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Abstract: Generalized power sums are linear combinations of ith powers of coordi-
nates. We consider subalgebras of the polynomial algebra generated by generalized
power sums, and study when such algebras are Cohen–Macaulay. It turns out that the
Cohen–Macaulay property of such algebras is rare, and tends to be related to quan-
tum integrability and representation theory of Cherednik algebras. Using representa-
tion theoretic results and deformation theory, we establish Cohen–Macaulayness of the
algebra of q, t-deformed power sums defined by Sergeev and Veselov, and of some
generalizations of this algebra, proving a conjecture of Brookner, Corwin, Etingof, and
Sam. We also apply representation-theoretic techniques to studying m-quasi-invariants
of deformed Calogero–Moser systems. In an appendix to this paper, M. Feigin uses
representation theory of Cherednik algebras to compute Hilbert series for such quasi-
invariants, and show that in the case of one light particle, the ring of quasi-invariants is
Gorenstein.

1. Introduction

The Cohen–Macaulay (shortly, CM) property is an important homological property of
rings (see [Eis], Chapter 18). For the algebra of functions on an affine algebraic variety
X , the CM property means, roughly, that the singularities of X are “not too wild”.
While this property has many powerful applications, it is rarely satisfied for singularities
occurring in a “random” manner, and even when satisfied, it is often hard to prove. On
the other hand, it was discovered by Feigin and Veselov that interesting examples of
CM algebras arise in the theory of integrable systems, as algebras of quantum integrals
of algebraically integrable quantum systems, or algebras of quasiinvariants [FV1]. In
these cases, the CM property may be established by using the representation theory
of rational Cherednik algebras [BEG]. These results were generalized in [EGL,BCES]
using the theory ofminimal supportmodules over rational Cherednik algebras developed
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in [EGL]; namely, this theory allows one to prove theCMproperty of certain Sn-invariant
subspace arrangements. Also, in [BCES] the CM property is studied for general Sn-
invariant subspace arrangements in C

n defined by equalities between coordinates. In
this paper, we continue this line of work.

Namely, let ai j , i ≥ 1, 1 ≤ j ≤ N , be nonzero complex numbers. Let

Qi (x1, . . . , xN ) =
N∑

j=1

ai j x
i
j .

We call the functions Qi generalized power sums. Let A be the algebra generated by
Qi , i ≥ 1 inside C[x1, . . . , xN ]. For generic ai j , this algebra is finitely generated. The
main question studied in this paper is when the algebra A is CM. Specifically, following
[BCES], for various collections of positive integers (r1, . . . , rk) with

∑
ri = N , we

study the CM property of algebras of generalized power sums with symmetry type
(r1, . . . , rk) (i.e., symmetric in the first r1 variables, the next r2 variables, etc.).

In Sect. 2, we study the simplest nontrivial case – type (1, 1). In this case, by renor-
malizing Qi , we can assume that ai1 = ai and ai2 = 1, so Qi = ai yi + zi . We show

that if a1, a2, a3 are generic, then A is CM if and only if ai = ci q
i−1
1−t i

for some numbers
c, q, t ∈ C.

In Sect. 3, we extend this analysis to the case of type (r, s). Namely, we show that A

is CM if ai = ci q
i−1
1−t i

, i.e., after rescaling the variables y j ,

Qi = qi − 1

1 − t i
(
yi1 + · · · + yir

)
+

(
zi1 + · · · + zis

)

In this case, the algebra A is the algebra of q, t-deformed Newton sums introduced
by Sergeev and Veselov in [SV2]. If t = q−n , where n is a positive integer, this is a
subalgebra of the algebra of quantum integrals of the deformedMacdonald–Ruijsenaars
system. Our proof of the CM property of this algebra is based on degeneration to the
classical case,

Qi = a
(
yi1 + · · · + yir

)
+

(
zi1 + · · · + zis

)

(obtained by setting q = t−a and tending t to 1) where the CM property is established
in [BCES] based on the methods of [EGL] (namely, the representation theory of rational
Cherednik algebras with minimal support).

In Sect. 4, we study the case of type (1, r, s). We show that in this case the CM
property occurs generically for the generalized power sums

qi − t i

1 − t i
xi +

qi − 1

1 − t i
(
yi1 + · · · + yir

)
+

(
zi1 + · · · + zis

)
.

and their degenerations

(
a + 1

)
xi + a

(
yi1 + · · · + yir

)
+

(
zi1 + · · · + zis

)

(again obtained by setting q = t−a , t → 1). Namely, we prove this by reduction to type
(r + 1, s + 1). For r = 1, this confirms the first statement of Conjecture 7.4 in [BCES].
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We also show that in all of the above cases, the CM algebras A can be defined by
quasi-invariance conditions on hyperplanes. In the case (1, r, s), these quasi-invariance
conditions appear to be new.

In Sect. 5 we use a similar method to the one of Sect. 4 to prove that for any m ≥ 1,
n ≥ 3, the union of Smn-translates of the subspace

x1 = · · · = x2m, x2m+1 = · · · = x3m, . . . , x(n−1)m+1 = · · · = xnm

(i.e., one group of 2m equal coordinates and n − 2 groups of m equal coordinates) is
CM. This is done by reducing to the case of n m-tuples of equal coordinates, where the
result is proved using representations of rational Cherednik algebras in [EGL].

In Sect. 6, we apply the theory of representations of the rational Cherednik algebra
of minimal support to m-quasi-invariants considered in [FV1,FV2].

In the Appendix, Feigin uses this approach to prove a conjecture from [FV2] that the
algebra of m-quasi-invariants in the case of one light particle (s = 1) is Gorenstein.

In particular, this paper explains all the instances of CM algebras found experimen-
tally in [BCES], and confirms the philosophy (originating from [FV1] and developed
further in [BEG]) that the CM property of algebras of this type should be rare, and,
whenever it occurs, should be related to quasi-invariance conditions on hyperplanes,
quantum integrable systems, and ultimately to representation theory. In fact, the proofs
of the CM property in all the multivariate cases in this paper are ultimately based on the
representation theory of Cherednik algebras.1

2. Type (1, 1)

2.1. The algebra �a. Let a = (a1, a2, ...) be a sequence of nonzero complex numbers.
Let �a be the subalgebra of C[y, z] generated by the polynomials Qi,ai , i ≥ 1, where

Qi,a := ayi + zi .

(When no confusion is possible, we will denote Qi,ai simply by Qi .)
We will be interested in the question when the algebra �a is CM. Note that by

renormalizing y, we may replace ai by ai/ai1, and thus assume that a1 = 1.

2.2. Commutative algebra preliminaries and auxiliary lemmas. Recall first that if
p1, . . . , pn are homogeneous polynomials in x1, . . . , xn of positive degrees then
C[p1, . . . , pn] is module-finite overC[x1, . . . , xn] if and only if the system of equations
p1(x) = 0, . . . , pn(x) = 0 has only the zero solution. Indeed, since pi are homoge-
neous, by the Nakayama Lemmamodule finiteness is equivalent to the condition that the
algebra C[x1, . . . , xn]/(p1, . . . , pn) is finite dimensional. This condition is equivalent
to the zero set of p1, . . . , pn being finite. But this set is invariant under dilations, so it is
finite iff it consists only of the origin.

We also recall basics on Cohen–Macaulay algebras, see [Eis], Chapter 18. Let R
be a finitely generated C-algebra. By the Noether normalization lemma, there exist al-
gebraically independent z1, . . . , zn ∈ R such that R is module-finite overC[z1, . . . , zn].

1 We note, however, that we do not know a direct relation of the CM algebras of Sect. 4 to integrable
systems or representation theory. It would be interesting to find such a relation.
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The algebra R is called Cohen–Macaulay if R is a locally freemodule overC[z1, . . . , zn].2
By Serre’s theorem, if this property holds for some choice of z1, . . . , zn , then it holds
for any such choice.

In addition, we need a few auxiliary lemmas.

Lemma 2.1. If a2 + a21 �= 0 then the algebra �a is finitely generated as a module over
the polynomial algebra C[Q1, Q2] (in particular, as an algebra).

Proof. Wemay assume that a1 = 1. It suffices to show that the equations Q1(y, z) = 0,
Q2(y, z) = 0, i.e.

y + z = 0, a2y
2 + z2 = 0

have only the zero solution (then the entire polynomial algebra C[y, z] is module-finite
over C[Q1, Q2], so �a is as well, by the Hilbert basis theorem). From the first equation
we get z = −y, and substituting this into the second one, we get (a2 + 1)y2 = 0. Since
a2 �= −1, we have y = z = 0. ��

Lemma 2.2. Let a2 �= −a21 , and (a2, a3) �= (a21 , a
3
1). Let M ⊂ �a be the submodule

overC[Q1, Q2] generated by 1 and Q3. Then M is free of rank 2, so its Hilbert series is

h(u) = 1 + u3

(1 − u)(1 − u2)
.

Proof. We may assume that a1 = 1. First, we claim that Q3 /∈ C[Q1, Q2]. Assume the
contrary, that Q3 = αQ3

1 + βQ1Q2. Then from comparing coefficients we have

α + βa2 = a3, 3α + βa2 = 0, α + β = 1, 3α + β = 0,

which implies that (a2, a3) = (1, 1), a contradiction.
Since by Lemma 2.1, �a is a finitely generated C[Q1, Q2]-module, this implies that

Q3 /∈ C(Q1, Q2) (as Q3 is integral overC[Q1, Q2] andC[Q1, Q2] is integrally closed).
Thus, the module M is indeed free with the stated Hilbert series. ��

Now suppose that the assumptions of Lemma 2.2 are satisfied. The rank of �a over
C[Q1, Q2] is 2, since the system of equations Q1 = c1, Q2 = c2 has two solutions for
generic c1, c2 ∈ C. Thus, �a is CM if and only if it coincides with M . Hence, since

1
(1−u)2

− h(u) = u
1−u , we obtain the following lemma.

Lemma 2.3. Under the assumptions of Lemma 2.2, the CM property of�a is equivalent
to saying that the codimension of �a[i] in homogeneous polynomials of degree i is 1 for
each i ≥ 1.

Note that this codimension is clearly at most 1.

2 By the Quillen–Suslin theorem, any locally free finitely generated module over a polynomial algebra is
free, but this is not important for us here.
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2.3. The CM property of �a. Let q, t be not roots of unity, t �= q, q−1, and c �= 0.

Theorem 2.4. (i) If ai = ci q
i−1
1−t i

for i ≥ 1 then the algebra �a is CM with Hilbert
series h(u).

(ii) Let a be any sequence of nonzero numbers, and c, q, t be such that ai = ci q
i−1
1−t i

for

i = 1, 2, 3. Assume that q, t are not roots of unity, and t �= q, q−1. If �a is CM,

then ai = ci q
i−1
1−t i

for all i ≥ 1.

(iii) Let ai = cia, where a �= ±1. Then the algebra �a is CM with Hilbert series h(u).
(iv) If ai = cia with a �= ±1 for i = 1, 2, 3, and if �a is CM, then ai = cia for all

i ≥ 1.

Remark 2.5. It is easy to show that for generic a1, a2, a3 the equations

ai = ci
qi − 1

1 − t i
, i = 1, 2, 3

lead to a quadratic equation, and thus have two solutions (c, q, t), related by the Galois
symmetry (c, q, t) → (cqt−1, q−1, t−1). In particular, for generic a1, a2, a3 a solution
(c, q, t) exists, and Theorem 2.4(ii) applies.

Proof. By renormalizing y, we may assume without loss of generality that c = 1. Let
us make this assumption.
(i) Any element f ∈ �a satisfies the quasi-invariance condition

f (t x, qx) = f (x, x).

Indeed, this condition is satisfied for each generator Qi , and if it is satisfied for f and g
then it is satisfied for f g. This gives a codimension 1 subspace inC[y, z][i] for all i ≥ 1
(since the function zi does not satisfy this condition, as t is not a root of unity). So by
Lemma 2.3, the result holds under the assumptions of Lemma 2.2. In terms of q and t ,
these assumptions turn into the conditions that qt �= 1 and q �= t , so they are satisfied.
(iii) is a limiting case of (i) (for q = t−a and t → 1), so in this case f ∈ �a satisfies
the limiting quasi-invariance condition

((a∂2 − ∂1) f )(x, x) = 0,

giving a codimension 1 condition in each positive degree. The assumptions of Lemma
2.2 in this case turn into the conditions a �= ±1, so they are satisfied, and Lemma 2.3
implies the statement.
(ii) Let i ≥ 4. By Lemma 2.2, homogeneous polynomials of degree i in Q1, Q2, Q3
(linear in Q3) span a subspace of codimension 1 in C[y, z][i] — the space of solutions
of the quasi-invariance equation f (t x, qx) = f (x, x). So Qi must also satisfy this

condition. Thus, t i ai + qi = ai + 1, i.e., ai = qi−1
1−t i

, as desired.
(iv) The proof is similar to (ii), except that we use the limiting quasi-invariance condition
((a∂2 − ∂1) f )(x, x) = 0. ��
Remark 2.6. In spite of Theorem 2.4, there exist infinite-parameter families of sequences
a for which �a is CM. For instance, if q and t are primitive nth roots of unity with
t �= q, q−1, then for any sequence with ai = ci (qi −1)/(1− t i )when i is not a multiple
of n, the corresponding �a is CM. Indeed, in that case, the algebra generated by Q1,
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Q2, Q3 is determined by the same (codimension 1) quasi-invariance condition as in the
generic case, but since both xmn and ymn are quasi-invariant, any linear combination of
them is contained in the algebra. (Note that in this case �a does not actually depend on
an, a2n, ...).

3. Type (r, s)

3.1. Finite generation. First let us prove a general result on finite generation (which is
fairly standard, see e.g. [SV2], Theorem 5.1). Let ai j , i ≥ 1, 1 ≤ j ≤ N , be nonzero
complex numbers. Let Qi (x1, . . . , xN ) = ∑N

j=1 ai j x
i
j . Let A be the algebra generated

by Qi , i ≥ 1 inside C[x1, . . . , xN ].
Proposition 3.1. A is finitely generated if and only if the system of equations

Qi
(
x1, . . . , xN

) = 0, i ≥ 1 (1)

has only the zero solution.

Proof. Suppose the system (1) has only the zero solution. By the Hilbert basis theorem,
there is k ≥ 1 such that this is true already for the first k equations. Then C[x1, . . . , xN ]
is a finitely generated module over C[Q1, . . . , Qk], and hence, by the Hilbert basis
theorem, so is A. Thus, A is finitely generated as an algebra.

Conversely, suppose (1) has a nonzero solution (x∗
1 , . . . , x

∗
N ). Without loss of gen-

erality we can assume that x∗
1 �= 0. Let x1 = yx∗

1 and xi = zx∗
i for i ≥ 2, where y, z

are new variables. Then Qi specialize to Q∗
i (y, z) = ai1x∗i

1 (yi − zi ). So we just need
to show that the algebra generated by the polynomials fi (y, z) := yi − zi is not finitely
generated. But this is easy and well known (see e.g. [BCES], Remark 2.7(3)). ��

3.2. The algebra �r,s,a and its CM properties. Now let r, s ≥ 1 be integers, and

Qr,s,i,a
(
y1, . . . , yr , z1, . . . , zs

) := a
(
yi1 + · · · + yir

)
+ zi1 + · · · + zis .

Let a = (a1, a2, ...) be a sequence of nonzero complex numbers, and �r,s,a be the
subalgebra of C[y1, . . . , yr , z1, . . . , zs] generated by Qr,s,i,ai for all i ≥ 1. When no
confusion is possible, we will denote Qr,s,i,ai simply by Qi .

By Proposition 3.1, �r,s,a is finitely generated if and only if the system

ai
(
yi1 + · · · + yir

)
+ zi1 + · · · + zis = 0, i ≥ 1 (2)

has only the zero solution. If r = 1, this implies that the algebra is infinitely generated
iff ai = −(β i

1 + · · ·+β i
s) for some β1, . . . , βs ∈ C, and a similar statement holds for a−1

i
for s = 1. However, if r, s ≥ 2, the set of sequences violating finite generation is infinite
dimensional. For example, taking y1 = 1, y2 = −1, z1 = 1, z2 = −1, and the rest of
y j , zl to be zero, we get that the sequence with ai = −1 for even i and ai arbitrary for
odd i violates finite generation.

We would like to know when �r,s,a is CM. Note that as before, we may assume that
a1 = 1 (or any other nonzero constant) by renormalizing yi .

Our first result is the following theorem.

Let c �= 0, q, t be not roots of unity, and ai = ci q
i−1
1−t i

. For c = t , this is the algebra
of q, t-deformed Newton sums (see [SV2], Sect. 5).
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Theorem 3.2. (i) ([SV2], Theorem 5.1) �r,s,a is finitely generated if and only if
qm �= tn for integers 1 ≤ m ≤ r, 1 ≤ n ≤ s.

(ii) If q, t are Weil generic (i.e., outside of a countable union of curves) then �r,s,a is
CM with Hilbert series

hr,s(u) = 1

(u, u)r

s∑

i=0

ui(r+1)

(u, u)i
.

where (u, u)m := (1 − u) . . . (1 − um).

Note that Theorem 3.2 is a generalization (or, more precisely, a deformation) of the
following theorem.

Let �r,s,a be the algebra corresponding to the sequence ai = a.

Theorem 3.3. ([SV1], Theorem 5) �r,s,a is finitely generated if and only if a �= −n/m
for integers 1 ≤ m ≤ r, 1 ≤ n ≤ s.

(ii)([BCES], Theorem 4.4) For generic a the algebra�r,s,a is CMwith Hilbert series
hr,s(u).

Remark 3.4. 1. By analogy with Conjecture 4.8 of [BCES], we expect that the excep-
tional set for Theorem 3.2(ii) is qm = t±n , where 1 ≤ m ≤ r , 1 ≤ n ≤ s (assuming
q, t �= 0 and are not roots of unity).

2. The formula for the Hilbert series in Theorem 3.3(ii) is given in [SV1] and in the
q, t-case in [SV2].

Proof. Without loss of generality, we may assume that c = 1.
(i) This is proved in [SV2], but we reproduce the proof for reader’s convenience.

Consider the system of equations Qi = 0, i ≥ 1. It can be written as

r∑

j=1

(qy j )
i +

s∑

l=1

zil =
r∑

j=1

yij +
s∑

l=1

(t zl)
i . (3)

Suppose that this system has a nontrivial solution. Let m be the number of nonzero
coordinates y j and n be the number of nonzero coordinates zl in this solution. Since (3)
holds for each i , each nonzero term on the LHS must equal some nonzero term on the
RHS. By taking products, this implies that qm = tn . Note thatm, n > 0 sincem +n > 0
and q, t are not roots of 1. Conversely, suppose qm = tn . If q = t = 0, then (3) has a
nonzero solution y1 = z1 = 1, y j = zl = 0 for j, l ≥ 2. If q, t are not both zero, then
taking y1 = tn, y2 = tnq, . . . , yn = tnqm−1, z1 = qmtn−1, . . . , zn−1 = qmt, zn = qm ,
and the rest of y j and zl to be zero, we also obtain a nontrivial solution. Thus, the result
follows from Proposition 3.1.

(ii) Let q = t−a and t → 1. Then �r,s,a degenerates to �r,s,a . By Theorem 3.3(ii),
for generic a, the algebra �r,s,a is a free module of finite rank over C[Q1, . . . , Qr+s],
with Hilbert series hr,s(u). Thus, our job is to show that for Weil generic q, t , the Hilbert
series of �r,s,a is dominated by hr,s(u) coefficientwise (this will imply that it actually
equals to hr,s(u)).

This is proved in [SV2], Sect. 5, and we reproduce the proof for reader’s convenience.
Let � be the ring of symmetric functions, and define a surjective homomorphism φ :
� → �r,s,a givenby the formulaφ(pi ) = Qi ,where pi are the power sums.ByTheorem
5.6 of [SV2], for generic q, t , Kerφ has a basis consisting ofMacdonald polynomials Pλ,
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where λ is a Young diagram that does not fit into the fat (r, s)-hook (i.e., λr+1 > s), while
�r,s,a has a basis formed by Pλ(q, t) for λ fitting into the (r, s)-hook (i.e., λr+1 ≤ s),
with the Hilbert series hr,s(u). This means that the kernel does not shrink as we deform
the limiting case to Weil generic q, t , as desired. ��

If ai = qi−1
1−t i

, we will denote the algebra �r,s,a by �r,s,q,t .

3.3. The quasi-invariance conditions. Belowwewill use the following proposition, due
to Sergeev and Veselov.

Proposition 3.5. (i) ([SV2]) If q, t ∈ C
× are not roots of unity, and qm �= tn for

n,m ≥ 1 then �r,s,q,t for ai = qi−1
1−t i

is the algebra of symmetric polynomials in y j and
in zl satisfying the quasi-invariance conditions

f
(
y1, . . . , t y j , . . . , yr , z1, . . . , qzl , . . . , zs

) = f
(
y1, . . . , y j , . . . , yr , z1, . . . , zl , . . . , zs

)
,

(4)

when y j = zl for all j ∈ [1, r ], l ∈ [1, s].
(ii) ([SV1]) If a is generic then �r,s,a is the algebra of symmetric polynomials in y j

and in zl satisfying the quasi-invariance conditions
((

a∂zl − ∂y j
)
f

)(
y1, . . . , y j , . . . , yr , z1, . . . , zl , . . . , zs

) = 0, (5)

when y j = zl for all j ∈ [1, r ], l ∈ [1, s].

4. Type (1, r, s)

4.1. The result. As before, let q, t ∈ C
× be not roots of unity such that q �= t . Let r, s

be positive integers. Consider the polynomials

Pr,s,i,q,t := qi − t i

1 − t i
xi +

qi − 1

1 − t i
(
yi1 + · · · + yir

)
+

(
zi1 + · · · + zis

)
.

Let Ar,s,q,t be the algebra generated by the Pr,s,i,q,t , i ≥ 1.
We will also be interested in the limiting case q = t−a , t → 1. In this limit, we get

the polynomials

Pr,s,i,a := (a + 1)xi + a
(
yi1 + · · · + yir

)
+ (zi1 + · · · + zis)

Let Ar,s,a be the algebra generated by the Pr,s,i,a , i ≥ 1.
In both cases, when no confusion is possible, we will denote the generating polyno-

mials simply by Pi .

Note that if ai = qi−1
1−t i

then the restriction of Qr+1,s+1,i,ai to the hyperplane yr+1 =
zs+1 is Pr,s,i,q,t , where x = yr+1 = zs+1. Similarly, the restriction of Qr+1,s+1,i,a is
Pr,s,i,a . Thus, we have an epimorphismφq,t : �r+1,s+1,q,t → Ar,s,q,t , which degenerates
to an epimorphism φa : �r+1,s+1,a → Ar,s,a .
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Theorem 4.1. (i) The algebra Ar,s,a is CM for generic a. Moreover, the Hilbert series
of this algebra is given by the formula

hAr,s,a (u) = h�r+1,s+1,a (u) − u2(r+1)(s+1)

(u, u)r+1(u, u)s+1
.

(ii) For Weil generic q, t , the algebra Ar,s,q,t is CM with the same Hilbert series.

In the special case r = 1, this confirms the first part of Conjecture 7.4 in [BCES].
A proof of Theorem 4.1 is given in the next subsection.

4.2. Proof of Theorem 4.1. Wewill need the following simple lemma from homological
algebra.

Lemma 4.2. Let C be a commutative algebra, I an ideal in C, and C ′ a subalgebra
of C containing I . Let B ⊂ C ′ be a subalgebra such that C,C ′,C/I are all projective
modules over B. Then so is C ′/I .

Proof. The short exact sequence

0 → C ′ → C → C/C ′ → 0

is a B-projective resolution of C/C ′, which therefore has homological dimension ≤ 1.
Since C/I is B-projective, the short exact sequence

0 → C ′/I → C/I → C/C ′ → 0

must also be a projective resolution, and thus C ′/I is projective. ��
We will apply Lemma 4.2 in the following situation:

C = C
[
y1, . . . , yr+1, z1, . . . , zs+1

]Sr+1×Ss+1, C ′ = �r+1,s+1,a, I = Kerφa .

For this, we need to prove another auxiliary lemma.

Lemma 4.3. I is an ideal in C. More precisely, I is the principal ideal generated by the
polynomial

Dr+1,s+1(y, z) :=
r+1∏

j=1

s+1∏

l=1

(
y j − zl

)2
,

and thus its Hilbert series is given by the formula

hI (u) = u2(r+1)(s+1)

(u; u)r+1(u; u)s+1
,
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Proof. By Proposition 3.5(ii), C ′ is the algebra of polynomials symmetric in y j and zl
and satisfying the quasi-invariance condition

((
a∂y j − ∂zl

)
f

)(
y1, . . . , y j , . . . , yr+1, z1, . . . , zl , . . . , zs+1

) = 0

when y j = zl for all j ∈ [1, r +1], l ∈ [1, s +1]. This implies that Dr+1,s+1C ⊂ I ⊂ C ′
(as the restriction of Dr+1,s+1 to the hyperplane yr+1 = zs+1 is zero, and any multiple
of Dr+1,s+1 satisfies the quasi-invariance condition). Also, if f ∈ I then its restriction
to the hyperplane y j = zl is zero and it satisfies the quasi-invariance condition, so
must be divisible by (y j − zl)2. Thus by symmetry f is divisible by Dr+1,s+1. Thus
f ∈ Dr+1,s+1C and Dr+1,s+1C = I . This implies all statements of the lemma. ��

Now we prove part (i) of the theorem. To apply Lemma 4.2, we will now define
B := C[Q1, . . . , Qr+s+1] (where Qi := Qr+1,s+1,i,a). Then C is clearly free over B
(of infinite rank), as it is free of finite rank over C[Q1, . . . , Qr+s+2] by Serre’s theorem
(since C is a polynomial algebra). Also, C ′ is free over B (of infinite rank), as it is free
of finite rank over C[Q1, . . . , Qr+s+2] by Theorem 3.3(ii) (since C ′ is a CM algebra).
Finally, C/I is CM (as I is a principal ideal). So to show that C/I is free over B, it
suffices to show that it is finitely generated as a module, i.e., the system of equations

Qr,s,i,a(y, z) = 0, i = 1, . . . , r + s + 1; Dr+1,s+1(y, z) = 0

has only the zero solution. By symmetry we may assume that yr+1 = zs+1, so, substitut-
ing, we get

Pi (x, y, z) = 0, i = 1, . . . , r + s + 1,

which we know has only the zero solution (see [BCES], proof of Proposition 2.6). Thus,
by Lemma 4.2, C ′/I = Ar,s,a is a free module over B. It is also a finitely generated
module. This implies that Ar,s,a is a CM algebra with the claimed Hilbert series, as
desired.

Let us now prove part (ii) of the theorem. Since the algebra Ar,s,q,t is generated by
polynomials which deform the polynomials generating Ar,s,a , it suffices to show that
the Hilbert series hAr,s,q,t (u) is dominated coefficientwise by the Hilbert series hAr,s,a (u)

(this will imply that these two series are actually the same). By Theorem 3.3(ii) and
Theorem 3.2, The Hilbert series of �r,s,q,t and �r,s,a are the same, so it suffices to
check that the Hilbert series of Kerφq,t is dominated from below by the Hilbert series
of Kerφa .

To this end, let

Dr+1,s+1,b(y, z) :=
r+1∏

j=1

s+1∏

l=1

(
y j − zl

)(
y j − bzl

)
.

Then anymultiple of Dr+1,s+1,tq−1 satisfies the quasi-invariance condition of Proposition
3.5(i), so Dr+1,s+1,tq−1C ⊂ Kerφq,t , giving the desired lower bound for theHilbert series.
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4.3. The quasi-invariant description of Ar,s,a and Ar,s,q,t . The construction of the alge-
bras Ar,s,a and Ar,s,q,t implies that they can be described by quasi-invariance conditions
on hyperplanes. Namely, we have the following result.

Proposition 4.4. (i) For Weil generic q, t the algebra Ar,s,q,t is the algebra of polyno-
mials f (x, y, z) symmetric under Sr × Ss which satisfy the following quasi-invariance
conditions:

(a) f (x; y1, . . . , yr−1, u; z1, . . . , zs−1, u) = f (u; y1, . . . , yr−1, x; z1, . . . , zs−1, x);
(b) f (x; y1, . . . , yr−1, u; z1, . . . , zs−1, u) = f (x; y1, . . . , yr−1, tu; z1, . . . , zs−1,

qu);
(c) f (x; y1, . . . , yr−1, tq−1x; z1, . . . , zs) = f (q−1x; y1, . . . , yr−1, x; z1, . . . , zs);
(d) f (x; y1, . . . , yr ; z1, . . . , zs−1, qt−1x) = f (xt−1; y1, . . . , yr ; z1, . . . , zs−1, x).
(ii)For generic a the algebra Ar,s,a is the algebra of polynomials f (x, y, z) symmetric

under Sr × Ss which satisfy the following quasi-invariance conditions:
(a) f (x; y1, . . . , yr−1, u; z1, . . . , zs−1, u) = f (u; y1, . . . , yr−1, x; z1, . . . , zs−1, x);
(b) ((∂yr − a∂zs ) f )(x; y1, . . . , yr−1, u; z1, . . . , zs−1, u) = 0;
(c) (((a + 1)∂yr − a∂x ) f )(x; y1, . . . , yr−1, x; z1, . . . , zs) = 0;
(d) (((a + 1)∂zs − ∂x ) f )(x; y1, . . . , yr ; z1, . . . , zs−1, x) = 0.

Proof. Let us prove (i). It is easy to check that conditions (a)–(d) (together with the
Sr × Ss-symmetry) are exactly the restriction of the quasi-invariance conditions of
Proposition 3.5(i) for �r+1,s+1,q,t to the hyperplane yr+1 = zs+1 (i.e., they define the
equivalence relation on points induced by restricting the relation of Proposition 3.5(i) to
this hyperplane). This implies the desired statement. The proof of (ii) is similar, using an
infinitesimal version of this argument (as the equations (a)–(d) of (ii) are the infinitesimal
versions of equations (a)–(d) of (i)). ��

5. The CM Property of Subspace Arrangements of Type (2m, m, ..., m).

In this section we will use the same method as in the previous section to prove the
following result about CM-ness of subspace arrangements, in the spirit of [BCES].
Namely, for a partition λ let Xλ be the union of subspaces inC|λ| defined by the condition
that some λ1 coordinates are the same, some other λ2 coordinates are the same, etc.

Theorem 5.1. The variety X(2m,m(r)) is CM for any r ≥ 0 and m ≥ 1.

Proof. Let n = r +2. Consider the variety Xm(n) . Recall that Xm(n) is CM ([EGL], Propo-
sition 3.11). The algebra O(Xm(n) ) can be viewed as a subalgebra of its normalization
O(X̃m(n) ), a direct sum of polynomial rings. Let Im(n) be the kernel of the morphism
O(Xm(n) ) → O(X(2m,m(n−2))), which we may again view as a module over O(X̃m(n) ).

Lemma 5.2. Im(n) is a principal ideal in O(X̃m(n) ).

Proof. A point x = (x1, x2, . . . , xmn) with x1 = · · · = xm, xm+1 = · · · = x2m, . . .

is in X(2m,m(n−2)) iff two of its m-blocks are equal, and thus a function in Im(n) must
be a multiple of the discriminant on each component in X̃m(n) . Conversely, since the
discriminant on one component vanishes on all other components, we find that any
function on X̃m(n) which is a multiple of the discriminant in each summand is actually
in Im(n) . It follows that the restriction of Im(n) to each direct summand of X̃m(n) is the
principal ideal generated by the discriminant, and thus Im(n) is itself a principal ideal. ��
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Now, if we extend a generator of Im(n) by a generic sequence of linear polynomials,
the result will be a regular sequence, as it is regular in each direct summand of O(X̃m(n) ).
Let B be the polynomial ring generated by the chosen sequence of linear polynomials.
Then (since a generic sequence of linear polynomials is a regular sequence for Xm(n) ,
and since the latter is CM) we have a chain of free B-modules:

Im(n) ⊂ O(Xm(n) ) ⊂ O(X̃m(n) ),

and thus a short exact sequence of B-modules of homological dimension 1:

0 → O(Xm(n) )/Im(n) → O(X̃m(n) )/Im(n) → O(X̃m(n) )/O(Xm(n) ) → 0

The middle term is free of finite rank since the algebra in the middle is CM (the
function algebra on a disjoint union of hypersurfaces). Thus, so is O(Xm(n) )/Im(n) =
O(X(2m,m(r))). Hence, X(2m,m(r)) is a CM variety, as desired. ��

On the basis of the results of [BCES] and this paper, as well as computer calculations,
we state the following conjecture.

Conjecture 5.3. Xλ is CM if and only if one of the following holds:
(1) λ = (m(r), 1(s)) with r ≥ 1, m > s ≥ 0;
(2) λ = (2(r), 1(s)) for r ≥ 1, s ≥ 0;
(3) λ = (2m,m(s)), m ≥ 1.

Note that the “if” part of the conjecture is known, and only the “only if” part is in
question.

6. m-Quasi-Invariants

6.1. Rational m-quasi-invariants. Let m ≥ 1, r ≥ 2, s ≥ 1 be integers. Following the
paper [FV2] (which treats the case s = 1), define the algebra �r,s(m) to be the algebra
of polynomials P ∈ C[y1, . . . , yr , z1, . . . , zs] which are symmetric in the zl , satisfy the
quasi-invariance conditions (5) for a = m, and also the m-quasi-invariance condition:

P(. . . , y j , . . . , yk, . . . , z1, . . . , zs) − P(. . . , yk, . . . , y j , . . . , z1, . . . , zs) (6)

is divisible by (y j − yk)2m+1 for 1 ≤ j < k ≤ r .

Theorem 6.1. (M. Feigin) If m > s then the algebra �r,s(m) is CM.

Proof. Consider the algebra B generated by �r,s,m and the deformed Calogero–Moser
operator L2. We claim that B is the quotient of the type A spherical rational Cherednik
algebra eH1/m(mr + s)e ([EGL], see also [F], and [BCES], Remark 4.10).

Indeed, consider the irreducible representation L1/m(C) of H1/m(n), n = mr + s.
By [EGL], Proposition 3.8, L1/m(C) is the quotient of C[x1, . . . , xn] by the ideal of
functions vanishing on the set X of points having r groups ofm coordinates in each such
that the coordinates are equal inside every group. Thus, eL1/m(C) is the ring of regular
functions on X/Sn . This ring is generated by Newton (i.e., power) sums, which in terms
of the coordinates yi (repeated m times) and z j (loose, i.e. not inside a group) have the
form m

∑
yki +

∑
zkj . These are deformed Newton sums, so eL1/m(C) = �r,s,m . Also,

it is checked in [F] that the element L2 of the rational Cherednik algebra (the sum of
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squares of the Dunkl operators) acts in terms of yi and z j as the deformed Calogero–
Moser operator L2. On the other hand, it is easy to see (by passing to underlying Poisson
algebras) that eH1/m(mr + s)e is generated by L2 and symmetric functions in xi . Thus,
the algebra generated by L2 and�r,s,m , which acts on�r,s,m , is the homomorphic image
of eH1/m(mr + s)e in End(eL1/m(C)), as desired.

It is easy to see that L2 preserves the space of polynomials satisfying (6) (a calculation
in codimension 1 similar to the one in [FV1]). Thus, B acts naturally on�r,s(m). Hence,
�r,s(m) is a module over the spherical Cherednik algebra eH1/m(mr + s)e. Moreover, it
is easy to see that it has minimal support. Therefore, by Theorem 1.2 of [EGL], �r,s(m)

is a free module over C[Q1, . . . , Qr+s], hence it is a CM algebra, as claimed. ��
Since characters of minimal support modules are explicitly known (see [EGL]), the

method of proof of Theorem 6.1 can be used to derive explicit formulas for the Hilbert
series of �r,s(m). In the appendix to this paper, M. Feigin uses these formulas to prove
the conjecture from [FV2] that the algebra �r,1(m) is Gorenstein.

Remark 6.2. 1. For s = 1, Theorem 6.1 is proved in [FV2].
2. Note that for s = 1, Theorem 3.3 (i.e., Theorem 4.4 of [BCES]) follows from

Theorem 6.1 (proved in this case in [FV2]) by interpolating with respect to m (using the
fact that the homogeneous components of�r,s(m) stabilize asm → ∞, and its structure
constants depend rationally on m).

6.2. Trigonometric (non-homogeneous) quasi-invariants. Let �
trig
r,s (m) be the algebra

of polynomials P ∈ C[y1, . . . , yr , z1, . . . , zs] which are symmetric in the zl and satisfy
the trigonometric (non-homogeneous) m-quasi-invariance conditions:

P(. . . , y j + 1, . . . , zl − m, . . . ) = P(. . . , y j , . . . , zl , . . . ), y j = zl ,

for 1 ≤ j ≤ r, 1 ≤ l ≤ s, and

P(. . . , y j , . . . , yk, . . . , z1, . . . , zs) − P(. . . , yk, . . . , y j , . . . , z1, . . . , zs) (7)

is divisible by
∏m

p=−m(y j − yk − p) for 1 ≤ j < k ≤ r .

Note that the algebra �
trig
r,s (m) has a natural filtration by degree of polynomials.

Proposition 6.3. If m > s, we have gr(�trig
r,s (m)) = �r,s(m). In particular, the algebra

�
trig
r,s (m) is CM.

Proof. Consider the completion of the type A trigonometric Cherednik algebra
eH trig

1/m(mr + s)e near the identity element of the torus (C×)mr+s . This algebra has a
decreasing filtration with associated graded isomorphic to eH1/m(mr + s)e (in fact,
this deformation is known to be trivial). One can check that the action of the alge-
bra eH1/m(mr + s)e on �r,s(m) deforms to an action of eH trig

1/m(mr + s)e on �
trig
r,s (m).

Indeed, this amounts to checking that the rational deformedMacdonald–Ruijsenaars op-
erator, i.e., the rational difference degeneration of the deformedMacdonald–Ruijsenaars
operator (1) of [SV2] preserves the non-homogeneous m-quasi-invariance conditions,
which is done by a straightforward computation similar to the one in [SV2]. Since the
algebra �

trig
r,s (m) contains a principal ideal in C[y1, . . . , yr , z1, . . . , zs]Ss , the Hilbert

series of the algebras gr(�trig
r,s (m)) and �r,s(m) have the same asymptotics as u → 1,
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i.e., give the same value at 1 after multiplication by (1 − u)r+s (namely, 1/s!). Since
�r,s(m) is aminimal supportmodule over eH1/m(mr+s)e, this implies thatwemust have

gr(�trig
r,s (m)) = �r,s(m) (as, because of equal growth, the quotient�r,s(m)/gr(�trig

r,s (m))

is a module over the rational Cherednik algebra with smaller support). ��
Remark 6.4. Let R ⊂ h be a root system with Weyl group W . For α ∈ R let sα be
the corresponding reflection. Let m a multiplicity function on roots (see [FV1]). In this
case we can define the ring of quasi-invariants Qm ⊂ C[h], i.e. polynomials f on the
reflection representation h such that f (x)− f (sαx) is divisible by α(x)2mα+1 for α ∈ R,
and the ring of trigonometric (non-homogeneous) quasi-invariantsQtrig

m , i.e. polynomials
f on h such that f (x + 1

2 jα
∨) = f (x − 1

2 jα
∨) if α(x) = 0 for j = 1, . . . ,mα . Then

one can use the same argument as in the proof of Proposition 6.3 (namely, the rational
difference degeneration of [Cha], Proposition 2.1) to prove the following proposition:

Proposition 6.5. One has gr(Qtrig
m ) = Qm.

In particular, this implies that Qtrig
m is CM and, moreover, Gorenstein (as by [EG,

BEG], so is Qm).

Example 6.6. For the root system of type A1 the rational Macdonald–Ruijsenaars oper-
ator has the form

(M f )(x) = x − m

x

(
T − 1

)
+
x + m

x

(
T−1 − 1

)
,

where (T f )(x) = f (x + 1). It is easy to see that this operator preserves the space
Qtrig

m of polynomials f such that f ( j) = f (− j) for j = 1, 2, . . . ,m. The (completed)
trigonometric Cherednik algebra acting on Qtrig

m is generated by M and x2. Note that
M lives in filtration degrees d ≤ −2, and the degree −2 (leading) part of M equals
∂2 − 2m

x ∂ , the rational Calogero–Moser operator for A1.

Remark 6.7. Another proof of Proposition 6.5 can be obtained by using the rational
difference degeneration G trig

m : C[h] → C[h] of Cherednik’s shift operator ([Ch,Cha]).
More precisely, Corollary 8.28 of [EG] proves that the image of the usual (differential)
shift operator Gm : C[h] → C[h] is exactly Qm . Also, one can check that the image of
G trig

m is contained in Qtrig
m , which implies that Qtrig

m is not smaller (i.e., the same size) as
Qm , as desired.

7. Appendix. The Hilbert Series of �r,s(m).

By Misha Feigin

To Aleksandr Petrovich Veselov on the 60th birthday, with gratitude

In this Appendix we find the Hilbert series of the algebra �r,s(m) introduced in
Sect. 6 assuming throughout that m > s. We also show that the algebra is Gorenstein
if s = 1. The algebra �r,1(m) is isomorphic to the algebra of quasi-invariants for the
configuration Ar (m) considered in [FV2,CFV]. The Gorenstein property of �r,1(m)

was shown in [FV2] for r = 2 and it was conjectured to hold for any r .
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Let n = mr + s. Let λ be a partition of n. Let Lc(λ) be the corresponding irreducible
module for the rational Cherednik algebra Hc(Sn). Let eLc(λ) be the corresponding
irreducible module for the spherical subalgebra, e = 1

n!
∑

w∈Sn w. For a partition τ of r
and a partition ν of s we denote by mτ + ν the partition of n with terms mτi + νi . We
will also denoted by τ the corresponding representation of Sr .

Theorem 7.1. There is an isomorphism

�r,s(m) ∼=
⊕

τ�r
τ ⊗ eL1/m(mτ + s)

of CSr ⊗ eH1/m(Sn)e modules.

Proof. It follows from theproof ofTheorem6.1 that�r,s(m) is amodule over eH1/m(Sn)e
of minimal support. It follows from [EGL] that as a module over CSr ⊗ eH1/m(Sn)e it
can be decomposed as

�r,s(m) ∼=
⊕

τ�r
ν�s

dτ,ν ⊗ eL1/m(mτ + ν) (8)

for some CSr modules dτ,ν . Let us consider the localised module �r,s(m)loc, where
localisation is at the powers of

α(x) =
∑

w∈Sn
w

⎛

⎜⎝
∏

1≤i≤mr
mr+1≤ j≤n

(xi − x j )

⎞

⎟⎠ .

It is a module over the localised rational Cherednik algebra eH1/m(Sn,U )e, where
U ⊂ C

n is given by α(x) �= 0. Equivalently, we localise quasi-invariants �r,s(m) ⊂
C[y1, . . . , yr , z1, . . . , zs] with respect to the powers of

α̂(y, z) =
∏

1≤i≤r
1≤ j≤s

(
yi − z j

)m
.

Let �′
r,s(m) ⊂ C[y1, . . . , yr , z1, . . . , zs] consist of polynomials p which are sym-

metric in z-variables and satisfy quasi-invariant conditions (6). It is a module over the
spherical rational Cherednik algebra

e′Hm,1/m(Sr × Ss;Cr+s)e′ ∼= er Hm(Sr )er ⊗ es H1/m(Ss)es,

where er = 1
r !

∑
w∈Sr w, es = 1

s!
∑

w∈Ss w, e′ = 1
r !s!

∑
w∈Sr×Ss w. This module has the

form

�′
r,s(m) ∼= Qm ⊗ es L1/m(tr iv),

where Qm are the ordinary Sr m-quasi-invariants as in [FV1]. The structure of Sr ⊗
er Hm(Sr )er–module Qm is obtained in [BEG], Proposition 6.6. It implies that �′

r,s(m)

as CSr ⊗ e′Hm,1/m(Sr × Ss;Cr+s)e′–module decomposes as

�′
r,s(m) =

⊕

τ�r
τ ⊗ er Lm(τ ) ⊗ es L1/m(tr iv), (9)
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where er = 1
r !

∑
w∈Sr w, es = 1

s!
∑

w∈Ss w.
Consider localisation �′

r,s(m)loc of the module �′
r,s(m) at the powers of α′(y, z) =∏

1≤i≤r
1≤ j≤s

(yi − z j ), which is a module over the localised spherical Cherednik algebra

e′Hm,1/m(Sr × Ss,U ′)e′, where U ′ ⊂ C
r+s is given by α′|U ′ �= 0. It is clear that

�r,s(m)loc ⊆ �′
r,s(m)loc. Since for any p ∈ �′

r,s(m) we have α′t p ∈ �r,s(m) for any
t ≥ 2 the opposite inclusion follows so these spaces are equal.

Recall that it is established in [W], Theorem 4.4 that there is an equivalence of
categories of Hm,1/m(Sr × Ss,Cr+s)–modules and H1/m(Sn)– modules with minimal
support such that certain corresponding D–modules and hence monodromy functors
match. It follows from the proof of [W], Theorem 4.4 that under this equivalence an
Hm,1/m(Sr × Ss,Cr+s)–module M is mapped to an H1/m(Sn)–module N such that
eNloc ∼= σ ∗e′Mloc, where σ : eH1/m(Sn,U )e → e′Hm,1/m(Sr × Ss,U ′)e′ is the natural
restriction homomorphism. And it follows then from [W], Theorem 1.8 that under the
equivalence the irreducible H1/m(Sn)–module L1/m(mτ + ν) is mapped to Lm(τ ) ⊗
L1/m(ν). So one has isomorphism

eL1/m
(
mτ + ν

)
loc

∼= (
er Lm(τ ) ⊗ es L1/m(ν)

)
loc (10)

of eH1/m(Sn,U )e modules, where the action on the right-hand side is induced by ho-
momorphism σ , and these modules are not isomorphic for different (τ, ν).

Since we localise at Sr -invariant elements α̂, α′ the equality�r,s(m)loc = �′
r,s(m)loc

and decompositions (8)–(10) imply that dτ,ν = 0 if ν has more than one part, and that
dτ,s ∼= τ . ��

Let sλ be the Schur function corresponding to the partition λ. Define the coefficients
cν
λ;m, bν

λ;m by

sλ
(
xm1 , xm2 , . . .

) =
∑

ν

cν
λ;msν

(
x1, x2, . . .

)
, (11)

sλ
(
xm1 , xm2 , . . .

)
ss

(
x1, x2, . . .

) =
∑

ν

bν
λ,s;msν

(
x1, x2, . . .

)
. (12)

Let λ be a partition of r . Define κ(λ) = ∑
1≤i< j≤r si j |λ the content of λ. Let pk(λ) be

the multiplicity of the representation λ in the space of homogeneous polynomials of r
variables of degree k. Define the Hilbert series

χλ(t) =
∞∑

k=0

pk(λ).

It is known from [K] that

χλ(t) =
∏

�∈λ

t l(�)

1 − th(�)
, (13)

where l(�) is the leg length of a box, and h(�) is the hook length of a box.
Let �(k)

r,s (m) ⊂ �r,s(m) be the subspace of homogeneous elements of degree k. Let

Pr,s;m(t) =
∞∑

k=0

dim�(k)
r,s (m)tk

be the Hilbert series of �r,s(m).
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Theorem 7.2. The Hilbert series of the algebra �r,s(m) has the form

Pr,s;m(t) =
∑

λ�r
dim λ

∑

ν�n
bν
λ,s;mt

n(n−1)−2κ(ν)
2m χν(t).

Proof. It is shown in [EGL], Theorem 1.4 that in the Grothendieck group

[L1/m(mλ + s)] =
∑

ν�n
bν
λ,s;m[M1/m(ν)].

Therefore

[eL1/m(mλ + s)] =
∑

ν�n
bν
λ,s;m[eM1/m(ν)],

and hence (cf. [EGL])

TreL1/m (mλ+s)(t
h) =

∑

ν�n
bν
λ,s;mt

n
2− κ(ν)

m χν(t),

where h = 1
2

∑n
i=1(xi∇i +∇i xi ) is the scaling element of the rational Cherednik algebra.

On the other hand the action of the operator h in the polynomial representation
C[x1, . . . , xn] is given by

h =
n∑

i=1

xi∂xi +
n

2
− 1

m

n∑

i< j

si j ,

which reduces to hres = ∑n
i=1 xi∂xi +

n
2 − n(n−1)

2m on Sn-invariants. Its action in the
representation �r,s(m) ⊂ C[z1, . . . , zr , y1, . . . , ys] is by the same differential operator
hres where the Euler field component

∑n
i=1 xi∂xi acts as its restriction to the Euler

operator in y, z-space which is
∑r

i=1 yi∂yi +
∑s

i=1 zi∂zi . The statement now follows
from Theorem 7.1. ��

Let us now consider the case s = 1 so n = mr + 1. We will derive another formula
for the Hilbert series of the quasi-invariants �r (m) := �r,1(m). For the representations
of rational Cherednik algebra H1/m(Smr ) it is shown in [EGL], Theorem 1.4 that one
has

[
L1/m(mλ)

] =
∑

ν�mr

cν
λ;m

[
M1/m(ν)

]
. (14)

Recall that there exists an exact functor F acting on category O objects

F : H1/m(Smr ) − mod → H1/m(Smr+1) − mod

which acts on standard modules as follows ([Sh], Section 4). Let ν be a partition of mr .
Then in the Grothendieck groups

[
FM1/m(ν)

] =
⊕

ν̂∈Bν

[
M1/m (̂ν)

]
, (15)

where each diagram in the set Bν is obtained from the diagram ν by adding a box with
the content congruent to 0 modulo m.
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It is shown in [EGL], Section 4.1 that

L1/m(mλ + 1) = FL1/m(mλ).

Therefore presentation (14) implies that

[
L1/m(mλ + 1)

] =
∑

ν�mr

cν
λ;m

[
FM1/m(ν)

]
, (16)

and equality (15) allows to restate Theorem 7.2 in the following form.

Corollary 7.3. The Hilbert series of the algebra �r (m) has the form

Pr;m(t) =
∑

λ�r
dim λ

∑

ν�mr

∑

ν̂∈Bν

cν
λ;mt

rn
2 − κ(̂ν)

m χν̂(t). (17)

Note that the right-hand side of the series (17) may contain fractional powers of t which
would have to cancel.

It is established in [FV2] that the graded algebra �r (m) is Cohen–Macaulay. It is
convenient to use the form (17) to show that the algebra �r (m) is Gorenstein.

Theorem 7.4. The Hilbert series of the algebra of quasi-invariants �r (m) satisfies the
symmetry property

Pr;m(t−1) = (−1)r+1tn(1−r)Pr;m(t).

Proof. Let us choose a term in the sum (17) corresponding to the diagrams λ, ν, ν̂.
Notice that for the conjugate diagrams λ′, ν′ one can choose ν̂′ = ν̂′. Indeed, if ν̂ is
obtained from ν by adding a box with the content k then the transposed partition ν̂′ is
obtained from ν′ by adding a box with the content −k so both contents are congruent
to 0 modulo m and ν̂′ ∈ Bν′ . Thus the series (17) decomposes as a sum of terms of the
form

f (t) = (dim λ)cν
λ;mt

rn
2 − κ(̂ν)

m χν̂(t) + (dim λ′)cν′
λ′;mt

rn
2 − κ(̂ν′)

m χν̂′(t).

Recall that dim λ = dim λ′ and cν
λ;m = (−1)(m−1)r cν′

λ′;m (see [EGL], Corollary 4.16). It
is also easy to see from (13) that

χν̂(t) = (−1)nt−nχν̂′(t−1).

Therefore

f (t) = (dim λ)cν
λ;mt

rn
2

(
t−

κ(̂ν)
m χν̂(t) + (−1)(m−1)r t

κ(̂ν)
m χν̂′(t)

)
,

and

f (t−1) = (dim λ)cν
λ;mt

− rn
2

(
t

κ(̂ν)
m (−1)ntnχν̂′(t) + (−1)(m−1)r t−

κ(̂ν)
m (−1)ntnχν̂(t)

)

= (−1)r+1tn(1−r) f (t),

so the statement follows. ��
By Stanley criterion [S] we have the following
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Corollary 7.5. The algebra �r (m) is Gorenstein.

We are going to obtain yet another form of the Hilbert series (17). Note that the
coefficients cν

λ;m can be expressed in terms of characters of the symmetric group. Let μ
be a partition of r and denote by Cμ the corresponding conjugacy class in Sr . Then

cν
λ;m =

∑

μ�r

|Cμ|
r ! χλ(Cμ)χν(Cmμ),

where χλ, χν are characters of representations of Sr , Smr corresponding to the partitions
λ, ν (see e.g. [LZ]).

Let χ̂λ be the character of the moduleUλ which is induced from the trivial one for the
parabolic subgroup corresponding to partition λ. Recall the Kostka matrix Kμλ given
by the relations χ̂λ = ∑

μ Kμλχ
μ. We will also need the inverse Kostka matrix K−1

satisfying χλ = ∑
μ K−1

μλ χ̂μ. Then we have

∑

λ�r
dim λ cν

λ;m =
∑

λ,μ�r
ν̃�mr

dim λ
|Cμ|
r ! χλ(Cμ)K−1

ν̃ν
χ̂ ν̃ (Cmμ). (18)

Note that χ̂ ν̃ (Cmμ) is non-zero only if the partition ν̃ has the form ν̃ = mα for some α �
r , in which case χ̂ ν̃ (Cmμ) = χ̂α(Cμ). Taking into account orthogonality of characters,
we continue (18) as

∑

λ,μ,α,β�r
dim λ

|Cμ|
r ! χλ(Cμ)K−1

mα,νKβαχβ(Cμ)

=
∑

α,λ�r
dim λ K−1

mα,νKλα

=
∑

α�r
dimUα K−1

mα,ν =
∑

α�r

r !
α!K

−1
mα,ν,

where α! = α1!α2! . . . Thus we get the following expression for Hilbert series (17):

Pr;m(t) =
∑

α�r,ν�mr
ν̂∈Bν

r !
α!K

−1
mα,ν t

rn
2 − κ(̂ν)

m χν̂(t). (19)

It would be interesting to see if there is a simpler form of the Hilbert series Pr;m(t).
Finally we note that the algebra�r,s(m) is not expected to be Gorenstein for s > 1 as

the case r = 1 shows. Indeed, it is shown in [J] that for any non-zerom the Hilbert series
P1,s;m is the same, which is known from [SV1] to be equal to h = 1−t+t s+1

(1−t)2(1−t2)...(1−t s )
so the algebra is not Gorenstein.
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