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Abstract

Growing concern about climate change and human impact on the environment have
resulted in an increase in interest for evaluating the environmental impact of products and
services we consume. Life cycle assessment (LCA) has become the most prominent method for
environmental evaluation. Life cycle assessment is the quantification of the environmental
impacts of a product or service through its whole life cycle, from the extraction of materials to
manufacturing and end of life. A carbon footprint is a subset of an LCA. LCAs are required as
part of government regulations, used by companies to identify high resource use in their supply
chain or to choose between product designs and by consumers to choose between alternative
product choices. LCAs provide valuable information; however, they are resource intensive, time
consuming and uncertain. Therefore, a methodology that addresses all these issues is needed.

This study addresses the following question: Can LCAs be streamlined while still
providing useful information? To answer this, an under-specification, probabilistic screening
methodology is employed. The screening methodology uses a high level assessment of the
footprint, incorporates uncertainty in the inputs, and refines data around the primary drivers of
impact. The streamlined LCA procedure is extended to include a Sobol based sensitivity analysis
methodology for identifying high impact activities. The effects of partial perfect information in
subsequent data acquisition activities on the streamlining methodology are examined. Metrics
to determine sufficiency in the data gathering procedure and to determine whether decision
makers can sufficiently distinguish between two products or design alternatives are developed.
A procedure to quantify the cost of additional information is developed. Finally, an exploration
of the scenario space of the impacts is analyzed. The extended streamlined methodology is
applied to a case study on tablets, with a focus on integrated circuits.

This thesis finds that the streamlined, probabilistic methodology can be used to cost-
effectively evaluate the environmental impact of products while still taking uncertainty into
account. Metrics to determine sufficiency can be effectively used, and the presence of partial
information does not limit the usefulness of the metrics. Furthermore, quantifying the cost of
additional information can help determine sufficiency in data collection efforts and can help
understand the challenges that companies face when performing an LCA.

Thesis Supervisor:
Elsa Olivetti, Thomas Lord Assistant Professor, Materials Science & Engineering
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Chapter 1: Introduction

1.1. Motivation

Life cycle assessment is the quantification of the environmental impacts of a product or

service through its whole life cycle, from the extraction of materials to manufacturing and end

of life. Life cycle assessment (LCA) has become the most prominent method for environmental

evaluation as evident in its adoption in governmental policies in Europe, such as in renewable

energy directives (Ahlgren & R66s, 2013), battery recycling, chemicals regulation, and electrical

and electronic policies, as well as in the United States in initiatives such as the Energy

Independence and Security Act of 2007 (Reed, 2012). Practitioners use LCAs to support business

strategy and research and development (Cooper & Fava, 2006), and increasingly, for labeling

and corporate environmental reporting (Masanet & Chang, 2014). LCA has gained popularity

because of its multidisciplinary approach (Andrae & Andersen, 2010) and its extensive reach. A

subset of an LCA is a carbon footprint, which aims to quantify all the greenhouse gas emissions,

in units of kilogram CO 2 equivalents, that occur during a product's life cycle (De Koning,

Schowanek, Dewaele, Weisbrod, & Guinee, 2010; Henriksson et al., 2015). LCAs and carbon

footprints provide guidance to consumers when making environmentally friendly decisions and

help industries target areas for environmental improvements of their products.

Several standards have emerged that specify in more detail how a life cycle assessment

should be carried out. The International Organization for Standardization's (ISO) 1404X

describes the principles and framework, specifies requirements, and provides guidelines and

examples of LCAs (ISO 14040, 2006, ISO 14044, n.d., ISO 14047, 2012, ISO 14049, 2012). The

International Reference Life Cycle Data System (ILCD) Handbook details the steps to perform an

LCA for LCA practitioners (Wolf, Pant, Chomkhamsri, Sala, & Pennington, 2012). The British

Standards Institute's (BSI) PAS 2050 describes the assessment methodology for quantifying life

cycle greenhouse gas emissions (BSI PAS 2050:2011 Specification for the assessment of the life

cycle greenhouse gas emissions of goods and services, 2011). Despite the vast amount of efforts

to standardize life cycle assessment, subjective decisions are still present in LCAs, resulting in a

lack of a consistent approach to LCAs.

~ 9 -



LCA's and carbon footprints provide valuable information; however, they are resource

intensive, time consuming and fraught with uncertainty. They are resource intensive because

they require detailed environmental information on the product from the material extraction

phase to manufacturing until the end of life (EOL) (Lee, Yang, & Blanco, 2012). Due to the

complex nature of supply chains, these data acquisition and analysis efforts can take months to

complete (Zgola, 2011). Many times data is unavailable or incomplete, and surrogate data or

estimates are used to fill in these data gaps, resulting in estimation bias that can be

represented as uncertainty. Increasing the efficiency and robustness of decision-making

regarding the alternative choices or improvement options requires a methodology that

sufficiently accounts for uncertainty. Thus, fast, reliable life cycle assessment analyses are

needed.

Several streamlining methodologies that attempt to address the issues with LCAs have

already been developed. Graedel, Allenby, and Comrie (1995) developed a semi-quantitative,

matrix type assessment that ranks the impact of each life cycle inventory parameter by using a

predefined impact scoring list. Similarly, Chen and Chow (2003) developed a patterned based

methodology, which groups products according to predefined parameters, and then the desired

product's environmental impact is mapped to the different groups. These methods provide a

rapid evaluation of the environmental impact of a product or process but they are highly

uncertain. A more quantitative streamlining methodology identified in the SETAC North

America Streamlined LCA Workgroup is scope limiting, in which the upstream and/or

downstream stages are limited or eliminated (Todd et al., 1999). All streamlining methodologies

already use scope limiting to a certain extent (Olivetti, Patanavanich, & Kirchain, 2013), but

limiting the scope can end up ignoring a high impact process or material, yielding an incorrect

result. Another quantitative streamlining methodology is screening LCA, which only uses readily

available data (Wenzel, 1998), and excludes processes and materials that are known to have a

minimal impact (Moberg, Johansson, Finnveden, & Jonsson, 2010). However, the exclusion of

certain processes can ignore interaction effects present between different processes and

parameters. Other methods that have been developed to reduce the resource intensity, time
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and cost of LCAs include the development of carbon footprint tools (Huang, Hu, Yin, & Wang,

2016) and data mining techniques (Sundaravaradan, Marwah, Shah, & Ramakrishnan, 2011) .

Olivetti and colleagues developed an under-specification, probabilistic screening

methodology to perform quantitative evaluation of the footprint at a reduced cost (Olivetti et

al., 2013). The methodology involves using a high level assessment of the footprint that

incorporates uncertainty in the inputs based on, for example, publicly available studies and

industry expert input, to screen for high impact elements that contribute to a high degree of

uncertainty in the assessment. Data are refined around these primary drivers of impact until

uncertainty is reduced to a specified target level, while the rest of the analysis remains at the

high level of assessment. In their work, they focus only on the materials impact and do not

explore how this methodology extends to the impact of a product, including manufacturing.

Zgola (2011) does explore this aspect and employs the methodology on a case study of liquid

crystal displays but does not explore the whole scenario space.

This thesis builds upon the work of Olivetti and Zgola to expand the probabilistic triage

streamlining methodology. In this thesis, we propose a methodology for performing the

sensitivity analysis used to screen high impact elements that contribute to a high degree of

uncertainty in the assessment. We explore alternative scenarios and propose metrics that can

be used by decision makers to determine whether they can sufficiently distinguish between two

products or design alternatives or whether more refined data needs to be gathered. Finally, we

develop a methodology to quantify the cost savings from employing the streamlining

methodology.

The refined probabilistic triage streamlining methodology is applied to a case study of

tablets. Tablets, and electronics in general, are of interest because of the need to quantify their

environmental impact, which involves the use of high purity chemicals, electricity consumption

and emissions during their manufacturing. Electronics have complex high tech, manufacturing

processes (Koomey, Matthews, & Williams, 2013), rapid product profile changes (Andrae &

Andersen, 2010; Mueller et al., 2004), worldwide supply chains (Koomey et al., 2013; Mueller et

al., 2004), complexity in their material composition, and use of highly specific purity levels in

their chemical use (Mueller et al., 2004). All of these factors make tablets an ideal candidate for

~ 11



streamlined life cycle assessment. The goal of this thesis is to develop a robust streamlining

methodology that takes into account uncertainty.

1.2. Literature Review

Life Cycle Assessments are plagued by uncertainties. In order to learn how to treat

uncertainties in LCAs and carbon footprints, it is necessary to have a thorough understanding of

the types of uncertainties present. This section will review the literature describing the types of

uncertainties found in environmental assessments, particularly dealing with electronics, and

efforts to quantify it. As this thesis focuses on the methodology employed to perform the

sensitivity analysis to screen high impact elements, a summary of sensitivity analysis techniques

will be described as they relate to environmental assessments.

1.2.1. Uncertainty

This section will review the types of uncertainty present in life cycle assessments and it

will describe the most common types of uncertainty present in the LCAs of electronics. This

section will also discuss methods used to propagate uncertainty.

1.2.1.1. Uncertainty in Life Cycle Assessments

Many times, life cycle assessments and other environmental assessments are carried

out for product or design improvement comparisons. However, practitioners of LCAs usually

report results as point values, failing to capture the variability and uncertainty present in an LCA

(Henriksson et al., 2015; Lloyd & Ries, 2007). Decision makers might not fully endorse LCAs

because many times the uncertainty associated with them is ignored (Herrmann, Hauschild,

Sohn, & McKone, 2014). It is important to know the amount of uncertainty associated with the

outcome of an LCA to be able to judge the significance of the outcome of product comparisons,

product design improvements or the use of ecolabels (M. A. J. Huijbregts et al., 2001). Recent

efforts have been directed at understanding the types of uncertainties present in an LCA and in

developing methods to quantify and incorporate uncertainty in an LCA. However, a clear

standard for the quantification and incorporation of uncertainty in an LCA is still needed.

~ 12 ~



The data within a life cycle inventory and impact assessment method used in an LCA

contains both uncertainty and variability. Based on Heijungs and Huijbregts (2004), uncertainty

differs from variability in that uncertainty deals with a lack of knowledge (epistemic

uncertainty) or with measurement errors, while variability has to do with inherent differences

that arise from the heterogeneous nature of the process in question. We will refer to both

uncertainty and variability as uncertainty.

In 1992, the USEPA classified uncertainty into three different types: parameter,

scenario, and model uncertainty (USEPA, 1992). Parameter uncertainty refers to uncertainty in

the input values to the model that results from incomplete knowledge of the true value,

inaccurate measurements or from estimates or assumptions. Parameter uncertainty is the type

of uncertainty most incorporated into LCA studies. All of the studies incorporating uncertainty

surveyed by Lloyd and Ries (2007) incorporated parameter uncertainty, while only 38% and

33% incorporated scenario and model uncertainty, respectively. Scenario uncertainties arise

from normative choices that exist in an LCA, such as the system boundary chosen, the time

horizon observed, the allocation of environmental impacts for processes with multiple outputs

and geographical choices. These choices can result in different outcomes for an LCA. Model

uncertainty has to do with the uncertainty associated with the chosen model and with how well

it describes the real world. Many simplifications are done when choosing a model. Types of

models commonly employed for an LCA are process-based models, economic input-output

(EIO) LCA and hybrid LCAs. Huijbregts, Gilijamse, Ragas, & Reijnders (2003) found that it is

important to quantify the three types of uncertainty as all of them can be significant.

Huijbregts et al. (2001) categorized the uncertainty present in an LCA into two: a lack of

data and of representative data, and data inaccuracy. Data gaps can occur because of a lack of

resources (both time and monetary resources) needed to obtain the information or because of

confidentiality issues in the production chain. The lack of representative data is further split

into three components: temporal, geographical, and technological correlation. Uncertainty

from temporal correlation occurs when the year that the data was collected differs from the

year of the study. Thus, older data is used as a proxy of newer data. Geographical correlation

uncertainty arises when the data obtained is for a particular geographical location and differs
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from the geographical area covered in the study. Uncertainty from technological correlation

includes all other aspects uncertainty due to the correlation between the data obtained and the

study. Huijbregts et al. (2001) explains data inaccuracy as uncertainty that arises from sources

such as imprecise measurements and expert estimations and assumptions.

The next section will describe the most pertinent types of uncertainty present in the

LCA's of electronics.

1.2.1.2. Uncertainty in LCA's of electronics

All sources of uncertainty are significant in the carbon footprints and LCAs of electronics

(Lloyd & Ries, 2007). LCAs of electronics have parameter, scenario, and model uncertainty.

Large data gaps are common in the LCAs of electronics. Particularly noticeable sources of

uncertainty are temporal and geographical variability, lack of inventory and impact factor data,

and differences in impact characterization schemes (Teehan & Kandlikar, 2012).

Temporal variation in electronics arises when data gaps exist and individual data values

are assumed independent and are substituted for older data. Data gaps in the electronics

industry are common because the products evolve approximately every two years (Murphy,

Kenig, Allen, Laurent, & Dyer, 2003), and because data acquisition is burdensome because of

the complex manufacturing process, industry secrets (Koomey et al., 2013; Krishnan et al., n.d.;

Murphy et al., 2003), and rapid changes in the supply chains (Deng, Babbitt, & Williams, 2011).

Thus, by the time the data acquisition task is complete, the product profile has changed. LCA

practitioners end up using the older data in the study of a newer product, and this results in

uncertainty of the assessment result.

Geographical variation occurs when the data collected is for a specific geographical

area, but it is used as a substitute when studying a different geographical area. In electronics,

geographical variation is mainly caused by differences in the electricity generation mix from

country to country. Manufacturing mostly happens in Southeast Asia but product use occurs

everywhere (Teehan & Kandlikar, 2012). Thus, it is difficult to specify the global warming impact

of the use phase, as this will depend on the use location, and normative choices have to be

made. Teehan and Kandlikar (2012) found that global warming impacts due to use phase will be

30 times higher in China than in Norway because of differences in electricity sources. Further
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geographical variation occurs because of differences from location to location in the energy

consumption in the materials, manufacturing, and assembly process (Deng et al., 2011).

Other uncertainties in the LCAs of electronics arise because of the difficulty in obtaining

a value for product lifetimes, the availability of different choices for the functional unit (Teehan

& Kandlikar, 2012), and from cutoff and aggregation errors (Deng et al., 2011). In addition,

many data gaps exist because of intellectual property issues, which prevents manufacturers

from sharing information on their production process, and because they cannot measure

emissions since it is time consuming and requires specialized equipment and methods.

Furthermore, the global warming potential (GWP) allows comparison of the global warming

impact of different gases. However, the GWP changes depending on the time period used,

resulting in further variation in the assessment.

1.2.1.3. Uncertainty Characterization and Methods for Propagating Uncertainty

In order to calculate the uncertainty of the output of a model with respect to parameter

uncertainty, the uncertainties of the input parameters need to be specified. Input uncertainties

are usually specified with probability density functions and sometimes with possibility

functions. Clavreul, Guyonnet, Tonini, and Christensen (2013) argue that a combination of

probability and possibility functions should be used when dealing with both epistemic

uncertainty and variability. Even though a clear methodology on the incorporation of

uncertainty in LCAs is still missing (Groen, Heijungs, Bokkers, & de Boer, 2014), efforts should

be directed towards incorporating uncertainty into LCAs to prevent misleading decision makers

and users of the assessment.

Common distributions used in the uncertainty characterization of an LCA are the

normal, lognormal, uniform, beta, trapezoidal and triangular distributions (Heijungs &

Huijbregts, 2004; Lloyd & Ries, 2007). In general, available data and expert estimates are used

to choose the type of distribution and the parameters of the distribution. Lognormal

distributions are widely used for LCAs because they only allow positive values and skewed

distributions, which have been found to be representative of LCA data, while uniform and

trapezoidal distributions are used for less understood parameters (Lloyd & Ries, 2007).

Ecoinvent's modification of Weidema and colleagues' pedigree matrix and their data quality
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indicators can be used to quantify the uncertainty of a parameter when enough information is

not available (Weidema et al., 2013)

Several efforts have been made in the LCA literature to propagate uncertainty in LCAs.

Some of these approaches have included fuzzy data sets, interval calculations, analytical

uncertainty propagation, Bayesian statistics and stochastic modeling (M. Huijbregts, 1998; Lloyd

& Ries, 2007). All of the methods have advantages and disadvantages.

Analytical uncertainty propagation incorporating a Taylor series expansion was first

introduced by Morgan and Henrion (1990). In analytical uncertainty propagation, mathematical

expressions are used to quantify the uncertainty of the output based on the input parameters.

Analytical uncertainty propagation does not require specifying a distribution for the input

parameters, thus decreasing the additional uncertainty from choosing a distribution. However,

it requires complex mathematical expressions that are many times not feasible for an LCA study

(Lloyd & Ries, 2007).

Fuzzy data sets, which use possibility functions, are used for epistemic uncertainty. LCA

practitioners use fuzzy data sets to deal with the lack of LCI data that makes it difficult to

perform goodness-of-fit tests to derive the probability function (Lloyd & Ries, 2007). Possibility

functions assign degrees of likelihood to intervals of input values rather than exact values,

resulting in fuzzy intervals (Clavreul et al., 2013). These intervals are propagated throughout the

model, resulting in a family of distributions for the characterization of the output uncertainty.

Fuzzy data sets account for missing information, but they do not take correlation of parameters

into account.

The most widely used method for uncertainty propagation in LCAs is stochastic

modeling. Stochastic modeling samples from the input distributions. The most common

stochastic method is Monte Carlo simulations. In Monte Carlo simulations, numbers are

randomly sampled from the distribution of the input variables to obtain the sample distribution

of the output. Monte Carlo simulations allow for the use of different parameter distributions

for the various inputs and they allow for correlations between the input parameters (M.

Huijbregts, 1998). Another similar method used is Latin hypercube sampling. Just as in Monte

Carlo simulations, numbers are randomly sampled from the input distributions, but the
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distributions are divided into equally probable strata. Stochastic modeling has become easier

with the increasing computing power; however, it has also been found to require more data

than is usually available.

The method chosen to quantify and propagate uncertainty will depend on the

availability of data. Efforts should be directed towards developing a common standard for the

incorporation of uncertainty in LCAs.

1.2.2. Sensitivity analysis

Due to the presence of uncertainty in environmental models used in decision making,

sensitivity analysis can help determine the changes in the output of the model caused by

changes in the input variables, and it can also determine the contribution of the input

parameters to the uncertainty of the output. The EPA recommends carrying out a sensitivity

analysis in environmental models in order to understand the confidence that can be placed in

model results (EPA, 2009). Several methods exist to conduct a sensitivity analysis, and the

method chosen depends on the goal of the sensitivity analysis, on the model, and on the

resources available.

Cariboni, Gatelli, Liska, and Saltelli (2007) describe four possible goals for a sensitivity

analysis. First, a sensitivity analysis can be carried out to identify the parameters that contribute

the most to the output variance, and which by fixing them, could lead to the greatest reduction

in uncertainty. It can also be used to simplify a model by screening for the non-influential

parameters or to reduce the uncertainty of the output to a specified threshold by fixing the

value of the smallest number of input factors. Finally, the goal of a sensitivity analysis can also

be to determine at what values the input parameters can be fixed to obtain a given range of the

output. Sensitivity analysis in LCAs is usually carried out to identify the parameters which, if

fixed to their true values, would reduce the uncertainty of the output of a model.

Several different sensitivity analysis methods have been used in LCAs. Sensitivity

analysis techniques can be divided into local and global techniques. Local techniques involve

One-At-a-Time (OAT) sampling, in which each input parameter is varied at a time while the rest

of the parameters remain fixed at a value. Local techniques are usually fixed to a specific point
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in the space of parameters and do not account for interactions between parameters, but are

computationally inexpensive. On the other hand, global techniques tend to be model

independent and they determine the effect of an input parameter on the output while varying

all the parameters at the same time. However, global techniques require a large number of

model evaluations and are therefore computationally expensive. Local sensitivity techniques

are usually derivative based, while global techniques include the Morris method, standardized

regression coefficients and Sobol indices.

For local, derivative based sensitivity analysis, the sensitivity of output Y to a change in

input xi is determined by evaluating the partial derivative of Y at a given value of xi:

6Y
S. = 4 ( 1-1)

xi

This technique only works if the model is linear and as it is evaluated at a specific value, it only

gives the sensitivity of the output to the input parameters around a specific region in the space

of parameters. Kucherenko, Rodriguez-Fernandez, Pantelides, and Shah (2009) proposed a

method that averages local derivatives using Monte Carlo and quasi-Monte Carlo sampling

methods. They argue that the method is comparable to Sobol' global sensitivity indices and

with less computational intensity.

Another widely used screening sensitivity analysis technique is the Morris method,

proposed by Morris in 1991 (Campolongo, Cariboni, & Saltelli, 2007). The Morris method

averages local measures using sampling of points at a delta increment. Thus, it cannot account

for effects with characteristic dimensions lower than delta and it cannot provide information

about the contribution of individual variables to uncertainty (Kucherenko et al., 2009).

Campolongo and Saltelli (1997) compared the Morris screening method to the Sobol' indices

technique and suggested that the Morris method be used to screen parameters followed by the

Sobol index on the subset of selected inputs for a more efficient procedure.

The standardized regression coefficient technique is based on regression analysis and

Monte Carlo simulations. A linear relationship is built between the input parameters and the

model output:
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n

Y = bo+ bixi(1-2)

Regression analysis is used to determine the regression coefficients bi. The standardized

regressions coefficients, which are used as the sensitivity measure, are then calculated as:

SR C(y, xi) = bi -'- ( 1-3 )
UY

where ax, and o-y are the standard deviations of parameters xi and of the output Y, respectively.

This method allows for the estimation of the model coefficient of determination, R 2. If R2 is low,

the model is non-linear and another method needs to be used.

Another technique for determining the sensitivity of the output to input parameters is

the method of Sobol' (Sobol', 1990). This method was shown to be the correct technique to use

for identifying the most significant input parameters (Andrea Saltelli & Tarantola, 2002). The

output variance is decomposed into the amount of variance explained by each parameter Vi:

V(Y) = V1+ --- +Vn+E (1-4)

where E is the residual. The first order sensitivity indices are then defined as:

V.
Si = ( (1-5)

The total sensitivity index or total effect takes into account interactions between parameters.

This method is model independent, captures interaction effects as well as the full range of

variation of each parameter, but it is very computationally intensive, and as the number of

input parameters increases, it becomes more challenging to calculate.

A similar methodology to determine where efforts for acquiring more data should be

directed to is value of information. Value of information belongs to decision analysis methods

and it explores how a decision might change based on acquiring new information. Value of

information has been used to determine where research efforts should be directed at, with

limited information available (Bates, Sparrevik, de Lichy, & Linkov, 2014; Linkov, Bates, Canis,

Seager, & Keisler, 2011). This is similar to a sensitivity analysis as it determines which

parameters, or research efforts, can have the most leverage in reducing the uncertainty of the

system. Future efforts should be directed at comparing the methodologies, both in terms of

accuracy and computational effort.
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1.2.3. Cost of Additional Information

A literature search on life cycle assessment will quickly yield results that mention the

resource intensity of performing an LCA and the need to reduce data collection efforts. As

shown in section 1.1, several streamlining efforts have been developed that aim to reduce the

time and resource intensity of performing an LCA. However, to the best of our knowledge,

there has been no prior work on quantifying the cost, both effort and monetary cost, of

performing an LCA. A search on cost and LCA might yield results on Life Cycle Costing (LCC),

however, this is a different methodology as it deals with the economic effects of products

and/or services and with comparing the cost amongst alternatives, not with the cost of making

an LCA (Bierer, G6tze, Meynerts, & Sygulla, 2014; Gluch & Baumann, 2004; Norris, 2001).

Quantifying the cost of acquiring additional information on an LCA can help evaluate the

efficiency (hereto referred as the monetary and effort saved) of the streamlining methodology.

Olivetti, Patanavanich, & Kirchain (2013) defined efficiency in their streamlining procedure as

the percentage of the parameters they had to specify further to reach a predetermined

uncertainty threshold to the total number of parameters in the life cycle assessment. However,

specifying each activity might differ significantly in the amount of cost (or effort) required and

thus, information on the cost of acquiring information on each parameter is more exact.

Furthermore, determining the cost of acquiring additional information provides more

information that can be used as a metric to determine when sufficient information about the

life cycle assessment has been gathered. Therefore, there is a need to develop a methodology

for quantifying the cost of acquiring additional information.

Bates et al. (2015) used Value of Information (VOI) analysis to determine the best way to

allocate resources to a set of research activities and research portfolios. They complemented

the VOI analysis with information on the cost of reducing the uncertainty for each research

activity. They estimated the cost by sending a survey to experts and asked them to rank a series

of activities. This type of methodology could be applied in the LCA field to gather knowledge on

the cost of acquiring additional information.
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1.3. Gap Analysis

As seen in the literature review, a need for quantifying the uncertainty of LCAs of

electronics in an efficient manner has been identified in several studies. Several streamlining

methodologies exist, and in particular, Olivetti and colleagues' probabilistic streamlining

methodology is a promising method because it quantifies uncertainty. However, a deeper

understanding of the method to identify the parameters of the footprint that should be

specified further is needed as well as a more thorough exploration of the scenario space. This

thesis will bridge the lack of knowledge and will focus on developing a clear methodology and

understanding of the identification of high impact activities under different conditions.

Furthermore, the literature review identified a gap in the knowledge of the cost of

gathering additional information on the parameters in an LCA. The work in this thesis aims to

eliminate this gap and develop a methodology for gathering information on the cost of the

parameters in an LCA, based off of the methodology developed by Bates et al. (2015) in the VOI

space. Finally, this thesis will develop metrics, some which incorporate cost, to determine when

sufficient information has been gathered in a streamlined LCA.

1.4. Central Questions

Due to the growing interest in LCAs and the inherent uncertainty associated with them,

this research aims to develop a more robust LCA streamlining methodology by exploring the

identification of high impact activities in more detail. This research addresses the question of

how the additional information obtained and the presence of partial perfect information affect

the subsequent identification of high impact activities. Does the fact that the additional

information is still uncertain limit the ability to streamline the assessment? This research has

the goal of developing a clear methodology for performing the identification of high impact

activities.

This research also takes into account that the acquisition of more data requires

additional effort and resources. Thus, this research also addresses the question: how can the

cost of gathering additional information be used to prioritize data acquisition efforts and to

inform practitioners when sufficient information has been obtained? Since the acquisition of
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additional information is assumed to be resource intensive but also lowers the uncertainty of

the result, we address the question: how can the value of additional information be quantified?

This research also has the goal of understanding how an exploration of the scenario

space can be used to make an environmentally sound decision between different products.

Finally, this research aims to answer how much cost savings can be obtained by streamlining

while still obtaining an assessment with sufficient resolution and how do these cost savings vary

by company?

1.5. Thesis Outline

In this thesis, we extend the probabilistic, streamlining methodology to clearly carry out

the sensitivity analysis and to include cost.

* Chapter 2 describes the methodology developed to perform the streamlined life cycle

assessment, to gather information on the cost of additional information, and to explore

the scenario space of the product in question.

* Chapter 3 tests the methodology on a case study of tablets.

* Chapter 4 discusses the results found, as well as the limitations, challenges and areas of

future work.

" Chapter 5 summarizes the key points from the thesis.
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Chapter 2: Methodology

The goal of the research was to create a robust, streamlined, life cycle assessment

methodology. This research gathered high level data on the environmental impact of a product,

along with uncertainty data, and prioritized data acquisition efforts. A methodology was

developed to quantify the cost of additional information. The analysis explored the scenario

space of environmental impacts of the product to derive insights from it. This analysis was

performed for two products, tablets and integrated circuits.

The general approach to footprint streamlining (Figure 2-1) begins with data sets

collected from a bill of materials and from life cycle inventory data gathered from publicly

available studies and from industry expert input. All this data is collected into a bill of activities,

which is the bill of materials plus additional information such as process or transportation

information. Each component in the bill of activities is referred to as an "activity". Each data set

represents samples of different input parameters required to quantify the environmental

impact. The uncertainty in these input parameters can then be characterized using the

collected data. Depending upon the availability and quality of data, the uncertainty

characterization can be performed by fitting appropriate distributions to the available data, or

by an expert estimate if sufficient data is not available. Once the underlying uncertainty in each

input parameter is characterized and represented as a proper distribution, a probabilistic

analysis based on the Monte Carlo simulation is carried out to propagate uncertainty into the

global warming potential (GWP) associated with each individual activity and collectively, that of

the product, using of Equation ( 2-1).

Number of activities

Emissions = Quantityi x Intensityi x Impact Factori (2-1)

A subsequent sensitivity analysis of the data is performed to identify the high impact

activities. Data is refined to a narrower distribution for these high-impact activities and the

simulation is executed again because the relative importance of the high impact activities in the

resulting uncertainty changes after the data is specified in more detail (M. A. J. Huijbregts et al.,

2003). This process is repeated until uncertainty has decreased to a previously specified level or
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to a point where alternative products can be clearly distinguished, as will be discussed in

Section 2.3. Metrics, which incorporate cost, are used to determine when sufficient

specification has been obtained.

Scenario uncertainty is assessed by creating different scenarios and analyzing each of

the scenario's impact. When an activity is specified further, it is specified to a narrower

distribution. At this level of resolution, there are different clusters of data to which the activity

could be resolved. These different clusters are combined to form the different scenarios.

Step 1: Data
Acquisition

Step 2:
Uncertainty

Characterization

Step 3: Data
Structuring

execute statistical
simulation

Step 5: Screen for high
impact activities

-refine data where necessary

Step 6: Scenario

Exploration

Step 7: Develop and
execute statistical
simulation of each

scenario and analyze
scenario space

Figure 2-1: Schematic of the under-specification, probabilistic, streamlining methodology.
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2.1. Data Acquisition

2.1.1. Environmental Impact Data Acquisition

The first step in the probabilistic screening methodology is gathering information to

determine the life cycle phases of the product in question, followed by the acquisition of data

on the impacts in each life cycle phase. To accomplish this, previous published studies,

individual industry work and input, industry association data, life cycle inventory databases and

teardowns were used. End of life (EOL) was left outside the scope of this study. Data obtained is

of varying quality, age, source and number of points; however, low fidelity data is acceptable at

the high level assessment.

2.1.2. Acquisition of Cost Information

Once information on the life cycle phases to be included in the study was determined, a

survey was devised to gather information on the cost of acquiring more specific data on each

activity. The cost asked for was the relative cost between the different activities present in the

footprint. Here, cost included both monetary costs and effort. Effort was defined as the time

spent tracking down individuals in a company or supply chain for input, hiring outside

consultants to gather data or other potential ways of gathering data. The question that was

asked in the survey was: "What would be the relative cost of reducing the uncertainty of the

from [X] to [Y]." For example, what would be the relative cost of reducing the

uncertainty of the scope 1 and the scope 2 emissions for integrated circuits packaging from an

industry average to the specific fab emissions?

In the survey, similar activities were grouped together to simplify the process of filling it

out. For example, instead of asking for the cost of acquiring additional information on the

quantity of ferrous metal and on the quantity of plastic in the product, both activities were

combined and the question was modified to ask for the cost of acquiring more information on

all the materials present.

The respondents were first asked to identify the most expensive data gathering task on

the questionnaire (in other words, the task requiring the most effort) across all parameter

uncertainties and assign it a score of 1.0. Next, they were asked to score the cost of reducing
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uncertainties for the other parameters relative to the cost for the most expensive parameter. If

they consulted colleagues to fill out the questionnaire, they were asked to specify for which

activities they received outside input and how many colleagues they consulted.

The survey was sent to various industry collaborators who work in gathering data for life

cycle assessments. For activities in which our collaborators had to obtain outside input to

answer the questionnaire, additional cost was added to the score. The scores for each activity

from the various surveys were then averaged and analyzed. The scores were also analyzed

individually.

2.1.3. Data Structure

The data was categorized into three hierarchical levels, with level 1 being the most

general level and level 3 being the most specified level. For example, level 1 refers to the

emissions resulting from electricity usage during the fabrication of integrated circuits in Asia,

level 2 refers to the same emissions but in a specific country, such as China, Taiwan or Korea,

and level 3 refers to the same emissions but in a specific region of the country. The three levels

were created to quickly test the methodology. The analysis starts with all the parameters

specified at level 1. Once a parameter was identified as a high-impact activity in the

contribution to variance analysis, the information in the next level was used to specify the

activity in more detail.

2.2. Uncertainty

2.2.1. Uncertainty Characterization

Characterization of the uncertainty of each activity was done via several methods. For

those parameters that have sufficient data points, such as for the material breakdown of the

tablet, the values were fit to a distribution using the statistical software JMP@. The tests used

to measure the goodness of fit were Empirical Distribution Function (EDF) tests, including the

Shapiro-Wilk test and the Kolmogorov-Smirnov test. For activities for which only a couple of

data points were available, they were treated as uniform distributions between the available

data points. For activities that were single point values, ecoinvent's modification of the
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Weidema et al. (2013) pedigree matrix and relevant data quality indicators were used to

quantify the uncertainty. The distribution for single values was modeled as lognormal because

it only allows positive values and skewed distributions, which have been found to be

representative of LCA data (Lloyd & Ries, 2007). Scenario uncertainty was addressed by creating

different normative scenarios.

The data was structured in different levels of uncertainty, with the first level being

highly unspecific. The first level aggregated all possible values for the activity, while the second

level used a subset of those values and the third level used the specific value for the product.

Thus, as the information became more specific, the uncertainty diminished. However, even at

the third level, uncertainty was present because of measurement error and inherent variability

associated with certain activities.

2.2.2. Uncertainty Propagation

Uncertainty was propagated throughout the model using stochastic modeling. The

uncertainty propagation was carried out using Monte Carlo simulations, which is widely used in

the LCA literature for uncertainty analysis. The Monte Carlo procedure was implemented in

MATLAB@ by Arash Noshadravan, postdoctorate associate at the Material Systems Laboratory

and now Research Assistant Professor at Texas A&M. To carry out this procedure, samples from

the distributions of each activity were generated. The distributions encountered in the model

were discrete, uniform, normal, and lognormal. To sample from the distributions, random

numbers were generated using the built-in function copularnd, which takes into account

correlations (previously specified) between parameters. When the distribution was discrete,

the specified value was returned. When the distribution was uniform, equation ( 2-3 ) was used:

x4 = min + (max - min) * rnd (2-2)

where x is the sample number i for parameter k, min is the minimum value of the specified

uniform distribution, max is the maximum value of the uniform distribution, and md is the

random number generated. For the normal and the lognormal distributions, the built in

MATLAB@ functions norminv and logninv were used. The function logninv takes in the mean
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and standard deviation of the associated normal distribution, so careful consideration was

given to ensure consistency.

The number of samples for each activity was set to 300,000 to obtain consistent and

replicable results. These samples were in turn used to calculate the realizations of modeled

global warming potential using Equation ( 2-1 ). This resulted in a sufficiently sized sample for

the modeled global warming potential from which the probabilistic description was inferred.

2.3. Sensitivity Analysis/ Contribution to Variance

A variance-based sensitivity analysis was carried out using Sobol's method (Sobol',

1990). This method was chosen because of its ability to decompose the output variance into

the variance of the input parameters and to account for the higher order effects associated

with the nonlinear interactions of model input parameters. This method was shown to be the

correct technique to use for identifying the most significant input parameters (Andrea Saltelli &

Tarantola, 2002), which is the goal of the sensitivity analysis in this probabilistic streamlined

methodology. The main drawback of this approach is that it is computationally expensive.

A numerical algorithm based on Monte Carlo simulations to estimate the first-order

Sobol indices was implemented as described by Saltelli et al. (2008). The first step in this

procedure is to generate two distinct matrices, A and B, each sized (N,k) were N is the number

of samples (which in our case was 300,000) and k is the number of parameters, or activities in

our model, as seen in equations ( 2-3 ) and ( 2-4 ), drawn from Saltelli et al. (2008). Each matrix

has an independent set of samples from the distributions of the activities. The samples were

obtained using the Monte Carlo algorithm as described in section 2.2.2.

x" ... x()

A =. (2-3)

- (1 (1)

Xk+ ".Xk]

B = ... ... ... ( 2-4 )
SN (N)

.k+l -" X2 k -
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The next step is to form a matrix C, which contains all columns of matrix B except the ith

column, which is taken from matrix A.

(1) (1) (1)'
xk+1 - i - 2k

Ci = ... ... (2-5)
= (N) (N) (N)] (2-5

xk+1 -- Xi 2k .

The model outputs for each sample matrix are computed, using equation (2-1) and resulting in

three vectors of dimensions (N,1):

yA = f (A) YB = f (B) yc = f (Ci) (2-6)

The estimate of the first order indices can then be computed as:

V[E(YlXi)] y A yc, - f02 
_y -_ f(2

Si = = ( 2-7 )
V(Y) ya -_ya - f2 N )2_2

where f2 is the mean and is defined as:

N 
2

f =2 ) (2-8)

j=1

The activity with the highest sensitivity index was identified as the one with the highest

effect on the output. A more in-depth explanation of the procedure can be found in Saltelli et

al. (2008). The results of the sensitivity analysis allows us to identify those key activities that

had the most leverage to reduce uncertainty either because they contributed the most to the

total value and/or because they were highly uncertain. The sensitivity analysis procedure was

carried out for the three different kinds of tablets in order to understand how the sensitivity

analysis differs based on the values specified.

2.4. Metrics for Determining Sufficiency

The uncertainty in the input parameters that propagates throughout the assessment using a

Monte Carlo simulation results in a probabilistic description of the product carbon footprint,

which can be represented by a probability density function (pdf). When performing a

comparative LCA, the two product carbon footprints to compare have a probability distribution.

The product class is the level of categorization of a product we are comparing, for example, a
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14" screen to 15" screen (Zgola, 2011). One product class might, on average, have a lower

impact than the other product class, but because they are both described by probability density

functions, there can be some scenarios in which the environmentally preferable product class is

incorrectly classified as the least favored product class. Zgola (Zgola, 2011) defines this error as

the false signal rate and describes it as the percentage of scenarios that incorrectly classify an

environmentally favored solution as less favored. The false signal rate can be determined from

the Monte Carlo simulations by counting the number of scenario pairs for which product class B

< product class A, where B is the less environmentally friendly product class and PA < IB-

Ability to differentiate
14" screen 15" screer

j 4Screen size attribute
example

Two metrics of interest: difference in the means
and false signal rate: pair wise comipar-ison

Figure 2-2: The false signal rate is the fraction of scenario pairs for which the impact of product class

B (here, the 15" screen) is less than the product class A (14" screen) (reproduced from (Zgola, 2011) )

This false signal rate can be seen as a measure of uncertainty. The higher the false signal

rate, the higher the uncertainty and the lower the degree of confidence that the two product

classes are distinct. The amount of specification in the carbon footprint depends on a balance

between the tolerance of error and on the resources available. A lower tolerance of error

requires more specification, and therefore, more resources. The acceptable level of error, or of

the false signal rate, needs to be specified by the practitioner and the decision maker at the

start of the study.
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2.4.1. Self-test as a Measure of Sufficiency

When carrying out the under-specification, probabilistic streamlining methodology, only

one product is being studied, but the false signal rate, which is used as a measure of

uncertainty, requires two distributions. Zgola defined a metric, called the self-test, to evaluate

the false signal rate when performing the streamlining methodology (Zgola, 2011). In the self-

test, the distribution is shifted by a pre-specified amount and the false signal rate corresponds

to the level of overlap between the shifted and the original distribution. The displacement of

the distribution is specified as a percentage of the mean. In our study, a 10% displacement was

used. As more information is specified, the associated distribution narrows and consequently

the self-test false signal rate decreases, but it does so at a decreasing marginal return rate, as

seen in Figure 2-3. In this case, the false signal rate corresponds to the number of scenario pairs

for which B < A, where B is the displaced distribution and PA < PB.

In the case study, the self-test false signal rate is used to inform the sufficiency in the

level of specification of input parameters. The metric depends on the pre-specified percentage

for shifting the distribution. As the distribution narrows, the overlap between the shifted and

the original distribution decreases. When a target false signal rate is not specified a priori, the

sufficiency can then be defined by prescribing a threshold where the curve starts to plateau and

the value of additional information diminishes.

Initial
Result

C

Targeted Data
Refinement

U

Sff iciency

Specificity

Figure 2-3: Decrease in uncertainty as more activities are specified (reproduced from (Materials
Systems Laboratory, n.d.))
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2.4.2. Self-test and Cost of Additional Information as a Measure of Sufficiency

As previously mentioned, the amount of specification depends on the tolerance for

error and on the resources available to gather additional data. In order to take cost or effort

into consideration, the cumulative cost of the study versus the level of separation gained can be

plotted. Here, separation is specified as the degree of separation between the distribution and

the displaced distribution. The degree of separation is calculated as:

Separation = 1 - Self Test False Signal Rate (2-9)

Using a plot of cost versus separation, the LCA practitioner can determine how many

parameters to specify depending on the resources available and the required separation.

Sufficiency can also be specified as the point where the graph curves upward and additional

cost of acquiring data per the amount of separation gained increases exponentially.

The cost of additional information is also used to estimate the amount saved from

performing the under-specification streamlined methodology. A plot of cumulative cost versus

the number of parameters specified is used to determine the percentage cost spent out of the

total cost of an LCA until reaching sufficiency.

2.5. Scenario Uncertainty

2.5.1. Scenario Exploration

Scenario uncertainty was accounted for by creating different scenarios and observing

their carbon footprint. Three different "clusters" were created in the second level of the data

structure matrix. Each "cluster" consists of a range of possible values for each activity and they

consist of a narrower distribution than that of the first level. The clusters were created in

different ways. For parameters that relate to the material quantities of the tablet, each cluster

corresponds to values for a specific tablet. For quantities such as the grid mix emissions factor,

the fab location was specified as either being in China, Korea or Taiwan. A similar procedure

was carried out for the other parameters.

The parameters in each cluster were combined in all the possible combinatorial ways

based on the results of the probabilistic screening from the first part. For example, only those
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parameters that were specified further before reaching "sufficiency" were specified at the

second level for the scenario formation. Each combination of parameters represents a specific

scenario. The carbon footprint realization associated with each scenario combination was

calculated using equation ( 2-1 ) and the uncertainty propagation procedure.

2.5.2. Scenario Analysis

The different scenarios from Section 2.5.1 Scenario Exploration were compared to each

other. First, the difference in the means of two scenario pairs was determined as:

IA - PBI(2-10)
min(PA,PB)(

where Ay is the difference in means, PA is the average impact of scenario A, and PB is the

average impact of scenario B. Then, for each scenario pair, their associated false signal rate was

computed. A plot of the false signal rate for all of the scenario pairs versus the difference in

means was then used to draw insights on all the possible scenarios. Each plot on the graph

represents a different product. This sort of graph can then be used to determine how large the

difference in means of two products' carbon footprint have to be in order to obtain an error

rate lower than a specified value.
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Chapter 3: Application of Methodology - A Case Study on
Tablets

The number of global shipments of tablets has increased from 19 million in 2010 to a

forecasted amount of 269.4 million tablets in 2019 (Global tablet shipments projection 2010-

2019, 2016). Their growth, coupled with increasing environmental concerns, made them an

ideal candidate for a case study of the streamlining, probabilistic methodology. Electronics and

semiconductors have been targeted for environmental evaluation because of their use of high

purity chemicals, electricity consumption and emissions during their manufacturing stage.

However, life cycle assessments of electronics are plagued by uncertainty and are very resource

intensive.

Evaluation of electronics is challenging because they have complex high tech,

manufacturing processes (Koomey et al., 2013) and worldwide supply chains (Koomey et al.,

2013; Mueller et al., 2004). This makes it difficult to obtain precise information on the

emissions at each stage of the process and to gather data on the emissions across all of the

supply chains. Additionally, suppliers do not want to share information on their production

processes because of trade secrets, creating data gaps in the life cycle assessment. The

complexity of electronics in their material composition, and use of highly specific purity levels in

their chemicals (Mueller et al., 2004) makes it even more difficult to quantify their

environmental impacts. Electronics also have rapid product profile changes (Andrae &

Andersen, 2010; Mueller et al., 2004), and by the time the life cycle assessment has been

completed for a product, the product profile has changed.

Not a lot of literature or information exists on the environmental impact of tablets.

Moberg et al. performed a comparative screening LCA of a tablet e-paper device (iRex Illiad) but

acknowledged the difficulty of performing an LCA due to limited access to data regarding the

production and composition of the device (Moberg, Johansson, Finnveden, & Jonsson, 2007).

Crane, Ecola, Hassell, and Nataraj (2012) estimated the environmental impact of tablet

computers and e-readers, noting that the two differed significantly because the display in

tablets requires more energy. Both studies mentioned that the design and composition of the
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tablet was likely to change very rapidly, making the results of the assessment outdated very

quickly.

Companies are also working on quantifying the environmental impact of their products.

Dell published a study on the carbon footprint of their Dell Streak tablet in which they found

their product emitted 45 KgCO2e throughout its lifecycle (Stutz, 2011). The life cycle stages that

they included were material extraction, manufacturing, transport, use and recycling. Apple has

been a leader in releasing the environmental reports for their products. They estimated the

emissions of their iPad Pro and iPad Air 2 to be at 270 KgCO 2e and 170 KgCO2e, respectively

(Apple, 2014, 2015). Their emissions included production, transport, use and recycling,

although they were not clear about what each stage encompasses. Teehan et al. estimated the

emissions of various electronic products, including the Apple iPad 8gb Wi-Fi first gen (2009)

tablet and the Amazon Kindle Wi-Fi third gen (2010) e-reader (Teehan & Kandlikar, 2013). They

found that their estimates were lower than other published studies.

The lack of data, rapid profile changes and large variation amongst published studies

pinpoint the environmental evaluation of tablets as an ideal target for the streamlined,

probabilistic methodology. One of the most significant components of tablets are integrated

circuits ([Cs). Thus, the goal of this chapter is to demonstrate the streamlining methodology on

tablets and ICs.

3.1. Tablet Data Acquisition

3.1.1. Tablet Environmental Impact Data Acquisition

The first step in evaluating the global warming potential of tablets using the streamlined

methodology is gathering information about all the life cycle stages that should be accounted

for in the carbon footprint. This was done via industry expert input, and publicly available

studies, such as the study by Teehan & Kandlikar (2013) and by Moberg et al. (2010). The life

cycle stages identified were those found in Table 3-1: Life Cycle Stages for a Tablet.
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Table 3-1: Life Cycle St;

Materials Extraction

Manufacturing

Product Assembly

Transport

Retail

Use Phase

End-of-Life

The retail and end-of-life stages were left outside the scope of the study as they were shown to

be insignificant in previous carbon footprint studies (Apple, 2014, 2015; Stutz, 2011). Within

manufacturing, the major components accounted for were the integrated circuits (ICs), the

printed wiring board (PWB), the liquid crystal display (LCD), the battery, and other electronics

(e.g. capacitors, diodes, and resistors).

The data in the case study comes from published studies, individual industry work and

input, industry association data, life cycle inventory databases and the teardowns of 25 tablets

released between 2010 and 2013, obtained from IHS (Teardown - Tablets, eReaders &

Notebooks Intelligence Service, n.d.).

The teardown analysis was performed by Reed Miller, a research specialist at the

Material Systems Laboratory at MIT. The teardown of the 25 tablets provided information on

the mass of components and materials. The standard mass and dimensions of many form

factors for ceramic and tantalum capacitors, transistors, diodes and resistors were provided by

a confidential industry source. For aluminum capacitors, their mass and dimensions were

obtained from the product datasheets and assigned to those in the BOM with the same type,

material and form factor. For other materials and components, if the mass was available then

that was used directly and if it was not, then the density of the component was found via

credible websites. The rectangular dimensions were multiplied to find the volume and then

multiplied by the density to find the component mass. If the component was hollow, the

thickness and the area of the walls were estimated to determine the volume.
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The tablet teardown also provided an area estimate for the PWB area and the IC die

area. PWBs with any number of layers were included. The area of the PWBs was determined

using Google Sketchup. The images of each of the tablets' PWB components were imported

into the software and the edges of each component were traced to measure their relative area

(based on the size of the image). A bounding rectangle was superimposed on the component to

determine the rectangle's relative area. The relative area was multiplied by the ratio of the

rectangle's known actual area to its relative area to obtain the irregular shape's actual area. To

estimate the IC die area, four categories of ICs were distinguished: flash NAND, DRAM,

processor and chipset, and other. Industry data was used to estimate Flash NAND and DRAM

area while BOM data was used to estimate processor, chipset, and other IC data. The teardown

also provided information on the number of ICs, battery weight and the LCD area. Material

emission factors (KgCO 2e-/Kg) were obtained from the ecoinvent database, by forming broad

categories of materials, as shown in (Olivetti et al., 2013).

The manufacturing data was obtained from industry work and input and industry

association data. The data provided included scope 1, scope 2, and scope 3 emissions. Scope 1

refers to all direct greenhouse gas emissions, scope 2 included indirect greenhouse gas

emissions from consumption of purchased electricity, gas or steam and scope 3 refers to other

indirect emissions not covered in scope 2 (e.g. extraction and production of purchased

materials). The grid mix emissions factors (KgCO 2e-/KWh) were obtained from various sources,

including the literature (Weber, Jaramillo, Marriott, & Samaras, 2010), Industry Statistics (China

Electric Power Industry Statistics Analysis, n.d.), and other reliable Internet sources.

The use phase data was obtained from EPA's Energy Star slates/tablets category (EPA,

n.d.). Upstream transportation, transportation from assembly to retail and from retail to

consumer were accounted for. Realistic minimum and maximum distances were calculated for

each transportation segment. The emissions (KgCO2e-/tkm) from the transportation phase were

based on the modes of transportation, which included air, ship, rail and road transportation.

As can be seen, the data is of varying quality, age, source and number of points;

however, uncertainty is associated with the data and thus it proves to be sufficient to

demonstrate the methodology.
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3.1.2. Acquisition of Cost Information for Electronics

The survey designed and sent to gather information on the cost of additional data

acquisition can be seen in Appendix B: Survey for Cost of Additional Information. The survey

was sent to industry collaborators and 8 responses were obtained. Each question asks for the

relative cost of the research activity mentioned in the question. To use the data from the

surveys, the data was aggregated by averaging the responses for each question. The data was

also analyzed per response to observe how the cost of data acquisition might vary by company.

Section 3.3.3 describes the robustness of the data.

3.2. Uncertainty in the Tablet Footprint

The uncertainty for the activities in the tablet footprint was obtaining using the data

from Section 3.1.1 Tablet Environmental Impact Data Acquisition. At the high level assessment,

all the possible values for a particular category were aggregated. For example, the material

quantities for each tablet present in the data were averaged across all the tablets. Depending

on the number of data points for each activity, the data was fitted to a distribution using

goodness-of-fit tests. If not enough data was available, the distribution was modelled as

uniform distribution between the lowest and highest value. If insufficient data was present to

establish a highest and lowest value, the distribution was modelled as lognormal, using the

value available as the mean, and the standard deviation was obtained using Weidema's Data

Quality Indicators (DQls) and expert input. The data for the activities can be seen in Appendix A:

Data and Uncertainty of Modeled Parameters in the Carbon Footprint of a Tablet.

In order to show the methodology and perform the iterations quickly, the values to

which the activities were specified to after they were identified as high impact activities were

determined a priori and their associated uncertainty was included. The activities were specified

to the values of three different hypothetical tablets, termed tablet A, B and C. The tablets were

chosen to demonstrate a wide range of possible impacts. In this case, the streamlining

methodology consisted of two levels, the "unspecified" level and the "fully specified" level. The

only activity that consisted of three levels, and could therefore be identified twice in the

sensitivity analysis, was the grid mix. The unspecified level was the value for the average
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continent (or world) grid mix, the next level was the value for the country grid mix, and the final

level was the grid mix at a specific region in the country.

3.3. Probabilistic Streamlined Tablet Footprint

Using the data set described above, the uncertainty was propagated throughout the

model through simulation and the output was broken down by life cycle stage for the high level

assessment in a box plot (Figure 3-1).
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Figure 3-1: Breakdown of tablet footprint by life cycle stage at the high level assessment. The median-
derived coefficient of variation is 0.48.

The median-derived coefficient of variation, which was calculated by dividing the standard

deviation by the median of the total impact, was 0.48. Thus, the uncertainty at the unspecified

level is very high. Approximately 95% of trials indicated that more than 85% of the impact is

attributed to the material, manufacturing, and use phase stages. In particular, a breakdown of

the materials and manufacturing stage (Figure 3-2) shows that approximately 20% of the

impact is attributed to the ICs and the PWB. This agrees closely with the findings in the

literature that demonstrate that integrated circuits have high impacts, despite their small size,

due primarily to the silicon dies (Teehan & Kandlikar, 2013).

As ICs contribute significantly to the carbon footprint of tablets and the industry has

worked hard to address this impact, ICs were examined in further detail to determine which
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part of their manufacturing process contributes the most. This analysis was also done at the

high level assessment, thus, there is a lot of uncertainty. Figure 3-3 shows that the majority of

the impacts are caused by the scope 2 emissions in its manufacturing process, followed closely

by the scope 1 emissions. Despite the high uncertainty in the underspecified impact

assessment, calculating the output by propagating the uncertainty throughout the model

serves as a quick exploratory analysis of the data and the model.
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Figure 3-2: Breakdown of the footprint impacts for the material and manufacturing stage within the
representative tablet.
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Figure 3-3: Breakdown of the carbon footprint of integrated circuits contained within a
representative tablet at the high level assessment.
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The next stage in the probabilistic streamlined assessment was identifying the input activities

that have high leverage to reduce the uncertainty of the output. This is performed by a

contribution to variance analysis. Here, the numerical algorithm to estimate the Sobol indices

as described by Saltelli was used (A. Saltelli et al., 2008). The results for the top 10 activities for

the first sensitivity analysis can be seen in Table 3-2. Only the first activity, the integrated circuit

assembly and test scope 2 emissions, was specified further in the first iteration. Iteration is

carried out to identify the top contributors instead of specifying the top 10 activities further

because the relative importance of the high impact activities in the resulting uncertainty

changes after the data is specified in more detail (M. A. J. Huijbregts et al., 2003).

Table 3-2: Top 10 parameters with the largest Sobol indices for the tablet at the high level assessment.

Integrated Circuit Assembly and Test Scope 2 (KWh/package) 0.891
LCD Fabrication Chemicals Impact Factor (KgCO 2e-/m 2) 0.021

IC Fabrication (KWh/cm 2) 0.016
Total Integrated Circuit Die Size (cm2) 0.014

Use Phase Yearly Tec (KWh/year) 0.011
LCD Area (M2

) 0.007

LCD Perfluorocarbons Emissions (KgCO 2e-/m2) 0.007

LCD Fabrication (KWh/m2) 0.003
Integrated Circuit Perfluorocarbons Emissions (KgCO 2e-/cm 2) 0.002

10. LCD Fabrication grid mix (KgC02e-/m2) 0.001

Table 3-3: Top 10 Contributors to uncertainty for Tablet A, based on the iterative
sensitivity analysis procedure

1. Integrated Circuit Assembly and Test Scope 2 (KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO 2e-/m 2)

3. IC Fabrication (KWh/cm 2)

4. Use Phase Yearly Tec (KWh/year)

5. Total Integrated Circuit Die Size (cm 2 )

6. LCD Perfluorocarbons Emissions (KgCO 2 e-/m 2)

7. Integrated Circuit Perfluorocarbons Impact Factor (KgCO 2e-/cm 2)

8. LCD Area (m)

9. Integrated Circuit Fabrication Grid Mix (KgCO 2e-/KWh)

10. Printed Wiring Board Area (M2)
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The top 10 contributors, after performing the iterative sensitivity analysis, can be seen

in Table 3-3 for tablet A. A comparison of Table 3-2 with Table 3-3 shows that the order of the

parameters differ as a result of the change in the relative importance of high impact activities

that occurs by specifying activities. However, 9 out of 10 parameters that were identified as the

major contributors to uncertainty using the iterative procedure are present in Table 3-2. This is

dependent on the data and the model; however, it might be useful to specify activities in

groups instead of one by one before iterating the procedure to simplify the process.

The major contributors to uncertainty for tablet B and tablet C can be seen in Table 3-4

and Table 3-5, respectively. In this case, there is less overlap in the activities identified and it is

more clear how the relative importance of high impact activities changes depending on the

value that the previous parameter was specified to.

Table 3-4: Top 10 Contributors to uncertainty for Tablet B, based on the iterative sensitivity analysis
rocedure

1. Integrated Circuit Assembly and Test Scope 2 (KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO 2e-/m 2)

3. Total Integrated Circuit Die Size (cm 2)

4. IC Fabrication (KWh/cm 2)

5. Use Phase Yearly Tec (KWh/year)

6. LCD Perfluorocarbons Impact Factor (KgCO2e-/m 2)

7. LCD Area (m2
)

8. LCD Fabrication (KWh/m2)

9. Integrated Circuit Perfluorocarbons Impact Factor (KgCO 2e-/cm 2)

10. LCD Fabrication grid mix (KgCO2e-/m2)
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Table 3-5: Top 10 Contributors to uncertainty for Tablet C, based on the iterative sensitivity analysis
procedure

1. Integrated Circuit Assembly and Test Scope 2
(KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO 2e-/m 2)
3. Total Integrated Circuit Die Size (cm 2)

4. Use Phase Yearly Tec (KWh/year)

5. LCD Perfluorocarbons Impact Factor (KgCO 2e-/m 2)
6. LCD Area (M2 )
7. PWB Area (M2)

8. Integrated Circuit Assembly and Test grid mix (KgCO2e-
/m2)

9. Nonferrous metal Impact Factor (KgCO 2e-/Kg)

10. IC Fabrication (KWh/cm 2)

The major contributors for integrated circuits are those found in Table 3-6. The list

includes a mixture of contextual information and product attributes (ex. Die size).

Table 3-6: To 10 Contributors to uncertaint in the footprint of integrated circuits

1. IC Manufacturing Scope 2 emissions (KWh/cm 2)
2. Die size (cm 2)
3. IC Manufacturing Scope 1 emissions (KgCO 2e-/cm 2)
4. IC Manufacturing Scope 2 grid mix (KgCO 2e-/KWh)

5. Assembly and Test Scope 2 emissions (KWh/cm 2)
6. Wafer yield factor

7. Wafer Emissions Factor (KgCO 2e/Kg)

8. H202 Amount (Kg/cm 2)
9. 02 Amount (Kg/cm 2)
10. Wafer Usage (Kg/cm 2)

3.3.1. Self-test as a measure of sufficiency

The next step in the streamlining procedure is determining how many parameters to

specify in more detail. The metric used to determine sufficiency is the self-test false signal rate.

For our case study, a 10% displacement of the mean of the distribution was used to calculate

the false signal rate. Figure 3-4 shows the self-test false signal rate as a function of specificity
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for the three kinds of tablets and Figure 3-6 shows the self-test false signal rate for integrated

circuits in particular. This analysis was run until all parameters were specified to observe how

the false signal rate changes as a function of specificity. Even after fully specifying the

parameters, the false signal rate of the tablets remained at around 0.2 and the false signal rate

of the integrated circuit remained at 0.1. This happens because even a fully specified

assessment has uncertainty associated with it as a result of inherent variability and

measurement error. The curve labeled "Product A with Perfect Information" in Figure 3-4

describes how the false signal rate would change as a function of specificity if perfect

information were available and the fully specified assessment had no uncertainty.

As seen in Figure 3-4, the decrease in uncertainty occurs at a diminishing marginal

return. For this tablet study, the curves start plateauing after specifying around 20 parameters.

It is interesting to note that this same behavior occurs for the "Product A with Perfect

Information" curve. Most of the uncertainty in the model output is due to a fraction of the total

activities present in the footprint. In this case study approximately 20 out of 99 activities, so

20% of the activities, contribute to the variance of the output. These activities might have a

relative low uncertainty but contribute a lot to the total impact or they might have very large

uncertainties associated with them.

In the tablet case study, it was found that the curves start plateauing after specifying

around 20 parameters and this can be taken as the point of "sufficiency" in the data collection

efforts. The relative cost of specifying 20 parameters is 0.25, or 25% of the full cost of a carbon

footprint (Figure 3-5).The under-specification streamlining reduces the cost of a footprint while

still providing valuable information. It is also interesting to note that the relative cost versus the

number of parameters specified is linear. This might occur because the number of parameters

is high and therefore each parameter contributes only a small fraction to the total.

For the integrated circuit, the curve starts plateauing after 10 to 15 activities have been

specified in more detail and the false signal rate reduces to 10% (Figure 3-6). Thus, only a

fraction, 0.125, of the total activities had to be specified to reach what we call sufficiency. Thus,

the streamlining methodology can be applied successfully to different products.
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Figure 3-4: The self-test false signal rate as a function of specificity for tablets. The self-test is used as
a metric for determining sufficiency. Product A, B, and C represent different tablets.

The false signal rate can also be used to compare different products. Table 3-7 shows

the false signal rate between the three kinds of tablets at the high level assessment and after all

the parameters have been specified. As can be seen, even after all the parameters have been

specified, the false signal rate between product A and product C is still positive, while the

others ones are zero or close to zero. This occurs because the two products have similar

characteristics, and therefore more information is needed to be able to distinguish them.
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al rate comparison for the three kinds

A and B 0.5 3.33E-05

A and C 0.5 0.062

B and C 0.5 0

3.3.2. Self-test and cost of additional information as a measure of sufficiency

This data can also be seen as a function of cost and degree of separation (The degree of

separation is evaluated as in equation ( 2-9 )). The relative cost is the cost normalized by the

total cost of a carbon footprint. As can be seen from Figure 3-7, the cost starts increasing

rapidly at a degree of separation of 0.77. The cost keeps increasing as additional information is

added, however, the degree of separation gained is minimal. This can be used as a metric to

determine sufficiency - the point at which the cost increases rapidly with minimal increase in

the degree of separation. This figure can also be used by practitioners to decide when to stop

gathering additional information if they know the budget allocated towards completing the

analysis. For example, if they know they only have 20% of the cost of a full carbon footprint to

use, they can stop their analysis once they have reached a false signal rate of 0.25, or a degree

of separation of 0.75.
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Figure 3-7: Relative cost of footprint as a function of degree of separation.
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3.3.3. Robustness of the Cost on Additional Information

The data for the cost of additional information was obtained by surveying company

collaborators. The survey respondents belong to the environmental affairs or sustainability

groups at their company, and are involved on a day to day basis with gathering information for

the life cycle assessment of their company's products. We obtained 7 responses to our survey

request, but one of them did not include numerical rakings, so it was left outside the scope of

the study. Even though the number of responses was small, it proved to be sufficient to

demonstrate our methodology. The robustness and variation of the data was analyzed as

follows.

The survey respondents ranked the relative cost of 27 groupings of activities (Table 3-8).

Figure 3-8 shows the variation in the response for each grouping. A,B,C,D,E, and F represent

each survey response. There is significant variation in the rankings. The activity for which there

was the most agreement was specifying the type of battery in the product and this data

acquisition task was ranked as easy to obtain. There was also agreement that it was costly to

gather additional information on the electronic components impact factor and that determining

the IC manufacturing location was low to medium cost. Of those, only the IC manufacturing

location is present in the top 20 parameters to specify further. The activity that had the largest

variation in responses was determining the use phase location. This is understandable as

determining where the product will be used is difficult and can be modeled differently by LCA

practitioners.

The responses "E" and "F" correspond to respondents from the same company. A figure

showing the responses for only "E" and "F" can be seen in Appendix E. These responses are

closer to each other suggesting that the variation in the rankings of the cost of the activities

might be caused by factors such as where the respondents' company is located in the supply

chain, the size of the company, and even the relationship the company has with its suppliers.

Further work can be directed at understanding the differences in data collection efforts as a

function of the industry, position within the supply chain and characteristics of the company.
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Table 3-8: Group activities used for the cost of additional information survey ordered by relative cost

1 Quantity of materials (ex. ferrous metal, glass) from an industry average to the specific value
2 GHG footprint of the materials (battery, materials, backend chemicals) from an average of the type of material GHG footprint to the specific GHG emissions
3 Use location from a country to a specific region
4 Composition of battery from an industry average to the actual composition
5 Use location from a world average to the specific country
6 Scope 3 GHG footprint for IC assembly and test from a regional industry perspective to the specific fab emissions
7 Product lifetime from an industry average to the specific value
8 Scope 1 and Scope 2 for IC assembly and test from a regional industry perspective to the specific fab emissions
9 Scope 3 GHG footprint for IC manufacturing from a regional industry perspective to the specific fab emissions

10 Scope 3 GHG footprint for LCD manufacturing from a regional industry perspective to the specific fab emissions
11 Scope 1 and Scope 2 for IC manufacturing from a regional industry perspective to the specific fab emissions
12 Electronics amounts (ex. IC die size, # of chips, PWB area, capacitor weights) from an industry average to the specific value
13 IC assembly and test location from country to specific region within the country
14 Product assembly scope 2 emissions from a regional Industry perspective to the specific fab emissions
15 Yearly TEC of product from an industry average to the specific product value
16 Quantity of materials (ex. ferrous metal, glass) from an industry average to the specific value
17 IC assembly and test location from continent to specific country
18 Transportation mode from unknown (mixture of ship, rail, truck, air) to the actual transportation mode
19 Scope 1 and Scope 2 for LCD manufacturing from a regional industry perspective to the specific fab emissions
20 IC Manufacturing location from country to specific region within country
21 Product assembly location from country to specific region within the country
22 IC Manufacturing location from continent to specific country
23 LCD Manufacturing Location from country to specific region within the country
24 Number of layers in the PWB from an average to a specific number
25 Product assembly location from continent to specific country
26 LCD Manufacturing location from continent to specific country
27 Type of battery (ex. Li-ion) from unknown to the known type
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Figure 3-8: Ranking of cost for each activity by 6 survey respondents. The answers surrounded by a
green box represent the ones that had the closest agreement (measured by the lowest variance),

while the ones surrounded by the red box are the ones that they agreed the least (and had the highest
variance). The activities are ordered by relative cost (high to low).
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Despite the variation in the survey responses, a graph of the relative cost versus the

number of parameters specified for each individual response also follows a linear trend, similar

to the aggregated version (Appendix E). This implies that the aggregated analysis does provide

accurate information.

3.4. Scenario Exploration

In order to account for scenario uncertainty, we explored the scenario space for the

tablets. In the most specified level of the matrix, three different clusters of possible values were

created. The parameters in each cluster were combined in all the possible combinatorial ways

based on the results of the probabilistic screening from the first part. In this case, only the first

8 parameters determined in the sensitivity analysis were specified further for the scenario

creation. Ideally, the top 20 parameters, which defined sufficiency in this case, would have

been specified further but the analysis was limited by computational power. Each combination

of parameters represents a specific scenario.

In Figure 3-9, each point in the graph represents the comparison of two products based

on their false signal rate and the difference between the mean values of their global warming

potential impact. The graph is composed of different combinations for each parameter using

the three clusters. Only the top 8 parameters that contributed to the overall impact in the data

prioritization procedure were specified further, while the rest of the parameters remained at

the high level assessment. The red line in the figure represents the 95th percentile of the false

signal rate at each normalized difference of means. From this, it can be observed that at a 95%

confidence level, in order to be able to distinguish correctly two products at least 90% of the

time, the difference in the means between their GWP has to be at least 0.42 (the cross in Figure

3-9). This analysis assumes correlation between scenarios for the product lifetime and the use

phase grid mix parameters. This graph can aid decision makers and LCA practitioners to

determine at what confidence level the difference in the impacts of two product designs are.
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Figure 3-9: Exploration of the scenario space of impacts from tablets. Each point represents a

comparison of two products. The red line represents the 95' percentile of the false signal rate at each

mean difference. The cross represents an example of how this can be used: in order to distinguish

correctly two products at least 90% of the time, with a 95% confidence level, the difference in the

means between their average GWP has to be at least 0.42
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Chapter 4: Discussion

This thesis expanded the probabilistic, streamlining methodology for life cycle

assessments by developing a clear procedure for determining high contributors to uncertainty

and by incorporating cost. The case study on tablets demonstrated that it is possible to

streamline the assessment, resulting in a cost effective evaluation of the product or service in

question. Furthermore, this thesis developed metrics to determine when sufficient information

has been gathered and an analysis of the scenario space of the carbon dioxide impact of

tablets. This section will discuss the merits as well as the limitations and challenges of the work

presented, and areas of future work.

4.1. Tablet Case Study results

The case study on tablets and integrated circuits showed that the streamlining

methodology can be used effectively to reduce the resources required to perform a life cycle

assessment. By specifying only about 20 activities out of the 90 activities present in the tablet

footprint, the uncertainty reduces to a false signal rate of 25%, while after specifying 40

activities, the uncertainty lowers only to 24%. Similarly, for the integrated circuit, by specifying

only 15 activities, the uncertainty reduces to 0.1, and remains around the same as more

activities are specified further. This shows how the uncertainty is mostly due to a partial

number of parameters in the footprint and by targeting these parameters and leaving the rest

at a high level assessment, the effort required to perform a life cycle assessment can be

diminished significantly.

The activities identified as having the most leverage to reduce uncertainty included both

activities that require contextual information and product attributes. Zgola (2011) had similar

results. Thus, even though product attributes, which are easily known, can be used to lower the

uncertainty of the assessment, some contextual information is still required to lower the

uncertainty sufficiently.

The exploration of the major contributors to the total showed that the materials and

manufacturing phase contributes significantly to the total impact of tablets. Thus, further

impact reduction efforts should be directed towards lowering emissions from this phase,



particularly from the semiconductor manufacturing phase. The use phase also contributes

significantly to the total, but improvements in the addition of use phase modes, such as sleep

and standby modes, have helped reduce the electricity consumption of electronics.

4.2. Subjectivity in Data Acquisition and the Presence of Data Gaps

The procedure presented here aims to eliminate any possible subjectivity and

uncertainty in the assessment by methodologically identifying and incorporating all the life

cycle stages and all the information available from publicly available studies and industry expert

input. Subjectivity in the assessment is added when the analyst narrows the scope of the

assessment by eliminating some of the life cycle stages or chooses which information to include

in the assessment.

The analyst might narrow the scope of the assessment because it is outside the scope of

interest for the purpose of the assessment or because of lack of data for some of the life cycle

stages. This omission in life cycle stages introduces subjectivity in the assessment and thus

comparisons between LCAs of different products or services might be difficult to carry out.

When the scope is limited, any possible correlations between parameters in the different life

cycle stages are lost, resulting in uncertainty. Furthermore, since the assessment uses

previously published data as well as industry expert input, the information obtained is only as

good as the information previously published and as good as knowledge available from industry

experts. Data gaps might be present which are unknown, and therefore impossible to quantify.

The streamlining procedure presented in this thesis diminishes the amount of time and

resources required to perform the LCA, thus encouraging analysts to include all the life cycle

stages of the product. Specific information is required only for those activities that contribute

the most to uncertainty, thus, all life cycle stages can be included even if they are specified

using a wide range of values. However, it is expected that scope limiting will occur in life cycle

assessments (LCA), and for assessments to be valuable, analysts should clearly communicate

any scope limiting done that they are aware of as well as any assumptions and data omissions

made.
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4.3. Differences in Responses on the Cost of Additional Information

The work presented here demonstrated a methodology to determine the cost of

gathering additional information for a life cycle assessment without having to know the specific

monetary cost of each activity. The relative cost of each activity was used to develop metrics for

determining sufficiency in data collection efforts and to quantify the cost saved by performing

the streamlined life cycle assessment. The relative cost of each activity was determined via

industry input through a survey. Different difficulties arise when aggregating survey responses.

The survey in this study was sent to different industry collaborators across the

electronics supply chain. As can be seen, their responses varied (Figure 3-8). By averaging their

responses, there is a risk that the responses might cancel each other out. For example, if one of

the survey respondents gives a high value for the cost of an activity and another one gives a low

value, their answers will end up canceling each other out and will produce a middle ranged

value. In order to account for this, responses were also analyzed individually to determine

whether the results obtained were the same as when aggregated. Further work can be

directed towards determining whether other methods, such as rank based methods, are more

appropriate for aggregating survey responses.

In the survey presented here, the cost of gathering information for similar activities was

asked for as a single activity. For example, instead of asking for the cost of additional

information on the impact of ferrous metal and the impact of plastic, both activities were

grouped together under "materials" and the cost of gathering additional information on

materials was asked for. The activities were aggregated this way in order to simplify the process

of filling out the questionnaire and to obtain the largest number of responses as possible. For

the survey, activities that were known to have similar cost of gathering information and that

were similar were aggregated. However, this procedure might add subjectivity into the survey

responses. Future work can look into whether any information is lost when activities are

aggregated.

The responses to the survey from individuals from the same company were similar to

each other, suggesting that the variation in the rankings of the cost of the activities might be

caused by factors such as where the respondents' company is located in the supply chain, the
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size of the company, and even the relationship the company has with its suppliers. Further

work can be directed at understanding the differences in data collection efforts as a function of

the industry, position within the supply chain and characteristics of the company.

4.4. Probabilistic Nature in the Determination of High Impact Activities

The process to identify the parameters that, by fixing them, could lead to the greatest

reduction in the output uncertainty is probabilistic in nature, as there is no prior knowledge on

how much the variance would reduce for that parameter when more information is gathered.

However, the sensitivity analysis helps identify the parameters that contribute the most to the

uncertainty of the output and could, potentially, reduce the output variance if fixed to their

true value. In our analysis, the Sobol indices served as a measure of the sensitivity of the output

to the input parameters. For the top contributors to uncertainty activities, the Sobol indices

were clearly higher, and therefore contributed more to the output variance than the other

parameters. However, as parameters are specified further, the Sobol indices for the parameters

become close to each other and the differences become small. Due to the combination of the

probabilistic nature of the procedure and the small differences of the lower contributing

parameters, it becomes more difficult to correctly identify the parameters that can reduce the

output uncertainty as more parameters are specified. However, the most important

parameters are identified early on in the assessment.

4.5. Use of Additional Information for Determining High Impact
Activities

The cost of additional information in the study presented here was used to develop

metrics for sufficiency and to quantify the savings from performing a streamlined LCA.

However, future work can use this information to help prioritize activities. For example, if an

activity shows up as a high contributor to the output variance but it is very costly to gather

additional information about it, then it might be better to specify another activity with a lower

cost. If the available funding to carry out the assessment is known, the activities to specify in

detail can be identified while taking cost into account and identifying the group of activities that

will reduce the output variance the most at a pre-determined cost.
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A similar procedure for integrating cost in the prioritization of research activities is the

procedure used by Bates et al. (2015). In their research, they explored different portfolios of

research activities to identify the combination of activities that would result in the largest

uncertainty reduction of the output variance. Future work should consider using this

methodology to identify the most efficient research portfolio.

4.6. Scenario Exploration Challenges

The scenario exploration provided valuable information on the possible scenario space

for the impact of tablets. As more information is specified for this part of the analysis, the

number of possible scenarios increases. The number of scenarios increases rapidly, and the

computation of the false signal rate for the comparison of the different scenarios slows down.

This part of the analysis is very computationally intensive. Further work should be carried out to

determine how an exploration of the scenario space can be done in a more efficient manner.
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Chapter 5: Conclusion

The increase in demand for knowledge about the environmental impact of a product or

service has prompted companies to carry out life cycle assessments (LCAs). LCAs provide

valuable information; however, they are resource intensive, time consuming, and by the time

the assessment is complete, the product profile might have changed. In this thesis, we

addressed this problem by expanding a probabilistic, streamlining methodology that uses a high

level assessment of the product in question and specifies further only those parameters that

can reduce the output variance significantly.

This thesis applied the method of Sobol (Sobol', 1990) as described by Saltelli (A. Saltelli

et al., 2008) to identify the activities that have the most leverage to reduce uncertainty. The

case study demonstrated that the streamlining methodology has the potential to reduce the

amount of resources needed to perform the LCA. Only 20 activities out of 90 activities present

in the footprint had to be specified further. Furthermore, metrics described in this work, such

as the false signal rate and the degree of separation, were used successfully to determine when

sufficient information on the footprint has been gathered. This is particularly useful when prior

information about the acceptable amount of uncertainty in the final footprint is not known.

This "sufficiency" level identified by the metrics was observed even when the parameters were

specified to a distribution rather than a single point value.

The cost of acquiring additional information for the footprint was quantified via a survey

sent to industry collaborators. This information was used to determine how many activities to

specify in the footprint as well as to determine the cost saved by performing the streamlining

assessment. In our case study, approximately 75% of the cost of the footprint was saved by

carrying out the probabilistic, streamlining methodology. The survey responses on the cost of

activities varied from each other. Future work should address these differences with the goal of

understanding the factors of the companies that create these differences. Possible differences

might arise because of the location of the company within the supply chain, the size of the

company or the company's relationship with its suppliers and buyers.

Future work should consider using the cost of acquiring additional information to

identify the activities to specify further. Finally, an exploration of the scenario space of the
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impact of tablets was analyzed. In the case study of tablets, it was found that such analysis can

help a decision maker determine whether the observed difference is significant by just knowing

the difference in the means of the impacts.

In conclusion, the extended probabilistic streamlining methodology can help reduce

significantly the efforts required to carry out a life cycle assessment. This can encourage more

companies to evaluate the environmental impact of their products and to take environmental

impact into their design decisions.
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Appendix A: Data and Uncertainty of Modeled Parameters in the Carbon
Footprint of a Tablet

This section will show the values used at the high level, underspecified assessment of the tablet

footprint.

Activity Sotres Disrikp.n eap/Mn CQV/ax MOD

Ferrous Metal Ferrous Metal amount IHS Teardown lognormal 0.11 0.3 Kg
Ferrous Metal Impact Factor Literature (1) lognormal 2.48 1.62 KgCO2e/Kg

Glass Glass amount Literature (1) lognormal 8.11E-05 3.81E-05 Kg
Glass Impact Factor Literature (1) lognormal 2.65 3.23 KgCO2e/Kg

Nonferrous metal Nonferrous metal amount IHSTeardown lognormal 0.24 0.38 Kg
Nonferrous metal Impact Factor Literature (1) lognormal 9.3 19.8 KgCO2e/Kg

Materials Precious Metal Precious Metal amount IHSTeardown lognormal 1.07E-06 6.52E-07 Kg
Precious Metal Impact Factor Literature (1) lognormal 10515.67 11929.21 KgCO2e/Kg

Thermoplastic Thermoplastic Amount IHS Teardown lognormal 0.62 1.02 Kg
Thermoplastic Impact Factor Literature (1) lognormal 4.14 2.3 KgCO2e/Kg

Cardbox cardboar Cardbox Cardboard Amount IHS Teardown lognormal 0.04 0.03 Kg
I _ Cardbox Cardboard Impact Factor Literature (1) lognormal 1.2 0.34 KgCO2e/Kg

Cardbox paper Cardbox Paper Amount IHS Teardown lognormal 0.4 0.53 Kg
Cardbox Paper Impact Factor Literature (1) lognormal 1.2 0.34 KgCO2e/Kg

IC die size IC die size IHS Teardown lognormal 12.67 7.72 cm2
IC Scope 1 IC Scope 1 emissions Industry lognormal - - KgCO2e/cm2

IC Scope 2 IC Scope 2 emissions industry lognormal - - Kwh/cm2
IC Fabrication Grid Mix International Energy Agency (IEA) lognormal 0.88 0.28 KgCO2e/Kwh

IC Fabrication
Chemicals IC Fabrication Chemicals Impact Factor industry lognormal - - KgCO2e/cm2
IC Silicon IC Silicon Impact Factor Industry uniform - - KgCO2e/cm2

IC Packaging Scope Number of dies IHS Teardown lognormal 50 12.5
2 IC Packaging Scope 2 emissions Industry lognormal - KWh/cm2

IC Packaging Scope 2 Grid Mix International Energy Agency (IEA) lognormal 0.88 0.28 KgCO2e/Kwh
Platinum Packaging Amount industry uniform - - Kg

Integrated Platinum Platinum Packaging Impact Factor Literature (1) lognormal 10515.67 11929.21 KgCO2e/Kg
Circuit Tin Packaging Amount Industry uniform - - Kg

Manufacturing Tin Tin Packaging Impact Factor Literature (1) lognormal 2.05 1.21 KgCO2e/Kg
Silver Packaging Amount industry uniform - - Kg

Silver Silver Packaging impact Factor Literature (1) lognormal 10515.67 11929.21 KgCO2e/Kg
Copper Packaging Amount Industry uniform - - Kg

Copper Copper Packaging impact Factor Literature (1) lognormal 2.05 1.4 KgCO2e/Kg
Silicon Dioxide Packaging Amount industry uniform - - Kg

Silicon Dioxide Silicon Dioxide Packaging Impact Facto Literature (1) lognormal 2.10E-02 4.23E-03 KgCO2e/Kg
Aluminum Packaging Amount industry uniform - - Kg

Aluminum Aluminum Packaging Impact Factor Literature (1) lognormal 6.59 5.19 KgCO2e/Kg
Zinc Oxide Packaging Amount Industry uniform - - Kg

Zinc Oxide Zinc Oxide Packaging Impact Factor Literature (1) lognormal 4.23 1.43 KgCO2e/Kg
General Chemicals Packaging Amount industry uniform - - Kg

I General Chemicals General Chemicals Packaging Impact Factor Literature (1) lognormal 2.9 3.8 KgCO2e/Kg

PWB PWB PWB Area IHS Teardown lognormal 0.03 0.01 m2
_ _ _ _ _PWB Emissions Literature (1) normal 377.4 177.91 KgCO2e/m2

LCD Area IHS Teardown lognormal 0.08 0.03 m2

LCi LCD LCD Scope 1 Emissions Taiwanese TFT LCD Association lognormal - - KCO2e/m2
Manufacturing LCD Scope 2 Emissions Taiwanese TFT LCD Association uniform - - KWh/m2

LCD Scope 2 Grid Mix EIA + China Electricity Council lognormal 0.88 0,28 KgC02e/KWh



Aluminum Aluminum Capacitor Amount IHS Teardown lognormal 5.03E-04 2.09E-04 Kg
Capacitor Aluminum Capacitor Impact Factor Literature (1) lognormal 15.48 13.69 KgCO2e/Kg

CCrmi Capa:it:r eramic Capacitor Amount IHS Teardown lognormal 9.15E-04 4.30E-04 Kg
Ceramic Capacitor Impact Factor Literature (1) lognormal 475.96 233.9 KgCO2e/Kg

Diode Diode Amount I HS Teardown lognormal 1.09E-04 1.06E-04 Kg
Diode Impact Factor Literature (1) lognormal 141.5 123.43 KgCO2e/Kg

Resistor Resistor Amount IHS Teardown lognormal 1.81E-04 1.46E-04 Kg

Other Resistor Impact Factor Literature (1) lognormal 372.83 609.87 KgCO2e/Kg

electronics Solder Solder Amount IHS Teardown lognormal 1.13E-03 4.49E-04 Kg
Solder Impact Factor Literature (1) lognormal 15.66 8.1 KgCO2e/Kg

Tantalum Tantalum Capacitor Amount I HS Teardown lognormal 1.91E-04 2.60E-04 Kg
Capacitor Tantalum Capacitor Impact Factor Literature (1) lognormal 107 54.6 KgCO2e/Kg

Transistor Transistor Amount IHS Teardown lognormal 2.74E-03 5.06E-03 Kg
Transistor Impact Factor Literature (1) lognormal 98.85 50.5 KgCO2e/Kg

Low tech Low Tech Processing Amount Industry deterministic - -

processing Low Tech Processing Emissions Industry lognormalI - - KWh/unit
Low Tech Processing Grid Mix EIA + China Electricity Council lognormal 0.88 0.28 KgCO2e/KWh

Battery Weight Battery weight Industry lognormal - - Kg

Carbon Carbon proportion in battery Literature (2) + Industry uniform -
Carbon Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Aluminum Aluminum proportion in battery Literature (2) + Industry uniform - -

Aluminum Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Copper Copper proportion in Battery Literature (2) + Industry uniform - -

Copper Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Battery Transition Metal TMO Proportion in Battery Literature (2) + Industry lognormal -

BManfactring Oxide TMO Impact Factor Literature (2) + Industry lognormal - KgCO2e/Kg
Lithium LH Proportion in Battery Literature (2) + Industry uniform -

Hexafluorophosph LH Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Nickel Nickel Proportion in Battery Literature (2) + Industry uniform -
Nickel Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Thermoset Thermoset Proportion in Battery Literature (2) + Industry lognormal -
Thermoset Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Ethylene Ethylene Carbonate Proportion in Battery Literature (2) + Industry uniform - -

Carbonate Ethylene Carbonate Impact Factor Literature (2) + Industry lognormal - - KgCO2e/Kg

Lifetime Industry lognormal - - Years
Use Phase Use Use Scope 2 Energy Star lo normal 18.94 9.24 KWh/year

Use Grid Mix IEA, EIA, China Electricity Council, literature (3) lognormal 0.72 0.18 KgCO2/KWh

Transportation Weight IHS Teardown deterministic 5.51E-04 tons
Transportation Leg 1 Distance modeled based on location of ports lognormal 9684.27 1936.85 km

Transportation Leg 1 Impact Factor modeled as a combination of ship, air and rail lognormal 0.62 0.35 KgCO2e/tkm
Transportation Transportation Transportation Leg 2 Distance modeled based on location of ports lognormal 10000 2000 km

Transportation Leg 2 Impact Factor modeled as a combination of ship, air and rail lognormal 0.95 0.74 KgCO2e/tkm
Transportation Leg 3 Distance modeled based on location of ports lognormal 962.19 300 km

Transportation Leg 3 Impact Factor modeled as a combination of ship, air and rail lognormal 0.95 0.74 KgCO2e/tkm

Assembly Area IHS Teardown lognormal 0.03 0.01 m2
Assembly Assembly Assembly Emissions Industry lognormal - - KWh/m2

Assembly Grid Mix EIA + China Electricity Council lognormal 0.88 0.28 KgCO2/KWh

(1) The impact factor was derived based on methodology from (Olivetti et al., 2013).
(2) The battery information used data in (Notter et al., 2010) complemented by industry

input to adapt it to the electronics industry.
(3) The impact factors from (Weber et al., 2010) were combined with the other sources

listed.
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Parameter Score Person
Consulted

Quantity of materials (ex. ferrous metal,
glass) from an industry average to the

specific value

GHG footprint of the materials (battery,
materials, backend chemicals) from an

average of the type of material GHG
footprint to the specific GHG emissions

Electronics amounts (ex. IC die size, # of
chips, PWB area, capacitor weights) from
an industry average to the specific value

Electronics (aluminum capacitor, diode,
solder, etc.) impact factors from an

average of the type of electronic IF to
the specific IF

Number of layers in the PWB from an
average to a specific number

Type of battery (ex. Li-ion) from
unknown to the known type

Composition of battery from an industry
average to the actual composition

Parameter Score Person
Consulted

Scope 1 and Scope 2 for IC
manufacturing from a regional

industry perspective to the specific
fab emissions

Scope 3 GHG footprint for IC
manufacturing from a regional

industry perspective to the specific
fab emissions

IC Manufacturing location from
continent to specific country

IC Manufacturing location from
country to specific region within

country
Scope 1 and Scope 2 for IC assembly

and test from a regional industry
perspective to the specific fab

emissions
Scope 3 GHG footprint for IC

assembly and test from a regional
industry perspective to the specific

fab emissions

IC assembly and test location from
continent to specific country

IC assembly and test location from
continent to specific region within

the country _

Relative Cost of Data Gathering
Questionnaire

c)

a) What is your position within the company?
Business Unit

Sustainability
Other

b) People Consulted
ID Company Unit
A self
B
C
D
E
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Parameters Score Person
Consulted

Scope 1 and Scope 2 for LCD
manufacturing from a regional

industry perspective to the specific

fab emissions
Scope 3 GHG footprint for LCD
manufacturing from a regional

industry perspective to the specific
fab emissions

LCD Manufacturing location from
continent to specific country

LCD Manufacturing Location from
country to specific region within

the country

Product assembly scope 2
emissions from a regional industry

perspective to the specific fab
emissions

Product assembly location from
continent to specific country

Product assembly location from
country to specific region within

the country

Use location from a world average

to the specific country

Parameters Score Person
Consulted

Use location from a country
to a specific region

Yearly TEC of product from
an industry average to the

specific product value

Product lifetime from an
industry average to the

specific value
Transportation mode from

unknown (mixture of ship,
rail, truck, air) to the actual

transportation mode
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Glossary of Terms
GHG = Greenhouse Gas
IC= Integrated Circuit
IF = Impact Factor
LCD = Liquid Crystal Display
PWB = Printed Wiring Board
Scope 1= All direct GHG emissions
Scope 2 = Indirect GHG emissions from consumption of purchased electricity, heat or steam.
Scope 3 = Other indirect emissions not covered in Scope 2 (ex. extraction and production of materials)
TEC = Typical Electrical Consumption of the product
(typical units : KWh/year)



Appendix C: Full List of Contributors to Variance using Iterative
Approach

This section shows the full ordered list of contributors to variance for the three analyzed

tablets. The work described in this thesis concludes that only the top 20 parameters need to be

specified to reach "sufficiency".

1. Integrated Circuit Package Scope 2 (KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO2e-/m2)

3. IC Fabrication (KWh/cm2)

4. Use Phase Yearly Tec (KWh/year)

5. Total Integrated Circuit Die Size (cm2)

6. LCD Perflourocarbons Impact Factor (KgCO2e-/m2)

7. Integrated Circuit Perflourocarbons Impact Factor (KgCO2e-/cm2)

8. LCD Area (m2)

9. Integrated Circuit Fabrication Grid Mix (KgCO2e-/KWh)

10. Printed Wiring Board Area (m2)

11. IC Fabrication Grid mix (KgCO2e-/KWh)

12. Nonferrous metal impact factor (KgCO2e-/Kg)

13. PWB impact factor (KgCO2e-/m2)

14. Transportation Impact Factor (KgCO2e-/tkm)

15. Thermoplastic quantity (Kg)

16. Use Phase Grid Mix (KgCO2e-/KWh)

17. Product Life Time (Years)

18. Nonferrous metal quantity (Kg)

19. LCD Fabrication scope 2 (KWh/m2)

20. Use Phase Grid Mix (KgCO2e-/KWh)

21. Low tech processing scope 2 (KWh/unit)

22. Transistor quantity (Kg)

23. IC Fabrication Chemicals Emissions (KgCO2e-/Kg)

24. Transportation Emissions (KgCO2e-/tkm)

25. Cardbox/paper Impact Factor (KgCO2e-/Kg)

26. IC Package Scope 2 Grid Mix (KgCO2e-/KWh)

27. Assembly Grid Mix (KgCO2e-/KWh)

28. Number of IC packages

29. LCD Fabrication Grid Mix (KgCO2e-/KWh)

30. Resistor Impact Factor (KgCO2e-/Kg)

31. LCD Fabrication Grid Mix (KgCO2e-/KWh)

32. Low Tech processing Grid Mix (KgCO2e-/KWh)

33. IC Package Grid mix (KgCO2e-/KWh)



34. Cardbox/paper quantity (Kg)

35. Ferrous metal quantity (Kg)

36. Thermoplastic Impact Factor (KgCO2e-/Kg)

37. Transition Metal oxide Impact Factor (KgCO2e-/Kg)

38. IC Silicon Impact Factor KgCO2e-/cm2)

39. Assembly Scope 2 (KgCO2e-/KWh)

40. Ceramic Capacitor quantity (Kg)

41. Transition Metal Oxide Proportion in Battery

42. Ferrous Metal Impact Factor (KgCO2e-/Kg)

43. Assembly Intensity (KWh/m2)

44. Lithium Hexafluorophosphate proportion in Battery

45. Aluminum proportion in Battery

46. Ceramic Capacitor Impact Factor (KgCO2e-/Kg)

47. Cardbox.cardboard quantity (Kg)

48. Nickel Impact Factor (KgCO2e-/Kg)

49. Tantalum Capacitor Quantity (Kg)

50. IC Packaging Silver Impact Factor (KgCO2e-/Kg)

51. Nickel Proportion in Battery

52. Transistor Impact Factor (KgCO2e-/Kg)

53. Resistor quantity (Kg)

54. Solder Impact Factor (KgCO2e-/Kg)

55. Aluminum in Battery Impact Factor (KgCO2e-/Kg)

56. Transportation Leg 1 distance (Km)

57. Copper Impact Factor (KgCO2e-/Kg)

58. Diode quantity (Kg)

59. Aluminum Capacitor Impact Factor (KgCO2e-/Kg)

60. Precious Metal Impact Factor (KgCO2e-/Kg)

61. Precious Metal Quantity (Kg)

62. Transportation Leg 2 distance (Km)

63. Cardbox/cardboard Impact Factor (KgCO2e-/Kg)

64. Transportation Leg 3 Distance (Km)

65. Copper proportion in Battery

66. Lithium Hexafluorophosphate proportion in Battery
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67. Tantalum Capacitor Impact Factor (KgCO2e-/Kg)

68. Diode Impact Factor (KgCO2e-/Kg)

69. Ethylene Carbonate proportion in Battery

70. Thermoset Impact Factor (KgCO2e-/Kg)

71. Battery weight (Kg)

72. Solder quantity (Kg)

73. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

74. Aluminum Capacitor Quantity (Kg)

75. Carbon Impact Factor (KgCO2e-/Kg)

76. IC Packaging General Chemicals Impact Factor (KgCO2e-/Kg)

77. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

78. Thermoset Proportion in Battery

79. Glass Quantity (Kg)

80. IC Packaging Tin Quantity (Kg)

81. Glass Impact Factor (KgCO2e-/Kg)

82. IC Packaging General Chemicals Quantity (Kg)

83. Carbon proportion in Battery

84. Ethylene Carbonate Impact Factor (KgCO2e-/Kg)

85. IC Packaging Aluminum Quantity (Kg)

86. IC Packaging Zinc Oxide quantity (Kg)

87. IC Packaging Silver quantity (Kg)

88. IC Packaging Silicon Dioxide quantity (Kg)

89. IC Packaging Tin quantity (Kg)

90. IC Packaging Zinc Oxide Impact Factor (KgCO2e-/Kg)

91. IC Packaging Copper Impact Factor (KgCO2e-/Kg)

92. IC Packaging Copper Quantity (Kg)

93. IC Packaging Silicon Dioxide Impact Factor (KgCO2e-/Kg)

94. Low tech processing quantity

95. Transportation leg 3 weight (Kg)

96. Transportation Leg 1 weight (Kg)

97. Transportation Leg 2 weight (Kg)

98. IC Packaging Aluminum Impact Factor (KgCO2e-/Kg)
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1. Integrated Circuit Package Scope 2 (KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO2e-/m2)

3. Total Integrated Circuit Die Size (cm2)

4. IC Fabrication (KWh/cm2)

5. Use Phase Yearly Tec (KWh/year)

6. LCD Perflourocarbons Impact Factor (KgCO2e-/m2)

7. LCD Area (m2)

8. LCD Fabrication (KWh/m2)

9. Integrated Circuit Perflourocarbons Impact Factor (KgCO2e-/cm2)

10. LCD Fabrication grid mix (KgCO2e-/m2)

11. Integrated Circuit Fabrication Grid Mix (KgCO2e-/KWh)

12. Use Phase Grid Mix (KgCO2e-/KWh)

13. Printed Wiring Board Area (m2 )
14. IC Package Scope 2 Grid Mix (KgCO2e-/KWh)

15. Nonferrous metal impact factor (KgCO2e-/Kg)

16. Transportation Impact Factor (KgCO2e-/tkm)

17. Thermoplastic quantity (Kg)

18. Product Life Time (Years)

19. Use Phase Grid Mix (KgCO2e-/KWh)

20. PWB impact factor (KgCO2e-/m2)

21.. Assembly Grid Mix (KgCO2e-/KWh)

22. Cardbox/paper Impact Factor (KgCO2e-/Kg)

23. Number of IC packages

24. Transportation Emissions (KgCO2e-/tkm)

25. Low tech processing scope 2 (KWh/unit)

26. IC Fabrication Chemicals Emissions (KgCO2e-/Kg)

27. Low Tech processing Grid Mix (KgCO2e-/KWh)

28. Transportation Leg 3 Distance (Km)

29. Cardbox/paper quantity (Kg)

30. Integrated Circuit Fabrication Grid Mix (KgCO2e-/KWh)

31. Transistor quantity (Kg)

32. LCD Fabrication Grid Mix (KgCO2e-/KWh)

33. Ferrous metal quantity (Kg)
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34. Transition Metal oxide Impact Factor (KgCO2e-/Kg)

35. IC Package Grid mix (KgCO2e-/KWh)

36. Nonferrous metal quantity (Kg)

37. Assembly Intensity (KWh/m2)

38. Lithium Hexafluorophosphate proportion in Battery

39. Transportation Leg 1 distance (Km)

40. Thermoplastic Impact Factor (KgCO2e-/Kg)

41. Resistor quantity (Kg)

42. IC Silicon Impact Factor KgCO2e-/cm2)

43. Ceramic Capacitor Impact Factor (KgCO2e-/Kg)

44. Nickel Impact Factor (KgCO2e-/Kg)

45. Ceramic Capacitor quantity (Kg)

46. Resistor Impact Factor (KgCO2e-/Kg)

47. Battery weight (Kg)

48. Transportation Leg 2 distance (Km)

49. Diode quantity (Kg)

50. Transition Metal Oxide Proportion in Battery

51. Nickel Proportion in Battery

52. Transistor Impact Factor (KgCO2e-/Kg)

53. Tantalum Capacitor Quantity (Kg)

54. Aluminum in Battery Impact Factor (KgCO2e-/Kg)

55. Card box.card board quantity (Kg)

56. Lithium Hexafluorophosphate proportion in Battery

57. Aluminum proportion in Battery

58. Precious Metal Quantity (Kg)

59. Solder quantity (Kg)

60. IC Packaging Silver Impact Factor (KgCO2e-/Kg)

61. Ferrous Metal Impact Factor (KgCO2e-/Kg)

62. Copper proportion in Battery

63. Ethylene Carbonate proportion in Battery

64. Thermoset Impact Factor (KgCO2e-/Kg)

65. Precious Metal Impact Factor (KgCO2e-/Kg)

66. Cardbox/cardboard Impact Factor (KgCO2e-/Kg)
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67. Solder Impact Factor (KgCO2e-/Kg)

68. Copper Impact Factor (KgCO2e-/Kg)

69. Carbon proportion in Battery

70. Carbon Impact Factor (KgCO2e-/Kg)

71. Ethylene Carbonate Impact Factor (KgCO2e-/Kg)

72. Diode Impact Factor (KgCO2e-/Kg)

73. Aluminum Capacitor Quantity (Kg)

74. Thermoset Proportion in Battery

5. IC Packaging General Chemicals Impact Factor (KgCO2e-/Kg)

76. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

77. Tantalum Capacitor Impact Factor (KgCO2e-/Kg)

78. IC Packaging Silver quantity (Kg)

79. Assembly Grid Mix (KgCO2e-/KWh)

80. Glass Impact Factor (KgCO2e-/Kg)

81. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

82. IC Packaging General Chemicals Quantity (Kg)

83. IC Packaging Aluminum Quantity (Kg)

84. IC Packaging Tin Quantity (Kg)

85. IC Packaging Tin quantity (Kg)

86. IC Packaging Zinc Oxide quantity (Kg)

87. Glass Quantity (Kg)

88. IC Packaging Copper Quantity (Kg)

89. IC Packaging Copper Impact Factor (KgCO2e-/Kg)

90. IC Packaging Silicon Dioxide quantity (Kg)

91. Low tech processing quantity

92. IC Packaging Silicon Dioxide Impact Factor (KgCO2e-/Kg)

93. Transportation leg 3 weight (Kg)

94. Transportation Leg 1 weight (Kg)

95. Transportation Leg 2 weight (Kg)

96. IC Packaging Aluminum Impact Factor (KgCO2e-/Kg)

97. IC Packaging Zinc Oxide Impact Factor (KgCO2e-/Kg)

98. Aluminum Capacitor Impact Factor (KgCO2e-/Kg)
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Major Contributors to Uncertainty for Tablet C

1. Integrated Circuit Assembly and Test Scope 2 (KWh/package)

2. LCD Fabrication Chemicals Impact Factor (KgCO2e-/m2)

3. Total Integrated Circuit Die Size (cm2)

4. Use Phase Yearly Tec (KWh/year)

5. LCD Perflourocarbons Impact Factor (KgCO2e-/m2)

6. LCD Area (m2)

7. PWB Area (m2)

8. Integrated Circuit Assembly and Test grid mix (KgCO2e-/m2)

9. Nonferrous metal Impact Factor (KgCO2e-/Kg)

10. IC Fabrication (KWh/cm2)

11. Transportation Impact Factor (KgCO2e-/tkm)

12. Thermoplastic quantity (Kg)

13. Use Phase Grid Mix (KgCO2e-/KWh)

14. LCD Fabrication (KWh/m2)

15. Number of IC packages

16. Product Life Time (Years)

17. Use Phase Grid Mix (KgCO2e-/KWh)

18. Integrated Circuit Perflourocarbons Impact Factor (KgCO2e-/cm2)

19. Nonferrous metal quantity (Kg)

20. Low tech processing scope 2 (KWh/unit)

21. Transportation Emissions (KgCO2e-/tkm)

22. Resistor Impact Factor (KgCO2e-/Kg)

23. Ferrous Metal Impact Factor (KgCO2e-/Kg)

24. PWB impact factor (KgCO2e-/m2)

25. LCD Fabrication grid mix (KgCO2e-/m2)

26. Integrated Circuit Fabrication Grid Mix (KgCO2e-/KWh)

27. Transportation Leg 3 Distance (Km)

28. Integrated Circuit Fabrication Grid Mix (KgCO2e-/KWh)

29 Lithium Hexafluorophosphate proportion in Battery

30. Ferrous metal quantity (Kg)

31. LCD Fabrication Grid Mix (KgCO2e-/KWh)

32. Low Tech processing Grid Mix (KgCO2e-/KWh)

33. Cardbox/paper quantity (Kg)
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34. Transistor quantity (Kg)

35. Nickel Proportion in Battery

36. Transportation Leg 1 distance (Km)

37. Assembly Intensity (KWh/m2)

38. IC Fabrication Chemicals Emissions (KgCO2e-/Kg)

39. Ceramic Capacitor quantity (Kg)

40. Transportation Leg 2 distance (Km)

41. IC Package Scope 2 Grid Mix (KgCO2e-/KWh)

42. Thermoplastic Impact Factor (KgCO2e-/Kg)

43. Aluminum in Battery Impact Factor (KgCO2e-/Kg)

44. IC Silicon Impact Factor KgCO2e-/cm2)

45. Tantalum Capacitor Quantity (Kg)

46 Precious Metal Impact Factor (KgCO2e-/Kg)

47. Transition Metal oxide Impact Factor (KgCO2e-/Kg)47

48. Cardbox/cardboard Impact Factor (KgCO2e-/Kg)

49. Ceramic Capacitor Impact Factor (KgCO2e-/Kg)

50. Battery weight (Kg)

51. Cardbox.cardboard quantity (Kg)

52. Aluminum Capacitor Quantity (Kg)

53. Resistor quantity (Kg)

54. Precious Metal Quantity (Kg)

55. Transition Metal Oxide Proportion in Battery

56. Nickel Impact Factor (KgCO2e-/Kg)

57. Aluminum proportion in Battery

58. Diode quantity (Kg)

59. Ethylene Carbonate proportion in Battery

60. IC Packaging Silver Impact Factor (KgCO2e-/Kg)

61. Copper Impact Factor (KgCO2e-/Kg)

62. Copper proportion in Battery

63. Lithium Hexafluorophosphate proportion in Battery

64. Solder quantity (Kg)

65. Diode Impact Factor (KgCO2e-/Kg)

66. Thermoset Impact Factor (KgCO2e-/Kg)
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67. Tantalum Capacitor Impact Factor (KgCO2e-/Kg)

68. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

69. Thermoset Proportion in Battery

70. Solder Impact Factor (KgCO2e-/Kg)

71. Carbon proportion in Battery

72.. Ethylene Carbonate Impact Factor (KgCO2e-/Kg)

73. Assembly Grid Mix (KgCO2e-/KWh)

74. Assembly Grid Mix (KgCO2e-/KWh)

75. IC Packaging General Chemicals Impact Factor (KgCO2e-/Kg)

76. IC Packaging General Chemicals Quantity (Kg)

77. Transistor Impact Factor (KgCO2e-/Kg)

78. IC Packaging Platinum Impact Factor (KgCO2e-/Kg)

79. IC Packaging Zinc Oxide quantity (Kg)

80. Cardbox/paper Impact Factor (KgCO2e-/Kg)

81. IC Packaging Tin quantity (Kg)

82. Glass Quantity (Kg)

83. Carbon Impact Factor (KgCO2e-/Kg)

84. IC Packaging Silver quantity (Kg)

85. Glass Impact Factor (KgCO2e-/Kg)

86. IC Packaging Aluminum Impact Factor (KgCO2e-/Kg)

87. IC Packaging Tin Quantity (Kg)

88. IC Packaging Silicon Dioxide quantity (Kg)

89. IC Packaging Aluminum Quantity (Kg)

90. IC Packaging Silicon Dioxide Impact Factor (KgCO2e-/Kg)

91. Low tech processing quantity

92. IC Packaging Copper Quantity (Kg)

93. Transportation leg 3 weight (Kg)

94. IC Packaging Copper Impact Factor (KgCO2e-/Kg)

95. Transportation Leg 1 weight (Kg)

96. Transportation Leg 2 weight (Kg)

97. IC Packaging Zinc Oxide Impact Factor (KgCO2e-/Kg)

98. Aluminum Capacitor Impact Factor (KgCO2e-/Kg)
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Appendix D: Self-test False Signal Rate
This figure shows the complete self-test false signal rate as a function of the number of

parameters specified. Once the number of parameters specified reaches 20, the decrease in

false signal rate, and therefore uncertainty, is minimal.
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Appendix E: Cost of Additional Information
The figure shows the relative cost of the footprint versus the number of parameters

specified for all the survey responses. The responses vary a bit, however, they all follow a rough

linear trend.
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The figure below shows the survey responses "E" and "F". Both respondents belong to the

same company, and their answers are closer to each other than the rest of the responses.

Relative cost of each Activity by Survey Response
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