation [76]. Assumption 3 essentially requires the focused variables to be

linear combinations of the original variables, which is still more general than other

variable selection methods [33, 341 which restrict the set of focused variables to be

a strict subset of the original set. For example, given corners/edges of an object,

a focused variable could be the center of object, which is a linear combination of

corners/edges.

Section 2.1.3 discusses the point that the probability could be approximated by a

Gaussian distribution with information matrix, AZR given by the Hessian:

02

(Rz) = r((, A-1), AZ = 0 2 *a( (3.7)

One point of note is that AzR is inherently dependent on the linearization point chosen

RX* and selected measurements z

3.2.2 Affine Prioritization Function

In Definition 1, we defined the prioritization function w(.), which is a task-specific

and predefined function that maps the set of all variables onto the set of focused

variables. In this section we impose the restriction that this function is affine in order

to provide a closed-form means of getting from (3.3) to (3.4):

X =w(X) = WX, (3.8)

where W E JZNxN. For example, Figure 2-1 gave an example of a factor graph

representing variables {X1 , X2 , X3 , X4 , X5 }, the following gives an affine prioritization
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X1X2 X3'-

Figure 3-3: Transformed factor graph. New variables X 1 = X 2 , X 2 = IX 3 + 2X 4 ,
X3 = X5 . New factors: blue 12 (X 1, X 2 ), green 2,3 (X 2, X 3).

function

X

X1 0 1 0 0 0 X2

2 = 0 0 1/3 2/30] (3.9)

X3 0 0 0 0 1 X4

w X5

Then the new graph for the set of focused variables {X 1 , X 2 , X 3} is illustrated in

Figure 3-3.

This restriction on the prioritization to be affine guarantees that the posterior over

the focused variables will still be Gaussian: p(I ZR) = V((, A-1) [691. Furthermore,

we can easily write an expression for the information matrix:

AZR = (WA-WT)-I, (3.10)

as a result the approximate entropy of the focused variables given the selected mea-

surements can be written in closed form:

1 1WTIC

H ( Xlz) =-- log 1 +C= log W A-W (3.11)2 2Z

We finish by restating Problem 3 based on the Gaussian approximation and re-

striction to affine prioritization functions:

Problem 4. Approximate Focused Measurement Selection Select the subset of

measurements zR = {1I,... , C} C z, such that approximate entropic information

over the focused hidden variables X is maximized subject to the same constraint as
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(3.2):

max -log|WA- W T I

s8. JZ < c

3.2.3 Efficient Solution

Note that problem 4 optimize an objective function that is defined on a set. Such

a set function is discrete and combinational, and computing the optimal solution

is typically intractable on SLAM-size problems. We instead uses a greedy selection

procedure that maximizes the incremental information gain on the next measurement.

Each new measurement z added to the set will introduce a new clique potential,

<ik (X ), into the joint posterior, where the set of variables Xk} are the ones affected

by measurement z. We denote the intermediate set of k < KR measurements that

have already been selected as zRk = {ZR,... , 4}.
The approximate entropy reduction (or information gain) over the focused vari-

ables brought about by adding a new measurement z is:

A.H(XZz) = -(~z~k) H(XIz), (3.12)

is the value that we want to maximize. In the following theorem we show that this

quantity can be efficiently computed:

Theorem 1. The approximate reduction in entropy over the focused variables brought

about by introducing the new measurement z will be:

Al(o) = 1lg I - (I + JAk_ k_ 
1 LkAZ,_, Lk (3.13)

where Lk - WA--_ Jk, Jk is the measurement covariance weighted stacked Jacobian

[23], and W is the affine prioritization function.

Proof. We proceed similarly to [261, but with the added complication that there is a
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transformation from the unfocused to the focused variables (X = WX) required to

evaluate (3.12).

From (3.7), the information matrix after the introduction of zR will be:

&2/Jk (Xjk})
AZ Rk AAZRk - 2 = AZ Rk, + JkJj (3.14)

where J E RNxIX{k}, with Ixjk}I the number of variables in clique k and only blocks

corresponding to the variables in the clique xfk} being non-zero. The new entropy

after adding measurement z can be evaluated as

() = log W(AZR )~1WT J (3.15)

Then the reduction in entropy, AH(jzf), is

R5Zz) = - 1o WA1WTI| + 1o W -1 _WAH(Xj4)= 2 o AZR o WA k_ WT

1 1
= I log W(AZR_ + JJT)-1WT + I-log W(AZR_ )l1WT2 k-2

1 logW(ARk +JkJk)WT
2 WA-' WT)

By applying the matrix inversion lemma:

(A + BBT) 1 = A- - A- 1 B(I + BT A-lB)-lBT A-',

and the determinant property I + ABI = I + BAJ, (3.16) reduces to:

Slog w (AAk, - AZk_ Jk(I + J[A Jk)-JkA-_) WT (3.16)
2 (WA- WT

1 WAR AAWT - Lk (I + JkT A-_ J '--T
= log WIk- ( +J _1 Jk)Lk (3.17)

2 W(WA-1 WT)

1
= 2 log I -(W A-AkW )-Lk(I + J[A{ k 1 Jk )-Lk (3.18)
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Algorithm 3-1 Measurement Selection for Prioritized Landmarks

Input: Initial information matrix AzRo, focused variables X, all measurements z,
budget c

Output: measurements zR

1: k +- 0, zRo <- 0

2: while jzRk| < c do
3: k <- k + 1
4: z4 = argmax AHt(XzR4)

zkEz\ 2 Rk-1

5: ZRk - zRk-1 U {4
6: AZRk = AZRk-I + Jkk

7: ZRk = (WA-1WT-1

8: end while

1
= -log I -A-' L (I+JA-1J) 1 L (3.19)

2 1 -
k k Z kIk(-9

- -log I- (I+JA-_ Jk 1 L ARk-1 Lk

which is the required result.

Computational Complexity of (3.13)

Similar to [26], we have avoided the need to compute the entropy over the entire

variable set. However, unlike in [26] where the calculation of information gain scales

only with the size of the measurements, we have a slightly more complicated scenario

because of the prioritization transformation W. Upon further inspection of (3.13),

calculating JTA-1k_ JA has a computational complexity of O(Ix{k} I') (similar to [261).

In addition, note that calculating the ith element of Lk (which is computed as L'k

W'A_ JA, where W' is ith row of W) requires us to check the submatrix of A _

that corresponds to the non-zero elements of W' and J. Therefore, the overall

complexity of computing Lk is O(1IW||olx{k} + X{k}14), where ||WI1o is the number

of non-zero elements in the prioritization transformation. Typically the clique size,

jXjk}j < N, and since N < N we should expect that ||W|Io < N, therefore the

overall complexity of computing Lk is much less than the problem size N.

Algorithm 3-1 summarizes the measurement selection approach.
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3.3 Variable Sparsification for Navigation

In this section, we return to the question of how to select the focused variables that

are an input to the measurement selection scheme described in the previous section.

The selection of focuwed variables mainly depends on the robot's tasks and goals.

Here we specifically consider the task of collision-free autonomous navigation.

Assume the robot has gathered some data with image and depth/laser sensors.

The dataset contains both the robot's trajectory as well as measurements of land-

marks. The robot needs to track a set of landmarks that can be used to localize itself

and navigate through the environment. Denote the robot's trajectory as a sequence of

random variables X = {X1 , - - - , XT}. In GPS-denied environments, X is not directly

observable. However, the robot can always measure the incremental change between

two sequential poses (odometry), for example from an IMU or wheel encoder.

There also exists a set of landmarks from which focused landmarks can be selected.

Denote the set of landmarks as L = {L 1, L2 , - - - LN}-

3.3.1 Selection of Focused Landmarks

While it could be possible to have thousands of landmarks, often a small, carefully

chosen subset can lead to sufficiently accurate navigation. In particular, for resource-

constrained systems, reducing the number of landmarks will significantly reduce the

computation required for data association, which will in turn enable faster and more

efficient on-line trajectory planning and navigation.

Narrow passages are challenging for collision-free autonomous robot motion plan-

ning. However, in the case of high uncertainty in the map and robot position, the

"narrowness" should be redefined. As shown in Figure 3-4 a "geometrically" wide

passage might still be problematic for a robot that does not have access to accurate

landmark information and thus has poor localization accuracy. We refer to this pas-

sage as being "geometrically wide" but "probabilistically narrow" and we will formalize

these terms below.

The evaluation of probabilistic narrowness involves two key components: 1) Cal-
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Figure 3-4: Probabilistic narrowness is associated with the probability of collision while
navigating the environment. Left: This geometrically narrow corridor is probabilistically
wide because there are many features with which to localize. Right: Conversely, this
geometrically wide hallway is probabilistically narrow.

culating an estimate of the robot's position uncertainty and 2) Calculating the prob-

ability of collision based on the robot's uncertainty and the distance to obstacles as

determined by the robot.

Robot position uncertainty

To generate an estimate of the robot's position uncertainty at any given point x along

the robot's path X, we use the concept of belief stabilization introduced in [41J.

Assume we have a closed-loop controller that can stabilize the robot's state to

belief state x. Such a controller is typically comprised of an estimator and a separated

controller. The estimator generates an a posteriori distribution over all robot poses

based on the existing map of landmarks and the local observation of landmarks.

Given these estimates, the separated controller will generate a control signal that

drives the robot toward x. To design an analytic measure of narrowness we rely

on a simple Linear-Quadratic-Gaussian (LQG) controller, which combines a Kalman

filter and a linear quadratic regulator. It can be shown [41] that starting from any

Eo > E*(x), estimation covariance decreases monotonically and approaches the steady

state covariance E*(x), which is the fixed point of a Riccati recursion at location x:

{E* = Q+A(E* -E*H T (HY:*H 7'H+R)-1HZ* )AT}T (3.20)
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R. Note that Jacobian matrices and set of visible landmarks would be different for

different points on the path. The main computational advantage in using this measure

is that E*(x) only depends on x not the path that leads to x.

Collision probability

Using A (xt, E*(xt)) as a measure of uncertainty for each point xt on the path, the

collision probability can be defined by a Monte Carlo method. For each xt sample the

normal distribution, denote I as the set samples drawn from AN(xt, E* (xt)).- Denote
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Obs as the set of obstacles, and InOb, as the set of samples that collide with obstacles.

Then the collision probability can be defined as:

Pc(xt) = lim In0bI (3.21)

Monte Carlo methods are typically expensive and not suitable for resource-constrained

scenarios. There have been many approaches to approximate it, such as [28,77, 78].

While all of these methods can be used, in this chapter we utilize an approximate

measure that is computationally cheaper. First, denote the set of readings received

from the laser range finder in its local frame as D = {dI} where each d' is a 2D

vector connecting xt to a point on the obstacle surface. Then, we simply compute

the minimum Mahalanobis distance between xt and the obstacle surface as

Pc(xt) = min{(di)T Qtdi} (3.22)
d'ED

where Qt = (E*(xt))-l is the information matrix corresponding to xt. D could be

equal to D or could be a sub-sampled version of D based on the available compu-

tational resources. In the extreme case, D could be a single point D = Xobst

argmindiED |Id'II that is the closest point on the obstacle surface.

In other words, P, measures how many standard deviations obstacles are away

from the mean of the localization distribution.

Notice the approximation retains the ability to favor some unbalanced covariance

choices. For example, when one eigenvalue is significantly larger than the other,

resulting in a "collision" in the direction of the larger one, the approximation will still

have a high cost along that direction.

The landmark selection problem is framed as finding the poses along the trajectory

with the highest collision probability then selecting landmarks that can reduce this

pose's uncertainty.
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Algorithm 3-2 Minimum Collision Probability Landmark Selection

Input: Robot poses X, landmarks L, odometry noise Q, measurement noise R, bud-
get a

Output: Selected landmarks Lk
1: k -- 0, Lf <- 0
2: Compute Pc(xt) for all xt e X by (3.20) and (3.22)
3: P(l) = max Pc(xt) for all 1 E L

Xt S-t. IEL(xt)
4: while k < a do
5: k+- k + 1
6: l* +- argmax P(l)

1EL\Lk-

7: L= L- U {l}
8: update Pc(xt) for xt that can observe l*
9: update any P(l) that may have changed

10: end while

Problem 5. Minimum Collision Probability Landmark Selection: Select the

a landmarks Lf C L, such that the worst case probability of collision is minimized:

min max Pc(xt)
Lf CL xtEX

s.t. LfI < a (3.23)

The problem is solved by greedily selecting landmarks as summarized in Alg. 3-2.

At each iteration, pick the landmark 1* that is associated with maximal Pc(xt), then

update Pc(xt) for all the x that can observe 1*. Since the number of poses that can

observe any individual landmark is low, this greedy approximation can be computed

efficiently.

3.3.2 Focused Measurement Selection for Navigation

Here we detail how to apply this landmark selection scheme resulting from solving

Problem 5 to the measurement selection process described in Sec. 3.2. Define random
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variables X = {XO, . - -XT} to represent robot poses and L = {L1, - - - , LM} to repre-

sent landmarks. Recall that the joint log probability of a factor graph is proportional

to the sum of odometry factors 0,(oa; Xa) and landmark factors 0#a(za; Xa, La):

p(X,L) ocexp #Z5(oa;Xa) +Z a(za;Xa, La) . (3.24)
(aEA aEA

An odometry, Oa, adds a factor between two subsequent poses qt#(ot; Xt, Xt 1 ) and a

landmark measurement, z4, adds a factor between a pose and a landmark #f(zt; Xt, Lk).

The focused variables are selected focused landmarks: X = Lf c L. Denote the

rest of the unfocused landmarks and robot poses as I' {L \ Lf, X}. Then the

affine prioritization function represented by W is

i =W 2 , W = [ I 0
NxN- (3.25)

Using the standard assumption that the odometry and landmark measurement

are corrupted by additive Gaussian noise [201, then the factors have quadratic forms

as show in (2.10) and (2.12). The W matrix and the factors can now be used in

Algorithm 3-1 for the second stage (focused measurement selection).

Notice that the Gaussian approximation of the joint likelihood (3.7) is subject to

a linearization point. An ideal linearization point would be the maximum likelihood

value where the gradient is 0. However, computing this optimal value would involve

optimizing the full graph with all variables and edges, which would become slow and

resource intensive quickly when the problem gets bigger. Instead we use the odometry

based initial values as the linearization point. While it may be subject to performance

loss, it significantly reduces the computation burden, which is important for resource

constrained robots.

For this choice of W, (3.13) can be further simplified. First decompose A into
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blocks of focused and unfocused variables:

AB]A-1 = B
R B T C

with A =AT > 0 and C = CT > 0. Then

Li'Zak-, Lk = Jz'A~k W A- k WT -1 WA-AT_ Jk

Inserting (3.26) into (3.25) gives:

WA-1 WT A- '

LkA zRk- 1Lk JTA

T A
A T

BjT

=J A-',,

=J A-',,

B I
B

3TA-1B

0

0

0

0

]A 1 0]

]AA

0

Zk- 1 ) Jk

(A 0 RkY_ )- Jk
where ACR__ denotes the sub-matrix of AZR_, corresponding to the unfocused vari-

ables and (ACk )- is the marginal covariance matrix of unfocused variables. In-

serting (3.29) into (3.13) yields:

Afk(X|zI ) 11S--log I - (I + JkTA71k A - kLJRk- Lk
1 z k 1 1 

2log I+i- JkjA- 1 J -- log I +JkjAR. Jk - LT&RIA - k_1 kzkj
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(3.28)

B

C
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1 _ 1 7 T [
=-logI+JA-__ Jk -- log I+ J[0 0  Jk (3.30)

2 Z R 2 C (Ac

Note that the form of (3.30) is intuitive. The first term is the information gain

on all variables, while the second term has a similar form, but is computed only

on unfocused variables. The difference of these two terms is the information gain

on focused variables. Depending on whether the new measurement is of a focused

landmark or unfocused landmark, (3.30) can be further simplified, as outlined in the

following.

Case 1: Measurement of focused landmark, li E L1 In this case, Jk is non-zero only

at the ith row corresponding to the focused landmark and the jth row corresponding

to the robot pose, Jk [- , Jk,... , J,,. --. Denote A- as the element corre-

sponding to i, j location of matrix A-' 1,and (Ac)- 1 as the element corresponding

to i, j location of matrix (Ac, _-1, then (3.30) can be further simplified to:

1 k-1 )1

1Ji A-' A-' J7 1
AHI(Zzk) =- log I + A- A- j log |I+j (Ajj)- Jj

2 JA

(3.31)

Case 2: Measurement of unfocused landmark, li Lf

- T- 
-

1J A A Ji
AH(Xlzk) =--log I +

2 I AT[;: A ]J1

11 1
Ji (A)- (F- Ji

-log I + T (3.32)
2 (A)-1 (A)- JL

Note that the first terms of (3.32) and (3.31) are identical. However, only Jj con-

tributes to the second term in (3.31) but both J and Jj contribute to the second

term in (3.32). Case 2 has larger information gain over the unfocused variables as

compared to Case 1, and consequently, the change in total information is reduced.
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3.3.3 Pose Graph Sparsification

The variables in the graph consists of both landmarks and robot poses. After marking

certain landmarks as focused variables and selecting measurements, the graph struc-

ture is significantly sparsified. However, the graph size is still big, as all the variables

including both landmarks and robot poses are still maintained in the graph, which

will exceed the robot memory constraint quickly.

Observe that after c measurements are selected, there are at most c robot poses

that are connected to any landmarks in the graphical model. Most robot poses are

connected to its previous pose and subsequent pose. Marginalizing out such a robot

pose does not suffer any information loss [791. If an unfocused landmark is not

connected to any robot poses, marginalizing out it does not introduce information

loss, either.

After these two marginalization, the number of variables in the graph is linear in

the measurement constraint, which is given as an input as a memory and computation

constraint.

3.4 Navigation with Uncertain Landmarks

Different from classical path planning algorithms with known map of landmarks for

localization, the environment map here is given as a set of stochastic landmarks

L ~ NA(L, RL) estimated from SLAM. In this section, we discuss how to use such a

map to navigate. In particular, an LQG controller is designed that tracks a trajectory

connecting the robot's initial point to its goal. First, the trajectory is discretized to

T steps as (X )T, and (Ud)T-j 1 where, Xd and ud denote the desired state and control

signal at the k-th time step on the trajectory. Assume that the robot starts at

Xo ~ (o 0 , Eo).

We formulate the problem by incorporating a stochastic map into the LQG frame-

work. Assume that the locations of the landmarks are random variables with a mean

and covariance given by the map data structure.

The nonlinear partially-observable state-space equations of the system are as fol-
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Xk+1 f (Xk, Uk, Wk), Wk ~ A(O, Qk)

Zk = h(xk,L,Vk), Vk ~A(, Rk), L ~ (L, RL)

Represent the control problem as:

min E [(Xt - x)'Wx(xt - 4) + (Ut - u)TW (Ut -Ut

Xk+1 = f (Xk, Uk, Wk), Wk - (OQ k)

Zk = h(xk, L, Vk), Vk ~AJ(0, Rk),

ut = pt(bt)

b= p(xt Izo:t, uo:t-1)

L ~ A(L, RL)

(3.34)

To transform the problem in (3.34) into an LQG problem, we first compute a time-

varying linear system by linearizing the nonlinear system about the nominal trajectory

(Xd, ud)k>o:

Xk+1 = f (x, u, 0) + Ak(xk - X) + Bk(uk - u') + GkWk,

Wk ~ A(0, Qk)

Zk = h(k, L, 0) + Hk(xk - 4) + Mk(L - L) + Mkvk,

Vk ~ A(0, Rk), L ~ I(L, RL)

(3.35a)

(3.35b)

where

'Of d )Ak = x ( , U,),

Gk - (OfI, U 0),

Mk O h ,
Mk Ov XLI,

Bk = ( )

Oh d
Hk = (xk , , 0),

M= Oh( )

Now define the following errors:
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(3.33a)

(3-33b)

(3.36a)

(3.36b)

(3.36c)



* LQG error (main error): ek = Xk- k

" Map error: vL = L - L

" Kalman filter error (KF estimation error): 'Ek = Xk - X

" LQR error (estimation of LQG error): e7 = -

where x refers to the mean of estimated state at the k-th time step. Let Uk = Uk Ud

and 6 Zk = Zk - Zk := Zk - h(xI, L, 0), then the linearized models in (3.35) can be

rewritten as:

ek+1 = Akek + Bk6uk + Gkwk,

Wk ~ JV(0, Qk)

JZk = Hkek + M|'vL + Mkvk,

Vk ~ Ar(0, Rk), Vi ~ A(0, R L)

(3.37a)

(3.37b)

Defining RI = [MkL Mk ] and Vk = [VLT VT]T and Rk = diag[RL , Rk ], the observation

equation can be written as:

(3.38)JZt = Hkek + Mksk, Vk ~ JV(O, Rk)

The last step is to write the control problem in the linear error space as:

N

min J = E e Wet + UTWuiTut

ek+1 = Akek + BkUk + Gkwk, Wk ~ A(0, Qk)

SZt = Hkek + Jkfok, yk ~ V (0, Rk)

6ut = pt(bt) - ut

bt = p(et + xdldo:t, dUo:t_1) (3.39)

Now, the problem in (3.39) is in the standard LQG form. Note that ek = ek +e and,

based on the separation principle 180I, it can be shown that minimizing the quadratic
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objective in (3.39) can be divided into two separate minimizations over the estimation

error F- and the separated controller error ek. In the following, we discuss how a KF

and an LQR can be designed for this linearized system and finally combine them to

construct a time-varying LQG controller.

Kalman Filter: In Kalman filtering, we aim to provide an estimate of the system's

state based on the available partial information we have obtained until time k, i.e.,

ZO:k. The error estimate is a random vector denoted by e+, whose distribution is

the conditional distribution of the state on the obtained observations so far, which is

called belief and is denoted by bk:

bk = p(x) = P(XkIZo:k) = AW + x P ) (3.40)

= lE[ekjlczo:k, 
3 UO:k_1] (3.41)

Pk = C[ekkJzo:k, 6Uo:k-11 (3.42)

where E[+] and C[+ j] are the conditional expectation and conditional covariance

operators, respectively.

Kalman filtering consists of two steps at every time stage: prediction step and

update step. In the prediction step, the mean and covariance of prior e- is computed.

For the system in Eq. (3.37) prediction step is:

ek+l Ak k + BkOUk (3.43)

= AkPk+A T + GkQkG T (3.44)

In the update step, the mean and covariance of posterior et is computed. For the

system in Eq. (3.37), the update step is:

Kk = PHT(Hk P- HT + ~kx Ak fIkT) (3.45)

ek+1 = 1 + Kk+1(6 zk+1 - Hk+1+l1) (3.46)

Pk++1 = (I - Kk+1Hk+1l)P+1 (3.47)
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LQR controller: Once we obtain the belief from the filter, a controller can generate

an optimal control signal accordingly. In other words, we have a time-varying mapping

pk from the belief space into the control space that generates an optimal control based

on the given belief Uk = Pk(bk) at every time step k. LQR controller is of this kind

and it is optimal in the sense of minimizing following cost:

JLQR = E [k>)TW( + (u)W(6uk)]

The linear control law that minimizes this cost function for a linear system is

JUk = -Fk (3.48)

where the time-varying feedback gains Fk can be computed recursively as follows:

Fk = (B Sk+1Bk + Wu) )1 BSk+1 Ak (3.49)

Sk = W + A T Sk+1Ak - A7 Sk+1BkFk (3.50)

If the nominal path is of length N, then the SN = Wx is the initial condition of above

recursion, which is solved backwards in time. Note that the final controller is:

Uk = Uk + SUk

=T - (BISk+1Bk + Wu)- 1BTSk+1Ak (3.51)

It should be especially noticed that when stochastic landmarks are incorporated in

the navigation mechanism, we can predict the navigation accuracy based on the map

accuracy. This information is utilized in the map generation phase. In other words,

because we especially optimized the uncertainties on key landmarks in the map, the

robot will have high confidence that it can traverse narrow passages and successfully

reach the goal VT.

62



3.5 Incremental Mapping

True mobile robot autonomy requires that the robot operate over long periods of

time and potentially over large spatial scales. In such cases, batch operation on

a big dataset would be extremely slow or exceed robot's resources constraints. In

such cases, it is particularly important to conduct both variable and measurement

reduction in incremental manner over smaller datasets. With variable reduction,

the robot can maintain a small model thus saving memory. And with measurement

reduction, the robot can maintain a sparse graphical model thus save computation

and do fast inference.

The robot will proceed as follows: after some operation in the environment, it

has collected some data. First, the two stage landmark and measurement selection

procedure presented in Sections 3.2 and 3.3 are conducted to reduce the new col-

lected dataset. Second, the reduced dataset will be used to update the partial map

constructed for the environment the robot is operating in. Finally, the robot can

navigate with the updated partial map to new defined goal locations, such as new

frontiers, or new places given by users. During navigation, the robot gathers new

data, which enables the robot to incrementally interleave the mapping/exploration

operation with the measurement/landmark reduction and stay within resource bud-

gets. The overall algorithm flow is illustrated in Fig. 3-2.

At some time point during operation, assume the robot has finished t- 1 operations

of two-stage selection. Denote the graph to t - 1 steps of operation as Gt-i, the

data the robot gathers during operation t as zt, and the landmarks observed during

operation t as Lt, then the two-stage problem becomes:

Problem 6. A. Incremental Focused Measurement Selection: Given graph

Gt-, select a minimal set of measurements zRt from new obtained measurements

z' during operation t, such that information metric f(-) over the focused hidden

variables Xt is bounded:

max g(zRt)
zRt CZt

63



s.t. f (Xt ; z Re t-I ) > ct (3.52)

B. Incremental Landmark Selection: Given graph Gt_1 , select a minimal set of

landmarks L' from landmarks Lt observed during operation t, such that the maximum

probability of collision is bounded:

min |L'I
LtcLt

s.t. maxPc(XklGt ) < a (3.53)
Xk

Note that Problem 6 differs from Problems 3 and 5 in two aspects. First, the new

metrics in (3.52) and (3.53) are conditioned on the reduced graphical model from the

previous operation Gt- 1 . Secondly, Problem 6 enforces the collision probability and

information gain as constraints, instead of optimizing information gain and collision

probability given a landmark and measurement budget. Notice in a single batch set-

ting, the robot has access to all of the data, which represents the entire environment.

In an incremental setting, the robot only has access to a single subset of the data

at a given time. Each subset represents part of the environment and different sub-

sets may correspond to different parts of the environments. For example, one subset

represents narrow spaces while others corresponds to more open space. If the incre-

mental problem is set up as as Problems 3 and 5, then a uniform resource budget is

enforced for all different data subsets. As a result, it will lead to wasted resources on

open spaces and low accuracy on narrow places. Therefore, Problem 6 enforces colli-

sion probability and information gain as constraints, then greedily selects landmarks

and measurements until the constraints are satisfied. The incremental algorithm is

summarized in Algorithm 3-3.
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Algorithm 3-3 Incremental Focused Mapping

Input: Initial graph Go = 0, t = 0
1: while not stopped do
2: t= t+1
3: Operate robot and get data zt, o0
4: Select landmarks L' with (3.53) and Algorithm 3-2
5: Select measurements zRt with (3.52) and Algorithm 3-1
6: Gt = Gti U {zRt, LtI
7: end while

3.6 Experiments

3.6.1 Simulation

In this section experiments are run in a simulated environment, where ground truth

is available to compare accuracies. Figure 3-6 shows the simulation environment. It

includes both open areas on the left hand side and narrow passages on the right hand

side. The parameters and statistics are listed in Table 3-1. We first run the robot once

to get the initial dataset, then reduce robot poses and landmark measurements with

various approaches. The sparsified maps are optimized with iSAM [13]. Repeated

trials were performed on the generated maps to test the collision probability. Six

selection strategies were compared:

(1) optimal: use all landmarks and all measurements;

(2) coverage, gic: use maximal coverage to select landmarks and robot poses [29,81J;

use generic linear constraints (GLC) to marginalize out unselected variables [791;

(3) all, info: use all landmarks, and add measurements based on information gain

on the overall graph [261;

(4) focus, down-sampling: select focused landmarks and uniformly down-sample

measurements;

(5) focus, info: select focused landmarks for minimal collision, and select measure-

ments based on information gain on focused variables(our proposed method);
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Table 3-1: Simulated Dataset

Case (1) is a bound on other approaches. Case (2) is a map reduction approach

where it starts with full variables and measurements. Typical use of (2) would re-

quire optimization of the full graph followed by reducing the map at the optimal

point. However, in our case, resource is constrained and we try to avoid full graph

optimization. Experiments both with and without prior full graph optimization are

done and compared. Case (3) is a measurement sparsification approach but does not

sparsify variables. Case (4) uses focused landmarks to minimize collisions, but uses

a naive way to sparsify measurements.

Figure 3-6 (a)-(e) shows sample trials for cases (2), (3), (4) and (5), respectively

and Figure 3-7 shows the overall probabilities of collision obtained from all trials. The

trials are stopped whenever there is an actual collision with an obstacle. The land-

marks that are not selected are distinguished by small black boxes around them. The

3o-ellipses corresponding to landmark uncertainty are shown in green. The blue line

represents the nominal trajectory that the robot is trying to follow. The red ellipses

represent the uncertainties of the robot along the nominal trajectory. In the focused

landmark selection cases (5), the proposed procedure picks the landmarks that con-

tribute more in reducing robot's uncertainty in desired regions (narrow passages) and

spend the computational budget to reduce the uncertainty of these focused land-

marks. In case (4), the measurements are spread across landmarks. As a result, each

landmark gets very little resource thus the method failed to recover a meaningful map

for navigation, thus showing that, in this case, measurement selection alone would

not produce an acceptable result. In case (3) only select landmarks, more resources
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distance traveled 1066.9m
robot field of view 35m, 1800
landmarks (black stars) 74
odometry measurements 1992
landmark measurements 12760
focused landmarks a 30
landmark measurement budget KR = 90 90



Table 3-2: Comparison of simulated mapping results

Variable Measurement Number of Number of Number of Mean Error on Min Mahalanobis
case Selection Selection Landmarks Poses Edges Landmarks (m) Distance (m)

1 all all 74 1993 14753 0.02 57.67

2 max coverage GLC 30 136 532 44.5 8.12

3 all info gain 74 56 131 33.48 8.87

4 focus down-sample 28 72 143 4.88 11.89

5 focus info gain 30 30 120 0.1345 14.53
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(a) case 2 (b) case 2

maximal coverage and gic, maximal coverage and glc

without optimal initialization with optimal initialization

(c) case 3 (d) case 4

only select measurements only select landmarks

(e) case 5
two-stage selection

Figure 3-6: Navigation with focused mapping. Green circles represent selected landmarks

with their size representing uncertainty. Blue lines are nominal trajectories each robot wants

to follow with red circles representing pose uncertainty. Two-stage selection approach has

much less uncertainty in narrow passages thus better navigation performance.
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e [5] two-stage selection
1 - - [4] only select landmarks
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[2] coverage+glc, not optimized
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Figure 3-7: Collision probability of Monte Carlo simulations. The focused two-stage has
lower collision probability compared to the unfocused case.

are spent on focused landmarks, thus the map is more accurate, but measurement

selection is not based on how much they contribute to uncertainty reduction, thus

the landmark positions are much less accurate than selecting both (case 3). The

key point to note from Figure 3-6(a) is that the robot uncertainty is preferentially

reduced in the areas of the environment where the corridors are tight and there is a

higher chance of collision. In case (2), landmarks and robot poses are reduced based

on maximal coverage, and variables are removed via sparse GLC. First GLC is more

time-consuming than our approach(about 10 times slower), because the unfocused

variables and measurements are the majority, sequentially removing them thus takes

longer than sequentially adding the minority focused variables and measurements

. Without a prior optimization over the full graph, sparse GLC loses information

through marginalization, and the remaining graph failed to recover the right location

of landmarks. A prior optimization over the full graph gives optimal landmarks loca-

tions and GLC maintains the right locations through marginalization. However, full

graph optimization is not scalable, especially on resource constrained systems.
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We further compare the cases from a mapping perspective in Table 3-2 based on

three metrics: the sparsity of graph, represented by number of landmarks, robot poses

and edges in the graph; the accuracy of SLAM, represented by the error on landmark

locations; and the navigation performance, indicated by min Mahalanobis distance to

obstacles along the robot trajectory. The proposed focused two-stage landmark and

measurement selection approach achieves a sparser graph than others, and maintain

accurate estimate of landmarks, and has maximal Mahalanobis distance, which means

lower collision probability.

3.6.2 Office Environment

In the real-world experiment, a Turtlebot was run in a cluttered office space. The

robot is equipped with an ASUS Xtion Pro RGB-D camera (we only use the RGB

camera in this work) and a Hokuyo URG-04LX-UGO1 laser range finder. Figure 3-9

shows the floor plan of the environment. AprilTags [82] were installed to create an

initial pool of landmarks, as shown in Figure 3-8. The area consists of an office with

desks, a doorway, and an open atrium with couches and chairs scattered. A summary

of the dataset is provided in Table 3-3.

Table 3-3: Office Dataset

length 10min24s
distance traveled 115.5m

# odometry measurements 5211
# landmark measurements 8252
# landmarks 114

The odometry measurements are obtained from the Turtlebot's wheel encoder.

The landmark measurements are obtained by running the AprilTag detector with the

RGB images, which gives the relative orientation and range of the tags in the robot's

frame. The selected measurements and odometry information are then fed into the

standard SLAM solver iSAM [211 to optimize the graph. Note that we did not use

the laser data for SLAM, only for detecting the closest distance to obstacles.

Figure 3-10 compares mapping results of case (1) (optimal), case (3) only select
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Figure 3-8: The layout of the environment used for hardware experiments

measurements, case (4) only select landmarks and case (5) two-stage selection. The

rebuilt robot trajectory is shown with a color map, where the red color on the tra-

jectory indicates the risky (close to obstacles) regions and blue indicates the safer

regions. Magenta circles represent landmarks with the size representing its uncer-

tainty. The focused approach (Figure 3-10b) can concentrate the measurements on

the narrow passage and door way, resulting in less uncertainty there. The other ap-

proaches scatter the measurements across different landmarks, and thus have much

higher landmark uncertainty in narrow passages.

Figure 3-11 shows the navigation results. Magenta stars represent designed way-

points for robot to follow. Blue lines represent the estimated robot trajectory by

Kalman filter. The proposed two-stage approach (3) has the fewest collisions, while

"only select landmarks" (4) has more collisions and "only select measurements" (5)

has very poor estimates of landmarks, thus the most number of collisions.
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Figure 3-9: Floor plan of the hardware experiment environment. Narrow passages include

a door way and a sofa cluster.

Table 3-4: Navigation performance

Method length # collisions

(3) two-stage selection 10m28s 2

(4) only select landmarks 10m52s 13

(5) only select measurements 28m40s 20

3.6.3 Incremental Selection

In incremental setting, the robot iterates between selecting landmark and measure-

ment selection on streaming mini-batches of data. When a new mini-batch comes,

it selects focused variables and measurements using results from the previous mini-

batches as a prior. Both simulated and real-world data are used to show the incre-

mental capability developed in section 3.5.

In the simulated environment, the dataset in Table 3-1 is divided into 5 mini-

batches. The robot receives the 5 batches sequentially and run Algorithm 3-3 on

each of them. After two-selection on each batch, the robot updates the posterior map

with reduced variables and measurements, and throw away the original data. The

Mahalanobis distance for selecting landmarks is set to be 100 and the information

gain for selecting measurements is set to be 0.5.

Figure 3-12 shows how the algorithm progress. In the first two mini-batches of

data, the robot started in open area, selected few landmarks. As it traveled into
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(a) case 1
optimal

A vo

0

(c) case 3
only landmarks
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(b) case 5
two-stage selection

(d) case 4
only measurements

Figure 3-10: Mapping results of Office dataset. Magenta circles represent landmarks with

the size representing its uncertainty. The proposed two-stage approach (case 3) outperforms

either selecting measurement only (case 5) or selecting landmark only (case 4) isolated
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(a) case 5
two-stage selection

VC
0

(b) case 3
only select landmarks

A

(c) case 4
only select measurements

Figure 3-11: Navigation performance of office dataset. Magenta stars represent designed
waypoints for robot to follow. Blue lines represent the estimated robot trajectory by Kalman
filter. The proposed two-stage approach (Focus,Info) has least collisions, while measurement
reduction (Full, Info) has bad estimates and landmark reduction (Focus, DownS) has more
collisions

narrow passages, it selected more landmarks as focused variables. Notice the robot

has not visited repeated places to close a loop yet, thus the uncertainty over the

landmarks is high. After mini-batch 3, the robot comes back to the narrow places

it visited in mini-batch 1 and 2. Loops are closed and the uncertainty on focused

landmarks is significantly reduced. Notice that the robot did not keep mini-batch 1

and 2, but only relied on a reduced prior map to close the loops, which significantly

reduced the memory and computation requirements.

Table 3-5 compares the performance with incremental selection with batch selec-

tion. Even the incremental approach didn't use the full dataset at all, it maintained

comparable sparsity and accuracy on landmarks as the batch procedure.

The incremental algorithm is also tested on the real world dataset in Table 3-3.

The dataset is divided into five mini-batches. Their statistics are listed in Table 3-6.

Figure 3-13 shows the map after processing each mini-batch. Magenta circles

represent selected landmarks after processing each new mini-batch. Black lines repre-

sents the robot's trajectory in each mini-batch. Same as the simulated case, the robot
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(b) mini-batch 2

(d) mini-batch 4 (e) mini-batch 5

Figure 3-12: Incremental selection on simulated dataset. Green circles represent selected
landmarks after processing each new mini-batch. Blue line represents the robot's trajectory
in each mini-batch. The robot is able to use existing focused landmarks as priors and

augment focused landmarks when passing through narrow passages.

Table 3-5: Comparison between batch and incremental selection

batch incremental

Number of Landmarks 30 33
Number of Poses 30 43
Number of Edges 120 150
Mean Error on Landmarks 0.1345 0.8001
Min Mahalanobis Distance 14.53 27.05

is able to use existing focused landmarks as priors and augment focused landmarks

with new observed data.

3.7 Summary

This chapter presented a two-stage landmark and measurement selection procedure

for map building on resource-constrained robots. Simulations and hardware results

demonstrate that the approach can identify a relevant subset of landmarks and accu-

rately localize them to reduce the probability of colliding with obstacles as compared
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(a) mini-batch 1 (b) mini-batch 2 (c) mini-batch 3

Jn

(d) mini-batch 4 (e) mini-batch 5

Figure 3-13: Incremental selection on office dataset. This dataset contains 5 baches.
Magenta circles represent selected landmarks after processing each new mini-batch. Black
line represents the robot's trajectory in each mini-batch. The robot is able to use existing
focused landmarks as priors and augment focused landmarks with new observed data.
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Table 3-6: Statistics of Mini-batches

Mini-batch No. Time(s) Distance No. measurements
1 120 16.87 1711
2 120 13.67 1049
3 120 25.12 1902
4 120 25.18 1240
5 120 29.10 1390

with existing approaches. As a result, the robot is able to navigate the environment

for long periods of time, without the memory or computational requirements growing

beyond the constraints. We have specifically focused on the navigation task here,

but there are many inference and planning tasks that require a similar prioritization

of variables. In this work, we provide a theoretically sound basis for selecting mea-

surements to localize these important variables preferentially. This is an important

capability for many resource-constrained real-time systems.
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Chapter 4

Active Mapping with a Topological

Feature Graph

The focused mapping technology developed in Chapter 3 relies on the existence of

a dataset to build sparse maps. Such datasets are typically obtained by manually

operating the robot in the environment first. However, for fully autonomous systems

considered in this chapter, the robot would need to actively plan its paths to map the

environment and localize itself within it. The problem of designing robot trajectories

to actively explore an unknown environment and minimize the map error is referred

to as active simultaneous localization and mapping (active SLAM). Active SLAM is

non-trivial because the robot must trade-off the benefits of exploring new areas and

exploiting visited areas to close loops [83].

Previous work has heavily relied on the occupancy grid (OG) map (grid of inde-

pendent binary random variables denoting occupancy) to compute the information

gain on map exploration and check feasibility. Such OG maps have large memory

footprints such are not favorable on resource constrained systems. The landmark-

based graph representation, on the other hand, can be sparsified to have low memory

can computation costs. However, landmarks do not offer obstacle information, there-

fore active-SLAM on landmark-based graphs is challenging as it's hard for the robot

to check path feasibility. This chapter proposes the first, to our knowledge active

SLAM approach that plans robot paths to directly optimize a global landmark-based

79



Figure 4-1: Active SLAM problem - purple polygons represent obstacles, green circles
represent landmarks with their size denoting uncertainties in pose estimates. The problem
is to find milestones (gray circles) of robot poses, and plan a trajectory (red line) that
minimizes landmark uncertainties.

representation without any underlying OG representation. Rather than formulating

the problem as area coverage over an OG map [84], we set it up as entropy reduction

over the landmarks subject to a budget constraint. Since the landmark estimates and

pose trajectory are necessarily correlated, we can remove the pose uncertainty from

the traditional objective function and directly optimize over the map quality.

Fig. 4-1 shows an example scenario. The locations of landmarks are marked by

green circles and the size of each circle represents its uncertainty. Gray circles repre-

sent samples of robot poses, and purple polygons represent obstacles. The planning

problem is then to quantify information gains on the samples and find a trajectory

connecting the samples that can minimize landmark uncertainties.

4.1 Active SLAM Problem

Recall that L = {L 1 , L2 , -. LM} denotes the static landmarks in the environment.

Notice that the number of landmarks present in the environment could be less than

M, and is not known a priori. The exact locations of the present landmarks are not
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known a priori either and need to be established by the robot. When moving in the

environment, the robot's trajectory is a sequence of poses XT {X 0 , X 1 , - - - , XT},

where X0 gives the initial distribution of the robot pose, typically set as the origin with

low uncertainty. The robot can obtain two kinds of observations. The odometry ot

is the change between two consecutive poses with probability model p(ot; Xt, Xt_ 1).

A landmark measurement zk is a measurement between the current pose Xt and

landmarks yi. The corresponding probability model of zX is p(zt; Xt, L k). Denote

Zt = {zt', --- ,ztK

Let p(L) =H] = 1 p(Li) denote the prior for landmarks. The joint posterior of X

and L is then the product of priors and likelihood of the observations o = {oi, , OT}

and z={zi, , z} :

T Kt

p(X, Llo, z) oc p(L) 7Jp(otlXt, Xt_ 1) fp(zk Xt, Lyk). (4.1)
t=1 k=1

The SLAM problem of jointly inferring the most likely posterior (MAP) landmark

positions and robot poses can be defined as:

(X*, L*) = arg max p(X, L Io, z) (4.2)
X,L

With factor graph representation, (4.2) can be solved by readily available graph-

SLAM algorithms/packages such as g2o, iSAM or GTSAM.

To get the odometry and landmark measurements, the robot is typically man-

ually operated in the environment to gather a dataset first and then the map is

optimized with the gathered batch data. In this chapter, the robot actively plans its

own trajectory to incrementally learn the map. Considering that robots are typically

constrained in computation/memory, the trajectory should be planned in such a way

that resources should be spent on gathering information that is directly related to

the robot's goal. The task of this chapter is to incrementally build a map of the envi-

ronment, therefore information gain is defined as entropy reduction only on variables

representing landmarks.

While there are many ways to quantify information gain, this chapter uses Shan-
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non entropy [71] as the measure of uncertainty in random variables. Denote the

control command at time t as ut, and let uT = {U 1 , - ,UT}. The active SLAM

problem is summarized as follows:

Problem 7. Active SLAM: Design control commands UT = {U 1 , U2 , ... U-}, such

that the robot follows a trajectory that the obtained odometry o = {O1, -- , Or} and

landmark measurements z = {z 1,- ZT} can minimize the entropy H(-) over the belief

of landmarks L:

min H(Ljo, z)
UT={U1,--,UT}

s.t. q(uT) < c

Xt = g(Xt-, Ut) (43)

ot =Xt E Xt_1 +v, v - A(O, Q)

z = YL Ke Xt +w, w ~ A(O, R)

t = 1,... ,T

where q(-) is a measure of control cost, in the case of finite time horizon, q(uT) = T.

Function Xt = g(Xt1, ut) describes the robot dynamics. Function ot = Xt e Xt 1 + v

describes the odometry model and zk = Ly, e Xt +w is the landmark measurement

model.

Fig. 4-2 presents a graphical model of this problem. Xt represents robot poses,

L represents environment landmarks. The goal is to design control policies U1:T to

maximize information gain over landmark belief L.

4.2 Method

4.2.1 Topology feature graph

One important reason that the use of grid-map representation has been a popular

choice for active-SLAM is that a grid-based map contains all the necessary informa-

tion for path planning. A graph-based representation, although much sparser, lacks
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U1 Z1 UT ZT

X0 : X1 > - - - >XT

Figure 4-2: Active SLAM. Design a control policy U1:T such that the landmark mea-
surements zt and odometry obtained along the path maximizes information gain over envi-
ronmental landmarks L.

information about free/occupied space and the topology of the environment. Conse-

quently, planning paths over a traditional graph-based representation is ill-posed. To

overcome this, we propose to store additional information with each landmark that

allows us to generate a full, yet sparse, representation of the environment over which

we can then plan paths.

In this thesis, it is assumed that the robot is a ground robot that operates in 2D

space. Extension to 3D scenarios can be achieved by triangulating obstacle surfaces

and is left to future work. Relying on the fact that landmarks are usually on the

surface or corner of obstacles, this chapter proposes the Topological Feature Graph

(TFG) representation. A TFG is a graph g = {L, E}, with its vertices representing

landmarks and edges representing obstacles. More specifically, if two landmarks are

connected by an edge, then these two landmarks belongs to the same flat obstacle

surface and the edge is not traversable'.

These edges can be learned from either a depth image, a laser scan or even se-

quences of images [551. The robot first segments the depth map or laser scan into

several components representing different obstacle surfaces, then checks if two land-

marks detected belong to the same component. If so, the robot creates an edge

between these two landmarks. This idea is illustrated in Figure 4-3a. The stars are

vertices that represents landmarks, and the black lines are edges representing obstacle

'Landmarks can be extended to objects that have sizes, in which case obstacles would be repre-
sented by both objects represented by vertices and surfaces represented by edges.
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surfaces.

Compared to the grid map representation, the TFG offers several advantages

in structured environments. First it requires many fewer variables to represent the

environment, and thus provides significant memory savings. Second, the map com-

plexity can easily adapt to various complexities in the environment. Instead of using

equal sized cells at all places, a TFG can model more landmarks in cluttered/narrow

spaces and less landmarks in wider/simpler spaces. Third, if new loop closures are

detected and drifts of some subgraphs are corrected, the obstacles will be corrected

with the landmark positions: the robot does not have to relearn the occupancy of the

associated space. And finally, this representation has a closed-form collision check

for robot path planning rather than sampling-based methods, leading to significant

computation savings in path planning.

4.2.2 Sequential Planning Problem

Recall that the goal is to plan robot controls that gain maximal information from the

environment as formulated in Problem 7. Notice that solving Problem 7 in batch is

hard in general, because at any time t, observations beyond t are not available, thus

planning controls Ut, - - -UT will require modeling future observations and taking into

account all possible outcomes, which is typically intractable.

To solve this problem in a tractable manner, a widely used technique is to split

Problem 7 into T stages, optimize a goal point at each stage [85,86]. For each stage,

a separate path planner can be used to generate controls.

Let p(L) denote a prior of the landmarks. At stage t, the observation history 0 1.t

and z:t can be summarized in a posterior distribution of L, X at time t. Denote the

maximal posterior(MAP) values of X and L as X* and L*, they can be obtained by

standard SLAM solvers:

X'*, Lt =argmax p(X,Liot,zt) (4.4)

= argmax p(L) Hp(oIXr, X,_1)p(z,\X, L)
-r 1
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From section 2.1.3, the probability of X and L can be approximated by a Gaussian

distribution. The mean is its MAP values (X*, L*) and its information matrix A is

the second moment:

X, L lot, zt ~AN(X* L*; A--') (4.5)

A 2 logp(L) 92 log p(o ) +-M 192 log p(zT)
&(X, L) 2 + (X, L) 2  (X, L)2

= Af Af (4.6)
Arf A,.

where Af corresponding to landmarks and A, corresponds to robot poses. Lapla-

cian approximation gives close-form solutions for entropy. The marginal information

matrix for landmarks is AL = Af - AfA;7'Arf, and the entropy is

1
H(L ot, zt) = log IALI + constant (4.7)

2

Further with the associated connectivity edges between landmarks, we obtain the

TFG at time t. Denote it as TFGt, which summarizes the information the robot has

about the environment up until time t.

The Laplacian approximation simplifies the information quantification, but di-

rectly optimizing over controls ut is still very difficult. Control inputs ut affect robot

paths though robot dynamics, and optimization under both robot dynamic constraints

and obstacle constraints would be computationally prohibitive. As such, the problem

is further simplified here by planning a trajectory for the robot first, then using a

separate path-following controller to drive the robot along the planned trajectory. In

this way, controller design is decoupled from path planning.

Problem 8. Path Planning for Active SLAM At stage t, given prior topological

feature graph TFGt, find a path xt... , Z,,- - , , such that the posterior entropy

85



on landmarks L is minimized:

min H(LITFGt, 6t+1, it+,)
xj,--,xx

s.t. X, = g(X.,1,u )

6=XCe X-1+v, WvkA(, Q)

T = t, - - t + 1 (4.8)

where 6= {6, - ,, - , 6 t+1} represents the odometry obtained along the trajec-

tory. And it+, = {t,- , , t+i} represents landmark measurements obtained

along the trajectory.

Given the path Xt,- , Xt+ 1 and the partial TFG at time t, a separate path-

following controller could be used to drive the robot along the trajectory. In this way,

path planning and control are decoupled from the active SLAM problem, and we gain

performance in computation and speed.

4.2.3 Expected Information Gain

Quantifying the exact information gain from Xt to Xt+1 in Problem 8 is challenging

because it involves discretizing the trajectory from Xt to Xt+1 into a sequence of

robot poses X,, then computing the information gain from measurements at each

pose. Information gain of measurements on later poses will depend on earlier poses

along the path. Therefore, the complexity will grow exponentially with the path

length. To solve the information quantification problem in real-time, we only plan

a goal point for the robot, design the robot to stabilize its pose at the goal point,

rotate in-place to obtain accurate observations of the local environment, and compute

information gain only on these locally observable landmarks at the goal point. The

observation would be some layout of a subset of the local landmarks. As shown in

Figure 4-3b, gray balls denote observation points, and the blue circle indicate the set

of landmarks it can observe at those observation points.
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Problem 9. Goal Planning for Active SLAM At stage t, given prior topological

feature graph TFGt, find the next goal point Xt+1 such that the entropy on landmarks

L is minimized:

min H(L|TFG, t+1)
xt+1

s.t. t+i = h(Zk+ 1 , L) (4.9)

Goal points also provide a way to segment the overall map into local maps and

sparsify the underlying SLAM factor graph: the robot accurately maps the environ-

ment at goal points, thus measurements between two goal points contains less infor-

mation compared to those at goal points. Therefore, landmark measurements along

the path are only used to localize the robot, but are not used to update landmark es-

timates. This may cause some loss of information. However, with this simplification,

we can marginalize out robot poses between two observations points, and the SLAM

factor graph will become a joint graph of partial graphs at goal points. In this way,

the complexity of the SLAM factor graph only scales with the number of observation

points and not the number of robot poses.

Furthermore, paths are generated with respect to the current estimate of landmark

locations. If measurements along a path are used to update landmark estimates, new

loop closures may cause shifts in landmark locations. The old path may become

invalid and the robot may run into obstacles. Leaving out measurements along the

path also avoids this potential failure.

Notice that Zk+1 is in continuous R2 space. Different Xt+1 would give different

combinations of observable landmarks, thus solving problem 9 exactly would be hard.

Instead, we use a random sampling approach. Given TFGt, a location is reachable if

it can be observed from some previous goal location. The planner samples locations

in the robot's reachable space, computes entropy reduction for each goal point, then

selects the next goal point as the one that gives maximal entropy reduction.
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0

(a) Topology Feature Graph(TFG) (b) Goal points

Figure 4-3: Topological Feature Graph (TFG) and goal points. Vertices (stars) represent
landmarks, edges (black lines) represent obstacle surfaces, blue stars represent landmarks at
a frontier, gray balls represent goal points. Blue regions illustrate local observable landmarks.

The maximal entropy reduction problem can be stated as follows:

Xt+1 = argmax AH(LIXt+1, TFGt)
xt+1

=argmax H(L|TFGt) - H(L|Xt+1 ,TFGt)
xt+'

(4.10)

Theorem 2. Set prior covariance for unknown landmarks in such a way that it is

much larger than covariance of observed landmarks. Given topological landmark graph

TFGt, the entropy reduction at goal location Xt+1 can be approximated by the sum of

entropy reduction on local observable landmark dH, and of new landmarks dHe

AH(Xt+1 |Xt+1,T FGt)~ AHO + AlH (4.11)

where AHu = nx log II + o-nan|, n, is the number of new landmarks nx, log |I + unau|

the expected information gain on an unknown landmarks.

Proof. For simplicity, the subscript t is dropped in the following, but it should be

noted that this analysis is based on TFGt.

The information matrix can be written into two parts that corresponds to observed
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landmarks Af or robot poses A,

A =Af Afr

Arf Ar

The robot task here is to map the landmark, therefore we only look at the marginal

information matrix on landmarks:

A = A - AfrA Arf = Ao 0
0 AU

where AO corresponds to landmarks observed at least once, and A, corresponds to

landmarks that have not been observed yet. At goal point Xt+1 , denote 2 t+1 are the

expected new landmark measurements, then the new joint likelihood becomes:

p(TFGt, t+1; Xt+1 , X, L) ~ p(TFGt; X, L)p(t+1 IXt+ 1 , TFGt) (4.12)

The corresponding factor graph is the factor graph at t plus new landmark mea-

surements p(t+1Z+IXti, TFGt). Using the same ML values Xt*, L* in (4.2), the new

information matrix At+' would be the original information matrix At, plus some new

terms coming from factors p(t+i Xt+i, TFGt):

AO 0 0 AO 0 Ho

At+'= 0 Au 0 + 0 Au Hu (4.13)

0 0 0 HT HI B

where

B =BO + Bu

Ao Ho I 2p(zt+1i|t+i, TFGt) (4.14)

H Bo a(L 0, Xti)2
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[ 9 2p(zt+1 |Xt+i, TFGt)

O(LU, Xt+1)2

The marginal information matrix on landmarks can be computed from the Schur

complement:

0

Ho

H,

A +A,
- HB-1HT

I (4.15)

Note that elements in A and H are 0 if the corresponding landmark is not observable

at observation point Xt+1. The incremental change in the information objective H(-)

is:

AH= - log Atl + log IAt+1I

= log
AO + AO

0

0

A,+ A,
- HB-HT - log [Ao

0

0

AU I (4.16)

Take the inverse of the matrix in second term, combine it with the first term, then

use A.= E, A-= E to obtain

AH =r log I + EA

0

Extract the first term to get

0

I + uAu I E0

0

0

EU IHB-1HT

AH=log I oAo
0

0

EuAu
I.+log I - [I+EA, 0

0 I+EAu
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Apply II - BAI = JI - ABI on the second term

=log I+ EoAo 0

0 EHAu

+log I - Bl HT (I + EoAo)- - 0 H
0 (I + EuAu)-l

log JI + EoA l + log 11 + EuAs| (4.17)

+ log |I - B- HT(I + EoAo)-'Ho - B-1 Hj(I + E Au)- 1 Hu|

When a landmark has not been previously observed, the prior covariance E is typ-

ically large, therefore HuT(I + EA) 1 Hu is small compared to HT(I + EoAo)Ho.

Furthermore, notice that when the prior Eu and information delta Au are block di-

agonal, with each block representing a landmark, log II + EuAu= n., log II + oau ,

and we have the following approximation:

AH log |I + ZOAI + log I - B-'HT(I + EoAo)- 1 Hol

+ n,, log JI + uaHH I

=log |I + E OA,, - H,,B-1 Hol + n,, log 1I + o-uau|

=AHO + AHu (4.18)

where AHO = log I + EOA, - HOB1 HOj is the information gain obtained by having

new measurements on observed landmarks, AHu = n, log I + uauI is information

obtained by having new measurements on previously unobserved landmarks, n. is the

number of new landmarks observed, and o-u and au are the variance and information

gain of a single new landmark. l

Theorem 2 indicates that the information gain on a goal point can be split into

two parts: the first part AH, is the information gain obtained by re-observing and

improving known landmarks, and AHu is the information gain from exploring new

landmarks. In our experiments, n, is computed by using a predefined landmark
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density in the environment multiplied by the size of a frontier at observation point

Xt+1 -

4.2.4 Frontier Detection

In order to detect frontiers, we track how each landmark is connected to its neigh-

bors. A landmark borders a frontier if at least one side of it is not connected to any

neighbors. As shown in Figure 4-3a, the blue stars represent landmarks at frontiers.

At each sample location, the size of frontier is computed as following:

1. Compute landmarks the robot expects to observe

2. Sort the landmarks according to their orientation relative to the robot

3. If two consecutive landmark are not connected to any neighbors, they represent

a frontier.

With this frontier detection approach, we have a uniform information metric for both

observed landmarks and unobserved landmarks at frontiers. Thus our approach gives

a natural balance between exploration and exploitation: if there are large frontiers

offering the potential to discover many new landmarks, the robot will pick observation

points to explore frontiers. If there are only small frontiers or none at all, the robot

might go to visited places to improve existing landmarks estimates.

4.2.5 Path Planning

In Section 4.2.2, we obtained a set of collision-free samples, therefore the path planner

will only compute connectivity and cost between these samples, and form a probabilis-

tic roadmap (PRM). The trajectory to the next best observation point is generated

by computing a minimum cost path on a PRM. The cost of an edge between two

sample points involves two factors:

e The length of the link, which reflects the distance that needs to be traveled and

thus the control costs.
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* Collision penalty.

Computing the exact collision probability of a given path is a computationally expen-

sive procedure. However, exploiting the fact that a collision check for a point using a

TFG representation can be carried out analytically enables expensive methods such

as Monte Carlo methods for real-time collision evaluation. in this work, assuming

Gaussian localization uncertainty, we rely on very efficient approximate methods to

compute a measure of risk instead of the exact collision probability.

Denote x, as the closest obstacle point. Then I x - x, I 2 represents the squared

distance to the closest point and reflects the chance of collision. Thus we use I Ix-x,l I2

as an additive penalty in the edge cost in path planning. With our TFG represen-

tation, computing IIx - x, I2 reduces to computing point-line and line-line distances,

which can be achieved trivially.

One of the key benefits of relying on the TFG for path planning is the analytic

computation of collisions. In other words, since TFG is composed of set of lines,

one can analytically verify a given point is in the obstacle region or not by checking

TFG lines around the robot. Such a fast collision check enables accurate methods

such as Monte Carlo to evaluate collision probability along the path. We rely on a

chance constraint formulation (similar to [39,40, 87]) to compute paths that satisfy

Pr(path E Obstacle) < 6. If one relaxes this constraint to Pr(xk c Obstacle) <

JVk, Xk ~ A(Xk, Pk)

Pr(xk E TFG edge) < 6 Vk, Xk ~ K(&k, Pk) (4.19)

where, Xk is the k-th point on the trajectory

4.3 Experiments

4.3.1 Information Measures

We first illustrate how the proposed framework can balance exploration and exploita-

tion. Figure 4-4 shows an example scenario: black lines represent obstacles, stars
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Figure 4-4: Information gain. Black lines (obstacles) and stars (landmarks) comprise the
TFG. Blue stars indicate frontier landmarks. Circle color represents information gain on
samples.

represent landmarks with blue stars bordering frontiers. Circles are samples in the

free space with color representing their information gain: red is high gain and blue is

low. Figure 4-4a displays the information gain on observed landmarks: the total in-

formation gain is largest at samples that can potentially observe the greatest number

of landmarks. On the other hand, Figure 4-4b shows the information gain on new

landmarks. The samples closer to frontiers will have a chance to observe new land-

marks, thus they have higher exploration gains than samples further from frontiers.

Assuming a fixed new landmark density, larger frontiers offer the potential to observe

more new landmarks and therefore nearby samples have greater exploration infor-

mation gain. Figure 4-4c shows the total exploration and exploitation information

gain.

Summing both the exploitation and exploration information, Figure 4-5 displays

the total information gain under high/medium/low prior variance on new landmarks.

When prior variance on new landmarks is high, observing a new landmark will give

large information gains, thus the exploration term dominates the exploitation term,

and the robot prefers sample points at frontiers. On the other hand, if the prior

variance is set to be low, observing new landmarks does not add much information,

and the robot will prefer to revisit places with observed landmarks and improve its

estimate of their positions.
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(a) High (b) Medium (c) Low

Figure 4-5: Total information gain with varying unseen landmark density. When the

robot expects to see many landmarks beyond frontiers, information gain at frontiers is high.

Otherwise, the robot prefers spots that can observe the most landmarks in visited places.

4.3.2 Simulation

We compared our framework with a nearest-frontier exploration algorithm [83] using

the Gazebo simulator. The frontier exploration simulation used the popular GMap-

ping [881 system for localization and mapping and used wavefront frontier detec-

tion [891 to identify frontiers.

The simulated Turtlebot receives noisy odometry, laser scans, and landmark mea-

surements. Table 4-1 contains the simulation parameters. Figure 4-6a displays a

screenshot of the simulated environment (simulated AprilTags are spaced roughly

one meter apart along the walls).

Figure 4-6b and 4-6c display the maps generated by frontier exploration and TFG

active SLAM respectively over one run. Note that there is obvious distortion along

the hallways, and the boundary of some obstacles in the center are blurred as well.

On the other hand, TFG active SLAM was able to close loops on landmarks and thus

maintain the shape of the building in its rmap.

Figure 4-8 compares the robot pose error of nearest-frontier and TFG active SLAM

over 4 runs. The solid lines represent error mean and shades represent error range.

TFG active SLAM consistently has significantly less error in its robot pose estimates,

especially in position. Figure 4-7 compares the map coverage with time spent ex-

ploring. In TFG active SLAM, the robot balances exploration with loop closing and
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Table 4-1: Simulation

Table 4-2: Simulation Performance Comparison

TFG Active SLAM grid map frontier

No. of variables 274 800000
CPU idle time 75% 0%

time (s) 2433 546 2293 375
position error (m) 0.147 i 0.115 5.26 3.53

orientation error (rad) 0.0217 + 0.016 0.0213 + 0.0165

is thus slightly slower in covering the whole space when compared with greedy fron-

tier exploration. Table 4-2 compares algorithm performance. Although TFG active

SLAM takes slightly longer to explore the environment, it uses orders of magnitude

fewer variables to represent the world, which leads to memory savings. Frontier explo-

ration also updates particles and the grid map continuously while TFG exploration

only updates its map at goal points, requiring only light computation throughout

most of its operation.

4.3.3 Laboratory Environment

The new framework is tested in an indoor space with the Turtlebot platform, using a

computer with specifications listed in Table 4-3. The computational resources used are

readily available in many modern on-board systems. The focus of this chapter is not

on landmark detection or data association, thus AprilTags are used as landmarks in

the indoor space. Figure 4-10 gives some example views of the environment. Figure 4-

9 shows how the robot's mapping progressed throughout the experiment. It started

with a partial map, then gradually picked up the frontiers and expanded the map to

cover the space. The black lines are obstacles and black dots are landmarks. The red
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size of environment 46mx22m
No. of landmarks 274

sensor range 1Oin
field of view 124 degrees

particles for gmapping 100
rate for gmapping update 0.33Hz

rate for landmark measurements 10Hz

parameters
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(a) Gazebo simulation environment

(b) frontier exploration with grid map

- Ground Truth
Estimate

(c) active SLAM via TFG

Figure 4-6: SLAM result comparison. When the odometry drifted, frontier exploration
with occupancy grid map have distorted maps. While active SLAM using TFG is able close
loops on landmarks and have much more accurate maps.
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Exploration vs. Distance Travelled
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Figure 4-7: Map coverage vs distance travelled. TFG builds an accurate

exploring and is thus slightly slower than greedy nearest-frontier exploration.
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Figure 4-8: Robot pose error over multiple runs. Solid line repsents mean and shade

represent range. TFG has consistently smaller errors.
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Table 4-3: Hardware Specification

Robot Turtlebot (Kobuki base)
Processor Intel Core i3 dual 2.3GHz

RAM 4GB
Operating System Ubuntu 14.04

dot is the robot's current position and the red lines are its planned trajectories.

4.4 Summary

This chapter proposed a Topological Feature Graph (TFG) that exploits the spar-

sity of graphical models, but also extended to further include obstacle representation.

It lead to a unified information quantification metric to inherently balance between

exploration and exploitation of map building. The resulting path planning algo-

rithm enable the robot to autonomously generate trajectories to explore an unknown

environment. Our approach significantly saves computation and memory resources

compared to state-of-art occupancy grid (OG) map based approaches.
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Figure 4-9: Robot path and TFG in hardware experiment. Black stars represent AprilTags,
and black lines represent obstacles. The red circle represents the robot's current location,
and the red line represents robot's planned trajectory. The robot started with a partial map,
then gradually explores the frontiers and expands the map to cover the space.
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Figure 4-10: Views of the space. An GPS-denied indoor environment with AprilTags as
landmarks.
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Chapter 5

Object Mapping via Non-parametric

Pose Graph

5.1 Introduction

Approaches developed in Chapter 3 and 4 rely on the existence of uniquely identi-

fiable landmarks. However, in natural environments, landmark detections typically

have noise, and are not even unique. To enable SLAM in natural environments, a

fundamental challenge is to recognize instances of landmarks, such as objects, and

associate them with unique identifiers.

The focus of this chapter is performing SLAM in unknown environment by rec-

ognizing objects as landmarks (object SLAM). A factor graph is the natural rep-

resentation, as objects can be easily represented as landmarks. A map represented

by objects is desirable, also because objects are very rich in semantic meanings. By

using objects, robots can interact with other agents and perform tasks at semantic

level, such as searching for people in a forest, grasping objects, and detecting moving

cars on streets. However, the convergence of factor graph SLAM algorithms relies

heavily on correct data association of the landmarks. Even a single false association

can cause the algorithm to diverge [15,16J. Especially, when visual features are used

as landmarks, feature detections vary a lot when viewpoint and lighting condition

changes. Feature labeling and association becomes very challenging. Therefore, it is
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Figure 5-1: In object SLAM, each object class has multiple instances, data association
(associate detect objects to unique object identifiers) is ambiguous. Data association and
SLAM are inherently coupled: good data association guarantees the convergence of SLAM,
and good SLAM solution gives good initialization of data association.

popular to do SLAM with visual features in open-loop fashion [90,91J.

Object SLAM requires the robot to be able to detect objects, generate measure-

ments, and associate these measurements to unique identifiers. In this chapter, object

detection refers to the problem of identifying the occurrence of objects of some pre-

defined object classes within an image. An object measurement is a 3D location

of the detected object with respect to the robot pose. Data association refers to

the problem of associating object measurements to unique identifiers across images.

The problem of object detection has been an important topic in the computer vision

community. Deep learning approaches have achieved significant success on object de-

tections within individual images [92-96. These approaches also have the ability to

generalize: once a detector is trained to recognize an object class, such as chairs, the

detector can detect different instances of the same class even in different shape, color,

and background settings. However, object detections only suggest the existence of ob-

jects of certain predefined object classes in an image, but provide no data association

between images: given that an object of a certain class is detected in two images, the
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object detector provides no information on whether or not the detections in the two

images are the same object. This is problematic for SLAM especially when there are

multiple objects of the same object class in an environment. How reliable SLAM can

be achieved using only these ambiguous object detections remains an open question.

As illustrated in Figure 5-1, there are multiple instances of the same object class,

such as chairs. The robot would need to establish the data association of object de-

tections across images from different views. Note that data association and SLAM

are inherently coupled problems: good data association guarantees the convergence

of SLAM algorithms, and good SLAM solution gives good initialization of data asso-

ciation.

This chapter proposes a novel world representation, the nonparametric pose graph

to jointly perform data association and SLAM. In the proposed model, factor graphs

are used to localize robots and objects, while a Dirichlet process (DP) - a nonpara-

metric model prior - is used to associate detections to unique object identifiers in the

scene. The inference of the data associations and the optimization of the the robot

and object poses are performed alternatively in this algorithm.

5.2 Object Measurements via Deep Learning

This section sets up the approach to generate object measurements via deep learning.

The limitations of such an approach are discussed at the end of the section, which

highlights the necessity of back-end data association and SLAM algorithm.

5.2.1 Deep Learning Based Object Detection

Object detection refers to the problem of identifying the existence of objects of certain

classes and find bounding boxes for them in single images. Object detection in the past

decade was mainly based on the use of SURF [97] and HOG features [98]. Although

researchers have developed algorithms that demonstrated good performance for single

class object detection (e.g. pedestrians), the multi-class object detection problem

remains difficult. In particular, prior to 2012, the state-of-the-art method (deformable
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part models) achieved 33.4% accuracy on the PASCAL VOC 2010 dataset [931, which

contains 20 object classes.

Region-based convolutional neural network (R-CNN) by Girshick et al [93] first

tried using deep learning methods to do object detection. This algorithm first uses

the selective search [99] algorithm to propose bounding boxes in an image, which

potentially contain objects. Each box is then subsequently scaled and fed into a CNN

to detect the object class. This approach achieved 53.7% accuracy on the PASCAL

VOC dataset. However, R-CNN is extremely slow (13 seconds per image) because all

bounding boxes are fed into the same CNN sequentially. When there are significant

overlapping between bounding boxes, there is significantly redundant computation. on

the same image.

In Faster R-CNN [100], Ren et. al. ran the full image through the CNN only

once, and they only use features in top layer in each bounding box patch for object

detection. They further proposed a region proposal network (RPN) that learns how

to generate bounding box proposals by looking at the top layer features. This new

algorithm achieves 76% accuracy and an average speed of 100 milliseconds per image.

Faster R-CNN [100] uses the VOC dataset for training. Most of the object classes

in the VOC dataset [92] are rare in urban or indoor settings, such as cows, horses,

sheep, airplanes, and boats. Our work instead trained a faster R-CNN model on

the ImageNet 2014 dataset [95], which contain categories that are more relevant to

indoor/urban settings, including cars, motorcycles, bicycles, traffic lights, televisions,

chairs, flowerpots, cups, and keyboards. Note that this framework can be easily

modified to parse out any other subset of classes from the ImageNet dataset that

are relevant to the specific applications.

5.2.2 Object Measurements

An object measurement refers to a 3D location with respect to the robot pose. To

generate such measurements, location information relative to the robot is required in

addition to object detection. In this chapter, this is done by inquiring the correspond-

ing pixels in the depth images. The procedure to generate a 3D object measurements
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(a) Object detection with RGB image. (b) Corresponding depth image

(c) Object localization in 3D space

Figure 5-2: Deep learning based object detection

is outlined as follows:

1. Train a faster-RCNN to generate object detections in RGB images

2. Crop bounding boxes in the depth image in correspondence with the RGB

bounding box.

3. Filter out background pixels that are too far away.

4. Generate point cloud from RGB and depth pairs.

5. Compute the centroid of the point cloud as center of the object.

Figure 5-2a shows the detected object with faster R-CNN from a single image

of an office environment. Figure 5-2b shows the corresponding depth image, and

Figure 5-2c shows the 4 point clouds for the 4 detected objects in 3D space.
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It is clear from Figure 5-2a that object detection with deep learning faces two

major challenges for pose graph based SLAM. First, there are multiple instances of

the object class, such as "chair" in Figure 5-2a. Without correct data association, it is

hard to distinguish different object instances. Standard pose-graph SLAM algorithms

can only optimize poses with exact data association, such as g2o, iSAM, and GTSAM.

The second challenge is high false positive rates. As the chair detected in Figure 5-

2a, deep learning algorithms report objects now and then when there are actually

none. Blindly using these unfiltered detections in standard SLAM algorithms will

lead to creation of landmarks that do not correspond to any real-world objects and

cause loop closure failures.

Notice that the centroid is used as the center of objects in this case. When objects

are looked at from different views, and be partially occluded, centroids would not be

a consistent measure of the object locations. In our experience, the error could be

10-20cm. However, we will show that in office settings, our algorithm still converges

even under this significant occlusion and view point noise.

5.3 Nonparametric Pose Graph

This section sets up the joint data association and SLAM problem by extending the

current pose graph to a novel nonparametric pose graph that tightly couples object

association with robot poses. A new algorithm is also introduced to jointly infer the

data association and perform SLAM with this new model.

5.3.1 Factor Graph with Known Data Association

Given a batch dataset, recall that a sequence of time indexed random variables XO:T -

{X 0 , - - - , XT} is used to denote the robot's trajectory from the start to the end. These

poses are not directly observable and need to be established. The robot can always

measure the incremental change between two sequential poses via an IMU or wheel

encoder, which is referred to as odometry. Denote ot as the odometry measurement

between pose Xt and pose Xt- 1.
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During navigation., the robot also observes various objects from the environment.

We assume that the environment is static, so objects neither change positions nor

shapes:

Assumption 4. Objects in the environment are static: they do not change positions

or shapes.

Denote the positions of the objects as L = {L 1 ,- - , LM}. These variables are

unknown and need to be established. At time t, the robot obtains Kt object mea-

surements, denoted as zt = {zt, z,- , Z1}. The unique object identifiers these

measurements are associated to are yt {y , y, - }, where yt c {1,- ,M}.

When object associations are perfectly known, yt is known when the measurements

zt are obtained.

Recall from section 2.2 that using standard model that odometry and object mea-

surements are corrupt by Gaussian noise, the joint log likelihood can be represented

by a factor graph:

T T K X

log p(o1:T, ZO:T; XO:T, L) = #(ot; Xt_ 1, Xt) + (zt Xt, Lyk) (5.1)
t=1 t=o k=1

where #(ot; Xt_ 1 , Xt) represents a odometry factor and #(zt; Xt, Lyk) represents an

object measurement factor. See equations (2.10), (2.12) and (2.15).

The pose graph SLAM problem optimizes robot poses XO:T and object locations

L such that the log likelihood is maximized

max log P(O1:T, ZO:T; XO:T, L). (5.2)
XO:TL

Standard SLAM solver packages solve Equation (5.2) with nonlinear optimization

techniques such as gradient descent [13]. When the sparsity of the graph model is

used, the optimization can be done very efficiently.
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5.3.2 Factor Graph with Multi-class Objects

Before we move into nonparametric factor graph for imperfect data association, first

notice in object SLAM, except for measuring the 3D location of objects, we also

observe an object class. The observed object class is not always reliable, thus we first

establish the probabilistic model for object classes.

Assume there are N object classes in total. For object i, denote u as an observation

of the object class. The probability of u is modeled with a Categorical distribution:

p(u = j) =wri(j), j = 1,- ,N (5.3)

Denote wri = {wrs(0), -- - , iri(N)}. And aJ ri(n) = 1. And if the true object class is

j, we have 7r(j) >> r(k) for k / j.

Notice class observation u can only be any real object classes 1, - - - , N. How-

ever, we especially design 7ri(0) to represent the probability of false positives. This

design would help the algorithm to filter non-exist object detections in real-world

experiments.

In order to have closed form updates on posterior, we apply Dirichlet prior to iri

for object i:

7ri ~ Dir(oi). (5.4)

when there is an observation of class j, u = j, the posterior distribution of iri is:

7riIu ~ Dir(#i + ej). (5.5)

where ej represents a unit vector with jth element to be 1.

Notice 3i(O) represents the initial likelihood of object i to be a false positive.

Since observations cannot be 0, when there are more and more observations of object

i being observed, the posterior #i(0) will monotonically decrease. This is consistent

with the intuition that if repeated observations are obtained from some object, then

it has lower chance to be a false positive.
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Combine the multi-class probabilistic setting with the original SLAM problem:

each object measurement would be a pair {zk, u}, where continuous variable zk rep-

resents the 3D location measurement, and discrete variable ut represents the observed

object class. Recall that yt = i E {1, ... , M} represents that the k-th measurement

at time t is from object i. Then ut is a sample from the posterior distribution 7ryk.

p(U' = j) = 7rkg (j), j E (,---,N} (5.6)

The joint log likelihood becomes:

log p(01:T, ZO:T, UO:T; XO:T, L) (5.7)

( ~ot; Xe 1 , X) + # (~(zt; Xt, L k) + log 7rk (ut))
t=1 t=O k=1
T T Kt T Kt

(0t; X-_1, Xt) + #(zt; Xt, LYt) + log -7ry () (5.8)
t=1 t=O k=1 t=O k=1

The new optimization problem is then

max log P(O1:T, ZO:T, UO:T; XO:T, L, 7r). (5.9)
XO:TL,,r

Compared to (5.2), in problem (5.9), the observed data further includes object

class observations UO:T, and the variables to be estimated further include the class

of objects 7r. From (5.7), given data association Yo:T, the joint likelihood can be

factorized into the sum of likelihood of ZO:T and oo:T, and the likelihood of UO:T.

Therefore, the class classes 7
T0:T is independent of the robot poses XO:T and object

positions L. Optimizing (5.9) is equivalent to solving problem (5.2) and computing

the object class posterior 7r independently.

5.3.3 Nonparametric Graph Definition

Now we move to the case that the data association yt is unknown and must be

established. Deep learning-based algorithms label each object to be of some class, but
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do not distinguish between different objects of the same class. When there are multiple

instances of the same object class, such as multiple chairs in a room, possibilities for

data association become combinatorial and thus challenging. Instead of relying on

a reliable front-end procedure to associate objects, we use a back-end framework to

jointly infer the data association and object locations. Note that because of the

ambiguous data association, the total number of objects M is unknown ahead of time

either, and needs to be established as well.

Nonparametric models are a set of tools that adapt the model complexity to

data. It has the embedded mechanism that the model parameters could grow when

there are new data being observed. In particular, Dirichlet Process (DP) is such a

nonparametric stochastic process that models discrete distributions but with flexible

parameter size. It can be taken as the generalization of a Dirichlet distribution with

infinite dimension. Same as Dirichlet distribution is the conjugate prior for a categor-

ical distribution, DP can be viewed as the conjugate prior for infinite, nonparametric

discrete distributions [101]. In this work, we use a Dirichlet Process (DP) as the prior

for data associations yt. In particular, assume at any point, there are M objects

being detected in total, the probability of yt belongs to object i:

y?=i) DP(i) = i +a 1 -i (5.10)
Fiia i = M +1.

where mi is the number of measurements of object i, and a is the concentration

parameter of DP prior that determines how likely it is to create a new object. The

intuition behind this model is that the probability yt is from some existing object

i < M is proportional to the number of measurements of object i, and the probability

yt is from a new object M + 1 is proportional to a.

The joint log likelihood of odometry 0 0:T, object measurement ZO:T and object

classes UO:T given data association yo:T is

log P(01:T, ZO:T, UO:T; XO:T, yo:T, L, 7r) (5.11)
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XO - X1 -- X2 ---- -XT

YO Y1 Y2 --- YT

Figure 5-3: Factor graph for SLAM with imperfect data association. yt represents the
data association: the measurement at time t is from object yt. In SLAM with imperfect
data association, yt is unknown and must be established at the same time.

T T Kt

#(ot;~~ Xk1 X() +krg u) + o(Zk ; Xt, Ly )k
t=1 t=O k=1

The joint log likelihood (5.11) has the same form as (5.7). However, in (5.11), the

likelihood of object measurements ZO:T and object classes UO:T are correlated through

data association YO:T.

The new optimization problem is then

max logp(ol:T, ZO:T, UO:T; XO:T, L yo:T, r). (5.12)
XO:TLYO:Tr

Compared with Equation (5.9), the new optimization problem Equation (5.12) is

more challenging in that data associations YO:T are unknown. As a result, log prob-

abilities of object measurements Equation (5.11) no longer have a simple form, and

the problem Equation (5.12) becomes a mixed integer nonlinear problem. Secondly,

the number of true objects in the environment M is not necessarily known a priori,

problem Equation (5.11) must infer M at the same time.
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5.3.4 Nonparametric SLAM

From the last section, for t = 1, -- ,T, k =1,- , Kt, the generative model for our

problem is

yt ~ DPa) (5.13a)

"Ytk~ Dir(#g), (5.13b)

ot ~ Ar(Xt e Xt-,, Q), (5.13c)

Ut ~ katx), (5.13d)

ztk ~ f(L E) XtI, R), (5.13e)

IVt

where a, 0, Q, and R are given parameters. Robot poses XO:T, landmark locations

L, object class distributions 7r,:m and object associations YO:T are variables to be

estimated. The odometry OL1T and object measurements ZO:T, UO:T are observed data.

Different from a canonical DP mixture model, the observed data ZO:T, UO:T, and

0 0:T are not independent samples given variables XO:T, L, and 7r, but are correlated

through the factor graph. Therefore, the inference involves computing maximum like-

lihood over factor graphs. When both associations and variables are to be established,

standard approaches alternate between assigning data and optimizing variables. In

the case of known object number M, K-means has a deterministic data association,

while expectation-maximization associates data in a probabilistic way [69]. When the

number of objects is not known a priori and DP is used as prior, Markov Chain Monte

Carlo methods (e.g. Gibbs sampling) or variational inference algorithms are widely

used [69]. However, in these algorithms, the likelihood of each label yk to be any

underlying object L needs to be computed and tracked all the time. The algorithm

will need to go through all of the data multiple times to converge to a steady state

distribution. The large scale and strong dependence of data in our problem make

such approaches inappropriate.

It is shown in [102] that under the small variance assumptions, Gibbs sampling

can be simplified to DPmeans. Instead of sampling the posterior distribution, yt is
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assigned to be the maximum likelihood object if the likelihood is within some certain

threshold, otherwise it is assigned to a new object. Intuitively, in this case, small

variance means that the noise in odometry, object measurement and object class is

relative small, so that the posterior distribution of yt is peaky.

Assumption 5. Variance in odometry, object measurement and object class is small,

so that the posterior distribution of data association has small variance and a unique

maximal likelihood value.

The DPmeans algorithm alternates between two steps: maximize likelihood on

variables XO:T, L, -r, and assign data association YO:T to their maximum likelihood

objects. Algorithm 5-1 shows the overall flow of the approach. And the following

explains the algorithm step by step.

Initialization (line 1) In initialization, all yt are set to be an object by its own.

Robot poses XO:T and object locations L are initialized by their open loop estimation.

The Dirichlet distribution prior for object class are set to be some initial value '30.

Optimizing data association (line 3) While executing the main loop, the algo-

rithm alternates between optimizing associations YO:T, and variables XO:T, L, and f.

When optimizing object association, fix XO:T, L and 3, and compute the posterior of

y as the product of its DP prior (5.10) and likelihood of measurements (uk, Z4) (see

(2.10) and (5.6)).

pi oc DP(i)p(ut ; 7ri)p(zf Xt, Li). (5.14)

Then yt is assigned to the maximum likelihood object

yt = arg max pi. (5.15)

Optimizing poses (line 10) When optimizing poses, object associations yk are

fixed. The posterior parameters for the Dirichlet distribution of object class can be
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updated with

#3i(j) <- #o(j) + EfykiEkj (5.16)
t,k

where /3 is the hyperparameter for the Dirichlet prior on 7ir. Notation Ila=b represents

indicators whether quantity a equals quantity b. Then Zkt R is the total number

of object detections assigned to object i, and Ek,t ll if represents from the de-

tections of object i, how many are class j. With Dirichlet prior Dir(#3i), the maximum

likelihood(ML) of each object class i is proportional to parameters 3 :

1T = ML(Dir(#i)). (5.17)

The maximum likelihood value of robot poses XO:T and object locations L can then

be obtained by standard SLAM solvers (see (5.2)).

Remove false positive (line 18) Recall that we set ri(O) to be the probability

that object i is a false positive. In initialization, #i(0) is set to be some positive

number. When new measurements of object i are obtained and accumulated, /i gets

updated such that fi(j), j > 0 becomes bigger compared to Oi(O). As a result, ri(O)

decrease monotonically. In the last step, we filter out false positives by simply putting

a threshold on 7ri(O).

5.3.5 Complexity Analysis

In this section, we analyze the complexity of the two major steps in Algorithm 5-1:

optimizing data association YO:T, and solving SLAM XO:T, L.

Optimizing data association This step goes through all the measurements, there-

fore the complexity is linear in the total number of measurements O(IYo:TI). For each

measurement, we compute the posterior probability of belong to any existing object,

or being a new object. The complexity is linear in the total number of existing objects

O(M). Therefore the overall complexity is O(Iyo:TIM).
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Algorithm 5-1 Nonparametric SLAM

Input: Odometry measurements 0
1:T, Object measurements UO:T, ZO:T

Output: Poses XO:T, number of objects M, object association YO:T, object locations
and classes L, /

1: Initialize XO:T, L with open loop prediction, initialize O3 = /o. Initialize each yt
to be an object of its own

2: while not converged do
3: Fix XO:N, L, 3
4: for Each measurement yk do
5: Computer posterior pi of being object i:
6: pi oc DP(i)p(uk; 7rj)p(zt; Xt, Li)
7: Assign yt to be maximum likelihood association:
8: y = arg maxi pi
9: end for

10: Fix YO:T
11: for each object i do
12: update class 7r:

13: A (W +- A Wj + Et,k f kg=iR9=j
14: 7ri = ML(Dir(Oi)) t

15: end for
16: optimize XO:T, L with standard SLAM solver with (5.2)
17: end while
18: Remove false positive
19: Vi, delete object i if 7ri(O) > E

Notice each measurement is assigned to be an object by itself in initialization, in

which case M = JYo:T|, thus the total complexity has an upper bound of (9(yo:T 2).

However, when the algorithm converges to fewer and fewer objects, we have M <

IYO:TI. And in the end, M converges to the true number of objects in the scene.

Optimizing poses Updating the Dirichlet distribution parameters /3 and class

probabilities 7r involves counting the assignments of yt. Therefore its complexity

is O(IYo:Tl). Optimizing poses XO:T and L can make use of standard SLAM solvers,

which is polynomial in the number of robot poses IXo:TI and the number of objects

M.

To sum up, the algorithm is polynomial in the number of robot poses XO:T, the

number of objects M and the number of measurements YO:T.
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Table 5-1: Simulated Dataset Overview

5.4 Experiment

5.4.1 Simulation

In the simulation, 15 objects are randomly generated in a 2D plane. They are ran-

domly assigned into 5 different object classes: red diamonds, blue circles, green tri-

angles, yellow stars, and magenta squares. The robot trajectory is manually designed

and passes through the environment several times. Figure 5-5a shows the ground

truth of the generated dataset. At each pose Xt, the robot observes the relative posi-

tion ok and class uk of the objects that are within its field of view. Gaussian noise is

added to the odometry measurements as well as object measurements, see (2.10) and

(2.12). The parameters of the dataset are listed in Table 5-1.

Figure 5-4a shows the object predictions purely based on open-loop odometry.

There is significant amount of variance and drift in the distribution of these predicted

object locations, which obscures the determination of exactly how many objects there

actually are in the environment. The result after the first iteration is shown in Fig. 5-

4b; the nonparametric pose graph clusters the measurements and uses it to correct

robot poses. The total number of objects is reduced to 33. The result after the

second iteration is shown in Fig. 5-4c; the algorithm further reduces the total number

of objects to 20. After three iterations(Fig. 5-4d), the algorithm converges to the true

underlying number of objects, which is 15.

The performance of the proposed nonparametric graph (NP-Graph) is compared

to three existing methods:

1. Frame by frame detection (FbF): each object in each frame is taken as new, and
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field of view 4m, 120 degree

no. of odometry measurements 766
no. of object measurements 1098

odometry noise A(0, 0.022)
measurement noise A((0, 0.12)



(a) Iteration 0,1098 objects

ct 4

0

41

(b) Iteration 1, 33 objects

S +

(c) Iteration 2, 20 objects (d) Iteration 3, 15 objects

Figure 5-4: Result of nonparametric pose graph at different iterations. Initially there are

1098 object detections. The number reduces to 33 after the first iteration, reduces to 20

after the second iteration, and converges to the ground truth 15 after 3 iterations.

there are neither SLAM nor data association (see Figure 5-4a).

2. Open-loop Object Detection (OL) /551: use robot odometry to perform data

association across images, but do not use data association results to correct

robot poses (see Figure 5-5c).

3. Robust SLAM (R-SLAM) /161: back-end algorithm that finds the maximal set

of consistent measurements, but eliminate inconsistent measurements (see Fig-

ure 5-5b).

Figure 5-5 and Table 5-2 compare the SLAM performance of four different al-

gorithms. Figure 5-6 shows the cumulative position error of the robot trajectory.

Figure 5-7 compares the number of objects identified and their localization error.
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Table 5-2: Performance Comparison on Simulated Dataset

mean cumulative percent of number mean
pose trajectory measurements of object
error error used objects error

NP-Graph 0.07 55.1 100 15 0.05
OL 0.42 320.6 100 39 0.39

R-SLAM 0.20 150.5 20.2 5 0.20
FbF 0.42 320.6 100 1098 0.49

FbF and OL purely rely on odometry and do not correct robot poses, therefore have

the biggest error. R-SLAM uses a subset of object measurements to close loops on

robot poses, thus the error is smaller. Our NP-graph based approach make use of all

the object measurements, thus has the smallest error on both robot poses and object

positions. FbF does not do any data association, thus significantly over estimate

the number of objects. The OL approach does not optimize robot poses. When the

robot comes back to a visited place, the odometry has drifted significantly thus the

OL approach could not associate the objects to the same one observed before. As

a result, the OL approach also over estimate the total number of objects. R-SLAM

only keeps one set of consistent measurements for each object classes, therefore it is

only able to detect one instance for each object class, and significantly underestimate

the total number of objects. NP-Graph, on the other hand, utilize all of the object

measurements and jointly infers both robot poses and the data associations, thus can

correctly infer the right number of objects.

5.4.2 Office Environment

To test the performance in real-world scenarios, we collected a dataset of an office

environment and used deep learning to detect objects, such as chair, screen, cups etc.

The statistics about the office dataset is shown in Table 5-3.

Table 5-4 and Figure 5-8 compare the performance of FbF, R-SLAM, PL and our

approach NP-Graph. While the ground truth for object positions is not available

for this dataset, we compare the performance on the number of valid objects, the

number of inlier measurements and the variance on object positions. An object is
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tajectory
class 1 
class 2
class 3
class 4
class 5

(a) Ground Truth

0 *

0

(c) 0OL

(b) R-SLAM

(d) NP-Graph

Figure 5-5: Simulation. Black line represents the robot trajectory. Each marker
color/shape represent an object class. FbF does neither data associate nor SLAM. OL
associate object detection across images but does not optimize robot poses. R-SLAM only
uses a subset of consistent object measurements to optimize robot poses. Our approach
NP-graph optimizes both robot poses and data association.

Table 5-3: Office Dataset

defined as valid when its false positive probability 7r(O) is below a threshold (e 2%),

otherwise it is marked as a false positive. A measurement is denoted as an inlier

when it is associated with a valid object. The object variance is determined from the
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image resolution 640 x480
distance traveled 28.06m

during 167s
no. of odometry 696
no. of objects 30

no. of object detections 1588
odometry noise M(0,0.1))

measurement noise Ai(0, 0.5)



Table 5-4: Performance Comparison on Office Dataset

percentage of number of number of variance
measurement inlier false positive on

inliers objects objects objects

NP-Graph 88.0 31 88 0.058
OL 82.2 36 175 0.121

R-SLAM 22.5 7 0 0.225
FbF 0 0 1588 -

uncertainty in the predicted location of the object from its associated measurements.

From Table 5-4, the NP-Graph has the highest percentage of inlier measurements, the

closest number of objects to truth, and the smallest variance on the object locations.

While the ground truth for robot poses is not available, either, we compare the

performance qualitatively. Figure 5-1 shows the floor map of the environment as well

as the robot trajectory. Figure 5-8 compares the results of 4 approaches. FbF and

OL estimation are open-loop approaches and over estimate total number of objects.

R-SLAM only uses a subset of the object measurements. It can only identify one

instance for each object class, and has bad estimates even it closes loops on robot

poses. On the other hand, NP-Graph is able to close loops on robot poses and

recover the turnings at corners. While there is no ground truth in the office dataset

for computing object localization errors, it is worth noting that there is a sweater

hanging on the shelf in the far bottom left corner, our algorithm is able to recover its

distance while other approaches failed to.

Figure 5-9 shows a few examples of the detected and well associated objects,

which includes chair, screen, keyboard, toy car and the sweater hanging in the back

corner. These figures are extracted from point cloud of a single bounding box that

is associated to the corresponding object. Note that these point clouds are only for

illustration purposes, but not maintained in the algorithm. The algorithm only uses

the centroid of these point clouds as object measurements.
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5.5 Summary

When interacting with natural environments through object recognition, the robot

faces the extra challenge of ambiguous data association. This chapter proposed a

novel nonparametric pose graph that tightly couples the data association and SLAM

problem. An inference algorithm is further developed to alternative between inferring

data association and performing SLAM. Both simulated and real-world datasets show

that our new approach has the capability of doing data association and SLAM simul-

taneously, and achieves better performance on both associating object detections to

unique identifiers and localizing objects.
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Figure 5-7: Comparison of number of objects and mean error on objects. Both FbF and
OL have big error on object positions and overestimate the number of objects. R-SLAM has
much smaller error on object positions, but underestimates number of objects. NP-graph
recovers the true number of objects and has the least error.
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Figure 5-8: Office Dataset. Black line represents estimated robot trajectory. Markers
represent objects. Each color represent an object class. FbF and OL over estimate number
of objects. R-SLAM has bad estimate even it closes loops on robot poses. NP-Graph has
the closest estimate of number of objects, recovers corners in robot trajectory.
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Figure 5-9: Example of detected objects, plotted from a single frame point cloud. From
left to right, top to down are chair, sweater in the corner, screen, keyboard and toy car.
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Chapter 6

Conclusions

6.1 Contributions

When a robot is obtaining large streams of sensing data but only has constrained

resources, it is important to selectively process data and build sparse models. In case

that the robot has specific tasks, the data to retain and model to build should be

directly useful for the robot tasks. This thesis quantifies the usefulness of data and

builds sparse models that can still achieve good navigation and mapping performance.

This thesis first presented a two-stage landmark and measurement selection proce-

dure for resource-constrained robots operating in unknown environments. We specif-

ically focused on the navigation task, but there are many inference and planning

tasks that require a similar prioritization of variables. In this work, we provide a

theoretically sound basis for selecting measurements to localize important variables

preferentially. This is an important capability for many resource-constrained real-

time systems. Simulations and hardware results demonstrate that the approach can

identify a relevant subset of landmarks and accurately localize them to reduce the col-

liding probability with obstacles as compared to existing SLAM reduction approaches.

As a result, the robot is able to navigate the environment for long periods of time,

without the memory or computational requirements growing beyond the constraints.

To enable the robot to actively plan its own trajectories while mapping the envi-

ronment, this thesis further proposed a purely graph-based active SLAM algorithm.
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A novel Topological Feature Graph (TFG) is created that extends pose graphs for

SLAM to include geometry representation of the obstacles. An information objective

is used that directly quantifies uncertainty of a TFG. It captures correlations between

robot poses and landmarks under a unified framework, thus new feature observations

can help close loops and reduce uncertainties on observed landmarks. The exploration

and exploitation naturally comes out of the framework for a given landmark density.

An efficient sampling-based path planning procedure is developed within the TFG,

which enables active SLAM. Experiments showed that the new approach is able to

actively explore an environment with much less resources than existing occupancy

grid based approaches.

To enable the robot interact with natural environments, the third part of the

thesis utilize objects detected via deep learning as landmarks. Object SLAM is chal-

lenging as data association is ambiguous while their locations need to be established

at the same time. A novel nonparametric pose graph was developed that tightly

couples data association and SLAM problems. An algorithm is developed to alter-

nate between inferring data association and performing SLAM. Both simulated and

real-world datasets show that our new approach has the capability of doing data

association and SLAM simultaneously, and achieves better performance on both as-

sociating object detections to unique identifiers and localizing objects than existing

approaches.

6.2 Future Research

In object SLAM, objects are used as landmarks for navigation. However, it does

not include obstacle representation. Future work would investigate the extension of

the object-SLAM framework to represent obstacles explicitly. For example, it may

be possible to use visual features to perform a triangulation of the obstacle surfaces

that are visible to the robot. With such an obstacle representation, the robot may

be able to achieve fully autonomous path planing and sparse mapping in unmodified

environments.
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