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Abstract

Despite extensive research on visual query systems, the standard way to interact with re-

lational databases remains to be through SQL queries and tailored form interfaces. This

makes the power of relational databases largely inaccessible to non-programmers. This

thesis proposes a solution, in two parts.

The first contribution of this thesis is a solution to the visual query language prob-

lem, that is, the problem of letting end users construct arbitrary database queries through

a graphical user interface. We propose the first visual query language to simultaneously

satisfy three requirements: (1) query specification through direct manipulation of results,

(2) the ability to view and modify any part of the current query without departing from the

direct manipulation interface, and (3) SQL-like expressiveness. By directly manipulating

nested relational results, and using spreadsheet idioms such as formulas and filters, the user

can express arbitrary SQL-92 queries while always remaining able to track and modify the

state of the complete query.

The second contribution of this thesis is an algorithm for automatically formatting

nested relational data using the traditional visual idioms of hand-designed database UIs:

tables, multi-column forms, and outline-style indented lists. The algorithm plugs directly

into the output stage of our visual query language, and produces the concrete graphics that

the user sees and manipulates on the screen during query construction. The algorithm elim-

inates the need for an application developer to specify low-level presentation details such

as label placements, text field dimensions, table column widths, and list styles.

Our prototype visual query system gives the user an experience of responsive, incre-

mental query building while pushing all actual query processing to the database layer. We

evaluate the query building aspects of our system with formative and controlled user studies

on a total of 28 spreadsheet users. The controlled study shows our system outperforming

Microsoft Access by 18 points on the System Usability Scale [17]; this corresponds to a 46

percentage point difference on a percentile scale of other studies in the Business Software

category. We also evaluate the different layouts that can be produced by our automatic

layout algorithm, including via an online user study on 27 subjects.

Thesis Supervisor: David R. Karger

Title: Professor
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Chapter 1

Introduction

1.1 Querying for Non-Programmers

Emilia Díaz-Struck is an investigative journalist who, in 2012, was writing a story on

lobbying in the US ethanol biofuel industry [36]. Corporations with lobbying expendi-

tures are required by law to report all such expenditures, along with a wealth of related

information, and this data is published by The Center for Responsive Politics1 in the form

of a relational database. A key goal for our journalist was to combine the data in the latter

database with data from her own research, in order to answer quantitative questions relating

to her story.

Relational databases do not come with a graphical user interface. They are primarily

a tool for programmers, and for those in other professions who have had the time and

technical inclination to learn the query language SQL. This presented a problem for our

journalist: while she was well-versed in Excel, she had no experience with SQL. How,

then, could she perform the various complex database queries she had in mind? As the

system described in this thesis had not yet been finished, the solution was to team up with

a programmer (yours truly), who would type SQL queries while the journalist stood over

his shoulders asking questions of the data.

Hiring a programmer is not an elegant solution to the problem of letting non-

programmers interact with databases. This thesis will present an alternative—a new

kind of graphical query interface, called SIEUFERD, that has the power of SQL but the

ease-of-use of a spreadsheet. We will start this thesis by showing an example interactive

query building session in the SIEUFERD system, based on one of the many queries our

journalist needed to construct in order to collect data for her story.

1.1.1 An Example Session in the SIEUFERD Query Builder Interface

The user (our journalist) has compiled, in the table plants_os, a list of major ethanol

producers2, and would like to find the total lobbying expenditures of each. Another ta-

ble, lobbying, contains quarterly lobbying reports from US corporations in the years 1998

1https://www.opensecrets.org
2Renewable Fuels Association/Maple Etanol SRL (2012)

15

https://www.opensecrets.org


through 2012 (727,927 tuples)3.

Base table. The user starts by opening the table of ethanol producers as a template for

the new query:

Join. To add another table to the query, the user selects the column or columns to join

on and invokes the Join action from the context menu. This opens a dialog box for selecting

the table to join with, in this case lobbying, and for selecting the corresponding columns

from the latter to be matched in an equijoin constraint. The user joins the plants_os and

lobbying tables on the company and ultorg fields, respectively:

In cases where the database defines explicit foreign key relationships between tables,

use of the above Join dialog is unnecessary; instead, all available joins are available as

hidden relations in the field selector. The effect is a schema navigation capability analogous

to that of QBB [84], AppForge [108], and App2You [66].

3The Center for Responsive Politics (2012)

https://www.opensecrets.org
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Hide fields. After the join, a lot of columns are shown, so the user selects a few of them

and invokes the Hide action:

It is now easier to get a sense of the data. We have a new child relation field, called

lobbying, containing the lobbying reports for each company:

We see the first three of the companies from the plants_os table, and, for each company,

their lobbying reports. The one-to-many icon ( ) on lobbying indicates that each company

may have more than one lobbying report. The ultorg field of the lobbying table, which we

joined on, was automatically hidden by the Join action, because the equijoin constraint

makes it redundant with respect to the company field.

Sort. The user decides to sort the lobbying reports for each company most-recent-first,

invoking the Sort Descending action on the lyear field and then invoking the Sort De-

scending after Previous action on the ltype field. This sorts individual lobbying relations

by year ( ) and then by quarter ( 2):
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Aggregate formula. The user would now like to calculate a total lobbying amount for

each company. She invokes the Insert Calculated Field After action to insert a calculated

field ( ) next to the company field, and enters the name Sum of Amounts in the new col-

umn’s label cell. She then moves the cursor to one of the column’s value cells, and enters

a sum formula, clicking the amount column to insert the column reference:

Unlike in a spreadsheet, there is no need to “drag down” the sum formula; it is always

evaluated once for each tuple in plants_os, its parent relation. During formula editing,

our user interface communicates the all-column behavior of formulas by highlighting the

entire column of the calculated field as well as of its referenced fields. The highlight also

varies, depending on the location of the cursor, to indicate which tuples contribute to a

particular calculated value. As in a spreadsheet, formula references are color-coded to

show the correspondence between reference tokens in the formula string and the values

they reference elsewhere in the result area. New references can be inserted into the edited

formula by clicking anywhere in the column of the target field, or by moving the cell cursor

with the arrow keys, as in Excel. Thus, even the textual entry of arithmetic expressions can

be done through some degree of direct manipulation.

Scalar formula. Reported lobbying amounts come from different years, some going

back to 1998. The user would like to calculate inflation-corrected totals. A separate table

cpi contains yearly Consumer Price Index values normalized for 2012. The user performs

another Join, this time between lobbying and cpi, on the lyear and cyear fields, respectively.

This brings the cpiv value for each lobbying report’s year into the nested result. The user

then adds another calculated field, this time under the same relation as the existing amount

field, and enters a formula that calculates the inflation-adjusted amount for each report. We

here have a useful example of an inward formula reference (to cpiv) that is not enclosed in

an aggregate function:
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The cpi relation does not display the one-to-many icon ( ), as this relation was joined

on its instantiated table’s primary key and our system thus deduced that at most a single

tuple would exist in cpi for each parent tuple in lobbying. A new inflation-adjusted total can

now be added as a calculated field at the plants_os level, shown adjacent to the existing

non-adjusted sum:

Filter. Lobbying reports may sometimes be amended, in which case the superseded

reports should be excluded from totals to avoid double counting. The user can look for

superseded reports by invoking the Filter action on the luse field and selecting the value n:
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The user sees that there are superseded reports in the database with non-zero dollar

amounts, and inverts the filter to exclude them.

Select fields. The user now decides to hide the individual reports altogether and instead

reintroduce some of the fields that were hidden from the plants_os relation before, using

the field selector:

Final touches. The user edits the field labels to make them a bit more readable, and

sorts the companies by their lobbying totals. The underlying SQL column names can still

be seen in the field selector. The user also enables a formatting option on the last column

to produce a bar chart visualization. The result now looks presentable:
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While the lobbying relation that feeds into the aggregate formula is now hidden, the user

could easily make it visible again from the field selector, like she did for the previously

hidden Plants and Feedstock fields. There are also shortcuts for unhiding hidden fields

referenced from the formula, or the hidden filter, indicated by the dashed cell icons ( ).

We have just shown how a complex database query can be constructed entirely by

interacting directly with the data in the database, much like in a spreadsheet. As will

be shown in user studies (Chapter 3), the concepts involved can be learned in under an

hour, making our tool a realistic alternative to learning SQL for non-programmers like our

journalist.

1.2 Background

Modern relational database management systems (relational databases), embodied in com-

mercial products such as Oracle, IBM DB2, and Microsoft SQL Server, as well as open

source projects such as PostgreSQL, MySQL, and SQLite, owe their heritage to Edgar

Codd’s relational data model [33] from 1970 and the subsequent early implementations

INGRES [48] at Berkeley and System R [7] at IBM Research, both in development by

1975. In 1984, the Great Debate over data models that had raged in academic circles

was settled, by decree of IBM, in favor of the relational model and the query language

SQL [101]. Three decades later, relational databases are now firmly established as a uni-

versal backend for persistence and query processing, with SQL fulfilling the role, in the

words of Michael Stonebraker, as “intergalactic data-speak” [35].

The persistence and query processing facilities provided by a relational database form

only the bottom level of the software application stack. From the earliest days of relational

database research, it was recognized that textual query languages such as QUEL and

SEQUEL (later SQL), while useful in application development, would not by themselves

serve as an effective user interface for non-programmers. Starting with CUPID [75] and

Query-by-Example [111], again from Berkeley and IBM Research in the mid-70s, the

subfield of visual query systems began to grow in parallel with the more storage- and
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Figure 1-1: An estimate of the number of publications in the research area of visual query

systems, since 1975. The vertical bars show the number of papers per year, while the line

shows the cumulative number of papers after each year. Based on a subset of references

in surveys by Catarci et al. [22], El-Mahgary and Soisalon-Soininen [37], and Bakke and

Karger [9].

performance-oriented research on relational databases. Whereas a relational database

serves as an application’s back-end, a visual query system is concerned with its front-end,

that is, the user interface (UI). The purpose of a visual query system is to provide end

users with a friendly, graphical way to express database queries, ideally permitting the

construction of any query that can be expressed in the underlying textual language (e.g.

SQL). Researchers also use the term visual query language to refer to the specific visual

grammar and semantics that is implemented by a visual query system [22].

Since, today, any off-the-shelf relational database can be used as a backend for new

applications, relational databases can be considered a solved research problem. The same

can not be said about visual query systems. Four decades after Query-by-Example, tech-

nical users still interact with relational data through hand-coded SQL, while non-technical

users rely on restrictive form- and report-based interfaces tailored, at great cost, for their

specific database schema [67, 56, 8]. Queries that involve “complex aggregates, nesting,

correlation, and several other features remain on a tall pedestal approachable only by the

initiated” [51]. Simple report queries traversing one-to-many relationships in the database

schema, such as retrieving “a list of parts, and for each part a list of suppliers and a list

of open orders”, are painful to define for programmers and largely inaccessible to end

users [10].

The absence of a definitive solution to the visual query language problem is not for a

lack of research. Since 1998, a new paper has been published on the topic roughly every

80 days on average. The preceding decade saw even more publications, accompanying the

general rise of Graphical User Interfaces in industry. See our informal tally in Figure 1-
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Figure 1-2: The stereotypical user interface of a tailored CRUD-style database application.

Screenshots from an administration system for public Norwegian music schools.

1. The current state of database usability is described well by Jagadish et al. [54] as well

as in interview studies done among business analysts [61] and nonprofits [106]. The 2016

Beckman Report on Database Research affirms the continued need for a query interface that

allows users to consume data without resorting to SQL [1]. This thesis aims to solve the

latter problem. Before explaining our specific approach, we will discuss the main classes

of graphical database user interfaces in use today.

1.3 User Interfaces for Databases

1.3.1 Tailored CRUD Applications

A large class of domain-specific software applications serves chiefly to provide a graphical

user interface to some underlying relational database. These applications allow the user to

perform basic Create, Read, Update, and Delete (CRUD) operations on data in the database

as well as perform a range of pre-selected query and reporting tasks. While the particular

user interfaces of CRUD-style database applications invariably differ from one schema to

another, their basic structure have remained the same since the early days of graphical user

interfaces. This structure, popularized by developer tools such as 4th Dimension4 (1984),

FileMaker5 (1985), and Microsoft Access6 (1992), is illustrated in Figure 1-2. The user

retrieves records using a search form, views results in a table view, and edits or views the

4http://www.4d.com
5http://www.filemaker.com
6http://office.microsoft.com/access
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Figure 1-3: Entity-Relationship diagram of the schema for an academic course manage-

ment database.

details of individual entities in a form view. Queries that cannot be expressed through the

use of a search form are instead made available as read-only reports, which are hard-coded

by the application developer.

A typical relational database schema defines numerous tables (relations) in order to

model real-world entities and the relationships between them. An example is an academic

course management system shown in Figure 1-3, illustrated using an Entity-Relationship

(ER) diagram [26]. Here, each course can have any number of readings in its reading list,

and be associated with any number of sections (lectures, recitations, etc.). Each section

can be associated in turn with any number of instructors or meetings. We call these

one-to-many relationships. In addition to each section being associated with any number

of instructors, each instructor can be associated with any number of sections. A rela-

tionship that is one-to-many in both directions, like this one, is known as many-to-many.

A typical relational database has one table per entity set plus one extra table per many-to-

many relationship set (e.g. instructor_section_assignments). This organization prevents

data from being stored redundantly, following the rules of relational database normaliza-

tion [64].

Two aspects of the standard CRUD-style user interfaces are crucial for allowing the

user to manage relationships between entities in the database. First, they can provide the

user with many different views of the data, with each view potentially combining data from

multiple tables in the database. Second, these interfaces are not restricted to simple tabular

views, but can expose relationships in a nested fashion. For instance, a form view for

a single entity can itself contain tab rows or miniature table views to represent multiple,

independent sets of entities related to the main entity through one-to-many relationships.

Note that in tailored, domain-specific applications, views are hard-coded by a developer
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for the particular schema in question. Continuing the course catalog example, a tailored

CRUD interface might expose many different views of the underlying data, such as “a list

of sections by instructors, each section showing its associated course,” or “a list of courses,

each course showing its reading list, grading scheme, and sections, each section showing

its meetings and assigned instructors.”

The data in a nested view can be represented in any tree-structured data model; com-

mon ones include the nested relational data model [53, 68], XML, and JSON. Korth and

Roth [65] provide an early explanation of why nested relations are a good data model for

representing forms in a database application.

While tailored database user interfaces may do their job and, in fact, be of great value to

their target user base, they have a number of drawbacks compared to more general-purpose

software:

• The software development costs per user is high, since the target market for any given

domain-specific schema is small.

• Since fewer development resources are available, tailored applications seldom reach

the same level of functional maturity as more general-purpose ones. Features that

are taken for granted in general-purpose applications may never be implemented for

tailored ones, because the development time would not be justified for the size of the

user base. Examples include undo/redo, keyboard shortcuts, drag-and-drop, accessi-

bility, and support for international character sets.

• Complex applications with smaller deployments and fewer developers are likely have

more unreported and open bugs.

• Tailored applications require users to go through a new learning period, and may

require expensive training.

• With a gap between users and developers, and with application and user interface

code that is tightly integrated with the particular structure of the database schema,

users are not fully in control of their data. It is difficult or impossible for end-users

to import data from or export data to other sources, and changing the schema in even

minor ways can be a major undertaking.

1.3.2 Spreadsheets

When the effort required to either adopt or develop a new domain-specific database appli-

cation is too high, information workers instead turn to a general and more familiar tool: the

spreadsheet. One survey [82] shows that “sorting and database facilities” are the most com-

monly used spreadsheet features, with 70% of business professionals using them on a fre-

quent or occasional basis. In contrast, less than half use “tabulation and summary measures

such as averages/totals”—one of the design goals of the original VisiCalc spreadsheet—or

more advanced features. Furthermore, spreadsheet users “shun enterprise solutions” [87]

and “do not appear inclined to use other software packages for their tasks, even if these
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packages might be more suitable” [24]. “Export to Excel”, the joke goes, “is the third most

common button in data and business intelligence apps... after OK and Cancel”7.

Shneiderman [92] attributes the usability of the spreadsheet to its nature as a

direct manipulation interface. The properties of such an interface include “visibility of the

object of interest”, “rapid, reversible, incremental actions”, and “replacement of complex

command language syntax by direct manipulation of the object of interest”. Shneiderman

paraphrases Harold Thimbleby: “The display should indicate a complete image of what

the current status is, what errors have occurred, and what actions are appropriate.” The

concept of direct manipulation is central to the visual query system presented in this

thesis. The direct manipulation aspects of our own interface will be discussed in detail in

Chapter 3.

Besides its nature as a direct manipulation interface, the spreadsheet, and Microsoft

Excel in particular, affords a large range of streamlined facilities for working with any data

that can be arranged in a grid of cells, including multiple selection, copy/paste, find/replace,

undo/redo, inserting and deleting, extending data values, sorting and filtering on arbitrary

fields, navigating and selecting cells with the keyboard, and so on. For reasons explained

before, tailored database user interfaces seldom reach this level of sophistication. When it

comes to general editing tasks on tabular data, spreadsheet systems have an advantage even

over most tailored applications.

While spreadsheets are great for managing data which can naturally be modeled as a

single table of data, they are less than ideal for database tasks, which tend to involve a

multitude of entity types and relationships between them. Because traditional spreadsheet

UIs provide no easy way to create joined views of related tables, it becomes impractical

to follow good practices of schema normalization, which call for tables of redundantly

represented data to be decomposed into multiple smaller ones. This in turn exposes all

the usual problems associated with managing improperly normalized data, i.e. insertion,

update, and deletion anomalies [64].

We previously mentioned the importance of nested views as a way to present rela-

tionships between entities in tailored database user interfaces. Nested views can often be

represented in spreadsheets using clever formatting tricks, e.g. indentation, skipped cells,

or comma-separated lists. This strategy does not scale well. Besides being hard to gen-

eralize, such views would have to be manually created and, if more than one view of the

same data is desired, kept in sync with the original data. This is infeasible if data changes

often, if there are many views, or there are multiple users. Furthermore, when the data rep-

resentation deviates from a simple tabular format, key spreadsheet features such as sorting,

inserting, charting, filtering, or even simple navigation between individual units of data

become hard or impossible to apply correctly. A recent empirical study [89] discusses ad-

ditional problems that arise when organizations use spreadsheets as information systems.

Extensive literature also exists on the broader topic of errors in spreadsheets [85, 80].

7http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is
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1.3.3 Business Intelligence Tools

A number of visual query systems exist in the commercial marketplace, often marketed

under the umbrella term of Business Intelligence (BI) software. A survey of such products

is done regularly by Gartner8. Unlike tailored CRUD applications, BI tools tends to be

designed as general-purpose software that can be made to work with any existing database

instance. And unlike spreadsheets, BI tools let the user define new queries on existing data,

without altering the underlying data. In fact, BI tools are usually considered read-only, and

thus fulfill different organizational needs than CRUD applications.

Subcategories of visual query systems in the Business Intelligence category include

report generators, focused on batch creation of custom-formatted documents from data

in a database, and visualization tools, focused on interactive exploration of data through

diagrams and plotted graphics. Report generator products have been surveyed by Król [67];

examples include Crystal Reports9 and Cognos10. Visualization products include Spotfire11

and Tableau12, both which sprung out of their respective founders’ PhD projects [5, 4, 98,

100].

While report generators may provide facilities for producing graphs and charts, their

primary use case is for text-based data presentations. Even in Król’s case study, which was

done in the context of a geographical information system, only 3 out of 117 reports con-

tained a map visualization, with those reports receiving little actual usage [67]. That said,

report generators can typically be used to produce a broader class of text-based data rep-

resentations than visualization tools, including support for elements such as tables, forms,

paragraphs, and bullet lists. These are the same kinds of visual layouts that are dominant

in tailored CRUD applications, and developers of the latter will often use report generators

to develop read-only portions of the application. Note that the generation of layouts in a

report generator is seldom fully automatic. A developer using a report generator to produce

complex form-like views, for instance, will spend a significant amount of time dealing with

low-level presentation details such as label placements, text field dimensions, table column

widths, and list styles. One contribution of this thesis is an algorithm that fully automates

the design of such layouts.

We have yet to see a Business Intelligence product that successfully enables even ad-

vanced spreadsheet users to express arbitrary database queries without learning SQL. Like

Liu and Jagadish [71], we believe this to be due to the hard user interface design problem of

providing high expressiveness without violating the rules of direct manipulation. In partic-

ular, previous direct manipulation systems either sacrifice expressiveness or hide the actual

query from the user. We will examine and solve this problem in Chapter 3.

8Gartner’s Magic Quadrant for Business Intelligence and Analytics Platforms

https://www.gartner.com/doc/reprints?id=1-2XXET8P&ct=160204
9http://www.crystalreports.com

10http://www.ibm.com/analytics/us/en/technology/cognos-software
11http://spotfire.tibco.com
12http://www.tableau.com
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1.4 Contributions

1.4.1 A Visual Query Language

The first contribution of this thesis is a solution to the visual query language problem.

Following the requirements articulated by Liu and Jagadish [71], we present the first visual

query language to support both the specification and subsequent modification of arbitrary

SQL queries from within a pure direct manipulation interface. Specifically, our visual

language is the first to meet all of the following requirements:

R1. Query specification through direct manipulation of results. The user should build

queries incrementally through a sequence of operations performed directly on the

data in the database, as seen through the result of each progressively refined visual

query [71].

R2. The ability to view and modify any part of the current query, including operations

performed many steps earlier, without redoing subsequent steps or departing from the

direct manipulation interface. [71]

R3. SQL-like expressiveness from within the direct manipulation interface. A minimum

requirement is for the visual language to be relationally complete [32] as well as to

support aggregation in arbitrary multi-block queries. Our own visual language covers

a larger set of operators, sufficient to express any SELECT statement valid in SQL-92.

Our solution is based on the idea of combining the query and its result into a single

spreadsheet-like visual representation. Liu and Jagadish attempted a similar approach, but

encountered several problems—“points of non-commutativity”, “where to store and display

the result of [aggregations]”, and limited expressiveness (single-block queries only). We

believe that such problems are a consequence of attempting to map query expressions,

which may be nested in nature, onto a flat result set. For instance, SQL queries may contain

arbitrarily nested SELECT clauses, performing new aggregations at each level, even though

the final output is always a simple flat table of results.

Our own visual query language solves the problem of mapping query expres-

sions to query results by extending the data model of results such that queries may

return nested results. Specifically, we allow queries to produce results from the

nested relational data model [53, 68]. The use of nested results affords a natural

visualization of operations such as joins and aggregation, and allows the user to see, in

context, intermediate tuples produced in any part of the query. In the ethanol lobbying

example, the user could choose to see not only the total lobbying expenditures for each

company, but also the complete list of lobbying reports that contributed to each total,

including the inflation correction calculations that were done at the level of each individual

report, and the filters that were used to exclude certain reports.

In our user interface, the user will always be looking at the nested relational result of the

visual query currently being built, formatted using a nested table layout. See Figure 1-4.

All query manipulation actions are initiated from the result layout, satisfying requirement

R1. In a nested table layout, the table’s header area visually encodes the schema of the
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Figure 1-4: Visual specification of a database query in a spreadsheet-like environment.

The query structure is encoded in the table header, which shows three joined table in-

stances (bold labels), one-to-many relationships ( ), sorting ( ), active filters ( , ),

and a formula ( ). Formulas can be edited either directly in cells or through a formula bar.

nested result, including which fields are nested under others in the nested data model. Be-

cause our system maps all query-related state to specific fields in the result schema, the

result’s table header simultaneously becomes a visual representation of the query that gen-

erated it. The user can then manipulate any part of the query by initiating an action on the

corresponding field in the result layout, satisfying requirement R2. By directly manipulat-

ing nested relational results, and using spreadsheet idioms such as formulas and filters, the

user can express a relationally complete set of query operators plus calculation, aggrega-

tion, outer joins, sorting, and nesting, satisfying requirement R3, while always remaining

able to track and modify the state of the complete query.

1.4.2 Automatic Formatting of Query Results

The second contribution of this thesis is an algorithm for automatically formatting nested

relational data into table-, form-, and report-style layouts. The algorithm plugs directly into

the output stage of our visual query language, and produces the concrete graphics that the

user sees and manipulates on the screen during query construction. The combination of our

visual query language with our automatic layout algorithm yields a powerful direct manip-

ulation interface in which the user can quickly produce any of the views typically found

in tailored CRUD applications. This eliminates the need for an application developer to

specify low-level presentation details such as label placements, text field dimensions, table

column widths, and list styles, as well as the need for custom code for populating each

view with data from the database. Furthermore, generated layouts automatically support
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interaction features such as multiple selection, cursor movement by mouse or keyboard,

“frozen” headers during scrolling, context menus, in-place editing of formulas and field

labels, undo/redo, error highlighting, and infinite scrolling. Each of these features would

require a significant development effort if implemented in the context of a tailored applica-

tion.

Layouts produced by our formatting algorithm are hybrids between two existing types

of layouts: outline layouts and nested table layouts. See Figure 1-5. The outline layout

stacks both tuples and fields vertically in an indented bullet list. The basic hybrid lay-

out replaces the outline layout with a nested table layout for specific relation fields in the

schema, wherever such replacement can be done without making the layout too wide for

the available screen or page size. This leads to more compact layouts without introducing

horizontal scrolling. Finally, our algorithm reclaims additional wasted space by allowing

narrow fields in the outline layout to be stacked in columns. The ideal placement of column

breaks, as well as the decision to use an outline or table layout for a given relation field, is

done using an idealized layout produced using average lengths of each field.

1.4.3 Prototype Implementation

Our prototype visual query system, called SIEUFERD (pronounced soy-fird), gives the user

an experience of responsive, incremental query building while pushing all actual query pro-

cessing to the database layer. We evaluate the query building aspects of our system with

formative and controlled user studies on a total of 28 spreadsheet users. The controlled

study shows our system outperforming Microsoft Access by 18 points on the System Us-

ability Scale [17]; this corresponds to a 46 percentage point difference on a percentile scale

of other studies in the Business Software category. We also evaluate the different layouts

that can be produced by our automatic layout algorithm, including via an online user study

on 27 subjects.

In our current implementation, all views generated by our system are read-only. In the

future, we hope to incorporate editing of data; the semantics of our visual query language

are already well-suited for producing updatable views. This would allow SIEUFERD to act

as a general-purpose (schema-independent) replacement for tailored CRUD applications.

1.5 Thesis Organization

Chapter 2 reviews previous work related to the two main contributions of this thesis, our

visual query language and the algorithm for automatic formatting of query results. We

evaluate the most relevant past systems according to the three requirements for visual query

languages that were laid out in the previous section.

Chapter 3 presents our visual query language and the specific structure of queries in our

language, defined by the SIEUFERD query model. We describe two user studies done to

evaluate the usability of our system.

Chapter 4 describes the internal representation of the SIEUFERD query model, and the

mapping of operations in the user interface to modifications on the query model. We show

how SQL queries are generated from an instance of the query model. We demonstrate
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• Course Listings

GEO 207

AST 207

Dept. Number

Title A Guided Tour of the Solar System

Description This course examines the major bodies of our solar 
system, emphasizing their surface features, internal 
structures, and atmospheres. Topics include the origin 
of the solar system, habitability of planets, and role of 
impacts in planetary evolution. Terrestrial and giant 
planets will be studied as well as satellites, comets, 
and asteroids. Recent discoveries from planetary 
missions are emphasized. The course is aimed 
primarily at non-science majors.

Max. Enrollment 140

May Audit? Y

Website  

Final Exam Type Final

Grading

MidTerm Exam 20

Quizzes 10

Final Exam 20

Precept Participation 10

Other Exam 20

Problem Set(s) 20

Title Perc.

Sample Reading 
List Morrow and Owen The Planetary System

Bennett et al. The Cosmic Perspective

Consolmagno and Schaefer Worlds Apart: A Textbook in Planetary Science

Beatty et al. The New Solar System

Author Name Title

Sections

L 01 11:00:00 11:50:00 GUYOT 10 M

W

F

Thomas S. Duffy

P 01 13:30:00 14:20:00 GUYOT 155 T Thomas S. Duffy

Nicole K Gotberg

Mark A. Miller

P 03 15:30:00 16:20:00 GUYOT 154 W Thomas S. Duffy

Nicole K Gotberg

Mark A. Miller

P 04 19:00:00 19:50:00 GUYOT 154 W Nicole K Gotberg

Mark A. Miller

P 05 11:00:00 11:50:00 GUYOT 154 Th Nicole K Gotberg

Mark A. Miller

Format Number Meetings

Beg. 
Time

End 
Time

Place Days

Day

Instructors

First Middle Last

• Course Listings

CEE 471

GEO 471

Dept. Number

Title Introduction to Water Pollution Technology

Description An introduction to the science of water quality 
management and pollution control in natural systems; 
fundamentals of biological and chemical 
transformations in natural waters; indentification of 
sources of pollution; water and wastewater treatment 
methods; fundamentals of water quality modeling.

Max. Enrollment 58

May Audit? Y

Website  

Final Exam Type Other

Grading

Design Project(s) 33

Quizzes 66

Other (See Instructor) 1

Title Perc.

Sample Reading 
List Tchobanoglous & Schroeder Water Quality

Eckenfelder Principles of Water Quality Management

Metcalf & Eddy Wastewater Engineering

Sawyer & McCarty Chemistry for Environmental Engineers

Author Name Title

Sections

L 01 09:30:00 10:50:00 FRIEN 008 T

Th

Peter R. Jaffe

Jeffery Scott Paull

Format Number Meetings

Beg. 
Time

End 
Time

Place Days

Day

Instructors

First Middle Last

• Course Listings Dept. Number Max. Enrollment 40

Figure 1-5: Example hybrid outline/table layout produced by our layout generation algo-

rithm. Magnification of Figure 5-1(e).
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the expressiveness of the query model by defining a translation from an arbitrary SQL-92

query, via an extended relational algebra, to a corresponding query in the SIEUFERD query

model.

Chapter 5 presents our algorithm for automatic formatting of query results from our

visual query system into table-, form-, and report-style output displays. We evaluate our

algorithm based on the space efficiency of output layouts, on performance, and on read-

ability.

Chapter 6 discusses the extent to which our system solves the problems mentioned in

this introduction, discusses future work, and summarizes our contributions.

This thesis includes material previously published at SIGMOD ’16 [9] (Chapters 2

and 3), InfoVis ’13 [9] (Chapters 2 and 5), and for this introduction, CHI ’11 [10] and

CIDR ’11 [8]. All thesis content is by the author.
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Chapter 2

Related Work

We now review previous work related to the two main contributions of this thesis, our visual

query language and the algorithm for automatic formatting of query results.

2.1 Visual Query Systems

Visual query systems have been surveyed by Catarci et al. [22] and, recently, El-Mahgary

and Soisalon-Soininen [37]. Systems discussed in this section include, in particular, those

that employ direct manipulation, nested results, or optimizations for traversing relation-

ships in the database. We omit systems that rely entirely on text-based languages for query

construction. Table 2.1 categorizes systems by query representation style, and provides an

assessment of each system against the requirements set forth in the introduction.

Besides our core requirements, Table 2.1 also indicates which systems support nested

results, i.e. a graphical equivalent of a nested data model such as XML, JSON, or nested

relations. This handles report-style queries that encode multiple parallel one-to-many re-

lationships in a single result, as when retrieving “a list of parts, and for each part a list of

suppliers and a list of open orders” [11]. Systems that base their result representation on a

single flat table of primitive values, such as Tableau [99], are unable to express such queries.

The same tends to hold for any system that takes its input from a single select-project-join

query, since multivalued dependencies [39] in the flattened result (parts։suppliers and

parts։orders in the preceding example) would interact to produce a pathological number

of tuples for even small inputs. Some systems, like Tableau and Gneiss [25], support a

restricted form of nesting where an otherwise flat result table, or a finite set of such, is

displayed such that each column is grouped by values in the column immediately to the left

of itself. This still does not handle parts։suppliers/orders-type queries from the example

above. Some systems, like Rhizomer [18] and Etable [60], can display parallel one-to-many

relationships, but only at a single level of nesting. Besides their use in visual query sys-

tems, nested data models have been used both in optimization [97, 20] and expressiveness

analysis [70] of query languages with aggregate functions.

Tableau, as well as other systems based on the pivot table concept, produce

cross-tabulated rather than nested results. Cross-tabulation and nesting are orthogonal

concepts, in the sense that a system can support one with or without supporting the other.
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Table 2.1: Summary of related systems, evaluated as visual query interfaces. R1 is indi-

cated where some class of queries can be initially specified by direct manipulation of re-

sults. R2 is indicated where all parts of such queries can subsequently be modified through

similar means. R3 is indicated where the same class of queries is relationally complete and

supports aggregation in arbitrary multi-block queries.

Direct
Manip. Query Representation Year System R1 R2 R3

Unrestricted
Nested Results

Yes Overlaid on Result 2016 VISAGE [83] X X X

2016 Etable [60] X X

2014 GBXT [3] X X X

2013 Rhizomer [18] X X

2012 DataPlay [2] X X X

2006 Tabulator [14] X X X

2002 Polaris (Tableau) [99] X X

Spreadsheet Formulas 2016 Object Spreadsheets [74] X X X

2010 Spreadsheets as DB [104] X X

2005 A1 [63] X X X

1997 OOF Spreadsheets [31] X X X

1994 Forms/3 [19] X X

Exposed Algebraic 2013 Mashroom [47] X X X

2011 Wrangler [62] X X

1991 TableTalk [38] X X X

Hidden Algebraic 2016 Gneiss [25] X X

2013 GestureDB [78] X X

2010 CRIUS [86] X X

2009 SheetMusiq [71] X

2008 AppForge [108] X X

1989 R2 [50] X X X

No Diagram-based 2016 OptiqueVQS [94]

2014 VisualTPL [27] X

2011 Related Worksheets [10] X

2009 App2You [66] X

2005 QBB [84]

2002 QURSED [81] X

1990 QBD [6]

Form-based 2008 Form Customization [57]

1998 QBEN [72] X

1997 ESCHER [107] X

1989 PERPLEX [95]

1977 QBE [111]
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The difference between the two concepts can be more clearly understood by reading

Section 5.4.3, where we show how to combine both cross-tabulations and nesting in a

single system. To our knowledge, past systems have only supported one or the other, or

neither.

Returning to our taxonomy of visual query systems, we first discuss systems that do

not fall in the direct manipulation category. Form-based systems originated with Query-

by-Example (QBE) [111], where the user populates a set of empty skeleton tables with

conditions, variables (examples), and output indications. ESCHER [107] and QBEN [72]

extend QBE to support nested results, while PERPLEX [95] supports general-purpose logic

programming. The ubiquitous search forms of commercial database applications can be

seen as restricted versions of QBE tailored for a specific schema; Form Customization [57]

generalizes such forms by considering the form designer as part of the query system.

In diagram-based systems, the user manipulates queries for example through

a schema tree or schema diagram, as in Query-by-Diagram (QBD) [6], Query-by-

Browsing (QBB) [84], QURSED [81], App2You [66], Related Worksheets [10] and

OptiqueVQS [94], or through a diagrammatic query plan, as in VisualTPL [27]. The

diagram-based query building style is common in commercial tools—Microsoft Access,

Navicat, pgAdmin, dbForge, Alteryx etc. The general problem with both form-based

and diagram-based interfaces is that users must manipulate queries through an abstract

query representation that is divorced from the actual data that is being retrieved. To

construct and understand queries, the user must look back and forth between the query

representation on one side of the screen and a separate result representation on the other.

Thus we do not consider these systems to be direct manipulation interfaces (requirement

R1). The system from the author’s own Master’s thesis, Related Worksheet, falls in the

same category. Its limited query-related functionality was available only available from

a sidebar, disconnected from the data in the center of the screen. An exception was the

teleport feature, which operated on the currently selected cell.

In the direct manipulation category, we now consider algebraic user interfaces. In such

systems, the user builds queries by selecting, one step at a time, a series of operations

to be applied to the currently displayed result. Each operation is applied to the result of

all previous operations. Formal expressiveness is easy to achieve in algebraic interfaces,

since the relevant relational operators can simply be exposed to the user directly. The main

problem with algebraic interfaces is that the user has no direct way to, in the words of

Liu and Jagadish, “modify an operation specified many steps earlier without redoing the

steps afterwards” [71] (requirement R2). For example, in GestureDB [78], the user has

no way to modify a filter on a column that was subsequently totaled in an aggregation,

since the column that was originally associated with the filter is no longer on the screen

to be manipulated. Similar problems exist in R2 [50], AppForge [108], CRIUS [86], and

Gneiss [25]. SheetMusiq [71] provides a partial solution by using an algebra where certain

operators can commute out of a complex expression for subsequent modification; however,

the technique breaks down for expressions enclosed in binary operators such as joins, set

union, or set difference. In other systems, the underlying algebraic expression is exposed

directly, as in the procedural data manipulation scripts of Wrangler [62], the XQuery-like

mashup scripts of Mashroom [47], or the diagram-based representation in TableTalk [38].

Thus, only the initial query specification can be done through direct manipulation; tweaking
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and examination of existing queries must be done with a separate, indirect interface.

With clever use of formulas, Tyszkiewicz [104] shows that existing spreadsheet prod-

ucts can be considered expressive enough to formulate arbitrary SQL queries. If we con-

sider Excel as a query system, however, only a subset of such queries could be said to be

constructible by direct manipulation. Heavy reliance on set-based formula functions such

as index, match, and sumproduct means that spreadsheet formulas soon take the role of a

text-based query language, with a vocabulary far removed from that of typical query tasks.

This would also be the case for spreadsheet programming systems such as Forms/3 [19],

Object Oriented Functional Spreadsheets [31], A1 [63], and Object Spreadsheets [74].

Tyszkiewicz, in particular, intends formulas to be generated from SQL statements rather

than to be typed manually by the user.

Last, we consider direct manipulation systems that overlay their query representation

on the result of the same query, with the structure of the query reflecting the visual struc-

ture of the result. This solves the mapping problem of requirement R2. The problem is

that current such representations are not expressive enough to support arbitrary queries

(requirement R3). For example, the direct manipulation interfaces of Tabulator [14], Rhi-

zomer [18], GBXT [3], Etable [60], and VISAGE [83] support filters and joins over schema

relationships, but are unable to express calculation, aggregation, general-purpose joins, or

other binary operators. In DataPlay [2], direct manipulation is used only to choose between

universal and existential qualifiers. Tableau [99] allows a large class of two-dimensional

visualizations to be created and manipulated through direct manipulation of table headers

and corresponding axis shelves; however, queries involving calculations or binary opera-

tors must be configured using a separate interface rather than through direct manipulation.

Our own system is the first to achieve SQL-like expressiveness from within a direct manip-

ulation interface based on an overlaid query/result representation.

2.2 Structured Data Visualization

An important aspect of a visual query system is the approach it takes to visualize the data

that is returned from constructed queries. This is especially important for direct manip-

ulation systems, where manipulation of the visual representation of returned data is the

chief way of interacting with queries. We here discuss prior work that relates specifically

to the output engine of our visual query system. The related systems discussed in this sec-

tion are not necessarily all query systems, but may pertain more generally to the field of

information visualization.

2.2.1 Tree Visualization

As previously mentioned, the queries constructed in our visual query system always re-

turn results in the nested relational data model, a type of tree-structured data model. Our

system for automatic formatting of query results thus falls in the research area known as

tree visualization. This area has been surveyed by Shneiderman [93] and, more recently,

Graham and Kennedy [45].
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In our case, we are dealing with the subproblem of single tree visualization, with the

additional constraint that we are working with structured data only, i.e. data that conforms

naturally to some schema, such as most JSON or XML data. Our visual layouts furthermore

make the most sense in cases where the schema of the tree-structured data to be visualized

is non-recursive, that is, where the schema defines a tree rather than a graph of permissible

fields. This was the case for 9 out of the 10 example datasets in the XML corpus we used

for our user study.

Our system’s assumption that input data conforms to a schema is important for the

quality of the layouts produced, because it allows us to take advantage of the resulting

regularity of the data to be presented. For instance, a list of tuples with similar fields in

each tuple is best presented in a tabular layout, with each column representing one field

name. Analogous data model specialization is seen in some other systems, for instance

Robertson’s polyarchies [90].

In Graham’s taxonomy, the visualizations produced by our system form a hybrid be-

tween the nested and indented list representations. While nested tables, an important base

case in our layout system, organize data in a grid of rows and columns, they do not fall into

the matrix representation category, but rather among the nested representations, since data

leaf nodes are always contained within the visual boundaries of their parent nodes.

The study by Chimera and Shneiderman [29] compared three variations of the outline-

style indented list view; two of these were interactive. Their results suggest that future

versions of our system should include collapsible nodes in indented lists. Ziemkiewicz

et al. [110] compare four different classes of tree visualizations, including three nested

variants. None of the layouts tested include tables or hybrids between tables and indented

list representations. Ghoniem et al. [44] provide a taxonomy of readability tasks on graphs

and present a study comparing node-link and matrix representations.

Treemap [59] is maybe the most well-known nested or Venn Diagram-style tree repre-

sentation. Treemaps fit an arbitrarily sized tree into a viewport of pre-defined dimensions,

by making subsequent levels smaller and smaller. The relative size of siblings is determined

by some semantically significant weight associated with each node in the tree, such as disk

space consumed in a map of a file system hierarchy. In contrast, our own system allocates to

leaf nodes whatever visual area is necessary to display the contained primitive text values

at a constant font size. This is a requirement from the perspective of our target applica-

tions. Our system does, however, constrain layout dimensions in the horizontal direction,

so that only vertical scrolling is needed if the layout can not fit in the desired viewport.

In treemaps, siblings are arbitrarily stacked vertically or horizontally at every other step in

the recursion, as a way to ensure that both the X and the Y dimension is used. In our own

system, tuples are always stacked vertically. Fields are stacked either horizontally, when

contained in a nested table, or vertically, when part of an outline view. This ensures one

kind of visual consistency while still allowing the widths of layouts to be constrained.

FISH [77] is a variation of the Treemap concept. In this system, styling attributes

can be used to configure various node presentation details, including the choice to stack

siblings either vertically or horizontally. Such styling must be applied to each individual

data node, unlike in our own system, where styling is applied to schema nodes only. Strip

Treemap [13] optimizes the presentation of a treemap by sizing rectangles such that they

can be stacked in contiguous “strips” without broken horizontal lines. Like Treemap, and
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unlike our own system, both FISH and Strip Treemap assume that all data must fit into a

viewport of predetermined size both in the horizontal and vertical direction.

Elastic Hierarchies [109] and EncCon [79] both combine node-link representations with

some other representation in order to visualize tree-structured data. Node-link representa-

tions are typically less space-efficient than nested or indented representations, and seldom

appear in traditional database GUIs, our target application. Thus, we did not use them our-

selves. EncCon uses node-link representations in every level of the tree, but maintains an

invisible Treemap-like layout to determine a favorable positioning for each node. In Elas-

tic Hierarchies, subsequent levels may use either Treemaps or node-link representations,

determined interactively. The Elastic Hierarchies paper also has a relevant discussion of

the design space of hybrid tree layouts, but does not consider nested tabular layouts. Nei-

ther does Graham and Kennedy’s survey. This is likely because tabular layouts apply only

to structured data, where series of children in a tree all can be expected to have the same

substructure. Systems that solve the more general problem of dealing with semi-structured

(schema-free) data will not naturally be able to take advantage of tabular layouts.

Nested table layouts are used in Related Worksheets [10] and in applications produced

with AppForge [108] or App2You [66]. These systems do not allow the nested table layouts

to be re-styled as indented lists or deferred to lower layers of the tree-structure. They can

not automatically constrain the width of the layout to the available page width.

VisualXML and XMLAD [30], like Elastic Hierarchies and EncCon, use node-link

representations as part of their interface, but are geared towards XML visualization. The

XMLAD system does indeed use tabular representations as part of the output layout, but

does not support nested tables. Thus, only the bottom logical relations in the data may be

displayed as tables. Similarly, the VisualXML system uses outline or list-style representa-

tions for the bottom relation level of each subtree. Again, both XMLAD and VisualXML

use a node-link representation for all higher levels. This is in contrast with our own sys-

tem, which automatically uses a column-enabled, indented list for a variable number of top

levels in the tree, followed by nested tables for a variable number of bottom levels.

Tree Rewriting provides a visual language semantically analogous to the lambda calcu-

lus [58]. While general enough to produce just about any layout from a set of input data,

a user must manually specify how these layouts are to be constructed. Unlike our system,

Tree Rewriting is unable to produce a default layout subject to a constraint such as available

page width. Furthermore, no mechanism is available to help ensure the careful alignment

of column fields that is required in order to produce tabular or nested tabular sublayouts.

A relevant class of commercial systems consists of report generator tools such as

Crystal Reports1 and Altova XML-Spy/StyleVision2. An extensive survey is provided by

Król [67]. These systems let the user build output layouts analogous to those produced

by our own system, using a variety of input data sources. The layout building process is

manual. Altova’s Grid View uses a less compact variation of a nested table layout, with

table headers repeated for each nested relation value. Navigation requires heavy use of

both vertical and horizontal scrollbars as well as manual collapsing and expanding of

data nodes. Altova does combine vertical arrangements of tuple fields in an outline-style

1http://www.crystalreports.com
2http://www.altova.com/xml-editor
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sub-view with the use of nested tables, but is unable to render subrelations as indented

lists.

2.2.2 Visualization of Flat Tabular Data

We here include systems that visualize flat tables of data, that is, primitive values organized

in rows and columns. This excludes systems that can handle tree-structured data, which

were discussed previously.

FOCUS [96], TableLens [88], and the system by Tajima and Ohnishi [102] deal with

the problem of displaying large, mostly flat tables. The latter system includes a “Record”

viewing mode that resembles a single-level form view. While all of these systems support

certain cases involving values spanning multiple cells, they do not operate on structured

nested data in general. Chi’s visualization spreadsheets [28] combine a table layout at the

outer level with cells containing plotted 3D graphics, but require the user to define each

visualization using commands, and are primarily focused on numerical data.

Show Me [73] is an autostyling system for Tableau, an interactive visualization system.

Since Tableau operates on tabular input data and produces pivot table or crosstab-based

outputs, it does not fall into the tree-structured data visualization category.

2.2.3 Document Layout Systems

Document layout systems, like the one described by Jacobs et al. [52], deal with the prob-

lem of rendering a given amount of text with a given font size on a set of dimensionally

constrained pages. They are otherwise different from our own system, since they operate

on a very different class of input data.

2.2.4 Automatic Form Generation

This category of systems focuses on the generation of form-based user interfaces, like those

found in traditional CRUD database applications.

Supple [41] generates widget-based user interfaces for devices of various sizes and

contexts using a cost optimization algorithm, but does not deal with table layouts or other

layouts that take advantage of repeated structure in data that adheres to a schema. The

Right/Bottom strategy [16] defines heuristics for widget placement in dialog boxes, but

similarly does not deal with structured relational data.

Database application builder tools such as FileMaker3 and Microsoft Access4 include

wizards to help with the creation of new forms, but are only able to layout out a single level

of fields automatically and, unlike our own layout system, can not use statistics about the

data in each field to make structural layout decisions.

3http://www.filemaker.com
4http://office.microsoft.com/access
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Chapter 3

A Visual Query Language

3.1 Introduction

Four decades after Query-by-Example, technical users still interact with relational data

through hand-coded SQL, while non-technical users rely on restrictive form- and report-

based interfaces tailored, at great cost, for their specific database schema. We agree with

Liu and Jagadish [71] that a successful alternative must come in the form of a spreadsheet-

like direct manipulation interface. In particular, we consider three requirements that have

yet to be met in a single user interface design:

R1. Query specification through direct manipulation of results. The user should build

queries incrementally through a sequence of operations performed directly on the

data in the database, as seen through the result of each progressively refined visual

query [71]. In Shneiderman’s terms, the object of interest is not the query, but the data,

as when working with a spreadsheet.

R2. The ability to view and modify any part of the current query, including operations

performed many steps earlier, without redoing subsequent steps or departing from the

direct manipulation interface. This is tricky in light of R1, because the user will be

looking at and manipulating the result of a query rather than an actual query expression.

The mapping between the two is not obvious. [71]

R3. SQL-like expressiveness from within the direct manipulation interface. R1 and R2 can

be trivially met if only simple queries are allowed. For example, Excel’s filter feature

works by direct manipulation of results, and allows its complete state to be viewed

and modified from within the same interface, but supports only basic selection queries.

To compete with SQL, a visual query system should allow the user to express any

query commonly supported by SQL implementations, including arbitrary (multi-block)

combinations of operations such as joins, calculations, and aggregations.

In this chapter, we present SIEUFERD (pronounced soy-fird), the first visual query

system to meet all of the requirements above in a single user interface design. The key

insight is that given a suitable data model for results, the complete structure of a query

can be encoded in the schema of the query’s own result. This in turn allows the user
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interface to display the query and its result in a single visual representation, which can then

be manipulated directly to modify any part of the query. Specifically, we allow queries to

produce results from the nested relational data model [53, 68], and display results using a

nested table layout (see Chapter 5).

The user interface of our visual query system is shown in Figure 3-1. At any given time,

the user will be looking at the nested relational result of the visual query currently being

built, formatted using a nested table layout. All query manipulation actions are initiated

from the result layout, satisfying requirement R1.

In a nested table layout, the table’s header area visually encodes the schema of the

nested result, including which fields are nested under others in the nested data model. Be-

cause our system maps all query-related state to specific fields in the result schema, the

result’s table header simultaneously becomes a visual representation of the query that gen-

erated it. The user can then manipulate any part of the query by initiating an action on the

corresponding field in the result layout, satisfying requirement R2. A set of icons, carefully

designed to allow every aspect of the query state to be represented in the header, is used to

augment the information that can be derived from the names and positions of fields.

Using spreadsheet-like constructs such as formulas and filters, the user can express a

relationally complete [32] set of query operators plus calculation, aggregation, outer joins,

sorting, and nesting (see Section 4.6 for details). This covers the full set of query operators

generally considered as the minimum to model SQL [12, 49], and expresses, for example,

all SELECT statements valid in SQL-921. This satisfies requirement R3.

The use of nested results affords a natural visualization of operations such as joins and

aggregation, and allows the user to see, in context, intermediate tuples produced in any part

of the query. Furthermore, the ability to produce nested results makes our system suitable

for complex report creation tasks that would otherwise require multiple SQL queries and

custom programming to merge and format results.

Our Java-based prototype gives the user an experience of responsive, incremental query

building while pushing all query processing to the database layer. In an initial formative

user study, 14 participants were able to solve complex query tasks with a minimal amount

of training, with many expressing strong levels of satisfaction with the tool. In a second,

controlled study, another 14 participants rated both SIEUFERD and the query designer

found in Microsoft Access on the System Usability Scale (SUS) [17] after doing a series

of tasks on each. Users rated SIEUFERD 18 points higher on average than Access. This

corresponds to a 46 percentage point difference on a percentile scale of other studies in the

Business Software category.

1To empirically verify the list of relational operators required to express SQL-92, the author personally

contacted two implementors of SQL-92 compliant database systems, Julian Hyde of the Apache Calcite

project and Thomas Neumann of the HyPer project, who helpfully, and independently, listed the minimum

set of (bag-based) relational operators required. (Thank you!) Neumann notes that more operators may be

required to implement an efficient query processor. The latter is not of concern for the discussion of our

visual language’s expressiveness.
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3.2 System Description

3.2.1 Overview

Our core query building interface was shown in Figure 3-1. All user interactions are initi-

ated from the result area, which shows the current query’s nested relational result, format-

ted using a nested table layout. In a nested table layout, the table’s header area visually

encodes the schema of the nested result, including which fields (columns) are nested under

others in the nested data model. The term schema here refers to the definition of fields and

sub-fields in the query’s result rather than the schema of the underlying database. Because

our system maps all query-related state to specific fields in the result schema, the result’s

table header simultaneously becomes a visual representation of the query that generated it.

A set of icons, carefully designed to allow every aspect of the query state to be represented

in the header, is used to augment the information that can be derived from the names and

positions of fields. When nested relational data is shown using a nested table layout, the

terms field and column are equivalent. Since our system can also display data using various

non-tabular layouts (see Chapter 5), we use the more generally applicable term field.

Starting from any selection of fields in the result area, the user may open a context menu

of query-related actions, which also serves as a legend for icons that may appear in the

result header. Query actions modify the query state, not the data in the database. Whenever

a visual query is modified, the system generates and executes one or more corresponding

SQL queries to evaluate it, merges the returned flat results into a single nested result, and

displays the latter to the user. At the same time, the fields and iconography in the new

result’s header reflect the updated state of the modified query.

To keep the result layout compact, several aspects of the query state are indicated with

icons in the header but are not displayed in full until the user requests it. In these cases

we leverage well-established spreadsheet idioms to expose the underlying state. A filter

icon ( ) next to a field label indicates the presence of a filter on that field, which can be ma-

nipulated by opening the filter popup from the context menu. A formula icon ( ) indicates

that the primitive field in question is a calculated field with an associated spreadsheet-style

formula. The actual formula can be edited using the formula bar above the result area, or

directly in any non-header cell belonging to the field’s column. Finally, as in a spreadsheet,

our system allows fields (columns) to be hidden from view and later recalled for inspec-

tion. If the hidden field was used for filtering or sorting, or is referenced from a formula,

a dashed cell icon ( ) is shown for the relevant dependent field to indicate that the visible

result depends on a hidden portion of the query. Hidden fields can be recalled using the

field selector popup, which shows an expandable list of available fields, centered around

the field it was opened for. The field selector also serves to suggest new joins over known

foreign key relationships, and to display exact join conditions.

3.2.2 Query Model

We now discuss the specific structure of queries in our system. A visual query is modeled

as a nested relational schema that has been annotated with query- and presentation-related

properties, such as the state of a filter or the contents of a formula, on each field. We refer to
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the annotated schema as the SIEUFERD query model. The term model is used here as in the

“model-view-controller” architecture; it denotes the portion of our system that maintains

the underlying state of the user interface. When SQL queries are generated from a visual

query and flat result sets have been assembled into a nested relational result, the schema of

the nested result is identical to the schema in the query model. This correspondence makes

it straightforward to translate high-level user interactions on the visualized query result to

concrete modifications on the underlying query model, and conversely, to indicate the state

of the query model in the table header of the visualized result. In this chapter, we will ex-

plain the SIEUFERD query model entirely in terms of its visual representation. Its internal

representation, expressiveness, and translation to SQL will be discussed in Chapter 4.

Table instantiation. The following is a simple query that instantiates the table called

courses and displays a selection of its fields:

Conceptually, the gray header area represents the query, while the area below shows

the result of the query. The header shows the relation field courses in bold font with its

primitive child fields (id, area_id, etc.) below. Each row in the result is a tuple. In our

query model, each relation in the query model gets to retrieve data from one concrete table

in the underlying database; that relation is said to instantiate the database table.

Nesting and joins. Queries need to be able to incorporate data from multiple tables.

Commonly, tables need to be equijoined together, for example when the user wishes to

examine data spread across foreign key relationships in a normalized database schema.

In the SIEUFERD query model, the introduction of a new table instance can be done by

defining a nested relation, optionally constrained by an equijoin condition against its parent

relation:
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In the query above, the nested relation readings instantiates the database table with the

same name, and equijoins itself against its parent relation courses on the course_id field,

as indicated by the join icon (Lorgm ) on the latter. The other side of the equijoin condition is

the id field in the courses relation. The latter information is omitted from the result layout

to save space, but is displayed in the field selector (Figure 3-1). The one-to-many icon ( )

on the readings relation indicates that our system determined the latter may contain more

than one tuple for each corresponding tuple in courses, the parent relation. The icon is

also displayed on the courses, indicating (as is common) that the root relation may contain

multiple tuples. Our system automatically makes these determinations based on primary

key constraints declared in the database and the join constraints set in the user’s query.

The joins described here have different semantics than the traditional flat joins encoun-

tered in SQL and most other visual query tools. Rather than duplicating tuples on one side

of the operator for each occurrence of a matching tuple on the other, each tuple from the

parent side of the join has a nested relation added to it holding zero or more matching tuples

from the child side. This operator is known formally as a nest equijoin [97], though we will

simply use the term join when unambiguous. One convenient property of nest equijoins is

that tuples on the left-hand side of the operator do not disappear when the join fails to find

matching tuples on the right; this can be seen in the query above for the course American

Politics, which has no books in its reading list. This behavior can be changed by means of

the Hide Parent If Empty section, discussed later.

It is often desirable to hide technical primary key fields, fields made redundant by equi-

join conditions (e.g. course_id), or otherwise uninteresting fields, for presentation pur-

poses. Continuing the example above, our query semantics allows us to hide several fields

from the screen without altering the meaning of the joins or disturbing the order of the

tuples:
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The hidden fields could be recalled at any time using the field selector. As before,

the field selector can also be used to see the exact join conditions between readings and

courses.

Nested relations can be used very effectively to display data spread over many tables

in a database schema. In the following example, we pull data from five database tables

(courses, area, readings, sections, meetings) to see more information about each university

course:

Notice that tuples in the readings relation occur independently of tuples in the sections

relation; this kind of visualization can not be constructed in tools based on flat tabular

results (see Related Work). Also notice the absence of the one-to-many icon ( ) on the

area relation: because the latter relation was joined on its instantiated table’s primary key,
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our system deduced that at most one tuple can exist in area for each parent tuple in courses.

The latter is a fact that the user cannot deduce by looking at the query result alone, since

the absence of a one-to-many relationship in the currently visible excerpt of the data is no

guarantee that such relationships may not exist elsewhere in the dataset, or when the query

is rerun on a future version of the dataset. Having a good mental model of where a one-

to-many relationship might occur is important when the user is constructing calculations,

as the presence of a one-to-many relationship typically implies the need to use aggregate

function to summarize data (see below).

A query may instantiate the same table more than once, from different relations. A

relation is thus analogous to a FROM clause term in a SQL query. The immediate child fields

of a relation always include a set of primitive fields each associated with a column in the

instantiated database table. Using the field selector (see Figure 3-1), the user may hide or

show these primitive child fields to achieve the effect of including or excluding fields from

the query’s SELECT clause.

Sorting. Each nested relation can be sorted on a sequence of its direct child fields,

indicated by subscripted sort icons ( 123) on the latter. In the following example, the root-

level courses relation is sorted ascending on the max_enroll field, while individual sets of

readings are sorted by author_name, then by title:

Following any explicit sort terms, our system automatically sorts every relation on a

tuple-identifying subset of its retrieved fields. This ensures that all query results are re-

trieved in a deterministic order. The automatic sort is usually on an indexed primary key;

see set projection below. It is possible to sort on both primitive and relation fields. Sorting

on a relation field causes the sort terms of said relation to be included in the sort terms

of the parent relation. In the following example, following the rules above, the courses

relation is effectively sorted first on area\code, then on area\id, then courses\title, then

courses\id:
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Sorting on a relation makes the most sense when the relation in question (e.g. area)

is known to have at most one tuple for each corresponding tuple in its parent relation

(courses). Fields used for sorting (e.g. area\code) are projected into the sorted relation

(courses) by the same mechanism that handles non-aggregate inward references in formu-

las; this handles the one-to-many case as well. See flat joins below.

Filter. Using the filter popup (Figure 3-1), a filter can be defined on any field, indicated

by the filter icon ( ). Filters on primitive fields restrict the tuples of their containing

relation, while filters on relation fields restrict the set of tuples retrieved in that relation. In

the following example, the meetings relation is filtered to show only tuples for which the

day is W:

In our current implementation, filters can be defined to either select a set of values to

include (e.g. “only values M,W,F”), or to select a set of values to exclude (“all values

except M,W,F”). Other kinds of restrictions, such as ranges (“values between 5 and 10”)

or string matching (“values that start with intro”), can be expressed as filters on formulas

(see below), but could also be integrated directly into the filter state for improved usability.

By default, the effect of a filter in a nested relation is propagated all the way to the

root of the query by means of a Hide Parent If Empty setting on each intermediate relation,

indicated by the arrow-towards-root icon ( ), as seen on the sections and meetings relations

in the previous example. In the example, the courses Roman Art and Russian Drama have

disappeared because they do not have any Wednesday sections. If, rather than retrieving
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“a list of courses with at least one Wednesday section”, we wanted to retrieve “a list of all

courses, showing sections on Wednesday only”, we could deactivate Hide Parent if Empty

on the sections relation:

Formulas. An important part of the expressiveness offered by SQL is the ability to

include scalar and aggregate computations over primitive values in any part of the query.

In the SIEUFERD query model, both kinds of calculations are supported by means of

calculated fields. A calculated field is a primitive field, added to any relation by the user,

that takes its value from a formula rather than from a particular column in an instantiated

database table. Like other fields, calculated fields can be sorted, filtered, or joined on.

SIEUFERD formulas are syntactically similar to spreadsheet formulas, allowing liter-

als, arithmetic operators, and named functions, but belong to and reference entire columns

of field values rather than hard-coded ranges of cells. This allows SIEUFERD queries, like

SQL queries, to be defined independently of the exact data that might reside in a database

at any given time. Without this design, the user might have to rewrite formulas if the data in

the underlying data source changes, or if other parts of the query are changed so as to add

or remove tuples in the result. Forgetting to update formulas when input data is changed is

a common kind of error in spreadsheets [55, 23], which we avoid.

The restriction that calculated fields always be primitive fields is an important one; we

do not wish formulas to take the role of a textual query language embedded within the

visual one. Our system’s formula language does not provide a relational algebra, but rather

allows simple computations over primitive values.

We will elaborate a bit on the previous point. Consider, hypothetically, that we decided

to design our system such that formulas could return entire relations rather than only prim-

itive values. To accommodate this, the formula language would have had to include not

only scalar and aggregate functions, but also functions returning relations and performing

operations on them. We already have a language that defines such functions—namely the

relational algebra, and its equivalent, SQL. Since the goal of our system is to provide a vi-
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sual alternative to SQL, we consider it unacceptable to embed a SQL-like language within

our system’s user interface.

Continuing the course catalog example, we can calculate the duration of each meeting

of a course section:

The calculated field duration, marked with the formula icon ( ), is evaluated once for

each tuple in meetings, its containing relation. Using another calculated field, we can add

up the durations as well, at the level of each course:

When using aggregate functions such as sum or count, the relation in which the cal-

culated field is defined determines the level at which aggregate values are grouped. In the

example above, because the total duration field is a child of the courses relation, a total

is calculated for each course rather than, say, for each section. Each course includes in its

total only tuples from the meetings relation that are descendants of that course’s tuple in

the courses relation.
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Aggregate functions, with the exception of min and max, are sensitive to duplicates

in input values, as illustrated by the correct totals over identical durations in the exam-

ple above. The bag-like semantics of aggregate functions can be understood by consider-

ing a formula like =sum([meetings\duration]) to be shorthand for a more explicit notation

=sumfield1([meetings\duration], [meetings\id]), where the aggregate function sumfield1 con-

structs a set of (duration, id) tuples and then calculates the sum from the value in the first

field of each such tuple. Whenever a primitive field (e.g. duration) is referenced from

within the argument of an aggregate function, a tuple-identifying subset of fields from the

referenced field’s containing relation (e.g. meetings) is automatically included in the ag-

gregate input (e.g. the hidden primary key field meetings\id in the example above). Note

that our backslash notation serves only to make it clear which relation each referenced field

belongs to, for cases where there are multiple fields with the same label (e.g. id).

The following query will illustrate a few more ways in which aggregate functions can

be used and combined:

The highlighted formula, using again the more explicit notation from the previous

paragraph, would be evaluated as =sumif(field1="L",minutes(field2−field3),0)([sections\type],

[meetings\end], [meetings\start], [sections\id], [meetings\id]), first constructing a set of

(type, end, start, sections\id, meetings\id) tuples and then computing the sum of the values

yielded by evaluating the argument expression for each input tuple. Another formula in

the example above is that of the number of readings field; it uses the count aggregate

function to count the number of tuples in the readings relation. The count aggregate is

the only function in our formula language that permits a relation field as an argument; the

number of readings formula could be written as either =count([readings]) or, equivalently,

=count([readings\id]) or =count([readings\title]). Any non-nullable field in the readings

relation could be used in the latter case. Finally, note that the example query above
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computes two independent aggregates (lecture duration and number of readings), each

over its own input relation (sections and readings, respectively). This is one example

of a multi-block query, that is, a query which requires multiple SELECT clauses in the

corresponding generated SQL query. Another example of a multi-block query would be a

query that uses the output of one aggregate function as an input to another. Such queries

are fully supported by our system.

Filters and aggregate functions. When an aggregate function references a relation

with a filter applied to it, the filter is evaluated before the aggregate. This allows conditional

sums to be computed without the use of =sum(if(...))-type formulas, while always seeing

the exact tuples that contribute to the total. In the following example, we filter the sections

relation to only include lecture-type sections. There are also some empty sets of sections.

The total duration for each course changes accordingly:

It is equally valid to define a filter on the field containing the aggregate function, e.g.

total duration in the example above, or its sibling fields, e.g. title. Such filters are analo-

gous to HAVING and WHERE clauses, respectively, in a SQL query block.

Flat joins. Traditional flat joins can be expressed by referencing a descendant relation

from a formula without enclosing the reference in an aggregate function. In the following

example, each course title is repeated once for each distinct author name in the reading list,

because the author reference field in the courses relation references the readings relation

without the use of an aggregate function:
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The actual behavior is that of a left join, with a null value being returned for the course

American Politics, which has no readings in its reading list. To express an inner join in-

stead, the Hide Parent If Empty setting could be enabled on the readings relation. The left

join semantics of these inward formula references help our visual query language main-

tain some desirable properties. In particular, the mere introduction of a new calculated

field (e.g. author reference) will never cause tuples to disappear from said field’s con-

taining relation (e.g. American Politics from courses). Furthermore, a scalar formula like

=if(false, [inref], 42) can safely be constant-folded or otherwise considered equivalent to

=42. This would not be the case if formula references were resolved using inner joins

rather than left joins. Finally, formulas may use null values generated by left joins to detect

missing values. In the following example, a presentation title is generated for each course,

consisting of the area of each course followed by its title. Courses with no assigned area

(Junior Seminars) are handled as a separate case:

The main use case for non-aggregate inward references is when the referenced relation

(e.g. area) is known to have at most one tuple for each corresponding tuple in the referenc-

ing relation (courses). This may be a guaranteed consequence of the child relation being

joined on its instantiated table’s primary key, as when traversing a foreign key relationship

in the forward direction, or simply a property of the input data. If neither is the case, a user

who entered a non-aggregate inward reference may be surprised to see duplicated tuples

in the referencing relation, or miss this nuance of formula semantics completely. This is

a potential usability problem. In the future, we may require inward references that pass
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through one-to-many relationships ( ) to always be enclosed in either an aggregate func-

tion or an explicit unnest function, otherwise showing the user a warning message (e.g.

“Reference to readings may yield more than one value; must be enclosed in an aggregate

or unnest function.”). The unnest function would serve to suppress the warning and enable

the current behavior. An analogous unnest function exists in PostgreSQL, where it is used

to unpack and join in tuples from array values.2

Set projection. By default, tuples internally retrieved for a relation always include the

primary key fields of the relation’s instantiated table, even if the user has hidden those fields

from view on the screen. This allows our system to keep result tuples in a stable order as

the user hides or shows fields, and to keep a one-to-one relationship between tuples on

the screen and tuples in instantiated database tables. It also allows us to generate more

efficient SQL queries, for example by avoiding expensive SELECT DISTINCT statements.

The automatic inclusion of primary key fields in the projection of a particular relation can

be avoided by means of the Collapse Duplicate Rows option, indicated by the bracket

icon ( ):

When a relation has the Collapse Duplicate Rows option enabled, hiding a primitive

child field may cause the number of tuples returned to decrease, as only visibly unique

tuples are retrieved. This can be seen in the transition from the second to the third panel

above, as the status field is hidden.

When an aggregate function references a relation that has the CollapseDuplicate Rows

option enabled on it, the set projection on the latter relation is evaluated before the aggre-

gate, as for filters. Thus, as before, the tuples that are used as inputs to aggregate functions

are the same tuples that the user can see on the screen:

2http://www.postgresql.org/docs/9.6/static/functions-array.html
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Outward references. It is permitted for a formula to reference fields outside its own

containing relation, as in the following example:

Here, the formula in the percent field references the total duration field of the outer

courses relation. This is analogous to a correlated subquery in SQL. Such outward ref-

erences are not crucial to our query model’s expressiveness; we eliminate them using a

decorrelation technique like that described by Van den Bussche and Vansummeren [105,

p. 8]. More specifically, we create a copy of the referenced relation as a descendant of the

referencing formula’s containing relation, and then replace the original outward formula

reference with an equivalent inward reference to the descendant copy. The decorrelation is

done one relation level at a time, with equijoin constraints being applied to match tuples in

the original and copied relations. For the example query above, a decorrelated equivalent

would be the following:
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More efficient decorrelation methods may be possible in certain cases.

Window functions. While not part of the operators we need for expressiveness at

the SQL-92 level, it is also possible to support window functions, such as cumulative sum

and moving average, from within the visual query interface. Such functions were intro-

duced in SQL:2003, and are supported for instance by PostgreSQL and Oracle, but not

by MySQL or SQLite. As an example, the formula below is translated to the SQL clause

SUM(Debit) OVER (PARTITION BY Customers.ID ORDER BY Date):

In the example above, a list of (Date, Debit) transactions are added up in order of in-

creasing dates to yield the balance after each day. The first argument to the cuml_sum

function is the primitive value to add at each iteration. The second argument is a relation
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reference that specifies the level at which data should be partitioned; the key fields of that

relation are used as the partition key in the PARTITION BY clause. The third argument is the

field to order on for the purposes of evaluating the window function. While in the example

above, the window function happens to be ordered on the same field (Date) on which the

result of the Transactions relation is ordered, this need not be the case. For instance, the

user could now choose to sort results descending on the Balance column to show the days

with the highest balance first.

Note that when two transactions occur on the same date (e.g. 2006-09-01), the balance

at the end of the day is shown for both transactions. This follows the semantics of SQL’s

PARTITION BY clause, which ensure that the result of window functions are deterministic

with respect to partial orders.

Allowing ordering to be specified as an argument to a formula function like cuml_sum

is a bit of a kludge, since our system already has a different, more visual interface for

specifying the order of query results, and since desired orderings may be more complex

than a simple ascending sort on a single field. It is at the same time undesirable to make the

overall visual query system more complicated in order to make a presumably infrequently

used feature easier to use. A compromise could be to allow the user to omit the ordering

clause when first writing a window function formula, instead relying on the existing result

ordering, but then automatically rewriting the formula to insert the relevant order definition

if the user reorders the formula’s containing relation.

The example above was for a cumulative sum; the implementation and design consid-

erations would be similar for other window functions.

A particular use case for window functions is to be able to express complex top-K

queries such as “average sales by state of top 10 dealerships in each state”. In the latter

example, the input to the aggregate function would be filtered to include only results for

which the row_number window function is less than or equal to 10. In PostgreSQL, such

queries may be expressed either using the row_number window function or a LIMIT clause

in a correlated subquery, but SQL-92 includes neither, and cannot express such queries.

3.2.3 Architecture

Our visual query system allows a large class of queries to be expressed by end users. As

a necessary consequence, we can make few assumptions about how fast results can be

computed. In many cases, even though the final query desired by the user may be cheap

to compute, intermediate or explorative queries generated during interactive query building

may be expensive. Intermediate queries may even contain user errors, such as circular

dependencies in formulas. A key requirement of our system is to avoid getting the user

stuck in such states, and to keep the query building interface responsive and up to date even

when expensive or incorrect queries are encountered.

Our system’s basic architectural decision is to defer all query processing to a relational

database backend, generating SQL queries over JDBC and retrieving a complete new re-

sult every time the user modifies the query model. This produces transactionally consistent

results while avoiding complicated incremental evaluation logic. We then provide the nec-

essary smoke and mirrors to give the user an experience of responsive, incremental query

building. The key features to this effect are as follows:
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Figure 3-2: Temporary layout displayed during execution of a long-running (~1900ms)

query. The user has just unhidden the exam_type and readings fields. The unhidden

fields are immediately displayed using placeholder icons ( ); meanwhile, generated SQL

queries run in the background to retrieve an updated result for the entire visual query.

Visual stability. Our query semantics ensure that nested result tuples from successive

steps of a visual query building process remain in the same order by default, and that the

set of logical tuples in a relation does not usually change as fields are hidden or shown. The

presentation properties of result layouts, such as table column widths, are based on average

and confidence interval values that do not change once a target number of unique sample

values have been collected from observed query results. Text breaking and font sizing is

done to ensure that even exceptionally long string values can be displayed at a given visual

width. See Section 5.4.2. Thus, even though an entirely new result set is generated every

time the user modifies the query, the visual transition from the old to the new result appears

seamless. Such visual stability is important for usability, because it allows the user to easily

spot which parts of a result actually changes in response to a modification to the query.

Decoupled query and result updates. The display of a nested table header, which

our system uses to communicate query state, need not be postponed until a query returns

with actual results. Better yet, upon a change to the query model, we can immediately

render a new table layout whose structure and indications are based on the updated query

model, but whose data is taken from whichever query completed most recently. For fields

not present in the old result, we show a placeholder icon ( ) where data values would

normally appear. Such fields can still be displayed at the correct width as long as the

system has had a chance to measure values for that field at some earlier point in the query

building session (see Section 5.4.2). Meanwhile, updated SQL queries run while a non-

modal progress indication is shown in the toolbar area. Once the query completes, the

result layout is rendered again with actual results. The user does not need to wait for the

query to complete before making new changes. See Figure 3-2.

For example: When unhiding a previously hidden field, the user sees the result layout
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Figure 3-3: High-level error handling. A referenced field was deleted, so the formula can

no longer be evaluated. The system shows a warning while evaluating the rest of the query

normally.

immediately update to accommodate the new table column, already at the correct width,

with placeholder icons seamlessly being replaced by data values as soon as the updated

query completes. When hiding a field, the temporary layout usually ends up being identical

to the final one. Pure presentation changes, such as the user editing a field label or the

system automatically remeasuring column widths (see Section 5.4.2), do not cause queries

to be re-executed.

Interruptable queries. If the user modifies the query before the previous query has

finished executing, the previous query is automatically interrupted using the database back-

end’s preferred mechanism. This is crucial for letting the user escape from long-running

queries, and also allows the user to perform multiple modifications to the query without

waiting for the exact result of each step to appear. The on-screen layout remains undis-

turbed by the automatic interruption and restarting of queries in the background.

Note that even long-running queries can be constructed with responsive result feedback

if the user can manage to temporarily filter the dataset down to a smaller size during query

construction. For instance, a user might speed up a query like “find the companies with

the greatest total reported lobbying expenditures” by temporarily filtering to only include

lobbying reports for a certain year. The user can then continue to tweak the way totals are

calculated, doing complex calculations to correct for inflation and so on, with intermediate

results being shown quickly at all times, and then only finally clear the original filter to run

the slower query across all lobbying years. This workflow is also a good example of why it

is important to let users easily modify operations, such as filters, that were specified many

steps earlier.

Automatic query limiting. All generated SQL queries include an automatic LIMIT

clause, retrieving initially 100 tuples total for each relation field. This populates the visible

part of a typical result window. If the user scrolls far enough down to see the end of the

result layout, and there are more tuples left, the query is re-executed using a limit twice

as large as before. This allows the user to reach tuple N in O(N) time. Infinite scrolling

appears seamless.
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Table 3.1: User study participants and backgrounds. Users A-N participated in the forma-

tive study, users O-Ø in the controlled study.
# Professional Area Educational Background

Technical Background/Tools Used

Excel SQL Programming Other Tools

A Data journalism Journalism Daily Weekly A bit of Python Access often, Tableau/OpenRefine occasionally

B Business intelligence Linguistics Daily Daily Some PHP BrioQuery daily

C Business intelligence Psychology Daily No No Spotfire daily, BrioQuery occasionally

D Financial Philosophy, Research Adm. Daily No Learning basic Python Some SAPGUI

E IT decision-making Computer Science Weekly In 1992 Java/VB years ago Some R

F Business intelligence Operations Mgmt., Business Daily Frequently VB.net BrioQuery daily

G CS research, teaching CS, Commun., Art Hist., Lit. Monthly Monthly Java/C years ago R a long time ago

H Business intelligence Sociology, Higher Education Daily No No BrioQuery daily

I Health policy Sociology Weekly No No Access for survey entry once, SPSS in school

J Investigative journalism English, Business/Econ. Journ. Daily No Very basic Python Access weekly, e.g. for joins before continuing in Excel

K Publishing Writing, Literature & Publishing Daily Frequently* No Crystal Rep. frequently*, 2 industry-specific systems

L Health policy, research Public Health, Public Policy Daily* No No Access for data entry*, knows SAS/Stata/SPSS/ArcGIS

M Engineering data analytics Finance, Management Daily Frequently* Python/VB years ago Access/Crystal Rep. frequently*; now Tableau, Alteryx

N University administration Math & Economics, Higher Ed. Daily No No BrioQuery for canned reports, internal CRUD apps

O IT Computer Science Daily Yearly Java/VB/Perl* Access monthly*

P Bioinformatics CS, Bioinformatics Monthly Weekly Weekly R monthly

Q Electrical eng./research Electrical Eng., Systems Eng. Weekly Tried once C/Java/Fortran* MATLAB frequently*

R Medicine MD, Adm. & Management Weekly No No Electronic medical records

S Bioinformatics/research Bioinformatics Weekly Tried twice Daily R daily, MATLAB

T Bioinformatics/research Bioinformatics Daily Monthly Daily (Python, JS) Access monthly*, Spotfire daily*, R weekly

U Biomedical/data science Chemical Eng./Statistics Monthly Daily Some Python R weekly, Access for data entry*

V Student Neuroscience Weekly No Some Python Some MATLAB, SPSS, Access for data entry

W Library adm./info science Biology Weekly No No BrioQuery monthly*, SAP, FileMaker

X Student Electrical Engineering & CS Monthly Once Daily R once, MATLAB

Y Student Journalism Monthly One course One course (Java) N/A

Z Student Journalism Weekly No No N/A

Æ Journalism, teaching Journalism, Law Weekly Monthly No Access*/OpenRefine/Tableau monthly, many others

Ø Research Electrical Engineering Weekly No Weekly (Python, C++) MATLAB, Access for data entry*, R/SAS/SPSS

*In previous job.

High-level error handling. User-defined formulas introduce a variety of possible error

conditions, including circular references, broken references, type errors, and arithmetic

runtime errors. Our system detects and handles many such errors before they can reach

the database layer. This lets us produce more user-friendly error messages than if we had

tried to execute an erroneous generated SQL query and then passed the resulting error

message from the database and back to the user. In the result layout, formulas with errors

are highlighted in yellow, with a tooltip showing specific error messages if the cursor is

moved to the highlighted area. For query evaluation purposes, erroneous formulas are

compiled to literal null values, ensuring that the rest of the query can still be evaluated

normally. See Figure 3-3.

Complete high-level error handling requires the set of functions and data types avail-

able in formulas to be known to the system. It may also require functions such as arithmetic

division to be rewritten to return null instead of triggering runtime errors on, say, division

by zero. SIEUFERD includes a standardized set of formula functions that can be compiled

to the dialects of various database backends, currently PostgreSQL, MySQL, and Oracle.

Standardizing functions and data types allows a single unit test suite and online documen-

tation set to be used for all backend dialects.

Undo/redo. Undo/redo is supported by storing successive states of the modified query

model; a similar technique is used in Tableau [100, p. 90]. Like other kinds of query

modifications, undo/redo benefits from several of the previously mentioned features, e.g.

interruptable queries.
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Table 3.2: Tasks and timings for standardized tasks used as part of the formative user study.

Error bars show the standard error of the mean.

# Task

Training

for

task N Mean time to complete task (s)

1a Lobbying

Totals

{

Manual join 2a 7 274

60 120 180 240 300 360 420 480 540 600 660 720 780

1b Formula 2b 7 672

2a Inflation

Correction

{

Manual join 7 123

2b Formula 7 109

3 Single-level auto join 4-6 7 96

4 Multi-level auto join 5-6 7 101

5 Filter via auto join 7 107

6 Multi-level auto join, again 6 94

Tasks done: Tasks 1-2 were done by users A-G. Tasks 3-6 were given to users B-I, with some

exceptions. Task order: User F did tasks 1-2 last. Order is otherwise as indicated. Hints: Training

tasks included hints as necessary. In task 2a, users D and G were told that they would need to use

the Join feature.

3.3 Formative User Study

We conducted a formative user study with 14 participants (5 male, median age 42) from a

variety of technical and professional backgrounds; see Table 3.1 for a demographic sum-

mary. Most of the participants use Excel daily, or have had some need to work with struc-

tured data in their jobs.

In the first part of the study, done by users A-I, users were given standardized tasks

aimed at assessing the initial learnability of our tool. No prior training was given; instead,

initial tasks were designed to act as training tasks for subsequent ones. In the second

part of the study, and as time permitted during earlier sessions, users were given a chance

to do more open-ended tasks on datasets we provided, including some datasets from the

users’ own organization. Here, we gave participants demos and instructions for operating

our tool, in order to gather higher-level observations than would be possible during pure

learning tasks.

From screen and voice recordings of each user study session, we collected detailed

observations that were later coded and categorized, as well as timing data for standardized

tasks.

3.3.1 Standardized Tasks

This section describes tasks and timings for the standardized portion of our study. We

designed the standardized tasks to assess the initial learnability of our system’s basic query

operators, likely to cover a range of common queries. Tasks designated as training tasks

reflect the user’s first encounter with a particular feature, with few upfront instructions

given on how to proceed. If a user got stuck during a training task, hints were given and

any relevant observations noted, ensuring that the user progressed to the corresponding

follow-up task. See Table 3.2.

Formulas and manual joins. Tasks 1 and 2 correspond to the lobbying example from

Section 1.1, in two parts. In task 1, which functions as a training task, the user is started off
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with a fresh query showing only the plants_os table, and is asked to find the total amount

spent on lobbying by each organization. A minimal schema diagram is provided on paper,

showing the two tables involved and the fields to be matched in the join condition. The

user has to discover that the operation called Join is needed, and then figure out how to

use a formula to calculate totals. In task 2, the user is asked to modify the existing query

to calculate inflation-corrected totals, using consumer price index values from the cpi table

and features that have already been used. The user now has to realize that another join

is needed, followed by one or two additional formulas. This task tests whether the user,

after only a single training task, has developed enough of a mental model of how joins and

formulas work to combine the two features to arrive at a single result.

Task 1, the training task, took users about 16 minutes on average, with 70% of the

time spent on the formula portion, after users figured out the initial manual join. Task 2, a

strictly harder task using the same features as task 1, took only about 4 minutes, 4.1 times

faster. The difference is statistically significant (p = 0.009 with two-tailed Welch’s t-test).

Comparing only times spent on the join portion of the tasks vs. times spent on the formula

portion of the tasks, the difference is only statistically significant for the latter (p = 0.004).

In this case, users solved the second formula task 6.2 times faster than the first.

Auto joins and filters. Tasks 3-6 involve automatic joins over known foreign key

relationships (auto joins), starting again from a fresh query showing a single base table.

Users are given a schema diagram on paper, with the relevant joins marked, and told that

because the system already knows about the relationships between the tables, it will not be

necessary to use the manual Join action. Tasks 3 and 4 ask the user to produce a report-

style query similar to the course catalog shown in Figure 3-1, first adding a table related

to the base table via a single join (e.g. readings), and then adding a table related to the

base table via multiple joins (sections, instructors_sections, instructors). In task 5, the

user is asked to filter the result on a field in a table that has not yet been joined into the

current query, specifically to “show only courses offered in Spring 06-07”, where semester

names are stored in a separate table. This allows us to assess the user’s expectations about

interactions between nested joins and filters. In task 6, the user is started off with a fresh

new query, starting from a different base table (instructors). Having previously produced

a course catalog showing a list of instructors for each course, the user is now asked to

show a list of courses taught by each instructor. This repeats task 4, but from the opposite

end of the schema. Our timing data shows no significant difference between training and

follow-up tasks involving auto joins.

3.3.2 Observations

We now discuss a specific observations gathered from both the standardized and the open-

ended portions of the study. A selection of observations is summarized in Table 3.3.

Mode of interaction. A recurring theme in users’ initial attempts at using our system

was to explore areas outside the direct manipulation area: toolbars, menus, and a list of

database tables shown in a sidebar. Users CDFGH assumed that joins would need to be

initiated from somewhere outside the result area, such as by drag-and-drop in the list of

database tables, or by dragging a table into the result area. Such drag-and-drop interactions

are common in tools like Tableau and Microsoft Access. We gave users the hint that all
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Table 3.3: Selected observations from the formative user study.

Title Observation (“The user...”) N Users

Query construction; fields and joins

Pulling data into view First assumed that joins would need to be initiated from outside the direct manipulation area. 5 ABCDEFGHIJKLMN

Tried to drag tables Attempted drag-and-drop operations in the table list outside the direct manipulation area. 3 ABCDEFGHIJKLMN

Popular auto joins Reacted enthusiastically to auto join behavior (e.g. "fantastic", "wow", "damn", "amazing"). 6 ABCDEFGHIJKLMN

Query construction; formulas and aggregates

Sum action Before learning they would have to write a formula, looked for an explicit "sum" action. 4 ABCDEFGHIJKLMN

Formula builder Looked for an Excel-style formula builder. 3 ABCDEFGHIJKLMN

Sum without formula Suggested having a method to do a sum without manually having to write a formula. 2 ABCDEFGHIJKLMN

Situational awareness

Verifying aggregates Tried to visually verify the output of aggregate functions. 2 ABCDEFGHIJKLMN

Verifying joins After first manual join, wanted to visually verify that join condition’s two sides were equal. 3 ABCDEFGHIJKLMN

Bad default fields Had a harder time quickly grasping results due to bad field visibility defaults after joins. 8 ABCDEFGHIJKLMN

Massive lists of fields Had a harder time navigating schema in field selector due to large number of primitive fields. 5 ABCDEFGHIJKLMN

Schema diagram Asked for or suggested a schema diagram feature (besides diagrams handed out on paper). 3 ABCDEFGHIJKLMN

Understanding the query model; fields and joins

Identified need for join In task 2a, quickly understood that another join was required, and performed it correctly. 5 ABCDEFGHIJKLMN

Needed hint to use join In task 2a, after the learning task, required a hint that another join was required. 2 ABCDEFGHIJKLMN

Hidden ancestors In field selector, was briefly confused by checked descendants of expanded unchecked fields. 4 ABCDEFGHIJKLMN

Hiding relations When asked to hide a relation, selected all child fields and invoked Hide. 3 ABCDEFGHIJKLMN

Understanding the query model; formulas and aggregates

Where to put formula After inserting a calculated field, had initial trouble learning where to enter the formula. 4 ABCDEFGHIJKLMN

Formulas made sense Noted that the all-column behavior of formulas and formula references made sense. 2 ABCDEFGHIJKLMN

Aggregates made sense Noted that aggregate function behavior, incl. grouping and subtotaling behavior, made sense. 4 ABCDEFGHIJKLMN

Tried column reference Correctly assumed aggregate argument would be a column reference, not a range of cells. 5 ABCDEFGHIJKLMN

Tried range reference First time, incorrectly assumed aggregate argument would be a range of cells, as in Excel. 4 ABCDEFGHIJKLMN

Formula at wrong level First time, incorrectly placed aggregate formula in same relation as argument to aggregate. 4 ABCDEFGHIJKLMN

Understanding the query model; filters

Filters and joins Had no trouble understanding how filters worked, including interaction with multi-level joins. 4 ABCDEFGHIJKLMN

Filters and aggregates Had no trouble understanding interaction between filters and aggregate functions. 4 ABCDEFGHIJKLMN

Root sort to search Sorted a large table (728K rows), then scrolled downwards trying to search for items visually. 2 ABCDEFGHIJKLMN

Deep sort to search Sorted on field in deeply nested relation, hoping for root relation to be sorted on said field. 3 ABCDEFGHIJKLMN

Infrequent filter user Reported not being a frequent user of Excel’s "filter" feature. 3 ABCDEFGHIJKLMN

Analogies to other tools

Thought of pivot tables Mentioned thinking about pivot tables/other crosstab interfaces when first attempting tasks. 5 ABCDEFGHIJKLMN

Intuitive selection/menu Had an easy time performing Excel-like column selection and operating the context menu. 6 ABCDEFGHIJKLMN

Looked for "unhide" Looked for a context menu action specifically named "unhide", as in Excel. 3 ABCDEFGHIJKLMN

Field selector parent In field selector, looked for "parent directory" button like that of Windows XP’s file picker. 2 ABCDEFGHIJKLMN

Other details

Join dialog easy When doing first manual join, had no trouble with the Join dialog. 6 ABCDEFGHIJKLMN

Join dialog one stumble When doing first manual join, stumbled once in the Join dialog, but quickly recovered. 2 ABCDEFGHIJKLMN

Drag in join dialog Tried drag-and-drop in the join dialog. Not necessary, but did not cause trouble either. 3 ABCDEFGHIJKLMN

Distracting "group" Was confused by a non-essential shortcut action called "group", which was later removed. 4 ABCDEFGHIJKLMN

What to COUNT Used the count aggregate with a primitive argument, e.g. =count([title]). 3 ABCDEFGHIJKLMN
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actions required for tasks would be found in the central direct manipulation area and its

context menu. Users had no trouble operating the Excel-like selection and context menu.

Manual joins. The manual join dialog, quoting user C, was “actually very easy to

use”; most users moved through it quickly and correctly on their first attempt. Still, users

preferred auto joins once introduced to them, see below. Users CEJ wanted to visually

verify that the equijoin condition was satisfied, and were briefly confused because our

system automatically hid the redundant constrained field on the nested side of the join.

Users performing task 2 had no problems with the join portion of the task; only users DG

required a hint that they would need to use the Join feature again, while the rest realized

this on their own.

Formulas. When first attempting to perform a sum aggregation, users BCDE started

by looking for an explicit sum action, as would be found in Excel’s toolbar. Users CGK

looked for an Excel-style formula builder. Having eventually realized that they needed to

insert a calculated field and enter a formula themselves, users DEFK had initial trouble

learning how to physically enter the formula, trying for example to enter the formula in an

already-existing column, or in the column header.

In Excel, sums can be produced either using formulas or pivot tables. The two interfaces

are largely separate, with users often preferring one or the other. Our system follows the

formula approach. Users CH commented that they thought of pivot tables when first trying

to compute a sum, while users BEI thought of pivot tables during other tasks.

A significant difference between spreadsheet formulas and SIEUFERD formulas is that

the latter, like SQL queries, reference entire columns of values rather than an explicit range

of cells. Users ABCFH expected this on their first attempts to insert a reference in a sum

formula. Users DEGN expected the spreadsheet model, initially attempting to select a

range of cells. A related challenge was to understand the level at which a calculated field

should be inserted in order for sums to be grouped in the right way. The fact that the position

of a formula in the relation hierarchy determines the grouping of aggregate functions is a

further deviation from the spreadsheet model, while the lack of an explicit GROUP BY clause

may be confusing to SQL users. User H tried to specify the set of columns to group by

in the aggregate function itself, as in the formula =sum([name],[amount]), while user F

tried to hide every field other than the one to be summed. User G attempted to invoke the

Collapse Duplicate Rows action. Users CFGH also tried placing the calculated field next

to the value to be summed rather than at the parent level. The latter has the trivial effect

of producing sums each over only a single input value. User G, who spent 20 minutes on

Task 2b, thought aloud while struggling with the latter problem:

“Wouldn’t it be fantastic if there was a way simply to operate at that group level rather

than these individual entries? [After creating a new formula at the correct level:] Is it

doing it that way? Oh, that’s perfect. ... That is meeting my heart’s desire. But I wouldn’t

have the cue for that.”

User C: “Hmm, you can’t do calculated field by row, it only does it by column.” Asked

where the user would want the sum to appear: “Either in the top row, next to each name,

or at the bottom of each section.”

Despite initial difficulty with formulas in training task 1b, users applied them quickly

and accurately in follow-up task 2b. This is despite the follow-up task requiring more

steps (a join, a scalar function, and an aggregate function). This suggests users are able
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to apply formulas effectively after first learning them, but that there is significant potential

for improved learnability. We agree with users AM, who suggested adding an explicit sum

action like that of Excel. This feature would automatically generate a sum formula above

the nearest one-to-many relationship, which would then serve as an example to the user to

learn from. Small improvements could also be made to make it easier to discover how to

edit formulas.

After initial learning, users appreciated the behavior of formulas. Users CEGK noted

explicitly that the behavior of aggregate functions, including grouping and subtotaling be-

havior, made sense. Users ILK also commented that the all-column nature of formula

references made sense and was an advantage over Excel’s range-style references. User K

noted:

“I just feel like I have a truer sense of what I’m adding up, or what’s being considered

in this format vs. the traditional Excel. Because [in Excel] you could be pulling from the

wrong places, you can be getting weird numbers, you could accidentally hit a field that now

ends up in your calculation.”

Users BHI, when asked to do a counting task, such as “find the instructor teaching the

highest number of courses”, used the count aggregate function with a primitive field as

an argument, using either the technical primary key (e.g. id) or another field that the user

presumed to be an identifier for tuples in the relation to be counted (e.g. title). User H

noted that “this might not be the ideal way to do it” due to the potential for duplicated

titles. This suggests that users suspected that the count aggregate would collapse duplicate

input values, which is not actually the case. User B, when asked how one might count the

actual rows in the relation, inserted a constant formula with the numerical value “1” and

used a sum function to tally up the constants. None of the users discovered that a relation

reference can be used in the count aggregate instead of using an arbitrary primitive field

from the same relation.

Field selection; auto joins. Users performing tasks 3-6, or similar tasks on other

datasets, were generally able to use the auto join feature without trouble. The exception

was user N, who had a hard time because of the lack of visible indications in the result

area that more fields could be shown. User G also noted this issue. Users IKN specifically

looked for an action named “Unhide”, as in Excel. This suggests that our user interface

needs a more visible affordance for accessing hidden fields. We expect hidden fields to

be far more common in SIEUFERD than in Excel, since a typical database query projects

only a small subset of columns available from instantiated database tables. The design of

an improved unhide affordance should take this into account.

Users EGHJKL reacted particularly enthusiastically to the auto join feature, using

words such as “fantastic”, “wow”, “damn”, and “amazing”. User E noted:

“Yes, the manual join made sense, but that was a very simple situation. I wouldn’t want

to have done the joins on this [more complicated database]. The fact that I was just able to

double-click and expand it out, that meant, it dumbed the task down to the level that I was

happy performing it.”

User J: “It was so easy. It was extremely easy to do this. The idea of just being able

to just simply right-clicking on a column and identify what I want to include in this thing

without having to think about a SQL or Access query, it was just very intuitive.”

User L: “It’s pretty fast! ... For what it’s doing, it’s amazing.”
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Field selection; conceptual model. One source of confusion was the fact that the field

selector may show a field as checked even when an ancestor relation is not. Such states

are permitted because they may be semantically significant in certain cases (e.g. when a

hidden relation is used as an input to an aggregate function and the Collapse Duplicate

Rows option is enabled on said relation). Users BFG expanded an unchecked relation field

in the field selector and were surprised to see child fields already checked despite not yet

being visible in the result area. This was due to our system attempting to set defaults for

visible fields in all newly introduced relations, hidden or not. User I, in contrast, attempted

to uncheck a parent relation after first checking several child fields that were meant to be

included in the result. This had the effect of hiding from view even the desired child fields

from the result. While users quickly recovered from these problems, the field selector

could be improved by using an alternative checkmark indication for fields that descend

from hidden relations.

Users BCF, when asked to hide a relation, multiple-selected all of its child fields in the

result area and invoked Hide on them. We later modified the Hide action to recognize this

pattern and hide the common parent relation instead of each of its individual child fields.

Field selection; efficiency. One important problem was that of poor defaults for which

fields should be visible immediately after a new relation is introduced into the current

query. For manual joins, all (non-redundant) fields in the foreign table would be visible

in the nested relation; this made it hard to grasp the overall structure of the query without

first going through the step of hiding a number of irrelevant columns, usually necessitating

horizontal scrolling. For auto joins, in contrast, only primary key fields were displayed by

default. This also turned out to be a poor choice, because primary key fields often consist of

purely technical identifiers that neither help the user identify an entity in the database nor its

type. An example would be the relation employees(id, first_name, last_name), where the

database identifies each tuple by the technical primary key id (maybe a number, like “16”)

but where the user would rather like to see the first and last names of each employee—

despite the theoretical possibility that two employees might have the same name. Showing

only primary key fields by default made auto joins harder to work with than necessary,

requiring users to click four or five times in the field selector in order to introduce a new

relation and show a reasonable set of fields from that relation.

Post-study, in response to the problem of poor field visibility defaults, we modified our

system to allow a subset of columns from each database table to be marked as human-

readable heading fields. These are the fields that will initially be visible whenever the table

in question is introduced into a query. As suggested by users MN, we configure this setting

automatically. Various heuristics could work, including attribute ranking algorithms [34,

76], but for now, we simply look for column names containing the words “title” or “name”.

For databases containing a large number of fields per table, navigating the field selector

became cumbersome. This was noted by users EJM, who got a chance to try our tool on

a real data warehouse schema containing 22 interconnected tables with up to 40-73 fields

each (19 on average). User L also pointed this out for the smaller course catalog schema.

User E explains:

“You’ve got massive lists, and they’re not ordered alphabetically. You’ve got table

names, and field names, and sometimes they are not very English.”

One part of the problem is that users spent a significant amount of time scanning up
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and down looking for specific field names. Alphabetization would be problematic, as users

often expect fields to be in a certain order (the phone number always precedes fax number).

A search box in the field selector, on the other hand, like that of the filter popup, could work,

as suggested by users JM. A separate problem is the fact that the multitude of primitive

fields in the field selector obscures the overall structure of relation fields in the query,

including those accessible via auto joins. Users JM also commented that they would have

liked to see a schema diagram of some sort on-screen. In the future, we may consider

adding a second kind of field selector that shows relation fields only in a tree representation

that is fully expanded by default; this would provide a compact way to see the entire foreign

key structure of the database schema as reachable from the current query.

Filters. In task 5 and elsewhere, most users had no trouble applying the filter feature.

The exception was users AGLN, who first approached filter tasks by attempting to sort

rather than filter. Three of these users, users AGN, reported not being frequent users of

filters in Excel. Users had no trouble understanding the interaction between filters and

aggregate functions, nor with the behavior of filters on deeply nested relations. User E

solved a conditional sum task using a =sum(if([condition],[amount],0)) formula instead of

using the filter feature, but understood the filter approach as well.

3.3.3 General Sentiment

At the end of the session, users CDHIJK expressed that they had a high degree of under-

standing of the tool. User K, who had 2-300 hours of experience with SQL from their

previous job, noted:

“It’s probably fair to say that I am as comfortable with this as I am with SQL right now,

just because I haven’t used SQL that often in the recent past. Given 2 hours, I think I could

make an accurate report in this, allowing for mistakes, and fixing my mistakes. Take that

same period in SQL, and I think I would still be at sea.”

User H: “It feels like the learning curve was very fast. I mean, I felt like I didn’t know

much to begin with, but then I feel really comfortable with it now. I could totally do things

with it, if I had it.”

Users EJKL rated SIEUFERD favorably compared to existing commercial tools they

are familiar with.

User J: “It took me a lot longer to get anything useful out of Access after I first started

using that. So that’s huge. This is more intuitive than either Excel or Access. I think, for

the novice that doesn’t know what they’re doing, this can be very powerful.”

User L: “This is much more sophisticated than Excel. I think, if you know Excel, at the

intermediate level or above, then just playing around with this, you can figure it out.”

User E, on how one might use Excel to solve tasks similar to those given in the study:

“I couldn’t imagine doing that [course catalog] activity in Excel. The first example was

simple enough, but once you start to do a couple of VLOOKUPs, I think you’re starting to

go beyond what Excel is really about.” (VLOOKUP is a function that can be used in Excel

formulas to pull in data from other worksheets or cell ranges, analogous to a join.)
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Table 3.4: Tasks used in the controlled study. Some additional bonus tasks were also

available to users who finished quickly. The database used is the 7-table version of the

“Northwind” example that shipped with older versions of Microsoft Access.

Type # Task Operations involved

Guided 1 Show a list of products with the ProductName and Discontinued fields visible. Field selection

2 Find the total quantity sold of each product, via the quantities in the OrderDetails table. Join, aggregate

3 Find the total sales for each product. This involves a UnitPrice∗Quantity calculation. Scalar formula, aggregate

4 Include in totals only orders shipped outside the US. Join, pre-aggregate filter

5 Show the products with the most revenue first, hiding any order details if still visible. Sorting

Unguided 6 Show customers and all their orders, sorted by customer. Field selection, join, sorting

7 For each of the customers’ orders, show the total dollar amount for that order. Join, scalar formula, aggregate

8 Show the name and phone number of the shipping company serving each order. Join, field selection

9 Show only orders assigned to employee Margaret Peacock. Join, filter

3.4 Controlled User Study

In a second user study, we aimed to get a more precise idea of how users might rate our

system compared to an existing industry tool. We chose the “Query Design” facility of

Microsoft Access 2016 as a control. Being part of the Office Professional suite, it is one of

the most common visual query tools available. It is also a good example of a query builder

that uses a diagram-based approach rather than direct manipulation of results (see Related

Work).

The controlled study was a within-subjects counterbalanced design, measuring usability

using the System Usability Scale (SUS) [17]. Tullis and Stetson [103] recommend sample

sizes of 12-14 users to get reasonably representative results from within-subjects studies

based on the SUS survey; we collected data from 14 users (5 male, median age 36). See

Table 3.1 for a demographic summary. Only users OTÆ had prior experience with the

Access query designer. We met with each user for a single study session, structured as

follows:

1. Complete demographic/background survey.

2. Briefly discuss the sample database that will be used for tasks, consulting a schema

diagram on paper. The paper diagram remains available to the user during the tasks that

follow.

3. Work through some standardized tasks to evaluate Tool 1. Stop after about 20 minutes.

The first tool is SIEUFERD for half of the users and Microsoft Access for the other half,

randomized.

4. Complete SUS survey for Tool 1.

5. Work through the same tasks in Tool 2, under otherwise identical conditions. Stop after

about 20 minutes.

6. Complete SUS survey for Tool 2.

7. Discussion and feedback.

The standardized tasks, all done on the 7-table “Northwind” example database that

shipped with older versions of Microsoft Access, are intended to be realistic examples of

queries that a user might want to run on such a database. They incorporate joins, filters,

sorting, scalar calculations and aggregates, but are limited to queries that can be expressed

in Microsoft Access’ visual query designer; this excludes queries requiring nested results as
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Table 3.5: Mean SUS survey results for the controlled study, using various standard scales.

Higher scores are better. Error bars show the standard error of the mean.
Scale Tool Score (0-100)

Raw SUS Access 50

10 20 30 40 50 60 70 80 90 100

Sieuferd 68

Learnability Access 49

Sieuferd 64

Usability Access 50

Sieuferd 69

Percentile Access 6

Sieuferd 52

well as multi-block queries (e.g. aggregates used as inputs to other aggregates). The exact

tasks are listed in Table 3.4. In both tools, we configured foreign key relationships up front

so that the user would not have to manually specify exact join constraints between tables.

The first five tasks are guided training tasks, intended to expose the user to all features, in

both tools, that are needed to complete the subsequent unguided tasks. The guided tasks

tended to take about half of the 20 minutes that users had available to try each tool. After

the guided tasks, users were asked to try solving four unguided tasks without help. Since

the main purpose of tasks was to give the user enough of an impression of each system to

complete the subsequent SUS survey, we gave hints during unguided tasks whenever users

reported being stuck.

The results of the study are shown in Table 3.5. The raw SUS score is reported along

with separate Learnability and Usability scores as defined by Lewis and Sauro [69], as well

as a percentile rating among 30 other studies in the B2B (Business Software) category as

detailed by Sauro [91]. The difference in raw SUS scores between Access and SIEUFERD

is statistically significant (p = 0.0019 with two-tailed paired t-test).

Interpreting the results, with the caveat that these observations are based on only 20-

minute interactions with each tool, we see that SIEUFERD significantly outperformed

Microsoft Access in terms of usability. Most of the difference can be attributed to the

poor performance of Microsoft Access, considering its low ranking on the percentile scale;

SIEUFERD simply achieved an average rating compared to other business software. This

supports the original hypothesis of our paper: database querying is hard, but can be made

significantly easier using a direct manipulation interface. SIEUFERD still has significant

potential for improved usability. In conversations with users, the main requests for fu-

ture design improvements were (1) the ability to get an overview of the complete database

schema from within the query interface and (2) reduced dependency on formulas during

query building. This is consistent with observations from the formative study.

3.5 Berlin/BESDUI Benchmark

One limitation of the previous user studies is that the choice of tasks was made by the

same researcher who developed the software being evaluated. Another limitation was the
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Table 3.6: Summary of BESDUI benchmark results for SIEUFERD, compared with ex-

isting results for two other systems. The capacity indicates whether or not the query in

question can be expressed in each system (as per the benchmark’s notation).

Task # Capacity Time (s) Capacity Time (s) Capacity Time (s)

Time Relative 
to Best

1 100% 27.4 0% 100% 30.7 1.1

2 100% 28.7 100% 12.0 100% 28.9 2.4

3 100% 5.2 100% 5.0 100% 8.3 1.7

4 0% 0% 100% 48.0

5 0% 0% 100% 55.2

6 0% 100% 48.4 100% 67.0 1.4

7 0% 100% 3.3 100% 6.7 2.0

8 100% 30.9 100% 20.3 100% 40.0 2.0

9 0% 0% 100% 22.7

10 100% 2.6 100% 2.6 100% 18.4 7.1

11 100% 38.8 100% 21.4 100% 39.8 1.9

12 50% 0% 50%

Virtuoso Facets Rhizomer SIEUFERD

time we had available with each study participant; our hour-long controlled study left only

10-15 minutes to solve unguided tasks on each of the two systems under test, after a simi-

larly short sequence of training tasks on each system. The BESDUI benchmark [42] sug-

gests using a set of 12 queries, sourced from the earlier systems-oriented Berlin SPARQL

Benchmark [15], with a keystroke-level model (KLM) [21] to estimate the performance

of expert end-users operating a visual query system. Applying the BESDUI benchmark

on the SIEUFERD system gives us an opportunity to do an objective comparison of both

performance and functionality relative to other visual query systems evaluated using the

same benchmark. Furthermore, the detailed enumeration of steps required to construct

each benchmark query serves as good examples of the capabilities of the system and how

an expert user would make use of them in practice.

The detailed interaction steps required to construct each of the 12 queries in the BES-

DUI benchmark are listed in Table 3.7. The BESDUI benchmark, like the Berlin SPARQL

Benchmark, can be used with both RDF stores and relational databases; for the relational

SIEUFERD system we have assumed that foreign key relationships have been declared at

the database level as part of the schema definition. To date, the BESDUI benchmark has

been applied to two other systems; Rhizomer [18] and Virtuoso Facets3. Figure 3.6 shows

the results for SIEUFERD compared with Rhizomer and Virtuoso4. Task 12 consists of a

query part and a data export part; SIEUFERD can do the former but not the latter, Rhizomer

vice versa.

Comparing the results in Figure 3.6, we see that the SIEUFERD system is the only one

of the three systems to be able to express all queries in the benchmark. On the other hand,

queries that can be expressed in at least one of the other two systems appear to be require

more steps in SIEUFERD. A larger part of the difference, however, we attribute to three

3http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtFacetBrowserInstallConfig
4Official result repository at https://github.com/rhizomik/BESDUI
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Table 3.7: Exact interaction steps required to specify each of the 12 queries in the BESDUI

benchmark using SIEUFERD. The metrics K, P, and H refer to the number of mouse or

keyboard keypresses, mouse aiming operations, and switches between the mouse and the

keyboard required for each step, respectively. The speed is the estimated number of seconds

required to complete the task based on the indicated standard durations per metric. (Table

continued on the next page.)
0.2s 1.1s 0.4s

Interaction	Steps K P H Speed	(s)

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	the	"propertyNum1",	"productfeatureproduct.productfeature.label",	and	"producttypeproduct.producttype.label"	fields	visible 9 7 0

3. Filter	to	show	only	products	for	which	"producttypeproduct.producttype.label"	is	"sheeny" 4 3 0

4. Open	the	filter	toolbox	on	the	"productfeature.label"	field 2 2 0

5. Click	"stroboscopes"	and	"gadgeteers"	and	close	the	filter	box 3 2 0

6. Insert	a	calculated	field	next	to	"product.label" 2 2 0

7. Key	the	cursor	to	the	calculated	column	and	type	the	formula	"=[propertyNum1]>450	and	count([productfeature\label])=2"	(field	

references	inserted	by	arrow	keypresses)

17 0 1

8. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

Total	Task	1 47 19 1 30.7

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	the	"propertyNum1",	"productfeatureproduct.productfeature.label",	and	"producttypeproduct.producttype.label"	fields	visible 9 7 0

3. Filter	to	show	only	products	for	which	"producttypeproduct.producttype.label"	is	"sheeny" 4 3 0

4. Open	the	filter	toolbox	on	the	"productfeature.label"	field 2 2 0

5. Click	"stroboscopes"	and	"gadgeteers"	and	close	the	filter	box 3 2 0

6. Insert	a	calculated	field	next	to	"product.label" 2 2 0

7. Key	the	cursor	to	the	calculated	column	and	type	the	formula	"=[propertyNum1]>450"	(field	reference	inserted	by	single	arrow	

keypress)

8 0 1

8. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

Total	Task	2 38 19 1 28.9

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	all	the	fields	visible	(use	keyboard	shortcuts) 8 0 1

3. Open	the	filter	box	(keyboard	shortcut) 1 0 0

4. Type	"boozed",	down,	down,	space,	enter 10 0 0

Total	Task	3 23 3 1 8.3

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	the	"nr",	"propertyNum1",	"propertyNum3",	"productfeatureproduct.productfeature.label",	and	

"producttypeproduct.producttype.label"	fields	visible

11 9 0

3. Filter	to	show	only	products	for	which	"producttypeproduct.producttype.label"	is	"sheeny" 4 3 0

4. Do	a	custom	join	operation	to	join	in	another	instance	of	the	productfeatureproduct	table 5 5 0

5. Make	the	"productfeatureproduct2.productfeature.label"	field	visible 4 3 0

6. Filter	for	"stroboscopes"	in	"productfeatureproduct" 4 3 0

7. Filter	for	"NOT	gadgeteers"	in	"productfeatureproduct2" 5 4 0

8. Insert	a	calculated	field	next	to	"product.label" 2 2 0

9. Key	the	cursor	to	the	calculated	column	and	type	the	formula	"=[propertyNum1]>300	and	[propertyNum3]<400"	(field	references	

inserted	by	arrow	key	presses)

17 0 1

10. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

Total	Task	4 62 32 1 48

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	the	"nr",	"propertyNum1",	"propertyNum3",	"productfeatureproduct.productfeature.label",	and	

"producttypeproduct.producttype.label"	fields	visible

11 9 0

3. Filter	to	show	only	products	for	which	"producttypeproduct.producttype.label"	is	"sheeny" 4 3 0

4. Do	a	custom	join	operation	to	join	in	another	instance	of	the	productfeatureproduct	table 5 5 0

5. Make	the	"productfeatureproduct2.productfeature.label"	field	visible 4 3 0

6. Filter	for	"stroboscopes"	in	"productfeatureproduct" 4 3 0

7. Insert	a	calculated	field	next	to	"product.label" 2 2 0

8. Key	the	cursor	to	the	calculated	column	and	type	the	formula	"=[pfp2.pf.label]='gadgeteers'	and	[propertyNum1]>300	or	

[pfp2.pf.label]='rotifiers'	and	[propertyNum2]>400"	(field	references	inserted	by	mouse	clicks)

52 4 4

9. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

Total	Task	5 92 32 4 55.2

Task	3:	Get	details	about	product	"boozed"

Task	1:	Look	for	products	of	type	"sheeny"	with	product	features	"stroboscopes"	and	"gadgeteers",	and	a	"productPropertyNumeric1"	greater	than	"450"

Task	2:	List	products	of	type	"sheeny"	with	product	features	"stroboscopes"	OR	"gadgeteers",	and	a	"productPropertyNumeric1"	greater	than	"450"

Task	4:	Look	for	products	of	type	"sheeny"	with	product	features	"stroboscopes"	but	NOT	"gadgeteers",	and	"productPropertyNumeric1"	value	greater	than	"300"	and	

"productPropertyNumeric3"	smaller	than	"400"

Task	5:	Look	for	products	of	type	"sheeny"	with	product	features	"stroboscopes"	and	"gadgeteers"	and	a	"productPropertyNumeric1"	value	greater	than	"300"	plus	

those	of	the	same	product	type	with	product	features	"stroboscopes"	and	"rotifers"	and	a	"productPropertyNumeric2"	greater	than	"400"

KLM	Metrics
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0.2s 1.1s 0.4s

Interaction	Steps K P H Speed	(s)

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Make	the	"propertyNum1",	"propertyNum3",	and	"productfeatureproduct.productFeature"	fields	visible 7 6 0

3. Do	a	custom	join	operation	to	join	the	existing	instance	of	productfeatureproduct	with	another	instance	of	productfeatureproduct	on	

the	productFeature	field

5 5 0

4. Make	"product2"	then	"propertyNum1",	"propertyNum3",	and	"label"	fields	visible	under	productfeatureproduct2	(the	second	instance	

of	productfeatureproduct2)

5 4 0

5. Filter	"product2.label"	to	only	include	the	product	"boozed"	(open	filter	with	keyboard	shortcut,	type	"boozed",	click	result	and	close	

filter	popup)

9 8 2

6. Insert	a	calculated	field	next	to	"product.label" 2 2 0

7. Key	the	cursor	to	the	calculated	column	and	type	the	formula	"=[propertyNum1]<[product2\propertyNum1]+100	and	

[propertyNum1]>[product2\propertyNum1]-100"	(field	references	inserted	by	mouse	clicks)

22 4 4

8. Copy	the	formula	to	the	clipboard	from	the	formula	bar 2 2 2

9. Insert	another	calculated	column	next	the	previous	one 2 2 0

10. Key	the	cursor	to	the	new	calculated	column	and	paste	the	formula 3 0 1

11. Change	"propertyNum1"	to	"propertyNum3"	in	each	place	in	the	formula	in	the	formula	bar,	and	"100"	to	"200". 20 6 7

12. Filter	the	two	formulas	to	only	include	values	of	"true" 12 0 0

Total	Task	6 93 42 16 71.2

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Open	the	filter	and	type	"ales" 5 0 1

3. Select	all	the	results	(multiple	selection	via	page	down	+	space),	then	press	enter	to	close	the	filter	popup 6 0 0

Total	Task	7 15 3 1 6.7

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Open	the	filter	popup	and	type	"wat	sha"	(assume	this	makes	the	right	product	visible) 8 0 1

3. Select	the	"waterskiing	sharpness	horseshoes"	product	and	close	the	filter	popup 2 1 1

4. Make	all	the	relevant	fields	visible,	including	from	the	"offer"	and	"review"	table	instances 16 15 0

5. Filter	"product.offer.vendor.country"	to	China	only. 4 3 0

6. Insert	a	calculated	column	next	to	"offer.validto" 2 2 0

7. Key	the	cursor	to	the	new	calculated	column	and	enter	the	formula	"=[validTo]>{2008-05-28}" 16 0 1

8. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

9. Deactivate	"Hide	Parent	if	Empty"	on	the	"offers"	table	instance	(to	avoid	hiding	the	product	if	there	are	no	offers	satisfying	the	

constraint--needed	if	we	want	to	be	technically	equivalent	to	the	left	join	in	the	SQL	query	example)

2 0 1

Total	Task	8 60 24 4 40

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Open	the	filter	popup	and	type	"wat	sha"	(assume	this	makes	the	right	product	visible) 8 0 1

3. Select	the	"waterskiing	sharpness	horseshoes"	product	and	close	the	filter	popup 2 1 1

4. Make	the	"review"	table	instance	visible	and	its	relevant	fields. 7 6 0

5. Filter	"review.language"	on	"en" 4 3 0

6. Sort	descending	on	"reviewDate"	(there	is	no	LIMIT	to	be	specified;	the	user	can	simply	look	at	the	20	topmost	rows.	Explicit	limits	

could	be	supported	by	allowing	the	row_number()	window	aggregate	function	in	formulas)

2 2 0

Total	Task	9 27 15 2 22.7

1. Create	and	open	a	perspective	from	the	"review"	table 4 3 0

2. Show	the	"review.nr"	and	"review.person"	fields,	and	all	fields	under	"review.person" 10 9 0

3. Filter	"nr"	to	show	only	Review5481	(use	keyboard	shortcuts) 10 0 1

Total	Task	10 24 12 1 18.4

1. Create	and	open	a	perspective	from	the	"product"	table 4 3 0

2. Open	the	filter	popup	and	type	"wat	sha"	(assume	this	makes	the	right	product	visible) 8 0 1

3. Select	the	"waterskiing	sharpness	horseshoes"	product	and	close	the	filter	popup 2 1 1

4. Make	all	the	relevant	fields	visible 11 8 0

5. Filter	"product.offer.vendor.country"	to	US	only. 4 3 0

6. Insert	a	calculated	column	next	to	"offer.validto" 2 2 0

7. Key	the	cursor	to	the	new	calculated	column	and	enter	the	formula	"=[validTo]>{2008-06-15}" 16 0 1

8. Filter	to	show	only	products	for	which	the	formula	is	"true"	(use	keyboard	shortcut	since	hand	is	already	on	keyboard) 6 0 0

9. Sort	ascending	on	"product.offer.price" 2 2 0

10. Filter	on	"product.offer.deliveryDays"	to	include	"1",	"2",	and	"3" 6 5 0

Total	Task	11 61 24 3 39.8

1. Create	and	open	a	perspective	from	the	"vendor"	table 4 3 0

2. Show	only	the	fields	"label",	"homepage",	and	"country",	as	well	as	"offer"	and	"offer.nr" 6 5 0

3. Filter	"offer.nr"	to	show	only	Offer3499	(use	keyboard	shortcuts) 9 0 1

4. Hide	"offer" 2 2 1

5. Key	to	the	"label"	column's	heading	and	rename	it	to	"name"	(key	right	to	the	next	column	after	editing). 7 0 0

6. Rename	"homepage"	to	"url"	(key	right	to	the	next	column	after	editing) 4 0 0

7. Rename	"country"	to	"nationality". 12 0 0

8. Export	to	CSV.	(Assume	this	feature	exists.) 4 4 0

Total	Task	12 48 14 2 25.8

Task	6:	Look	for	products	similar	to	"boozed",	with	at	least	one	shared	feature,	and	a	"productPropertyNumeric1"	value	between	"427	and	627"	(100	more	or	less	than	

its	value	for	boozed,	527)	and	a	"productPropertyNumeric2"	value	between	"545	and	945"	(200	more	or	less	than	its	value	for	boozed,	745)

Task	7:	Search	products	whose	name	contains	"ales"

KLM	Metrics

Task	8:	For	the	product	"waterskiing	sharpness	horseshoes"	list	details	for	all	its	"offers"	by	Chinese	vendors	and	still	valid	by	"2008-05-28"	plus	details	for	all	"reviews"	

for	this	product	having	either	"rating1	or	rating2"	[assumed	to	mean	simply	selecting	the	two	fields	"rating1"	and	"rating2"]

Task	9:	For	the	product	"waterskiing	sharpness	horseshoes"	list	the	"20"	more	recent	"reviews"	in	"English"

Task	10:	Get	all	available	information	about	the	author	of	"Review5481"

Task	11:	Look	for	the	"cheapest"	and	still	"valid"	by	"2008-06-15"	"offer"	for	the	product	"waterskiing	sharpness	horseshoes"	by	a	"US	vendor"	that	is	able	to	"deliver"	

within	"3	days"

Task	12:	Save	in	the	local	computer	the	information	about	the	vendor	for	"Offer3499"	and,	if	possible,	restrict	it	to	just	label,	homepage	and	country	and	map	them	to		

"schema.org"	terms	name,	url	and	nationality



factors:

• The need, in SIEUFERD, to often click many times to select fields to display in

the query. This is because SIEUFERD only shows a small selection of heading-

type fields whenever a new relation is introduced into the current query. The latter

design decision was made after observations in the formative user study; SIEUFERD

displays query results in a nested table layouts by default, and there is only limited

horizontal space available for columns. Rhizomer, on the other hand, displays entities

in a form layout, showing all fields one level from the entity by default. Even though

this means that only a few entities can be shown at a time on the screen, there is less

of a need to hide and show individual primitive fields in preparation for doing filters

and other operations. In Chapter 5 we show how form layouts can be supported

from within SIEUFERD. In the future, we might change the policy for default field

visibilities based on whether the user is building a query from within a form layout

or a nested table layout.

• A lack of range filters in SIEUFERD. Rhizomer features range filters, which makes

it easy to specify conditions such as [validTo] > {2008-05-28}. In SIEUFERD, such

conditions currently have to be specified as filters on boolean formulas. Range filters

could be a very useful addition to SIEUFERD.

• The need, in SIEUFERD, to open a context menu for every operation. Because

the KLM metric used in the benchmark does not take the mouse pointer’s required

travel distance and target size (Fitt’s law) into account, it is a bit biased against

SIEUFERD’s interface, preferring a single click in a sidebar far off the screen over

two clicks close to the location of the data being manipulated.

• Some differences in assumptions about query tasks. For instance, in tasks 6, we

assume that productPropertyNumeric1 is defined as “100 more or less than its value

for boozed”, while the Rhizomer evaluation hard-codes the values 427 and 627 into

the query.

3.6 Conclusion

SIEUFERD is a visual query system that achieves SQL-like expressiveness from a pure

direct manipulation interface. Whereas previous direct manipulation systems either sacri-

fice expressiveness or hide the actual query from the user, SIEUFERD integrates the query

and its result into a single interactive visualization, using spreadsheet concepts like fil-

ters and formulas to expose the complete state of the current query. Compared with the

diagram-based query designer of Microsoft Access 2016, users greatly preferred our di-

rect manipulation interface, with the latter scoring 46 percentiles higher on a SUS-based

percentile scale.
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Chapter 4

Semantics and Expressiveness

4.1 Overview

In the previous chapter, we presented SIEUFERD’s visual query language exclusively from

the user’s point of view, showing the various possible states of the SIEUFERD query model

as they would be displayed on the screen during an interactive query building session. In

this chapter, we discuss the specific data structure that defines the query model, and how the

various operations in our visual query language are mapped to changes in the query model.

We then show how a query in the query model is translated to SQL queries for evaluation.

Finally, we show how arbitrary SQL-92 queries, via an extended relational algebra, can

always be translated to a corresponding query in the SIEUFERD query model.

4.2 The Nested Relational Data Model

In plain SQL, a database query always returns a flat table of results, that is, a bag of

tuples of primitive values. As we have seen, however, a query in the SIEUFERD query

model can return nested results, allowing a greater deal of structure to be communicated

in the result of a query. Specifically, we allow queries to produce results from the

nested relational data model [53, 68], which we define next.

In the nested relational data model, a value is either a primitive or a relation, where a

relation is defined as a set of tuples, each containing a set of fields identified by labels, each

field containing a value, recursively. The schema of a value either defines the value to be

a primitive, or defines the value to be a relation, with schemas further specified for each of

the latter’s fields, recursively. See Figure 4-1. For our purposes, we will assume that the

schema of a relation can define more fields than are actually present in a conforming value;

this allows the result of a query to retain information about fields that are currently hidden

from view.

Besides using the nested relational data model as a data model for query results, we

also its concept of a schema in the definition of queries themselves, as will be seen next.
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Table 4.1: Properties in the SIEUFERD query model, associated with each field in the

nested relational schema that defines a visual query. Along with the core set of properties

that are needed to define a database query, we also store various properties that define how

the result of the query is presented on the screen during interactive query construction; some

examples are shown here. P, R, and P R indicate properties applicable to primitive fields,

relation fields, or both, respectively. Properties with icons correspond directly to icons

shown in the result area and actions in the user-accessible context menu from Figure 3-1.

Example User-Defined Presentation Properties 

P R Label. Presentation label for the field. Used in nested table headers, in the field selector, 
and as part of the syntax for referencing fields from formulas. Defaults to the 
original technical name of the column or table in the underlying database. 

P R LabelTextStyle. Text style (font, size, etc.) for the field’s presentation label. 

P  ValueTextStyle. Text style for data values associated with this field. 

Example Auto-Measured Presentation Properties 

P  ValueWidth. The column width to use for this field when rendering results in a table 
layout. Typically an average or maximum of the visual widths of individual data 
values, up to some limit, depending on the data type. 

P  DecimalPlaces. For numeric fields, the number of decimal places to show in formatted 
data values. The default heuristic tries to ensure that every numeric data value will 
be shown with up to four of its significant digits. 

P  SampleSize. The number of unique data values that were used the last time measured 
properties such as ValueWidth and DecimalPlaces were calculated. Used to decide 
when recalculations should happen. 

Query Definition Properties 

P R Visible. Boolean indicating whether this field should be visible in the result layout. 

P R  Filter. An optional filter condition. Filters are stored in a format that can be generated 
from and restored to a spreadsheet-style filter selection UI. 

P R  Sort. An optional ordinal indicating the position of this field among the parent 
relation’s sort terms, plus an ascending/descending flag. 

P   JoinedOn. An optional reference to a primitive child field of the parent relation’s 
parent relation. This denotes an equijoin condition between this field and the 
referenced field, and handles the most common kind of join without requiring the 
use of formulas and filters. 

P  ColumnDefinition. Either the technical name of a column in the database table specified 
by InstantiatedTable, or a formula expression over fields in the query model. 

 R InstantiatedTable. The technical name of a database table to instantiate at this level. 
Allowed to be absent, in which case semantics are equivalent to instantiating a 
single-tuple, zero-column table. 

 R  CollapseDuplicateRows. Boolean indicating projection policy for primary key fields. 
False by default, in which case the primary key fields of InstantiatedTable are 
projected in intermediate and retrieved results even if not Visible. 

 R  HideParentIfEmpty. Boolean indicating if an inner join rather than a left join should 
be used between this relation and its parent. Set automatically by the filter UI, but 
can be overridden. 

 R  OneToMany. Read-only boolean, set automatically to indicate to the user the presence 
of a one-to-many relationship at this relation. Always on except for relations whose 
JoinedOn conditions provably ensure that there would be only one nested child 
tuple per parent tuple, e.g. for joins on the child relation’s primary key. 

 

Lorgm

76



Tuple

Primitive Values

Relation Value Label for Relation Field (bold)

Label for

Primitive

Field

Figure 4-1: Terminology of the nested relational data model, illustrated on a nested table

layout.

4.3 The SIEUFERD Query Model

A visual query is modeled as a nested relational schema that has been annotated with query-

and presentation-related properties on each field. The query-related properties, and some

examples of presentation-related properties, are shown in Table 4.1. The annotated schema,

which we will refer to as the SIEUFERD query model, fully defines both the SIEUFERD

query to be executed and how its results should be rendered on the screen.

We have defined the SIEUFERD query model so as to maintain a very particular re-

lationship between the structure of a query and the structure of its result. This is what

allows us to provide a single direct manipulation interface through which the user can edit

the query by manipulating the result of the query. When a SIEUFERD query is executed,

returning a nested relational result, the schema of the nested query result is identical to the

query model schema that defined the query in the first place. The correspondence between

the structure of the query and the structure of its result makes it straightforward to translate

high-level user interactions on the visualized query result to concrete modifications on the

underlying query model, and conversely, to indicate the state of the query model in the

table header of the visualized result.

The concept of encoding a database query in the schema of its own result is a key idea

in our design, and typically not how other query languages work. For instance, the abstract

syntax tree of a SQL query has no well-defined relationship with the schema of the query’s

table of results. In XQuery, the query and the result are both defined in the same data model

(XML), but the structure of the query is still not guaranteed to be reflected in the schema

of the result. The encoding of complex multi-block queries into simple annotations on the

schema of their own results is possible in part because we chose a nested data model for

results, as opposed to the flat tabular model of SQL results.
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4.3.1 Encoding Examples

We return to a few of the visual query examples from Section 3.2.2, explaining how each

would be encoded in the query model’s data structure. The property concept refers to the

schema field properties that were defined in Table 4.1.

Table instantiation. Our first example was a simple selection of tuples from a table in

the database:

In the SIEUFERD query model, the query above is represented as a nested relational

schema whose root relation references the courses table from its InstantiatedTable prop-

erty, with primitive child fields storing the technical name of each table column in their

respective ColumnDefinition properties. The term technical name here refers to the string

that is used to identify a field or column in generated SQL queries. The separate prop-

erty Label holds the name that is actually displayed in the result layout for presentation

purposes. While Label defaults to the technical name of the field or column, the user can

edit the cell containing the label to change the label to something more human-readable if

desired.

In the example above, all fields have the Visible property set to true, while the Filter,

Sort, JoinedOn, CollapseDuplicateRows, and HideParentIfEmpty properties are cleared.

The read-only OneToMany property ( ) is not set by the user, but is set automatically

on the courses relation as an indication that more than one tuple may be returned for that

relation.

Note that the InstantiatedTable, CollapseDuplicateRows, HideParentIfEmpty,

and OneToMany properties only apply to relation fields, while the JoinedOn and

ColumnDefinition only apply to primitive fields, as indicated in Table 4.1.

Nesting and equijoins. In the next example, a nested relation field readings is added to

the courses relation after the latter relation’s existing primitive fields. The readings relation

has the InstantiatedTable property set to reference the readings table, and includes its

own primitive child fields each with the ColumnDefinition property set to a corresponding

column in the readings database table. The JoinedOn property of the readings\course_id

field is set to reference the courses\id field, denoting an equijoin condition. The presence

of an equijoin condition is indicated by the join icon (Lorgm ). To avoid clutter, the referenced

field on the other side of the join condition is not displayed in the table header, but can be

seen in the field selector.
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Hidden fields. In the previous two examples, all fields had the Visible property set

to true. When a field is hidden, it remains present in the in the query model’s annotated

schema, but has the Visible property set to false. The primary visual effect is is that the

fields in question are now hidden from view:

The Visible property usually also determines whether data is retrieved for a

particular field or not, with a few exceptions (defined later) involving the Sort and

CollapseDuplicateRows properties.

Note that it is permissible for a non-Visible relation to have Visible descendants. This

allows a relation to be hidden and unhidden without altering the visibility state of its child

fields. The visibility state of child field of a non-Visible relation may also be semantically

significant in the case where the latter relation is referenced from an aggregate function and

has HideDuplicateRows enabled, as hiding and showing a field, even when the child of a

hidden relation, may change the number of tuples in the hidden relation for the purposes of
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evaluating the aggregate. Thus, the Visible property does not mean “visible on the screen”,

but rather “this field would be visible on the screen if its parent was visible on the screen”.

Sorting. The presence of a sort icon, either ascending ( ) or descending ( ), and

possibly with a subscript ( 123) indicating the position of the sort term in the underlying

ORDER BY clause, fully defines the contents of a field’s Sort property. A sort icon without a

subscript has position 1. In the following example, the area and code fields both have their

Sort property set to an ascending sort of position 1, while the courses\title field has the

Sort property set to an ascending sort of position 2:

Formulas. For calculated fields, a field’s ColumnDefinition specifies a formula over

other fields in the query model instead of a column in its parent relation’s instantiated

database table. In the following example, the duration field has ColumnDefinition set to

the formula =sum([duration]), indicated with the formula icon ( ). Only primitive fields

have a ColumnDefinition property.

Filter. If a field has a filter defined on it, the state of that filter is stored in the Filter

property, with its presence indicated with the filter icon ( ). Seeing the complete state

of the filter requires opening the filter popup. Internally, the Filter property simply holds

another formula of the same form that is used for calculated fields, with some restrictions.
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The formula must (1) return a boolean value, (2) not contain aggregate functions, (3) ref-

erence only the filtered-on field or, for filters on relations, its primitive child fields, and

(4) be of a form that can be edited in filter popup UI. None of these restrictions affect the

expressiveness of the visual query language, as the user can always create a new calculated

field based on an arbitrarily complex formula, boolean or otherwise, and then filter on that

calculated field instead. In the following example, the author_name column has the Filter

property set to the boolean formula =[author_name] is "Shakespeare" or [author_name]

is "William Shakespeare".

Other boolean properties. The state of the remaining properties, CollapseDuplicateRows

and HideParentIfEmpty, is indicated directly with corresponding icons ( , ). In the

following example, the CollapseDuplicateRows and HideParentIfEmpty properties are

both set to true on the sections relation field.

4.4 Operations on the Query Model

We now discuss how the various high-level UI operations supported by SIEUFERD’s vi-

sual query language map to modifications on the underlying query model. Every query-

related action acts purely as a modification to the current instance of the SIEUFERD query

model. No modifications are made to the underlying relational database, and no additional
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Figure 4-2: The query list, which includes one automatically generated base query for each

table in the database (Data Tables), an empty query not instantiating any table (None), and

queries previously created by the user (Perspectives). The query list is used in the initial

selection of a template for a new query, as well as in the Join dialog.

state need be kept between query actions beyond basic schema metadata such as the list

of available tables, table columns, and known foreign key relationships. Using operations

described below, the user can reach all valid states of the SIEUFERD query model.

Query list. Before entering the main query building interface, the user selects an ex-

isting query to use as a template for the new one. The available options include one auto-

matically generated base query for each table in the database, an empty query not instan-

tiating any table, as well as any queries previously created by the user. See Figure 4-2.

The automatically generated base queries consist of a single relation instantiating the ta-

ble in question, with primitive child fields selecting each of the table’s columns, as in our

very first example query. The empty template query consists of a single relation with the

InstantiatedTable property cleared, with no child fields. The latter template is useful pri-

marily for dashboard-style queries, where multiple independent subqueries are shown side

by side as nested relations under a singleton root relation.

Once the user has created a new query, all subsequent query actions, with the exception

of formula editing and label editing, are initiated from the context menu. We have seen the

context menu in the previous chapter; we show it again in Figure 4-3 for reference as we go

through each of its actions. The editing of formulas and labels can be done directly in cells

without opening the context menu, modifying the ColumnDefinition and Label properties,

respectively, in the underlying query model.

The context menu can be opened on any field or multiple selection of fields in the result

layout. When describing context menu actions below, we assume that only a single field

has been selected, although many of the actions can be defined to have meaningful behavior

for a selection of multiple fields as well.

Field selection. The selection of fields in the field selector, opened with the Fields

action in the context menu, lets the user directly modify the boolean Visible property of

each field in the query model. See Figure 4-4. The Hide action in the context menu is

a shortcut that sets the Visible property to false for the selected field. The field that the

context menu was opened on determines which relation is shown as a root in the field

selector, as well as which field is initially selected in the field selector. This lets the user
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Figure 4-3: The context menu, which serves as a starting point for all query-related actions.

The context menu can be opened on any field or multiply selected set of fields.

Figure 4-4: The field selector. The user invoked the Fields action from the context menu

while the last field was selected, so the field selector shows the latter field as initially

selected along with its visible and non-visible sibling fields.
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quickly open the relevant part of the schema tree from the result layout instead of having

to expand the entire tree in the field selector from the query’s root relation.

The exact logic for determining which relation to show as the root in the field selector,

based on the field or fields that were selected in the result layout, can be tweaked for

usability. The tree of fields is automatically expanded so that the selected field or fields can

be shown as selected when the field selector is initially opened.

One additional aspect of the field selector is the automatic suggestion of nested joins

over foreign key relationships, based on the InstantiatedTable property of each relation.

Such joins are represented in the query model in the same way as manually added joins

(see below), but initially have their nested relation’s Visible property set to false. The

latter ensures that the added relation has no semantic impact on the user’s query unless the

user decides to make it Visible.

The Unhide Sorted/Filtered/Referenced action is a shortcut for unhiding currently in-

visible fields that are being sorted on, filtered on, or referenced from a formula, respectively.

This action is normally only visible in the context menu when actually applicable, though

we have shown its position in Figure 4-3 for completeness.

Sorting. The context menus’ various sorting-related actions lets the user reach all

meaningful states of the query model’s Sort property. Sort Ascending/Descending sets

the Sort property on the selected field, with ordinal 1, and clears it on all sibling fields.

Sort Ascending/Descending after Previous sets the Sort property on the selected field

without clearing the Sort property on sibling fields, instead using an ordinal one higher

than that of the sibling with the previously highest sort ordinal. Clear Sort, if invoked on

a relation field, clears the Sort property on all of that relation’s child fields. If invoked on

a primitive field, it instead clears the Sort property for that field and any siblings with a

higher sort ordinal.

Filter. The Filter action opens the filter popup to let the user define a boolean condition

for the query model’s Filter property for the field in question. Setting or resetting a filter

also automatically sets the HideParentIfEmpty property to true or false, respectively, for

all ancestor relations of the filtered field, although the this property can also be modified

directly using the Hide Parent If Empty action in the context menu. Clear Filter is a

shortcut that lets the user clear a filter without opening the filter popup.

Collapse Duplicate Rows. This context menu action allows the user to directly modify

the boolean CollapseDuplicateRows property on the selected relation field. If a primitive

field is selected, the action applies to the parent relation.

One-to-Many. This context menu entry is always disabled, serving only as an indica-

tion of the state of the read-only OneToMany property and as a legend for the one-to-many

icon ( ).

Join. The Join action, described in the most general way, allows the user to select a

relation in the current query and add to it, as a new nested child relation, a copy of an en-

tire other SIEUFERD query, optionally specifying equijoin conditions between the parent

relation and the new child relation. The selected equijoin conditions are then encoded in

the JoinedOn property of the new child relation’s primitive child fields. The other query to

copy into the current query, and the equijoin conditions, are selected in a dialog box, shown

in Figure 4-5. The list of other queries available to copy is the same as that shown when

initially creating a new query (Figure 4-2).
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Figure 4-5: The Join dialog box, which is used to define custom equijoin conditions against

an arbitrary new table instance. The query list on the right is the same as that which was

shown in Figure 4-2.
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Most commonly, the user will use the Join action to instantiate a single new table and

join it against a parent relation field in the current query. In this case, the other query to copy

into the current query is one of the template queries that our system creates automatically

for each table in the database.

For joins over foreign key relationships that are declared at the database level, use of

the Join action is not necessary; such joins will automatically be added and available in the

field selector by default.

Insert Calculated Field. The Insert Calculated Field Before/After actions add a

new primitive field as a sibling of the selected field, with the property ColumnDefinition

set to a default empty formula. The formula can then be edited directly in the query result

layout, or using the formula bar.

(For completeness, we also have an action that allows the user to add a calculated field

as a child of a selected relation. This action is only shown, and needed, in the rare case that

the selected relation has no existing children at all.)

Delete. The Delete action can be used to delete primitive fields that have

ColumnDefinition set to a formula, or any relation field. It is disabled for primitive fields

that have ColumnDefinition set to refer to a database table column. The latter kind of

column may be hidden, but not deleted.

4.5 Query Evaluation

We now explain the steps required to translate a query in the SIEUFERD query model

to a set of SQL queries that can be executed on a relational database backend in order to

evaluate the SIEUFERD query. We first explain how a query in a simplified version of the

SIEUFERD query model can be translated to and evaluated as a single SQL query. We

then explain how to extend the simplified query model to support the retrieval of nested

relational results. Finally, we explain how a query in the fully general version of the

SIEUFERD query model can be rewritten as a query in the simplified query model.

4.5.1 Simplified Query Model

Definition. We define the simplified SIEUFERD query model to be equivalent to the gen-

eral query model, except with the following restrictions on queries:

• The Visible property is set to false for all relations except the root. This means that

all queries will return flat tabular results only.

• The Sort property is always cleared.

• For relations with CollapseDuplicateRows disabled, all of the InstantiatedTable’s

primary key fields are Visible.

• Only Visible primitive fields may have JoinedOn defined.

• Only primitive fields may have Filter defined.

86



• Each relation contains at most one aggregate function. That is, each relation field

may have at most one primitive child field with ColumnDefinition set to a formula

containing an aggregate function.

• Formulas (set via ColumnDefinition) contain no inward references except to Visible

primitive fields in the formula’s parent relation’s immediate child relations. An

inward reference in a formula means a reference to descendant of the formula’s

field’s parent relation that is not a sibling of the formula’s field.

• Formulas contain no outward references. An outward reference means a reference to

a field that is not a descendant of the formula’s parent relation.

Every query in the simplified query model is also a valid query in the general query

model, with equivalent semantics. The simplified query model is equivalent in expressive-

ness to the general query model, except that the simplified query model may only retrieve

flat tabular results with an unspecified order. We will lift the latter restriction in the next

subsection. In all cases we assume that queries contain no user errors such as circular

dependencies in formulas or join conditions.

Translation to SQL. In the simplified query model, each relation field and its subtree

can be considered an independent query that corresponds to a single SELECT statement in

SQL. To produce a SQL query for a given relation field, each of the relation’s child relations

is first recursively translated into a SELECT statement of its own. The parent relation then

builds its own SELECT statement, nesting the SELECT statements of its child relations in its

own FROM clause. The recursion stops when the translation reaches a relation with no child

relations. Note that the nested SELECT statements are not correlated subqueries, as they do

not refer to any columns defined in the outer query.

The general form of the SELECT statement generated for each relation is as follows:

SELECT projected_expressions

FROM

instantiated_table,

inner_joined_subquery_1, ..., inner_joined_subquery_N

LEFT JOIN left_joined_subquery_1 ON left_join_condition_1

...

LEFT JOIN left_joined_subquery_M ON left_join_condition_M

WHERE inner_join_condition_1 AND ... AND inner_join_condition_N

AND scalar_filter_conditions

GROUP BY group_by_column_names

HAVING aggregate_filter_conditions

The various clauses are constructed as follows:

• SELECT clause: One column expression is generated for each Visible primitive child

field of the relation being translated, based on the formula or column reference

in the ColumnDefinition property. Expressions may reference columns in the

InstantiatedTable or any of the nested SELECT queries generated for child relations

in the FROM clause.
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• FROM clause: The FROM clause first specifies the Cartesian product of the

InstantiatedTable, if any, plus a nested SELECT statement for each translated child

relation for which HideParentIfEmpty is true. The FROM clause then includes a

nested SELECT statement in a LEFT JOIN for each translated child relation for which

HideParentIfEmpty is false. For each child relation, the JoinedOn property of each

of that child relation’s primitive child fields is translated into an equijoin constraint

that is included either in the WHERE clause or, for left joins, the LEFT JOIN’s ON

clause.

If the equijoin condition of one LEFT JOIN clause references fields in a subquery

introduced via another LEFT JOIN clause, then the left joins are automatically ordered

so as to satisfy the dependency. The latter situation may occur if a relation is joined

on a calculated field with an inward reference to a sibling relation. It is a user error for

a circular dependency to exist in these dependencies, analogous to MySQL’s “Cross

dependency found in OUTER JOIN” error.

• WHERE clause: In addition to the inner join conditions mentioned in connection with

the FROM clause, the WHERE clause includes Filter conditions set on the translated

relation’s non-aggregate primitive child fields. A primitive field is said to be an

aggregate field if its ColumnDefinition property is set to a formula containing an

aggregate function, or to a formula that references an aggregate sibling field.

• GROUP BY clause: This clause lists all the non-aggregate fields from the SELECT

clause.

• HAVING clause: This clause lists Filter conditions set on the translated relation’s

aggregate primitive child fields.

4.5.2 Nested Relational Results

The previously generated SQL queries only generate flat tabular results. A key feature

of our visual query language is the ability to generate nested relational results, whether

to visualize aggregate inputs during query construction or as a way to generate complex

form or report layouts. The semantics of queries returning nested relational results is most

easily explained by assuming the presence of a concatenating aggregate function such as

PostgreSQL’s json_agg1. This allows each query in the SIEUFERD query model to still be

translated into a single SQL query, but now returning a nested relational result encoded as

a JSON object.

We define the simplified query model with nested results to be equivalent to the simpli-

fied query model, but now allowing the Visible property to be set to true on relation fields

other than the root, allowing the Sort property to be set on primitive fields, and allowing

more than one aggregate field in each relation.

To translate a query in the simplified query model with nested results to the plain sim-

plified query model, we follow the following steps:

1https://www.postgresql.org/docs/9.6/static/functions-aggregate.html
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1. Enclose the root relation of the original SIEUFERD query in a new otherwise empty

root relation. This will ensure that the translated SQL query returns a single tuple

containing a single JSON object, avoiding a the need for a special case for ordering

and retrieving tuples for from the query’s original root relation.

2. In depth-first order, for each Visible non-root relation field in the query, add a new

Visible primitive sibling field containing an aggregate formula

json_agg(json_build_object(a1, ...,an) order by b1, ...,bm), where a1, ...,an are the

Visible primitive child fields of the relation being processed, and b1, ...,bm are the

sort terms defined by those primitive child fields’ Sort property. Finally, set the

relation’s Visible property to false.

3. In depth-first order, eliminate cases where a relation contains more than one aggre-

gate field by replacing each aggregate field with a formula containing an inward ref-

erence to a new child relation that calculates only that aggregate by itself. The new

child relation is a copy of the original relation, but omits the other aggregate fields,

and has the JoinedOn property set on its non-aggregate primitive fields to equijoin

against the original relation’s GROUP BY fields.

4. When executing the generated SQL, interpret each returned JSON array as a nested

relation, and return the nested relational result.

The above method of retrieving nested relational query results is conceptually

simple, but assumes that the database backend supports the json_agg function. Our

actual implementation uses a more portable approach, retrieving the nested results of

a single SIEUFERD query using multiple SQL queries, in a manner similar to that of

SilkRoute [40]. We have not examined the difference in performance between the two

approaches; this would be interesting future work.

4.5.3 Desugaring the General Query Model

We have shown how queries in a simplified version of the SIEUFERD query model can be

translated to SQL for retrieval of either flat or nested results. We now outline how a query in

the general query model can be translated to a query in the simplified query model, lifting

the remaining simplifying restrictions.

The translation from a query in the general version of the SIEUFERD query model to

a query in the simplified query model is done through the following rewriting steps:

1. Make any primitive field that has Sort enabled on it Visible.

2. Clear any filter on a relation field, instead inserting a new non-Visible calculated field

as a child of the relation, defined by the boolean formula that defined the original

relation filter. Set a filter on the calculated field to only include values of true.

3. In depth-first order, for any relation field with Sort enabled on it, add a new

primitive sibling field for each Visible primitive child field of that relation, with

ColumnDefinition set to a formula consisting of a single reference to that primitive
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child field. Replace the Sort on the relation field with a sort on the added primitive

sibling fields.

4. Rewrite formulas such that every non-sibling reference is either to a field in the im-

mediate parent relation or an immediate child relation of relation containing the cal-

culated field. References that originally traversed multiple relations can be rewritten

to single-level references by adding non-Visible formula fields in the intermediate

relations, each formula containing a single reference to the next level.

5. In depth-first order, for any formula referencing a non-Visible primitive field in a

child relation, make the referenced field Visible. Do the same for any non-Visible

field with JoinedOn defined.

6. Eliminate outward references in formulas by the method outlined on page 56.

Note that the translations done in this section have no impact on the way results are pre-

sented to the user on the screen. The translations are done only as a step in the algorithm for

generating SQL queries. For presentation purposes, it is always the original, untranslated

version of the query that is used to determine which fields are displayed, what labels and

icons are shown in the result header, and so on.

4.6 Expressiveness

Like Liu and Jagadish [71], we demonstrate relational completeness of our visual query

language by defining a translation from a complete set of operators in the relational algebra

(σπ×∪−) to queries in our visual language. We also translate outer joins as well as the

extended projection and grouping operators [43, p. 213]; the latter two formalize scalar

and aggregate calculations, respectively. Assume set semantics in the relational algebra.

Notation. Let e, ea, and eb be relational algebra expressions. Let N(e) be the number

of attributes in e. Assume that the attribute names of any relational algebra expression

e are e[1], ...,e[N(e)]. Define a formula, notated 〈...〉, to be a functional expression over

attribute names. Formulas are used both in the relational algebra and in the SIEUFERD

query model. Properties in the query model are used as defined in Table 4.1.

Translation from relational algebra. Let t(e) be a translation from a relational algebra

expression e to a relation field in the SIEUFERD query model. We define t(e) recursively

as follows:

• Constants. If e = U, where U is a constant relation (i.e. a table in the database),

then t(e) is a relation field with InstantiatedTable = U. It has primitive child fields

named e[1], ...,e[N(e)] with ColumnDefinition set to the technical column names

U[1], ...,U[N(e)], respectively.

• Selection. If e = σC(ea), where C is a boolean formula, then t(e) is a relation field

with the following child fields:

– A relation field t(ea).
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– Primitive fields named e[1], ...,e[N(e)] having ColumnDefinition =

〈ea[1]〉, ..., 〈ea[N(e)]〉, respectively.

– A primitive field with ColumnDefinition =C, Visible turned off, and Filter set

to include only values of true.

• Inner/outer joins, and Cartesian product. If e = ea ✶C eb, where ✶ is either an inner

join or left outer join and C is a boolean formula over attribute names in ea and eb,

then t(e) is a relation field with the following child fields:

– A relation field t(ea).

– A relation field t(σC(eb)) having HideParentIfEmpty turned on iff ✶ is an inner

join. The translation for σC(eb) applies even though C may reference attributes

outside of eb.

– Primitive fields named e[1], ...,e[N(e)] having ColumnDefinition =

〈ea[1]〉, ..., 〈ea[N(ea)]〉, 〈eb[1]〉, ..., 〈eb[N(eb)]〉,

respectively.

The Cartesian product (×) is an inner join with C = 〈true〉. A full outer join is the

union of two left joins.

• Extended projection. If e= πF1→e[1],...,Fn→e[n](ea) where each of F1, ...,Fn is a formula

over attribute names in ea, then t(e) is a relation field with the following child fields:

– A relation field t(ea).

– Primitive fields named e[1], ...,e[n], with ColumnDefinition set to formulas

F1, ...,Fn, respectively.

• Grouping (aggregation). If e= γA1,...,An
(ea), where each of A1, ...,An is either a group-

ing attribute name or an aggregation operator applied to an attribute name in ea, then

we can use the same translation as for extended projection by permitting aggregate

functions in formulas. In this case, t(e) = t(π〈A1〉→e[1],...,〈An〉→e[n](ea)).

• Set union. A conditional formula can be used with a Cartesian prod-

uct to produce the desired effect. If e = ea ∪ eb, with n = N(e), then

t(e) = t(πF1→e[1],...,Fn→e[n](ea× eb×V)) where V is the constant relation

{(false), (true)} and Fi denotes the formula 〈V[1] ? ea[i] : eb[i]〉. In the fu-

ture, we might introduce an explicit union function as syntactic sugar for this kind

of construction; see Figure 4-6 for an example.

• Set difference. Here, we can filter for null values generated by a left join. If e= ea−eb,

with n = N(e), then t(e) = t(π〈ea[1]〉→e[1],...,〈ea[n]〉→e[n](σ〈M is null〉(ea ✶C e′
b
))) where

✶ is a left outer join, C = 〈ea[1] = e′
b
[1]∧ ...∧ ea[n] = e′

b
[n]〉, and e′

b
adds an arbi-

trary non-nullable attribute M to eb, e.g. e′
b
= π〈eb[1]〉→e′

b
[1],...,〈eb[n]〉→e′

b
[n],〈42〉→M(eb).

Another approach would be to count values in eb and filter for zero.

In the query model translations above, except when mentioned, the Filter,

Sort, JoinedOn, and InstantiatedTable properties are cleared, while the Visible,

CollapseDuplicateRows, and HideParentIfEmpty properties are true.

Note that queries created by the fully general translation above can usually be simpli-

fied, e.g. by combining selection, projection, and table instantiation in a single relation
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Figure 4-6: A union query. Following a classic schema design antipattern, the courses table

stores course codes using numbered table columns. To facilitate subsequent operations such

as filtering by course code, the query collects course codes under a single nested relation

via the helper table 3rows = {(1), (2), (3)}. An explicit union function, as proposed above,

would make the expression of such queries more elegant.
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field, or by using the JoinedOn property instead of filters on formula fields.

93



94



Chapter 5

Result Layouts

5.1 Introduction

So far, we have discussed the visual query language that allows users to express arbitrary

database queries, but not how the results of those queries are actually formatted to be dis-

played. The latter is the topic of this chapter.

An important class of visualizations in everyday business use consists of the table-,

form-, and report-style views found in most tailored CRUD applications (see Chapter 1).

The data being displayed is typically structured, meaning that each value has an asso-

ciated type and label in a schema. Furthermore, the data frequently needs to be pre-

sented in a nested manner, because of the need to visualize one-to-many relationships

between entities in the database. For instance, when users request “a list of employees,

grouped by department” or “all information about a customer, including associated sup-

port tickets and a list of open orders,” what is being displayed is a structured nested view

of the underlying relational data. This is exactly the kind of data that is produced by

SIEUFERD’s visual query language, as well as by many previously proposed visual query

systems [50, 38, 107, 31, 72, 81, 63, 14, 108, 66, 86, 10, 2, 47, 3, 27, 83, 74, 25].

The problem lies in the hard manual labor involved in formatting nested data for dis-

play. Traditionally, a software developer has to define low-level details of the visual layout:

the location of labels, the dimensions of text fields, the width of table columns, the organi-

zation of form fields into columns on a page, and so on. Besides making the development

of new CRUD applications costly, requiring this kind of manual formatting work would be

unacceptable in an interactive query system like SIEUFERD, since every query manipu-

lation action can change the schema of the query result and thus require the output to be

reformatted.

In this chapter, we present a layout management algorithm that fully automates the

display of structured nested data using visual idioms seen in traditional hand-designed

database UIs: tables, multi-column forms, and outline-style indented lists. The system

gathers simple statistics about fields in the input schema, and uses these to make layout

decisions which are then applied uniformly across tuples in each input subrelation.

Our algorithm is illustrated in Figure 5-1. Layouts produced by our algorithm are hy-

brids between two existing types of layouts: nested table layouts and outline layouts. The
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(a) Outline layout (b) Basic hybrid layout (c) Basic hybrid layout (wider)

(d) Hybrid layout with justiied tables

(e) Final hybrid layout with outline columns and justiied tables

(f) Schema-only hybrid layout used to partition columns in (e)

Figure 5-1: We illustrate our algorithm by enabling its features one by one and producing successive

layouts of the data from Figure 5-3. All layouts are at the same scale. (a) is a basic outline layout; this layout

renders tuples in relation values as indented bullets, stacks the fields of each tuple vertically, and puts labels

to the left of primitive values and above relation values. (b) and (c) show basic hybrid layouts, at two different

widths, that use the outline layout at the first level but switch to nested table sublayouts wherever a table can

fit within the available horizontal space. (d) justifies the columns of the table sublayouts to fill the remaining

available horizontal space. (e) adds columns to the outline sublayout to use horizontal space more efficiently.

(f) is a schema-only layout generated by the algorithm to calculate ideal break points for the columns in (e).



Figure 5-2: Interactive adaptation of the layout of the data to be displayed, based on the

available horizontal space in an on-screen window.

nested table layout is the layout that has been seen many times in the previous two chap-

ters; it arranges tuples vertically, and the fields within each tuple horizontally. The outline

layout, on the other hand, arranges both tuples and fields vertically, in an indented bul-

let list. See Figure 5-1(a). The basic hybrid layout, shown in Figures 5-1(b), (c), and

(d), replaces the outline layout with a nested table layout for specific relation fields in the

schema, wherever such replacement can be done without making the layout too wide for

the available screen or page size. This leads to more compact layouts without introducing

horizontal scrolling. Finally, our algorithm reclaims additional wasted space by allowing

narrow fields in the outline layout to be arranged in columns, as shown in Figure 5-1(e).

The ideal placement of column breaks, as well as the decision to use an outline or table

layout for a given relation field, is done using an idealized layout produced using average

lengths of each field, shown in Figure 5-1(f). In all cases, the order of fields in the layout

is kept the same as in the schema of the input data.

We compare our hybrid layout system with pure outline and nested table layouts with

respect to space efficiency and readability, the latter with an online user study on 27 sub-

jects. In terms of screen area, our hybrid layouts are 3.9 and 1.6 times more compact

on average than outline layouts and horizontally unconstrained table layouts, respectively.

This increases the amount of data that can be shown in a given area without scrolling or

pagination. Furthermore, our user study shows hybrid layouts to be as readable as table

layouts even for large datasets that do require scrolling.

Our Java-based implementation of the layout algorithm, which is now a part of the

larger SIEUFERD system, can produce layouts based on data in any well-formed XML

document, or based on data retrieved from a relational database using the visual query

interface that was described in Chapter 3. For XML document inputs, a suitable schema

will be derived automatically. Generated layouts can either be rendered on screen through

a custom Swing component, as in Figure 5-2, or printed as vector graphics to paper or fully

text-searchable PDF files using the Java Printing API, as was done to produce the other

figures in this chapter. In either case, layouts adapt automatically to fit within the available

horizontal space. Figure 5-2 shows this demonstrated interactively by resizing a window

containing our custom Swing component.
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Figure 5-3: The nested table layout is the most common way to visualize a nested relation.

Our version of this kind of layout, shown here, is used as a base case in our recursive

layout algorithm. Here, we show nested relational data generated from an academic course

catalog in nested table style, with one of the nested columns enlarged to show terminology.

Nested table layouts arrange tuples in the vertical direction and the fields of each tuple in

the horizontal direction, with all field labels collected in a header on top.

5.2 Layout Algorithm

We now describe our layout algorithm. For presentation purposes, we start by discussing

basic nested table and outline layouts, then discuss hybrid table/outline layouts, and finally

show the complete steps to produce the layouts automatically.

The purpose of the algorithm is to produce a compact but readable view of nested input

data that conforms to a non-recursive schema, or, more precisely, nested relational data.

Whenever possible, the regularity of the input data’s schema should be used to maximize

the readability of the data. For instance, a sequence of tuples with similar fields should

be rendered as a table, with proper column headings describing the name of fields in the

schema. We will not require user input informing layout decisions beyond what can be

derived from the data itself.

5.2.1 Nested Relations and Nested Table Layouts

Our algorithm operates on nested data conforming to a non-recursive schema. We have

chosen the nested relational model as the concrete data model for our implementation,

since it tends to lead to simple tree traversal code. It is equally feasible to use a different

nested data model such as that of XML, and in connection with the user study, we did write

a routine for importing arbitrary XML documents.

As in the previous chapters, we define the nested relational data model as follows: A

value is either a primitive or a relation, where a relation is defined as a set of tuples, each

containing a set of fields identified by labels, each field containing a value, recursively.

The schema of a value either defines the value to be a primitive, or defines the value to be

a relation, with schemas further specified for each of the latter’s fields, recursively.
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Figure 5-4: An older version of the layout system, exhibiting various readability problems

due to (1) uncollapsed borders around every relation value, (2) alternating row colors at

more than one relation level, and (3) wrapping of columns within table rows.

Nested relational data is most commonly illustrated in a nested table layout. An anno-

tated example of such a layout is shown in Figure 5-3; it renders data about the first few

courses in an academic course catalog. A nested table layout consists of a header area

(shown in blue) and a content area (shown in beige). The header area presents the schema

structure of the displayed nested relation, with simple labels for columns containing prim-

itive fields and recursive labels for columns containing relation fields. Columns containing

relation fields may recursively contain columns for either primitive or relation subfields. In

the content area, tuples in the rendered relation are stacked vertically with row separators

between them. Each tuple renders its primitive values as simple strings and its relation

values recursively as the content area of another nested table.

Since we use nested tables as a base case for our layout algorithm, we experimented

with various visual tweaks to make them readable for a wide range of inputs. To minimize

visual noise, it is important to insert horizontal borders only between tuples rather than on

all four sides of them. This also ensures that a relation value containing only a single tuple

with primitive fields takes up no more vertical space than the same primitive fields had

they not been enclosed in a subrelation. If borders and margins are not carefully collapsed

where possible, the result easily becomes a cluttered mess of nested boxes, as illustrated in
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Figure 5-4.

While remaining frugal with the use of borders, we found it crucial to leave a small

margin to the left and right of each nested relation value, preventing horizontal tuple sep-

arators from extending all the way to the vertical column separators. This can be seen in

Figure 5-3 for instance in the Instructors column. Otherwise, unrelated tuples in sibling

relation values may appear to be connected if they line up by accident. During interactive

use, the same margin also prevents the cell selection cursor and any column selection high-

lights from extending all the way to the vertical column separator, providing a further hint

to the structure of the data.

Finally, we experimented with alternating row colors to enhance readability. We found

this to be effective only if applied solely to the root-level relation. Alternating row colors

at more than one level quickly gets confusing, as also illustrated in Figure 5-4.

5.2.2 Outline Layouts

Nested table layouts, like the one previously seen, can quickly become extremely wide if

many fields are to be displayed. For on-screen interfaces, the need for horizontal scrolling

is undesirable, and for printing on paper, pagination in the horizontal direction is awkward.

As another basic alternative to the nested table layout, we consider the outline layout,

which is common among XML editing tools. Figure 5-1(a) shows the same data as before

rendered using such a layout.

In an outline layout, tuples are stacked vertically in an indented bullet list fashion; we

show one bullet per tuple. Unlike the nested table layout, which arranges tuples vertically

and the fields within each tuple horizontally, the outline layout arranges both tuples and the

fields within each tuple vertically. Thus, having more fields in a schema makes an outline

layout taller, not wider. In a tuple in an outline layout, primitive fields are rendered as

strings with their respective schema labels to the left, whereas relation fields are rendered

recursively with their schema labels above, extended to the full width of the layout area.

The color scheme is the same (blue and beige) for labels and values in an outline layout as

for the header and content area of nested tables, respectively.

The outline layout, unlike the nested table layout, supports the concept of a horizontally

constrained width. Like the layouts produced by our final algorithm, an outline layout can

be produced for any available width (with some minimum constraints), breaking text in

primitive value areas as necessary. Our system distinguishes between fixed- and variable-

length primitive fields; value areas for fixed-length primitive fields are always rendered at

their predicted width, whereas areas for variable-length primitive fields are rendered to the

full available width. This ensures that the visual width of a particular primitive field remains

the same between successive tuples, even when the actual value differs. The rationale

is two-fold. First, if layouts are to be used for data entry or data editing in a database

application, the width of an input field should be commensurate with the expected size of

its values. Second, keeping the perceived overall shape (gestalt) of successive tuples of the

same relation schema similar should make it easier for a user to visually scan for specific

fields in those tuples.
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5.2.3 Hybrid Layout

Whereas nested table layouts quickly grow wide, outline layouts tend to be tall and narrow.

Outline layouts use space inefficiently by only starting values on the left-hand side of the

page, and by repeating schema labels once for every value. They are also harder to read than

table layouts, since they tend to put values from the same schema field but from different

tuples far apart.

In Figure 5-1(b), we introduce a hybrid layout that embeds nested tables inside an

outline layout. This saves vertical space compared to the pure outline layout in Figure 5-

1(a). Like for the outline layout, we assume that we are given a constrained amount of

horizontal space to work with, such as the screen size or page width for printing. We then

create a layout that is guaranteed to fit within this horizontal space. This avoids horizontal

scrolling or pagination, and ensures that the layout will only grow in the vertical direction

as more tuples or fields are added.

When building a hybrid outline/table layout, the algorithm must start at the root level

of the relation schema and decide, for each relation field, whether to render that relation

field using a nested table or another level of an outline layout. If the decision is made to

render a relation field using an outline layout, the decision process is repeated recursively

for each of its fields. If the decision is made to render a relation field using a nested table

layout, all child fields are rendered using a nested table layout as well. While our recursive

layout generation algorithm technically supports embedding outline sublayouts into nested

table layouts, this makes little typographical sense, and we do not make use of this case.

The decision to use an outline layout vs. a nested table layout for a given relation

schema could reasonably be made using a cost optimization strategy, for instance based on

the total area consumed by the layout in each case. However, because nested table layouts

almost invariably consume less area than corresponding outline layouts, a simpler heuristic

is possible: always use a nested table layout if there is enough horizontal space available

for it. This is the rule used in our algorithm; it is illustrated by contrasting the narrow lay-

out in Figure 5-1(b) with the wider layout of Figure 5-1(c). In Figure 5-1(b), the layout is

constrained to a small width, and small nested tables have been chosen by the heuristic for

relation fields Course Listings, Grading, Sections/Meetings, and Sections/Instructors.

All higher-level relations are rendered using outline sublayouts. In Figure 5-1(c), the same

data is rendered at a larger constrained width, allowing both the Sample Reading List rela-

tion field and the entire Sections relation field to be rendered as a nested table. Note that a

hybrid layout that is given enough horizontal space to work with will always degenerate to

a pure nested table layout.

Since the outline vs. nested table decision heuristic depends on whether or not there is

enough horizontal space for a table, the determination of minimum table column widths is

important at this stage. For relation fields, table columns are as wide as the sum of their

child fields’ columns, plus separator lines and side margins, as well as any extra space

needed to accommodate the relation column’s own header label. For fixed-width primitive

fields, the width of the table column is simply the width of the field. For variable-width

primitive fields, we experimented with various heuristics, and found the average width of

values in the field to be a sensible minimum, limited upwards to a constant value. The latter

constant should be within the recommended width of a standard book column, e.g. on the
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order of 50 characters1. Primitive columns also need to be wide enough to accommodate

their schema labels, which may often be wider than the actual values in the fields. For the

latter case, we automatically use vertical column labels in tables if this makes the column

narrower for the purposes of the outline vs. nested table decision. Examples are the Format

and Number column header labels in Figure 5-1(c).

After the minimum widths of table columns have been determined and the decisions

to use outline vs. nested table sublayouts at each relation level have been made, addi-

tional horizontal space may be available to the right of nested table sublayouts. A separate

table justification step uses the remaining horizontal space to first, for readability, make

any previously vertical column headers’ labels horizontal. This is done in a greedy order to

minimize the number of remaining vertical column labels. Then, any remaining horizontal

space is distributed among columns holding variable-length primitive fields, in proportion

to their fields’ average lengths. The table justification step is illustrated in the transition

from Figure 5-1(c) to Figure 5-1(d).

Note again that layout styling decisions, such as table column widths or whether to

use an outline or a table sublayout for a given subrelation, are made once for each field

in the schema of the input data rather than once for each value in the input data. This

means, for instance, that in a given layout like Figure 5-1(c), every instance of the Sections

relation will be rendered in the same way (either as a table or an outline), regardless of its

actual content in each instance. The rationale is similar to that for making primitive fields

in outline mode always the same width. Note, however, that while the size and position

of fields in a layout will always stay consistent in the horizontal direction, individual text

boxes and lists of tuples may grow and shrink in the vertical direction, depending on the

data that is being laid out.

5.2.4 Columns in Outline Layouts

While the hybrid layouts layout shown in Figures 5-1(b), (c), and (d) save substantial area

compared to corresponding outline layouts, they still use horizontal space inefficiently in

cases where small primitive fields can not be made part of a table and where only tables

with narrow content can be used. In form-style database user interfaces, the traditional

solution is to make use of multiple columns of fields. Note that these are a different kind of

columns than the columns in nested tables; they allow different fields in an outline layout to

be organized in multiple adjacent stacks. We now show how our system can automatically

incorporate columns in outline sublayouts with no manual styling required.

We considered various approaches to the problem of introducing columns into outline

layouts. Design questions include how to pick the right number of columns to use, how to

pick the width of each column, whether to allow certain fields to span multiple columns,

and after which fields a new column should be started. We decided to make two simplifying

assumptions which seem to work reasonably in practice: (1) the number of columns to use

is based solely on the available horizontal space, and (2) every adjacent column has the

same width. So for a layout of a width corresponding to a typical letter-size page, for

1Robert Bringhurst’s The Elements of Typographic Style recommends 40 to 50 characters for multi-

column text; see http://webtypography.net/2.1.2.
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Figure 5-5: A comparison between our hybrid outline/table layout and a pure nested table

layout and a pure outline layout, for the case of displaying a single tuple with many fields,

including relational fields containing other nested tuples. Each layout is showing the same

data in its entirety, at the same scale and font size. Outline layouts waste space by concen-

trating data to the left of the screen and by repeating labels for each value. Table layouts

waste space when different fields in the same subrelation require different amounts of ver-

tical space. Table layouts also tend to become very wide, requiring horizontal scrolling if

viewed on a screen.

instance, the algorithm would use a two-column layout in the root level outline. However,

one complicating issue must still be dealt with: relation fields that could be rendered in

a table layout need to be allowed to span multiple columns if necessary. We settled on

the following rule: any relation field in an outline is excluded from participating in a set of

multiple columns if that would cause it to be rendered as an outline. There is no requirement

that the field would actually have to be rendered as a nested table if excluded, but if the

excluded field is rendered as an outline, that outline layout is subject to the usual heuristics

about whether to use columns or not at that next level.

For implementation purposes, the algorithm divides the fields of a relation displayed in

an outline layout into multiple column sets, each which contains again a list of columns,

each which contains the fields in the column. To populate column sets, the algorithm

iterates over outline fields in the order they appear in the schema, assigning each to the

current column set. If an excluded field is encountered, it is assigned to a new column

set of its own, and a new current column set started. No reordering of fields is done at

any point, as the order of fields in the schema is considered significant for presentation

purposes. After all fields have been assigned to column sets, each column set partitions

its assigned fields into columns. Figure 5-1(e) shows the final hybrid layout with column

support. The example layout has a single outline sublayout with 3 column sets; the first

column set has two columns and contains the fields Course Listings through Description

in the first column and the fields Max. Enrollment through Grading in the second column.

The second and third column sets each have only one column with a single field in each,

containing the fields Sample Reading List and Sections, respectively.

The partitioning of columns in a column set, that is, after what fields to start each
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column, requires a heuristic. Simply giving each column the same number of fields does

not work well, since some fields frequently take up more vertical space than others. A

better approach is to split the columns so as to minimize the total vertical space consumed;

this can be done easily with a dynamic programming routine. However, if this is done

independently for each tuple being rendered, two tuples might end up having differently

partitioned columns, with different fields starting the columns in each case. This is not ideal

for readability. Instead, as before, we make the decision of where to begin new columns

only once for the entire layout.

To allow calculation of optimal column partitioning positions on the basis of only ag-

gregate information about the input, we allow our layout generation algorithm to generate

schema-only versions of sublayouts. For instance, the schema-only layout for the layout in

Figure 5-1(e) is shown in Figure 5-1(f). In a schema-only layout, variable-length primitive

fields are sized, with simulated line breaking, according to the average width of the field

in the entire dataset. Relation fields are rendered, in outline or table form, with a single

placeholder tuple only, but subsequently padded such that the size of the subrelation layout

is proportional to the average cardinality of that relation throughout the entire dataset. Thus

in Figure 5-1(f), the Description field is taller than the Title field, and there are about two

rows’ worth of vertical space allocated in the Sample Reading List table. Optimal column

partitioning decisions are then made using these estimated schema-only layouts. The final

layout is shown in Figure 5-1(e) (a larger version was seen in Chapter 1, Figure 1-5).

The final class of hybrid layouts produced is considerably more compact than both the

outline and the nested table layouts, and can be produced automatically with no manual

input. Figure 5-5 shows a scale comparison between the three layout styles, each showing

a single nested tuple from the course catalog example. In this case, the hybrid layout would

permit significantly more data to be fit on a single screen without scrolling in either the

vertical or the horizontal direction. We can also see that large nested table layouts often

waste space whenever two values in the same tuple take up different amounts of vertical

space.

5.2.5 Implementation

To produce the hybrid layouts described, our system makes two passes over the input

data while maintaining a stylesheet as the only other common data structure. Like the

SIEUFERD query model, which was described in the previous chapter, the stylesheet maps

schema fields and property types to property values, that is, each field in the schema has

one value for each property. See Table 5.1 for the list of stylesheet properties. Before

the algorithm starts, a subset of properties will already have been set as constants, such as

the choice of fonts and separator styles. Our algorithm’s first pass over the input data is

during the Measure phase, which finds the average rendered width of each primitive value

and the average cardinality of each relation value. The application of heuristics to set re-

maining stylesheet properties is then done in a subsequent pass over the schema only, the

Auto-Style phase. Finally, the output layout is constructed in the Layout phase, which

is the second pass over the input value. The Auto-Style and the Layout phases execute

the same code, but with the Auto-Style phase traversing a schema-only version of the data

structure used to maintain context, and using the aforementioned heuristics to set undefined
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Figure 5-6: Total area consumed by layouts of each of the three types. Outline and Hybrid

layout widths are constrained to 8 inches, and are shown both with and without pagination.

stylesheet properties whenever they are encountered. The heuristics for setting stylesheet

properties during the Layout phase are described in Table 5.1.

5.3 Evaluation

We evaluated three aspects of our system: runtime performance, the area consumed by

generated layouts, and the readability of large layouts as measured by the time taken for

human subjects to solve question tasks about the rendered data. As sample datasets, we

picked one XML file from each of the 10 categories in the XML Data Repository at the

University of Washington2, except for the Treebank dataset, which is the only one with a

recursive schema. We used the “preview” version of each dataset to make sure visualiza-

tions would be of a realistic size for human perusal. We also included one dataset from

a relational database containing the complete course catalog for a semester at Princeton

University (RelationalPrincetonHuge), and a subset containing only the courses from one

department (RelationalPrinceton). See Table 5.2.

5.3.1 Runtime Performance

For runtime measurements, we ran all phases of the layout algorithm in sequence, and

repeated the entire sequence multiple times. The runtimes for individual phases were av-

eraged, less initial dry runs. Resulting runtime statistics for two datasets are shown in

Table 5.3, for 30 runs plus 3 dry runs. The machine used had an Intel Core 2 Duo CPU and

4GB of RAM.

Our two sets of runtime measurements suggest, as expected, that both the Measure and

Layout phases run in time roughly proportional to the size of the input data, as measured

by the size of the output layouts. Also as expected, the time consumed by the Auto-Style

phase does not depend on the size of the input data, as it depends only on the schema and

input stylesheet. For the larger RelationalPrincetonHuge dataset, the fact that the Layout

phase does not take significantly more time to run than than the Measure phase suggests

that the main bottleneck of the Layout phase is the line breaking code that determines

2G. Miklau, http://www.cs.washington.edu/research/xmldatasets/www/repository.html
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Table 5.1: Properties defined, for each field in the schema, by a stylesheet. P, R, and P R

indicate properties applicable to primitive fields, relation fields, or both, respectively. We

have omitted color- and border-related properties.

Basic Styling Constants 
 R OutlineBulletStyle. Bullet type for bulleted tuples in outline sublayouts. 
 R OutlineIndentWidth. Indentation amount for bulleted tuples in outline sublayouts. 
 R OutlineTupleSpaceHeight. Vertical space between tuples in outline sublayouts. 
 R TableNestSpaceSideWidth. Horizontal margin amount for nested tables. 
P R LabelTextStyle. Text style for outline labels or table headers. 
P  ValueTextStyle. Text style for values in outline or table sublayouts. 

Constant Heuristic Parameters 
 R OutlineMaxLabelWidth. Maximum width of labels in outline sublayouts. 
 R OutlineColumnMinWidth. Minimum width of each outline column. 
P  OutlineMinValueWidth. Minimum width of a primitive value in an outline. 
P  OutlineSnapValueWidth. Multiple to round up to when setting the width of a non-

variable primitive value in an outline sublayout. 
P  TableMaxPrimitiveWidth. Maximum width that can be allocated to a table 

sublayout column with variable-length primitive values, before table 
justification. 

Properties Set During Measure Phase 
 R OutlineLabelWidth. Width of labels in outline sublayouts. Sibling fields all use the 

same width, which is defined at the parent relation level. 
 R AverageCardinality. The average number of tuples in each subrelation. 
P  IsVariableLength. Whether a primitive field holds long strings of variable length. 
P  ValueDefaultWidth. Average width of primitive values in this field when rendered 

with ValueTextStyle, or maximum width for non-variable length fields. 

Properties Set During Auto-Style Phase 
P R StartNewOutlineColumn. True for the first field in each column of an outline 

column set. The heuristic partitions columns based on schema-only layouts that 
use ValueDefaultWidth and AverageCardinality to estimate field sizes. 

P R StartNewOutlineColumnSet. True for the first field in each outline column set. 
Column sets allow some sibling fields to be organized in multiple columns and 
others not. The heuristic puts a field in its own single-column column set if it 
would otherwise contain an outline sublayout. 

P R UseVerticalTableHeader. Whether to display a label in a table header vertically. 
The heuristic initially assumes vertical labels for primitive fields if this makes 
the column narrower, but restores as many horizontal labels as possible when 
the table is justified. 

P R TableColumnWidth. The width of each table column. Primitive columns are 
ValueDefaultWidth wide before justification; relation columns are the sum of 
their children plus twice TableNestSpaceSideWidth. Columns are also extended 
to accomodate their labels, as necessary. 

 R UseTable. Whether to use an outline or a table sublayout for this relation. A table 
sublayout is used iff it its width before justification is less than or equal to the 
available horizontal space. 
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Table 5.2: Quantitative statistics related to the size and complexity of datasets referred to in

this chapter. The depth of a primitive value is the number of enclosing relation values that

must be traversed to reach the primitive value from the root. The plural depth only counts

non-singleton enclosing relations.

Dataset # C
h

a
ra

ct
er

s

in P
ri

m
it

iv
es

# P
ri

m
it

iv
es

#
T

u
p

le
s

M
ea

n

D
ep

th

M
a

x.
D

ep
th

M
ea

n

P
lu

ra
l

D
ep

th

M
a

x.

P
lu

ra
l

D
ep

th

RelationalPrincetonHuge 828 463 59 887 18 751 2.25 4 2.25 4

RelationalPrinceton 21 811 1 359 419 2.20 4 2.20 4

Auction321Gone 13 679 250 61 2.96 4 1.00 1

SigmodRecord 12 360 953 560 5.01 6 2.51 3

SwissProt 13 559 1 566 809 3.15 5 1.94 3

DBLP 22 012 1 493 310 2.10 3 1.09 2

Mondial 15 046 3 032 1 020 3.63 5 2.48 4

NASA 18 218 854 731 6.16 8 3.43 5

TPCHPart 10 607 901 101 2.00 2 1.00 1

ProteinSequence 11 236 953 494 3.85 6 1.94 3

CoursesReed 4 858 800 200 2.33 3 1.00 1

Table 5.3: Runtime measurements for each phase of the layout algorithm. Standard error

is within 3% in each case.

Dataset Pages
Algorithm Phase Runtime (s)
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RelationalPrinceton 12 1.03 0.29 0.83 0.0014

RelationalPrincetonHuge 455 40.16 0.31 42.43 0.0451
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the size of rectangles assigned to display primitive values, since said line breaking code

is common to both phases. Profiling has confirmed this to be the case. For the smaller

RelationalPrinceton dataset, the time to perform Auto-Style and Layout for a new width

is interactive. Pagination time is insignificant, but roughly proportional to the number of

pages in the output.

5.3.2 Layout Space Efficiency

To evaluate the space efficiency of our layouts, we compared, for each dataset, the area

consumed by our own hybrid layout vs. the area consumed by a pure outline layout and

a pure nested tabular layout. Each layout was produced by our layout manager, with the

latter two using a hard-coded value of false and true for the UseTable stylesheet property

at every field to force the layout manager into pure outline and pure nested tabular mode,

respectively.

Figure 5-6 compares the total area of each kind of layout for every dataset. The unpag-

inated area of a layout is that of the smallest rectangle enclosing it. The paginated area,

for hybrid and outline layouts, is the number of pages consumed by the layout times the

imageable (non-margin) area available on each page. Thus, the latter includes space wasted

at the end of each page whenever the pagination algorithm has opted to break the page at an

earlier but less awkward place. Since pure tabular views of an entire dataset are generally

too wide to fit on a regular letter-size page, the tabular layout is rendered as a single, very

large page. In cases where the tabular layout is actually narrow enough to fit on a page,

notably the the SigmodRecord, TPCHPart, and CoursesReed datasets, the hybrid layout is

nearly identical to the tabular layout, except that the pagination algorithm may be used to

break up the hybrid layouts in the vertical direction. The ratio of the area consumed by an

unpaginated outline layout to that consumed by an unpaginated hybrid layout is 3.9:1 on

average. Similarly for tabular to hybrid layouts, it is 1.6:1 on average.

Looking at the data from Figure 5-6, we see that the hybrid layout consumes less area

than the corresponding outline layout for every dataset, with or without pagination en-

abled. The difference is greatest, between 4 and 13 times, in the cases where the hybrid

layout corresponds to a pure nested tabular layout, namely SigmodRecord, TPCHPart, and

CoursesReed. In these cases the schema of the data was flat or almost flat, and so a standard

table layout would make very efficient use of the space. In the other cases, the hybrid lay-

outs are about half the size of outline layouts on average. The smallest difference was for

the Auction321Gone dataset, where the outline layout was 1.3 times the size of the hybrid

layout. In this case the schema was nested in several levels, but contained only singular

relations (relations only ever holding a single tuple) beyond the top level, so there were no

opportunities for the hybrid layout algorithm to introduce tables into the lower levels of the

layout. The modest saving over the outline layout came from the hybrid layout’s ability

to display data in an outline tuple over two columns. A more significant difference was

for the Mondial dataset, where the outline layout was 3.3 times the size of the hybrid lay-

out. Here the hybrid layout made good use of both tuple columns and the ability to render

subrelations as tables, and only used one level of outline bullets.

While pure nested tabular layouts cannot be constrained to a page width like the out-

line and hybrid layouts, they tend to consume less total area than the outline layouts. See
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Figure 5-7: The mean time to solve each task in the user study, grouped by the kind of

layouts that were used to generate the PDFs subjects used to solve the task. The error bars

show the Standard Error of the Mean. Subtasks B were given to subjects directly after

Subtasks A, and were in each case identical to Subtask A except for a small emphasized

change in the question text.

again Figure 5-6. For Auction321Gone, NASA, ProteinSequence, SwissProt, the hybrid

layout still consumes between 30% and 80% less area than the tabular layout. This is be-

cause nested tables waste large amounts of space whenever a row contains cells of variable

heights, such as when one empty and one well-populated subtable are placed horizontally

adjacent to each other on the same row of a parent table.

5.3.3 Readability

To evaluate the readability of our layouts, we conducted a between-subjects online user

study using Amazon Mechanical Turk3 and StudyCaster, a Java-based tool we developed

to allow test subjects to stream timestamped recordings of their computer screens to our

server with a minimum of effort. In an initial public recruiting stage of the study, workers

were offered $0.25 to launch the StudyCaster and solve a chart-making task that required

the workers to have Microsoft Excel installed on their machines. In the second and main

stage of our experiment, we gradually invited qualified Mechanical Turk workers from

the first stage directly to do a second task, worth $3.00. This task contained, for each

subject, 9 different two-part questions, each two-part question being based on a separate

PDF file with a layout generated from one of our 9 XML sources from the UW XML

repository. The questions were a mix requiring the subjects to do both scanning across

multiple similar entities (e.g. “What is the Brand number of the product sold in a Jumbo

Bag container at a Retail price of less than $950?” or “How many articles were published

in Volume 12, Number 3?”) and lookup between the attributes and related entities of a

single entity (e.g. “What is the name of the person who was responsible for digitizing the

earlier work by authors X?”). See Figure 5.4. To reduce potential noise from subjects’

varying familiarity with their PDF readers’ search feature, the PDF files were rasterized,

effectively disabling the feature for everyone. All subjects were given the same questions

3http://www.mturk.com
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# Data Set Question Given (subtask A/B variations in curly brackets)

1 Auction321Gone What is the size of the hard drive of the computer with the {shortest|longest} “Time Left”

on the auction?

2 SigmodRecord How many articles were published in {Volume 12, Number 3|Volume 14, Number 1}?

3 SwissProt What organism (“Species”) has an author with the last name “{Poovaiah|Cognetti}” listed

among its references?

4 DBLP How many articles are listed under the “{Inproceedings|Mastersthesis}” category?

5 Mondial What percentage of the population of {Germany|Gibraltar} is listed with “Roman

Catholic” as their religion?

6 NASA What is the name of the person who was responsible for digitalizing (“Ingesting”) the

earlier work by authors {Spencer and Jackson|Larink, Bohrmann, Kox, Groeneveld, and

Klauder}?

7 TPCHPart What is the “Brand” number of the product sold in a “Jumbo Bag” container at a “Retail-

price” of {less|more} than $950?

8 ProteinSequence What is the last name of the first author listed in the references for the protein identified by

the “Id” code “{CCMQR|CCWHC}”?

9 CoursesReed How many 0.5-unit {Chemistry (“CHEM”)|Biology (“BIOL”)} courses are mentioned in

the list?

Table 5.4: Question tasks given in the user study.
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Figure 5-8: The fraction of correct responses to each task in the user study. The error bars

show the Standard Error of the Mean when assigning value a value of 1 for correct answers

and 0 for incorrect answers.

and datasets in the same order. However, the type of layout provided for each dataset was

randomized, with the constraint that each subject would see 3 datasets rendered with each

of the 3 kinds of layout types. The order of the layout types was round-robined such that

datasets number 1, 4, and 7 would use the same layout types, as would 2, 5, and 8, and

as would 3, 6, and 9. Each of the 18 total questions (from 9 two-part questions) would be

shown in the StudyCaster pop-up window, which allowed us to measure the exact amount

of time the subjects spent viewing, and hence presumably spent working on, each question.

The StudyCaster software also allowed us to further limit timings to when workers had

the correct PDF file in focus in their PDF reader to answer the currently shown question

(sampled from the Win32 API at 5Hz), and to exclude time idle more than 5 seconds from

keyboard or mouse activity (same). The idle time rule was used to decrease noise from

workers taking a break from the computer while having a question open on the screen.

Our user study yielded data from 27 subjects. An additional 6 subjects completed the

study, but were not included in the dataset due to technical problems uploading their screen

recordings and timing data. The 18 task questions were answered correctly by 88% of

subjects on average, with too limited variation to draw conclusions about possible impact
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Table 5.5: Summary of statistical tests run on the dataset from Figure 5-7. Only tasks for

which the ANOVA yielded p<0.05 are shown. For Tukey HSD pairs with p<0.05, we also

show the relative differences in average task completion times.

Task Levene ANOVA

Outline v. Outline v. Tabular v. Outline: Outline:

Hybrid Tabular Hybrid Hybrid Tabular

# p p p p p

2A 0.5312 0.0012 0.0019 0.0169 0.8006 2.05 2.80

2B 0.0627 0.0034 0.0036 0.0448 0.9279 3.40 2.62

3B 0.2889 0.0032 0.3047 0.0023 0.0962 2.81

5A 0.7976 0.0072 0.0200 0.0142 0.8521 2.11 2.74

5B 0.0389 0.0174 0.0251 0.0532 0.9999 4.97

8A 0.1099 0.0101 0.0092 0.0996 0.8201 1.88

8B 0.3409 0.0004 0.0048 0.0008 0.3129 2.00 4.16

9A 0.4104 0.0034 0.0050 0.0119 0.9553 2.46 2.20

9B 0.1812 0.0107 0.0108 0.0530 0.7919 4.69

(hetero-

scedasti-

city)

Mean-Time-to-

Solve Ratio
Tukey HSD (follow-up to find differences 

between pairs)

of layout type on correctness. See Figure 5-8. Figure 5-7 shows the average time taken

to complete each subtask for each layout type. Each subject’s timing is included in the

average for each subtask only if the subject answered that question correctly.

To test our user study for statistical significance, we considered the timing data from

each of the 18 subtasks separately. In each case, we thus had 3 sets of measurements of

the time taken to solve the task correctly, one for each kind of layout presented to the

user. Timings for incorrectly solved tasks were omitted for this part of the data analysis.

We first ran Levene’s test to confirm that our experiment design conformed to ANOVA’s

assumption of homogeneous variances between the 3 measurement populations in each

case. In only 1 of the 18 cases (Task 5B) was Levene’s test significant (indicating non-

homogeneous variances) with p < 0.05, suggesting that this is a reasonable assumption.

We thus proceeded to use ANOVA to analyze the results, with a Tukey Honest Significance

Difference (HSD) test as a follow-up in cases where the ANOVA was significant. Since

we are doing 18 tests, we should require p < 0.05/18 for strictly significant ANOVAs, as

per the Bonferroni correction. There are two significant results to this confidence level,

for tasks 2A and 8B. For the purposes of discussing results, however, we have done the

Tukey HSD follow-up test for all tasks with ANOVAs up to p < 0.05. This allows us to

list all the most significantly different pairs of timings between different layout types, as

shown together with the relevant p-values in Table 5.5. Note that we can expect about one

(18∗0.05) of the borderline-significant ANOVAs in this table to be due to chance.

Looking at the follow-up tests from Table 5.5, we can see no significant differences in

the task completion times between the tabular vs. the hybrid layouts. We do however see

consistent differences both between the outline and the hybrid layouts as well as between

the outline and the tabular layouts. These differences are present in both subtasks of several

questions, suggesting that they are relevant both when users are first learning to do a task

and when they immediately after do a second similarly structured task. In terms of relative
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task completion times, it is clear that both the hybrid and the tabular layouts outperform the

outline layout, in both cases being completed 2.9 times faster on average for the tasks listed

in Table 5.5. We believe outline layouts are harder to read because (1) they are large and

require the user to scroll more to look through a given amount of data and (2) they exhibit

less spatial regularity than the other layouts.

The relatively high performance of the nested tabular layouts suggests that for the kinds

of large datasets we had our users work with, the very regular structure of the tabular layout

can outweigh its disadvantages of taking up more space and requiring both horizontal and

vertical scrolling. However, the tabular layout would be a poor choice for smaller datasets,

such as the common database application requirement of showing the details of a single

entity with all its attributes and related subentities. In this case, data that would fit on a

single screenful when formatted with the hybrid layout would likely exceed the width of

the screen when formatted with the pure table layout, requiring horizontal scrolling rather

than no scrolling at all, and making very poor use of vertical space, since the top-level table

would have only a single row. The pure outline layout, on the other hand, would fit in the

required horizontal space, but would likely exceed available space in the vertical direction,

also requiring scrolling. Future evaluation could focus on layout performance on smaller,

form-size datasets.

In terms of space efficiency, outline views lose in most of the cases, with hybrid layouts

performing significantly better. In almost every case, unpaginated hybrid layouts also per-

form as well as or better than unpaginated tabular layouts. It is worth noting that tabular

layouts are not, by their nature, constrained horizontally. So they can not, for instance, be

printed on paper, unlike the hybrid layouts. The user study shows a less clear difference,

though outline views to still tend to fare the worst. It is slightly surprising to see the very

large pure table layouts outperform the other layouts in a few cases; this is an interesting

result.

5.4 Extensions

This section discusses features that were added to the layout generation system after the

previously discussed evaluation, in support of the complete visual query system that was

discussed in Chapter 3.

5.4.1 Interactive Features

While our evaluation focused on the static aspects of our layout management algorithm,

our implemented system now includes multiple features oriented towards interactive use.

A requirement for many kinds of interactions is to be able to make selections among

displayed elements in the layout. Our system supports a spreadsheet-like cursor which

can be used to select any cell in the layout, where a cell is defined as either a label for a

primitive field, a label for a relation field, or a primitive value. Selections can be made

either by clicking the mouse or by moving the cursor with keyboard navigation keys (arrow

keys, Home/End, and Page Up/Page Down). Because the aforementioned definition of a cell

serves to ensure that no two cells can ever overlap, determining the cell to be selected in the
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case of a mouse click is a simple matter of determining what cell occupies, or is closest to,

the point at which the mouse was clicked. For keyboard-based cursor movement, we found

the cursor behavior to feel the most natural when the relative motion of the cursor followed

the physical location of the cells in the visual layout rather than the logical location of the

cells in the schema. To make keyboard cursor movement work well when traversing cells

arranged in various non-trivial configurations, we store the cursor state as an (x,y)-position

on the layout rather than simply as a pointer to the selected cell. This generalizes the

behavior seen in existing spreadsheets for instance when moving the cursor across merged

cells.

By dragging the cell cursor across fields in a layout, or by moving the cell cursor while

pressing appropriate keyboard modifiers (Shift or Ctrl/Command), the user may select any

number of fields at a time. When the layout system is used as a front-end to our visual

query system, such multiple selection can be used with query actions such as Hide and

Clear Filter in order to quickly apply the action to multiple fields. Actions such as Join,

Filter, and Sort Ascending also define meaningful behaviors on multiple selections. Note

that our current system only supports multiple selection of fields (e.g. table columns), since

all the operations of our visual query language are designed to operate on fields rather than,

say, tuples or individual cells. Once our system is extended to support data editing, support

for multiple selection of tuples or cells would be useful as well, for instance for use with

operations such as Delete.

An additional feature is the ability to interactively override the stylesheet settings made

by the automatic layout manager. This has the potential to significantly improve readability

of output layouts, since the user can use their domain knowledge to decide where labels are

superfluous and can be omitted, what fields should serve as titles and thus be emphasized

with larger fonts, and such.

Finally, our system supports “frozen” table headers which stay put at the top of the

screen for as long as a table is partially visible in the scrolling viewport. This works both

for pure table layouts and where table layouts are contained within outline layouts (hybrid

layouts).

5.4.2 Stable Interactive Layouts

In the standalone version of our layout algorithm, the measurements made in the Measure

phase are done on the same input data that is subsequently laid out in the Layout phase.

This means that two datasets with identical schemas may nevertheless be rendered using

different layout decisions. In our visual query system, it is desirable for output layouts to

stay consistent across the many intermediate results that are generated as the user performs

a sequence of query manipulation actions. For example, the width of table columns should

not usually change as a result of applying a filter or sorting operation, as this would make

it difficult for the user to see exactly what changed as a result of applying the operation in

question. Similarly, the retrieval of more rows during infinite scrolling should retain the

layout decisions that were made for the original dataset.

In our visual query system, the properties that make up the layout algorithm’s stylesheet

(Table 5.1) can be stored alongside the properties that define the SIEUFERD query model

(Table 4.1). The combined data structure defines not only the query to be executed to
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Figure 5-9: Strategies used to render exceptionally long string values at a given prescribed

width. Text is broken at word boundaries (Samar Catherine), or the font size is decreased

(Viktorovich), or both (Nicholas Lubchenco). When sufficient vertical space is available,

text rendered at a smaller font size is shifted down to ensure baseline alignment with text

in adjacent cells (Viktorovich).

retrieve results, but also how to render those results on the screen. Because the layout

stylesheet is now part of the state that defines the current query, we can reuse layout-related

state from one intermediate query result to the next.

We define an additional stylesheet property SampleSize, initially zero, which is used

to inform an improved version of our layout algorithm’s Measure phase. A field’s

SampleSize is defined as the number of distinct observed values that went into the statistics

currently stored about that field’s data (i.e. AverageCardinality for relation fields, and

IsVariableLength and ValueDefaultWidth for primitive fields). The improved Measure

phase performs new measurements for a field only if the old sample size is less than 50 and

new sampling would increase the sample size by at least 75%, with the latter requirement

waived if the old sample size is less than 15 and the new measurement would increase the

sample size. These heuristics were developed by trial and error; the specific parameters

were chosen to work well given our default query limit of 100 tuples prior to infinite

scrolling. In the visual query system, measured stylesheet properties like SampleSize,

AverageCardinality, IsVariableLength, and ValueDefaultWidth are preserved in the

event that a field is temporarily hidden, and are also carried along when a relation is copied

from one query to another during an automatic or manual join operation.

Since, in particular, the layout property dealing with column widths (ValueDefaultWidth)

is no longer guaranteed to be based on measurements of the actual data to be rendered,

we need a strategy for dealing with exceptionally long string values. The solution is

to apply a combination of line breaking and font sizing; see Figure 5-9. Fields for

which IsVariableLength is true tend to contain long-form text such as comments or

descriptions, and are first broken into paragraph lines on word boundaries. Fields for

which IsVariableLength is false tend to contain data less suitable for line breaking,

such as phone numbers, email addresses, mailing address lines, or proper names. In the

latter case, or when line breaking still yields a text layout too wide to fit in the available
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Figure 5-10: An example of a classic crosstab visualization, generated using Tableau

(with our annotations). Crosstabs accumulate tuples of data, e.g. (East, Furniture) and

(2007, Q4, October), on both the vertical and horizontal axes, and then aggregate remain-

ing fields, e.g. Profit and Sales, in a central area grouped by the intersection of tuples on

the two axes.

horizontal space, for instance due to long words, the font size of the entire text layout is

decreased by the amount necessary to fit the text layout in the available horizontal space.

A convenient side-effect of stable layouts is that a typical interactive query session

spends very little time in the layout’s Measure phase; measurements are typically done

once and then stay constant. Some extra logic can be added to handle special cases where

measurements should always be recalculated, for instance when a formula is changed.

Avoiding line breaks in fields for which IsVariableLength is false furthermore speeds up

the generation of layouts in the Layout phase, as we can assume certain dimensions for

each text box without performing expensive calls into the font rendering subsystem.

5.4.3 Crosstabs

In all the table layouts we have seen so far, the structure of the table header was fully

defined by the schema of the input data, with tuples always accumulating under the header

in the vertical direction. Another kind of table layout, the crosstab (cross-tabulation), works

differently. In a crosstab, tuples of data may accumulate on both the horizontal and vertical

axes, intersecting to form aggregations in the table’s central aggregation area. This is the

kind of visualization that is produced by Excel’s pivot tables; see Gray et al. [46] for a

discussion. Crosstabs are also supported by most business intelligence tools. Figure 5-10

shows an example, generated by Tableau.

In SIEUFERD, cross-tabulations can be supported as a simple extension to our nested
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Figure 5-11: Input data for the crosstab example in Figure 5-12, shown here in a regular

nested table layout.
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table layouts. In the stylesheet, we add a boolean Crosstab option that can be enabled on

any relation field. When enabled, the relation in question has its immediate nested tuples

arranged horizontally instead of vertically, with non-aggregate primitive fields automati-

cally projected to form grouping keys in the table header. This is shown in the transition

from the plain nested table in Figure 5-11 to a crosstab in Figure 5-12. In the example, for

every tuple in the instructors relation, each nested tuple in the terms relation appears in

its own nested table column, aligned with corresponding terms tuples in other instructors

tuples. Another use case for crosstab layouts is to display key-value data in table form; see

Figure 5-13.

Unlike traditional crosstabs, such as those produced by Tableau, SIEUFERD crosstabs

work like fully general nested tables. This allows arbitrarily nested data to be displayed in

the crosstab’s aggregation area. For instance, we can show the exact tuples that contribute

to each aggregate value, as shown in the instructors_sections relation in Figure 5-12. Fur-

thermore, all of the SIEUFERD system’s query-related actions, such as Filter, Sort, Hide,

and editing of labels and formulas, work as usual from within crosstab layouts, including

from data values in the table header. The same goes for other interaction features such

as cursors, frozen headers, and infinite scrolling, and custom formatting options. One ex-

ception is that the Sort action is not meaningful on the crosstab’s aggregated fields, e.g.

courses taught in Figure 5-12. On the other hand, Sort can be used to define the horizontal

order of crosstab tuples, while Filter can be used to cherry-pick them.

In our visual query system, the data tuples that make up a crosstab header are retrieved

using a generated SQL query that runs separately from the SQL queries used to evaluate

the main result. This generated query is similar to that which would be used to populate the

query interface’s filter popup if a filter was opened on the Crosstab relation. The retrieved

ordered list of header tuples become part of the layout’s stylesheet, ensuring that the layout

can then be built in a single pass over the main result.

It is not, in general, possible to build the list of crosstab header tuples purely from

the main result, since the LIMIT-constrained main result is not guaranteed to include every

value that should appear in the header, and since the appropriate order of heading tuples

would not be inferable. This is the reason why we run a separate SQL query to retrieve

crosstab header tuples. The latter separate query can still have a LIMIT clause on it, but

its ORDER BY clause will be configured such that the leftmost N crosstab header tuples are

always guaranteed to be retrieved.

5.4.4 Numeric Formatting and Visualization

Is is useful, when generating layouts, to pay some special attention to the formatting of

numerical data values. These may originate from the data source itself, or be returned by

formula functions such as count and average. Most importantly, numeric values displayed

in a table column should always be right-aligned, with the same number of digits (possibly

zero) shown after the decimal point for every value in the column. During the Measure

phase of our layout management algorithm, we use a heuristic to determine a reasonable

number of decimal places to show for numeric values in each primitive field, and then stick

to this decision across the entire generated layout. The heuristic is to show the minimum

number of decimal places needed to ensure that every observed value is displayed with
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Figure 5-13: Displaying key-value data in a table format using a crosstab layout. The ta-

ble osp_award_custom_fields(award_key, field_name, field_value) stores data about each

osp_award as key-value pairs instead of keeping each field in its own database column (this

schema design antipattern is the “opposite” of that seen in Figure 4-6). A crosstab layout

can be used to arrange the fields in table columns for display purposes.

Figure 5-14: Bar chart and heat map visualizations. The heat map is created by color-

coding the result of a sum formula in a calculated field (amt) in a crosstab layout.
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either their full precision or at least four significant digits, up to a maximum limit of six

decimal places. When the layout system is used as part of our interactive visual query

system, the full precision of numbers can still be seen in the formula bar, except when the

number originates from a formula. This behavior mirrors that of Excel.

It is useful to display large numbers using a thousands separator character; for instance,

in the US, the number 5129744.23 might be displayed as “5,129,744.23”. We always do

this by default, except for fields that, during the Measure phase, are only observed to

contain integers of four digits or less. This avoids rendering years such as 2016 as “2,016”.

A similar policy exists in the SI Standard4.

Bar charts and heat maps can be easily supported by allowing the magnitude of a nu-

merical value to be indicated with a bar or a color, respectively. These formatting options

can also be used in a crosstab to produce two-dimensional visualizations. See Figure 5-

14. The Tableau/Polaris system uses crosstabs as a basis for a large number of similar

two-dimensional visualizations [99].

5.5 Conclusion

We have presented a layout management algorithm that automates the display of structured

nested data using the traditional visual idioms of hand-designed database UIs: tables, multi-

column forms, and outline-style indented lists. By default, the widths of generated layouts

are constrained so that only vertical scrolling may be necessary to view the data in its

entirety. Our stylesheet system is further designed such that two input values mapping to

the same schema field will always be styled in a similar way. Our hybrid layouts are 3.9

and 1.6 times more compact on average than outline layouts and horizontally unconstrained

table layouts, respectively, and are as readable as table layouts even for large datasets. We

believe that our system can function as a single output system for most of the data views

commonly required in domain-specific database applications, whether they be large tables

required to display information about many entities at once or form views that must display

many details of a single entity compactly without scrolling.

4http://www.bipm.org/en/publications/si-brochure/section5-3-4.html
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Chapter 6

Conclusion

We now discuss the extent to which the problems outlined in the Introduction has been

solved, discuss future work, and summarize our contribution.

6.1 Discussion

6.1.1 Direct Manipulation

We have claimed that our visual query system satisfies the requirements of a

direct manipulation interface. We here discuss the extent to which our own system satisfies

the requirements of such a system, as described by Shneiderman [92] and, in the context

of visual query systems, Liu and Jagadish [71] and Nandi et al. [78].

• Divide query specification into progressive refinement step, and use intermediate re-

sults to help users formulate the query [71]. This corresponds to our own requirement

R1 (see Chapter 1), or a similar requirement as stated by Nandi et al.: Users [may]

manage, query, and manipulate data by directly interacting with it [78]. This re-

quirement is clearly satisfied by our own system, as illustrated by the example query

building session from Section 1.1. SIEUFERD queries are built using a series of ac-

tions, each initiated by the user by means of interacting with data from the previous

version of the query.

• Continuously present data to users, after each data manipulation [71]. This is a

variation of the previous requirement. Again, SIEUFERD satisfies the requirement,

always showing on the screen the result of each progressively refined query. Even

when a query takes a long time to execute, SIEUFERD can immediately update the

result layout to reflect a modified query, using stale data to fill the screen while wait-

ing for updated results.

• Rapid, reversible, incremental actions [92]. As previously alluded to, all interactions

in the SIEUFERD system happen at interactive speed, even if the underlying queries

take a long time to execute. The speed of database queries depends on the size of

the database, the indices available for query optimization, and the specific queries
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constructed. In the data sources we used for our user studies, it was rare to see a

query take more than a second to execute.

All query actions in the SIEUFERD system are reversible by means of undo/redo ac-

tions. Furthermore, undoing an action automatically cancels any long-running query

that might be executing.

The concept of incremental actions was covered by the previous requirements.

• Enable the user to modify an operation specified many steps earlier without redo-

ing the steps afterwards [71]. This is a more general variation of the reversibility

requirement, corresponding to requirement R2 from our introduction (Chapter 1). It

is not enough to allow the user to undo their way back to the operation that should

be modified; the user must instead somehow be able to point to a representation of

the operation and modify it directly. Arguably, this should be done without having to

leave the direct manipulation interface. For instance, manually modifying a part of a

generated SQL query or data manipulation script would not count as a solution here.

In SIEUFERD, the solution to the problem of directly being able to modify queries is

to associate every part of the query state with a column in the query’s nested relational

result. Each column then becomes an affordance for manipulating its own portion of

the query state, such as a filter or a formula. Because we allow results to take the

form of a nested relation rather than only a simple flat table, we are able to encode a

very expressive query language into the schema of the result.

While our current query manipulation actions work well for manipulating individ-

ual query operators such as filters and formulas, they are of limited use for more

structural changes to a query, such as inserting a new relation between two existing

relations in order to group on a subset of fields. This may be required for instance

when doing aggregation with a custom grouping, or when preparing a query for use

with a crosstab layout. An example was seen in Figure 5-11, where the terms relation

was inserted between instructors and instructors_sections relations. Such queries

are expressible using the existing query actions, but are awkward to construct1, and

may require operations to be redone if the user wishes to change the structure of the

query, violating requirement R2. In the future, we propose to solve this problem

by providing reversible higher-level query manipulation actions, such as Group and

Ungroup, that will rewrite the query to insert or extract relations according to com-

mon patterns. Note that these actions would act only as a symbolic manipulation

of the current visual query; they do not require extensions to the SIEUFERD query

model.

• Visibility of the object of interest [92]. Evaluating this requirement requires defining

what exactly the object of interest is in context of a visual query language. Is it the

data in the database, or the query being built by the user? If we consider the object

of interest to be the query rather than the data, then many of the Diagram-based

1For example, in Figure 5-11, the terms relation is actually another instance of the instructors table,

self-joined against its parent relation instructors on the table’s primary key, with the formula term using an

inward reference to a hidden child field of the courses relation containing the term of the course.
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systems mentioned in Chapter 2 would qualify as direct manipulation systems, since

the user is able to directly manipulate a diagram representing a query. We reject this

definition, however, as the previous requirements make it clear that the user should

be manipulating data in the database, for instance through the result of a query, rather

than an abstract representation of a query in isolation. Looking at example data, and

running intermediate versions of a query, is an essential part of the workflow for

developing complex database queries. In systems that do not successfully integrate

the manipulation of queries with the display of results, users will find themselves

looking back and forth between the query representation on one side of the screen

and a separate result representation on the other.

If the object of interest is the result of a query, then our system satisfies this require-

ment; the result of the current query is always visible on the screen at all times.

However, our system goes one step further, also displaying the query that produced

that result. The need to do so is not completely obvious; the systems in Chapter 2’s

Hidden Algebraic category, for instance, display the result of a query without rep-

resenting the query itself somehow in the interface. As it turns out, displaying the

query on the screen is a prerequisite for letting the user manipulate arbitrary parts of

it, per the previous requirement.

With respect to the state of the current query, a possible point of objection is that our

system does not show the entire state of the query on the screen at one time. Notably,

showing the state of a filter, the definition of a formula, or the content of hidden

columns requires the user to take additional action, such as opening the filter popup,

moving the cell cursor, or opening the field selector, respectively. This is a conscious

design decision, based on a tradeoff between completeness and conciseness of the

visual state representation. In the case of filters and formulas, the use of partially

hidden state is already well-established in spreadsheet interfaces. Hidden columns,

while supported in spreadsheets, have a more prominent role in SIEUFERD due

to the large number columns available for display in a typical database query. As

discussed in connection with our user study, our system should include a more visible

affordance for unhiding columns, without cluttering up every column header with

extra indications.

We considered alternative designs for the field selection interface, including overlay-

ing a ghost image of hidden columns onto the result layout during selection. How-

ever, this would make the list of field names hard to read, as they would be continue

one after another on a single line, and also likely require horizontal scrolling. The

current approach, with the names of available fields being listed vertically, was cho-

sen for its compactness and readability. It is also easy to quickly unhide a number

of fields to see the data in each, exactly where it would appear in the result layout.

Any undesired fields can then be hidden again, without reentering the field selector,

by means of the Hide action. Note that the root field displayed in the field selector is

based on the field for which the Fields action was invoked, allowing the user to go

directly to the desired relation to rather than having to navigate the field hierarchy

from within the field selector.
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• The display should indicate a complete image of what the current status is, what

errors have occurred, and what actions are appropriate [92]. The completeness of

the state representation was discussed in connection with the previous requirement.

With regard to error states, the SIEUFERD interface includes a facility for commu-

nicating error messages to the user from within the direct manipulation interface, as

was shown in Figure 3-3. The context menu acts as a complete list of actions that

can be invoked during query construction, with column header icons indicating the

presence of existing state that can be modified. One thing missing is a better affor-

dance for opening the context menu in the first place. In the future, we might show a

spreadsheet-style filter dropdown button whenever the user hovers over a column.

• Replacement of complex command language syntax by direct manipulation of the

object of interest [92]. Our system replaces manipulation of textual SQL queries

with direct manipulation of data in the database.

One possible objection is our system’s use of formula expressions, a textual lan-

guage. The scope of the language, however, is limited to arithmetic expressions,

and except for the use of column-based references, the language is similar to that

of spreadsheet formulas. Like in a spreadsheet, the editing of formulas is done by

direct manipulation of the location where the formula’s result will end up, and ref-

erences can be inserted by clicking or keyboard-selecting the column to reference.

The use of column-based references should also make formulas simpler to read than

spreadsheet formulas. We do not believe that the use of formulas disqualify spread-

sheets from being considered a direct manipulation interface. In fact, the original

VisiCalc spreadsheet, for which formula calculations was the defining feature, is one

of Shneiderman’s original examples of a direct manipulation interface [92]. The au-

thor believes the textual expression Price * (1 - Discount) is in fact the best possible

way to visualize the calculation Price * (1 - Discount). That said, it would be useful

to have an explicit Sum action to help users create the formula for this particularly

common use case.

We considered giving aggregate functions a special representation in the SIEUFERD

query model, for instance as an optional decoration that could be applied to any

numerical column. The hope would be that the formula language could then omit

aggregate functions entirely. However, the formula language would then have re-

quired a special syntax for referencing the aggregate result of a column, negating

any simplifications. Besides, aggregate functions in formulas are a well-established

spreadsheet concept. We thus decided on the current design.

6.1.2 Expressiveness of the Visual Query Language

We have already evaluated the formal expressiveness of our visual query language. The

expressive power is equivalent to that SQL-92, plus the ability to generate nested results.

By achieving SQL-like expressiveness from a true direct manipulation interface, we believe

SIEUFERD has solved the visual query language problem.
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6.1.3 Use and Readability of Layouts

During user studies involving visual query building, we have only so far used the layout

manager to produce plain nested table layouts. We believe some more work is required

before the form-style hybrid layouts can be used effectively during query construction.

The first improvement needed is to actually provide a user interface for switching be-

tween form and table layouts. Rather than showing a single query result using two different

layouts, we believe the form layout could be used as a detail pane for the table layout, show-

ing more information for a single selected row. This requires some changes in how state is

stored in the user interface, as the two panes will now be showing a different selection of

fields. It may also be desirable to jump from one detailed form layout to another, to drill

down on specific entities, or to magnify a table in a form layout to a full table layout. This

requires both design and implementation work.

A second improvement relates to the readability of form-style hybrid layouts. For bet-

ter readability, the system should track which field or fields in each relation best represents

a human-readable heading for items in that relation, and display these headers in larger

font. The font of the header should decrease with the depth of each relation. Improve-

ments should also be made to the appearance of outline columns in hybrid layouts, as they

currently make layouts hard to read.

Relating to both table and form layouts, complicated queries may contain many levels

of relations, leading to a large number of field labels being stacked on top of each other.

It could be useful for the user to have a way to hide or collapse labels to make the query

result more readable. The downside is that selecting a relation’s label is currently the only

way to initiate certain actions, such as filtering on the relation in question. More generally,

it would be useful for the user to be able to customize layout formatting details. This is

currently possible only via a debugging interface.

6.2 Future Work

6.2.1 Query Interface

In the current query interface, some queries are expressible yet awkward to construct;

examples include greater-than/less-than conditions, grouping on custom attributes, and

UNION-type queries. Here, the interface could be improved without significant changes

to the underlying query model. For instance, we could include support for range filters,

explicit Group/Ungroup rewriting actions (discussed in the previous section), and the pre-

viously proposed syntactic sugar for unions (Figure 4-6), respectively.

We would also like to implement Section 3.3.2’s recommendations related to working

with databases with a large number of fields per table.

We would like to implement a type system for columns and formulas. This will improve

error messages for user formulas. It is also a prerequisite for editing support (see below).

Despite the theoretical idea that all query optimization should be left to the database

backend, there are many ways to generate the SQL queries required for evaluating a

SIEUFERD query, some of which optimize better than others. One area of future work
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involves the implementation and evaluation of various optimizations in the generated SQL

queries.

6.2.2 The CRUD Application Use Case

In our introduction, we mentioned the various kinds of views that are found in typical

Create-Read-Update-Delete (CRUD) applications. Our visual query interface, in combina-

tion with our automatic layout generator, can produce all of these views. Table views are

covered by our layout manager’s nested table layouts, forms and reports are covered by

our layout manager’s hybrid layouts, while search forms can be replaced by filters opened

in hybrid layouts. But as mentioned in the previous section, our system currently lacks a

user interface for managing and navigating between these views. This problem needs to be

solved before our system can hope to replace CRUD applications.

More importantly for the CRUD application use case, all views generated by our visual

query system are currently read-only. In the future, we hope to incorporate editing of data.

The semantics of our visual query language are already well-suited for producing updatable

views, and the automatic form layouts produced by our layout algorithm can serve as a good

user interface for the common task of editing individual entities in the database and all their

related information. The ability to edit data would allow SIEUFERD to act as a complete

schema-independent end user front-end for relational databases.

6.3 Conclusion

This thesis has presented SIEUFERD, a visual query system. The system’s visual query

language is the first to support both the specification and subsequent modification of arbi-

trary SQL queries from within a pure direct manipulation interface. The system’s graphical

output engine is the first to fully automate the generation of nested table-, form- and report-

style layouts based on observed statistical measurements of the data in query results. The

complete system allows end-users to produce all output displays commonly found in tai-

lored CRUD database applications, using a small set of spreadsheet-like operations.

By directly manipulating nested relational results, the user can express a relationally

complete set of query operators plus calculation, aggregation, outer joins, sorting, and

nesting. This covers the full set of query operators generally considered as the minimum

to model SQL, and expresses, for example, all SELECT statements valid in SQL-92. At the

same time, the user always remains able able to track and modify the state of the complete

query. Whereas previous direct manipulation systems either sacrifice expressiveness or

hide the actual query from the user, SIEUFERD integrates the query and its result into

a single interactive visualization, using spreadsheet concepts like filters and formulas to

expose the complete state of the current query.

Compared with the diagram-based query designer of Microsoft Access 2016, users

greatly preferred our direct manipulation interface, with the latter scoring 46 percentiles

higher on a SUS-based percentile scale. For data-minded people of all professions, we

believe that SIEUFERD’s interaction style holds promise as an alternative to hand-coded

SQL.
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