
MIT Open Access Articles

Unifying quantum heat transfer in a nonequilibrium 
spin-boson model with full counting statistics

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wang, Chen, Jie Ren, and Jianshu Cao. “Unifying Quantum Heat Transfer in a 
Nonequilibrium Spin-Boson Model with Full Counting Statistics.” Physical Review A 95.2 (2017): 
n. pag. © 2017 American Physical Society.

As Published: http://dx.doi.org/10.1103/PhysRevA.95.023610

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/107205

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/107205


PHYSICAL REVIEW A 95, 023610 (2017)

Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

Chen Wang,1,* Jie Ren,2,3,4,† and Jianshu Cao5,‡
1Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People’s Republic of China

2Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University,
200092 Shanghai, People’s Republic of China

3China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University,
200092 Shanghai, People’s Republic of China

4Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology,
School of Physics Science and Engineering, Tongji University, 200092 Shanghai, People’s Republic of China

5Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
(Received 12 December 2016; revised manuscript received 8 January 2017; published 13 February 2017)

To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we
develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field.
This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external
modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling
regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias.
With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing
the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with
bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling
regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes
and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

DOI: 10.1103/PhysRevA.95.023610

I. INTRODUCTION

Efficient realization and smart control of quantum energy
transfer are of fundamental importance in various fields,
ranging from molecular electronics, to quantum heat engine,
to quantum biology [1–5]. In particular, information and
heat flow have been extensively studied in thermal functional
devices, spawning phononics [6,7], where phonons are flexibly
manipulated in analogy with electronic current in modern
electronics [8–13]. In accordance with the second law of
thermodynamics, it is known that heat energy will naturally
transfer from a hot source to a cold drain driven by the
thermodynamic bias (e.g., temperature), without an external
driving field. Considering external modulations, the optimal
mechanism of dynamical control can be unraveled in phononic
thermal systems [14–17], even to pump heat against the
temperature bias.

The prototype for describing nanoscale heat transfer medi-
ated by quantum junctions is the nonequilibrium spin-boson
(NESB) model [8,18], which was originally proposed in the
study of quantum dissipation [19,20]. The NESB model is
composed of a two-level system (i.e., qubit) interacting with
two bosonic thermal baths under temperature bias. Many meth-
ods have been proposed to study the microscopic mechanism
of quantum heat transfer in the NESB model. Particularly, the
Redfield approach has been extensively applied to analyze
the weak qubit-bath coupling regime, mainly due to the
effective expression and clear physical picture [14,15]. The
contribution of two thermal baths to the heat flux is additive,
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which means that only incoherently sequential heat-exchange
processes between the qubit and baths are considered. As
such, the limitation of the Redfield approach is exposed
in the strong qubit-bath coupling regime, where the heat
flux is nonlinearly dependent on the system-bath coupling
strength. In sharp contrast, the nonequilibrium nonteracting-
blip approximation (NIBA) is applicable in the strong coupling
limit to analytically treat multiphonon processes [9,21–23],
where nonadditive and cooperative phonon transfer processes
are included. Particularly, the appearance of turnover behavior
of heat flux as a function of the qubit-bath coupling strength in
the NESB model was confirmed by the NIBA, as well as by the
multilayer multiconfiguration Hartree [24], quantum Monte
Carlo schemes [18], and the nonequilibrium Green’s func-
tion method [25–27]. Recently, the nonequilibrium polaron-
transformed Redfield equation (NE-PTRE) has been proposed
by the authors to analytically unify the steady-state heat flux in
the weak and strong coupling limits, and the parity classified
transfer processes have been unraveled [28].

From the dynamical control perspective, the time-
dependent modulation of heat transfer in the NESB model
has also attracted tremendous attention, enriching the transfer
mechanisms [14–17,29–33]. The typical realization of the
dynamical modulation is the adiabatic quantum pump, which
was originally proposed by D. J. Thouless to study the
effect of Berry-phase-induced quantization on closed-system
transport [34]. In analogy, as the NESB model is adiabat-
ically and periodically driven by control parameters (e.g.,
bath temperatures), a geometric-phase-induced heat flow will
contribute to the heat transfer [15,16]. However, previous
research unraveled the seemingly contradictory results that,
in the weak qubit-bath coupling limit, the geometric-phase-
induced heat flux remains finite, independent of the qubit-bath
coupling strength under the unbiased condition [15], whereas

2469-9926/2017/95(2)/023610(10) 023610-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.023610


CHEN WANG, JIE REN, AND JIANSHU CAO PHYSICAL REVIEW A 95, 023610 (2017)

the counterpart in the strong coupling limit becomes strictly
0 [16]. The statement of seemingly contradiction or seemingly
contradictory results below has the same meaning as expressed
herein by default. Thus, natural questions are raised: What
happens in the intermediate qubit-bath coupling regime? and
Can we propose a theory to unify the geometric-phase-induced
heat flux in the weak and strong coupling limits?

In the present paper, by including the full counting
statistics, we introduce a generalized NE-PTRE to analyze
the geometric-phase-induced heat flux in the NESB model.
Our NE-PTRE is able to accommodate both the sequential
transfer picture in the weak coupling limit and the multiphonon
involved nonlinear collective transfer picture in the strong
coupling regime. The geometric heat pump is investigated
under both unbiased and biased conditions, and the seemingly
contradictory results in the weak and strong coupling limits
are clearly unified. Moreover, the effect of the qubit energy
bias on the geometric heat pump is analyzed in typical
system-bath coupling regimes. This work is organized as
follows: in Sec. II, we introduce the NESB model and the
NE-PTRE scheme that dissect the phonon transfer details.
Then in Sec. III, by introducing the full counting statistics, we
develop the generalized NE-PTRE and systematically analyze
the counting measurements of NESB transport. In Sec. IV,
first we investigate the steady-state heat flux and noise power
as functions of the coupling strength and qubit energy bias.
Then we focus on the geometric-phase-induced heat flux in
both the unbiased and the biased cases, and comparisons with
Redfield and nonequilibrium NIBA are clearly demonstrated.
The final section (Sec. V) provides a concise summary.

II. NONEQUILIBRIUM SPIN-BOSON SYSTEM

A. Model

Following Ref. [28], the NESB model in Fig. 1, consisting
of a two-level qubit coupled to two phononic thermal baths at
different temperatures [8,15,18–20], is described as

Ĥ0 = ε0

2
σ̂z + �

2
σ̂x +

∑
k;v=L,R

ωkb̂
†
k,vb̂k,v

+
∑

k;v=L,R

σ̂z(λk,vb̂
†
k,v + λ∗

k,vb̂k,v), (1)

FIG. 1. Schematic of the nonequilibrium spin-boson model,
composed of a central two-level qubit (purple circle) coupled to two
individual thermal baths (red and blue regions), with temperatures
TL and TR , respectively. Wavy red (blue) arrowed lines describe the
interaction between the qubit and the Lth (Rth) bath. For the driven
nonequilibrium spin-boson model, the system parameters appear to
be time dependent, e.g., TL(t) and TR(t).

where the qubit is specified by the Pauli operators σ̂z =
|1〉〈1| − |0〉〈0| and σ̂x = |1〉〈0| + |0〉〈1|, with |1(0)〉 the ex-
cited (ground) state. ε0 is the energy bias, and � is the tunneling
strength between two states. b̂

†
k,v (b̂k,v) creates (annihilates)

one phonon with energy ωk and momentum k in the vth bath,
and λk,v describes the coupling strength between the qubit and
the vth bath.

To study the qubit-bath interaction beyond the weak
coupling limit, it is helpful to transform the original Hamil-
tonian Ĥ0 in Eq. (1) under the polaron framework by Ĥ =
Û †Ĥ0Û [9,16,35], where the unitary operator is given by
Û = eiσ̂zB̂/2, with the collective phononic momentum operator

B̂ = 2i
∑

k;v=L,R ( λk,v

ωk
b̂
†
k,v − λ∗

k,v

ωk
b̂k,v). Thus, the transformed

Hamiltonian becomes Ĥ = Ĥs + Ĥb + V̂sb. Specifically, the
reorganized two-level qubit is shown as

Ĥs = ε0

2
σ̂z + η�

2
σ̂x, (2)

where the renormalization factor is given by [9,16]

η = 〈 cos B̂〉

= exp

(
−
∑

v

∫ ∞

0
dω

Jv(ω)

πω2
[nv(ω) + 1/2]

)
, (3)

with the vth bath spectral function Jv(ω) = 4π
∑

k|λk,v|2δ(ω − ωk), the Bose-Einstein distribution nv(ω) =
1/[exp(βvωv) − 1], and the inverse of the vth bath temperature
βv = 1/kBTv . The noninteracting phonon baths are charac-
terized as Ĥb =∑v=L,R Ĥv , with Ĥv =∑k ωkb̂

†
k,vb̂k,v . The

qubit-bath interaction is expressed as

V̂sb = �

2
[(cos B̂ − η)σ̂x + sin B̂σ̂y], (4)

of which the thermal average vanishes, i.e., 〈V̂sb〉 = 0. Hence,
it may be appropriate to perturbatively obtain the equation
of motion for the two-level qubit in the polaron picture. It
should be noted that in many traditional approaches including
many-phonon processes, e.g., the NIBA, the system-bath inter-
action V̂ = �

2 (cos B̂σ̂x + sin B̂σ̂y) is directly perturbed [9,16].
However, actually V̂ should not be treated as a perturbation
due to the nonnegligible contribution of 〈V̂ 〉 �= 0. In contrast,
V̂sb = V̂ − 〈V̂ 〉 in Eq. (4) may be properly perturbed in
accordance with the perturbation theory [28].

In this paper, the spectral function of phonon baths is
characterized as Jv(ω) = παvω

sω1−s
c,v e−ω/ωc,v , which is typi-

cally considered in quantum transfer studies of nanojunction
systems [20,35–39]. αv is the system-bath coupling strength
of the order αv ∼ |λk,v|2, and ωc,v is the cutoff frequency of
the vth phonon bath. Without loss of generality, we consider
the superohmic spectrum s = 3 in this study. Hence, the renor-
malization factor is specified as η = exp{−∑v=L,R αv[−1 +

2
(βvωc,v )2 ψ1(1/βvωc,v)]/2}, with the trigamma function ψ1(x) =∑∞

n=0
1

(n+x)2 . Moreover, in the weak coupling limit αv � 1, the
normalization factor η becomes 1, while in the strong coupling
regime αv 	 1, it vanishes (η = 0).
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B. Nonequilibrium polaron-transformed Redfield equation

We note that the PTRE method was originally developed to
study quantum dissipative dynamics [35–38,40], with a single
bath. Here we handle a system coupled to at least two baths at
nonequilibrium. It is known that the reorganized system-bath
interaction V̂sb can be treated as a perturbation [28]. Based
on the Born-Markov approximation and the second-order
perturbation theory, we obtain the NE-PTRE as

∂ρ̂

∂t
= −i[Ĥs,ρ̂] +

∑
l=e,o

∑
ω,ω′=0,±�

�l(ω)[P̂l(ω)ρ̂,P̂l(ω
′)]

+ H.c., (5)

where ρ̂ is the reduced density matrix of the qubit in the
polaron picture, � =

√
ε2

0 + η2�2 is the energy gap in the
eigenbasis, and P̂e(o)(ω) is the eigenstate transition projector
(see [41]), of which the relation to Pauli matrices is given by
σ̂x(y)(−τ ) =∑ω=0,±� P̂e(o)(ω)eiωτ . The transition rates are

�o(ω) =
(

η�

2

)2 ∫ ∞

0
dτeiωτ

∞∑
n=0

Q(τ )2n+1

(2n + 1)!
, (6)

�e(ω) =
(

η�

2

)2 ∫ ∞

0
dτeiωτ

∞∑
n=1

Q(τ )2n

(2n)!
, (7)

with the collective phonon propagator Q(τ ) =∑v=L,R Qv(τ ),
and

Qv(τ ) =
∫ ∞

0
dω

Jv(ω)

πω2
{nv(ω)eiωτ + [1 + nv(ω)]e−iωτ }.

(8)

From expressions of the correlation functions �e(0)(ω), it is
clearly shown that phonon transfer processes are classified
by the even- and odd-parity contributions. Specifically,
�o(τ ) describes the transfer processes including odd
phonon numbers from two baths. The lowest order term
�(1)

o (ω) contains the terms (η�)2

8 [QL(ω) + QR(ω)], with
the individual bath contribution Qv(ω) = ∫∞

−∞ dτeiωτQv(τ )
at the transition energy ω = ±�, so that the lowest odd
parity exhibits sequential-tunneling behavior depicted
in Figs. 2(a) and 2(b) [8,15] while �e(ω) shows
cooperative heat transfer processes involving even phonon

FIG. 2. Representative processes involving phonons in quantum
heat transfer: (a), (b) single-phonon sequentially incoherent pro-
cesses, QL(ω) and QR(−ω), respectively; (c), (d) two-phonon cotun-
neling processes, QL(ω)QR(−ω) and QR(ω)QL(−ω), respectively.

numbers. The corresponding lowest order even term
�(1)

e (0) describes the cotunneling effect at Figs. 2(c)

and 2(d) [42], which contains (η�)2

8π

∫∞
−∞ dωQL(ω)QR(−ω) =

(η�)2

8π

∫∞
0 dω[QL(ω)QR(−ω) + QR(ω)QL(−ω)]. This

demonstrates the physical picture that as the left bath releases
thermal energy ω, the right bath gains the equivalent quanta
simultaneously, and the two-level system only has the virtual
processes of excitation and relaxation so that it remains intact.
Apparently, these contributions from two baths are involved
nonadditively. Moreover, we can obtain an arbitrary order
contribution to heat transfer processes systematically by
applying the Taylor expansion.

Particularly, without bias (ε0 = 0) the steady-state densities
can be obtained analytically in the local basis, where the
diagonal and off-diagonal terms are [28]

P11 = P00 = 1/2, (9)

P10 = P01 = 1

2

Re[�o(−�)] − Re[�o(�)]

Re[�o(−�)] + Re[�o(�)]
, (10)

with the element Pij = limt→∞ 〈i|ρ̂(t)|j 〉 (|i〉 depicts the qubit
state), energy gap � = η�, and Re[�o(e)(ω)] the real part of
�o(e)(ω).

III. FULL COUNTING STATISTICS OF THE NESB MODEL

We study the statistics of the transported heat �qτ =∑
k ωk�nk,v in the NESB model, from the system to the vth

phonon bath during a time interval τ , with �nk,v the change
in phonon number to the initial one with momentum k. The
specific measurement of �qτ can be conducted as follows:
Initially at time t = 0, we introduce a projector K̂q0 = |q0〉〈q0|
to measure the quantity Ĥv =∑k ωkb̂

†
k,vb̂k,v in the vth bath,

giving q0 =∑k ωknk,v(0). After a finite time τ of evolution
of the system coupled to thermal baths, we again perform the
projection K̂qτ

= |qτ 〉〈qτ | to obtain the measurement outcome
qτ =∑k ωknk,v(τ ). Hence, the number difference is given by
�nk,v = nk,v(τ ) − nk,v(0). Meanwhile, the joint probability of
measuring q0 at t = 0 and qτ at t = τ is defined as [43]

Pr[qτ ,q0] = Trs,b
{
K̂qτ

e−iĤ0τ K̂q0 ρ̂0K̂q0e
iĤ0τ K̂qτ

}
, (11)

with the trace over both the qubit and the thermal baths. Based
on the joint probability Pr[qτ ,q0], we introduce the probability
of measuring �qτ during the time interval τ as

Prτ (�qτ ) =
∑
qτ ,q0

δ(�qτ − (qτ − q0))Pr[qτ ,q0]. (12)

Then the cumulant generating function of the statistics can be
defined as

Gτ (χ ) = ln
∫

d�qτ Prτ (�qτ )eiχ�qτ , (13)

with χ the counting-field parameter.
To quantitatively express the cumulant generating function,

we introduce the NE-PTRE accompanied by the full counting
statistics. Assuming that the quantum system is connected
to two baths (labeled L and R), we measure the transported
heat from the system to the Rth bath, in the context of the
χ -dependent NE-PTRE. Then we add the counting projector
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to the Hamiltonian Ĥ0 in Eq. (1) to generate Ĥ0(χ ) =
eiχĤR/2Ĥ0e

iχĤR/2 [43,44], written as

Ĥ0(χ ) = ε0

2
σ̂z + �

2
σ̂x +

∑
k;v=L,R

ωkb̂
†
k,vb̂k,v

+
∑

k;v=L,R

σ̂z(e
iχωkδv,R/2λk,vb̂

†
k,v + H.c.). (14)

Similarly to the transformation scheme in the NE-PTRE [28],
we perform a generalized polaron transformation result-
ing in Ĥχ = Û †

χ Ĥ0(χ )Ûχ , with the unitary operator Uχ =
eiσ̂zB̂χ /2 and χ -dependent phonon collective momentum B̂χ =
2i
∑

k,v(eiχωkδv,R/2 λk,v

ωk
b̂
†
k,v − H.c.). As such, the transformed

Hamiltonian is expressed as Ĥχ = Ĥs + Ĥb + V̂sb(χ ). Partic-
ularly, the reorganized qubit-bath coupling is modified by the
counting field as

V̂sb(χ ) = �

2
[(cos B̂χ − η)σ̂x + sin B̂χ σ̂y], (15)

which includes both the information on the counting mea-
surement and the multiphonon nonlinear processes. Whereas
Ĥs and Ĥb remain unchanged, it should be noted that the
thermal average of the interaction term vanishes 〈V̂sb(χ )〉 = 0
due to the parity symmetry. Moreover, the magnitude of
the second-order correlated contribution of V̂sb(χ ) is quite
small, compared to Ĥs at Eq. (2). Hence, the perturbation
of V̂sb(χ ) can be properly carried out, like the derivation
of Eq. (5). Considering the Born-Markov approximation, we
perturb V̂sb(χ ) up to second order and obtain the generalized
NE-PTRE in the context of full counting statistics,

∂ρ̂χ

∂t
= −i[Ĥs,ρ̂χ ] +

∑
l=e,0

∑
ω,ω′=0,±�

{[
�

χ

l,−(ω) + �
χ

l,+(ω′)
]

× P̂l(ω
′)ρ̂χ P̂l(ω) − [�l,+(ω)P̂l(ω

′)P̂l(ω)ρ̂χ + H.c.]
}
,

(16)

where ρ̂χ is the reduced two-level system (qubit) density oper-
ator under the counting field, P̂l(ω) is the eigenstate transition
projector [41], and the energy gap is � =

√
ε2

0 + η2�2. The
transition rates are expressed as

�χ
e,σ (ω) =

(
η�

2

)2 ∫ ∞

0
dτeiωτ [coshQ(στ − χ ) − 1], (17)

�χ
o,σ (ω) =

(
η�

2

)2 ∫ ∞

0
dτeiωτ sinhQ(στ − χ ), (18)

where the modified single-phonon propagator becomes Q(τ −
χ ) = QL(τ ) + QR(τ − χ ).

IV. RESULTS AND DISCUSSION

In this section, we apply the generalized nonequilibrium
polaron-transformed Redfield equation with an auxiliary
counting field, to study the steady-state heat transfer, as well
as the geometric-phase-induced heat transfer under adiabatic
time-dependent modulations.

A. Steady-state heat transfer

By rearranging the NE-PTRE in the Liouville space [28],
the equation of motion for the two-level qubit in Eq. (16) is
expressed as

∂

∂t
|ρχ 〉 = −L̂χ |ρχ 〉, (19)

where the vector form of the density matrix is |ρχ 〉 =
[P χ

11,P
χ

00,P
χ

10,P
χ

01]T with P
χ

ij = 〈i|ρ̂χ |j 〉, and L̂χ is the Li-
ouvillion superoperator. In the absence of the counting-field
parameter (χ = 0), the element of the density operator P

χ

ij

reduces to the conventional Pij . Based on the dynamical
equation, (19), the reduced density matrix at time t is given
by |ρχ (t)〉 = exp(−L̂χ t)|ρχ (0)〉, with |ρχ (0)〉 the initial state.
Hence, the cumulant function can be expressed as Zχ (t) =
〈I|ρχ (t)〉 [44], with the unit vector defined as 〈I| = [1,1,0,0].
Consequently, the cumulant generating function after long-
time evolution can be obtained by Gt (χ ) = 1

t
lnZχ (t), and

the corresponding nth cumulant of heat current fluctuations
can be generated as J (n)(t) = 〈Q̂n〉/t = ∂nGt (χ)

∂(iχ)n |χ=0. When
external modulation is absent, i.e., Lχ is time independent, if
we focus on the steady-state solution, the cumulant generating
function is simplified to G(χ ) = −E0(χ ), where E0(χ ) is
the ground-state energy of the superoperator L̂χ . The cor-
responding left and right eigenvectors are denoted 〈�χ | and
|�χ 〉, which fulfill the normalization relation 〈�χ |�χ 〉 = 1.
In particular, the steady-state heat flux is the first cumulant
J = − ∂E0(χ)

∂(iχ) |χ=0, and the noise power is the second cumulant

J (2) = − ∂2E0(χ)
∂(iχ)2 |χ=0.

1. Unbiased condition: ε0 = 0

We first investigate the steady-state heat transfer in Fig. 3,
where the system parameters are time independent. Without
bias (ε0 = 0), the authors have shown in Ref. [28] that the
heat flux can be analytically solved over a wide system-bath
coupling regime by applying the NE-PTRE.

FIG. 3. Behaviors of the steady-state heat flux and noise power:
(a), (b) with varying system-bath coupling strengths and (c), (d) with
tuning of the qubit energy bias, respectively. Other parameters are
� = 5.22 meV, ωc = 26.1 meV, TL = 150 K, and TR = 90 K.
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Here, we show the full counting statistics of heat transfer
at steady state by analytically exhibiting the counting field
based on the cumulant generating function (Gχ ). Since
Gχ corresponds to the ground-state energy (E0(χ ) = −Gχ ),
based on the analysis in Appendix A, we obtain the ground
eigensolution in Liouville space as

E0(χ ) = (Xe − Xχ
e

)+
Y −

√
Y 2

χ − (Xχ
o

)2 + (Xo)2

2
. (20)

The contributing term from the even parity is

Xχ
e = �

χ
e,+(0) + �

χ
e,−(0), (21)

and Xe = X
χ
e |χ=0, with the transition rate �

χ

l,σ (ω) given in
Eq. (16). The terms from the odd parity are given by

Yχ =
∑

σ=±,ω=±�

�χ
o,σ (ω), (22)

Xχ
o =

∑
σ=±,ω=±�

sgn(ω)σ�χ
o,σ (ω), (23)

with sgn(±�) = ±1 and � = η�. Y = Yχ |χ=0 and Xo =
X

χ
o |χ=0. Consequently, the heat flux can be expressed as

J = �2

8π

∫ ∞

−∞

[
Re[�o(�)]Co(−�,ω′)+Re[�o(−�)]Co(�,ω′)

Re[�o(�)]+Re[�o(−�)]

+ Ce(0,ω′)
]
ω′dω′, (24)

where the rate probability densities are specified as

Ce(ω,ω′) =
∫ ∞

−∞
dχe−iχω′

∫ ∞

−∞
dτeiωτ [coshQ(τ − χ ) − 1],

(25)

Co(ω,ω′) =
∫ ∞

−∞
dχe−iχω′

∫ ∞

−∞
dτeiωτ sinhQ(τ − χ ) (26)

at energy ω = 0,±�. This analytical expression, Eq. (24), of
the steady-state heat flux without bias is found to be identical
to the counterpart in Ref. [28]; the turnover behavior of the
coupling strength is exhibited in Fig. 3(a) (dashed blue line).
Physically, Ce(0,ω′) and Co(±�,ω′) describe the even- and
odd-parity components of the transfer process, respectively.
For example, Co(�,ω′) describes the process in which the quit
releases energy � by relaxing from the excited eigenstate to
the ground one, so that the right bath absorbs energy ω′ and
the left one obtains the left � − ω′. As such, the number of the
state change of the qubit is odd, e.g., n times excitation and
n + 1 times relaxation lead to a relaxation as the final action.
And Ce(0,ω′) describes the process where the qubit has an even
number of virtual state changes, i.e., n times relaxation and n

times excitation, so that the central qubit remains intact and
undergoes no energy change. But still, the right bath absorbs
energy ω′ and the left bath gains −ω′ (i.e., releases ω′).

Similarly, the shot noise is obtained as

J (2) = �2

8π

{∫ ∞

−∞
dω

[
Re[�o(−�)]Co(�,ω) + Re[�o(�)]Co(−�,ω)

Re[�o(�)] + Re[�o(−�)]
+ Ce(0,ω)

]
ω2

−
∫∞
−∞ dω[Co(�,ω) − Co(−�,ω)]ω

(Re[�o(�)] + Re[�o(−�)])3
[Re[�o(−�)]2

∫ ∞

−∞

dω

π
Co(�,ω)ω − Re

[
�o(�)]2

∫ ∞

−∞

dω

π
Co(−�,ω)ω

]}
. (27)

We find that the first term on the right-hand side of Eq. (27) is
the main contribution to the shot noise, of which the spectral
distribution is the same as that for the heat flux in Eq. (24).
Hence, the nonmonotonic turnover behavior is quite similar to
the heat flux, as shown in Fig. 3(b).

2. Biased condition: ε0 �= 0

Next, we extend our analysis of steady-state behaviors to
the biased condition (ε0 �= 0). The heat flux shows the same
nonmonotonic turnover behavior as α increases, i.e., the flux
increases in the weak and moderate coupling strength regimes
(α � 1) and decreases in the strong coupling regimes (α � 1),
shown in Fig. 3(a). Interestingly, in the weak coupling regime
(α � 1), the heat flux is enhanced by enlarging the qubit
energy bias ε0, whereas as the coupling strength enters into
the strong regime (α � 1), the heat flux remains constant
for changing energy bias. To confirm these results, we select
typical coupling strengths to clearly demonstrate the influence
of the energy bias on the heat flux, in Fig. 3(c).

Moreover, we look into the second-cumulant heat fluc-
tuation, i.e., the noise power, in Fig. 3(b). Similarly to the
steady-state flux, the shot noise of the heat flux also exhibits the
same turnover behavior. As the system-bath coupling strength
increases, the noise power is enhanced by the energy bias in

the weak coupling regime, whereas the noise power becomes
nearly independent of the bias in the strong coupling regime.
These behaviors are clearly depicted in Fig. 3(d). Therefore,
we conclude that both the steady-state heat flux and the noise
power are tuned in a similar way by either qubit-bath coupling
or qubit energy bias.

B. Geometric-phase-induced heat flux

As the system is periodically driven by external fields, e.g.,
modulated by two bath temperatures TL(R)(t), as schematically
shown in Fig. 1, the Liouville superoperator becomes time
dependent L̂χ (t). The effect of the geometric phase will
additionally contribute to the heat flux [15,16,45–48], demon-
strated in Appendix B. Thus, in the adiabatic modulation limit,
there clearly exist two components making up the generating
function as

lim
t→∞Zχ (t) = eGχ t = exp([Gdyn(χ ) + Ggeom(χ )]t), (28)

Specifically, the average dynamical phase is expressed as
Gdyn(χ ) = − 1

Tp

∫ Tp

0 dtE0(χ,t), where Tp is the driving pe-

riod, and E0(χ,t) is the eigenvalue of L̂χ (t) with the
minimal real part. It results in the dynamical heat flux
Jdyn = ∂

∂(iχ)Gdyn(χ )|χ=0. The geometric phase contribution
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of the generating function is described by Eq. (B9) in
Appendix B,

Ggeom(χ ) = − 1

Tp

∫ Tp

0
dt〈�χ (t)| ∂

∂t
|�χ (t)〉, (29)

where |�χ (t)〉 (〈�χ (t)|) is the corresponding right (left)
eigenvector of E0(χ,t). Assuming that the two system pa-
rameters u1(t) and u2(t) are periodically modulated [which
are two driving bath temperatures TL(R)(t) in this work],
the geometric phase in Eq. (29) is specified as Ggeom(χ ) =
− 1

Tp

∮
[du1〈�χ | ∂

∂u1
|�χ 〉 + du2〈�χ | ∂

∂u2
|�χ 〉]. According to

the Stocks theorem, Ggeom(χ ) can be reexpressed as

Ggeom(χ ) = − 1

Tp

∫∫
u1,u2

du1du2Fχ (u1,u2), (30)

where

Fχ (u1,u2) = 〈∂u1�χ

∣∣∂u2�χ

〉− 〈∂u2�χ

∣∣∂u1�χ

〉
. (31)

It is noteworthy [49] that Fχ (u1,u2) has the meaning of
curvature in the parameter space (u1,u2) of the ground state of
the quantum Liouville superoperator L̂χ . It is of pure geometric
interpretation and independent of the driving speed (in the
adiabatic limit). Mathematically, Ggeom(χ ) is an analog of the
adiabatic Berry phase in quantum mechanics [50], where in
the latter case the wave function obtains an extra phase after
a cyclic evolution. Similarly, in the full counting statistics of
our driven systems, the cumulant generating function Ggeom(χ )
(analog of phase) in the exponent of the characteristic function
Zχ (analog of wave function) also obtains an additional
term. Both extra terms share a similar geometric origin from
the nontrivial curvature in the system’s parameter space.
As such Fχ (u1,u2) is a Berry-like curvature and we term
Ggeom(χ ) the geometric phase contribution, which generates
the nth cumulant of the geometric-phase-induced heat current
fluctuation, as [15,16,45]

J (n)
geom = ∂nGgeom(χ )

∂(iχ )n

∣∣∣∣
χ=0

= − 1

Tp

∫∫
u1,u2

du1du2
∂n

∂(iχ )n
Fχ (u1,u2)|χ=0. (32)

The geometric heat flux is given by the first cumulant Jgeom =
J (1)

geom.

1. Unbiased condition: ε0 = 0

Here, we first investigate the geometric heat flux without
bias (ε0 = 0). It is known that in the weak qubit-bath coupling
regime, the geometric-phase-induced heat flux is finite and
independent of the coupling strength [15]. This mainly results
from the fact that with weak qubit-bath coupling the transition
rates between the two-level qubit and the phononic baths
are linearly dependent on the coupling strength, exhibiting
additive transfer processes. On the contrary, the geometric heat
flux vanishes in the strong qubit-bath coupling regime upon
applying the nonequilibrium NIBA method [16]. The left and
right eigenvectors corresponding to the ground-state energy are
given by |�χ 〉 = 1

2 [1,1,0,0]T and 〈�χ | = [1,1,0,0], which are
clearly independent of the system parameters and result in the
zero geometric heat flux according to Eq. (30). It was proposed

FIG. 4. Adiabatic modulation by two bath temperatures without
bias (ε0 = 0): (a) geometric-phase-induced heat pump Qgeom =
Jgeom ∗ Tp; (b) coherence (P10) in the local basis. The two bath
temperatures are specified as TL(τ ) = (150 + 90 cos �pτ ) K and
TR(τ ) = (150 + 90 sin �pτ ) K, with the period Tp = 1 ns. Other
parameters are � = 5.22 meV and ωc = 26.1 meV.

that these two approaches describe different physical pictures
within the same NESB system and do not conflict with each
other [16,28].

Based on the χ -dependent NE-PTRE, Eq. (16), we try to
explicitly unify these limiting results, as shown in Fig. 4(a). In
the weak system-bath coupling regime, the geometric heat flux
approaches the upper limit within the Redfield scheme. As the
coupling strength increases, the geometric heat flux is strongly
suppressed and asymptotically decreases to 0, which finally
becomes identical to the result in the nonequilibrium NIBA.
The underlying mechanism can be understood by analyzing
the coherence P10(t), since the populations (P00,P11) are
constant. We find in Fig. 4(b) that the coherence is suppressed
monotonically by increasing the qubit-bath coupling strength,
finally resulting in the constant quasi–steady state in the strong
coupling limit [16]. It is proposed that without bias (ε0 = 0),
multiphonon processes degrade the formation of the geometric
phase. Therefore, this seeming contradiction is clearly solved
within the framework of the NE-PTRE accompanied by a
counting field.

Moreover, compared to the dynamical heat flux [28], the
system-bath coupling plays a distinct role in the geometric
heat flux. For the dynamical flux, in the weak and intermediate
coupling regimes, multiphonon processes are helpful in gen-
erating steady-state heat flux, mainly due to the robustness of
the transition rates. However, in the strong coupling limit, the
large system-bath interaction weakens the transition rates due
to the quantum Zeno-like effect and, finally, suppresses the heat
flux. Hence, the nonmonotonic behavior of the dynamical heat
flux is clearly demonstrated. For geometric flux, increasing
the system-bath coupling strength will only monotonically
decrease the geometric heat flux, which implies that the
instantaneous state of the qubit is inclined to remain intact,
which is independent of temperature modulations, as we have
discussed above.

2. Biased condition: ε0 �= 0

Next, we analyze the geometric heat flux under finite energy
bias (ε0 �=0), as shown in Fig. 5(a). In the weak coupling limit,
the geometric heat flux is equal to that from the Redfield
scheme. The existence of coherence P10 is also crucial to
enhance the geometric-phase-induced heat flux, which is
similar to the unbiased case in Fig. 4. As the coupling strength
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FIG. 5. (a) Geometric-phase-induced heat pump Qgeom =
Jgeom × Tp under finite energy bias of the qubit (ε0 = 2.61 meV); (b)
influence of the qubit energy bias on the geometric-phase-induced
heat pump, with modulation of the two bath temperatures; (c) log-log
relation between ε0 and Qgeom in the strong coupling regime (α = 4);
(d) linear relation between Qgeom and α in the strong coupling regime.
Parameters are the same as in Fig. 4.

increases, the geometric heat flux decreases sharply and even
becomes negative. The corresponding coherence is strongly
suppressed, which leaves only the populations to contribute to
the geometric heat flux. Then the behavior of the geometric
heat flux is consistent with the result within the nonequilibrium
NIBA in the strong coupling regime [16]. As a result, we
conclude that the NE-PTRE is also applicable to unify limiting
coupling results beyond the unbiased condition.

Next, we turn to analyze the influence of the qubit energy
bias on the geometric heat pump in Fig. 5(b). In the weak
qubit-bath coupling regime (e.g., α = 0.01), the geometric
heat pump shows monotonic enhancement with an increase in
the energy bias. As the interaction strength is modulated to the
intermediate coupling regime (e.g., α = 0.2), the geometric
heat pump is also positively enhanced by the increasing
energy bias, which is similar to the counterpart in the weak
coupling case. If we further increase the coupling strength
(e.g., α = 4), the geometric heat pump becomes negatively
enhanced, which is quantitatively distinct from that in the
weak coupling regime. This observation clearly demonstrates
different physical pictures in these two limiting interaction
regimes.

We admit that it is beyond our ability to analytically provide
a comprehensive picture in a wide system-bath coupling
regime for the biased case. Here, to understand the geometric
heat flux reversal, we focus on the strong interaction limit,
which is consistent with the nonequilibrium NIBA framework.
Combined with the counting filed, the equation of motion for
the qubit is expressed as

d

dt

(
P

χ

11

P
χ

00

)
= −

(
K(ε0) −K−(χ )

−K+(χ ) K(−ε0)

)(
P

χ

11

P
χ

00

)
, (33)

with the population P
χ

ii = 〈i|ρ̂χ (t)|i〉. The transition rates are
given by

K±(χ ) = (�/2)2
∫ ∞

−∞
dtη2e±iε0t+QL(t)+QR (t−χ ), (34)

with K(±ε0) = K±(χ )|χ=0, η and Qv(t) given in Eq. (3) and
Eq. (8), respectively. Thus, the eigenstate energies are directly
obtained as

E±(χ ) = 1
2 {[K(ε0) + K(−ε0)]

±
√

[K(ε0) − K(−ε0)]2 + 4K+(χ )K−(χ )}. (35)

The corresponding right eigenstates are given by

|�±
χ 〉 = [2K−(χ ),A±(χ )]T , (36)

with the coefficients A±(χ ) = [K(ε0) − K(−ε0)] ∓√
[K(ε0) − K(−ε0)]2 + 4K+(χ )K−(χ ). Accordingly,

the left eigenstates are

〈�±
χ | = [2K+(χ ),A±(χ )]

A2±(χ ) + 4K+(χ )K−(χ )
. (37)

In the strong qubit-bath coupling limit, it is known that the
Marcus approximation becomes applicable [9,51]. Marcus’s
theory was originally proposed for the electron transfer
rate in the donor-acceptor species. And it works at high
temperatures kBT > ε0 and/or the strong qubit-bath coupling
regime [52]. It can be approached by the short-time expansion
of Qv(t) in Eq. (8) as Qv(t) = �vTv

ω2
c,v

− �vTvt
2 − i�vt [54], with

the effective coupling strength �v = ∫ Jv (ω)
πω

dω = 2αvωc,v .
Consequently, the transition rates combined with the counting
parameter are simplified as K±(χ ) = K(±ε0)M±(χ ), with the
standard rates

K(±ε0) = �2

4

√
π

�LTL + �RTR

exp

[
− (ε0∓�L∓�R)2

4(�LTL + �RTR)

]
(38)

and the factor

M±(χ ) = e
±iε0χ− �LTL�RTR

�LTL+�RTR
[iχ( 1

TL
+ ±ε0−�R

�RTR
)+χ2]

. (39)

In the absence of the counting field (χ = 0), the factor
M±(χ = 0) = 1, and the modified transition rates K±(χ )
decrease back to the standard expressions K(±ε0) in Eq. (38),
respectively. Moreover, we consider the weak qubit energy
bias regime, i.e., ε0 � {�v,kBTv}. Then the transition rate in
Eq. (38) can be approximately expanded up to first order of ε0

as

K(±ε0) ≈ K0

[
1± ε0

2(�LTL + �RTR)
(�L + �R)

]
, (40)

with K0 = �2

4

√
π

�LTL+�RTR
exp[− (�L+�R )2

4(�LTL+�RTR ) ]. According to
the definition in Eq. (32), the geometric-phase-induced heat
flux is obtained as

Jgeom = − ε2
0

Tp

∫∫
TL,TR

dTLdTR

�L�R(�L + �R)3

8(�LTL + �RTR)4
. (41)

This expression clearly confirms the reversal (negative) be-
havior of the heat flux in the strong coupling limit, shown in
Fig. 5(a). Moreover, the power-law feature of the energy bias
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is analytically exhibited in Eq. (41), which is in excellent
agreement with the numerical result as Jgeom∼ − ε2.0±0.02

0 ,
shown in Fig. 5(c). If the system-bath couplings are identically
selected as αL = αR = α, the geometric heat flux is expressed
as Jgeom∼ − αε2

0 based on Eq. (41), and numerically confirmed
in Fig. 5(d), which coincides with the numerical results in
Fig. 2 of Ref. [16], that Jgeom is linearly dependent on the
coupling strength α and quadratically dependent on the qubit
energy bias ε0.

V. CONCLUSION

In summary, we have investigated the geometric-phase-
induced heat pump in the nonequilibrium spin-boson model by
periodically modulating the temperatures of two thermal baths,
which is beyond the traditional Redfield and nonequilibrium
NIBA schemes. With the development of the nonequilibrium
polaron-transformed Redfield equation (NE-PTRE) approach
in the context of full counting statistics, the cumulant
generating function is clearly demonstrated; it consists of
both dynamical phase and geometric phase contributions.
In the absence of an external driving field, the influences
of qubit energy bias on the steady-state heat flux and the
corresponding noise power have been analyzed. In the weak
and moderate coupling regimes, the energy bias monotonically
enhances both the steady state heat flux and the noise power,
while in the strong coupling regime, these two observables
become independent of the energy bias. This clearly demon-
strates the same role of the energy bias in affecting the heat
flux and the noise power.

Next, we have analyzed the geometric heat pump without
bias by varying the qubit-bath coupling strength over a
wide regime. In the weak system-bath coupling limit, the
geometric heat flux is positive finite, which is equivalent to the
counterpart within the Redfield scheme [15]. As the coupling
strength increases, the geometric heat flux shows a monotonic
decrease and, finally, approaches strictly 0, which is identical
to the result based on the nonequilibrium NIBA [16]. We
have also studied the geometric heat pump under the biased
condition. We found that the geometric heat pump decreases
quickly as the qubit-bath coupling increases and shows
reversal behavior in the strong coupling regime. Moreover,
the analytical relations of the geometric heat flux with the
system-bath coupling and the energy bias have been obtained.
The results based on the NE-PTRE also show consistency
with the counterparts from the Redfield and nonequilibrium
NIBA schemes, in the weak and strong coupling regimes,
respectively.

Therefore, we conclude that this unified theory is applicable
to obtain the geometric heat flux in the nonequilibrium
spin-boson model, under both unbiased and biased conditions.
Moreover, we have analyzed the influence of the qubit energy
bias on the geometric heat pump. The geometric heat flux is
negatively enhanced in the strong qubit-bath coupling regime,
which is in sharp contrast with its counterpart in the weak
coupling case, exhibiting positive stabilization. We hope that
these results will have broad implications for smart control of
energy transfer in low-dimensional nanodevices.
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APPENDIX A: ANALYTICAL EXPRESSION OF THE
STEADY-STATE CUMULANT GENERATING FUNCTION

WITHOUT BIAS

Without bias (ε0 = 0), the Liouvillian dynamics of the
reduced density matrix in Eq. (19) under the framework of full
counting statistics is expressed as d

dt
|ρχ 〉 = −L̂χ |ρχ 〉, where

the evolution matrix is specified as

L̂χ =

⎛
⎜⎝

a −aχ bχ cχ

−aχ a cχ bχ

dχ eχ a fχ

eχ dχ fχ a

⎞
⎟⎠. (A1)

The matrix elements are written as aχ = X
χ
e + Yχ

2 , bχ =
− 1

2 (Xχ
o,+ + Xo,−), cχ = 1

2 (Xo,+ + X
χ
o,−), dχ = 1

2 (Xχ
o,+ −

Xo,−), eχ = 1
2 (Xo,+ − X

χ
o,−), fχ = −X

χ
e + Yχ

2 , and a =
aχ |χ=0, with the coefficients

Xχ
e = �

χ
e,+(0) + �

χ
e,−(0), (A2)

Yχ = �
χ
o,+(�) + �

χ
o,+(−�) + �

χ
o,−(�) + �

χ
o,−(−�), (A3)

X
χ
o,± = �

χ
o,±(�) − �

χ
o,±(−�), (A4)

and Xo,± = X
χ
o,±|χ=0. The modified transition rates �

χ

e(o)(ω)
are shown in Eq. (16).

To find the eigenvalues of the evolution matrix, we set
det(Lχ − λI) = 0, which results in

(a − λ)2 = (aχfχ + bχdχ + cχeχ )

± [(aχ − fχ )(a − λ) + (cχdχ + bχeχ )]. (A5)

For one branch, the solution is given by

λ
p
± = (Xe − Xχ

e

)+ Y

2

∓
√

Y 2
χ − (Xχ

o,+ − X
χ
o,−
)2 + (Xo,+ − Xo,−)2/2, (A6)

and for the other branch, it is given by

λm
± = (Xe + Xχ

e

)+ Y

2

∓
√

Y 2
χ − (Xχ

o,+ + X
χ
o,−
)2 + (Xo,+ + Xo,−)2/2. (A7)

Hence, the ground-state energy is obtained as E0(χ ) = λ
p
+.

Since the cumulant generating function is given by Gχ =
−E0(χ ), it is specified as

Gχ = (Xχ
e − Xe

)− Y

2
+
√

Y 2
χ − (Xχ

o )2 + (Xo)2/2, (A8)

with X
χ
o = X

χ
o,+ − X

χ
o,− and Xo = X

χ
o |χ=0.
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APPENDIX B: INTRODUCTION OF THE GEOMETRIC
PHASE AND CUMULANT GENERATING FUNCTION

Considering the time-dependent superoperator L̂χ (t) with
the counting parameter, which is not Hermitian, we obtain the
quasi-eigensolution as

L̂χ (t)|ψn(χ,t)〉 = En(χ,t)|ψn(χ,t)〉,
〈φn(χ,t)|L̂χ (t) = 〈φn(χ,t)|En(χ,t), (B1)

where λn(χ,t) is the instantaneous eigenvalue of L̂χ (t),
and |ψn(χ,t)〉 (〈φn(χ,t)|) is the corresponding normal-
ized right (left) eigenvector, which obeys the relation
〈φn(χ,t)|ψn(χ,t)〉 = δn,m. In analogy with the seminal Berry’s
solution, we can express the wave function in the basis
{|ψn(χ,t)} as

|ρχ (t)〉 =
∑

n

an(t) exp

[
−
∫ t

0
En(χ,τ )dτ

]
|ψn(χ,t)〉. (B2)

By substituting Eq. (B2) into the dynamical equation, (19), we
obtain the evolution equation of an(t):∑

n

dan(t)

dt
exp

[
−
∫ t

0
En(χ,τ )dτ

]
|ψn(χ,t)〉

= −
∑

n

an(t) exp

[
−
∫ t

0
En(χ,τ )dτ

]∣∣∣∣ d

dt
ψn(χ,t)

〉
. (B3)

Then, by left-multiplying the eigenvector 〈φm(χ,t)| by
Eq. (B3), we find that

dam(t)

dt
= −am(t)

〈
φm(χ,t)

∣∣∣∣ d

dt
ψm(χ,t)

〉

−
∑
n�=m

an(t) exp

(
−
∫ t

0
[En(χ,τ ) − Em(χ,τ )]dτ

)

×
〈
φm(χ,t)

∣∣∣∣ d

dt
ψn(χ,t)

〉
. (B4)

It should be noted that the eigenvalue En(χ,t) generally is a
complex value. Hence, the long-time behavior of the reduced
qubit system is mastered by only the eigenmode m = 0, of
which the eigenvalue E0(χ,t) owns the smallest real part.

In the adiabatic limit, the second term on the right-hand
side of Eq. (B4) can be approximately ignored due to the de-
cay factor exp(− ∫ t

0 [En(χ,τ ) − E0(χ,τ )]dτ ) (Re[En(χ,τ ) −
E0(χ,τ )] > 0 for n�=0). We obtain the expression of an(t) after
long-time evolution (t→∞) as

a0(t) = exp

(
−
∫ t

0

〈
φ0(χ,τ )

∣∣∣∣ d

dτ
ψ0(χ,τ )

〉
dτ

)
a0(0), (B5)

with a0(0) the initial-state coefficient. Then, if we consider the
adiabatic cyclic evolution over a long time period Tp, the wave
function can be specified as

|ρχ (t)〉 = exp

(
− t

Tp

∫ Tp

0
dτ

[
E0(χ,τ )

+
〈
φ0(χ,τ )

∣∣∣∣ d

dτ
ψ0(χ,τ )

〉])
a0(0)|ρχ (0)〉. (B6)

Consequently, the generating function can be obtained as

Zχ (t) = 〈I|ρχ (t)〉

≈ exp

(
− t

Tp

∫ Tp

0
dτ

[
E0(χ,τ )

+
〈
φ0(χ,τ )| d

dτ
ψ0(χ,τ )

〉])
a0(0)〈I|ρχ (0)〉. (B7)

Finally, the cumulant generating function in the long-time limit
can be described by two contributing terms as

G(χ ) = lim
t→∞

lnZχ (t)

t
= Gdyn(χ ) + Ggeom(χ ), (B8)

and the factor limt→∞ 1
t

ln(a0(0)〈I|ρχ (0)〉) becomes neg-
ligible. Here, Gdyn(χ ) is the dynamical phase factor,

written as Gdyn(χ ) = − 1
Tp

∫ Tp

0 E0(χ,τ )dτ , while Gdyn(χ )
originates from the geometric phase contribution, writ-
ten as Ggeom(χ ) = − 1

Tp

∫ Tp

0 〈φ0(χ,τ )| d
dτ

ψ0(χ,τ )〉dτ . In the
text, we use |�χ (t)〉(〈�χ (t)|) in Eq. (29) to replace
|ψ0(χ,t)〉(〈φ0(χ,t)|). The geometric-phase-induced cumulant
generating function is reexpressed as

Ggeom(χ ) = − 1

Tp

∫ Tp

0

〈
�χ (τ )

∣∣∣∣ d

dτ
�χ (τ )

〉
dτ. (B9)
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