
MIT Open Access Articles

Interval bounds on the solutions of semi-
explicit index-one DAEs. Part 2: computation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Scott, Joseph K., and Paul I. Barton. “Interval Bounds on the Solutions of Semi-Explicit 
Index-One DAEs. Part 2: Computation.” Numerische Mathematik 125.1 (2013): 27–60.

As Published: http://dx.doi.org/10.1007/s00211-013-0532-x

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/107162

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/107162
http://creativecommons.org/licenses/by-nc-sa/4.0/


Numerische Mathematik manuscript No.
(will be inserted by the editor)

Interval Bounds on the Solutions of Semi-Explicit Index-One
DAEs. Part 2: Computation

Joseph K. Scott · Paul I. Barton

Received: date / Accepted: date

Abstract This article presents two methods for computing interval bounds on the so-
lutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs).
Part 1 presents theoretical developments, while Part 2 discusses implementation and
numerical examples. The primary theoretical contributions are (1) an interval inclu-
sion test for existence and uniqueness of a solution, and (2) sufficient conditions, in
terms of differential inequalities, for two functions to describe componentwise upper
and lower bounds on this solution, point-wise in the independent variable. The first
proposed method applies these results sequentially in a two-phase algorithm analo-
gous to validated integration methods for ordinary differential equations (ODEs). The
second method unifies these steps to characterize bounds as the solutions of an auxil-
iary system of DAEs. Efficient implementations of both are described using interval
computations and demonstrated on numerical examples.

Keywords Differential-algebraic equations · Reachable set · Differential inequali-
ties · Validated numerical integration · Interval Newton method
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1 Introduction

This work discusses the computation of guaranteed interval bounds on the solutions
of nonlinear, semi-explicit index-one differential-algebraic equations (DAEs) subject
to a given set of initial conditions and model parameters. In Part 1 of this article, the
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problem statement, background and necessary theoretical developments were pre-
sented. Here, two bounding methods are developed in detail and applied to numerical
examples.

The first method proceeds in two-phases, as described in §3. In Phase 1, the in-
terval inclusion test of §I -4 is applied to verify existence and uniqueness of a DAE
solution, and provide a crude enclosure (throughout, I- is used to indicate references
to Part 1). Unfortunately, this test is difficult to satisfy computationally because it
involves implicit conditions. This challenge is addressed in §4. Using the crude en-
closure from Phase 1, the second phase computes refined, time-varying bounds on
the DAE solution using the results of §I -5. The implementation of Phase 2 involves
numerical integration of an auxiliary system of ODEs whose solutions describe the
desired bounds, and is described in §5.

The second proposed bounding method, which is described in §6, reduces the
first method to a single phase based on Theorem I -5.3 in §I -5. The computation of
the resulting bounds is similar to Phase 2 of the first method, only here the auxiliary
system to be solved is described by semi-explicit DAEs.

The two-phase framework described above is analogous to the two-phase ap-
proach used for validated integration of ODEs [14]. Indeed, Phase 1 of this approach
provides a key step toward the development of validated methods for DAEs. In Phase
2, however, we deviate from this approach by using a standard numerical integra-
tion code to compute refined bounds via the theory of differential inequalities. The
resulting bounds are mathematically guaranteed, but subject to the error of numeri-
cal integration. Therefore, this method is not validated, and the same is true of the
single-phase method. On the other hand, the use of state-of-the-art numerical integra-
tion codes leads to a very effective implementation. In §7, both methods are applied
to numerical examples and shown to produce accurate bounds very efficiently.

2 Preliminaries

2.1 Extended interval functions

In Part 1 of this article, extensive use was made of intervals and interval-valued func-
tions. For computational reasons, it is often convenient to extend such functions out-
side their domains in a regular manner. For example, it is desirable to define the be-
havior of an interval function taking the argument [v,w] if, by some numerical error,
we have vi >wi for some i. There is a large literature on interval implementations that
account for numerical error in a conservative manner in order to avoid these types of
issues altogether. However, as we will see, the proposed methods for DAEs present
unique challenges. As a particular example, we will make use of an algebraic equa-
tion solver to locate v and w such that [v,w] satisfies an implicit interval equation.
Though the solution is guaranteed to satisfy v ≤w, this may not hold for some iterate
produced by the solver. If no provisions are made for this situation, the solver will be
forced to abort. On the other hand, if the participating interval functions are extended
ontoRn×Rn in a regular manner, this situation poses no problem for the solver, which
may eventually converge to a solution describing a proper interval. In this section, we
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compile the definitions required to address this and other similar situations that arise
in the proposed computations.

Definition 2.1 Let ! : Rn ×Rn→ IRn be defined by

!(v,w) ≡
[
v−max

(
0, 1
2
(v−w)

)
,w+max

(
0, 1
2
(v−w)

)]
. (1)

Interpretation of ! is provided by the following lemma. The proof is trivial.

Lemma 2.1 Let v,w ∈ Rn.

1. If v ≤ w, then !(v,w) = [v,w].
2. For every i with vi > wi, !(vi,wi) is the singleton {m([wi,vi])}.

The next definition extends the intersection of two intervals.

Definition 2.2 Let ∩̃ : IRn × IRn→ IRn be defined by

∩̃([zL,zU ], [ẑL, ẑU]) ≡ [mid(zL,zU , ẑL),mid(zL,zU , ẑU)]. (2)

Furthermore, define the standard notation Z∩̃Ẑ ≡ ∩̃(Z, Ẑ), ∀Z, Ẑ ∈ IRn.

Lemma 2.2 Let Z, Ẑ ∈ IRn.

1. If Z∩ Ẑ ! ∅, then Z∩̃Ẑ = Z∩ Ẑ.
2. For all i such that Zi∩ Ẑi = ∅, Zi∩̃Ẑi is either {zLi } or {z

U
i }.

3. Z∩̃Ẑ ⊂ Z.

The proof of the preceding lemma is straightforward and is omitted. The following
two definitions modify the interval function Γ (Definition I -4.2).

Definition 2.3 Let

D∗ ≡ {(A,B,Z) ∈ IRn×n× IRn× IRn : 0 " Aii,∀i = 1, . . . ,n}, (3)

and define Γ∗ :D∗ → IRn by Γ∗(A,B,Z) ≡W∗
1 × . . .×W

∗
n , where

W∗
i =

1
Aii

(
Bi−
∑

k<i
AikW∗

k −
∑

k>i
AikZk

)
, ∀i ∈ {1, . . . ,n}. (4)

Definition 2.4 Define Γ+ :D∗ → IRn by Γ+(A,B,Z) ≡W+1 × . . .×W
+
ny , where

W+i = Zi∩̃
1
Aii

(
Bi−
∑

k<i
AikW+k −

∑

k>i
AikZk

)
, ∀i ∈ {1, . . . ,n}. (5)

The functions Γ+ and Γ∗ differ from Γ in that they omit or extend the intersection
with Z in the definition of Γ. We have the following properties and relationships.

Lemma 2.3 Let (A,B,Z) ∈ IRn×n× IRn× IRn and (Ã, B̃, Z̃) ∈ IA× IB× IZ.

1. If (A,B,Z) ∈D∗, then (Ã, B̂, Ẑ) ∈D∗, ∀B̂, Ẑ ∈ IRn.
2. If (A,B,Z) ∈D∗, then Γ∗(Ã, B̃, Z̃) ⊂ Γ∗(A,B,Z).
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3. If (A,B,Z) ∈D∗, then Γ+(A,B,Z) ⊂ Z.
4. If (A,B,Z) ∈D∗ and Γ(A,B,Z) ! ∅, then Γ+(A,B,Z) = Γ(A,B,Z).
5. If (A,B,Z) ∈D∗ and Γ∗(A,B,Z) ⊂ Z, then Γ∗(A,B,Z) = Γ(A,B,Z).
6. If ∅ ! Γ(A,B,Z) ⊂ int(Z), then (A,B,Z) ∈D∗ and Γ∗(A,B,Z) = Γ(A,B,Z).

Proof Conclusion 1 is obvious and 2 follows from inclusion monotonicity of interval
arithmetic. Conclusion 3 follows from Conclusion 3 of Lemma 2.2. To show 4 and 5,
suppose (A,B,Z) ∈D∗ and denote Γ(A,B,Z) ≡W1 × . . .×Wn,

Wi = Zi∩
1
Aii

(
Bi−
∑

k<i
AikWk −

∑

k>i
AikZk

)
, ∀i = 1, . . . ,n. (6)

Define W+i as in (5), choose any i ∈ {1, . . . ,n} and assume that Wi =W+i for all k < i,
which is trivially true if i = 1. Then, comparing (6) and (5), Conclusion 1 of Lemma
2.2 implies thatWi =W+i if Wi ! ∅. Then, Conclusion 4 follows by finite induction.

To show 5, define W∗
i as in (4) and assume that Wi = W∗

i for all k < i, which
is again trivially true if i = 1. Comparing (6) and (4) yields Wi = Zi ∩W∗

i . But the
assumption that Γ∗(A,B,Z) ⊂ Z implies thatW∗

i ⊂ Zi, and henceWi =W∗
i . Therefore,

Conclusion 5 also follows by finite induction.
To show 6, suppose ∅ ! Γ(A,B,Z) ⊂ int(Z). Theorem 4.4.5 (ii) of [15] implies

(A,B,Z) ∈D∗. Now denoting Γ(A,B,Z) ≡ W1 × . . .×Wn, (6) again holds. Assuming
that Wi = W∗

i for all k < i (trivial for i = 1) and comparing (6) and (4) again yields
Wi = Zi∩W∗

i . The assumption that Γ(A,B,Z)⊂ int(Z) implies thatWi ⊂ int(Zi), which
is only possible if Wi =W∗

i . Then, Conclusion 6 follows by finite induction. ,-

The following definition formalizes the notation H from Corollary I -4.1, with
a slight modification to reflect the fact that, in the proposed methods, the reference
point z̃y is a function of Zy and does not need to be specified independently. Notation
is also introduced for iterative application ofH , and extended forms based on Γ+ and
Γ∗ are defined.

Definition 2.5 Let z̃y : IDy → R
ny , define MΓ : IDt × IDp × IDx × IDy × IR

ny×ny →
IR

ny×ny × IRny × IRny by

MΓ(I,P,Zx,Zy,C) ≡
(
C
[
∂g
∂y

]
(I,P,Zx,Zy),−C

[g] (I,P,Zx, z̃(Zy)),Zy− z̃(Zy)
)
,

and define the set

D∗
H ≡
{
(I,P,Zx,Zy,C) ∈ IDt × IDp× IDx× IDy× IR

ny×ny : MΓ(I,P,Zx,Zy,C) ∈D∗
}
.

For every K ∈ N, let HK : IDt × IDp × IDx × IDy × IR
ny×ny → IRny be defined by

HK(I,P,Zx,Z0y ,C) ≡ ZKy , where Zk+1y = z̃(Zky )+Γ
(
MΓ(I,P,Zx,Zky ,C)

)
, ∀k ∈ {0, . . . ,K−

1}. Furthermore, defineH+,K :D∗
H
→ IRny exactly asHK with Γ+ in place of Γ, and

defineH∗ :D∗
H
→ IRny exactly asH1 with Γ∗ in place of Γ. Finally, define the set

DK
H ≡
{
(I,P,Zx,Zy,C) ∈D∗

H :H
K(I,P,Zx,Zy,C) ! ∅

}
.



Interval Bounds on the Solutions of DAEs. Part 2: Computation 5

For simplicity, the superscript K onHK andH+,K will be omitted when K = 1. When
K > 1, some justification for Definition 2.5 is needed. For any k ∈ {0, . . . ,K −1} with
Zky ∈ IDy, the definition of Γ implies that Zk+1y ⊂ Zky , and hence Zk+1y ∈ IDy. Then,
a simple inductive argument shows that HK is well-defined for any K ∈ N. In the
definition ofH+,K , we similarly note that (I,P,Zx,Zky ,C) ∈D∗

H
implies Zk+1y ⊂ Zky by

Conclusion 3 of Lemma 2.3. It follows by Conclusion 1 of Lemma 2.4 below that
(I,P,Zx,Zk+1y ,C) ∈D∗

H
, so that again induction shows thatH+,K is well-defined.

In Definition 2.5, the preconditioner C is allowed to be an interval matrix. This
makes H∗, H+,K and HK pure interval functions and is only done for consistency
with the results on regularity of interval functions in the next section. In the proposed
methods, C will always be a real matrix. To conform with Definition 2.5, C is simply
identified with the corresponding degenerate element of IRny×ny .

Specific definitions for z̃ will be given when HK, H+,K or H∗ are used in later
sections. The results in the remainder of this section are independent of this choice.

Lemma 2.4 Let K ∈ N, let (I,P,Zx,Zy,C) ∈ IDt × IDp × IDx × IDy × IR
ny×ny and let

(Ĩ, P̃, Z̃x, Z̃y, C̃) ∈ II× IP× IZx× IZy× IC.

1. If (I,P,Zx,Zy,C) ∈D∗
H
, then (Ĩ, P̃, Z̃x, Z̃y, C̃) ∈D∗

H
.

2. If (I,P,Zx,Zy,C) ∈D∗
H
, thenH∗(Ĩ, P̃, Z̃x,Zy, C̃) ⊂H∗(I,P,Zx,Zy,C).

3. If (I,P,Zx,Zy,C) ∈D∗
H
, thenH+,K(I,P,Zx,Zy,C) ⊂ Zy.

4. If (I,P,Zx,Zy,C) ∈DK
H
, thenHK(I,P,Zx,Zy,C) =H+,K(I,P,Zx,Zy,C).

5. If (I,P,Zx,Zy,C) ∈D∗
H
andH∗(I,P,Zx,Zy,C) ⊂ Zy, then

H(I,P,Zx,Zy,C) =H∗(I,P,Zx,Zy,C). (7)

6. If ∅ !H(I,P,Zx,Zy,C) ⊂ int(Zy), then (I,P,Zx,Zy,C) ∈D∗
H
and (7) holds.

7. If ∅ !H(I,P,Zx,Zy,C) ⊂ int(Zy), z̃y(Zy) ∈ int(Zy), and C is degenerate, then
(Ĩ, P̃, Z̃x,Zy,C) ∈DK

H
.

Proof Conclusions 1 and 2 follow from inclusion monotonicity of interval arith-
metic and the corresponding conclusions of Lemma 2.3 (it is essential in 2 that Zy,
and not Z̃y, appears on the left, since otherwise z̃ will be modified and inclusion
monotonicity does not apply). Conclusion 3 was argued inductively in the discus-
sion above. Conclusion 4 follows by inductive application of Conclusion 4 in Lemma
2.3. Conclusions 5 and 6 are direct applications of the corresponding conclusions of
Lemma 2.3. Assume the hypotheses of 7. By Conclusion 3 of Corollary I -4.1, to ev-
ery (t,p,zx) ∈ I ×P×Zx there corresponds some zy ∈ Zy satisfying g(t,p,zx,zy) = 0.
Choosing any (t,p,zx) ∈ Ĩ × P̃× Z̃x, Conclusion 1 of the same shows that the corre-
sponding zy must be in HK(Ĩ, P̃, Z̃x,Zy,C). By Conclusion 1 of the present lemma,
this implies (Ĩ, P̃, Z̃x,Zy,C) ∈DK

H
. ,-

2.2 Regularity of interval functions

Recall the interval extensions [f], [g] and
[
∂g
∂y
]
. For certain computations required by

the proposed bounding methods, it will be helpful to recognize that these mappings,



6 Joseph K. Scott, Paul I. Barton

as well as others defined in the previous section, enjoy surprisingly strong regular-
ity conditions. To maintain generality, the required regularity of [f], [g] and

[
∂g
∂y
]
is

assumed in Assumption 2.1, and it is argued in Remark 2.1 that this assumption is
verifiable for natural interval extensions under very mild restrictions. Subsequently,
regularity conditions for H+,K and H∗ are established as consequences of Assump-
tion 2.1.

Chapter 4 in [17] introduces the class of piecewise C1 functions, which is used
below to formalize the regularity of [f], [g] and

[
∂g
∂y
]
. The formal definition of this

class is not important here. Only the following known facts will be used:

Lemma 2.5 Let E f ⊂ R
n and Eg ⊂ Rm be open.

1. If f ∈C1(E f ,R
m), then f is piecewise C1 on E f .

2. Let f1, f2 : E f → R
m and g : Eg→ Rq be piecewise C1 on E f and Eg, respectively.

(a) f1+ f2 is piecewise C1 on E f .
(b) g ◦ f1 is piecewise C1 on the open set E f g ≡ {z ∈ E f : f1(z) ∈ Eg}.
(c) If m = 1, then f1 f2, min( f1, f2) and max( f1, f2) are piecewise C1 on E f .

3. If f : E f → R
m is piecewise C1 on E f , then f is locally Lipschitz continuous on

E f .
4. If f : E f → R

m is piecewise C1 on E f , then f is Frechet differentiable everywhere
in E f except on a subset of Lebesgue measure zero.

Proof For Conclusions 1 and 2, see p. 92 of [17]. Conclusion 3 is Corollary 4.1.1 in
[17], and Conclusion 4 follows from Theorem 3.1.1 in [5]. ,-

The notion of a piecewise C1 function is now extended to interval-valued map-
pings. It is well known that IRn is a metric space when equipped with the Hausdorff
metric:

dH(Z,Y) =max
(
max
i
|zLi − y

L
i |,maxi |z

U
i − y

U
i |
)
,

where Z,Y ∈ IRn, Z ≡ [zL,zU] and Y ≡ [yL,yU]. With this metric, open and closed
sets in IRn are defined by the standard metric topology, and the standard definition
of continuity applies to mapping to and/or from IRn. From the definition of dH, it is
simple to show that a mapping φ : E ⊂Rn→ IRm is continuous on E if and only if the
real-valued functions φL,φU : E→ Rm defined by

[φL(z),φU(z)] ≡ φ(z), ∀z ∈ E, (8)

are continuous on E. The following definition is therefore consistent with other no-
tions of regularity for interval-valued mappings.

Definition 2.6 Let E ⊂ Rn be open, φ : E → IRm, and let the real-valued functions
φL,φU : E→ Rm be defined by (8). The mapping φ is called piecewise C1 on E if φL
and φU are piecewise C1 on E.

As an example of such a function, we note the following:

Lemma 2.6 ! is piecewise C1 on Rn×Rn.
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Proof The result follows from Definition 2.1 and Conclusions 1 and 2 of Lemma 2.5.

From the discussion above, it follows that if φ is piecewise C1 on E, then it is
continuous as a mapping from E to IRm. This leads to the following lemma, which is
required for further results to be well-posed.

Lemma 2.7 Let φ : E ⊂ Rn → IRm be piecewise C1 on E. IfD ⊂ IRm is open, then

ED ≡ {z ∈ E : φ(z) ∈D} (9)

is open.

Proof Since φ is piecewise C1 on E, it is a continuous on E. Therefore, ED is the
inverse image in E of the open set D under a continuous mapping, and hence it is
open with respect to E. Since E is itself open, ED is open.

The definition of a piecewiseC1 interval-valued mapping can now be extended to
mappings from IRm to IRq as follows.

Definition 2.7 LetD ⊂ IRm be open and let M :D→ IRq. M is called piecewise C1
onD if, for every piecewise C1 function φ : E ⊂ Rn → IRm, the mapping

ED / z 0−→ M(φ(z)) ∈ IRq (10)

is piecewise C1 on the open set ED ≡ {z ∈ E : φ(z) ∈D}.

As an example of such a function, we note the following:

Lemma 2.8 ∩̃ is piecewise C1 on IRn × IRn.

Proof If zL,zU ∈ Rn and zL ≤ zU , it is easily verified that mid(zL,zU , ẑ) is equivalent
to max(zL,min(zU , ẑ)) for all ẑ ∈ Rn. The result now follows from Definition 2.2 and
Conclusion 2 of Lemma 2.5. ,-

The following two lemmas establish some basic facts about piecewiseC1 interval
functions, which will be used throughout.

Lemma 2.9 LetD ⊂ IRm. If M :D→ IRq is piecewise C1 onD, then it is continuous
onD.

Proof Choose any [v,w] ∈ D and any ε > 0. Choosing φ = ! in Definition 2.7 (see
Lemma 2.6), the hypothesis on M implies that the functionM(!(·, ·)) is piecewiseC1,
and hence continuous, on ED ≡ {(v,w) ∈ Rn ×Rn : !(v,w) ∈ D}. Since ED is open,
∃δ > 0 such that

dH
(
M(!(v,w)),M(!(v′,w′))) ≤ ε (11)

for every (v′,w′) ∈ Rn ×Rn such that max(‖v−v′‖∞,‖w−w′‖∞) ≤ δ.
Now, choose any [v′,w′] ∈D such that dH([v,w], [v′,w′])≤ δ. Noting that!(v,w)=

[v,w] and !(v′,w′) = [v′,w′] by Conclusion 1 of Lemma 2.1, (11) states that

dH
(
M([v,w]),M([v′,w′])) ≤ ε. (12)

Since, [v′,w′] was arbitrary, M is continuous at [v,w], and hence onD. ,-
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Lemma 2.10 Let D1 ⊂ IRm and D2 ⊂ IRk be open and let M1 :D1→ IRk and M2 :
D2 → IR

q be piecewise C1 on D1 and D2, respectively. The set D12 ≡ {Z ∈ D1 :
M1(Z) ∈D2} is open and M2 ◦M1 is piecewise C1 onD12.

Proof Since M1 is piecewise C1 on D1, it is continuous there. Then, the set D12 is
the inverse image in D1 of the open set D2 under a continuous mapping. Therefore,
D12 is open with respect toD1. SinceD1 is open in IRm, so isD12.

Choose any piecewise C1 mapping φ : E ⊂ Rn → IRm and define ED1 ≡ {z ∈ E :
φ(z) ∈D1}. Now define φ′ : ED1 → IRk by

φ′(z) = M1(φ(z)), ∀z ∈ ED1 . (13)

Since M1 is piecewise C1 on D1, φ′ is piecewise C1 on ED1 . But since M2 is piece-
wise C1 onD2, this implies that

z 0−→ M2(φ′(z)) = M2(M1(φ(z))) (14)

is piecewise C1 on the set

{z ∈ ED1 : φ
′(z) ∈D2} = {z ∈ E : φ(z) ∈D1 and M1(φ(z)) ∈D2}, (15)

= {z ∈ E : φ(z) ∈D12}. (16)

But φ was chosen arbitrarily, so M2 ◦M1 is piecewise C1 onD12. ,-

One further lemma is required, after which the fundamental assumption on the regu-
larity of [f], [g] and

[
∂g
∂y
]
is stated.

Lemma 2.11 If D ⊂ Rn is open, then ID is open in IRn.

Proof If ID is empty, then it is trivially open. Otherwise, choose Z ∈ ID. Then, Z ⊂D,
and since D is open, ∃ε > 0 such that ẑ ∈ D if ‖ẑ− z‖∞ ≤ ε and z ∈ Z (uniformity of
ε for every z ∈ Z results from the compactness of Z, as per Theorem 4.6 in [13]). Let
Ẑ ∈ IRn satisfy dH(Z, Ẑ) ≤ ε. By the definition of dH , this implies that, for any ẑ ∈ Ẑ,
there exists z ∈ Z such that ‖ẑ− z‖∞ ≤ ε. But this implies that Ẑ ⊂ D or, equivalently,
Ẑ ∈ ID. Hence, Z is an interior point of ID and, since Z was chosen arbitrarily, ID is
open. ,-

Assumption 2.1 Let c : Dt ×Dp ×Dx ×Dy → R represent any of fi, g j or
∂g j
∂yk
, with

indices i ∈ {1, . . . ,nx} and j,k ∈ {1, . . . ,ny}. The interval extension [c] is piecewise C1
on the open set IDt × IDp× IDx× IDy.

Remark 2.1 When c is factorable [12,20] and [c] is the natural interval extension
(as it is in our implementation), Assumption 2.1 holds under minor restrictions on
the factors of c. If the interval extension of each factor is piecewise C1 on an open
domain, then it follows directly from Lemma 2.10 that [c] is piecewise C1. From
the rules of interval arithmetic [15], this is clearly true of the interval extensions for
addition, multiplication, division, and nearly all common univariate functions (see
for example the set of so-called elementary functions in Section 1.2 of [15]). Among
common functions, the only problematic case is the family xa with 0 < a < 1 on
domains containing zero.
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The remaining results of this section address the regularity ofHK,H+,K andH∗.

Lemma 2.12 D∗ is open and both Γ+ and Γ∗ are piecewise C1 onD∗.

Proof Let U ≡ {(A,b,z) ∈ Rn×n ×Rn×Rn : Aii ! 0,∀i = 1, . . . ,n}. By definition, IU =
D∗. Since U is open, D∗ is open by Lemma 2.11. It follows from (4), the rules of
interval addition, subtraction,multiplication and division (see [15]), and Conclusion 2
of Lemma 2.5 that Γ∗ is piecewiseC1 onD∗. For Γ+, (5) leads to the same conclusion
by additionally applying Lemmas 2.8 and 2.10. ,-

Theorem 2.1 Suppose Assumption 2.1 holds and the function z̃y in Definition 2.5 is
piecewise C1 on IDy. ThenD∗

H
is open andHK,+ andH∗ are piecewise C1 onD∗

H
.

Proof Under the stated hypotheses, it follows from the rules of interval addition,
subtraction and multiplication and Conclusion 2 of Lemma 2.5 that MΓ in Definition
2.5 is piecewise C1 on IDt × IDp × IDx× IDy × IR

ny×ny . By Lemma 2.12, Γ∗ and Γ+
are piecewise C1 on D∗, which is open. Then Lemma 2.10 implies that D∗

H
is open

and Γ∗ ◦MΓ is piecewise C1 there, so that H∗ is piecewise C1 on D∗
H
by the hy-

pothesis on z̃y and Conclusion 2 of Lemma 2.5. For H+,K, we additionally note that
(I,P,Zx,Zky ,C) ∈ D∗

H
for all k ∈ {0, . . . ,K − 1} (see discussion following Definition

2.5). Then, the result follows by K applications of Lemmas 2.10 and Lemma 2.5. ,-

3 A Generic Two-Phase Algorithm

In this section, we introduce the first bounding method of this article, which is based
on a time-stepping framework outlined in Algorithm 1 below. In a generic time step j,
the algorithm proceeds in two phases. The purpose of Phase 1 is to establish existence
and uniqueness of a solution (x,y) of I -(1) (Equation (1) in Part 1) on I j×P, for some
time interval I j = [t j−1, t j], and to determine crude enclosures Zx, j and Z′y, j satisfying

(x(t,p),y(t,p)) ∈ Zx, j ×Z′y, j, ∀(t,p) ∈ I j ×P. (17)

Subsequently, Phase 2 computes refined intervals Xj ⊂ Zx, j and Yj ⊂ Z′y, j such that

(x(t j,p),y(t j,p)) ∈ Xj ×Yj, ∀p ∈ P. (18)

In contrast to Zx, j and Z′y, j, the refined bounds Xj and Yj are valid only at t j. The
method for computing these refinements is not specified in Algorithm 1. Our ap-
proach is the subject of §5.

As input, Algorithm 1 takes intervals I = [t0, t f ] ⊂ Dt, P ⊂ Dp and X0 ⊂ Dx under
the assumption that x0(P) ⊂ X0, ∀p ∈ P. The final input is a vector ŷ0 ∈ Dy satisfy-
ing g(t0, p̂,x0(p̂), ŷ0) = 0 for some p̂ ∈ P. The purpose of this vector is to specify a
particular solution of interest in case the DAE in question permits multiple regular
solutions (see Example I -3.1). Phases 1 and 2 described above correspond to Steps
3 and 6, respectively. Finally, the algorithm makes use of the functions HK and z̃y
from Definition 2.5, and is independent of the choice of z̃y. Choices for z̃y and C are
discussed in §4.1.

Algorithm 1 (Two-phase algorithm)
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1. Input: I = [t0, t f ], P, X0, ŷ0.
2. Initialize j := 1, Y0 := [ŷ0, ŷ0].
3. Find I j = [t j−1, t j], Zx, j, Zy, j and C j satisfying

(I j,P,Zx, j,Zy, j,C j) ∈ IDt × IDp× IDx× IDy×R
ny×ny , (19)

Yj−1 ⊂ Zy, j, (20)
z̃y(Zy, j) ∈ int(Zy, j), (21)
∅ ! Z′y, j ≡H(I j,P,Zx, j,Zy, j,C j) ⊂ int(Zy, j), (22)
Xj−1 + [0, t j− t j−1] [f] (I j,P,Zx, j,Z′y, j) ⊂ Zx, j. (23)

4. Set Xj := Zx, j and Yj := Z′y, j. If j = 1, set Y0 := Z
′
y, j.

5. If j = 1, refine Y0 (see §5).
6. Refine Xj and Yj (see §5).
7. If t j ≥ t f , terminate. Otherwise, set j := j+1 and go to 3.

The behavior of Algorithm 1 is formalized in Corollary 3.1 below. Of course,
this depends on the refinement procedures in Steps 5 and 6, which have not yet been
specified. Therefore, we assume the following:

Assumption 3.1 Consider an iteration J ∈ N of Algorithm 1 and suppose that Steps
3-4 are complete. Let (x,y) be a regular solution of I -(1) on [t0, tJ]×P satisfying (17)
for all j ∈ {1, . . . , J}. If J = 1, the refinement to Y0 computed in Step 5 satisfies (18)
with j = 0. Suppose that Step 5 is complete. If (x,y) additionally satisfies (18) for all
j ∈ {0, . . . , J−1}, then Step 6 produces XJ and YJ satisfying (18) with j = J.

Corollary 3.1 Let (I,P,X0, ŷ0) ∈ IDt × IDp× IDx×Dy satisfy x0(p) ∈ X0, ∀p ∈ P, and
g(t0, p̂,x0(p̂), ŷ0) = 0 for some p̂ ∈ P. Suppose that Algorithm 1 has completed J iter-
ations, furnishing the intervals Y0 and

I j, Zx, j, Zy, j, Z′y, j, Xj, Yj, j = 1, . . . , J. (24)

Then there exists a regular solution (x,y) of I -(1) on [t0, tJ]× P with y(t0, p̂) = ŷ0,
satisfying (17) for every j ∈ {1, . . . , J} and (18) for every j ∈ {0, . . . , J}. Furthermore,
for any Ĩ = [t0, t̃] ⊂ [t0, tJ], any connected P̃ ⊂ P, and any solution (x∗,y∗) of I -(1) on
Ĩ× P̃, either (x∗,y∗) = (x,y) on Ĩ× P̃, or y∗(t0,p) " Zy,1, ∀p ∈ P̃.

Proof Define (x∗,y∗) as above and suppose that y∗(t0,p) ∈ Zy,1 for at least one p ∈ P̃.
Consider the following inductive hypotheses for k ∈ {1, . . . , J}:

1. There exists a regular solution (x,y) of I -(1) on [t0, tk]×P,
2. (x,y) = (x∗,y∗) on [t0,min(tk, t̃)]× P̃,
3. (17) holds for j ∈ {1, . . . ,k},
4. y(t0, p̂) = ŷ0,
5. (18) holds for j ∈ {0, . . . ,k}.

It suffices to show that these hypotheses hold with k = J.
Let k = 1. Since (19)-(23) hold with j = 1, Theorem I -4.2 establishes Hypotheses

1-3. Because ŷ0 is a zero of g(t0, p̂,x0(p̂), ·) and ŷ0 ∈ Zy,1 by (20), Hypothesis 4 follows
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from Conclusion 3 of Corollary I -4.1. Applying Assumption 3.1 with J = 1 proves
Hypothesis 5.

Choose any k ∈ {1, . . . , J−1} and assume Hypotheses 1-5. Since x(tk,P) ⊂ Xk and
(19)-(23) hold with j = k+1, Theorem I -4.2 furnishes a regular solution of I -(1a) on
Ik+1×P, (x̂, ŷ) ∈C1(Ik+1×P,Zx,k+1)×C1(Ik+1×P,Z′y,k+1), satisfying x̂(tk,p) = x(tk,p),
∀p ∈ P. Noting that both y(tk,p) and ŷ(tk,p) are zeros of g(tk,p,x(tk,p), ·) and y(tk,p) ∈
Yk ⊂ Zy,k+1 by (20), it follows from Conclusion 3 of Corollary I -4.1 that y(tk,p) =
ŷ(tk,p), ∀p ∈ P. If t̃ ≥ tk, Hypothesis 2 implies that we also have x̂(tk,p)= x∗(tk,p) and
ŷ(tk,p) = y∗(tk,p), ∀p ∈ P̃, so that (x̂, ŷ) = (x∗,y∗) on [tk,min(tk+1, t̃)]× P̃ by Theorem
I -4.2.

From the arguments above, (x̂, ŷ) extends (x,y) onto all of [t0, tk+1]×P, and this
extension satisfies Hypothesis 1-4 with k := k + 1. Applying Assumption 3.1 with
J = k+1 establishes Hypotheses 5, and finite induction completes the proof. ,-

From Corollary 3.1, it is clear that Algorithm 1 produces bounds on a single, iso-
lated solution of I -(1) specified by the input ŷ0. This input can be ignored by omitting
(20) when j = 1. However, the algorithm still produces bounds on a unique solution
dictated by the interval Zy,1 found in the first time step. If one is interested in bounds
on all solutions, then Algorithm 1 would need to be applied to each solution in turn,
though it has no provisions for exhaustively enumerating solutions. This problem is
not pursued in this article, though a good starting point is provided by Theorem I -
5.1. On the other hand, if there is a particular solution of interest, then Algorithm 1
avoids any unnecessary conservatism that would result from bounding other solutions
as well.

4 Satisfying the existence and uniqueness test computationally (Phase 1)

In this section, the execution of Step 3 in a single time step J of Algorithm 1 is
considered. Based on the previous time step, it is assumed that there exists a regular
solution (x,y) of I -(1) on [t0, tJ−1]×P satisfying y(t0, p̂) = ŷ0 and x(tJ−1,P) ⊂ XJ−1.
The objective is to derive an automatic computational procedure for finding intervals
IJ , Zx,J , Zy,J and CJ satisfying (19)-(23). Though we present an effective method
for this task, it is generally impossible to guarantee that such intervals can be found.
This seems to be an inherent complication owing to the implicit nature of nonlinear
DAEs, and hence of the inclusion (22), and it appears in much the same form in both
of the methods in [16] and [10]. However, it is important to note that the validity of
any intervals provided by Step 3 is guaranteed, regardless of the method used to find
them. The proposed procedure will either succeed in satisfying (19)-(23), and hence
(17) with j = J, or it will fail and report an error, forcing Algorithm 1 to terminate
prematurely.

Since the implicit conditions (22) and (23) are the most challenging, they are
addressed first. The key insight used to satisfy these conditions is that, once some
putative CJ and tJ have been chosen, intervals Zx,J and Zy,J satisfying (22) and (23)
are related to solutions of a square system of real-valued algebraic equations that
can be solved by standard methods with a few caveats. This approach is developed
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below. A complete algorithm for satisfying all of the conditions (19)-(23) is presented
in §4.2.

Lemma 4.1 The conditions (19) and (22), with j = J, are equivalent to

(IJ ,P,Zx,J ,Zy,J ,CJ) ∈D∗
H , (25)

H∗(IJ ,P,Zx,J ,Zy,J ,CJ) ⊂ int(Zy,J), (26)

provided that CJ is degenerate (i.e., a singleton).

Proof The result is a direct application of Conclusions 5 and 6 of Lemma 2.4. ,-

For the following result, denote [xLJ−1,x
U
J−1] ≡ XJ−1 and

[H∗,L(I,P,Zx,Zy,C),H∗,U(I,P,Zx,Zy,C)] ≡H∗(I,P,Zx,Zy,C). (27)

Lemma 4.2 Let IJ ≡ [tJ−1, tJ] ∈ IDt, P ∈ IDp, CJ ∈ Rny×ny and γ > 0. If the vectors
zLx ,zUx ∈ Rnx and zLy ,zUy ∈ Rny satisfy

(IJ ,P,!(zLx ,zUx ),!(zLy ,zUy ),CJ) ∈D∗
H , (28)

z′y
L :=H∗,L(IJ,P,!(zLx ,zUx ),!(zLy ,zUy ),CJ), (29)

z′y
U :=H∗,U(IJ ,P,!(zLx ,zUx ),!(zLy ,zUy ),CJ), (30)

0 = zLy − z′y
L
+1γ, (31)

0 = −zUy + z′y
U
+1γ, (32)

0 = zLx −xLJ−1− [0, tJ − tJ−1][f]
L(IJ ,P,!(zLx ,zUx ),!(z′y

L
,z′y

U ))+1γ, (33)

0 = −zUx +xUJ−1+ [0, tJ − tJ−1][f]
U(IJ ,P,!(zLx ,zUx ),!(z′y

L
,z′y

U ))+1γ, (34)

then zLx < zUx and zLy < zUy , and Zx,J ≡ [zLx ,zUx ] and Zy,J ≡ [zLy ,zUy ] satisfy (19), (22) and
(23) with j = J. Furthermore, these conclusions remain true if the right-hand sides of
(31)-(34) are componentwise less than γ.

Proof It suffices to prove the case where the right-hand sides of (31)-(34) are com-
ponentwise less than γ. SinceH∗ returns an interval, z′yL ≤ z′yU and hence

zLy < z′y
L
≤ z′y

U
< zUy . (35)

An analogous argument shows that zLx < zUx .
Let Zx,J and Zy,J be as in the statement of the lemma, and let Z′y = [z′yL,z′yU]. Then,

(28) implies (25) and (35) implies (26). Then, (19) and (22) follow from Lemma 4.1.
Again, an argument analogous to (35) shows that XJ−1+[0, tJ− tJ−1][f](IJ,P,Zx,J ,Z′y,J)⊂
int(Zx,J), which implies (23). ,-

Equations (31)-(34) form a system of nonlinear algebraic equations of the general
form

L(z) = 0, (36)
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where z is a concatenation of the vectors zLx , zUx , zLy and zUy , and the domain of L
is specified by (28). To compute intervals satisfying the existence and uniqueness
conditions (19), (22) and (23), (36) is solved using a Newton-type iteration of the
form

zk+1 := zk − J̃−1(zk)L(zk) (37)

(this should not be confused with the interval Newton method used to derive H∗,
and hence equations (31) and (32)). During this iteration, we may terminate when-
ever L(zk) < 1γ for some iterate, and Lemma 4.2 ensures that zk furnishes the desired
intervals. Using the definition ofH∗ and the rules of interval arithmetic, it is in prin-
ciple possible to write out explicit expressions for the functions L, though they may
be very cumbersome. Then, the only complication with this approach is that L is in
general nonsmooth owing to the rules of interval arithmetic. Even so, the develop-
ments of §2.2 imply sufficient regularity of L for a Newton-type method to be well
motivated.

Lemma 4.3 Let IJ ≡ [tJ−1, tJ] ∈ IDt, P ∈ IDp, CJ ∈ IRny×ny and γ > 0. Suppose As-
sumption 2.1 holds and the function z̃y in Definition 2.5 is piecewise C1 on IDy. Then
the set

E∗H ≡
{
(zLx ,zUx ,zLy ,zUy ) ∈ R2(nx+ny) : (IJ ,P,!(zLx ,zUx ),!(zLy ,zUy ),CJ) ∈D∗

H

}
(38)

is open and L is Frechet differentiable a.e. in E∗
H
.

Proof Define φ : R2(nx+ny)→ IR× IRnp × IRnx × IRny × IRny×ny by

φ(zLx ,zUx ,zLy ,zUy ) ≡ (IJ ,P,!(zLx ,zUx ),!(zLy ,zUy ),CJ). (39)

By Lemma 2.6, φ is piecewise C1 on R2(nx+ny). By Theorem 2.1, D∗
H
is open and

H∗ is piecewise C1 there. Then Lemma 2.7 shows that E∗
H
is open by and it follows

from Definition 2.7 that the right-hand sides of (31) and (32) are piecewise C1 on
E∗
H
. From Assumption 2.1, the same holds for (33) and (34). Then, Conclusion 4 of

Lemma 2.5 implies differentiability a.e. in E∗
H
. ,-

To implement (37), the matrix J̃(zk) is computed by forward automatic differen-
tiation [7]. Automatic differentiation (AD) provides exact derivative evaluations for
factorable functions by propagating derivatives through the sequence of factors by
repeated application of the addition, multiplication and chain rules of differentiation.
As mentioned above, the right-hand sides of (31)-(34) may involve nonsmooth oper-
ations resulting from the rules of interval arithmetic. If these operations are piecewise
C1, as we have assumed, then AD can be easily extended to handle them as well. For
example, consider the operation

c(z) =min(a(z),b(z)), (40)

which is ubiquitous in interval computations. To propagate derivatives through this
operation, we simply let ∂c/∂z equal ∂a/∂zwhen a(z) ≤ b(z), and ∂b/∂zwhen a(z)>
b(z). The value assigned to the derivative when a(z) = b(z) is arbitrary. Extending
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this approach to other simple piecewise C1 functions, an in house C++ library has
been developed that uses operator overloading to both do interval computations and
compute such pseudo-derivatives of the resulting bounds. During the differentiation
of L at some point z, the evaluation of any operation at a nondifferentiable point
(e.g., when a(z) = b(z) above) implies that z is a member of the set of measure zero
in Lemma 4.3. For all other points, this scheme results in the true Jacobian.

A thorough survey of methods for solving nonsmooth equations is given in [5].
Among these, the semi-smooth Newton methods, which are based on the set-valued
generalized Jacobian, provide the most satisfactory convergence properties, similar
to those of a standard Newton iteration. Unfortunately, there is little work on comput-
ing an element of the generalized Jacobian. It is known that the directional derivatives
of piecewise C1 functions obey a chain rule, from which it follows that the forward
mode of AD will give correct directional derivatives [6,17]. On the other hand, the
matrix formed by computing the directional derivatives in all coordinate directions is
not necessarily an element of the generalized Jacobian [11]. From this, it follows that
J̃, as computed above, will not necessarily be an element of the generalized Jacobian,
and hence (37) may not enjoy the properties of semi-smooth Newton methods. How-
ever, [11] also presents a modified forward mode AD algorithm that is guaranteed to
generate an element of the generalized Jacobian for functions where the nonsmooth-
ness arises from the absolute value function. Further work is underway to extend this
method to a much broader class of functions. Thus, the prospects for improving the
iteration (37) in the future are promising. Finally, we emphasize again that the use of
this iteration is still valid. It will either succeed in satisfying (19)-(23), or it will fail
and report an error. Under no circumstances will Algorithm 1 proceed with invalid
bounds computed through the use of this iteration.

Remark 4.1 During the search for a computational means of satisfying (22), we did a
significant amount of experimentation with methods that, modulo various heuristics,
centered around the iteration

Zy,J :=H∗(IJ ,P,Zx,J ,Zy,J ,CJ)+ [−1γ,1γ] (41)

(here, Zx,J is fixed, having been selected earlier by other means). Though this avoids
evaluation and inversion of J̃, we had only limited success. In hindsight, this ap-
proach can be viewed as an attempt to solve the system of equations (31)-(32) using
a successive substitution algorithm. Even for the best heuristics found, our results
were exactly what one should expect in light of this observation: slow convergence
for some systems and disastrous divergence for others. In comparison, the iteration
(37) is much more robust.

4.1 Specification of CJ and z̃y

In the Phase 1 implementation below,H∗ is implemented with

z̃y(Zy) ≡ m(Zy), ∀Zy ∈ IRny . (42)

Note in particular that this guarantees (21) for any Zy,J with nonempty interior.



Interval Bounds on the Solutions of DAEs. Part 2: Computation 15

In practice, the choice of preconditioner can have a large impact on the sharpness
of the bounds Zx,J and Zy,J , and even the ability to satisfy (22) and (23) at all. A good
preconditioner for evaluatingH∗(I,P,Zx,Zy,C) is the midpoint inverse

C ≡
(
m
([
∂g
∂y

]
(I,P,Zx,Zy)

))−1
. (43)

For efficiency reasons, however, it is desirable to compute a preconditioner only once
per time step of Algorithm 1. Therefore, the definition

CJ ≡
(
m
([
∂g
∂y

]
([tJ−1, tJ−1],P,XJ−1,YJ−1)

))−1
(44)

is used instead. Thus, CJ is constant throughout the iteration (37). For J > 1, XJ−1
and YJ−1 are subsets of Zx,J−1 and Zy,J−1, and these intervals will have satisfied (19)-
(23) with j = J − 1 in the previous time step. It follows that the inverse in (44) ex-
ists because

[
∂g
∂y
]
([tJ−2, tJ−1],P,Zx,J−1,Zy,J−1) cannot contain any singular matrices

(Corollary I -4.1). If invertibility fails for J = 1, then the inverse of ∂g∂y (t0, p̂,x(p̂), ŷ0)
is used instead. If this matrix is singular, then the corresponding solution of I -(1) is
not regular and the method does not apply.

4.2 Phase 1 algorithm

Algorithm 2 below describes the complete implementation of Step 3 of Algorithm 1.
Algorithm 2 terminates with flag = 0 when (19)-(23) have been satisfied successfully,
and returns flag = −1 otherwise. For the examples in §7, Algorithm 2 is implemented
with γ = 10−4, H MAX = 1, H MIN = 10−6 and PH1 MAX ITER = 10.

Algorithm 2 (Phase 1)

1. Input: [t0, t f ], P, γ, tJ−1, XJ−1, YJ−1, ∆tJ−1.
2. Assign ∆tJ :=min(2∆tJ−1,H MAX, t f − tJ−1+H MIN) and tJ := tJ−1 +∆tJ.
3. Assign zLx := xLJ−1−1γ, z

U
x := xUJ−1+1γ, z

L
y := yLJ−1−1γ, z

U
y := yUJ−1+1γ.

4. With initial guesses from 3, apply the iteration (37) described above.
(a) If PH1 MAX ITER iterations are taken without success, go to 6.
(b) If any iterate violates (28), go to 6.
(c) If (zLx ,zUx ,zLy ,zUy ) is found such that the right-hand sides of (31)-(34) are com-

ponentwise less than γ, set Zx,J := [zLx ,zUx ] and Zy,J := [zLy ,zUy ] and go to 5.
5. If YJ−1 ⊂ Zy,J , terminate with flag = 0. Otherwise, go to 6.
6. Assign ∆tJ := ∆tJ/2 and tJ := tJ−1 + ∆tJ . If ∆tJ ≥ H MIN go to 3. Otherwise,
terminate with flag = −1.

Suppose that Algorithm 2 returns 0. By Step 4 and Lemma 4.2, (19), (22) and (23)
are satisfied. Since (22) implies that Zy,J has nonempty interior, (21) is guaranteed by
the choice of z̃y in §4.1. Finally, (20) is verified by Step 5. Then, Phase 1 is complete.
The only way Algorithm 2 can fail is if ∆tJ is reduced below H MIN by repeated
failure in Step 4 or 5. To avoid many such failures, ∆tJ is bounded by 2∆tJ−1.
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In practice, Step 4 succeeds reliably when the intervals IJ and P are narrow, and
becomes less reliable as they are widened. This is natural given that (17) follows
from (19)-(23). When IJ and P are narrow, (19)-(23) can potentially be satisfied by
narrower intervals Zx,J and Zy,J . Working with narrower intervals in turn reduces the
overestimation incurred through interval computations, and reduces the likelihood of
violating (19). Both of these factors make Step 4 more likely to succeed.

When Step 4 fails, the recourse is to half ∆tJ and try again. On the other hand,
Algorithm 2 does not resort to partitioning P. Though algorithms for bisecting P and
propagating bounds valid on each partition element separately are easily conceivable,
computational efficiency will be lost if many partitions are required, so this strategy
is avoided. With P fixed, one can create pathological problems for which it is impos-
sible to satisfy (22), and therefore there is no theoretical guarantee that Step 4 will
succeed. This happens, for example, if the algebraic equations permit multiple solu-
tion branches on [tJ−1, tJ−1]×P×XJ−1 and it is geometrically impossible to enclose
one uniquely by an interval (see Corollary I -4.1).

Though the condition (20) is checked in Step 5 of Algorithm 2, no special attempt
is made to guarantee it. The condition (20) is merely a provision for the case where
I -(1) permits multiple regular solutions. Its purpose is to ensure that the interval Zy,J
computed in Step 4 encloses the solution of I -(1) that is consistent with the input ŷ0
in Algorithm 1, rather than jumping to some other solution (see the proof of Corollary
3.1). Since the initial guesses specified in Step 3 are in the vicinity of the solution of
interest, (20) is likely to hold whenever Step 4 succeeds.

4.3 Phase 1 refinement

Before moving on to Phase 2 of Algorithm 1, Zx,J and Zy,J may be refined by itera-
tively assigning

Zx,J :=
(
XJ−1 + [0, tJ − tJ−1] [f] (IJ ,P,Zx,J ,Zy,J)

)
∩Zx,J , (45)

Zy,J :=H(IJ,P,Zx,J ,Zy,J ,CJ). (46)

By (18), it is clear that

x(t,p) = x(tJ−1,p)+
∫ t

tJ−1
f(s,p,x(s,p),y(s,p))ds, (47)

∈ XJ−1 + [0, t− tJ−1] [f] (IJ,P,Zx,J ,Zy,J ), (48)

for all (t,p) ∈ IJ × P. Therefore, (17) remains valid after the assignment (45). By
Conclusion 1 of Corollary I -4.1, the same is true of the assignment (46). Note that
these refinements are distinct from the refinements XJ and YJ detailed in §5 in that
(17) remains true. That is, the refined intervals still provide bounds on all of IJ ×P,
rather than only at tJ , as in (18). For the examples in §7, (45) and (46) are applied
with a maximum of 50 iterations, terminating early if the absolute or relative change
between each bound in successive iterates is less that 10−8.
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5 Computing Refined Enclosures Using Differential Inequalities (Phase 2)

In this section, we consider the implementation of Step 6 in a single time step J of
Algorithm 1. It is assumed that a solution (x,y) of I -(1) exists on [t0, tJ]× P, and
that Y0 and (I j, Zx, j, Zy, j, Z′y, j, C j, Xj, Yj) are available and satisfy (17) and (19)-(23)
for all j ∈ {1, . . . , J} and (18) for all j ∈ {0, . . . , J − 1}. The present task is to compute
refined intervals XJ ⊂ Zx,J and YJ ⊂ Z′y,J satisfying (18) with j = J.

By the assumption that (19)-(23) hold with j = J, Corollary I -4.1 guarantees that
∃H ∈C1(IJ ×P×Zx,J ,Z′y,J) such that, for every (t,p,zx) ∈ IJ ×P×Zx,J , zy =H(t,p,zx)
is the unique element of Zy,J satisfying g(t,p,zx,zy) = 0. Therefore, we aim to apply
Theorem I -5.2 to derive time-varying bounds on (x,y) over IJ .

Choose any K ∈ N and, for every i ∈ {1, . . . ,nx}, define

φLi ,φ
U
i : R×R

nx ×Rnx → IR× IRnp × IRnx × IRny × IRny×ny , (49)
YL
i ,Y

U
i : R×R

nx ×Rnx → IRny , (50)
ψLi ,ψ

U
i : R×R

nx ×Rnx → IR× IRnp × IRnx × IRny , (51)

by

φLi (t,v,w) ≡
(
IJ∩̃[t, t],P,BLi (Zx,J∩̃!(v,w)),Z

′
y,J ,CJ

)
, (52)

φUi (t,v,w) ≡
(
IJ∩̃[t, t],P,BUi (Zx,J∩̃!(v,w)),Z

′
y,J,CJ

)
, (53)

YL
i (t,v,w) ≡H

+,K(φLi (t,v,w)), (54)
YUi (t,v,w) ≡H

+,K(φUi (t,v,w)), (55)

ψLi (t,v,w) ≡
(
IJ∩̃[t, t],P,BLi (Zx,J∩̃!(v,w)),Y

L
i (t,v,w)

)
, (56)

ψUi (t,v,w) ≡
(
IJ∩̃[t, t],P,BUi (Zx,J∩̃!(v,w)),Y

U
i (t,v,w),

)
. (57)

Now, consider the initial value problem in ODEs

v̇i(t) =
[
fi
]L (ψLi (t,v(t),w(t))), (58)

ẇi(t) =
[
fi
]U (ψUi (t,v(t),w(t))), (59)

for all i = 1, . . . ,nx, with initial conditions

[v(tJ−1),w(tJ−1)] = XJ−1. (60)

The following results show that these ODEs are well-defined and have a unique so-
lution describing the desired bounds. It is assumed thoughout that Assumption 2.1
holds and z̃y is the midpoint, as in §4.1.

Corollary 5.1 When viewed as functions of (t,v,w), the right-hand sides of (58) and
(59) are defined and piecewise C1 on R×Rnx ×Rnx . Furthermore,

YL
i (t,v,w) =H

K
(
φLi (t,v,w)

)
and YUi (t,v,w) =H

K
(
φUi (t,v,w)

)
, (61)

for all (t,v,w) ∈ R×Rnx ×Rnx and every i = 1, . . . ,nx.
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Proof Choose any i ∈ {1, . . . ,nx} and any (t,v,w) ∈ R×Rnx ×Rnx . By Conclusion 3 of
Lemma 2.2, φLi (t,v,w) ⊂ (IJ,P,Zx,J ,Zy,J ,CJ). Using (19), (21) and (22), Conclusion
7 of Lemma 2.4 implies that φLi (t,v,w) ∈D

K
H
. Then, YL

i (t,v,w) is well-defined and
Conclusion 4 of Lemma 2.4 shows (61) (an analogous argument holds for YUi ).

Now (61) implies thatYL
i (t,v,w)⊂ Z

′
y,J . It follows that ψ

L
i (t,v,w) is in IDt×IDp×

IDx× IDy. Then, the right-hand side of (58) is defined on R×Rnx ×Rnx .
By Lemmas 2.6 and 2.8 and Definition I -5.1, it is clear that φLi is piecewise C

1

on R×Rnx ×Rnx , which is open. Theorem 2.1 shows that H+,K, and hence YL
i =

H+,K ◦ φLi , is also piecewise C
1 on R×Rnx ×Rnx . It follows that ψLi is piecewise

C1 on R×Rnx ×Rnx . Finally, Assumption 2.1 implies that [ fi]L ◦ ψLi is piecewise
C1 on R×Rnx ×Rnx , which is the desired result (an analogous argument holds for
[ fi]U ◦ψUi ). ,-

Lemma 5.1 There exist v,w ∈ C1(IJ ,Rnx ) satisfying the ODEs (58)-(60). Moreover,
this solution is unique and satisfies v(t) ≤ w(t) and [v(t),w(t)]∩Zx,J ! ∅, ∀t ∈ IJ.

Proof Consider the ODEs

ṡ(t) = 1, (62)

v̇i(t) =
[
fi
]L (ψLi (s(t),v(t),w(t))), (63)

ẇi(t) =
[
fi
]U (ψUi (s(t),v(t),w(t))), (64)

with initial conditions (60) and s(t0) = t0. This system simply describes the bounding
ODEs (58) and (59) in autonomous form.

By Corollary 5.1 and Conclusion 3 of Lemma 2.5, the right-hand sides of (62)-
(64) are locally Lipschitz continuous on R×Rnx ×Rnx . Moreover, ψL and ψU are
easily seen to map into subsets of (IJ ,P,Zx,J ,Zy,J). Thus, the right-hand sides of (62)-
(64) are also bounded on R×Rnx ×Rnx by

max
(
1,
∣∣∣[ fi]L(IJ ,P,Zx,J ,Zy,J)

∣∣∣ ,
∣∣∣[ fi]U(IJ ,P,Zx,J ,Zy,J)

∣∣∣
)
. (65)

For any (ŝ, v̂, ŵ) ∈ R×Rnx ×Rnx and any i ∈ {1, . . . ,nx}, the definitions of ! and ∩̃
guarantee that

v̂i = ŵi =⇒
(
Zx,J
)
i ∩̃!(v̂i, ŵi) is a singleton, (66)

=⇒ BLi (Zx,J∩̃!(v̂, ŵ)) = B
U
i (Zx,J∩̃!(v̂, ŵ)), (67)

=⇒ YL
i (ŝ, v̂, ŵ) =Y

U
i (ŝ, v̂, ŵ), (68)

=⇒
[
fi
]L (ψLi (ŝ, v̂, ŵ)) ≤

[
fi
]U (ψUi (ŝ, v̂, ŵ)). (69)

This implies that K ≡ {(ŝ, v̂, ŵ) ∈ R×Rnx ×Rnx : v̂ ≤ ŵ} is a viability domain for
the ODEs (62)-(64) (Definition 1.1.5 in [1]). Combining this with continuity and
boundedness of the right-hand sides, Nagumo’s Theorem implies that there exist s ∈
C1(IJ ,Rn) and v,w ∈C1(IJ,Rnx ) satisfying (62)-(64) and satisfying (s(t),v(t),w(t)) ∈
K , and hence v(t) ≤ w(t), ∀t ∈ IJ (see Theorem 1.2.4 in [1]). Clearly, this v,w also
satisfies (58)-(60). Due to the local Lipschitz continuity of the ODE right-hand side
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functions on R×Rnx ×Rnx , uniqueness follows by a standard application of Gron-
wall’s inequality.

Let [xLJ−1,i, x
U
J−1,i] and [z

′L
y,J,i,z′

U
y,J,i] denote the ith components of XJ−1 and Z′y,J ,

respectively. By (23) and the integral form of (58),

vi(t) = vi(tJ−1)+
∫ t

tJ−1

[
fi
]L (ψLi (s,v(s),w(s)))ds, (70)

≥ xLJ−1,i +
∫ t

tJ−1

[
fi
]L (IJ ,P,Zx,J ,Z′y,J), (71)

≥ xLJ−1,i + [0, tJ − tJ−1]
[
fi
]L (IJ ,P,Zx,J ,Z′y,J) ≥ z

L
x,J,i , ∀t ∈ IJ . (72)

Using an analogous argument for wi, it follows that [v(t),w(t)] ⊂ Zx,J , ∀t ∈ IJ . ,-

Corollary 5.2 Let v,w ∈C1(IJ ,Rnx ) be the unique solutions of (58)-(60). Then

x(t,p) ∈ [v(t),w(t)], (73)

y(t,p) ∈Y(t,v(t),w(t)) ≡Hq
(
[t, t],P,Zx,J ∩ [v(t),w(t)],Zy,J

)
, (74)

for all (t,p) ∈ IJ ×P and any q ∈ N.

Proof To show (73), it suffices to establish the hypotheses of Theorem I -5.2 with
(I,Zx,Z′y)= (IJ,Zx,J ,Z′y,J), t f = tJ , t0 = tJ−1 and x0 = xJ−1 ≡ x(tJ−1, ·). By (19)-(23) and
Corollary I -4.1, there exists H ∈ C1(IJ ×P×Zx,J ,Z′y,J ) such that, for every (t,p,zx) ∈
IJ ×P×Zx,J , zy =H(t,p,zx) is the unique element of Zy,J satisfying g(t,p,zx,zy) = 0.
Then, it only remains to satisfy the hypotheses (EX), (IC) and (RHS). (EX) holds
by Lemma 5.1. By (60) and (18) with j = J − 1, (IC) is clearly satisfied. Choose
any t ∈ IJ . If there exists (p,zx,zy) ∈ P× Zx,J × Z′y,J such that g(t,p,zx,zy) = 0 and
zx ∈BLi (Zx,J ∩ [v(t),w(t)]), then (61) and Conclusion 1 of Corollary I -4.1 ensure that
zy ∈YL

i (t,v(t),w(t)). It follows that

fi(t,p,zx,zy) ∈ [ fi]([t, t],P,BLi (Zx,J ∩ [v(t),w(t)]),Y
L
i (t,v(t),w(t))), (75)

= [ fi](ψLi (t,v(t),w(t))), (76)

and hence (58) ensures that (RHS).1 is satisfied. Proof of (RHS).2 is analogous. Then,
(73) holds, and (74) follows from Conclusion 1 of Corollary I -4.1. ,-

According to Corollary 5.2, Step 6 of Algorithm 1 can be accomplished by solv-
ing (58)-(60) on IJ and assigning XJ := [v(tJ),w(tJ)] and YJ := Y(tJ ,v(tJ),w(tJ)).
Provided that numerical error is not a crucial concern, these ODEs can be solved
numerically using any state of the art code. In the examples in §7, we use CVODE
[2] with absolute and relative tolerances of 10−5. The evaluation of YL

i and Y
U
i for

each i can make evaluating the right-hand sides of (58)-(59) costly, so K should be
small (see §6.1). On the other hand, q can be fairly large, becauseY is evaluated after
numerical integration is complete rather than within the right-hand sides of (58) and
(59). Moreover,Y need only be evaluated at select points of interest in IJ , since only
the value at tJ , which defines YJ , will effect the next time step of Algorithm 1. In §7,
we choose K = 5 and evaluate Y with q = 50 at all points shown in the plots there.



20 Joseph K. Scott, Paul I. Barton

6 A single-phase method

In this section, a single-phasemethod is presentedwhich essentially combines the two
phases of the previous approach. In short, time-varying bounds for both the differen-
tial and the algebraic state variables will be computed by satisfying the hypotheses of
Theorem I -5.3. As before, let I = [t0, t f ] ⊂ Dt, P ⊂ Dp and X0 ⊂ Dx be intervals and
suppose that x0(P) ⊂ X0.

For every i ∈ {1, . . . ,nx}, let

η : R×Rnx ×Rnx ×Rny ×Rny → IR× IRnp × IRnx × IRny (77)
C : Einv→ IRny×ny , (78)

φ,φLi ,φ
U
i : Einv→ IR× IR

np × IRnx × IRny × IRny×ny , (79)
YL
i ,Y

U
i : E

∗
H → IR

ny , (80)
ψLi ,ψ

U
i : E

∗
H → IR× IR

np × IRnx × IRny , (81)

where

EID ≡
{
(t,v,w,zLy ,zUy ) ∈ R×Rnx ×Rnx ×Rny ×Rny : (82)

η(t,v,w,zLy ,zUy ) ∈ IDt × IDp× IDx× IDy
}
, (83)

Dinv ≡
{
Q ∈ IRny×ny : det (m (Q)) ! 0} , (84)

Einv ≡
{
(t,v,w,zLy ,zUy ) ∈ EID :

[
∂g
∂y

]
(η(t,v,w,zLy ,zUy )) ∈Dinv

}
, (85)

E∗H ≡
{
(t,v,w,zLy ,zUy ) ∈ Einv : φ(t,v,w,zLy ,zUy ) ∈D∗

H

}
. (86)

Choosing any K ∈ N, define the functions in (77)-(81) by

η(t,v,w,zLy ,zUy ) ≡
(
I∩̃[t, t],P,!(v,w),!(zLy ,zUy )

)
, (87)

C(t,v,w,zLy ,zUy ) ≡ m
([
∂g
∂y

]
(η(t,v,w,zLy ,zUy ))

)−1
, (88)

φ(t,v,w,zLy ,zUy ) ≡
(
I∩̃[t, t],P,!(v,w),!(zLy ,zUy ),C(t,v,w,zLy ,zUy )

)
, (89)

φLi (t,v,w,z
L
y ,zUy ) ≡

(
I∩̃[t, t],P,BLi (!(v,w)),!(z

L
y ,zUy ),C(t,v,w,zLy ,zUy )

)
, (90)

φUi (t,v,w,z
L
y ,zUy ) ≡

(
I∩̃[t, t],P,BUi (!(v,w)),!(z

L
y ,zUy ),C(t,v,w,zLy ,zUy )

)
, (91)

YL
i (t,v,w,z

L
y ,zUy ) ≡H+,K(φLi (t,v,w,z

L
y ,zUy )), (92)

YUi (t,v,w,z
L
y ,zUy ) ≡H+,K(φUi (t,v,w,z

L
y ,zUy )), (93)

ψLi (t,v,w,z
L
y ,zUy ) ≡

(
I∩̃[t, t],P,BLi (!(v,w)),Y

L
i (t,v,w,z

L
y ,zUy )

)
, (94)

ψUi (t,v,w,z
L
y ,zUy ) ≡

(
I∩̃[t, t],P,BUi (!(v,w)),Y

U
i (t,v,w,z

L
y ,zUy )

)
. (95)



Interval Bounds on the Solutions of DAEs. Part 2: Computation 21

For any continuous and pointwise positive γ : I→ R, consider the initial value prob-
lem in DAEs

v̇i(t) =
[
fi
]L (ψLi (t,v(t),w(t),z

L
y (t),zUy (t))), (96)

ẇi(t) =
[
fi
]U (ψUi (t,v(t),w(t),z

L
y (t),zUy (t))), (97)

0 = zLy (t)−H∗,L(φ(t,v(t),w(t),zLy (t),zUy (t)))+1γ(t), (98)

0 = −zUy (t)+H∗,U(φ(t,v(t),w(t),zLy (t),zUy (t)))+1γ(t), (99)

for all i = 1, . . . ,nx, with initial conditions

[v(t0),w(t0)] = X0. (100)

In the following results, it will be shown that the solutions of these DAEs describe
the desired bounds. It is assumed thoughout that Assumption 2.1 holds and z̃y is the
midpoint, as in §4.1.

Corollary 6.1 E∗
H
is open and, when viewed as functions of (t,v,w,zLy ,zUy ), the right-

hand sides of (96)-(99) are defined and piecewise C1 on E∗
H
.

Proof By Lemmas 2.6 and 2.8, η is piecewiseC1 on IDt× IDp× IDx× IDy. Since this
set is open, EID is open by Lemma 2.7. Moreover, the set of nonsingular matrices is
open. Then, since m(·) is clearly a continuous function from IRny×ny to Rny×ny ,Dinv is
the inverse image of an open set under a continuous mapping, and is hence open. By
Assumption 2.1,

[
∂g
∂y
]
◦η is piecewiseC1 on EID. Then, another application of Lemma

2.7 now shows that Einv is open. The fact that C is piecewise C1 on Einv now follows
from the definition of m(·) and the fact that the inverse of a matrix is a differentiable
function of its elements. Combining this with Lemmas 2.6 and 2.8 shows that φ, φLi
and φUi are piecewise C

1 on Einv, so that openness of D∗
H
and a final application of

Lemma 2.7 show that E∗
H
is open.

Choose any i ∈ {1, . . . ,nx}. By the definition of E∗H and Conclusion 1 of Lemma
2.4,

φLi (t,v,w,z
L
y ,zUy ) ∈D∗

H , ∀(t,v,w,zLy ,zUy ) ∈ E∗H . (101)

Theorem 2.1 shows that H∗ and H+,K are piecewise C1 on D∗
H
, and hence H∗ ◦φ

and YL
i =H

+,K ◦φLi are piecewise C
1 on E∗

H
. It follows that the right-hand side of

(98) and ψLi are piecewise C
1 on E∗

H
. For any (t,v,w,zLy ,zUy ) ∈ E∗H , the definition of

H+,K implies that YL
i (t,v,w,z

L
y ,zUy ) ⊂ !(zLy ,zUy ), and hence

ψLi (t,v,w,z
L
y ,zUy ) ⊂ η(t,v,w,zLy ,zUy ) ⊂ Dt ×Dp×Dx×Dy. (102)

Then, Assumption 2.1 implies that [ fi]L ◦ψLi is piecewise C
1 on E∗

H
. Analogous ar-

guments hold for the right-hand sides of (99) and (97). ,-
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In contrast to the analysis of the Phase 2 bounding ODEs in §5, existence and
uniqueness of a solution of (96)-(100) does not follow from standard results because
the participating functions are only piecewise C1, rather than C1. However, such a
result seems quite plausible. From a variant of the implicit function theorem in [17],
one can write an invertibility condition for the right-hand sides of (98)-(99) which
guarantees the existence of a piecewise C1 implicit function locally around a consis-
tent initial condition. By Conclusion 3 of Lemma 2.5, this would imply that v and w
are, locally, described by ODEs with locally Lipschitz continuous right-hand sides.
Combining this with standard results for Lipschitz ODEs then implies that there ex-
ists a solution in a neighborhood of t0 with v andw continuously differentiable and zLy
and zUy piecewise C1. We do not pursue this development formally here. Instead, we
will assume that such a solution exists on an open set I0 containing I and demonstrate
that it must describe the desired bounds.

Lemma 6.1 Let (v,w,zLy ,zUy ) be a solution of (96)-(100). Then v(t)≤w(t) and zLy (t)<
zUy (t) for all t ∈ I.

Proof Arguing as in Lemma 4.2, it is clear from (98) and (99) that any solution must
satisfy zLy (t) < zUy (t) for all t ∈ I.

For a contradiction, suppose that {t ∈ I : vi(t)>wi(t) for at least one i} is nonempty
and let t1 < t f denote its infimum. Because t1 is a lower bound, v(t)≤w(t), ∀t ∈ [t0, t1].
Because t1 is the greatest lower bound, it follows that vi(t) > wi(t) for at least one i
for t arbitrarily close to the right of t1.

Now, treating zLy and zUy as known functions, consider the ODEs

ṡ(t) = 1, (103)

v̇∗i (t) =
[
fi
]L (ψLi (s(t),v

∗(t),w∗(t),zLy (s(t)),zUy (s(t)))), (104)

ẇ∗i (t) =
[
fi
]U (ψUi (s(t),v

∗(t),w∗(t),zLy (s(t)),zUy (s(t)))), (105)

for all i = 1, . . . ,nx. Corollary 6.1 implies that the right-hand sides of these ODEs are
piecewise C1, and hence locally Lipschitz continuous, on the set

Q ≡
{
(ŝ, v̂, ŵ) ∈ I0×Rnx ×Rnx : (ŝ, v̂, ŵ,zLy (ŝ),zUy (ŝ)) ∈ E∗H

}
. (106)

We refer to these ODEs as the reduced ODEs and consider them with initial conti-
tions (s(t1),v∗(t1),w∗(t1)) = (t1,v(t1),w(t1)). Clearly, for any solution (s,v∗,w∗) of the
reduced ODEs on [tt, t1+ δ], (s,v,w) is also a solution.

For any (ŝ, v̂, ŵ) ∈ Q and any i ∈ {1, . . . ,nx},

v̂i = ŵi =⇒ BLi (!(v̂, ŵ)) = B
U
i (!(v̂, ŵ)), (107)

=⇒ YL
i (ŝ, v̂, ŵ,z

L
y (ŝ),zUy (ŝ)) =YUi (ŝ, v̂, ŵ,z

L
y (ŝ),zUy (ŝ)), (108)

=⇒
[
fi
]L (ψLi (ŝ, v̂, ŵ,z

L
y (ŝ),zUy (ŝ))) ≤

[
fi
]U (ψUi (ŝ, v̂, ŵ,z

L
y (ŝ),zUy (ŝ))). (109)

This implies that K ≡ {(ŝ, v̂, ŵ) ∈ I ×Rnx ×Rnx : v̂ ≤ ŵ} is a viability domain for the
reduced ODEs (Definition 1.1.5 in [1]). Combining this with continuity the right-
hand sides, Nagumo’s Theorem implies that there exist δ > 0 s ∈C1([t1, t1+δ],R) and
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v∗,w∗ ∈C1([t1, t1+δ],Rnx) satisfying the reducedODEs and satisfying (s(t),v∗(t),w∗(t)) ∈
K , and hence v∗(t) ≤w∗(t), ∀t ∈ [t1, t1+δ] (see Theorem 1.2.3 in [1]). But by the def-
inition of t1, (s,v,w) leaves K immediately to the right of t1. Therefore, (s,v,w) !
(s,v∗,w∗) on [t1, t1 + δ]. But it has been shown above that the right-hand sides of the
reduced ODEs are locally Lipschitz continuous, so a standard application of Gron-
wall’s inequality yields a contradiction. ,-

Corollary 6.2 Let (v,w,zLy ,zUy ) be a solution of (96)-(100) on I. Then any regular
solution (x,y) of I -(1) on I × P satisfying y(t0, p̃) ∈ [zLy (t0),zUy (t0)] for at least one
p̃ ∈ P also satisfies

x(t,p) ∈ [v(t),w(t)], (110)

y(t,p) ∈Y(t,v(t),w(t),zLy (t),zUy (t)) ≡Hq
(
φ
(
t,v(t),w(t),zLy (t),zUy (t)

))
, (111)

for all (t,p) ∈ I ×P and any q ∈ N.

Proof Consider Hypothesis I -5.1. By Lemma 6.1, the condition (EX) holds. Since
(v,w,zLy ,zUy ) satisfy (98)-(99) on I, we must have (t,v(t),w(t),zLy (t),zUy (t)) ∈ E∗H , ∀t ∈
I. Then, by (98), (99) and Conclusion 5 of Lemma 2.4, the condition (ALG) in Hy-
pothesis I -5.1 also holds. Now, it suffices to establish Hypotheses (IC) and (RHS) of
Theorem I -5.3. (IC) holds by (100). To show (RHS).1, choose any t ∈ I and suppose
∃(p̂, ẑx, ẑy) ∈ P×Dx× [zLy (t),zUy (t)] such that g(t, p̂, ẑx, ẑy)= 0 and ẑx ∈BLi ([v(t),w(t)]).
By definition,

φLi (t,v(t),w(t),z
L
y (t),zUy (t)) ⊂ φ(t,v(t),w(t),zLy (t),zUy (t)). (112)

Then, by Conclusions 5 and 7 of Lemma 2.4, satisfaction of (98) and (99) implies
that φLi (t,v(t),w(t),z

L
y (t),zUy (t)) ∈DK

H
. By Conclusion 4 of the same,

YL
i (t,v(t),w(t),z

L
y (t),zUy (t)) =HK(φLi (t,v(t),w(t),z

L
y (t),zUy (t))). (113)

Then, Conclusion 1 of Corollary I -4.1 ensures that ẑy ∈ YL
i (t,v(t),w(t),z

L
y (t),zUy (t)).

It follows that

fi(t, p̂, ẑx, ẑy) ∈ [ fi]([t, t],P,BLi ([v(t),w(t)]),Y
L
i (t,v(t),w(t),z

L
y (t),zUy (t))), (114)

= [ fi](ψLi (t,v(t),w(t),z
L
y (t),zUy (t))), (115)

and hence (96) ensures that (RHS).1 is satisfied. Proof of (RHS).2 is analogous. ,-

A primary distinction between the two-phase and single-phase methods thus far
is that the former is able to verify existence of a solution, while this has been as-
sumed for the latter. It is shown below that the conditions of Corollary 6.2 are in fact
sufficient to assert existence as well.

Theorem 6.1 Let (v,w,zLy ,zUy ) be a solution of (96)-(100) on I. Then there exists a
regular solution (x,y) of I -(1) on I×P satisfying (110) and (111) for all (t,p) ∈ I×P
and any q ∈ N.
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Proof Let A be the set of points (t̂, v̂, ŵ, ẑLy , ẑUy ) ∈ E∗H such that

H∗,L(φ(t̂, v̂, ŵ, ẑLy , ẑUy )) > ẑLy and H∗,U(φ(t̂, v̂, ŵ, ẑLy , ẑUy )) < ẑUy . (116)

By Theorem (6.1), A is open. Furthermore, A ⊃ Aφ, where Aφ is the image of I under
φ(·,v(·),w(·),zLy (·),zUy (·)) because (v,w,zLy ,zUy ) satisfy (98)-(99). Because Aφ is com-
pact, ∃δ > 0 such that q ∈ Aφ and ‖q−q′‖∞ ≤ δ implies q′ ∈ A. As a special case, this
implies that (116) holds with (t̂, v̂, ŵ, ẑLy , ẑUy ) = (t,v(t)− 1δ,w(t)+ 1δ,zLy (t),zUy (t)) for
every t ∈ I. Arguing as in Corollary 6.2, this implies that Hypothesis I -5.1 is satisfied
with [v(t)−1δ,w(t)+1δ] in place of [v(t),w(t)].

Define

Vδ ≡ {(t,p,zx) ∈ I×P×Dx : zx ∈ [v(t)−1δ,w(t)+1δ]}. (117)

By Lemma I -5.4, ∃Hδ ∈C1(Vδ,Dy) such that, for every (t,p,zx) ∈ Vδ, zy =Hδ(t,p,zx)
is an element of Z′y(t) and satisfies g(t,p,zx,zy)= 0 uniquely among elements of Zy(t).

Now consider the system of ODEs

ẋ(t,p) = f(t,p,x(t,p),Hδ(t,p,x(t,p))), x(t0,p) = x0(p). (118)

By the definition of C1 functions (see §I -2), the right-hand side above is defined and
C1 on an open set Ṽ ⊃ Vδ. Fixing any p ∈ P, it follows that there exists a unique
solution of (118), x(·,p) ∈ C1([t0, t̃],Dx), for some sufficiently small t̃ ∈ (t0, t f ] (see
[8], Ch. II, Thm. 1.1). Furthermore, this solution can be extended to a maximal in-
terval of existence [t0, t∗) such that (t,p,x(t,p))→ ∂Ṽ as t→ t∗ (see [8], Ch. II, Thm.
3.1). Formally, this means that, for any compact Ω ⊂ Ṽ , there exists t̂ ∈ (t0, t∗) with
(t̂,p,x(t̂,p)) " Ω.

Note that Vδ is compact and suppose that t∗ ≤ t f . Then, since (t0,p,x0(p)) ∈ Vδ,
continuity ensures that ∃t′ ∈ (t0, t f ) with (t,p,x(t,p)) ∈ Vδ, ∀t ∈ [t0, t′], and x(t′,p) "
[v(t′),w(t′)]. Define y(t,p)≡Hδ(t,p,x(t,p)), ∀t ∈ [t0, t′]. It follows from the properties
of Hδ on Vδ that (x,y) is a solution of I -(1) on [t0, t′]× {p}. It further follows that
y(t,p) ∈ Zy(t), ∀t ∈ [t0, t′]. Then, Conclusion 3 of Corollary I -4.1 shows that this
solution is regular. By Corollary 6.2, this implies that x(t′,p) ∈ [v(t′),w(t′)], which is
a contradiction. Therefore, t∗ > t f .

Since p ∈ P was arbitrary, the previous construction defines (x,y) ∈C1(I×P,Dx×
Dy), which is C1 because f andHδ are. Arguing as above, this is a regular solution of
I -(1) on I ×P and satisfies (110) and (111) for all (t,p) ∈ I×P and any q ∈ N. ,-

In light of Theorem 6.1, the single-phase bounding method is simply to solve
the DAEs (96)-(100). Provided that numerical error is not a critical concern, this can
be done using any state-of-the-art DAE solver. In the case studies in §7 we use IDA
[9] with absolute and relative tolerances of 10−5. Furthermore, we choose K = 4 and
γ(t) = 10−4, ∀t ∈ I. In addition to the function evaluators, IDA is provided with an
additional routine to compute the system Jacobian. This is done using the forward
mode AD scheme discussed in §4, with the exception that the contribution to the
Jacobian owing to the dependence of C on (v,w,zLy ,zUy ) is ignored.
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Table 1 Computational complexity of evaluating the right-hand sides of (96)-(99). The left portion shows
the sequence of computations, from top to bottom, using the definitions (87)-(95). The right portion shows
the complexity of evaluating each function on the left, assuming that values for all previous computations
(i.e. all quantities directly above the function on the left portion of the table) are given. For functions with
subscript i, the tabulated complexities are for all i = 1, . . . ,nx evaluations.

η nx +ny
C mn2y +n3y

φ φLi φUi 1 nx nx
H∗ ◦φ YL

i YUi mn2y +n3y nxK
(
mn2y +n3y

)
nxK
(
mn2y +n3y

)

ψLi ψUi 0 0
[ fi]L ◦ψLi [ fi]U ◦ψUi nxm nxm

6.1 Computational complexity of the single-phase and two-phase methods

Suppose that the cost of evaluating any of the functions [ fi], [g j] or [
∂g j
∂yk
] is O(m),

where m can be interpreted as the number of bits required to store the longest code
list describing one of these functions. Then complexity of a single evaluation of the
right-hand sides of (96)-(99) is O

(
nxK
(
mn2y +n3y

))
. The contributions to this figure

are described in Table 1. From the table, it can be seen that the cost of a right-hand
side evaluation is dominated by the evaluation of YL/U

i and hence H+,K. The com-
plexity of this step derives from the O(mn2y) evaluation of [

∂g
∂y ] and the O(n

3
y) mul-

tiplication C[ ∂g∂y ]. In addition to right-hand side evaluations, numerical integration
of (96)-(100) will require O((nx+ ny)3) operations due to matrix factorization in the
corrector iteration.

The complexity of the two-phase method is the same as that of the single-phase
method. By a similar analysis, evaluation of the right-hand sides of (58) and (59) is
O
(
nxK
(
mn2y +n3y

))
, while numerical integration requires O

(
n3x
)
operations. Phase 1

is dominated by Step 4 of Algorithm 2, which requires the O((ny+nx)3) factorization
of J̃. In practice, we find that the single-phase method is significantly more efficient
than the two-phase method (see §7).

Table 1 suggests some target areas for efficiency gains in the single-phasemethod,
and similar considerations also apply to the two-phase method. An approach that re-
moves a factor of nx from the entries in the last two columns of the fourth row is to
replace each YL

i and Y
U
i by Y(t,v,w) ≡ H

+,K(φ(t,v,w)). It is not difficult to show
that Corollary 6.2 remains true, and because Y is used for all i, H+,K only needs to
be evaluated once in order to compute the right-hand sides of the entire system. How-
ever, the resulting bounds are weaker, and our experience suggests that the original
implementation is well worth the effort. Another approach is to eliminate the n3y terms
in the second and fourth rows of Table 1 by using a different preconditioning scheme
and/or exploiting sparsity of ∂g/∂y. For larger systems, this will become important
not only for efficiency, but also because computing C by direct matrix inversion will
become numerically unstable. We leave these considerations for future work.
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7 Case Studies

The computations presented in this section were performed on a Dell Precision T3400
workstation with a 2.83 GHz Intel Core2 Quad CPU. All experiments had one core
and 512 MB of memory dedicated to the job. All interval computations and differen-
tiation of interval equations was done using an in house C++ library based on operator
overloading.

7.1 Example 1: A simple DAE with a singularity

Consider the semi-explicit DAEs

ẋ(t, p) = −px(t, p)−0.1y(t, p), (119)

0 = y(t, p)− sin (p)
√
y(t, p)

−25x(t, p),

with initial condition x0 = 1 at t0 = 0 and p ∈ P ≡ [0.5,4.0]. We note that the solu-
tions y(t,p) approach 0 for all p ∈ P (Figure 2). Since the algebraic equation is not
defined at y = 0, this poses an interesting challenge for bounding because even slight
conservatism in the bounds for y will eventually enclose 0 and cause the methods to
fail.

The results of applying the two proposed bounding approaches are shown in Fig-
ures 1 and 2. Note that the refined time-varying bounds computed in Phase 2 of the
two-phase method are not shown because they are indistinguishable from those com-
puted by the single-phase method (scrutiny shows that the latter are slightly sharper).
The bounds produced by both methods are very sharp until roughly t = 0.25, where
some slight overestimation becomes apparent. Computational times and other perfor-
mace statistics are shown in Table 3 for various values of t f (see also Table 2).

With t f = 0.25, neither method has any significant difficulty and both produce
bounds very efficiently. As t f is increased to 0.30 and 0.33, the effort required of both
methods increases significantly, with the increase for the two-phase method being
more pronounced. For both methods, failure occurs around t = 0.3313 and bounds
cannot be propagated further. For the single-phase method, IDA terminates after the
corrector iteration fails to converge with minimum step size. Similarly for the two-
phase method, repeated failures in Step 4 of Algorithm 2 cause the time step to be
reduced below H MIN (via Step 6). Indeed, the time steps taken by Algorithm 1 are
evident from the staircase structure of the Phase 1 bounds in Figures 1 and 2, and are
seen to shrink dramatically as t approaches 0.3313.

The ultimate cause of failure is that the inclusion (22), and analogously the equa-
tions (98)-(99), becomes difficult to satisfy. For the two-phase approach, the statistic
STP in Table 3 shows that the relative number of failed time steps is increasing with
increasing final time. These correspond to failures in Step 4 of Algorithm 2, which
are split evenly between cases (a) and (b), with (b) occurring because 0 ∈!(zLy ,zUy ) for
some iterate. In the single-phase approach, the corrector iteration in IDA encounters
the same problems. Table 3 shows disproportionate increases in both the number of
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Table 2 Definition of algorithm statistics presented in Tables 3 and 4.

CPU(s) Both methods: Computational time for the complete bounding algorithm.
Ph1(s) Two-phase method: Time spent in Phase 1 (Step 3 of Algorithm 1 as in §4).
Ph2(s) Two-phase method: Time spent in Phase 2 (Step 6 of Algorithm 1 as in §5).
STP Two-phase method: Number of time steps taken by Algorithm 1 over the number

of attempted steps (the difference is the number of visits to Step 6 in Algorithm
2). Single-phase method: Number of times steps required by IDA [9] to solve
(96)-(100).

CRI Single-phase method: Cumulative number of corrector iterations during solution
of (96)-(100) by IDA [9].

Table 3 Algorithm statistics for Example 1. Columns represents single experiments, which vary in the
specified value of t f .

t f 0.25 0.30 0.33
Two-Phase Method Statistics

CPU(s) 0.0026 0.0055 0.0500
Ph1(s) 0.0007 0.0020 0.0280
Ph2(s) 0.0019 0.0034 0.0212
STP 4/5 11/25 100/214
Single-Phase Method Statistics

CPU(s) 0.0020 0.0024 0.0089
STP 40 45 84
CRI 58 73 268

time steps and the number of corrector iterations required by IDA as t f is increased,
indicating that the solver is having trouble satisfying (98)-(99). Despite their even-
tual failures, both methods produce bounds over a longer time horizon than any other
approaches tried (see Remark 4.1).

On the whole, the two bounding methods fail at nearly the same time and pro-
duce nearly identical bounds where they are successful. In cases where the two-phase
method reaches the final time with few, large time steps, the CPU time is nearly equiv-
alent to that of the single phase method. On the other hand, the single-phase method
is significantly faster in the difficult experiments where t f approaches the failure time
of 0.3313.

7.2 Example 2: Simple distillation

Consider the simple distillation of a Benzene/ Toluene mixture. Following the anal-
ysis in [3], this process can be described by the system of semi-explicit index-one
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Fig. 1 Solutions x(t, p) of (119) for 16 values of p ∈ [0.5,4.0] (solid curves), along with bounds from the
single-phase method (circles) and bounds from Phase 1 of the two-phase method (crosses). Bounds from
Phase 2 of the two-phase method are indistinguishable from the single-phase bounds and are not shown.
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Fig. 2 Solutions y(t, p) of (119) for 16 values of p ∈ [0.5,4.0] (solid curves), along with bounds from the
single-phase method (circles) and bounds from Phase 1 of the two-phase method (crosses). Bounds from
Phase 2 of the two-phase method are indistinguishable from the single-phase bounds and are not shown.

DAEs
dφB
dξ
= φB−ψB, (120)

0 = φB+φT−1,
0 = ψB+ψT−1,
0 = PψB−PsatB (T )φB,
0 = PψT−PsatT (T )φT,
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where the subscripts B and T denote Benzene and Toluene, respectively, φ is a liquid
phase mole fraction, ψ is a vapor phase mole fraction, T denotes temperature, P de-
notes pressure, and the vapor pressures PsatB (T ) and P

sat
T (T ) are given by the Antoine

expression

log10Psati (T ) = Ai −
Bi

T +Ci
, i ∈ {B,T}. (121)

The independent variable ξ is a dimensionless warped time (see [3]). The last two
equations in (120) are derived assuming that Benzene/ Toluene is an ideal mixture.
Nominal values of the Antoine coefficients in (121) are given for temperature in
degrees C and pressures in mm HG in [4] as: AB = 6.87987, BB = 1196.76, CB =
219.161, AT = 6.95087, BT = 1342.31 and CT = 219.187. With P = 759.81 mm Hg
constant, we consider bounding the solutions of (120), x= φB and y = (φT,ψB,ψT,T ),
over the interval ξ ∈ [0,6], while considering various combinations of the Antoine co-
efficients as uncertain parameters. Computational times and algorithm statistics are
presented in Table 4, where the first row indicates the Antoine coefficients which are
considered to be uncertain, and the second row describes the interval P as a percent
deviation around the nominal values of these coefficients. Though the uncertainty
ranges considered may seem small, they describe a wide range of solution behavior
because the corresponding parameters appear inside of an exponential in the model
equations. Indeed, within a 6% deviation from the nominal value of AB alone, the
most volatile component can switch from Benzene to Toluene.

In the case where p = (AB,BB,AT,BT) and the deviation is ±0.2%, the results of
both boundingmethods are shown for φB,ψB and T in Figures 3, 4 and 5, respectively.
Again, the time-varying bounds computed in Phase 2 of the two-phase method are
not shown because they are indistinguishable from the single-phase bounds. Both
methods provide very tight bounds on φB throughout the ξ interval of interest, and
very reasonable bounds on ψB and T , with tight bounds at the beginning and end of
the integration time.

In contrast to the simple example of the previous section, Algorithm 1 is forced to
take relatively small time steps here. In Figures 3, 4 and 5, every cross plotted marks
the end of a single such step. For experiments requiringmany time steps of Algorithm
1, most are taken between ξ values of about 1.2 and 2.6. Within this interval, it is
difficult to satisfy the inclusions of Step 3 and the step must be restricted often. In
Figures 4 and 5, sharp jumps in the Phase 1 bounds can be observed at values of ξ
where a relatively large step has been achieved after a difficult period through which
the step size has been kept small. These jumps reflect the fact that wider Zx, j and Zy, j
are required to satisfy (22) and (23) over large steps. For the single-phase method,
one similarly observes that IDA takes more time steps for ξ ∈ [1.2,2.6], where it
is difficult to satisfy (98)-(99). When the parameter interval P is sufficiently wide,
neither algorithm is able to produce bounds through the difficult region between ξ =
1.2 and ξ = 2.6 (see Table 4). For example, when all six Antoine coefficients are
considered as unknown with a ±0.2% deviation, both algorithms fail near ξ = 1.53.

As in the first example, the two boundingmethods are equally robust and produce
nearly identical bounds. However, the single-phase method is faster than the two-
phase method in every experiment, with a factor varying between 3.5 to 7.



30 Joseph K. Scott, Paul I. Barton

Table 4 Algorithm statistics for Example 2. Each column represents a single experiment. The first row
indicates the model parameters considered as uncertain, and the second row indicates the percent deviation
considered around the nominal parameter values. The symbol † indicates that the algorithm terminated
unsuccessfully before ξ = 6.0.

[AB BT] [AB BB AT BT] [AB BB CB AT BT CT]
±0.2% ±0.4% ±0.2% ±0.3%† ±0.1% ±0.2%†

ξ 6.0 6.0 6.0 1.090 6.0 1.534
Two-Phase Method Statistics

CPU(s) 0.073 0.1610 0.1637 0.24 0.0929 0.22
Ph1(s) 0.0315 0.0746 0.0800 0.16 0.0413 0.15
Ph2(s) 0.0412 0.0862 0.0835 0.08 0.0516 0.07
STP 44/88 93/187 96/193 100/214 55/110 100/209

Single-Phase Method Statistics
CPU(s) 0.0204 0.0229 0.0241 0.06 0.0185 0.06
STP 77 83 103 89 77 91
CRI 110 132 160 259 103 244
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Fig. 3 Solutions φB(ξ,p) of (120) for p = (AB,BB,AT,BT) uniformly sampled within a ±0.2% deviation
from nominal values (solid curves), along with bounds from the single-phase method (circles) and bounds
from Phase 1 of the two-phase method (crosses). Bounds from Phase 2 of the two-phase method are
indistinguishable from the single-phase bounds and are not shown.

8 Conclusions and Future Work

Two methods have been proposed for computing interval bounds on the solutions
of semi-explicit index-one DAEs over a range of initial conditions and problem pa-
rameters. The first method is a two-phase approach using an interval existence and
uniqueness test in Phase 1 and a refinement procedure based on differential inequali-
ties in Phase 2. Efficient implementations for both phases were presented using inter-
val computations and a state-of-the-art ODE solver. The second method combines the
two phases of the first method and requires numerical solution of a system of semi-
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Fig. 4 Solutions ψB(ξ,p) of (120) for p = (AB,BB,AT,BT) uniformly sampled within a ±0.2% deviation
from nominal values (solid curves), along with bounds from the single-phase method (circles) and bounds
from Phase 1 of the two-phase method (crosses). Bounds from Phase 2 of the two-phase method are
indistinguishable from the single-phase bounds and are not shown.

explicit DAEs. Two case studies were considered, demonstrating that both methods
produce sharp bounds very efficiently, with the single-phase method being consis-
tently faster.

Several potential improvements to the presented algorithms remain to be ex-
plored. In the case of ODEs, it has been shown that problem specific physical in-
formation can often be incorporated into bounding methods based on differential in-
equalities to achieve significantly sharper bounds [18,19]. The use of such informa-
tion is being explored for sharpening the results in Theorems I -4.2, I -5.1, I -5.2 and
I -5.3. In addition to interval bounds, methods have been developed for ODEs which
provide nonlinear convex and concave (with respect to parameters p) bounds on the
ODE solutions, pointwise in the independent variable [20]. Bounds of this type are
often sharper than interval bounds and are more appropriate for certain applications,
such as global dynamic optimization. Extending these methods to semi-explicit DAEs
is currently under investigation. Finally, extensions to fully-implicit and high-index
DAEs are being pursued.
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