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Abstract

The role anthropogenic aerosol particles play in the formation and persistence of ice
clouds remains one of the most uncertain aspects of understanding past, present, and
future climate. Studying how these particles influence ice cloud formation requires
careful measurement of their ice nucleating ability as well as robust uncertainty quan-
tification of experimental results. These measurements and their corresponding un-
certainties form the basis for parameterizations used in climate models to probe how
anthropogenic particle emissions affect climate through ice cloud formation. This type
of investigation can help to inform policy decisions about controls on anthropogenic
particle emissions. This study aims to clarify the human role in the climate system
by 1) developing instrumentation to perform ice nucleation measurements, 2) quan-
tifying the uncertainty associated with these measurements using machine learning
algorithms, 3) incorporating measurements and uncertainty quantification in climate
model simulations, and 4) using the modeled climate response to help inform policy
decisions for anthropogenic particle emissions.
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Chapter 1

Introduction

1.1 Background

Atmospheric aerosols play an integral role in the climate system because they funda-

mentally affect clouds, precipitation, and the atmosphere's radiative budget (Prup-

pacher and Klett, 1997; Seinfeld and Pandis, 2006; Boucher et al., 2013; Stocker et

al., 2013). Aerosol particles scatter and absorb atmospheric radiation at both visible

(short wave) and infrared (long wave) wavelengths. This direct radiative forcing de-

pends on the optical properties of the particular aerosol and on environmental factors

such as the wavelength of incoming radiation, relative humidity, aerosol concentration,

spatial distribution, and atmospheric dynamics (Seinfeld and Pandis, 2006). Aerosol

particles also influence the formation and persistence of various types of clouds in the

atmosphere. Through a process called nucleation, particles provide a surface upon

which water can condense or freeze to form clouds in the atmosphere. A particle that

has induced water condensation is called a cloud condensation nucleus (CCN), and

one that has induced freezing is called an ice nucleating particle (INP). CCN and INP

impacts on climate are a strong function of their microphysical properties in clouds:

because an aerosol particle's effectiveness as a CCN or as an INP directly influences

the formation, persistence, and radiative properties of clouds, it is important to char-

acterize the conditions under which it can nucleate water or ice. Overall, an aerosol

particle's nucleation efficiency depends on physical properties like size, chemical com-
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position, and mixing state, and on the ambient environment (Pruppacher and Klett,

1997; Dusek et al., 2006; Seinfeld and Pandis, 2006; Petters and Kreidenweis, 2007;

Hoose and M6hler 2012).

According to the Intergovernmental Panel on Climate Change 5th Assessment

Report (IPCC AR5), the level of confidence for understanding cloud responses due

to aerosols remains low (Stocker et al., 2013). As seen in Figure B-1 this lack of

understanding is the most significant contributor of uncertainty for radiative forcing

in the climate system. In particular, the glaciation and thermodynamic cloud effects

(described below), which pertain in particular to the formation and persistence of

ice and mixed-phase clouds in the atmosphere, remain among the most uncertain

(Boucher et al., 2013).

Increasing the number of INP in a supercooled liquid water cloud causes it to

glaciate very rapidly due to the difference in the vapor pressures over ice and water.

Unlike the supercooled droplets they replaced, the ice crystals are growing in an

environment that is highly supersaturated with respect to ice, via what is called

the Bergeron-Wegner-Findeisen process (Pruppacher and Klett, 1997). Therefore,

they can reach the critical size required for them to precipitate. This phenomenon is

referred to as the cloud glaciation effect and can effectively convert a non-precipitating

cloud into a precipitating cloud due to increased INP concentrations (Boucher et al.,

2013). However, with higher particle concentrations, supercooled liquid clouds can

exist at colder temperatures: since a given amount of water is spread among more

numerous (but smaller) droplets and since nucleation rates scale with droplet volume,

the decreased droplet sizes can lead to delayed cloud glaciation (Pruppacher and Klett,

1997). It remains uncertain whether increasing the number of INP in ice and mixed-

phase clouds would increase or decrease precipitation because of these competing

effects.

In addition, more particles in a mixed-phase cloud may instead cause cloud water

to be spread among more droplets or ice crystals, and the resulting decrease in hy-

drometeor size would tend to decrease precipitation. However, since smaller droplets

would convectively rise and freeze at higher altitude, this effect could also lead to
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increased latent heat release and result in more vigorous convection and more pre-

cipitation. The magnitudes of these effects and the resulting radiative forcing due to

these cloud responses remain uncertain (Boucher et al., 2013).

Cirrus clouds, which contain only the ice phase, also exhibit a complex depen-

dence of cloud properties on INP concentrations. In these clouds, the sensitivity to

INP concentration exhibits a nonlinearity due to a transition from the homogeneous

(unaided by INP) to heterogeneous (facilitated by INP) nucleation regimes (see be-

low). Therefore, the responses due to aerosols for these clouds also contribute to the

significant uncertainty in understanding cloud radiative forcing (Boucher et al., 2013;

Storelvmo et al., 2013).

Overall, the cold cloud responses to aerosols are among the most challenging cloud

effects to measure. Some of this difficulty arises because cold clouds occur either high

in the atmosphere or near the poles and are very difficult to access. However, since

cold clouds cover between 1/3 and 1/2 of Earth's surface area at a given time, they

are a very important factor in understanding the Earth's climate system (Lynch et

al., 2002). Adding to this difficulty, prediction of ice formation is challenging since

it occurs via several known processes (Pruppacher and Klett, 1997). Depending on

the specific process involved in nucleating ice on a given particle under given condi-

tions, different model parameterizations of ice formation give vastly different results

for cloud particle concentrations (Eidhammer et al., 2009; Storelvmo et al., 2011;

Gettelman et al., 2012). Overall, without further study of the conditions required

for ice nucleation by different pathways in various regimes, it will remain difficult to

model aerosol-cloud interactions and clarify their role in the climate system.

1.2 State of the field

There are several known mechanisms by which aerosols form ice crystals. Homoge-

nous freezing can occur at the coldest temperatures, where aqueous droplets sponta-

neously freeze in the atmosphere to form ice crystals. Empirical observations have

demonstrated that homogenous freezing does not occur above -38 C (Pruppacher
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and Klett, 1997; Koop et al., 2000). Above this temperature, an INP is required for

ice formation to occur. The most common mechanisms by which INP-assisted ice

formation occurs are depicted in Figure B-2. 1) Deposition nucleation occurs when

an INP and water vapor are present below 00C and the environment is supersatu-

rated with respect to ice; in this mode of nucleation, the vapor directly adheres to

the INP and begins growing an ice crystal. 2) Condensation freezing occurs when an

aerosol particle acts as a CCN at supercooled conditions and forms a droplet that

freezes during the process of condensing. 3) Immersion freezing occurs when an INP

acts as a CCN to form a droplet that subsequently freezes at a temperature below

00 C. 4) Contact nucleation occurs when an INP collides with a supercooled droplet,

which then immediately begins to freeze. Different types of aerosols initiate freezing

in different ways and can therefore be classified accordingly (Pruppacher and Klett,

1997; Hoose and M6hler, 2012).

Field studies have indicated that INP are relatively rare in the free troposphere,

with an abundance of ~ 10 L- 1 at temperatures above -40'C (e.g. DeMott et al.,

2003a; DeMott et al., 2010; Ebert et al., 2011; Cziczo et al., 2013a). Historical

studies of INP show that most are lithogenic and insoluble, but more recently, sea

salt, heavy metals, sulfates, organics, and various other particle types have been found

to nucleate ice in the atmosphere (DeMott et al., 2003; Cziczo et al., 2009b; Knopf

et al., 2010; Cziczo et al., 2013a; Knopf et al., 2014). The conditions required for ice

formation have been determined in laboratory studies for many representative upper

tropospheric aerosol types, including mineral dust. The size and type of mineral

influence the ice nucleation conditions (Archuleta et al., 2005; Gallavardin et al.,

2008; Welti et al., 2009; Hoose and M6hler, 2012). Overall, mineral material has

been measured as an effective ice nucleus, with deposition nucleation occurring at ice

saturation ratios of 1.1-1.3 at temperatures below -25'C (M6hler et al., 2006; Welti

et al., 2009; Hoose and M6hler, 2012).

Ice nucleation experiments have utilized many different techniques (Hoose and

M6hler, 2012), including flow tubes to grow droplets (e.g. Cziczo and Abbatt, 1999;

Prenni et al., 2001; Hung et al., 2002; Hung et al., 2003), optical and electron mi-
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croscopy to characterize field samples (e.g. Zimmerman et al., 2007; Zimmerman

et al., 2008; Knopf et al., 2010; Wang et al., 2012; Knopf et al., 2014), differential

scanning calorimetry to measure freezing points (e.g. Zobrist et al., 2006; Ahern et

al., 2007; Koop and Zobrist, 2009), and large chambers to study nucleation at larger

length scales and longer time scales (e.g. M6hler et al., 2006; Crawford et al., 2011;

Kanji et al., 2011; Cziczo et al., 2013b; Amato et al., 2015). There are several signifi-

cant results from these and other experimental studies. For example, variations exist

in the -38 C homogenous freezing level. Organic-rich aerosols may not to freeze at

all, since their nucleation is delayed due to the particles' atypical viscosity and water

uptake at lower temperatures (e.g. Karcher et al., 2005; Murray et al., 2008; Prenni

et al., 2009). Also, the coating state of particles significantly affect their ability to

nucleate ice: sulfates and organics that coat even an excellent INP significantly re-

duce its ability to nucleate ice (e.g. Zuberi et al., 2002; Zobrist et al., 2008; Cziczo et

al., 2009a; Chernoff and Bertram, 2010). Each of these ice nucleation measurement

techniques has its particular advantages and disadvantages. For example, the larger

cloud chambers can investigate cloud-scale processes but are not suitable for field

measurements, and offline techniques allow for more flexible field data collection but

may not replicate atmospheric conditions. Portable cloud chambers offer a means to

bridge the gap between these two types of techniques but such measurements can be

difficult to make.

An area of interest in the field of ice nucleation has been examining the role of black

carbon (BC) as an INP. Multiple laboratory studies of BC have occurred because of is

its presence in the upper troposphere as commercial airplane exhaust and its potential

contribution to the climatic effect of contrails (e.g. Karcher et al., 2007; Demirdjian

et al., 2009; Koehler et al., 2009; Crawford et al., 2011; Tishkova et al., 2011; Boucher

et al., 2013). Much of this work shows that BC does not significantly enhance ice

nucleation (e.g. M6hler et al., 2005; Dymarska et al., 2006; Tishkova et al., 2011).

Also, despite the significant release of BC in the upper troposphere, observations

suggest that it is not an important INP because it is not abundant as ice residuals in

cirrus clouds or contrails (Chen et al., 2000; Froyd et al., 2010; Cziczo et al., 2013a).
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Overall, both field and laboratory studies indicate that mineral-rich and metal-rich

particles, not BC, are the most important type of particle serving as INP, especially

at colder temperatures (Cziczo et al., 2009b; Hoose and M6hler, 2012; Cziczo et al.,

2013a). However, sources of BC that emit mineral-rich and metal-rich particles could

play a major (and hitherto poorly characterized) role in the climate system via serving

as INP. Since such particles are likely to be anthropogenic in origin (Reff et al., 2009),

they may play an important role in how humans are modifying the climate system.

Fly ash particles, the unburnt refractory residuals from coal combustion, may fall into

this category of particle: a significant fraction of BC emissions from coal combustion

exhibit mineral and metallic compositions (Davison et al., 1974; Block et al., 1976;

Damle et al., 1981) and have been observed to nucleate ice in the immersion mode

(Umo et al., 2015).

Cziczo et al. (2009b) show that particles laden with anthropogenic lead nucleate

ice efficiently and may have offset a significant amount of warming associated with

greenhouse gases. Though the long wave cloud forcing from cirrus clouds tends to

exert a net warming effect, shifting ice nucleation to lower altitudes with the higher

abundance of lead-bearing particles is reported to be responsible for this cooling offset

(Cziczo et al., 2009b). Also, Cziczo et al. (2013a) highlight that mineral and metallic

particles are important in ice nucleation. Therefore, since particles containing heavy

metals are likely to have anthropogenic origins (Reff et al., 2009; Cziczo et al. 2009b),

are known to act as efficient INP (Cziczo et al. 2009b; Umo et al., 2015), and are

observed to be present in atmospheric ice clouds (Froyd et al., 2010; Cziczo et al.,

2013a), it is important to consider their effects on cloud formation and ultimately the

climate system.

1.3 Research motivation

Despite the significant amount of work to understand the role of INP in the climate

system, there remain many uncertain aspects of ice nucleation that make it difficult

for climate models to effectively simulate cloud responses to aerosols (Stocker et al.,
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2013). Various studies have constructed model parameterizations to study the effect

of aerosols on cloud formation in a computationally feasible manner (Meyers et al.,

1992, Liu and Penner, 2005; DeMott et al., 2010; Niemand et al., 2012, DeMott et al.,

2015). The earlier studies attempted to use only humidity to determine INP concen-

trations, but more recent parameterizations have also used particle size, composition,

and ambient temperature. However, such treatments often do not capture the full

variability in INP and cloud particle concentrations (Eidhammer et al., 2009, DeMott

et al., 2010; DeMott et al., 2015).

In order to make more reliable model parameterizations, variability in nucleation

conditions and mechanisms requires more careful study. Laboratory work is required

to constrain nucleation conditions of INP and the dependence on freezing mecha-

nisms. Also, further field observations are required, especially outside of the US and

Europe, to constrain global INP concentrations and chemistry. A continuous flow

diffusion chamber (CFDC) instrument is well suited for this kind of work because

it controls aerosol temperature and supersaturation conditions and can measure ice

nucleation in both the laboratory and field (Rogers et al., 1988; DeMott et al., 2003;

Stetzer et al., 2008). Using this kind of instrument, it is possible to examine how

nucleation conditions depend on thermodynamic conditions and particle properties.

These measurements can then be used in parameterizations that better constrain the

uncertainty of the role of INP in the climate system.

This high level of uncertainty in the field of ice nucleation motivates careful uncer-

tainty quantification, especially as errors propagate from observations and measure-

ments into model estimates of the role of INP in climate. Machine learning algorithms

and other statistical techniques therefore provide a useful way to constrain how these

uncertainties affect the laboratory measurements, field observations, and model re-

sults. Such techniques provide a way to process a large amount of data with many

variables and provide insight into the relative importance of these variables. They

also allow for fewer assumptions to be made about data and more flexible experi-

mental methodology, since they readily endogenize multiple sources of uncertainty.

Overall, combining CFDC-type measurements with robust uncertainty quantification
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with machine learning will allow for better representation of measurements in climate

models and provide the tools required to clarify the role of natural and anthropogenic

INP in the climate system.

Anthropogenic particles are generated from a variety of sources and exhibit large

variability in their physical and chemical makeup (Reff et al., 2009), so it is useful to

focus on ones that are rich in heavy metals and have the potential to nucleate clouds

in the atmosphere. To this end, fly ash particles released from coal combustion are

of particular interest. Despite removal from smoke stacks using electrostatic precipi-

tators (Lee et al., 1999), these particles are released in excess of 1000-10000 tons per

year from the US alone (Reff et al., 2009). They contain significant amounts of trace

elements such as lead, barium, chromium, strontium, arsenic, and zinc that are found

to increase dramatically in abundance with decreasing particle size (Davison et al.,

1974; Smith et al. 1979). However, their effects on climate have yet to be quantified

despite significant emissions and compositional potential for forming clouds. There-

fore, understanding the role fly ash plays in the climate system requires laboratory

experiments that measure its ability to interact with water and subsequent modeling

efforts to understand how this behavior can affect the climate.

1.4 This study

This dissertation presents recent efforts to clarify the role of anthropogenic INP emis-

sions in the climate system. It first discusses the SPectrometer for Ice Nuclei (SPIN),

a new commercially-available INP counter, which is intended to lower the entry bar-

rier for making ice nucleation measurements, that was developed as a part of this

thesis research (Chapter 2). The introduction of SPIN as a commercially available

ice chamber facilitates ice nucleation measurements to be made with higher temporal

and spatial coverage, because it will allow many more research groups to perform

online ice nucleation measurements. Next, this dissertation presents a novel imple-

mentation of uncertainty quantification methodology for ice nucleation measurements

that captures biases in past field observations with CFDC-style instruments and prop-
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agates these biases into a global climate model (Chapter 3). It then shows for the

first time how these experimental, data analysis, and modeling techniques can be

used to understand how fly ash particles released from coal combustion affect the

climate system via nucleating ice clouds (Chapter 4). It concludes by discussing the

policy implications of these climate effects in the context of the recent Paris Agree-

ment (Chapter 4) and by motivating future work to improve the understanding of

anthropogenic INP and climate (Chapter 5).
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Chapter 2

The SPectrometer for Ice Nuclei

(SPIN): An instrument to

investigate ice nucleation

This chapter is adapted from a journal article with the same title that has been accepted

for publication in Atmospheric Measurement Techniques.

Abstract

The SPectrometer for Ice Nuclei (SPIN) is the first commercially available ice nucle-

ating particle (INP) counter. Arising from a partnership between researchers at the

Massachusetts Institute of Technology and engineers at Droplet Measurement Tech-

nologies, SPIN is a continuous flow diffusion chamber with parallel plate geometry

based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Cham-

ber. This study presents a standard description for using the SPIN instrument and

also highlights methods to analyze measurements in more advanced ways. It charac-

terizes and describes the behavior of the SPIN chamber, reports data from laboratory

measurements, and quantifies uncertainties associated with the measurements. Ex-

periments with ammonium sulfate are used to investigate homogeneous freezing of

deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX
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illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN

nucleation results are compared to those from the literature. Also presented is a

machine learning approach for analyzing depolarization data from the SPIN Optical

Particle Counter. Overall, we report that the SPIN is able to reproduce previous INP

counter measurements. In addition, the introduction of a commercially available INP

counter lowers the barrier for entry into making online ice nucleating measurements,

which will facilitate the proliferation of ice nucleation research.

2.1 Introduction

Aerosol particles facilitate the nucleation of cloud droplets and ice crystals in Earth's

atmosphere (Pruppacher and Klett, 1997). Ice nucleating particles (INP) enable the

formation of ice crystals via several possible mechanisms, including deposition nucle-

ation, immersion freezing, and contact freezing (Rogers, 1989; Pruppacher and Klett,

1997). Droplets freeze homogeneously below temperatures of - -38'C, including del-

iquesced haze droplets which do so below water saturation at such cold temperatures

(Koop et al., 2000). Because of the complexity of the ice nucleation process, under-

standing INP interactions with water has been difficult (Hoose and M6hler, 2012;

Boucher et al., 2013; Stocker et al., 2013). Despite this difficulty, the significant in-

fluence that mixed-phase clouds and ice clouds have on the Earth's radiative budget

and hydrologic cycle makes understanding the microphysics of cloud formation an

important step in quantifying their influence on climate (e.g. Storelvmo et al., 2011;

Hoose and M6hler, 2012; Tao et al., 2012; Gettelman et al., 2013).

Laboratory measurements allow for the investigation of ice nucleation at specific

conditions with controlled aerosol properties and provide insight into ice formation

as it occurs in the atmosphere. Several types of instruments have been developed to

measure the efficiency of heterogeneous nucleation of cloud droplets and ice crystals.

Many of these have applicability for measurements in the laboratory, as well as in-

tended application for field observations. Among these instruments, the Continuous

Flow Diffusion Chamber (CFDC) (Rogers, 1988) has proven a useful tool to mea-
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sure the conditions required to nucleate ice crystals on various INPs. Studies have

been conducted on different nucleation and freezing mechanisms using many types of

aerosol particles under a wide range of temperatures and relative humidities (RHs)

(Rogers, 1988; Salam et al., 2006; Stetzer et al., 2008). Improved versions of the orig-

inal cylindrical chamber described by Rogers (1988) have been successfully deployed

in ground and aircraft based field campaigns (Chen et al., 1998; DeMott et al., 2003a;

DeMott et al., 2003b). One contemporary (parallel plate) design is the Zurich Ice

Nucleation Chamber (ZINC) (Stetzer et al., 2008), which has been used for several

laboratory studies (e.g., Welti et al., 2009; Welti et al., 2014). The Portable Ice Nucle-

ation Chamber (PINC), designed as a field-deployable version of the ZINC, has since

been used to conduct several laboratory and field studies (Chou et al., 2011; Chou et

al., 2013; Kanji et al., 2013). In addition, other research groups have also developed

similar chambers (Kanji et al., 2009; Kulkarni et al., 2009; Friedman et al., 2011;

Jones et al. 2011; Saito et al., 2011). Adapting the parallel plate design and other

features from the ZINC and PINC chambers, the SPectrometer for Ice Nuclei (SPIN)

is a commercially available ice nuclei counter manufactured by Droplet Measurement

Technologies (DMT) in Boulder, CO. This study characterizes the behavior of the

SPIN chamber and reports data that characterize the general instrument design and

performance.

2.2 Instrument theory and design

2.2.1 Operating principles

CFDCs, such as the SPIN, are used for ice nucleation measurements by exposing

aerosol particles to' controlled temperature and RH conditions. The chamber walls

(which are parallel plates in the SPIN chamber) are coated with a thin layer of ice

(~1 mm thickness in the SPIN chamber, as inferred from the volume depleted from

the water reservoir after icing). The water vapor partial pressure directly adjacent

to the ice wall is the saturation vapor pressure over ice at the given ice wall temper-
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ature. A laminar air stream flows between the plates, and if the plate temperatures

are different, water vapor and heat diffuse from the warmer to the colder wall. This

idealized setup leads to linear profiles of water vapor partial pressure and temperature

between the two walls. The exponential dependence of saturation vapor pressure on

temperature, according to the Clausius-Clapeyron relation, leads to supersaturated

conditions with respect to ice between the two walls, with a maximum close to the

position of the aerosol lamina (Rogers, 1988; Stetzer et al., 2008). Aerosol particles

are constrained within this lamina and surrounded by two sheath flows passed along

each wall. This restricts the aerosol to a narrow range of temperature and supersat-

uration at which ice nucleation can take place. An example of the chamber flow and

thermodynamic profile is shown in Figure B-3.

A sufficient temperature gradient between the walls results in the water vapor

partial pressure in the aerosol lamina exceeding the saturation vapor pressure over

liquid water. In this case droplets, in addition to ice, can nucleate on the aerosol

particles. Though droplets can be identified using a depolarization optical particle

counter (OPC) (such as the SPIN detector described in Section 2.2.2), increasing

the size difference between droplets and ice helps in distinguishing the two phases.

To accomplish this, CFDC chambers employ an evaporation section after the main

chamber (Figure B-4) to shrink or eliminate droplets while retaining ice crystals. The

ice walls in the evaporation section of the chamber are isothermal so the water vapor

partial pressure is equal to the saturation vapor pressure over ice. Droplets are there-

fore unstable and shrink in a manner akin to the Bergeron-Wegner-Findeisen process

(Rogers, 1988; Pruppacher and Klett, 1997). Depending on their residence time in

the evaporation section, droplets over a critical size will not evaporate completely

and are large enough to be detected by the OPC. The main chamber conditions that

generate droplets over this critical size are termed droplet breakthrough. These con-

ditions are quantified for the SPIN chamber in experiments described in Section 2.2.4

and represent an upper RH limit for ice nucleation experiments if droplets and ice

crystals are indistinguishable.
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2.2.2 SPIN chamber design

Figure B-5 shows a diagram of the SPIN system, illustrating the refrigeration, air flow

control, and water flow control components. The temperatures of the two chamber

walls and the evaporation section are controlled using compressor-driven refrigeration

systems and heater strips affixed to the walls. The warm wall and evaporation section

are cooled using a single-stage (with R404A refrigerant) refrigeration loop, while the

cold wall is cooled using a two-stage (with R404A first stage refrigerant and R508B

second stage refrigerant) refrigeration loop. Ten solenoid valves (four for the warm

wall, four for the cold wall, and two for the evaporation section) with proportional-

integral-derivative (PID) control are used to regulate refrigeration. Thirty 30 W

heater strips (twelve on the warm wall, twelve on the cold wall, and six on the

evaporation section) are used to minimize deviations of temperature from the set point

by applying heating via twenty-six independent PID controllers (twelve for each of

the warm and cold walls and two for the evaporation section). T-type thermocouples

that are inserted into the walls and affixed with thermal epoxy are positioned at

sixteen locations on each chamber wall and two locations on the evaporation section

to map variability in temperature (Figure B-4). The chamber itself is machined from

aluminum components, with the inner chamber walls sandblasted for wettability, and

junctions are sealed with rubber gaskets. The plate-to-plate distance in the un-iced

chamber is 1 cm, which is reduced on average to -8 mm with the ice layer. Qualitative

inspection with an endoscope camera indicates that the ice layer is thicker towards the

bottom of the chamber and thinner towards the top. The ratio of the main chamber

length to the evaporation section length is 4:1.

A hepa-filtered and dried (using molecular sieve desiccant) sheath flow along each

wall is circulated through the chamber using a pump and mass flow controller (MFC).

Sample air is drawn into the system by an additional pump. The incoming sample air

is drawn into the sheath flow using a knife-edge inlet similar to the one used in the

ZINC (Stetzer et al., 2008), which splits the sheath into two flows that move along

each wall. The knife-edge also focuses the particle flow to the center of the chamber,
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which in laminar flow conditions, limit the temperature and supersaturation range

experienced by the particles. Figure B-4 shows the dimensions of the main chamber

and evaporation section.

After passing through the main chamber and evaporation section, the air stream

flows through a linear depolarization OPC that uses four optical detectors for count-

ing, sizing, and differentiating unactivated aerosol particles, droplets, and ice crystals

in the 0.4 - 15 pm size range. Figure B-6 shows the optical diagram of the OPC. The

side scatter detector is used for particle sizing by total scattering intensity, and the

backscatter detectors are used to measure P (parallel to the incident laser light) and

S (perpendicular to the incident laser light) polarization for phase discrimination:

ice crystals depolarize more light than water droplets because of anisotropy of ice

compared to liquid water (e.g. Wettlaufer et al., 1999; Thomson et al., 2009), and

this change in depolarization signal is used to differentiate the two phases (Liou and

Lahore, 1974; Nicolet et al., 2010; Clauss et al., 2013; Nichman et al., 2016). The

OPC laser (Osela ILS-640-250-FTH-1.5MM-100uM) is a continuous wave 500 mW

670 nm laser with a top-hat beam profile. One of two sets of backscatter optics has a

polarizing beam splitter and measures backscattered light in both P and S polariza-

tions (P1 and S1, respectively). The second set of backscatter optics measures only

the P polarization (P2). The detection angle of both sets of backscatter optics is

centered at 135' and has a half angle of 200.

LabVIEW software is used for instrument control and data acquisition. The SPIN

software program consists of several different loops and sub-programs and allows for

significant automation during operation. User control of the various SPIN compo-

nents, including the compressors, valves, and detector is also performed and auto-

mated through the LabVIEW interface. Individual actions, such as toggling valves,

as well as sequences, such as icing the chamber walls, are controllable through soft-

ware. The software also includes functionality to create custom sequences, allowing

for the majority of operations (including system and compressor startup, cooling the

chamber, icing the walls, and running the activation experiments described in Sec-

tion 2.3.1) to be automated for increased experimental reproducibility. High data
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load corresponding to large OPC concentrations will cause a drop counting efficiency:

for 1 Lpm sample flow, this corresponds to particle counts higher than -3900 cm- 3,

above which additional particles are not recorded. In addition to the foreground

sequences initiated by the user, background sequences can also be run to monitor

instrument performance. With remote access enabled through virtual network com-

puting (VNC) software (separate from the LabVIEW software), much of the chamber

operation can be performed remotely. In particular, starting the compressors, cooling

the chamber, icing the chamber, switching the chamber inlet and outlet valves, and

controlling chamber conditions can be preformed remotely through VNC, but refilling

the water reservoir, installing/removing the OPC, and switching other valves must

be performed on site.

2.3 Methodology

2.3.1 Experimental methods

Before beginning experiments, the chamber is dried, cooled, and the walls are coated

with ice. This is accomplished by first flowing dry nitrogen through the chamber

via the sample and sheath flow inlets to remove residual moisture; the flow exiting

the chamber outlet is routed through a dew point sensor (Vaisala DMT152 dewpoint

transmitter), so the moisture content of the chamber can be directly measured to

ensure the dew point is below -40'C. The compressor system is then activated to

cool the chamber (both walls of the main chamber and evaporation section) to the

icing temperature of -25'C. Before icing, the double distilled deionized 18.2 MQ

Millipore (DDI) water in the reservoir is cooled to ~ 2'C to reduce strain on the

refrigeration system during icing and to ensure that the wall temperatures do not

exceed 00C over the course of the icing process. With the water reservoir attached

to the two-way water pump, the icing sequence is activated in the software. This

sequence controls the filling and emptying of the chamber with DDI water to form

the ice layers. The ice dwell counter in the software specifies the amount of time the
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chamber is filled with water and is typically set to 5 s. During and after the icing

sequence it is critical to prevent moist room air from entering the chamber, which

can cause non-uniform ice on the chamber walls via the formation of frost. This is

accomplished by flowing dry air or nitrogen through the sample and sheath flow inlets

while allowing the excess flow pressure to be released into the room upstream of the

chamber inlets. The entire filling sequence typically lasts - 5 min. The difference in

the volume of water in the reservoir before and after the icing process is used to infer

the amount of ice formed, and this difference is typically - 1.25 L. After the ice layer

has been formed, the dry nitrogen flow through the chamber is continued to ensure

that no frost accumulates in the chamber. Subsequent installation of the detector and

activation of the sheath pump allows for assessment of background frost counts that

may bias the reported INP concentrations. This background concentration (typically

between a few counts to several 10s of counts L- 1 ) influences the lower detection limit

of INP.

Once the chamber is iced and has a sufficiently low background, it is ready to

perform INP activation experiments. This is accomplished in one of two main ways:

(1) ramping the wall temperatures to determine the temperature and/or supersatu-

ration dependent ice crystal concentration or (2) keeping the walls at different but

constant temperatures to measure the temporal variability of ice crystal concentration

at desired temperature and supersaturation conditions. For the former, increasing the

temperature gradient between the walls increases the chamber supersaturation, and

decreasing the gradient decreases chamber supersaturation. Ramping both wall tem-

peratures allows for temperature scans at the same supersaturation. For experiments

in this study, the evaporation section temperature is set to be the same as the average

aerosol lamina temperature. Also, in all cases the OPC reports side scatter (sizing)

and backscatter (depolarization) spectra to infer size, concentration, and phase of

counted particles.

Frost backgrounds are typically higher in the SPIN chamber at higher supersatu-

rations, and the presence of frost in the chamber can lead to data artifacts. Therefore,

periodically measuring the background frost counts with no particles in the chamber
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(by setting the inlet valve to the filter position for 3-5 minutes) is an important proce-

dure during activation experiments (described below). For converging and diverging

wall temperature ramps (with typical ramp rates of dRH/dt at 2% min-1 ), this check

is performed at the beginning and end of each ramp. For constant supersaturation

experiments, this check is performed at fixed time intervals, typically twice per hour.

Experiments are automatable using sequences in the SPIN software. These sequences

automate the periodic background checks as well as controlling the wall temperature

set points. The background concentration increases over time as vapor is transferred

from the warm wall to the cold wall, leading to irregularities in the ice layers: as a

result, the experiment must be ended once it no longer meets the background levels

required for the particular experiment. The exact time this occurs depends on the

particular operating conditions for an experiment but is typically after 2-5 hours of

operation. For example, if a laboratory experiment with 10 INP cm 3 were to report

activated fractions at the 1% level, it would require a background of no more than

100 counts L- 1 . If the temperature gradient between the warm and cold walls is large

(e.g. larger than ~ 10-15'C, depending on the actual temperatures) the buoyancy of

the air adjacent to the warm wall is expected to overcome the mean flow and causes

(upward) flow reversal along the warm wall (Rogers, 1988). The dashed line in the

top panel of Figure B-7 shows the ice saturation ratio (Sie) above which flow reversal

is possible according to the calculations from Rogers (1988), and the bottom panels

show two examples of normal and reversed flow profiles. If flow reversal interferes

with the aerosol lamina, the chamber behavior may deviate from ideality (Rogers,

1988; Stetzer et al., 2008). Increasing the sheath flow combats flow reversal, but it

decreases the residence time of particles in the chamber, which reduces nucleation

and crystal growth efficiencies (Rogers, 1988).
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2.3.2 Data processing methods

Standard use

The temperature and supersaturation conditions in the chamber are calculated as-

suming a linear temperature and water vapor partial pressure gradient between the

walls. The width and location of the aerosol lamina (and therefore the range of tem-

peratures and supersaturations experienced by the aerosols) is calculated extending

the method from Rogers (1988) using the reported values for wall temperatures (at

all thermocouple locations), sheath flow rate, and sample flow rate. The thickness of

the ice layer where particles nucleate is assumed to be negligible in the calculations,

since the nucleation region (at the top of the chamber) has a much thinner ice layer

than the chamber average. This approach provides a basis for calculating chamber

conditions at each pair of thermocouples (on the warm and cold wall, respectively, at

a given location). The flow rates and temperature conditions are used to calculate

the velocity profile, and the ratio of the sample flow rate to the total flow rate is used

to determine the width of the aerosol lamina (Rogers, 1988; Kulkarni and Kok, 2012).

Since a velocity profile calculation is part of this procedure, the fraction of reversed

flow is known.

The above calculations provide temperatures and supersaturations as a time series

along with the size distributions and depolarization signals measured by the OPC,

which provides four values (one from each of the detectors) on a single particle basis.

The number of aerosol particles that have activated into ice crystals or droplets in

the standard use case is based on a size threshold, typically 3-5 pm, above which only

particles that have nucleated into droplets or crystals exist. Droplet breakthrough

conditions represent an upper RH limit for the standard use case because nucleated

droplets and ice crystals may be indistinguishable based on size alone. Experimen-

tally determined droplet breakthrough thresholds are presented in Section 2.2.4. A

condensation particle counter (CPC) is typically used in parallel to SPIN to measure

the concentration of particles entering the chamber, so the estimate of the number of

ice crystals from above is used to infer activated fractions by dividing the ice crystal
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concentration by the total particle concentration entering the chamber.

Advanced use

In the advanced use case, the number of aerosol particles that have activated into ice

crystals or droplets is inferred in post-processing from classification of the particle-

by-particle (PbP) data in the four-dimensional OPC parameter space via supervised

machine learning (ML) (Mohri et al., 2012). This process is described below and

illustrated in Figure B-8 for an example freezing experiment. Please note that the

ML procedure described in this section is not an out-of-the-box functionality of the

SPIN software but rather a method developed by the authors to utilize the instrument

in more advanced ways.

CFDC OPC data has historically been analyzed using post-evaporation section

particle size as the sole determiner of activation into ice or droplets, since ice crys-

tals grow to be much larger than the seed particles (e.g. Rogers et al., 2001; De-

Mott et al., 2010; Chou et al., 2011). If particles larger than a certain size are

assumed to be ice crystals, then it must either be assumed or imposed that all

aerosol particles are smaller than the ice size and that droplets above that size

do not survive the evaporation section. In order to meet this constraint, particle

impactors are often used to prevent the largest (and potentially most ice active)

particles from entering the CFDC (e.g. Rogers et al., 2001; DeMott et al., 2010;

DeMott et al., 2015). Also, if the main chamber is supersaturated with respect to

water, the aerosol particles may activate into droplets. The evaporation section is

designed to avoid counting these droplets in the OPC, but it will cease to evap-

orate droplets completely above a threshold (temperature-dependent) supersatura-

tion level. This droplet breakthrough threshold typically provides an upper limit

for measurable supersaturation, above which droplets must be differentiated from

ice crystals, and it marks the upper RH limit for traditional CFDC operation and

data analysis. However, the addition of depolarization data and analysis using super-

vised ML algorithms allow for this size assumption to be relaxed, since all detected

particles are classified by phase and the uncertainty associated with this classifi-
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cation is quantified (see below). In general, this ML approach provides accurate,

reproducible, and uncertainty-quantifying analysis of the OPC data using preexist-

ing MATLAB libraries (http://www.mathworks.com/help/stats/classification.html;

http://www.mathworks.com/matlabcentral/fileexchange/41187-fast-kernel-density-

estimator--multivariate-). It also requires fewer assumptions to be made about par-

ticle classification and allows more flexibility in experimental design.

Supervised ML algorithms for classification are used to assign new data to pre-

determined classes based on the similarity of the new data to each of these classes

(Mohri et al., 2012). The different output classes in the SPIN OPC data are aerosol

particles, water droplets, and ice crystals. These classes must have training data

that correspond to a known class (Mohri et al., 2012). However, the SPIN OPC data

from an activation experiment typically contains mixtures of these classes rather than

the pure end members, so choosing the data that correspond to a class is performed

statistically. In particular, training data is sampled from a subset of the data that

represents the different classes.

In order to inform this sampling, Kernel Density Estimation (KDE) (Rosenblatt,

1956; Parzen, 1962) is used to create probability density functions (PDFs) of the data

in various time intervals. Using the KDE approach to sample training data factors

in the relative likelihood that a given class of particle (aerosol, droplet, or ice) will

appear in an area of the parameter space. This approach takes into account the

structure of the underlying PDFs of the training data to incorporate training data

uncertainty into estimates of classification uncertainties.

The SPIN OPC reports four intensity count values (size, S1, P1, and P2) in the

PbP data, and KDE with automatic bandwidth estimation is used to create a four di-

mensional Gaussian mixture model (GMM) (McLachlan and Peel, 2000) of the PDFs

(one dimension corresponding to each of the intensity count values from the SPIN

OPC) in this particle data following the method of Kristan et al. (2011). Figure

B-8 shows data from an illite NX freezing experiment at -40'C with ramping su-

persaturation. Specifically, Figure B-8a shows PbP data from the beginning of the

experiment during an aerosol only time interval (time 1, when only aerosol particles
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are present in the chamber). It also shows the corresponding KDE: for ease of visu-

alization the 2D GMM-KDE in S1/P1 vs. size parameter space shown in lieu of the

full 4D GMM-KDE used in the analysis. Figure B-8b similarly shows data and the

GMM-KDE during an aerosol + ice time interval (time 2, at a supersaturation higher

than that required for the onset of ice formation where both particles and ice are

present). The PDF in Figure B-8a is deconvolved from the one in Figure B-8b and is

used to create a residual PDF, which is then used to inform the weighted sampling of

data from time 2 to create training data for the ice only output class (corresponding

to the region of the parameter space only ice crystals occupy, Figure B-8c). The data

corresponding to the aerosol only (Figure B-8a) and ice only (Figure B-8c) classes are

then used to train a supervised ML algorithm. In this example, a Gaussian kernel

support vector machine (SVM) (Mohri et al., 2012) is used, and classification uncer-

tainties are quantified via 5-fold cross validation of the training data (Figure B-8d).

Once trained, the SVM classifies the OPC data from an experiment with a known

missed classification percentage (Figure B-8e).

As in the standard use case, a CPC is used in parallel to SPIN to measure the

concentration of particles entering the chamber, so the estimate of the number of

ice crystals from above is used to infer activated fractions by again dividing the ice

crystal concentration by the total particle concentration entering the chamber.

Figure B-9 shows an extension of this approach to discriminate aerosol particles,

water droplets and ice crystals using an application of 3-class supervised ML (Mohri

et al., 2012). Bootstrap aggregated decision trees (Breiman, 1996) are used for the

classification instead of SVM in this case, because this classification algorithm out-

performs SVM in terms of classification error in the 3-class case: both algorithms are

operationally interchangeable, so the better performing one with respect to classifi-

cation error was chosen. This example shows a (dry-generated, polydisperse) silver

iodide (AgI) activation experiment at -17'C where the chamber RH is increased.

Though a 4D parameter space is again used for this classification, Figure B-9a shows

only three of the PbP data dimensions along with 2D projections at the axes limits

to illustrate the portions of the parameter space occupied by each class. With this

43



approach, the concentrations (Figure B-9b) and fractions (Figure B-9c) of ice crys-

tals and water droplets along with classification uncertainty is reported as a function

of chamber conditions (note that evaporation section reduces droplet fractions, even

above the droplet breakthrough point). The time series data are corrected for back-

ground frost by quantifying the frost counts that are classified as ice crystals by the

algorithm. At the subsaturated RH conditions in Figure B-9c, data with lower error

bars that are not greater than zero show activated fractions that are statistically in-

distinguishable from zero. Overall, with the large datasets (up to thousands of data

points per second) generated by the SPIN OPC, particle classification is performed

in a reproducible manner with classification accuracies of 95.0-99.9%.

Once similarly large datasets are generated for field measurements in future stud-

ies, ML classifiers can be used for distinguishing frost from real ice in the field. Also,

the general ML approach can be used for other instruments with size-only data: for

example, an SVM that uses size only would find the optimal size (by maximizing

the margin between ice and aerosol training data) to distinguish the two classes and

quantify the uncertainty associated with choosing this size via cross-validation.

2.4 Results and comparisons to literature

To evaluate the performance of the SPIN OPC, sizing and detection experiments are

performed with different sizes of monodisperse spheres. Glass beads, polystyrene latex

spheres, and melamine resin spheres are used for the characterizations. The results

from these calibrations are shown in Figure B-10, and illustrate how the SPIN OPC

sizes particles (Figure B-10a). The sizing behavior follows a power law fit for particle

sizing between 0.5 and 11 Mm. Smaller particles scatter the laser light less efficiently,

and rapidly decreasing detection efficiency with decreasing size is observed for sub-

micrometer particles (Figure B-10b). In the super-micrometer size range (where ice

crystals are expected to be present) the counting efficiency is very close to 1.

To evaluate the behavior of the SPIN chamber, several types of freezing exper-

iments are reported. Specifically, 200 nm (nebulized, dried, and mobility selected)
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ammonium sulfate (AS) aerosol is used to determine the droplet breakthrough line

and to compare the deliquesced haze droplet homogeneous freezing points reported

by SPIN to literature values. Also, polydisperse, dry-generated NX illite and AgI

(Sigma Aldrich > 99%, with a narrow mobility size distribution between 200-300

nm) particles are used to investigate the heterogeneous ice activation for comparison

to literature (note that the purity levels of AgI in previous studies is unknown). The

homogeneous freezing results shown in Figure B-11 suggest that the temperatures and

supersaturations reported by SPIN are indicative of the real conditions in the cham-

ber. Similarly, the results from the heterogeneous freezing experiments are shown in

Figure B-12 and indicate freezing occurs in the expected regions of phase space for

the different seed particles.

AS data is used to characterize SPIN's behavior in humid (near or above water

saturation) conditions across a wide range of temperatures. AS freezing experiments

at colder temperatures compare the chamber performance to the well-characterized

homogeneous freezing behavior of deliquesced haze droplets. Though solid AS has

been observed to nucleate in the deposition mode (Abbatt et al., 2006), this effect

is negligible for the temperatures and activated fractions considered in this study.

The data in Figure B-11 show that this behavior is captured in both temperature

and RH ramps and occurs in the expected region of phase space. They demonstrate

that droplets in SPIN begin to freeze when the chamber temperature falls below

~ -38 C and that homogeneously frozen ice crystals begin to disappear above this

temperature. Similarly, the RH ramp data show that supercooled aqueous AS haze

droplets freeze at RH levels similar to those predicted by the Koop et al. (2000)

line for a homogeneous nucleation rate coefficient J = 10" cm-' s-1. The effects of

multiply charged particles is also negligible because the uncertainty contributed by

these particles on expected homogenous freezing supersaturation (t ~ 1% RH using

the relevant values from Koop et al. (2000)) is smaller than the other measurement

uncertainties of these experiments ( ~ 5% RH).

At warmer temperatures, homogeneous freezing does not occur, so AS is used to

measure SPIN's droplet breakthrough threshold. Though post processing of the PbP
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detector data can distinguish droplets from ice (Section 2.3.2), droplet breakthrough is

quantified using AS (which is much more hygroscopic than many INPs) and provides

a conservative (lower RH) estimate for where this occurs. The measured droplet

breakthrough line indicates that SPIN's evaporation section extends (a few percent

above water saturation) the region of phase space where experiments can be performed

without needing to differentiate droplets from ice crystals.

AgI, despite not being found in the atmosphere, nucleates very efficiently in the

deposition mode across a range of temperatures and provides a benchmark to assess

chamber performance (e.g. Detwiler and Vonnegut, 1981; Stetzer et al., 2008). The

SPIN results shown in Figure B-12 match literature data across a wide temperature

range and demonstrate that SPIN accurately captures ice nucleation at warmer tem-

peratures where there are many atmospherically relevant INP that activate into ice

crystals. In addition to AgI results, heterogeneous freezing results for NX illite and

kaolinite are also included, because they are commonly used surrogates for atmo-

spheric dust, which is important for ice nucleation at colder temperatures (DeMott et

al., 2003b; Welti et al., 2009; Cziczo et al., 2013a). Unlike AgI, NX illite and kaolinite

show a strong temperature dependence in freezing behavior and nucleate ice much

less efficiently at temperatures warmer than - -35 C. Previous investigation of these

materials has shown this transition (e.g., Welti et al., 2009), and the SPIN data in this

study also capture this temperature dependence. Additionally, the coldest illite data

points demonstrate that SPIN can access temperatures in the cirrus cloud regime.

Figure B-13 shows SPIN performance during an exemplary ambient measurement

taken in Cambridge, MA on April 14th, 2016 with an aerosol temperature of ~ -30 0 C

and water saturation ratio (Sue) of 1.05 (reported lamina temperature was -30.7'C

0.2'C and lamina Siq was 1.05 0.01 over the measurement period). Polydisperse

ambient aerosol was sampled through an inline molecular sieve dryer with no upstream

impaction. The SPIN sheath flow was provided from a dry nitrogen cylinder (instead

of recirculating flow through a dryer) to minimize frost. Assuming a 5 Am threshold

for ice yields 13-40 INP L- 1 in the measurement periods and 3-9 frost counts L-

during the filter periods: the INP concentration adjusted for frost was then 9-36 INP
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L over the entire measurement period.

2.5 Measurement uncertainty

With a CFDC instrument, there are various sources of uncertainty that influence

experimental results (e.g. Rogers, 1988; Stetezer et al., 2008). Uncertainties in wall

temperatures, flows, numbers of counted ice crystals, flow reversal, and other de-

viations from ideality must be considered when interpreting results from a CFDC

chamber. In SPIN, wall temperatures are recorded at sixteen locations on each wall.

The aerosol lamina temperature and supersaturation conditions are calculated based

on the measurements at these locations, providing a way to infer the variations in

thermodynamic conditions experienced by the aerosol. Since the three bottommost

thermocouples are strongly coupled to the evaporation section and occupy the tran-

sition region between the moist main chamber and dry evaporation section, only the

top thirteen thermocouples are used for reporting average chamber conditions. There-

fore, uncertainty in chamber conditions is reported as the standard deviation of the

lamina temperature and RH at these thirteen locations. Variability in the wall tem-

peratures depends on operating conditions (but typically has a standard deviation of

0.5-2 C), and these variations must be included in uncertainty estimates. Along with

these temperature gradients, variations in temperature and supersaturation across

the width of the aerosol lamina are sources of uncertainty in SPIN measurements.

The width of the aerosol lamina itself can be a source of uncertainty (Garimella et

al., 2015), and merits investigation in future work. For the purposes of this study,

misclassification error from the ML approach is used for reporting uncertainties in ice

crystal concentrations and activated fractions.

Computational fluid dynamics (CFD) calculations in this section are used to ex-

plore how closely simulated chamber conditions match ideality. Figure B-14 shows

results from ANSYS Fluent CFD modeling (Fluent, 2015) of the SPIN chamber. Sev-

eral simulations were performed and results from two of these are shown. Specifically,

the left column in Figure B-14 shows results for nominal lamina temperature of -40 C
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and lamina Sice at 1.3, and the right column shows results for nominal lamina temper-

ature of -30'C and lamina Si,, at 1.1. Overall, simulated chamber temperature, RH,

and flow velocity match the ideal case predicted by Rogers (1988) for these and other

Fluent experiments. Flow reversal along the warm wall (Figure B-7) is also observed

in high RH simulations, but as with the physical experiments, this effect does not

appear to have an appreciable influence on the aerosol lamina conditions beyond that

which is predicted by Rogers (1988) model. Since the analytical and CFD models

show qualitatively similar flow reversal, this effect is accounted for when reporting

chamber conditions with the analytical model. Furthermore, agreement between the

homogeneous freezing data and expected homogeneous freezing conditions provides

evidence, similar to that shown by Richardson (2009), that this effect does not bias

results since these experiments are performed where the largest degree of flow reversal

is expected.

2.6 Conclusions

This study outlines the operating principles, chamber design, and experimental results

from the SPIN chamber, a commercially available CFDC chamber manufactured by

DMT. The results from this study evaluate the SPIN chamber performance using a

variety of experimental tests and CFD modeling.

The introduction of SPIN as a commercially available ice chamber is similar to the

introduction of the DMT Cloud Condensation Nuclei Counter (Roberts and Nenes,

2005; Lance et al., 2006), potentially allowing these measurements to be made with

higher temporal and spatial coverage. In addition, the methodologies highlighted in

this study facilitate performing INP measurements with increased experimental flexi-

bility and reproducibility and also with fewer assumptions in the analysis. In particu-

lar, the addition of a depolarization detector coupled with supervised ML algorithms

for data analysis allows for robust determination of particle phase with uncertainty

quantification. These results motivate future work to extend the ML approach to

field data analysis and to intercompare the SPIN chamber performance with other
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INP counters in the laboratory and in the field. The experiments presented in this

study illustrate SPIN's measurements of freezing behavior of both the heterogeneous

and homogeneous regimes and demonstrate that the SPIN chamber reproduces freez-

ing data measured in previous studies. The AgI measurements span a wide range of

temperatures, extending to regions where the more efficient atmospheric INP would

activate into crystals. The NX illite and kaolinite measurements demonstrate that

SPIN measures into the heterogeneous freezing portion of the cirrus cloud regime and

also captures the temperature dependence of mineral dust ice activity. The AS exper-

iments provide an estimate of the droplet breakthrough level of the SPIN chamber at

warmer temperatures, and at colder temperatures shows that homogeneous freezing of

deliquesced haze droplets occurs in agreement with previous experiments and theory.

By using an uncertainty quantifying OPC analysis technique, recording high spatial

resolution temperature measurements along the chamber walls, and investigating the

chamber conditions using CFD modeling, the main sources of uncertainty in SPIN

measurements have also been studied.

Overall, the SPIN chamber reproduces laboratory data measured by previous

CFDC chambers, and the uncertainties in the measurements have been investigated.

The commercial availability of such an instrument may allow for increased coverage

of INP measurements that will help constrain the influence of ice nucleation on the

atmospheric radiation budget and the initiation of precipitation, thereby leading to a

better understanding of the impact of ice formation on the Earth's climate and water

budget.
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Chapter 3

How uncertainty in field

measurements of ice nucleating

particles influences modeled cloud

forcing

Abstract

This study investigates the systematic low bias in field measurements of ice nucleat-

ing particles using continuous flow diffusion chambers. Such instruments have been

deployed in the field for decades to measure the formation of ice crystals using ambi-

ent aerosol populations. These measurements have, in turn, been used to construct

parameterizations for use in global climate models by relating the formation of ice

crystals to temperature and aerosol particle number. Non-ideal instrument behavior,

which exposes particles to lower humidities than reported, has resulted in a systematic

underestimation of the number of ice nucleating particles, and variability in this bias

affects the model response to these parameterizations. We show that a machine learn-

ing approach can be used to minimize this uncertainty. In addition, we find that the

simulated long wave cloud forcing in a global climate model simulation can vary up to
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0.8 W m-2 and can change sign from positive to negative depending on the treatment

of this uncertainty. Based on these results, more careful treatment is required at both

the experimental and modeling stages of parameterization development in order to

account for such biases.

3.1 Introduction

Ice nucleating particles (INPs) play an important role in the climate system by influ-

encing clouds, precipitation, and radiative transfer. Despite their importance, there

are significant uncertainties in field measurements of INP concentrations because of

the complexities of atmospheric ice nucleation processes (Boucher et al., 2013). Field

measurements over the last few decades with Continuous Flow Diffusion Chamber

(CFDC) INP counters (e.g DeMott et al., 2003a; DeMott et al., 2003b; Chou et al.,

2011; Boose et al., 2016) have been used to constrain INP concentrations in climate

models: they have led to various parameterizations of INP concentration (and there-

fore ice crystal concentration) as a function of temperature and particle concentration

(DeMott et al., 2010; Tobo et al, 2013; DeMott et al., 2015). Such parameterizations

are used in both weather prediction models (e.g. Fan et al., 2014; Hande et al, 2015)

and global climate models (e.g. Storelvmo et al., 2011; Xie et al., 2013; Tan and

Storelvmo, 2016), where the results are sensitive to the modeled cloud microphysical

processes and thus cloud radiation.

CFDC instruments count INPs by drawing in aerosol particles, controlling the

temperature and relative humidity to which they are exposed, and counting the num-

ber that activate into ice crystals (Rogers, 1988; Stetzer et al., 2008; Chapter 2).

Particles are drawn through an inlet between two sheath flows, so they pass between

two ice-coated walls which are held at different temperatures below 00 C (Figure B-15).

Water vapor and heat diffuse from the warm wall to the cold wall, such that approx-

imately linear gradients of both quantities exist across the width of the chamber.

Because the saturation vapor pressure exhibits nonlinear temperature dependence,

the chamber is everywhere supersaturated with respect to ice, with a maximum su-
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persaturation near the center of the chamber (Rogers, 1988). With sufficiently large

temperature gradients between the walls, the chamber can also be supersaturated

with respect to liquid water. In the ideal configuration, the particles occupy only a

small fraction of the width of the chamber, termed the aerosol lamina, whose frac-

tional width is taken to be the ratio of the incoming sample flow rate to the total

(sample + sheath) flow through the chamber (Rogers, 1988).

Because of non-idealities in their behavior, CFDC instruments exhibit a systematic

low bias in number of INP measured due to the spreading of aerosol outside the lamina

predicted by the analytical model (DeMott et al., 2015). This spreading effect was

first reported by DeMott et al. (2015), despite many decades of such measurements

being made with CFDC instruments, but no comprehensive or quantitative analysis of

this effect has so far been conducted. However, the introduction of the SPectrometer

for Ice Nucleation (SPIN), the first commercially available CFDC chamber (Chapter

2), provides a means to conduct a comprehensive analysis of the spreading effect:

because of the automation of instrument operation and large amount of output data

to characterize instrument behavior, the SPIN chamber is well suited to explore this

artifact. Furthermore, using machine learning algorithms for analysis provides a

method to process the large amount of output data and generate statistical inferences

to constrain the spreading effect.

This spreading artifact may be related to deviations from laminar flow and non-

isokinetic injection as the particles are drawn into the chamber. The rapid change

in thermodynamic environment near the chamber inlet (Chapter 2) and possible flow

shear may cause turbulent mixing between sheath flow and aerosol lamina. The

reported variables that are most correlated with this spreading are discussed in Section

3.2.2. However, the exact mechanisms contributing to this effect are unknown, and

this aerosol spreading leads to greater uncertainty than has been previously assumed.

In this study, the variability of this bias is examined using the SPIN chamber, and

constrained using a machine learning approach informed by experimental results. The

effect of this bias on simulated cloud radiative forcing is also investigated using the

National Center for Atmospheric Research Community Earth System Model version
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1.2.2 with the Community Atmosphere Model version 5.3 (CAM5.3). The model is

an updated version of the CAM5.0 model described by Neale et al. (2010), including

a newer cloud microphysics scheme (Gettelman et al, 2015), which is coupled with a

detailed aerosol model, the multimode, two-moment, mixing-state-resolving Model of

Aerosols for Research of Climate (MARC) (Kim et al., 2008; Kim et al., 2014).

3.2 Methodology

3.2.1 Particle timing tests

To measure the degree of particle spreading outside the lamina, a precise 1-second

particle pulse is introduced into the SPIN chamber inlet using an automated solenoid

valve. As particles spread across the width of the chamber, they traverse its length at

different speeds following the velocity profile of the flow at given chamber conditions

(DeMott et al., 2015). The arrival of particles is measured at the chamber outlet

with a Condensation Particle Counter. A wider particle pulse (in time) measured at

the outlet indicates more spreading of the particles (in space) across the width of the

chamber, with the fastest particles traveling closer to the center of the chamber. The

shape of the arrival pulse is combined with the shape of the calculated velocity profile

to infer the distribution of particles across the width of the chamber (Figure B-16).

Particle distributions were measured with 30 pulse measurements at constant con-

ditions (room temperature, constant flow set points) with 100 nm (mobility diameter)

ammonium sulfate particles. In addition, to assess the variability in a variety of con-

ditions and with ambient aerosol, this procedure was also repeated across the entire

range of accessible thermodynamic conditions to measure the variability in particle

spreading with a total of 267 pulse measurements. Ambient aerosol particles sam-

pled at Storm Peak Laboratory in Steamboat Springs, Colorado were used for these

experiments in order to capture the variability of particles in an environment similar

to one where an INP field measurement campaign would occur.
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3.2.2 Machine learning prediction

Random forest regression (RFR) (Breiman, 2001) is used to predict the fraction

of particles that remain in the aerosol lamina (fiarn). In this application, RFR is

similar to a multiple linear regression, except it grows a forest of bootstrap aggregated

(bagged) decision trees to fit the data instead of using a linear model. Using this

machine learning approach avoids overfitting the data by using bootstrap aggregation

(bagging), provides uncertainty quantification for each prediction using the out-of-

bag (oob) prediction error, ranks the variables by their importance by comparing

oob prediction errors, and does not assume linear relationships between variables

(Breiman, 2001). First, a comprehensive RFR is built using all variables reported by

the SPIN software, and used to identify the most import predictors for frn. This

subset included wall temperature variability, flows, and thermodynamic variables in

the middle-top of the SPIN chamber, where chamber conditions relax to their nominal

values (Chapter 2). Since feature importance falls off exponentially, features within

the first two e-folding lengths of importance are used in the reduced RFR model.

3.2.3 CAM5-MARC and the RFP method

The effect of CFDC measurement bias on climate-model-simulated cloud radiative

forcing is investigated using the CAM5-MARC. By default, MARC utilizes the ice

nucleation scheme of Liu and Penner (2005), which includes a parameterization by

Meyers et al. (1992) (hereafter mey) to compute the heterogeneous ice nucleation

in mixed phase clouds (Het Ice) between -40'C and 00 C. In this study, the mey

parameterization is replaced by various versions of the parameterization by DeMott

et al. (2010) (hereafter D10). The base case (hereafter case B) is the D10 parame-

terization tuned to match satellite observations of long wave cloud forcing from year

2000 from the Clouds and Earth's Radiant Energy Systems - Energy Balanced and

Filled (CERES-EBAF) level 3B dataset (Loeb et al., 2009). Also considered are cases

with fixed correction factors (cf), as defined by DeMott et al. (2015), with respect

to case B of cf = 0.1, 3, 4, 5, and 10 (cases 0.1B, 3B, 4B, 5B, and 10B respectively),
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and a case with stochastic cfs sampled from the particle timing test results from this

study (stoch case). (Note that the fixed cf = 3 (case 3B) suggested by DeMott et al.

(2015) is one of the cases considered).

Total aerosol indirect effects in the global climate model are diagnosed using the

radiative flux perturbation (RFP) method (Haywood et al., 2009; Lohman et al., 2010;

Gettelman et al., 2012). The top of atmosphere radiative flux (R) is computed using

two six-year simulations, one with present-day (year 2000, hereafter PD) aerosol and

precursor emissions and another with pre-industrial (1850, hereafter PI) emissions,

and the RFP is then given by RFP = R200-- R18 50 . Both PD and PI runs have the

same prescribed greenhouse gas and climatological sea surface temperature derived

from the years 1980-2000. The changes in cloud forcing are decomposed into the

changes in the short wave cloud radiative forcing (SWCF) and long wave cloud

radiative forcing (LWCF): dSWCF = SWCF2000 - SWCF 1850 and dLWCF =

LWCF2ooo - LWCF1850 . Additionally, the "clear-sky" diagnostics recommended by

Ghan (2013) are used to calculate cloud forcing correcting for the potential bias in

"all-sky vs. clear-sky" metrics that neglect the influence of above-cloud absorbing

aerosol and below-cloud scattering ones.

Since the only modification between the cases is the parameterization for Het Ice,

this approach diagnoses changes in cloud forcing variables as they relate to changes

in cloud microphysical variables due to changing the Het Ice parameterization. All

other model configuration parameters are set to their default values (Kim et al., 2008;

Kim et al., 2014), so differences in results are attributed to how the variability of the

low bias in the D1O parameterization affects simulated cloud forcing.

3.3 Results

3.3.1 Timing test and RFR results

Figure B-17 shows the results from the 30 particle timing tests at constant conditions.

The fraction of particles that remain in the aerosol lamina, fiam varies significantly
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despite constant flow set points, aerosol properties, and temperature. Figure B-

18 shows the results from the 267 particle timing test experiments. fiam is plotted

against the reported lamina temperature and ice saturation ratio (Sice), which are the

actively controlled variables in CFDC chambers, but the data show no correlations

with respect to either variable. The mean and standard deviation values of fiam are

0.25 t 0.14, and the distribution exhibits values that vary between 0.03 and 0.73

depending on the specific conditions. This distribution corresponds to a distribution

of cf with a mean of 4 (and cf = 2.6 and cf = 9.5 at 1 standard deviations).

This variability in measurements suggests that the single value of cf = 3 reported by

DeMott et al. (2015) does not describe the actual variability in firm, though their

value does fall within the measured range in this study. Also, since the differences in

lamina temperature and Si,, do not explain this variability, more information than

the reported chamber thermodynamic conditions is required to reduce uncertainty in

estimating fiam.

The reduced RFR described in Section 3.2.2 provides mean values and standard

deviations of predicted fiam based on the ensemble of predictions from the trees in

the random forest, using the 65 most important SPIN variables. The oob mean

squared prediction error for the forest of trees is 0.008. Simply selecting the mean

value for frnm from the distribution in Figure B-18, results in a mean squared error

for predicting firn of ~ 0.02, so the RFR approach reduces the uncertainty from this

fixed estimate by ~ 60%.

Figure B-19 shows idealized activation curves and illustrates the spreading effect

at various fiarn values. Given a population of "perfect" immersion mode INP that form

ice crystals exactly at water saturation, Figure B-19a shows the activated fractions

of such particles as a function of nominal water saturation ratio (Sizq). Since only

a fraction of particles actually experience the reported humidity level, nominal Sliq

values larger than 1 are required to activate these "perfect" INP. The insets to the left

of Figure B-19 show the distribution of actual Siq experience by particles at a nominal

Sliq =1.05. Since these distributions span a continuous range of humidities, there is

not a clear representative Siq value that could be reported instead. Figure B-19b and
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Figure B-19c show activation curves where only 10% of the particles are "perfect"

immersion mode INP, and the rest are cloud condensation nuclei (CCN) that survive

the droplet evaporation region (Chapter 2) at a values of nominal Sliq > 1.07. The

shape of the idealized activation curve in Figure B-19c resembles that of experimental

CFDC activation curves (DeMott et al., 2015) and both exhibit strong dependence of

activated fraction on Siq because of the particle spreading effect. Overall, the particle

spreading effect also explains why CFDC chambers must operate at unphysically

large Siq values to measure concentrations of immersion mode INP and why reported

immersion mode INP concentrations are strongly dependent on Siq .

3.3.2 Climate model results

Figure B-20 shows the PD LWCF and SWCF from all of the cases as well as

CERES-EBAF satellite observations. The cases with cf > 1 match globally-averaged

satellite values for PD LWCF more closely than the B or mey cases, but there is large

sensitivity of radiative and cloud properties on the version of the parameterization

used (Figure B-20; Table A.1). Table A.1 shows globally averaged radiative and

cloud properties in PD and PI runs as well as the PD - PI differences in these

values. In particular, it shows LWCF, SWCF, ice water path (IWP), cloud top

ice number concentration (INC), cloud-top ice effective radius (REI), and the PD

- PI differences in these variables (dLWCF, dSWCF, dIWP, dINC, and dREI

respectively). PD LWCF, IWP, INC, and REI increase as a function of fixed cf,

while PD SWCF decreases as a function of fixed cf. For the mey case, PD and PI

values are similar to those in the 0.1B and B cases. Different sensitivities to changing

cf in the PD cases vs. in the PI cases lead to decreasing dIWP, decreasing dINC,

and increasing dREI with increasing fixed cf. dLWCF is positive in the mey case

and cases with smaller fixed cf, but becomes negative at larger cf values. dSWCF

increases as a function of fixed cf.

The values for radiative and cloud properties for the stoch case fall within the range

of values from the largest fixed cf cases. However, the changes in cloud properties

and corresponding responses in radiative properties in the stoch case are significantly
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different than those from the 3B and 4B cases, despite all three of these cases having

a similar mean values of cf (Table A.1). This difference is also apparent when com-

paring dLWCF to dIWP (Figure B-21). In particular, the stoch case exhibits more

negative dIWP than the 3B and 4B cases and is one of the cases that exhibit a nega-

tive dLWCF. The differences between the stoch case and the 3B and 4B cases is also

apparent in a zonally averaged comparisons of dINC, dIWP, dLWCF, and dSWCF

(Figure B-22), especially in the Northern Hemisphere. Overall, these results indicate

that the choice of cf dramatically affects the estimated dLWCF, which ranges 0.8

W m 2 in the considered cases and changes sign from positive to negative in some

instances.

3.4 Discussion and conclusions

The results from the previous section indicate that neither the reported thermody-

namic conditions nor results from a single timing test capture the variability of fia

in the SPIN chamber. With many such tests, it is possible to map this variability,

and using machine learning to utilize information from additional variables reduces

uncertainty in estimating how this variability affects reported INP concentrations

from CFDC chambers. In addition, this particle spreading effect also explains why

CFDC chambers must operate at unphysically large Sliq values to measure immersion

mode INP and why the reported numbers are strongly dependent on Sliq. The labora-

tory work in this study exploring the extent of spreading variability motivates future

work to minimize both this bias and its variability. Such work would explore which

operational considerations (such as flow rates, inlet pressure drop, etc.) maximize

probability of isokinetic injection of particles into the chamber. This work would also

explore how experimental and chamber design influence the spreading effect, drawing

comparisons to computational fluid dynamics simulations to complement the RFR

statistical modeling.

The climate model results show that dLWCF spans a range of 0.8 W m- in the

considered cases and changes sign from positive to negative in the larger cf cases
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(Table A.1; Figure B-21). The PD value for LWCF increases with increasing fixed

cf. There is similar behavior in PI LWCF values, but these exhibit more sensitivity

to cf than the PD values, resulting in a negative dLWCF in the larger cf cases. This

cloud forcing behavior coincides with changes in IWP. Both the PD and PI IWP

values increase with increasing fixed cf. The sensitivity of IWP to cf is larger in

the PI cases than in the PD cases, resulting in a decreasing dIWP as a function of

fixed cf. Overall, the increased sensitivity of cloud ice to the aerosol fields in larger

cf cases results in a relatively smaller amount of cloud ice in the PD cases compared

to the PI cases for a given cf, which coincides with decreasing dLWCF as a function

of increasing fixed cf.

The model results also suggest that there is a significant change in simulated cloud

forcing when cf values are drawn from the distribution of measured values instead of

being fixed. The cloud forcing response is associated with changes in dINC, dREI,

and dIWP. The relationship between cloud property changes and radiative changes

is similar to those reported in previous studies (e.g. Cziczo et al., 2009b; Gettelman et

al., 2012; Storelvmo et al., 2011; Xie, et al., 2013): in particular, dINC and dIWP

are positively correlated with dLWCF, but the exact relationship depends on the

parameterization used. Furthermore, these results indicate that selecting the mean

cf from a measured distribution does not produce the model response in dINC and

dIWP and the corresponding changes in dLWCF that is produced from stochastic

cfs, suggesting an influence of the tails of the cf distribution on model results.

Given these results, if heterogeneous ice nucleation parameterizations based on

CFDC measurements are to be used extensively in the global modeling community,

it is critical to account for both (a) for the under-prediction of INP in these obser-

vations, and (b) for the variability (especially in the tails of the distribution) of INP

measured with this technique. Small changes in these details, as shown here, can

lead to divergent estimates of the magnitude of aerosol impact on ice clouds within

the same modeling framework. These results also suggest that minimizing the un-

certainty in estimates of this bias, e.g. with the machine learning techniques used

in this study, is an important step in constructing heterogeneous ice nucleation pa-
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rameterizations based on CFDC measurements. Ideally, cfs would be inferred on a

measurement-by-measurement basis and included when fitting parameterization con-

stants: the sensitivity of the parameterization constants to uncertainty in the cfs

could then also be quantified. Overall, in order to incorporate CFDC measurements

in global models as a means of reducing the uncertainty that INP contribute to the

climate system, both experimental and modeling efforts must carefully account for

the variability in instrument bias and consider the uncertainty associated with it.
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Chapter 4

Mitigating additional climate

warming from coal combustion

This chapter is intended to satisfy the capstone project requirement for the Certificate

in Science, Technology and Policy.

Abstract

This study investigates the impact fly ash particles have on cloud formation and

climate. It examines the physical and chemical properties of several types of fly ash

particles and the efficiency with which they form cloud droplets and ice crystals in

the laboratory. Fly ash particles are found to be moderately hygroscopic and are

found to form ice in the deposition mode at temperatures colder than - -30 C and

in the immersion mode at temperatures colder than ~ -20'C. The laboratory results

are used to investigate the impacts of fly ash emissions on the properties of cirrus

clouds and climate in a global climate model. Single particle mass spectrometry

data from aircraft campaigns are used to estimate the abundance of fly ash in the

atmosphere and constrain the sensitivity of the cloud forcing response to fly ash

emissions. Overall, current levels of fly ash emissions are estimated to contribute ~

0.1-0.6 W m- 2 of extra warming through their role in cirrus cloud formation. Based

on these results, international transfer of electrostatic precipitator technology can be
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priced at ~ 6800 Certified Emission Reduction (CER) credits per ton of fly ash under

the Paris Agreement.

4.1 Introduction

4.1.1 Background

Human activities, especially fossil fuel combustion, release large amounts of particu-

late matter into the atmosphere (Reff et al., 2009; Lamarque et al., 2010; JRC, 2011;

Xing et al., 2013). These anthropogenic particles may scatter and absorb incoming

solar radiation and provide a surface on which water can condense or freeze to form

clouds (Seinfeld and Pandis, 2006). Through their interaction with radiation and

water in the atmosphere, these particles alter the atmospheric energy budget and

ultimately the climate (Seinfeld and Pandis, 2006). Since the concentrations of these

particles are spatially and temporally variable (Lamarque et al., 2010), it is difficult

to quantify their role in a changing climate. Overall, the effect of anthropogenic

particles on the climate system is highly uncertain, especially via their role in cloud

formation (Charlson et al., 1992; Lohmann and Feichter, 2005; Boucher et al., 2013;

Stocker et al., 2013).

There are many different types of anthropogenic particles, which are generated

from a variety of sources and exhibit large variability in their physical and chemical

makeup (Reff et al., 2009). Black carbon (BC) particles are released from incomplete

combustion and arise from biomass burning and anthropogenic sources including, do-

mestic/residential combustion, transportation, industry, and energy production (Se-

infeld and Pandis, 2006; Lamarque et al., 2010). The energy sector emits ~ 1% of

the total BC (Lamarque et al., 2010), but likely a much larger fraction of many heavy

metals (Reff et al., 2009).

Particles that contain soluble material or are rich in heavy metals have an increased

potential to form clouds in the atmosphere: particles containing soluble material are

known to be efficient cloud condensation nuclei (CCN) (e.g. Petters and Kreidenweis,
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2007), and particles laden with anthropogenic lead nucleate ice efficiently (Cziczo et

al., 2009b). Furthermore, particles containing heavy metals are likely to have an-

thropogenic origins (Cziczo et al., 2009b; Reff et al., 2009) and are observed to be

present in atmospheric ice clouds (Ebert et al., 2011; Cziczo et al., 2013a). Since the

dominant mechanism for ice formation in the cirrus regime is likely heterogeneous

nucleation (Cziczo et al., 2013a), particles that nucleate ice efficiently at cold tem-

peratures may play a disproportionately large role in the climate system compared

to their abundance in the atmosphere.

In particular, fly ash particles released from coal combustion may be particularly

important in cloud formation because they are rich in both organics and heavy metals

(Davison et al., 1974; Smith et al., 1979; Lee et al., 1999, Reff et al., 2009), their

spherical morphology resembles that of observed cirrus ice residuals (Figure B-23),

and previous laboratory measurements show that they nucleate ice (Umo et al., 2015).

Despite removal from smoke stacks using electrostatic precipitators (ESPs) (Lee et

al., 1999), coal particles are released in excess of 1000-10000 tons per year from the

US alone (Reff et al., 2009): in the US, they also constitute a large mass fraction

of the gallium, selenium, strontium, silver, and barium in PM 2.5 emissions (Figure

B-24). Previous laboratory studies indicate that they contain significant amounts of

trace'elements such as lead, barium, chromium, strontium, arsenic, and zinc that are

found to increase in abundance with decreasing particle size (Davison et al., 1974;

Smith et al., 1979). In this study, the physical and chemical properties of several

types of fly ash particles are investigated, the efficiency with which these particles

form cloud droplets and ice crystals is measured in the laboratory, and the effects of

fly ash emissions on the climate system via cirrus cloud formation are investigated

using a global climate model.

4.1.2 Comparing emissions

Comparing the climate effects of different climate pollutants is difficult due in part to

the different lifetimes of species in the atmosphere. CO 2 is relatively permanent on

human timescales in the atmosphere compared to the much shorter lifetime of partic-
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ulate matter, which is on the order of days to weeks (Seinfeld and Pandis, 2006). A

common metric to compare the climate impacts of substances with different lifetimes

is the Global Warming Potential (GWP) (Myhre et al., 2013). GWP is defined as

the radiative forcing (RF) from an emission pulse of a species integrated over time,

relative to an emission of an equal mass of CO 2. In practice, it is approximately

equivalent to the integrated RF response for an emission pulse of a species or the

equilibrium RF response from sustained emissions, relative to that for CO 2 (Prather,

2002; Peters et al., 2011; Azar and Johansson, 2012; Myhre et al., 2013).

Based on the definitions above, the effect of a mitigation strategy on the climate

system can be expressed as the positive RF avoided by implementing the strategy.

Using the GWP metric, this avoided RF can be expressed in units of equivalent

CO 2 mass, which can be used for pricing of Certified Emissions Reductions (CER)

credits (Kyoto Protocol, 1999; Olsen, 2007; Sutter and Parreio, 2007; Wara, 2008;

Paris Agreement, 2015). In this framework, pricing the CER credits for a species

is directly tied to its GWP and assumes a given price for CO 2 mass. Section 4.5

discusses a policy mechanism to mitigate additional warming from coal combustion

based on this GWP framework.

4.2 Methodology

4.2.1 Fly ash samples

The samples investigated in this study are provided by a commercial fly ash vendor,

Fly Ash Direct, and are extracted directly from ESPs in four coal-fired power plants

in the United States. The two main types of fly ash are class C, which is produced

from lignite or sub-bituminous coal, and class F, which is produced from anthracite

or bituminous coal (Ahmaruzzaman, 2009). The samples in this study are class C fly

ash from the J. Robert Welsh Power Plant in Titus County, Texas (hereafter Welsh

C); class C fly ash from the Joppa Generating Station in Joppa, Illinois (hereafter

Joppa C); class F fly ash from the Miami Fort Generating Station in Miami Township,
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Ohio (hereafter Miami F); and class F fly ash from the Clifty Creek Power Plant in

Madison, Indiana (hereafter Clifty F). In all experiments in this study, particles are

generated using the dry flask generation method discussed in Garimella et al. (2014).

The use of impactors to eliminate larger particles is discussed below.

4.2.2 Particle characteristics

Particle size distributions, measured with respect to mobility diameter and optical

diameter are shown in Figure B-25. Scanning Mobility Particle Sizing (SMPS) dis-

tributions are measured using a Brechtel Manufacturing Inc. (BMI) Model 2002

Scanning Electrical Mobility System (SEMS), which draws 0.36 Lpm through the

flask generator. Optical size distributions are measured using a TSI Model 3330 Op-

tical Particle Sizer (OPS), which draws 1 Lpm through the flask generator. The OPS

distributions are shown with and without the upstream 650 nm cut size traditional

impactor, which is always used with the SEMS. These size distributions show a peak

in concentration in sub-micrometer size range, with a long super-micrometer tail cor-

responding to larger particles. Along with this tail of larger particles, peaks at larger

sizes correspond to aggregates of the smaller-sized particles.

Particle Analysis by Laser Mass Spectrometry (PALMS) (Murphy and Thompson,

1995; Cziczo et al., 2006) is used to characterize the chemical composition of the four

types of fly ash particles on a particle-by-particle basis. ~1000 positive and ~1000

negative spectra are collected for each sample to characterize the heterogeneity in

particle chemistry. Typical positive and negative mass spectra are shown in Figure

B-26. In general, fly ash spectra resemble those of mineral dust or metallic particles

and exhibit peaks corresponding to sulfates, phosphates, metals, and metal oxides. In

particular, they show barium and lead peaks that are indicative of an anthropogenic

source, with barium appearing in 98% of the spectra.
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4.2.3 Droplet and ice experiments

The nucleation of cloud droplets on fly ash particles is measured using a Droplet Mea-

surement Technologies (DMT) Model CCN-200 Cloud Condensation Nuclei Counter

(CCNC) (Roberts and Nenes, 2005; Lance et al., 2006). The flask-generated parti-

cles are mobility size-selected using a BMI Model 2002 Differential Mobility Analyzer

(DMA) with its included 650 nm traditional impactor. The resulting monodisperse

flow is split with a laminar flow splitter and is drawn into the CCNC and a BMI 1700

Mixing Condensation Particle Counter (MCPC). The total flow through the system

is 1.36 Lpm and is provided by the two CCNC columns drawing 0.5 Lpm each and the

MCPC drawing 0.36 Lpm. Particle are exposed to supersaturations (SS) from 0.07%

to 0.71% with respect to liquid water in the CCNC chambers: chamber A scans over

SS = 0.07%, 0.1%, 0.2%, 0.3% and 0.4%, while chamber B scans over SS = 0.71%,

0.7%, 0.6%, 0.5%, and 0.4%. Each SS step lasts for six minutes, and the each of

the last three minutes at a given SS is taken as a single data point, providing three

measurements per SS. The number of particles activating into droplets is compared to

the total number of particles counted by the MCPC to calculate an activated fraction

at each SS. The critical SS (where 50% of the particles activate into droplets) is found

by fitting a sigmoid curve to the SS-dependent activated fractions. Both chambers

simultaneously measure at SS = 0.4% to verify that results are comparable between

the chambers.

The formation of ice crystals via deposition nucleation and immersion freezing is

measured using a DMT Spectrometer for Ice Nuclei (SPIN) (Chapter 2). The flask-

generated particles are either polydisperse (through the 650 nm traditional impactor)

or DMA size-selected as with the CCNC experiments. After impaction and/or size

selection the particle-laden flow is split with a laminar flow splitter and is drawn into

the both the SPIN and MCPC. The total flow through the system is 1.36 Lpm, 1 Lpm

drawn by the SPIN chamber and 0.36 Lpm drawn by the MCPC. Particles are exposed

to desired temperature (from -42'C to -15'C) and SS (from Sice = 1.0 to Sice = 1.6)

conditions using SS scans at a given temperature. The number of particles activating
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into ice crystals is determined in post processing via the machine learning technique

described in Chapter 2 and is compared to the total number of particles counted

by the MCPC to calculate activated fractions. Filter measurements of particle-free

air are collected before and after each SS scan to determine the background frost

concentrations, which are subtracted from the calculated ice crystal concentrations.

4.2.4 Observations from aircraft campaigns

Single particle mass spectra collected by the flight PALMS instrument during four

aircraft campaigns over North America provide a means to estimate ambient fly ash

concentrations. Specifically, data from the Deep Convective Clouds and Chemistry

(DC3) field campaign in 2012 (Barth et al., 2015), the Mid-latitude Airborne Cirrus

Properties Experiment (MACPEX) in 2011 (Cziczo et al., 2013a), the New England

Air Quality Study (NEAQS) in 2004 (Peltier et al., 2007), and the Studies of Emis-

sions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys

(SEAC4RS) in 2013 (Toon et al., 2016) are used. PALMS spectra of fly ash particles

collected in the laboratory are used to create a filter for finding fly ash in field spectra

using barium and other chemical markers for fly ash (Zawadowicz et al., 2016). The

conditional probabilities of this filter correctly flagging a fly ash particle and incor-

rectly flagging a non- fly ash particle in the historical PALMS laboratory dataset are

then calculated, providing a Bayesian estimate of the concentration of fly ash particles

measured in the field campaigns.

4.2.5 Global climate modeling

The radiative responses to fly ash emissions are investigated using the National Center

for Atmospheric Research Community Atmosphere Model version 5.3 (CAM5.3). The

model is an updated version of the CAM5.0 model described by Neale et al. (2010),

including a newer cloud microphysics scheme (Gettelman et al, 2015). This scheme

is coupled with a detailed aerosol model called the multimode, two-moment, mixing-

state-resolving Model of Aerosols for Research of Climate (MARC) (Kim et al., 2008;
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Kim et al., 2014). The CAM5-MARC utilizes the ice nucleation scheme of Liu and

Penner (2005) with a stochastic parameterization for the heterogeneous ice nucleation

in mixed phase clouds (Chapter 3). Based on the similarity of fly ash sources to

BC sources in the model, fly ash concentrations are diagnosed using a tunable scale

factor (sf) on BC concentration. The nominal sf = 1 derived from the estimate by

Lamarque et al. (2010) that 0.7% of global BC emissions are from the energy sector,

and cases with sf = 0, 0.1, 0.5, 1, 5 10, 50, and 100 (corresponding to multiplicative

factors of the 0.7%) are considered. This range of sf is also compared to the aircraft

data to constrain the model results (Section 4.3.3).

The laboratory cloud chamber results indicate that fly ash is most efficient at

cloud formation in the deposition mode at cirrus temperatures (< -35'C) and less

efficient in the warm cloud (Section 4.3.1) and mixed phase (Section 4.3.2) regimes.

Based on similar nucleation efficiency to dust at cirrus temperatures (Welti et al.,

2009; Chapter 2), the diagnosed fly ash concentration is included in the dust concen-

tration used by the CAM5-MARC heterogeneous nucleation scheme to calculate ice

crystal number at cirrus temperatures. Observations of fly ash abundance in the at-

mosphere (Section 4.3.3) suggest that fly ash particle concentrations are low enough

to have a negligible direct radiative effect. Therefore, the modeling component of

this study isolates the effects of fly ash particles on cirrus cloud nucleation: the di-

agnostic fly ash is not allowed to contribute to the direct radiative forcing and is not

used in calculations for mixed phase or warm cloud nucleation. Though the droplet

uptake and wet deposition is not explicitly computed for fly ash separately from the

BC loss processes, these and other loss processes are implicitly accounted for when

comparing the upper atmospheric concentrations with observations as a function of

sf: the observed concentrations are subject to all atmospheric loss processes, so ob-

servations provide a constraint on which range of sf captures realistic atmospheric

fly ash burdens. In addition, the sulfur emissions from coal combustion and the asso-

ciated cooling are equivalent between cases, so this treatment isolates the responses

associated with changing fly ash emissions.

Total aerosol indirect effects in the CAM5-MARC are diagnosed using the radia-
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tive flux perturbation method (Haywood et al., 2009; Lohman et al., 2010; Get-

telman et al., 2012; Chapter 3). Top of atmosphere (TOA) radiative fluxes are

computed using two six-year simulations, one with present-day (year 2000, here-

after PD) aerosol and precursor emissions and another with pre-industrial (1850,

hereafter PI) emissions, and the perturbation is calculated as the difference be-

tween PD and PI averages of the variables of interest. TOA fluxes are used in-

stead of fluxes at the tropopause to avoid aliasing associated with changes in cir-

rus clouds that occur near the tropopause. All simulations have prescribed green-

house gas emissions and climatological sea surface temperatures derived from the

years 1980-2000. The dust emissions are also held constant between the PD and PI

runs. The total cloud forcing (dCF) is the sum of the changes in the short wave

cloud radiative forcing (SWCF) and long wave cloud radiative forcing (LWCF):

dCF = (SWCF2000 - SWCF185 0)+(LWCF20 0 0 - LWCF185 0 ) = dSWCF +dLWCF.

Also, the "clear-sky" diagnostics recommended by Ghan (2013) are used to calculate

cloud forcing to correct for the "all-sky vs. clear-sky" biases that neglect above-cloud

aerosol absorption and below-cloud scattering.

4.3 Results

4.3.1 Droplet activation results

Figure B-27 shows results from cloud droplet nucleation experiments described in

Section 4.2.4. Measurements are taken for 200, 300, and 400 nm mobility-sized par-

ticles. After validating the CCNC using ammonium sulfate activation as a control

experiment, size-dependent critical supersaturations are used to find r, values to rep-

resent particle hygroscopicity following the methodology of Petters and Kreidenweis

(2007). , values for the fly ash particles are found to be between 0.04 and 0.32 and

fall into the "moderately hygroscopic" range (Petters and Kreidenweis, 2007).
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4.3.2 Ice activation results

Figure B-28 shows results from the ice nucleation and droplet freezing experiments

described in Section 4.2.3. Measurements are made using 300 and 700 nm mobility

sized particles (corresponding to the peaks observed in the mobility distributions in

Figure B-25) as well as polydisperse particles (using the 650 nm traditional impactor,

with size distributions shown in the middle row of Figure B-25). Figure B-28a shows

a phase diagram with 1% activated fraction data. The x and y error bars correspond

to uncertainties in temperature and Sice conditions reported by the SPIN chamber.

Immersion freezing at the 1% level is observed at temperatures colder than - -20 0 C,

and deposition freezing at the 1% level is observed at temperatures colder than ~

-30'C. Figure B-28a also shows a classical nucleation theory (CNT) parameterization

to fit the deposition nucleation data following the formulation outlined by Detwiler

and Vonnegut (1981) for silver iodide ice nucleation. The functional form of this

parameterization is:

ST1 = STO(TO/T1)
3 / 2

where TO is the warmest temperature where deposition nucleation is observed (~

-30'C for these data), STO is the water saturation level corresponding to TO, and

ST, is the predicted saturation level for activation at some T1 that is colder than TO.

Figure B-28b shows ice nucleation active site density, n,, as a function of temperature

for the immersion mode freezing data. n, is the number of ice nucleation active sites

per aerosol surface area as a function of temperature:

r 8 (T) = log(1 - fIN(T))
Aaer

where T is temperature, fIN(T) is the fraction of activated particles at a given tem-

perature (at water saturation), and Aaer is the total surface area of the aerosol particle

population (Connolly et al. 2009). Using n, normalizes measured values by surface

area and allows for comparison of freezing results of different particle sizes. The error
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bars indicate the uncertainty in n, due to the classification error in the machine learn-

ing technique used to determine ice fractions, and the data at warmer temperatures

have larger error bars because they are near the uncertainty threshold. Since the

particle morphologies are observed to be spherical (Figure B-23), the area of a sphere

of a given mobility size is used for n, calculations. Also shown in Figure B-28b is the

empirical fit to immersion freezing data reported by Umo et al. (2015).

4.3.3 Observational constraints

Figure B-29 shows vertical profiles of fly ash from aircraft campaign estimates as

well as profiles of fly ash concentrations diagnosed from BC in CAM5-MARC with

sf = 0.1 and 1. The aircraft data are binned in 1000-700, 700-500, and 500-0 hPa

pressure bins. The model profiles are annual mean fields that are collocated with the

mean location of the aircraft data, and the error bars show spatial variability in fly

ash concentration in the model across the latitudinal and longitudinal extent of the

aircraft data. There is more spatial variability in fly ash concentrations at the surface,

but there is less spread at higher (and more cirrus-relevant) altitudes. In general, the

sf = 0.1 and 1 model profiles bracket the field data.

The fly ash concentrations diagnosed from BC are only used by the cirrus ice

nucleation component of the model. These calculations occur primarily in higher al-

titude grid cells that experience the requisite lower temperatures, and there is the best

agreement aloft where the concentrations are used by the model. The observational

data also suggest that the relevant loss processes that affect fly ash concentrations

are adequately accounted for when comparing the upper atmospheric concentrations

with observations. In particular, sf values between 0.1 and 1 capture the realistic

range in atmospheric fly ash burdens.

4.3.4 Modeling results

Figure B-30 shows globally averaged dCF responses to changes between globally av-

eraged PD and PI cloud top ice crystal number concentration (dINC) and cloud top
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ice crystal effective radius (dREI) for all cases. Less negative values for dCF are

associated with larger values of dINC and more negative values of dREI. dCF satu-

rates at larger sf values with a marked decrease at sf = 100, suggesting nonlinearity

in model behavior for more extreme sf cases. dCF is the balance of the long wave

(warming) and short wave (cooling) cloud forcing components: dLWCF responses

are more sensitive to increasing sf until the largest sf values, where dSWCF re-

sponses become more sensitive. For these highest emissions cases, the amount of fly

ash rivals the amount of total BC in the atmosphere, and the model is unlikely to

capture a realistic climate response, since the influence of fly ash on radiation and

other types of cloud formation can no longer be assumed to be small compared to its

affects on cirrus.

The spatial variability in dCF responses is shown in Figure B-31 for all cases.

dCF is negative in a global average but has considerable spatial heterogeneity. This

heterogeneity increases with increasing sf, with larger extremes of dCF with larger

sf. There is overall increased high cloud ice crystal number and ice crystal mass

with increasing sf on a global average, but the increasing sf amplifies the existing

regional differences in cloud response. Since fly ash concentrations are uniformly

diagnosed from BC despite emission source heterogeneity, the actual variations in

regional response are unlikely to be captured with the present treatment and are

subject to larger uncertainty than the global estimates.

Figure B-32 shows the globally averaged response of dCF (Figure B-30a) to dif-

ferent amounts of fly ash emissions and the sensitivity of changes in dCF to changes

in fly ash emissions. There is a positive trend in dCF as a function of sf for obser-

vationally constrained values (0.1 < sf < 1). This trend suggests that due to cirrus

cloud responses, the aerosol indirect effect becomes less negative with increasing fly

ash emissions near current levels. The difference in dCF between the sf = 0.1, 0.5,

and 1 cases and the sf = 0 case is between - 0.1 and 0.6 W m-2, which provides

an estimate of the influence that fly ash emissions have on the climate system via

modification of cirrus clouds. Therefore, based on the observational bounds of atmo-

spheric fly ash burden, there is between ~ 5 x 10-9 and ~ 2 x 10-8 W m- 2 climate
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warming per kg of fly ash emitted in addition to the associated CO 2 release from coal

combustion.

4.4 Discussion

Despite the similarities between mass spectra from fly ash particles and mass spectra

from mineral dust particles, there are differences in their efficiency as CCN. While

mineral dust particles have relatively low hygroscopicity, between 10-3 and 10-2

(Herich et al., 2009; Garimella et al., 2014), the results from this study indicate

that fly ash particles are moderately hygroscopic. This relatively larger hygroscopic-

ity is likely associated with the larger abundance of soluble sulfates and phosphates in

fly ash than in mineral dust (Figure B-26). This larger hygroscopicity may increase

the probability that fly ash will be wet deposited before reaching cirrus altitudes.

However, combining emissions inventory estimates and aircraft observations indicate

that these particles are present at cirrus levels concentrations of 0.1- 1 L 1 (Figure

B-29).

Figure B-27b shows that 300 nm particles exhibit higher n., values than the 700

nm particles. These results indicate that the ice nucleation efficiency per unit surface

area of the particles in this study does not scale with particle size, but instead that

the smaller particles are more efficient INP per unit surface area. Since these particles

are increasingly enriched in heavy metals with decreasing particle size (Davison et al.,

1974; Smith et al., 1979), and heavy metals are known to contribute INP efficiency,

this size-dependent enrichment can explain this measured size dependent n,. Further-

more, the mode size of the fly ash particles considered by Umo et al. (2015) is ~ 10

pm, so the size-dependent heavy metal content can also explain the lower reported n,

for the larger particles previously considered. Since particles with the sizes considered

in this study have longer lifetimes in the atmosphere (Seinfeld and Pandis, 2006), the

larger n, reported in the present study are likely to be more applicable to particles

found in the atmosphere.

The aircraft data in this study constrain the atmospheric burden of fly ash: they
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suggest that near current levels of emissions, fly ash contributes between - 0.1 and

0.6 W m- 2 of warming via perturbations to cirrus clouds. In these emissions cases, a

less negative dCF is associated with larger values of dINC and more negative values

of dREI. For cirrus clouds that are primarily formed via heterogenous nucleation, an

increase in ice crystal number contributes a net warming effect (Cziczo et al., 2013a;

Storelvmo et al., 2013). Also, the long wave emissivitity of optically thin clouds

increases with decreasing effective radius (Garrett et al., 2002), and this phenomenon

is often associated with the influx of anthropogenic aerosols (Lubin and Vogelmann,

2005; Garrett and Zhao, 2006). Fly ash perturbations to cloud top ice crystal number

and ice effective radius lead to an increased ability for cirrus clouds to emit outgoing

long wave radiation: since they do so at higher altitudes (i.e. emitting long wave

radiation at colder emission temperatures than those found at lower altitudes), fly

ash emissions are found to increase the ability of cirrus clouds to warm the climate

system.

Overall, particles with spherical morphologies similar to that of fly ash are ob-

served in cirrus cloud residuals, and the laboratory results from this study suggest

that fly ash nucleates ice crystals efficiently at cirrus-relevant temperatures. The

aircraft observation constraints on the modeling results suggest that these particles

have the potential to contribute a large additional warming to the climate system in

addition to the CO 2 released from coal combustion. Therefore, anthropogenic emis-

sions of these particles could play a significant role in how humans are perturbing

the climate system via effects on the formation and persistence cirrus clouds. In ad-

dition, this study motivates future work to assess how uncertainties associated with

the treatment of fly ash nucleation and emissions affect model results: in particular

a more explicit treatment of fly ash as prognostic variable would likely narrow the

range of possible amounts of extra warming from coal combustion.
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4.5 Policy implications

As discussed above, particulate matter emissions from coal combustion pollute the

environment from both an air quality and climate change perspective. The heavy

metal enrichment of fly ash particles also causes them to pose a significant health risk

when inhaled (e.g., Smith et al., 2006). The laboratory and modeling work in this

study indicate that this heavy metal content, along with other chemical properties,

also allows these particles to efficiently seed cirrus clouds in the atmosphere. Overall,

in the relatively polluted atmosphere (which describes the current state of Earth's

atmosphere), emitting more fly ash particles is found to modify cirrus clouds and will

result in a correspondingly warmer climate.

Despite projected decreases in coal combustion for energy production in devel-

oped countries over the next several decades, global electricity production from coal

is projected to remain steady through 2050 due to the increases in coal use in de-

veloping countries (Reilly et al., 2015). In developed countries like the USA, regu-

lations mandate that coal particle emissions are scrubbed using ESPs (Jaworek et

al., 2007). Modern ESPs are able to remove - 99% of fly ash from coal stacks, but

they contribute an extra cost of several millions of dollars to coal plant construction

or retrofitting (Mussatti et al., 2002). With the projected expanse in coal use in

the developing world and uncertain levels of adoption of ESP technology due to this

extra cost, a mechanism that would decrease the amount of fly ash released would

help mitigate the corresponding negative human health and climate effects.

Article 12 of the Kyoto Protocol defined the Clean Development Mechanism

(CDM) to allow an Annex B countries (ones with an emission-reduction or emission-

limitation commitment) to implement an emission-reduction project in developing

countries to earn CER credits to be counted towards meeting Kyoto targets (Kyoto

Protocol, 1999). The aim of the CDM was to stimulate sustainable development and

emission reductions and provide developed countries flexibility in meeting targets,

but the CDM expired along with the Kyoto Protocol in 2012. The Paris Agreement,

which comes into effect in 2020, provides for a new "mechanism to contribute to the
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mitigation of greenhouse gas emissions and support sustainable development" in Ar-

ticle 6 (Paris Agreement, 2015). Since the details and implementation of this new

mechanism are yet to be decided, it provides an ideal opportunity to mitigate the

negative effects of fly ash emissions.

The UNFCCC Secretariat is currently tasked with creating and managing this

mechanism, and it has the opportunity facilitate the transfer of ESP technology be-

tween countries by allowing such a transfer to qualify to earn CER credits towards

meeting Paris Agreement targets. In such a transfer, CER credits would apply only

for currently operating power plants or ones already under construction so as not

to incentivize building new coal plants. With this scheme, any climate cooling from

power plant sulfur emissions would be equivalent with or without an ESP, so the

pricing can be determined based on additional warming from fly ash alone. An ESP

would reduce the extra climate impact from fly ash over the entire life of a power

plant, which on average is 42 years in the US (EPA, 2016): therefore, the relevant

time horizon for this comparison is ~ 40 years.

Based on the modeling results, the range estimated extra warming per kg of fly

ash is between ~ 5 x 10- and ~ 2 x 10-8 W m- 2 . Using the IPCC values for

the absolute GWP of CO 2 from Myhre et al. (2013), each kg of fly ash that is (not)

emitted is equivalent to between ~ 2700 and 11000 kg of CO2 over this 40 year

timeframe with a mean value of ~ 6800 kg CO 2 / kg fly ash (Figure B-33). This

equivalency can be used to set the value of CER credits earned for ESP technology

transfer. Since fly ash GWP decreases with time, there is also an incentive for the

transferring country to specify that the receiving country shorten the operating life

of coal plants in order to maximize the CER credits earned, helping meet both the

emissions reductions and sustainable development goals of the mechanism (Sutter and

Parreio, 2007). Overall, such efforts would ultimately minimize both the negative

health and climate impacts (both from CO 2 and fly ash) from coal fired power plants.

In summary, because of the additional warming and health risks associated with

the emissions of fly ash particles from coal combustion, the UNFCCC Secretariat is

encouraged to consider ESP technology transfer (for existing and already-planned coal
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plants) between countries as a way to earn CER credits as part of the "mechanism

to contribute to the mitigation of greenhouse gas emissions and support sustainable

development" described in Article 6 of the Paris Agreement.
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Chapter 5

Conclusions

5.1 More ice nucleation measurements

Chapter 2 presents the performance of a new ice nucleation chamber and new meth-

ods to analyze ice counter data. The introduction of SPectrometer for Ice Nucleation

(SPIN) as a commercially available ice chamber is similar to the introduction of the

Cloud Condensation Nuclei Counter (CCNC) (Roberts and Nenes, 2005; Lance et al.,

2006) in that it will allow ice nucleation measurements to be made with higher tempo-

ral and spatial coverage. Figure B-34 illustrates how the introduction of a commercial

cloud chamber can affect the amount of research being conducted on experimental

cloud nucleation, using topic data from the ISI Web of Science Database (Thompson

Reuters, 2016). It shows time series of publication rates for papers using a CCNC

(top) or a continuous flow diffusion chamber (CFDC) (bottom). The commercial

CCNC was introduced in 2005 and precedes a ~ doubling in publication rate. This

rapid increase can be contrasted with the much slower growth in publication rate for

CFDCs, where only a few additional research groups entered the field in the late 2000s

with custom-built chambers. With the introduction of the SPIN chamber, which will

allow many more research groups to perform online ice nucleation measurements, the

amount of research being conducted on ice nucleation is expected to increase.

The methodologies highlighted in Chapter 2 allow ice nucleation measurements

to be made with increased experimental flexibility and reproducibility than previ-
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ously possible and also with fewer assumptions in the analysis. The addition of a

depolarization detector and data analysis using supervised machine learning (ML)

algorithms allow for robust determination of particle phase with uncertainty quantifi-

cation. Overall, the SPIN chamber reproduces laboratory data measured by previous

CFDCs, and the analysis in Chapter 2 quantifies uncertainties in the measurements.

Through lowering the barrier for entry in performing ice nucleation measurements,

the SPIN instrument will help constrain the influence of ice nucleation on the at-

mospheric radiation budget and the initiation of precipitation, thereby leading to a

better understanding of the impact of ice formation on the Earth's climate and water

budget.

5.2 Uncertainty in ice cloud parameterizations

The research presented in Chapter 3 explores the systematic low bias in field mea-

surements of ice nucleating particles using CFDCs. It investigates an artifact that

has been present in CFDC data for decades, and presents the first quantification

of its effects. It highlights how CFDC measurements have (also for decades) been

conducted at unphysical conditions to measure immersion freezing and that account-

ing for this artifact explains the unphysical supersaturation dependence of immersion

freezing results. Overall, if heterogeneous ice nucleation parameterizations based on

CFDC measurements are to be used extensively in the global modeling community, it

is critical to account for both (a) for the under-prediction of ice nucleating particles

(INP) in these observations, and (b) for the variability (especially in the tails of the

distribution) of INP measured with this technique. Small changes in these details,

as shown in Chapter 3, can lead to divergent estimates of the magnitude of aerosol

impact on ice clouds within the same modeling framework. This thesis research also

suggests that minimizing the uncertainty in estimates of this bias, e.g. with the ML

techniques presented in Chapter 3, is an prudent step in developing heterogeneous

ice nucleation parameterizations based on CFDC measurements.

In order to incorporate CFDC measurements in global models as a means of re-
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ducing the uncertainty that INP contribute to the climate system, both experimental

and modeling efforts must carefully account for the variability in instrument bias and

consider the uncertainty associated with it. This research provides a novel approach

to endogenize the variability of the low bias using the stochastic parameterization

framework for data from other CFDC instruments. Using the approaches highlighted

in Chapter 3 will help minimize the measurement uncertainty associated with histori-

cal and future data and also properly propagate measurement uncertainty into model

estimates.

5.3 Fly ash and climate

Chapter 4 uses the new experimental and analytical capabilities developed in the

previous two chapters to investigate the impacts fly ash particles on cloud formation

and climate. It examines the physical and chemical properties of several types of fly

ash particles and the efficiency with which they form cloud droplets and ice crystals in

the laboratory. It discusses how particles with spherical morphologies similar to that

of fly ash are observed in cirrus cloud residuals, and the laboratory results with fly ash

suggest that it nucleates ice crystals most efficiently at cirrus-relevant temperatures.

This chapter also uses aircraft observations to constrain the amount of fly ash to be

used in a global climate model. The modeling results in Chapter 4 suggest that these

particles have the potential to contribute a large additional warming to the climate

system in addition to the CO 2 released from coal combustion, motivating the policy

discussion. Since anthropogenic emissions of fly ash particles could play a significant

role in how humans are perturbing the climate system via effects on the formation

and persistence cirrus clouds, it is prudent to consider the effects of these emissions

in existing policy frameworks intended to minimize the negative impacts of climate

change.
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5.4 Future work

The research presented this thesis also paves the way for additional work to explore

the topics considered. In particular, it motivates research on improving the SPIN

chamber capabilities, continuing the assessment of CFDC uncertainty, and reducing

the uncertainty associated with fly ash radiative forcing.

The work presented in Chapter 2 motivates future work to extend the ML ap-

proach to analyzing field data and to compare the SPIN chamber performance with

other ice counters both in the laboratory and in the field. Once large enough datasets

are generated for field measurements, ML classifiers can be used for distinguishing

frost from real ice in the field. Also, the general ML approach can be used for other

instruments with size-only data: for example, an SVM that uses size only would find

the optimal size (by maximizing the margin between ice and aerosol training data)

to distinguish the two classes and quantify the uncertainty associated with choos-

ing this size via cross-validation. Future SPIN designs should also consider several

hardware and software changes that would improve data quality and automation.

For example, minimizing chamber leak rates and 3D printing components from less

thermally-conductive material would improve field measurement quality by reducing

the frost background. Also measuring the spatial and temporal variability of the ice

layer thickness could improve the accuracy of reported thermodynamic conditions.

The research presented in Chapter 3 motivates future work to apply a ML ap-

proach to quantify and minimize uncertainty in historical CFDC data. Ideally, all

CFDC-type chambers should perform similar analysis as part of instrument character-

ization. This way, the variability of cf for a particular instrument would be inferred

on a measurement-by-measurement basis to correct laboratory and field data. The

variability in cf would then also be included when fitting parameterization constants.

After exploring the experimental uncertainty, the sensitivity of the parameterization

constants to variability in the cfs could then also be quantified. Furthermore, the

research in this chapter motivates experimental and computational fluid dynamics

(CFD) investigation to minimize lamina spreading, e.g. by exploring which flow con-
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ditions minimize lamina spreading via more isokinetic injection of aerosol. This type

of investigation could yield further reductions in experimental uncertainty, especially

if paired with an ML approach to provide statistical corrections of any biases in the

CFD-derived response surface for lamina thickness.

The research presented in Chapter 4 motivates future work to study the types of

fly ash emitted in developing countries to characterize potential variability in cloud

formation potential. It motivates comparing how different laboratory instruments

characterize fly ash particles, i.e. as BC, mineral dust, or some other particle type. It

also motivates field measurements of aerosol composition to provide a more complete

picture of the spatial and temporal variability of concentrations of potential INP.

From a modeling perspective, it calls for a more explicit treatment of fly ash in a

both a global and cloud-resolving modeling framework to narrow the range of possible

amounts of extra warming. For the former, fly ash concentrations should be treated

prognostically in the model, and emissions should incorporate the spatial differences

between fly ash and BC sources. Such an effort could also explicitly model the CCN

behavior of fly ash the a warm cloud activation scheme. Overall, a more careful

treatment of fly ash in a global model would help reduce the uncertainty in the

radiative forcing effect per emitted ton of fly ash and would also improve the efficacy

of policy mechanisms to curb the extra warming. Also, additional policy analysis

should be conducted that investigates how to maximize the efficacy of the proposed

approach and considers how to formulate the specifics in the context of the Paris

Agreement stocktakes.

5.5 Concluding remarks

In conclusion, the research presented in this thesis investigates anthropogenic aerosol

particles and clouds in a changing climate. The role these particles play in the forma-

tion and persistence of ice clouds remains one of the most uncertain aspects of under-

standing past, present, and future climate. These studies highlights that studying ice

nucleation requires careful measurement of particle ice nucleating ability as well as
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robust uncertainty quantification of experimental results. Laboratory measurements

and their corresponding uncertainties are extended for use in climate models to probe

how anthropogenic particle emissions affect climate through ice cloud formation. This

type of investigation is then used to motivate policy decisions about controls on an-

thropogenic particle emissions. Overall, this thesis presents a vertically-integrated

approach to clarifying the human role in the climate system by 1) developing instru-

mentation to perform ice nucleation measurements, 2) quantifying the uncertainty

associated with these measurements using ML algorithms, 3) incorporating measure-

ments and uncertainty quantification in climate model simulations, and 4) using the

modeled climate response to motivate policy decisions for anthropogenic particle emis-

sions.
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iney 0.1B B 3B 4B 5B 10B stoch

LWCF PD 22.44 22.43 23.34 25.64 26.63 27.46 30.71 27.70

(W m- 2 ) PI 21.91 21.74 22.94 25.62 26.63 27.60 31.07 27.92

A 0.53 0.70 0.40 0.02 0.00 -0.14 -0.36 -0.22

SWCF PD -55.37 -55.29 -56.41 -58.71 -59.83 -60.61 -63.72 -60.86

(W n- 2 ) PI -53.21 -52.94 -54.17 -57.00 -57.91 -59.03 -62.30 -59.30

A -2.16 -2.35 -2.24 -1.71 -1.91 -1.59 -1.42 -1.56

IWP PD 10.57 9.89 11.04 13.47 14.57 15.52 19.59 16.03

(g m- 2 ) PI 10.62 9.89 11.19 13.84 14.99 16.01 20.29 16.60

A -0.05 -0.01 -0.15 -0.36 -0.42 -0.49 -0.70 -0.57

INC PD 12.28 11.86 12.80 16.00 17.61 19.26 29.07 20.62

(L-) PI 11.11 10.78 11.90 14.83 16.62 18.66 28.59 20.07

A 1.17 1.09 0.90 1.16 0.99 0.60 0.49 0.55

REI PD 13.98 13.84 14.05 14.07 14.13 14.21 14.37 14.19

(pm) PI 14.33 14.17 14.34 14.37 14.41 14.37 14.49 14.38

A -0.34 -0.33 -0.29 -0.30 -0.29 -0.16 -0.12 -0.19

Table A.1: Radiative and cloud properties for each case in PD runs (top row in each set),

in PI runs (middle row in each set). and differences between PD and PI runs (bottom row
in each set). For reference, the globally averaged LWCF and SWCF from the year 2000
CERES-EBAF observations are 26.0 and -47.1 W m- 2, respectively.
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Figure B-1: Radiative forcing estimates in 2011 relative to 1750 and corresponding
uncertainties for the main drivers of climate change, adapted from Stocker et al.
(2013). The radiative forcing from cloud adjustments due to aerosols is highlighted
to emphasize that these effects contribute the largest uncertainties in these estimates.
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Figure B-2: Schematic representation of the main nucleation mechanisins in Earth's

atmosphere. (Fron left to right) Droplet nucleation on a cloud condensationii n-

(lens, deposition nucleation on a (Iry particle. inimersioni/coiileiisationi freezing of a

preexisting droplet, and contact nucleation. See Section 1.2 for details.
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Figure B-3: Representation of idealized chamber thermodynamic and flow conditionis

with chamber width of 1 cm. The chamber cold wall (left) temperature is -40'C and

chamber warm wall (right) is -30'C. The topl half of the figure shows the saturation

vapor pressures over ice (black dashed line), over water (red dashed line). and chamber

vapor pressure (solid black line) for 10 Lpm sheath + 1 Lpm sample flow. Note

the chamber is supersaturated everywhere with respect to ice but subsaturated with

respect to water. The bottom half of the figure shows the flow velocity profile with the

aerosol lamina given by the black dash-dotted lines. The colors show the horizontal

variation in the ice saturation ratio across the width of the chamber. The asynmmetry

in the flow profile is a result of the buoyant displacement of the flow towards the cold

wall.
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Figure B-6: Schematic optical setip of the SPIN OPC. The laser light is shown
entering the sampling region, with side scatter rays traveling to the sizing detector.

and the backscatter rays traveling to the depolarization detectors. See Section 2.2.2

for details.

95

I



Homogeneous Freezing
Water Saturation
Reverse Flow > 0

5 -40 5 -30
Lamina

-0.02

0

0.02

0.04

0.06

0.08

0.1 -

0.12'
-45 -40 -35 -30

Temperature ("C)

-25 -20
Temperature (*C)

0

0.02

E
0.04

> 0.06

LL 0.08

0.1
-3

-15

0 -25
Temperature ("C)

-20

Figure B-7: Phase diagram of ice saturation ratio vs. temperature showing the
theriodynamic conditions accessible by CFDC chambers. The color scale shows the
ratio of (upward) reverse flow to (downward) normal flow in the chamber (with 10
SLPM sheath flow, 1 SLPM sample flow, and 1000 hPa, chamber pressure) assuming
a negligibly thick ice layer predicted by Rogers (1988) with the dashed grey line
marking the boundary between zero and nonzero flow reversal (see Section 2.3.1 for
details). The solid grey line is water saturation, and the grey (lash-dot line shows
the onset of homogeneous freezing of solution droplets for J 10'' (i-- s' from

Koop et al. (2000). Two flow profiles are shown as insets: the coldest temperature
in each corresponds to the cold wall temperature and the warmest to the warm wall
temperature. Flow reversal occurs along the warm wall in one case (left. red circle)
and not in the other (right, red square).
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Cross-validated classification accuracy is 99% in this example. (e) Data from time 2 classified by SVM as aerosol and ice. See

Section 2.3.2 for details.
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parameter space with classification accuracy of 99%. 2D projections of the data are shown at axes limits with smaller markers.
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Error bars represent classification uncertainty. Data points with lower error bars below zero indicate that the values are
statistically indistinguishable from zero.
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Figure B-10: Particle sizing and transmission efficiency of the SPIN detector. (a)
Detector intensity counts versus test particle size before and after the freezing exper-
iments in this study. Dashed line shows power law fit to the data. (b) Size-dependent
counting efficiency of AS particles with sigmoid fit. Error bars show measurement
uncertainty.
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Figure B-11: Experimental homogeneous freezing results. The hatched and shaded
area shows where homogeneous freezing of deliquesced haze droplets is expected to
have occurred (gas phase chamber conditions below -38 C and above the J = 10"
cm-3 s ' line from Koop et al. (2000)). The color contours show interpolated acti-

vated fraction of ice crystals as a function of chamber conditions from 38 experiments

(white areas are where no data are present). Typical aerosol number concentrations

for such experiments are 100s of particles cn 3 . Typical uncertainties at one standard

deviation for temperature are 1 0 C, for supersaturation are 5%. and for activated

fraction are < 1%.
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Figure B-12: Experimental heterogeneous ice nucleation results and comparison to
literature with polydisperse NX illite, AgI, and 500 nn kaolinite particles. AS droplet
breakthrough (lata and corresponding (quadratic) fit line are shown in green. Error
bars represent uncertainty in lamina temperature and supersaturation conditions.

The homogenous freezing line for solution droplets for J

et al. (2000) is also shown for reference.

' from Koop

101

- Water Saturation
- - 100nm Homogeneous Freezing (Koop et al., 2000)

Droplet Breakthrough Fit Line
A Agi 2% Activation (Bailey and Hallet, 2002)
o AgI 2% Activation (Detwiler and Vonnegut, 1981)
v AgI 2% Activation (Mason and van den Heuvel, 1959)
0 AgI 2% Activation (Stetzer et al., 2008)

lIlite 1% Activation (Welti et al., 2009)
Kaolinite 1% Activation (Welti et al., 2009)

o Droplet Breakthrough Data (this study)
0 AgI 2% Activation (this study)
* Illite 1% Activation (this study)
0 Kaolinite 1% Activation (this study)

0

0

0 0 O
0

A
0

0 00 0

0L

1~ 17 17 i||

0
010

0 ;VV 7V"

CD

10"' .11-:1 s



1000

a
101

100
E -

01

100
C' I l U ? 1

0 10 20 30 40 50 60 70 80 90

'5 --TI I I I I I I I

""b

100

0

J- I -

0 20 30 40 50 60 70 80 90
Time after start (min)

Figure B-13: Example field measurement at ~ -30 0 C and Sii = 1.05 (reported

lamina temperature of -30.7'C 0.2'C and lamina Siiq of 1.05 0.01 over the

measurement period). (a) The OPC size histogram time series for this measurement.

The red horizontal line shows the 5 pm size threshold for ice. (b) INP concentration

time series using the 5 pmil size threshold. Shaded areas show measurement periods

and un-shaded areas show filter periods. Solid red horizontal lines show average INP

concentrations from measurement periods (with the value specified above). Dashed

red horizontal lines show average frost concentrations during filter periods (with the

value specified above in parentheses).
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Figure B-14: Fluent simulation results for two sets of chamber conditions in a, cross-

sectional view. Left column shows results for nominal lamina temperature of -40 0 C
and lamina Si. at 1.3. (a) Temperature (0C). (c) SiC and (e) flow velocity (In s1).
Right, coluni shows results for nominal laminia temperature of -30 C and lainna
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sheath
flow

flow profile

Figure B-15: Schematic representation of idealized CFDC operating conditions.

Particle-laden flow is drawnl between two sheath flows., and the two ice-coated walls
are held at, different temperatures (both below 00C). This configuration results in
water vapor and heat: diffusing from the warm wall to the cold wall, setting up linear
gradients of both quantities. With the nonlinear temperature dependence of the sat-
uration vapor pressure, this setup results in supersaturated conditions with respect
to ice everywhere in the chamber, with a maxinmum supersaturation near the center
of the chamber.
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Figure B-16: (Top) Inferred particle distribution from lneasured aerosol pulse width

and calculated chamber conditions. (Bottom) Chamber temperature. S l.,,, and flow

conditions corresponding to this inferred aerosol distribution. The dash (lot line shows
the location of particles in the chamber if they were constrained onlv to the theoretical
aerosol lamina.
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Figure B-17: Measured f at constant conditions (room temperature. 10 SLPM to-

tal flow set point). The histograms on the left and bottom are the marginal distribu-
tions of fmn, and total flow, respectively, with corresponding kernel density estimates
shown in red.
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Figure B-20: Zoncal averages of PD (a) LICF
as for CEB ES-EBAF satellite observations.

and (b) SIICF for all cases as well
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Figure B-21: Scatter plot of dLWCF vs. dIWP for all cases. Error bars show

uncertainty estimates from bootstrapping two-year averages from the final five years

of the six-year simulation (i.e. bootstrapped samples are constructed from years 2+3,

3+4, 4+5, and 5+6, and the mean and standard deviations of these samples are

shown).
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Figure B-22: Zonal averages of (a) dINC (b) dIW P (c) dLWVCF (d) dSWCF for

all cases.
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Figure B-23: (Top row): spherical mineral/metallic particles observed on E\I grids

collected during the NIACPEX campaign (blue bar shows 500 nm for scale). (Bottom

row): example fly ash particles observed using EM (blue bar shows 500 nm for scale).
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Figure B-24: Contribution of coal combustion to PM
speciated emissions data from Reff et al. (2009).
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Figure B-25: Fly ash size distributions. (Top row): SNIPS distributions measured with the Brechtel SEMS, which includes an
upstream 650 nm traditional impactor. (Middle row): optical size distributions after impaction measured with the TSI OPS.
(Bottom row): optical size distributions without impaction measured with the TSI OPS.

3500

o 3000

S2500

C 2000

1500

51000

500

0

100

1.5

0.5

50

,iRn

Z
R
r
0

r

0
0

1

15or-



A N AIO . P KzHSOMn NoKO

A] :0 W PO, NO KSO K2SO3* , KPO KPOK2H2Rb 

KKSO

KOF O b P0, KH S 2SO2O" C

Ion mass/charge

Na AlC K Ca Fe*

SII l SO C1 F Sr'C PO Ba Bao-

C cPO Pb

10

0001

10 -

B OH A O 
A ,O S 'O ' PO SO HSO,

F C S so A 2 so, (SO,)Si (SiO,)AIO (S'O,), SO)
H FeO SS

C 

10, 
(SSO;M'6NJ vY4h SO

C O H C 5 I A IO IO PO s S ' PO SO,

SF 
(O),)

_ _ _ 

6 A0, 1 [

E Al K* Ca Fe

44Ca CaF CaO BaO0.1 SrC OJa . Ca oF

.0 D C P' PO' CO CP' aPO, Ca,0F* P

0,1 -

00001 -

F AO ,

C -1 so (SIO)S S04 (S'O')'

S SiO 0 SO2 tI'o

IN100 Ng

Figure B-26: Typical fly ash mass spectra collected with PALMS. (a) Miami F positive spectrum. (b) Miami F negative

spectrum. (c) Clifty F positive spectrum. (d) Clifty F negative spectrum. (e) Welsh C positive spectrum. (f) Welsh C negative

spectrum. The C type fly ash spectra were similar between samples, so only the Welsh C is shown.

UV

10

0.1
0 01

0,001

0.0001

C.:]

i 
N 

11

1 50 2001 50 20050 so Ion mass/charge
0

10

0.1

0.0

0.00

0000 1
200150 200

I
00

1w mass/charge
1 50O

Ion mass/charge
so50

001

0

0

0.

0.0

100

lo mass/charge
2 0 200150

50 iso



10
0 Miami F

o Joppa C
l Welsh C

K = 0.04 0 Clifty F

0

10
200 300 400 500

Diameter (nm)

Figure B-27: Critical supersaturations (50%/( activation fraction) vs. mnobility-selected

diamieter for the droplet activation experimients. Solid lilies are fitted lilies of constant

kappa for each fly ash type, with indicated values. Error bars show the standard

deviations of the mneasured values across experimients.

116



5 -40 -35 -30 -25 -20 -15
Temperature (C)

b

OD 00t El El l

0 MiamiF300
E MiamiF700
o JoppaC300
El JoppaC700
* WelshC300
* WelshC700
* CliftyF300
M CliftyF700

- Umo et al. (2015) Fit

-45 -40 -35 -30
Temperature (C)

-25 -20 -15

Figure B-28: (a) 1% activated ice fraction from SPIN experiments. The solid black

line is the water saturation level, the dashed black line shows the homogeneous freez-

ing level predicted by Koop et al. (2000), and the dashed magenta line is a CNT fit

to the deposition freezing data based on the formulation by Detwiler and Vonnegut

(1981). (b) INAS density vs. temperature for the immersion freezing data. The black

line shows the empirical fit to immersion freezing data reported by Umo et al. (2015).
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Figure B-29: Vertical profiles of fly ash concentrations from aircraft campaigns and

diagnosed fly ash concentrations from collocated annual mean CAMS-MARC BC

fields. Horizontal error bars on aircraft data show the range in uncertainty associated
with the Bayesian estimate, and vertical error bars correspond to the 1000-700. 700-
500, and 500-0 1iPa, pressure bins. The errors bars on the model results indicate

spatial variability in concentration in the model across the latitude and longitude

extent of the aircraft data.
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Figure B-30: dCF responses to changes in dINC (a) and dREI (b) for all cases.
Horizontal and vertical error bars in both panels show uncertainty estimates from

bootstrapping two-year averages from the fiial five years of the six-year simulation

(i.e. bootstrapped samples are constructed from years 2+3, 3+4, 4+5, and 5+6, and

the mean and standard deviations of these samples are shown).
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Figure B-31: Global maps of dCF for all cases.
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Figure B-32: (a) Cloud forcing response to amount of fly ash enissions. Red bars

indicate a net warming effect conpared to the sf =1 case, and blue bars indicate a

net cooling. (b) Sensitivity of changes in cloud forcing response to changes in fly ash

emissions as a function of fly ash emissiolns. The grey shaded region shows enissions
range constrained by field observations.
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Figure B-33: (a) Absolute Global Warming Potential (AGWP) for continuous (uii-
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Figure B-34: Time series of 3-year average publication rate for papers with a CCNC
topic (red) and with a CFDC topic (black). Arrows indicate the year of introduction

of a coinnercial CCNC (Roberts and Nenes. 2005). the beginning of the use of CFDC-
style chambers by multiple research groups (Stetzer et al., 2008), and the introduction

of the first SPIN chamber (Chapter 2). See Section 5.1 for details.
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