Expressive Query Construction through Direct
Manipulation of Nested Relational Results
by
Eirik Bakke

S.M., Massachusetts Institute of Technology (2011)
B.S.E., Princeton University (2008)

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2016

© Massachusetts Institute of Technology 2016. All rights reserved.

AULhOr .. e
Department of
Electrical Engineering and Computer Science
August 30, 2016
Certified Dy
David R. Karger
Professor
Thesis Supervisor
Accepted DY . .ot

Professor Leslie A. Kolodziejski
Chair, Committee on Graduate Students

Expressive Query Construction through Direct Manipulation of
Nested Relational Results
by
Eirik Bakke

Submitted to the Department of
Electrical Engineering and Computer Science
on August 30, 2016, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Despite extensive research on visual query systems, the standard way to interact with re-
lational databases remains to be through SQL queries and tailored form interfaces. This
makes the power of relational databases largely inaccessible to non-programmers. This
thesis proposes a solution, in two parts.

The first contribution of this thesis is a solution to the visual query language prob-
lem, that is, the problem of letting end users construct arbitrary database queries through
a graphical user interface. We propose the first visual query language to simultaneously
satisfy three requirements: (1) query specification through direct manipulation of results,
(2) the ability to view and modify any part of the current query without departing from the
direct manipulation interface, and (3) SQL-like expressiveness. By directly manipulating
nested relational results, and using spreadsheet idioms such as formulas and filters, the user
can express arbitrary SQL-92 queries while always remaining able to track and modify the
state of the complete query.

The second contribution of this thesis is an algorithm for automatically formatting
nested relational data using the traditional visual idioms of hand-designed database Uls:
tables, multi-column forms, and outline-style indented lists. The algorithm plugs directly
into the output stage of our visual query language, and produces the concrete graphics that
the user sees and manipulates on the screen during query construction. The algorithm elim-
inates the need for an application developer to specify low-level presentation details such
as label placements, text field dimensions, table column widths, and list styles.

Our prototype visual query system gives the user an experience of responsive, incre-
mental query building while pushing all actual query processing to the database layer. We
evaluate the query building aspects of our system with formative and controlled user studies
on a total of 28 spreadsheet users. The controlled study shows our system outperforming
Microsoft Access by 18 points on the System Usability Scale [17]; this corresponds to a 46
percentage point difference on a percentile scale of other studies in the Business Software
category. We also evaluate the different layouts that can be produced by our automatic
layout algorithm, including via an online user study on 27 subjects.

Thesis Supervisor: David R. Karger
Title: Professor

Acknowledgments

This thesis could not have existed without the tremendous support, both moral and intellec-
tual, of my dear advisor David Karger. I will miss his familiar footsteps as I now pack up
my office desk and leave after eight years at MIT. Karger’s close mentorship and guidance
through my first publications taught me everything I didn’t know I didn’t know about the
process of doing academic research. At the same time, as well as during the later, more
independent stages of graduate work, he has remained an ardent champion of my PhD
project, always eager to jump into an extended design discussion, and to promote and ac-
knowledge the work of his students. Graduate school has been a pleasure to go through in
large part thanks to Karger.

Essential to the friendly, funny, and collegial culture I experienced in and around
Karger’s “Haystack” group were the early haystackers and associates—those who started in
the same year as me (Ted Benson, Katrina Panovich), and the Elders (Michael Bernstein,
Harr Chen, Adam Marcus, “electronic” Max Van Kleek, Eugene Wu, and Sacha Zyto).
That thoroughly positive culture was also to be found in the User Interface Design group,
the people of which I will miss as well.

Besides Karger, I thank Rob Miller and Sam Madden for being on my committee.
Rob served as a great co-advisor for my Master’s project, including my first attempt at
doing a user study and getting a paper published. I thank Paul Grogan and Yod Phumpong
Watanaprakornkul for helping design and implement the system that became my Master’s
project.

I'd like to thank my officemates—Matt Coudron, Pritish Kamath, and Lea Verou-
and Patrice Macaluso, for many a daily chuckle, and my Boston friends—Christian
Haakonsen, Diane Haakonsen, and Angela Limoncelli-for being my friends. I thank
Emilia Diaz-Struck for our many evenings working on the ethanol lobbying project, for
tango, and Karger again for introducing us.

I thank Professor Barbara Liskov for the ninth floor espresso machine.

Finally, I thank my family for their enthusiasm and frequent visits, and for being there
year after year as a home to which I could always return.

Contents

1 Introduction
1.1 Querying for Non-Programmers
1.1.1 An Example Session in the SIEUFERD Query Builder Interface . .
1.2 Background
1.3 User Interfaces for Databases
1.3.1 Tailored CRUD Applications
1.3.2 Spreadsheets
1.3.3 Business Intelligence Tools
1.4 Contributions e e
1.4.1 A Visual Query Language
1.4.2 Automatic Formatting of Query Results
1.4.3 Prototype Implementation
1.5 Thesis Organization i
2 Related Work
2.1 Visual Query Systems
2.2 Structured Data Visualization
2.2.1 Tree Visualization
2.2.2 Visualization of Flat Tabular Data
2.2.3 Document Layout Systems
2.2.4 Automatic Form Generation
3 A Visual Query Language
3.1 Introduction e
3.2 System Description
321 Overview e
322 QueryModel
3.2.3 Architecture
3.3 Formative User Study
3.3.1 Standardized Tasks
3.3.2 Observations
3.3.3 General Sentiment
34 Controlled UserStudy
3.5 Berlin/BESDUI Benchmark
3.6 Conclusion e

15
15
15
21
23
23
25
27
28
28
29
30
30

33
33
36
36
39
39
39

4 Semantics and Expressiveness
4.1 OVerviewo e
4.2 The Nested Relational DataModel
4.3 The SIEUFERD Query Model
43.1 Encoding Examples
4.4 Operations on the Query Model
4.5 Query Evaluation
4.5.1 Simplified Query Model
4.5.2 Nested Relational Results
4.5.3 Desugaring the General Query Model
4.6 EXPressiVeNeSS v v it e e e e e e e
5 Result Layouts
5.1 Imtroduction
5.2 Layout Algorithm
5.2.1 Nested Relations and Nested Table Layouts
522 Outline Layouts
5.23 HybridLayout
5.2.4 Columns in Outline Layouts
5.2.5 Implementation
5.3 Evaluation
5.3.1 Runtime Performance
5.3.2 Layout Space Efficiency
533 Readability
54 EXtensionso e e e
5.4.1 Interactive Features
5.4.2 Stable Interactive Layouts
543 Crosstabso
5.4.4 Numeric Formatting and Visualization
5.5 Conclusion
6 Conclusion
6.1 DiscussSion e
6.1.1 Direct Manipulation.
6.1.2 Expressiveness of the Visual Query Language
6.1.3 Use and Readability of Layouts
6.2 FutureWork
6.2.1 QuerylInterface o
6.2.2 The CRUD ApplicationUse Case
6.3 Conclusion

75
75
75
77
78
81
86
86
88
89
90

95

95

98

98
100
101
102
104
105
105
108
109
112
112
113
115
118
120

List of Figures

I-1

1-2

1-3

1-4

3-1

3-2

3-3

An estimate of the number of publications in the research area of visual
query systems, since 1975. The vertical bars show the number of papers
per year, while the line shows the cumulative number of papers after each
year. Based on a subset of references in surveys by Catarci et al. [22],
El-Mahgary and Soisalon-Soininen [37], and Bakke and Karger [9].

The stereotypical user interface of a tailored CRUD-style database appli-
cation. Screenshots from an administration system for public Norwegian
musicschools. oo

Entity-Relationship diagram of the schema for an academic course man-
agement database. oL

Visual specification of a database query in a spreadsheet-like environment.
The query structure is encoded in the table header, which shows three joined
table instances (bold labels), one-to-many relationships (—<), sorting (),
active filters (Y, X), and a formula (fx). Formulas can be edited either
directly in cells or through a formulabar.

Example hybrid outline/table layout produced by our layout generation al-
gorithm. Magnification of Figure 5-1(e).

The SIEUFERD query interface. To create queries, users start from a sim-
ple tabular view of a table in the database and add filters, formulas, and
nested relations. The integrated result and query representation is displayed
continuously as the user interacts with the data. The particular query above
instantiates six database tables (one per nested relation), contains five joins
(each child relation against its parent), and is evaluated using five generated
SQL queries (one for each one-to-many relationship —<). This query was
constructed purely by checking off the appropriate fields and foreign key
relationships in the field selector.

Temporary layout displayed during execution of a long-running (~1900ms)
query. The user has just unhidden the Exam_1yYPE and READINGS fields. The
unhidden fields are immediately displayed using placeholder icons (+-*);
meanwhile, generated SQL queries run in the background to retrieve an
updated result for the entire visual query.

High-level error handling. A referenced field was deleted, so the formula
can no longer be evaluated. The system shows a warning while evaluating
the rest of the query normally.

22

29

42

4-4

45

4-6

5-1

5-2

5-3

Terminology of the nested relational data model, illustrated on a nested
table layout. L 77

The query list, which includes one automatically generated base query for
each table in the database (Darta TABLES), an empty query not instantiating
any table (NonE), and queries previously created by the user (PERSPECTIVES).
The query list is used in the initial selection of a template for a new query,
aswell asinthe Jondialog. 82

The context menu, which serves as a starting point for all query-related
actions. The context menu can be opened on any field or multiply selected
setof fields. L 83

The field selector. The user invoked the FieLbs action from the context
menu while the LasT field was selected, so the field selector shows the latter
field as initially selected along with its visible and non-visible sibling fields. 83

The Jon dialog box, which is used to define custom equijoin conditions
against an arbitrary new table instance. The query list on the right is the
same as that which was shown in Figure 4-2. 85

A union query. Following a classic schema design antipattern, the
COURSES table stores course codes using numbered table columns. To
facilitate subsequent operations such as filtering by course code, the query
collects course codes under a single nested relation via the helper table
3rows = {(1),(2),(3)}. An explicit unioNn function, as proposed above,
would make the expression of such queries more elegant. 92

We illustrate our algorithm by enabling its features one by one and producing successive
layouts of the data from Figure 5-3. All layouts are at the same scale. (a) is a basic outline
layout; this layout renders tuples in relation values as indented bullets, stacks the fields
of each tuple vertically, and puts labels to the left of primitive values and above relation
values. (b) and (c) show basic hybrid layouts, at two different widths, that use the outline
layout at the first level but switch to nested table sublayouts wherever a table can fit within
the available horizontal space. (d) justifies the columns of the table sublayouts to fill the
remaining available horizontal space. (e) adds columns to the outline sublayout to use
horizontal space more efficiently. (f) is a schema-only layout generated by the algorithm

to calculate ideal break points for the columnsin(e). 96

Interactive adaptation of the layout of the data to be displayed, based on the
available horizontal space in an on-screen window. 97

The nested table layout is the most common way to visualize a nested rela-
tion. Our version of this kind of layout, shown here, is used as a base case
in our recursive layout algorithm. Here, we show nested relational data
generated from an academic course catalog in nested table style, with one
of the nested columns enlarged to show terminology. Nested table layouts
arrange tuples in the vertical direction and the fields of each tuple in the
horizontal direction, with all field labels collected in a header on top. 98

9

5-4 An older version of the layout system, exhibiting various readability prob-
lems due to (1) uncollapsed borders around every relation value, (2) al-
ternating row colors at more than one relation level, and (3) wrapping of
columns withintablerows. L oL

5-5 A comparison between our hybrid outline/table layout and a pure nested
table layout and a pure outline layout, for the case of displaying a single
tuple with many fields, including relational fields containing other nested
tuples. Each layout is showing the same data in its entirety, at the same
scale and font size. Outline layouts waste space by concentrating data to
the left of the screen and by repeating labels for each value. Table layouts
waste space when different fields in the same subrelation require different
amounts of vertical space. Table layouts also tend to become very wide,
requiring horizontal scrolling if viewedonascreen.

5-6 Total area consumed by layouts of each of the three types. Outline and
Hybrid layout widths are constrained to 8 inches, and are shown both with
and without pagination. Lo

5-7 The mean time to solve each task in the user study, grouped by the kind
of layouts that were used to generate the PDFs subjects used to solve the
task. The error bars show the Standard Error of the Mean. Subtasks B were
given to subjects directly after Subtasks A, and were in each case identical
to Subtask A except for a small emphasized change in the question text.

5-8 The fraction of correct responses to each task in the user study. The error
bars show the Standard Error of the Mean when assigning value a value of
1 for correct answers and O for incorrect answers.

5-9 Strategies used to render exceptionally long string values at a given pre-
scribed width. Text is broken at word boundaries (SAMAR CATHERINE), Or
the font size is decreased (VikKTorROVICH), or both (NicHOLAS LUBCHENCO).
When sufficient vertical space is available, text rendered at a smaller font
size is shifted down to ensure baseline alignment with text in adjacent cells
(VIKTOROVICH). . . « « v v v et et e e e e e e e e e e e e e e

5-10 An example of a classic crosstab visualization, generated using Tableau
(with our annotations). Crosstabs accumulate tuples of data, e.g.
(East, FurniTure) and (2007, Q4, OctoBer), on both the vertical and
horizontal axes, and then aggregate remaining fields, e.g. ProriT and

SALEs, in a central area grouped by the intersection of tuples on the two axes.

5-11 Input data for the crosstab example in Figure 5-12, shown here in a regular
nested table layout.o oo

5-12 A crosstab in SIEUFERD. By allowing data values (e.g. S08-09, italicized)
to appear in the table header as grouping keys, tuples can accumulate in
both the horizontal (Terms) and vertical (INsTRUCTORS) directions. The query
shown here is identical to that of Figure 5-11, but has a crosstab formatting
option enabled on the TErRMs relation. All the usual query interface actions
remain available from the crosstab layout, including from data values in the
tableheader. L

103

. 109

115

5-13 Displaying key-value data in a table format using a crosstab layout. The ta-

ble 0SP_AWARD_CUSTOM_FIELDS(AWARD_KEY, FIELD_NAME, FIELD_VALUE) stores

data about each osp_awARD as key-value pairs instead of keeping each field

in its own database column (this schema design antipattern is the “oppo-

site” of that seen in Figure 4-6). A crosstab layout can be used to arrange

the fields in table columns for display purposes. 119
5-14 Bar chart and heat map visualizations. The heat map is created by color-

coding the result of a sum formula in a calculated field (amMT) in a crosstab

11

List of Tables

2.1

3.1

32

33

34

3.5

3.6

3.7

Summary of related systems, evaluated as visual query interfaces. R1 is
indicated where some class of queries can be initially specified by direct
manipulation of results. R2 is indicated where all parts of such queries can
subsequently be modified through similar means. R3 is indicated where the
same class of queries is relationally complete and supports aggregation in
arbitrary multi-block queries. L L Lo

User study participants and backgrounds. Users A-N participated in the
formative study, users O-@ in the controlled study.

Tasks and timings for standardized tasks used as part of the formative user
study. Error bars show the standard error of the mean.

Selected observations from the formative user study.

Tasks used in the controlled study. Some additional bonus tasks were also
available to users who finished quickly. The database used is the 7-table
version of the “Northwind” example that shipped with older versions of
Microsoft Access. e e e

Mean SUS survey results for the controlled study, using various standard
scales. Higher scores are better. Error bars show the standard error of the
MEAN. . . o ottt e e e e e e e

Summary of BESDUI benchmark results for SIEUFERD, compared with
existing results for two other systems. The capacity indicates whether or
not the query in question can be expressed in each system (as per the bench-
mark’s notation). L

Exact interaction steps required to specify each of the 12 queries in the
BESDUI benchmark using SIEUFERD. The metrics K, P, and H refer to
the number of mouse or keyboard keypresses, mouse aiming operations,
and switches between the mouse and the keyboard required for each step,
respectively. The speed is the estimated number of seconds required to
complete the task based on the indicated standard durations per metric. (Ta-
ble continued on the next page.)

4.1

5.1

5.2

53

5.4
5.5

Properties in the SIEUFERD query model, associated with each field in the
nested relational schema that defines a visual query. Along with the core
set of properties that are needed to define a database query, we also store
various properties that define how the result of the query is presented on
the screen during interactive query construction; some examples are shown
here. P, R, and P R indicate properties applicable to primitive fields, rela-
tion fields, or both, respectively. Properties with icons correspond directly
to icons shown in the result area and actions in the user-accessible context
menu from Figure 3-1. o

Properties defined, for each field in the schema, by a stylesheet. P, R, and P
R indicate properties applicable to primitive fields, relation fields, or both,
respectively. We have omitted color- and border-related properties.
Quantitative statistics related to the size and complexity of datasets referred
to in this chapter. The depth of a primitive value is the number of enclosing
relation values that must be traversed to reach the primitive value from the
root. The plural depth only counts non-singleton enclosing relations.
Runtime measurements for each phase of the layout algorithm. Standard
error is within 3% ineachcase.
Question tasks given in the user study.
Summary of statistical tests run on the dataset from Figure 5-7. Only tasks
for which the ANOVA yielded p<0.05 are shown. For Tukey HSD pairs
with p<0.05, we also show the relative differences in average task comple-
HONEIMES. o v vt et e e e e e e e

13

14

Chapter 1

Introduction

1.1 Querying for Non-Programmers

Emilia Diaz-Struck is an investigative journalist who, in 2012, was writing a story on
lobbying in the US ethanol biofuel industry [36]. Corporations with lobbying expendi-
tures are required by law to report all such expenditures, along with a wealth of related
information, and this data is published by The Center for Responsive Politics! in the form
of a relational database. A key goal for our journalist was to combine the data in the latter
database with data from her own research, in order to answer quantitative questions relating
to her story.

Relational databases do not come with a graphical user interface. They are primarily
a tool for programmers, and for those in other professions who have had the time and
technical inclination to learn the query language SQL. This presented a problem for our
journalist: while she was well-versed in Excel, she had no experience with SQL. How,
then, could she perform the various complex database queries she had in mind? As the
system described in this thesis had not yet been finished, the solution was to team up with
a programmer (yours truly), who would type SQL queries while the journalist stood over
his shoulders asking questions of the data.

Hiring a programmer is not an elegant solution to the problem of letting non-
programmers interact with databases. This thesis will present an alternative—a new
kind of graphical query interface, called SIEUFERD, that has the power of SQL but the
ease-of-use of a spreadsheet. We will start this thesis by showing an example interactive
query building session in the SIEUFERD system, based on one of the many queries our
journalist needed to construct in order to collect data for her story.

1.1.1 An Example Session in the SIEUFERD Query Builder Interface

The user (our journalist) has compiled, in the table pLaNTS_os, a list of major ethanol
producers?, and would like to find the total lobbying expenditures of each. Another ta-
ble, LOBBYING, contains quarterly lobbying reports from US corporations in the years 1998

Thttps://www.opensecrets.org
2Renewable Fuels Association/Maple Etanol SRL (2012)

15

https://www.opensecrets.org

through 2012 (727,927 tuples)’.
Base table. The user starts by opening the table of ethanol producers as a template for
the new query:

plants_os <
id company noplants loccountry feedstock nameplate
—tap_mgy
1 New Energy Corp 1 United States Corn 102.0
2 Maple Etanol SRL 1 Peru Sugar Cane 35.0
3|Gevo Inc | 1 United States Corn 21.0
4 Patriot Renewable Fuels 1 United States Corn 100.0
5 Tate & Lyle North American 1 United States Corn 105.0

Sugars

£ A DeAaracecinAa 1 llnitad Catac Arm [~ N1

Join. To add another table to the query, the user selects the column or columns to join
on and invokes the Join action from the context menu. This opens a dialog box for selecting
the table to join with, in this case LoBBYING, and for selecting the corresponding columns
from the latter to be matched in an equijoin constraint. The user joins the pLANTS_os and
LOBBYING tables on the compaNy and ULTORG fields, respectively:

plants_os <
id company noplants loccountry feedstock nameplate
_cap_mgy
1 New Energy Corp 1 United States Corn 102.0
2 Maple Etanol SRL 1 Peru Sugar Cane 35.0
e —LEE 210
4 Patriot Renewable FL Fields... 8K 100.0
5 Tate &LyleNorthAm Hide 105.0
Sugars 0.6 oin
6 AG Processing Z Sort Asce e - 'l
T r Base Table: Foreign Table:
8 Archer Daniels Midiai = S0rt Des¢ Base Table: oreign Table:
9 Poet LLC =, Sort Asce =
; = lants_os v Data Tables
10]Land O'Lakes . Sort Deg| Lo plants_ -
11 Murphy Oil Clear Sortin Fields in Base Table: = Fields in Foreign Table: Hcpi
12 Louis Dreyfus Corp) o . N lobbyin
13 Valero Energy Y Filter... Iﬂ id [H ctid] ying
14 Sunoco Inc Vv K Hide Par([H company [l unigid [plants_os
15 | Cargill Inc i [l noplants registrant_raw p
ClearFilter [nop [l registrant_ e ———
|j] loccountry [H registrant
{ Collapse [f feedstock CH isfirm & plants_os
=< One-to- iﬂ] nameplate_cap_mgy % client_raw E3 None
" client
i
fr Insert Ca I
amount
fr Insert Ca
15 catcode
Delete :E
& dh source
[Hl Iself
= [Hl includensfs

A join relates data in a base table and a foreign table through pairs of fields containing similar values.
First select a foreign table to join with, then select pair(s) of fields to match between the tables.

| Cancel | [OK

In cases where the database defines explicit foreign key relationships between tables,
use of the above Join dialog is unnecessary; instead, all available joins are available as
hidden relations in the field selector. The effect is a schema navigation capability analogous
to that of QBB [84], AppForge [108], and App2You [66].

3The Center for Responsive Politics (2012)
https://www.opensecrets.org

16

https://www.opensecrets.org

Hide fields. After the join, a lot of columns are shown, so the user selects a few of them
and invokes the HIDE action:

plants_os <
id company noplants loccountry feedstock nameplate lobbying <
_cap_mgy registrant amount catcode luse ind lyear Itype typelong
1 New Energy Corp 1 United States Corn 102.0 Taft, Stettinius & 0 Y4000 vy y 2012 g2t SECOND QUARTER TERMINATION
Hollister
2 Maple Etanol SRL 1|Peru ISugar 35.0 Altrius Group 0 Y4000 n 2012 qltn FIRST QUARTER TERMINATION
. NO ACTIVI
Fields... 38K 0 Y4000 n 2011 g2n éECOND QUTJR)TER (NO ACTIVITY)
0 Y4000 n 2011 qgin FIRST QUARTER (NO ACTIVITY)
0 Y4000 n 2011 g3n THIRD QUARTER (NO ACTIVITY)
Sort Ascending 0 Y4000 n 2010 g3n THIRD QUARTER (NO ACTIVITY)
; 20,000 Y4000 y |y 2009 g4 FOURTHQUARTER REPORT
Sort Descendmg) 0 Y4000 y 'y 2010 g2 SECOND QUARTER REPORT
Sort Ascending after Previous 0 Y4000 n 2010 g4n FOURTH QUARTER (NO ACTIVITY)
Sort Descending after Previous 10,000 Y4000 y |y 2009 g2 SECOND QUARTER REPORT
Clear Sorting 10,000 Y4000 y 'y 2010 gl FIRST QUARTER REPORT
30,000 Y4000 y |y 2009 g3 THIRD QUARTER REPORT
Y Filter el 0 Y4000 n 2011 g4n FOURTH QUARTER (NO ACTIVITY)
3 Gevo Inc 1 Unite 30,000 E1500 y |y 2012 qi FIRST QUARTER REPORT
K Hide Parent If Empty 30,000 E1500 y |y 2011 g2 SECOND QUARTER REPORT
laar Filtar M NNNF1RAN v v 2011 AR THIRN NIIARTFR RFPNRT

It is now easier to get a sense of the data. We have a new child relation field, called
LOBBYING, containing the lobbying reports for each company:

plants_os <
company lobbying <

amount luse ind |lyear |ltype
New Energy Corp 0y y 2012 g2t
Maple Etanol SRL 0n 2012 gltn

2011

y |Y q
0n 2011 g4n
Gevo Inc 30,000 y y 2012 qi
30,000y 'y 2011 g2
30,000 y 'y 2011 g3
20 NNN v 20NQ A2

We see the first three of the companies from the pLANTs_os table, and, for each company,
their lobbying reports. The one-to-many icon (<€) on LoBBYING indicates that each company
may have more than one lobbying report. The uLTorG field of the LoBBYING table, which we
joined on, was automatically hidden by the Join action, because the equijoin constraint
makes it redundant with respect to the company field.

Sort. The user decides to sort the lobbying reports for each company most-recent-first,
invoking the Sort DESCENDING action on the LYEAR field and then invoking the Sort DE-
SCENDING AFTER PREvVIOUS action on the LrypE field. This sorts individual LoBBYING relations
by year (=) and then by quarter (= »):

plants_os <
company lobbying <
amount | luse ind lyear = Itype =,
New Energy Corp 0y y 2012 g2t
Maple Etanol SRL On 2012 gitn
0n 2011 g4n
0n 2011 g3n
0n 2011 gz2n
0n 2011 gln
N amnin AAn

17

Aggregate formula. The user would now like to calculate a total lobbying amount for
each company. She invokes the INSERT CaLcULATED FIELD AFTER action to insert a calculated
field (fx) next to the company field, and enters the name Sum oF AMOUNTS in the new col-
umn’s label cell. She then moves the cursor to one of the column’s value cells, and enters
a sum formula, clicking the AMouUNT column to insert the column reference:

5% [=sum ([lamount]])

plants_os <
company Jfx Sum of lobbying <
Amounts | amount luse ind lyear = Itype =,
New Energy Corp 0 0y y 2012 g2t
Maple Etanol SRL 70,000 0n 2012 gitn
0n 2011 g4n
0n 2011 g3n
o 2011 q2n
20,000 y y
30,000y 'y 2009 g3
10,000 y 'y 2009 g2
Gevo Inc 370,000 10,000 y y 2012 g2
30,000y |y 2012 qi

Unlike in a spreadsheet, there is no need to “drag down” the sum formula; it is always
evaluated once for each tuple in pPLANTS_os, its parent relation. During formula editing,
our user interface communicates the all-column behavior of formulas by highlighting the
entire column of the calculated field as well as of its referenced fields. The highlight also
varies, depending on the location of the cursor, to indicate which tuples contribute to a
particular calculated value. As in a spreadsheet, formula references are color-coded to
show the correspondence between reference tokens in the formula string and the values
they reference elsewhere in the result area. New references can be inserted into the edited
formula by clicking anywhere in the column of the target field, or by moving the cell cursor
with the arrow keys, as in Excel. Thus, even the textual entry of arithmetic expressions can
be done through some degree of direct manipulation.

Scalar formula. Reported lobbying amounts come from different years, some going
back to 1998. The user would like to calculate inflation-corrected totals. A separate table
cpl contains yearly Consumer Price Index values normalized for 2012. The user performs
another JoIn, this time between LOBBYING and cpI1, on the LYEAR and cYEAR fields, respectively.
This brings the cpiv value for each lobbying report’s year into the nested result. The user
then adds another calculated field, this time under the same relation as the existing AMOUNT
field, and enters a formula that calculates the inflation-adjusted amount for each report. We
here have a useful example of an inward formula reference (to cprv) that is not enclosed in
an aggregate function:

18

plants_os <

company Jx Sum of lobbying <
Amounts = | amount f: Amount luse ind lyear = cpi Itype =,
in 2012- cpiv
dollars
New Energy Corp 0 0 0y y 2012 1.0000 g2t
Maple Etanol SRL 70,000 0 0n 2012 1.0000 gitn
0 0n 2011 [0.9716] gan
0 0n 2011 0.9716 g3n
® O O cpi - Editor 0 =[amount] |/ [cpiv] 0.9716 g2n
B cpi 0 0n 2011 0.9716 gin
0 0n 2010 0.9560 g4n
cpi < 0 0n 2010 0.9560 g3n
Cyear = cpiv 0 Oy 'y 2010 0.9560 g2
2012 1.0000 10,000 10,460 y 'y 2010 0.9560 gl
2011 0.9716 20,000 21470 y |y 2009 0.9315 g4
2010 0.9560 30,000 32205y |y 2009 @ 0.9315 g3
2009 0.9315 10,000 10,735y 'y 2009 0.9315 g2
2008 0.9313 an 1N nNn 1N NNN T) 1 00NN A7

The cp1 relation does not display the one-to-many icon (—<), as this relation was joined
on its instantiated table’s primary key and our system thus deduced that at most a single
tuple would exist in cp1 for each parent tuple in LoBBYING. A new inflation-adjusted total can
now be added as a calculated field at the pLanTs_os level, shown adjacent to the existing
non-adjusted sum:

£ =sum ([[Amount in 2012-dollars]|)

plants_os <
company feSumof fx Sumof lobbying <
Amounts = Amountsin amount fx Amount £ ind lyear = cpi =
2012- in 2012- © cpiv§
dollars dollars]
New Energy Corp 0 0 0 0y vy 2012 1.0000 g2t
Maple Etanol SRL 70,000 74,870 0 0n 2012 1.0000 gltn
0 0n 2011 0.9716 g4n
§ 0 0n 2011 0.9716 g3n
;] 2011 0.9716 g2n
30,000 32,205y y
10,000 10,735 y y 2009 0.9315 g2
Gevo Inc 370,000 385646 10,000 10,000 y y 2012 1.0000 g2
30,000 30,000 y y 2012 1.0000 q1
W NNN AN Q77 v mni NAQ71A nA

Filter. Lobbying reports may sometimes be amended, in which case the superseded
reports should be excluded from totals to avoid double counting. The user can look for
superseded reports by invoking the FiLTER action on the LusE field and selecting the value N:

19

plants_os <
company

Maple Etanol SRL

Tate & Lyle North
American Sugars

AG Processing

fr Sumof fx Sumof lobbying <~

Amounts Amounts in
2012-
dollars

0 0

20,000 22,860

amount fx Amount

c ind lyear = cpi =
in2012- ® R
dollars =4 "j
0 0n 2012 | 1.0000 altn
0 on 806
0 On Fields | Filter |
0 0n 4'
0 0[n] Search:
0 0n |
0 0 n use
0 o n L ! (Include All)
20,000 22,860 n
0 On |y
0 0n
n N n

The user sees that there are superseded reports in the database with non-zero dollar
amounts, and inverts the filter to exclude them.

Select fields. The user now decides to hide the individual reports altogether and instead
reintroduce some of the fields that were hidden from the pLaNTS_os relation before, using
the field selector:

lobbying <~
amount fx Amount & g_ lyear = cpi g
(0]

R e il

8 006

plants_os <
company Jx Sumof fx Sum of
Amounts = Amounts in
2012-
dollars
New Energy Corp 0 0
Maple Etanol SRL 70,000 74,870
Gevo Inc 370,000 385,646

Fields | Filter |
) [id
[company
[| [noplants
(] [l loccountry
[[feedstock
(] [H nameplate_cap_mgy
[?I ET:]TSum of Amounts fx

&% EfSum of Amounts in 2012-dallars

» o |H lobbying <~

Final touches. The user edits the field labels to make them a bit more readable, and
sorts the companies by their lobbying totals. The underlying SQL column names can still
be seen in the field selector. The user also enables a formatting option on the last column
to produce a bar chart visualization. The result now looks presentable:

20

Lobbying by Ethanol Producers <::

Company Plants Feedstock Sum of Amounts in 2012-dollars fx= :i::

Cargill Inc 2 Corn 16,725,489 I e L S e G e
Sunoco Inc 1 Corn 15,277,872 i R D e
Archer Daniels Midland 8 Corn 9,277,472 e R

Murphy Oil 1 Comn 7,729,618 I

Valero Energy 10 Corn 7,047,974 it

Land O'Lakes 1 Cheese Whey 4,821,907 IS

Poet LLC 27 Corn 3,769,377 I

Louis Dreyfus Corp 2 Corn 2,310,378 I

Tate & Lyle North 1 Comn 2,204,061 .

American Sugars

Abengoa SA 6 Corn 1,585,500 mm

Gevo Inc 1 Corn 385,646 W

AG Processing 1 Comn 365,947 i

Patriot Renewable Fuels 1 Corn 135,215 |

Maple Etanol SRL 1 Sugar Cane 74,870 |

New Energy Corp 1 Corn 0

While the LoBBYING relation that feeds into the aggregate formula is now hidden, the user
could easily make it visible again from the field selector, like she did for the previously
hidden Prants and Feepstock fields. There are also shortcuts for unhiding hidden fields
referenced from the formula, or the hidden filter, indicated by the dashed cell icons (i:%).

We have just shown how a complex database query can be constructed entirely by
interacting directly with the data in the database, much like in a spreadsheet. As will
be shown in user studies (Chapter 3), the concepts involved can be learned in under an
hour, making our tool a realistic alternative to learning SQL for non-programmers like our
journalist.

1.2 Background

Modern relational database management systems (relational databases), embodied in com-
mercial products such as Oracle, IBM DB2, and Microsoft SQL Server, as well as open
source projects such as PostgreSQL, MySQL, and SQLite, owe their heritage to Edgar
Codd’s relational data model [33] from 1970 and the subsequent early implementations
INGRES [48] at Berkeley and System R [7] at IBM Research, both in development by
1975. In 1984, the Great Debate over data models that had raged in academic circles
was settled, by decree of IBM, in favor of the relational model and the query language
SQL [101]. Three decades later, relational databases are now firmly established as a uni-
versal backend for persistence and query processing, with SQL fulfilling the role, in the
words of Michael Stonebraker, as “intergalactic data-speak” [35].

The persistence and query processing facilities provided by a relational database form
only the bottom level of the software application stack. From the earliest days of relational
database research, it was recognized that textual query languages such as QUEL and
SEQUEL (later SQL), while useful in application development, would not by themselves
serve as an effective user interface for non-programmers. Starting with CUPID [75] and
Query-by-Example [111], again from Berkeley and IBM Research in the mid-70s, the
subfield of visual query systems began to grow in parallel with the more storage- and

21

220
200
180
160
140
120
100

80

60

40

20
0 ,,,,, -I-IIIIIIIIIIII-I-I-_I-II-IIIII-_

1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Number of Publications (cumulative)

Figure 1-1: An estimate of the number of publications in the research area of visual query
systems, since 1975. The vertical bars show the number of papers per year, while the line
shows the cumulative number of papers after each year. Based on a subset of references
in surveys by Catarci et al. [22], El-Mahgary and Soisalon-Soininen [37], and Bakke and
Karger [9].

performance-oriented research on relational databases. Whereas a relational database
serves as an application’s back-end, a visual query system is concerned with its front-end,
that is, the user interface (UI). The purpose of a visual query system is to provide end
users with a friendly, graphical way to express database queries, ideally permitting the
construction of any query that can be expressed in the underlying textual language (e.g.
SQL). Researchers also use the term visual query language to refer to the specific visual
grammar and semantics that is implemented by a visual query system [22].

Since, today, any off-the-shelf relational database can be used as a backend for new
applications, relational databases can be considered a solved research problem. The same
can not be said about visual query systems. Four decades after Query-by-Example, tech-
nical users still interact with relational data through hand-coded SQL, while non-technical
users rely on restrictive form- and report-based interfaces tailored, at great cost, for their
specific database schema [67, 56, 8]. Queries that involve “complex aggregates, nesting,
correlation, and several other features remain on a tall pedestal approachable only by the
initiated” [51]. Simple report queries traversing one-to-many relationships in the database
schema, such as retrieving “a list of parts, and for each part a list of suppliers and a list
of open orders”, are painful to define for programmers and largely inaccessible to end
users [10].

The absence of a definitive solution to the visual query language problem is not for a
lack of research. Since 1998, a new paper has been published on the topic roughly every
80 days on average. The preceding decade saw even more publications, accompanying the
general rise of Graphical User Interfaces in industry. See our informal tally in Figure 1-

22

- . -HOVEDMENY Menu

L7 I T T

£

STt =
© 1 0% | Om || imwmi | e |

Reporté | ‘Table View Form View

(specialized queries) (set of entities) (details about a single entity)

——

QICE]

Figure 1-2: The stereotypical user interface of a tailored CRUD-style database application.
Screenshots from an administration system for public Norwegian music schools.

1. The current state of database usability is described well by Jagadish et al. [54] as well
as in interview studies done among business analysts [61] and nonprofits [106]. The 2016
Beckman Report on Database Research affirms the continued need for a query interface that
allows users to consume data without resorting to SQL [1]. This thesis aims to solve the
latter problem. Before explaining our specific approach, we will discuss the main classes
of graphical database user interfaces in use today.

1.3 User Interfaces for Databases

1.3.1 Tailored CRUD Applications

A large class of domain-specific software applications serves chiefly to provide a graphical
user interface to some underlying relational database. These applications allow the user to
perform basic Create, Read, Update, and Delete (CRUD) operations on data in the database
as well as perform a range of pre-selected query and reporting tasks. While the particular
user interfaces of CRUD-style database applications invariably differ from one schema to
another, their basic structure have remained the same since the early days of graphical user
interfaces. This structure, popularized by developer tools such as 4th Dimension* (1984),
FileMaker> (1985), and Microsoft Access® (1992), is illustrated in Figure 1-2. The user
retrieves records using a search form, views results in a table view, and edits or views the

4http://www. 4d.com
5http ://www.filemaker.com
6http ://office.microsoft.com/access

23

http://www.4d.com
http://www.filemaker.com
http://office.microsoft.com/access

Grading
Components
Grading Scheme
Courses *@* Readings

Reading List

Sections —@ Meetings

Instructors

Figure 1-3: Entity-Relationship diagram of the schema for an academic course manage-
ment database.

details of individual entities in a form view. Queries that cannot be expressed through the
use of a search form are instead made available as read-only reports, which are hard-coded
by the application developer.

A typical relational database schema defines numerous tables (relations) in order to
model real-world entities and the relationships between them. An example is an academic
course management system shown in Figure 1-3, illustrated using an Entity-Relationship
(ER) diagram [26]. Here, each coursk can have any number of READINGS 1n its READING LIST,
and be associated with any number of sections (lectures, recitations, etc.). Each secTioN
can be associated in turn with any number of INSTRUCTORS or MEETINGS. We call these
one-to-many relationships. In addition to each section being associated with any number
of INSTRUCTORS, each INSTRUCTOR can be associated with any number of SecTions. A rela-
tionship that is one-to-many in both directions, like this one, is known as many-to-many.
A typical relational database has one table per entity set plus one extra table per many-to-
many relationship set (e.g. INSTRUCTOR_SECTION_ASSIGNMENTS). This organization prevents
data from being stored redundantly, following the rules of relational database normaliza-
tion [64].

Two aspects of the standard CRUD-style user interfaces are crucial for allowing the
user to manage relationships between entities in the database. First, they can provide the
user with many different views of the data, with each view potentially combining data from
multiple tables in the database. Second, these interfaces are not restricted to simple tabular
views, but can expose relationships in a nested fashion. For instance, a form view for
a single entity can itself contain tab rows or miniature table views to represent multiple,
independent sets of entities related to the main entity through one-to-many relationships.
Note that in tailored, domain-specific applications, views are hard-coded by a developer

24

for the particular schema in question. Continuing the course catalog example, a tailored
CRUD interface might expose many different views of the underlying data, such as “a list
of sections by instructors, each section showing its associated course,” or “a list of courses,
each course showing its reading list, grading scheme, and sections, each section showing
its meetings and assigned instructors.”

The data in a nested view can be represented in any tree-structured data model; com-
mon ones include the nested relational data model [53, 68], XML, and JSON. Korth and
Roth [65] provide an early explanation of why nested relations are a good data model for
representing forms in a database application.

While tailored database user interfaces may do their job and, in fact, be of great value to
their target user base, they have a number of drawbacks compared to more general-purpose
software:

e The software development costs per user is high, since the target market for any given
domain-specific schema is small.

e Since fewer development resources are available, tailored applications seldom reach
the same level of functional maturity as more general-purpose ones. Features that
are taken for granted in general-purpose applications may never be implemented for
tailored ones, because the development time would not be justified for the size of the
user base. Examples include undo/redo, keyboard shortcuts, drag-and-drop, accessi-
bility, and support for international character sets.

e Complex applications with smaller deployments and fewer developers are likely have
more unreported and open bugs.

e Tailored applications require users to go through a new learning period, and may
require expensive training.

e With a gap between users and developers, and with application and user interface
code that is tightly integrated with the particular structure of the database schema,
users are not fully in control of their data. It is difficult or impossible for end-users
to import data from or export data to other sources, and changing the schema in even
minor ways can be a major undertaking.

1.3.2 Spreadsheets

When the effort required to either adopt or develop a new domain-specific database appli-
cation is too high, information workers instead turn to a general and more familiar tool: the
spreadsheet. One survey [82] shows that “sorting and database facilities” are the most com-
monly used spreadsheet features, with 70% of business professionals using them on a fre-
quent or occasional basis. In contrast, less than half use “tabulation and summary measures
such as averages/totals”—one of the design goals of the original VisiCalc spreadsheet—or
more advanced features. Furthermore, spreadsheet users “shun enterprise solutions” [87]
and “do not appear inclined to use other software packages for their tasks, even if these

25

packages might be more suitable” [24]. “Export to Excel”, the joke goes, “is the third most
common button in data and business intelligence apps... after OK and Cancel””’ .

Shneiderman [92] attributes the usability of the spreadsheet to its nature as a
direct manipulation interface. The properties of such an interface include “visibility of the
object of interest”, “rapid, reversible, incremental actions”, and “replacement of complex
command language syntax by direct manipulation of the object of interest”. Shneiderman
paraphrases Harold Thimbleby: “The display should indicate a complete image of what
the current status is, what errors have occurred, and what actions are appropriate.” The
concept of direct manipulation is central to the visual query system presented in this
thesis. The direct manipulation aspects of our own interface will be discussed in detail in

Chapter 3.

Besides its nature as a direct manipulation interface, the spreadsheet, and Microsoft
Excel in particular, affords a large range of streamlined facilities for working with any data
that can be arranged in a grid of cells, including multiple selection, copy/paste, find/replace,
undo/redo, inserting and deleting, extending data values, sorting and filtering on arbitrary
fields, navigating and selecting cells with the keyboard, and so on. For reasons explained
before, tailored database user interfaces seldom reach this level of sophistication. When it
comes to general editing tasks on tabular data, spreadsheet systems have an advantage even
over most tailored applications.

While spreadsheets are great for managing data which can naturally be modeled as a
single table of data, they are less than ideal for database tasks, which tend to involve a
multitude of entity types and relationships between them. Because traditional spreadsheet
Uls provide no easy way to create joined views of related tables, it becomes impractical
to follow good practices of schema normalization, which call for tables of redundantly
represented data to be decomposed into multiple smaller ones. This in turn exposes all
the usual problems associated with managing improperly normalized data, i.e. insertion,
update, and deletion anomalies [64].

We previously mentioned the importance of nested views as a way to present rela-
tionships between entities in tailored database user interfaces. Nested views can often be
represented in spreadsheets using clever formatting tricks, e.g. indentation, skipped cells,
or comma-separated lists. This strategy does not scale well. Besides being hard to gen-
eralize, such views would have to be manually created and, if more than one view of the
same data is desired, kept in sync with the original data. This is infeasible if data changes
often, if there are many views, or there are multiple users. Furthermore, when the data rep-
resentation deviates from a simple tabular format, key spreadsheet features such as sorting,
inserting, charting, filtering, or even simple navigation between individual units of data
become hard or impossible to apply correctly. A recent empirical study [89] discusses ad-
ditional problems that arise when organizations use spreadsheets as information systems.
Extensive literature also exists on the broader topic of errors in spreadsheets [85, 80].

ttp://www.powerpivotpro.com the-3rd-most-common-button-in-data-apps-is
"h // i /2012/03/the-3rd b in-d i

26

http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is

1.3.3 Business Intelligence Tools

A number of visual query systems exist in the commercial marketplace, often marketed
under the umbrella term of Business Intelligence (BI) software. A survey of such products
is done regularly by Gartner®. Unlike tailored CRUD applications, BI tools tends to be
designed as general-purpose software that can be made to work with any existing database
instance. And unlike spreadsheets, BI tools let the user define new queries on existing data,
without altering the underlying data. In fact, BI tools are usually considered read-only, and
thus fulfill different organizational needs than CRUD applications.

Subcategories of visual query systems in the Business Intelligence category include
report generators, focused on batch creation of custom-formatted documents from data
in a database, and visualization tools, focused on interactive exploration of data through
diagrams and plotted graphics. Report generator products have been surveyed by Krdél [67];
examples include Crystal Reports® and Cognos'?. Visualization products include Spotfire!!
and Tableau'!?, both which sprung out of their respective founders’ PhD projects [5, 4, 98,
100].

While report generators may provide facilities for producing graphs and charts, their
primary use case is for text-based data presentations. Even in Krdl’s case study, which was
done in the context of a geographical information system, only 3 out of 117 reports con-
tained a map visualization, with those reports receiving little actual usage [67]. That said,
report generators can typically be used to produce a broader class of text-based data rep-
resentations than visualization tools, including support for elements such as tables, forms,
paragraphs, and bullet lists. These are the same kinds of visual layouts that are dominant
in tailored CRUD applications, and developers of the latter will often use report generators
to develop read-only portions of the application. Note that the generation of layouts in a
report generator is seldom fully automatic. A developer using a report generator to produce
complex form-like views, for instance, will spend a significant amount of time dealing with
low-level presentation details such as label placements, text field dimensions, table column
widths, and list styles. One contribution of this thesis is an algorithm that fully automates
the design of such layouts.

We have yet to see a Business Intelligence product that successfully enables even ad-
vanced spreadsheet users to express arbitrary database queries without learning SQL. Like
Liu and Jagadish [71], we believe this to be due to the hard user interface design problem of
providing high expressiveness without violating the rules of direct manipulation. In partic-
ular, previous direct manipulation systems either sacrifice expressiveness or hide the actual
query from the user. We will examine and solve this problem in Chapter 3.

8Gartner’s Magic Quadrant for Business Intelligence and Analytics Platforms
https://www.gartner.com/doc/reprints?id=1-2XXET8P&ct=160204

Shttp://www.crystalreports.com

Ohttp://www.ibm.com/analytics/us/en/technology/cognos-software

llhttp://spotfire .tibco.com

12http ://www.tableau.com

27

https://www.gartner.com/doc/reprints?id=1-2XXET8P&ct=160204
http://www.crystalreports.com
http://www.ibm.com/analytics/us/en/technology/cognos-software
http://spotfire.tibco.com
http://www.tableau.com

1.4 Contributions

1.4.1 A Visual Query Language

The first contribution of this thesis is a solution to the visual query language problem.
Following the requirements articulated by Liu and Jagadish [71], we present the first visual
query language to support both the specification and subsequent modification of arbitrary
SQL queries from within a pure direct manipulation interface. Specifically, our visual
language is the first to meet all of the following requirements:

R1. Query specification through direct manipulation of results. The user should build
queries incrementally through a sequence of operations performed directly on the
data in the database, as seen through the result of each progressively refined visual
query [71].

R2. The ability to view and modify any part of the current query, including operations
performed many steps earlier, without redoing subsequent steps or departing from the
direct manipulation interface. [71]

R3. SQL-like expressiveness from within the direct manipulation interface. A minimum
requirement is for the visual language to be relationally complete [32] as well as to
support aggregation in arbitrary multi-block queries. Our own visual language covers
a larger set of operators, sufficient to express any SELECT statement valid in SQL-92.

Our solution is based on the idea of combining the query and its result into a single
spreadsheet-like visual representation. Liu and Jagadish attempted a similar approach, but
encountered several problems—*“points of non-commutativity”, “where to store and display
the result of [aggregations]”, and limited expressiveness (single-block queries only). We
believe that such problems are a consequence of attempting to map query expressions,
which may be nested in nature, onto a flat result set. For instance, SQL queries may contain
arbitrarily nested SELECT clauses, performing new aggregations at each level, even though
the final output is always a simple flat table of results.

Our own visual query language solves the problem of mapping query expres-
sions to query results by extending the data model of results such that queries may
return nested results. Specifically, we allow queries to produce results from the
nested relational data model [53, 68]. The use of nested results affords a natural
visualization of operations such as joins and aggregation, and allows the user to see, in
context, intermediate tuples produced in any part of the query. In the ethanol lobbying
example, the user could choose to see not only the total lobbying expenditures for each
company, but also the complete list of lobbying reports that contributed to each total,
including the inflation correction calculations that were done at the level of each individual
report, and the filters that were used to exclude certain reports.

In our user interface, the user will always be looking at the nested relational result of the
visual query currently being built, formatted using a nested table layout. See Figure 1-4.
All query manipulation actions are initiated from the result layout, satisfying requirement
R1. In a nested table layout, the table’s header area visually encodes the schema of the

28

[[=sum([Amount] / [Consumer Price Idx])

Ethanol-Related Organizations <

OpenSecrets Name Jfx Total Amounts Lobbying Reports <.
in 2012-dollars Type =, ¥ Amount = Year CPI Lookup
Consumer
Price Idx
Low Carbon Synthetic 41,170 g2 40,000 2011 0.9716

Fuels Association

Maple Etanol SRL 74,870 gl 10,000 2010 0.9560
g4 20,000 2009 0.9315
a3 30,000 2009 0.9315
g2 10,000 2009 0.9315
Algal Biomass Org =sum([Amount] |/ [Consumer Price Idx]) | 1.0000
1.0000
0.9716
0.9716
0.9560
American Council on 246,962 qlt 20,000 2009 0.9315
Renewable Energy gl 30,000 2009 0.9315
g4 30,000 2008 0.9313
g4 40,000 2008 0.9313
A3 W0 NNN 2NNKR na12

Figure 1-4: Visual specification of a database query in a spreadsheet-like environment.
The query structure is encoded in the table header, which shows three joined table in-
stances (bold labels), one-to-many relationships (=€), sorting (=), active filters (7, K),
and a formula (fx). Formulas can be edited either directly in cells or through a formula bar.

nested result, including which fields are nested under others in the nested data model. Be-
cause our system maps all query-related state to specific fields in the result schema, the
result’s table header simultaneously becomes a visual representation of the query that gen-
erated it. The user can then manipulate any part of the query by initiating an action on the
corresponding field in the result layout, satisfying requirement R2. By directly manipulat-
ing nested relational results, and using spreadsheet idioms such as formulas and filters, the
user can express a relationally complete set of query operators plus calculation, aggrega-
tion, outer joins, sorting, and nesting, satisfying requirement R3, while always remaining
able to track and modify the state of the complete query.

1.4.2 Automatic Formatting of Query Results

The second contribution of this thesis is an algorithm for automatically formatting nested
relational data into table-, form-, and report-style layouts. The algorithm plugs directly into
the output stage of our visual query language, and produces the concrete graphics that the
user sees and manipulates on the screen during query construction. The combination of our
visual query language with our automatic layout algorithm yields a powerful direct manip-
ulation interface in which the user can quickly produce any of the views typically found
in tailored CRUD applications. This eliminates the need for an application developer to
specify low-level presentation details such as label placements, text field dimensions, table
column widths, and list styles, as well as the need for custom code for populating each
view with data from the database. Furthermore, generated layouts automatically support

29

interaction features such as multiple selection, cursor movement by mouse or keyboard,
“frozen” headers during scrolling, context menus, in-place editing of formulas and field
labels, undo/redo, error highlighting, and infinite scrolling. Each of these features would
require a significant development effort if implemented in the context of a tailored applica-
tion.

Layouts produced by our formatting algorithm are hybrids between two existing types
of layouts: outline layouts and nested table layouts. See Figure 1-5. The outline layout
stacks both tuples and fields vertically in an indented bullet list. The basic hybrid lay-
out replaces the outline layout with a nested table layout for specific relation fields in the
schema, wherever such replacement can be done without making the layout too wide for
the available screen or page size. This leads to more compact layouts without introducing
horizontal scrolling. Finally, our algorithm reclaims additional wasted space by allowing
narrow fields in the outline layout to be stacked in columns. The ideal placement of column
breaks, as well as the decision to use an outline or table layout for a given relation field, is
done using an idealized layout produced using average lengths of each field.

1.4.3 Prototype Implementation

Our prototype visual query system, called SIEUFERD (pronounced soy-fird), gives the user
an experience of responsive, incremental query building while pushing all actual query pro-
cessing to the database layer. We evaluate the query building aspects of our system with
formative and controlled user studies on a total of 28 spreadsheet users. The controlled
study shows our system outperforming Microsoft Access by 18 points on the System Us-
ability Scale [17]; this corresponds to a 46 percentage point difference on a percentile scale
of other studies in the Business Software category. We also evaluate the different layouts
that can be produced by our automatic layout algorithm, including via an online user study
on 27 subjects.

In our current implementation, all views generated by our system are read-only. In the
future, we hope to incorporate editing of data; the semantics of our visual query language
are already well-suited for producing updatable views. This would allow SIEUFERD to act
as a general-purpose (schema-independent) replacement for tailored CRUD applications.

1.5 Thesis Organization

Chapter 2 reviews previous work related to the two main contributions of this thesis, our
visual query language and the algorithm for automatic formatting of query results. We
evaluate the most relevant past systems according to the three requirements for visual query
languages that were laid out in the previous section.

Chapter 3 presents our visual query language and the specific structure of queries in our
language, defined by the SIEUFERD query model. We describe two user studies done to
evaluate the usability of our system.

Chapter 4 describes the internal representation of the SIEUFERD query model, and the
mapping of operations in the user interface to modifications on the query model. We show
how SQL queries are generated from an instance of the query model. We demonstrate

30

e [Course Listings |Dept.|Number Max. Enroliment | 140 |

GEO |207 May Audit? Y |
AST (207 Website

Title A Guided Tour of the Solar System Final Exam Type|Final [

Description This course examines the major bodies of our solar Grading Title Perc
system, emphasizing their surface features, internal MidTerm Exam 20
structures, and atmospheres. Topics include the origin Quizzes 10
of the solar system, habitability of planets, and role of Final Exam 20
impacts in planetary evolution. Terrestrial and giant Precept Participation 10
planets will be studied as well as satellites, comets, Other Exam 20
and asteroids. Recent discoveries from planetary Problem Set(s) 20
missions are emphasized. The course is aimed
primarily at non-science majors.

Sample Reading

Author Name

Title

List Morrow and Owen The Planetary System
Bennett et al. The Cosmic Perspective
Consolmagno and Schaefer Worlds Apart: A Textbook in Planetary Science
Beatty et al. The New Solar System
Sections Format | Number | Meetings Instructors
Beg. End Place Days First Middle Last
Time Time Day
L 01 11:00:0011:50:00({GUYOT 10 | M Thomas S. Duffy
w_
F
3 01 13:30:00(14:20:00|GUYOT 155| T Thomas S. Duffy
Nicole K Gotberg
Mark A. Miller
P 03 15:30:00(16:20:00|GUYOT 154| W Thomas S. Duffy
Nicole K Gotberg
Mark A. Miller
P 04 19:00:0019:50:00|GUYOT 154| W Nicole K Gotberg
Mark A. Miller
P 05 11:00:00|11:50:00|GUYOT 154| Th Nicole K Gotberg
Mark A. Miller
o [Course Listings |Dept.|Number Max. Enrollment [58 |
CEE [471 May Audit? Y |
GEO (471 Website
Title Introduction to Water Pollution Technology Final Exam Type|Other |
Description An introduction to the science of water quality Grading Title Perc.
management and pollution control in natural systems; Design Project(s) 33
fundamentals of biological and chemical Quizzes 66
transformations in natural waters; indentification of Other (See Instructor) 1
sources of pollution; water and wastewater treatment
methods; fundamentals of water quality modeling.
Sample Reading [Author Name Title
List Tchobanoglous & Schroeder Water Quality
Eckenfelder Principles of Water Quality Management
Metcalf & Eddy Wastewater Engineering
Sawyer & McCarty Chemistry for Environmental Engineers
Sections Format | Number | Meetings Instructors
Beg. End Place Days First Middle Last
Time Time Day
L 01 09:30:00(10:50:00(FRIEN 008 | T Peter R. Jaffe
Th Jeffery Scott Paull

Figure 1-5: Example hybrid outline/table layout produced by our layout generation algo-
rithm. Magnification of Figure 5-1(e).

31

the expressiveness of the query model by defining a translation from an arbitrary SQL-92
query, via an extended relational algebra, to a corresponding query in the SIEUFERD query
model.

Chapter 5 presents our algorithm for automatic formatting of query results from our
visual query system into table-, form-, and report-style output displays. We evaluate our
algorithm based on the space efficiency of output layouts, on performance, and on read-
ability.

Chapter 6 discusses the extent to which our system solves the problems mentioned in
this introduction, discusses future work, and summarizes our contributions.

This thesis includes material previously published at SIGMOD ’16 [9] (Chapters 2
and 3), InfoVis *13 [9] (Chapters 2 and 5), and for this introduction, CHI 11 [10] and
CIDR ’11 [8]. All thesis content is by the author.

32

Chapter 2

Related Work

We now review previous work related to the two main contributions of this thesis, our visual
query language and the algorithm for automatic formatting of query results.

2.1 Visual Query Systems

Visual query systems have been surveyed by Catarci et al. [22] and, recently, EI-Mahgary
and Soisalon-Soininen [37]. Systems discussed in this section include, in particular, those
that employ direct manipulation, nested results, or optimizations for traversing relation-
ships in the database. We omit systems that rely entirely on text-based languages for query
construction. Table 2.1 categorizes systems by query representation style, and provides an
assessment of each system against the requirements set forth in the introduction.

Besides our core requirements, Table 2.1 also indicates which systems support nested
results, i.e. a graphical equivalent of a nested data model such as XML, JSON, or nested
relations. This handles report-style queries that encode multiple parallel one-to-many re-
lationships in a single result, as when retrieving “a list of parts, and for each part a list of
suppliers and a list of open orders” [11]. Systems that base their result representation on a
single flat table of primitive values, such as Tableau [99], are unable to express such queries.
The same tends to hold for any system that takes its input from a single select-project-join
query, since multivalued dependencies [39] in the flattened result (PARTS—»SUPPLIERs and
PARTS—ORDERS in the preceding example) would interact to produce a pathological number
of tuples for even small inputs. Some systems, like Tableau and Gneiss [25], support a
restricted form of nesting where an otherwise flat result table, or a finite set of such, is
displayed such that each column is grouped by values in the column immediately to the left
of itself. This still does not handle PARTS—»SUPPLIERS/ORDERS-type queries from the example
above. Some systems, like Rhizomer [18] and Etable [60], can display parallel one-to-many
relationships, but only at a single level of nesting. Besides their use in visual query sys-
tems, nested data models have been used both in optimization [97, 20] and expressiveness
analysis [70] of query languages with aggregate functions.

Tableau, as well as other systems based on the pivot table concept, produce
cross-tabulated rather than nested results. Cross-tabulation and nesting are orthogonal
concepts, in the sense that a system can support one with or without supporting the other.

33

Table 2.1: Summary of related systems, evaluated as visual query interfaces. R1 is indi-
cated where some class of queries can be initially specified by direct manipulation of re-
sults. R2 is indicated where all parts of such queries can subsequently be modified through
similar means. R3 is indicated where the same class of queries is relationally complete and
supports aggregation in arbitrary multi-block queries.

Direct Unrestricted
Manip. Query Representation Year System RI R2 R3 Nested Results
Yes Overlaid on Result 2016 VISAGE [83] X X X
2016 Etable [60] X X
2014 GBXT 31 X X X
2013 Rhizomer [18] X X
2012 DataPlay 2] X X X
2006 Tabulator [14] X X X
2002 Polaris (Tableau) 99] X X
Spreadsheet Formulas 2016 Object Spreadsheets [74] X X X
2010 Spreadsheetsas DB [104] X X
2005 Al [63] X X X
1997 OOF Spreadsheets B1] X X X
1994 Forms/3 [19] X X
Exposed Algebraic 2013 Mashroom 471 X X X
2011 Wrangler [62] X X
1991 TableTalk [38] X X X
Hidden Algebraic 2016 Gneiss [25] X X
2013 GestureDB [78] X X
2010 CRIUS [86] X X
2009 SheetMusiq [71] X
2008 AppForge [108] X X
1989 R? [50] X X X
No Diagram-based 2016 OptiqueVQS [94]
2014 VisualTPL [27] X
2011 Related Worksheets [10] X
2009 App2You [66] X
2005 QBB [84]
2002 QURSED [81] X
1990 QBD [6]
Form-based 2008 Form Customization [57]
1998 QBEN [72] X
1997 ESCHER [107] X
1989 PERPLEX [95]
1977 QBE [111]

34

The difference between the two concepts can be more clearly understood by reading
Section 5.4.3, where we show how to combine both cross-tabulations and nesting in a
single system. To our knowledge, past systems have only supported one or the other, or
neither.

Returning to our taxonomy of visual query systems, we first discuss systems that do
not fall in the direct manipulation category. Form-based systems originated with Query-
by-Example (QBE) [111], where the user populates a set of empty skeleton tables with
conditions, variables (examples), and output indications. ESCHER [107] and QBEN [72]
extend QBE to support nested results, while PERPLEX [95] supports general-purpose logic
programming. The ubiquitous search forms of commercial database applications can be
seen as restricted versions of QBE tailored for a specific schema; Form Customization [57]
generalizes such forms by considering the form designer as part of the query system.

In diagram-based systems, the user manipulates queries for example through
a schema tree or schema diagram, as in Query-by-Diagram (QBD) [6], Query-by-
Browsing (QBB) [84], QURSED [81], App2You [66], Related Worksheets [10] and
OptiqueVQS [94], or through a diagrammatic query plan, as in VisualTPL [27]. The
diagram-based query building style is common in commercial tools—Microsoft Access,
Navicat, pgAdmin, dbForge, Alteryx etc. The general problem with both form-based
and diagram-based interfaces is that users must manipulate queries through an abstract
query representation that is divorced from the actual data that is being retrieved. To
construct and understand queries, the user must look back and forth between the query
representation on one side of the screen and a separate result representation on the other.
Thus we do not consider these systems to be direct manipulation interfaces (requirement
R1). The system from the author’s own Master’s thesis, Related Worksheet, falls in the
same category. Its limited query-related functionality was available only available from
a sidebar, disconnected from the data in the center of the screen. An exception was the
TELEPORT feature, which operated on the currently selected cell.

In the direct manipulation category, we now consider algebraic user interfaces. In such
systems, the user builds queries by selecting, one step at a time, a series of operations
to be applied to the currently displayed result. Each operation is applied to the result of
all previous operations. Formal expressiveness is easy to achieve in algebraic interfaces,
since the relevant relational operators can simply be exposed to the user directly. The main
problem with algebraic interfaces is that the user has no direct way to, in the words of
Liu and Jagadish, “modify an operation specified many steps earlier without redoing the
steps afterwards” [71] (requirement R2). For example, in GestureDB [78], the user has
no way to modify a filter on a column that was subsequently totaled in an aggregation,
since the column that was originally associated with the filter is no longer on the screen
to be manipulated. Similar problems exist in RZ [50], AppForge [108], CRIUS [86], and
Gneiss [25]. SheetMusiq [71] provides a partial solution by using an algebra where certain
operators can commute out of a complex expression for subsequent modification; however,
the technique breaks down for expressions enclosed in binary operators such as joins, set
union, or set difference. In other systems, the underlying algebraic expression is exposed
directly, as in the procedural data manipulation scripts of Wrangler [62], the XQuery-like
mashup scripts of Mashroom [47], or the diagram-based representation in TableTalk [38].
Thus, only the initial query specification can be done through direct manipulation; tweaking

35

and examination of existing queries must be done with a separate, indirect interface.

With clever use of formulas, Tyszkiewicz [104] shows that existing spreadsheet prod-
ucts can be considered expressive enough to formulate arbitrary SQL queries. If we con-
sider Excel as a query system, however, only a subset of such queries could be said to be
constructible by direct manipulation. Heavy reliance on set-based formula functions such
as INDEX, MATCH, and sUMPRODUCT means that spreadsheet formulas soon take the role of a
text-based query language, with a vocabulary far removed from that of typical query tasks.
This would also be the case for spreadsheet programming systems such as Forms/3 [19],
Object Oriented Functional Spreadsheets [31], Al [63], and Object Spreadsheets [74].
Tyszkiewicz, in particular, intends formulas to be generated from SQL statements rather
than to be typed manually by the user.

Last, we consider direct manipulation systems that overlay their query representation
on the result of the same query, with the structure of the query reflecting the visual struc-
ture of the result. This solves the mapping problem of requirement R2. The problem is
that current such representations are not expressive enough to support arbitrary queries
(requirement R3). For example, the direct manipulation interfaces of Tabulator [14], Rhi-
zomer [18], GBXT [3], Etable [60], and VISAGE [83] support filters and joins over schema
relationships, but are unable to express calculation, aggregation, general-purpose joins, or
other binary operators. In DataPlay [2], direct manipulation is used only to choose between
universal and existential qualifiers. Tableau [99] allows a large class of two-dimensional
visualizations to be created and manipulated through direct manipulation of table headers
and corresponding axis shelves; however, queries involving calculations or binary opera-
tors must be configured using a separate interface rather than through direct manipulation.
Our own system is the first to achieve SQL-like expressiveness from within a direct manip-
ulation interface based on an overlaid query/result representation.

2.2 Structured Data Visualization

An important aspect of a visual query system is the approach it takes to visualize the data
that is returned from constructed queries. This is especially important for direct manip-
ulation systems, where manipulation of the visual representation of returned data is the
chief way of interacting with queries. We here discuss prior work that relates specifically
to the output engine of our visual query system. The related systems discussed in this sec-
tion are not necessarily all guery systems, but may pertain more generally to the field of
information visualization.

2.2.1 Tree Visualization

As previously mentioned, the queries constructed in our visual query system always re-
turn results in the nested relational data model, a type of tree-structured data model. Our
system for automatic formatting of query results thus falls in the research area known as
tree visualization. This area has been surveyed by Shneiderman [93] and, more recently,
Graham and Kennedy [45].

36

In our case, we are dealing with the subproblem of single tree visualization, with the
additional constraint that we are working with structured data only, i.e. data that conforms
naturally to some schema, such as most JSON or XML data. Our visual layouts furthermore
make the most sense in cases where the schema of the tree-structured data to be visualized
is non-recursive, that is, where the schema defines a tree rather than a graph of permissible
fields. This was the case for 9 out of the 10 example datasets in the XML corpus we used
for our user study.

Our system’s assumption that input data conforms to a schema is important for the
quality of the layouts produced, because it allows us to take advantage of the resulting
regularity of the data to be presented. For instance, a list of tuples with similar fields in
each tuple is best presented in a tabular layout, with each column representing one field
name. Analogous data model specialization is seen in some other systems, for instance
Robertson’s polyarchies [90].

In Graham’s taxonomy, the visualizations produced by our system form a hybrid be-
tween the nested and indented list representations. While nested tables, an important base
case in our layout system, organize data in a grid of rows and columns, they do not fall into
the matrix representation category, but rather among the nested representations, since data
leaf nodes are always contained within the visual boundaries of their parent nodes.

The study by Chimera and Shneiderman [29] compared three variations of the outline-
style indented list view; two of these were interactive. Their results suggest that future
versions of our system should include collapsible nodes in indented lists. Ziemkiewicz
et al. [110] compare four different classes of tree visualizations, including three nested
variants. None of the layouts tested include tables or hybrids between tables and indented
list representations. Ghoniem et al. [44] provide a taxonomy of readability tasks on graphs
and present a study comparing node-link and matrix representations.

Treemap [59] is maybe the most well-known nested or Venn Diagram-style tree repre-
sentation. Treemaps fit an arbitrarily sized tree into a viewport of pre-defined dimensions,
by making subsequent levels smaller and smaller. The relative size of siblings is determined
by some semantically significant weight associated with each node in the tree, such as disk
space consumed in a map of a file system hierarchy. In contrast, our own system allocates to
leaf nodes whatever visual area is necessary to display the contained primitive text values
at a constant font size. This is a requirement from the perspective of our target applica-
tions. Our system does, however, constrain layout dimensions in the horizontal direction,
so that only vertical scrolling is needed if the layout can not fit in the desired viewport.
In treemaps, siblings are arbitrarily stacked vertically or horizontally at every other step in
the recursion, as a way to ensure that both the X and the Y dimension is used. In our own
system, tuples are always stacked vertically. Fields are stacked either horizontally, when
contained in a nested table, or vertically, when part of an outline view. This ensures one
kind of visual consistency while still allowing the widths of layouts to be constrained.

FISH [77] is a variation of the Treemap concept. In this system, styling attributes
can be used to configure various node presentation details, including the choice to stack
siblings either vertically or horizontally. Such styling must be applied to each individual
data node, unlike in our own system, where styling is applied to schema nodes only. Strip
Treemap [13] optimizes the presentation of a treemap by sizing rectangles such that they
can be stacked in contiguous “strips” without broken horizontal lines. Like Treemap, and

37

unlike our own system, both FISH and Strip Treemap assume that all data must fit into a
viewport of predetermined size both in the horizontal and vertical direction.

Elastic Hierarchies [109] and EncCon [79] both combine node-link representations with
some other representation in order to visualize tree-structured data. Node-link representa-
tions are typically less space-efficient than nested or indented representations, and seldom
appear in traditional database GUISs, our target application. Thus, we did not use them our-
selves. EncCon uses node-link representations in every level of the tree, but maintains an
invisible Treemap-like layout to determine a favorable positioning for each node. In Elas-
tic Hierarchies, subsequent levels may use either Treemaps or node-link representations,
determined interactively. The Elastic Hierarchies paper also has a relevant discussion of
the design space of hybrid tree layouts, but does not consider nested tabular layouts. Nei-
ther does Graham and Kennedy’s survey. This is likely because tabular layouts apply only
to structured data, where series of children in a tree all can be expected to have the same
substructure. Systems that solve the more general problem of dealing with semi-structured
(schema-free) data will not naturally be able to take advantage of tabular layouts.

Nested table layouts are used in Related Worksheets [10] and in applications produced
with AppForge [108] or App2You [66]. These systems do not allow the nested table layouts
to be re-styled as indented lists or deferred to lower layers of the tree-structure. They can
not automatically constrain the width of the layout to the available page width.

Visual XML and XMLAD [30], like Elastic Hierarchies and EncCon, use node-link
representations as part of their interface, but are geared towards XML visualization. The
XMLAD system does indeed use tabular representations as part of the output layout, but
does not support nested tables. Thus, only the bottom logical relations in the data may be
displayed as tables. Similarly, the Visual XML system uses outline or list-style representa-
tions for the bottom relation level of each subtree. Again, both XMLAD and Visual XML
use a node-link representation for all higher levels. This is in contrast with our own sys-
tem, which automatically uses a column-enabled, indented list for a variable number of top
levels in the tree, followed by nested tables for a variable number of bottom levels.

Tree Rewriting provides a visual language semantically analogous to the lambda calcu-
lus [58]. While general enough to produce just about any layout from a set of input data,
a user must manually specify how these layouts are to be constructed. Unlike our system,
Tree Rewriting is unable to produce a default layout subject to a constraint such as available
page width. Furthermore, no mechanism is available to help ensure the careful alignment
of column fields that is required in order to produce tabular or nested tabular sublayouts.

A relevant class of commercial systems consists of report generator tools such as
Crystal Reports! and Altova XML-Spy/StyleVision®. An extensive survey is provided by
Kr6l [67]. These systems let the user build output layouts analogous to those produced
by our own system, using a variety of input data sources. The layout building process is
manual. Altova’s Grid View uses a less compact variation of a nested table layout, with
table headers repeated for each nested relation value. Navigation requires heavy use of
both vertical and horizontal scrollbars as well as manual collapsing and expanding of
data nodes. Altova does combine vertical arrangements of tuple fields in an outline-style

Thttp://www.crystalreports.com
2http ://www.altova.com/xml-editor

38

http://www.crystalreports.com
http://www.altova.com/xml-editor

sub-view with the use of nested tables, but is unable to render subrelations as indented
lists.

2.2.2 Visualization of Flat Tabular Data

We here include systems that visualize flat tables of data, that is, primitive values organized
in rows and columns. This excludes systems that can handle tree-structured data, which
were discussed previously.

FOCUS [96], TableLens [88], and the system by Tajima and Ohnishi [102] deal with
the problem of displaying large, mostly flat tables. The latter system includes a “Record”
viewing mode that resembles a single-level form view. While all of these systems support
certain cases involving values spanning multiple cells, they do not operate on structured
nested data in general. Chi’s visualization spreadsheets [28] combine a table layout at the
outer level with cells containing plotted 3D graphics, but require the user to define each
visualization using commands, and are primarily focused on numerical data.

Show Me [73] is an autostyling system for Tableau, an interactive visualization system.
Since Tableau operates on tabular input data and produces pivot table or crosstab-based
outputs, it does not fall into the tree-structured data visualization category.

2.2.3 Document Layout Systems

Document layout systems, like the one described by Jacobs et al. [52], deal with the prob-
lem of rendering a given amount of text with a given font size on a set of dimensionally
constrained pages. They are otherwise different from our own system, since they operate
on a very different class of input data.

2.2.4 Automatic Form Generation

This category of systems focuses on the generation of form-based user interfaces, like those
found in traditional CRUD database applications.

Supple [41] generates widget-based user interfaces for devices of various sizes and
contexts using a cost optimization algorithm, but does not deal with table layouts or other
layouts that take advantage of repeated structure in data that adheres to a schema. The
Right/Bottom strategy [16] defines heuristics for widget placement in dialog boxes, but
similarly does not deal with structured relational data.

Database application builder tools such as FileMaker® and Microsoft Access* include
wizards to help with the creation of new forms, but are only able to layout out a single level
of fields automatically and, unlike our own layout system, can not use statistics about the
data in each field to make structural layout decisions.

3http ://www.filemaker.com
4http ://office.microsoft.com/access

39

http://www.filemaker.com
http://office.microsoft.com/access

40

Chapter 3

A Visual Query Language

3.1 Introduction

Four decades after Query-by-Example, technical users still interact with relational data
through hand-coded SQL, while non-technical users rely on restrictive form- and report-
based interfaces tailored, at great cost, for their specific database schema. We agree with
Liu and Jagadish [71] that a successful alternative must come in the form of a spreadsheet-
like direct manipulation interface. In particular, we consider three requirements that have
yet to be met in a single user interface design:

R1.

R2.

R3.

Query specification through direct manipulation of results. The user should build
queries incrementally through a sequence of operations performed directly on the
data in the database, as seen through the result of each progressively refined visual
query [71]. In Shneiderman’s terms, the object of interest is not the query, but the data,
as when working with a spreadsheet.

The ability to view and modify any part of the current query, including operations
performed many steps earlier, without redoing subsequent steps or departing from the
direct manipulation interface. This is tricky in light of R1, because the user will be
looking at and manipulating the result of a query rather than an actual query expression.
The mapping between the two is not obvious. [71]

SQL-like expressiveness from within the direct manipulation interface. R1 and R2 can
be trivially met if only simple queries are allowed. For example, Excel’s filter feature
works by direct manipulation of results, and allows its complete state to be viewed
and modified from within the same interface, but supports only basic selection queries.
To compete with SQL, a visual query system should allow the user to express any
query commonly supported by SQL implementations, including arbitrary (multi-block)
combinations of operations such as joins, calculations, and aggregations.

In this chapter, we present SIEUFERD (pronounced soy-fird), the first visual query

system to meet all of the requirements above in a single user interface design. The key
insight is that given a suitable data model for results, the complete structure of a query
can be encoded in the schema of the query’s own result. This in turn allows the user

41

Field selector: Pop-
up displaying a tree
representation of
the query structure,
including exact join
conditions, centered
around the selected
field. The selector
includes previously
hidden fields as well
as fields that can be
reached through joins
over known foreign
key relationships.

Filter popup: Allows
the user to associ-
ate a filter with the
currently selected
field. The list of val-
ues available to filter
on is generated au-
tomatically using a
separate database
query. Filters may be
associated with either

& Niednagel v_uo:::_m bar: Shows the [T label, & value, or [y formula under the selected cell.
courses < Result header: Visu- 800
title _.nmn__:um < sections < ;)) m.__< encodes both the Fialds _ Eilise _
title m_.., 2 meetings < instructors_sections { t t fthe querv RS
i3 5 beg_ end_ instructors < structure of the Qco.J\ v (¥ |[{# instructors_sections {
~® < time time last first and the schema of its R .
Roman Art Roman Art L0l T 14:30 15:20 Meyer Hugo result. Icons indicate | [H instructor_id
Art and Tllusion Th 14:30 15:20 v] instructors —<
P01 Th 19:30 20:20 Meyer Hugo query-related state & _| o
Comedy = The Miser L 01 M 11:00 11:50 Barkan Leonard associated with each O [id mlinstructor_id]
A Flea in Her Ear W 11:00 11:50 field in the schema. (] F@ peoplesoft_key
Art POl W 12:30 13:20 Lachman Kathryn —
P02 W 1230 1320 | [Niegr i T T
P03 W 13:30 1420 = Niedr Fields... > o [H first
P04 F 11:00 11:50 Barka Hide e
P O5 W 14:30 15:20 Fishe Unhide S d/Fil d | [middle
P 06 Th 11:00 11:50 Fishe nhide Sorted/Filtere O [suffix
Russian Little Tragedies S 01 T 11:00 12:20 Hasty . L =
Drama The Seagull Th 11:00 12:20 = Sort Ascending () Fm_mmnzo:LQ M[sections\id]
The Duck Hunt = Sort Descending
American L 01 M 11:00 11:50 Trour = gort Ascending after Previous
Politics W 11:00 11:50 —_ y : 006
P 0l W 1330 1420 Trour = 2 Sort Descending after Previous :
P02 M 13:30 14:20 Gada Clear Sorting Fields _ Filter _
POl W 13:30 14:20 Gada ¥
P03 M 14:30 15:20 Gada Y Filter... > Search: _
P04 W 14:30 15:20 Gada . a5
P 05 Th 09:00 09:50 Trour A I_n_m. Parent If Emphy o/ (Include All)
“) Clear Filter - Anciude
g) _ | Aaraj
Result area: Displays Context menu: Ex- { Collapse Duplicate Rows o wmz_sm
the currently open que- poses a complete set < One-to-Many = >memw
ry and its nested re- of query manipulation _ ~| Abdallah
. . < M Join... =
lational result. Labels actions, and serves f Insert Calculated Field Before Abdelfattah
X — L
and formulas can be as a legend for all) _| Abdeljabbar
Jfx Insert Calculated Field After Ahidi

edited using a spread-
sheet-like cursor.

icons that can appear
in the result header.

Delete

Including all values

primitive fields or re-
lation fields.

Figure 3-1: The SIEUFERD query interface. To create queries, users start from a simple tabular view of a table in the database and add
filters, formulas, and nested relations. The integrated result and query representation is displayed continuously as the user interacts with
the data. The particular query above instantiates six database tables (one per nested relation), contains five joins (each child relation
against its parent), and is evaluated using five generated SQL queries (one for each one-to-many relationship —<). This query was
constructed purely by checking off the appropriate fields and foreign key relationships in the field selector.

42

interface to display the query and its result in a single visual representation, which can then
be manipulated directly to modify any part of the query. Specifically, we allow queries to
produce results from the nested relational data model [53, 68], and display results using a
nested table layout (see Chapter 5).

The user interface of our visual query system is shown in Figure 3-1. At any given time,
the user will be looking at the nested relational result of the visual query currently being
built, formatted using a nested table layout. All query manipulation actions are initiated
from the result layout, satisfying requirement R1.

In a nested table layout, the table’s header area visually encodes the schema of the
nested result, including which fields are nested under others in the nested data model. Be-
cause our system maps all query-related state to specific fields in the result schema, the
result’s table header simultaneously becomes a visual representation of the query that gen-
erated it. The user can then manipulate any part of the query by initiating an action on the
corresponding field in the result layout, satisfying requirement R2. A set of icons, carefully
designed to allow every aspect of the query state to be represented in the header, is used to
augment the information that can be derived from the names and positions of fields.

Using spreadsheet-like constructs such as formulas and filters, the user can express a
relationally complete [32] set of query operators plus calculation, aggregation, outer joins,
sorting, and nesting (see Section 4.6 for details). This covers the full set of query operators
generally considered as the minimum to model SQL [12, 49], and expresses, for example,
all SELECT statements valid in SQL-92!. This satisfies requirement R3.

The use of nested results affords a natural visualization of operations such as joins and
aggregation, and allows the user to see, in context, intermediate tuples produced in any part
of the query. Furthermore, the ability to produce nested results makes our system suitable
for complex report creation tasks that would otherwise require multiple SQL queries and
custom programming to merge and format results.

Our Java-based prototype gives the user an experience of responsive, incremental query
building while pushing all query processing to the database layer. In an initial formative
user study, 14 participants were able to solve complex query tasks with a minimal amount
of training, with many expressing strong levels of satisfaction with the tool. In a second,
controlled study, another 14 participants rated both SIEUFERD and the query designer
found in Microsoft Access on the System Usability Scale (SUS) [17] after doing a series
of tasks on each. Users rated SIEUFERD 18 points higher on average than Access. This
corresponds to a 46 percentage point difference on a percentile scale of other studies in the
Business Software category.

ITo empirically verify the list of relational operators required to express SQL-92, the author personally
contacted two implementors of SQL-92 compliant database systems, Julian Hyde of the Apache Calcite
project and Thomas Neumann of the HyPer project, who helpfully, and independently, listed the minimum
set of (bag-based) relational operators required. (Thank you!) Neumann notes that more operators may be
required to implement an efficient query processor. The latter is not of concern for the discussion of our
visual language’s expressiveness.

43

3.2 System Description

3.2.1 Overview

Our core query building interface was shown in Figure 3-1. All user interactions are initi-
ated from the result area, which shows the current query’s nested relational result, format-
ted using a nested table layout. In a nested table layout, the table’s header area visually
encodes the schema of the nested result, including which fields (columns) are nested under
others in the nested data model. The term schema here refers to the definition of fields and
sub-fields in the query’s result rather than the schema of the underlying database. Because
our system maps all query-related state to specific fields in the result schema, the result’s
table header simultaneously becomes a visual representation of the query that generated it.
A set of icons, carefully designed to allow every aspect of the query state to be represented
in the header, is used to augment the information that can be derived from the names and
positions of fields. When nested relational data is shown using a nested table layout, the
terms field and column are equivalent. Since our system can also display data using various
non-tabular layouts (see Chapter 5), we use the more generally applicable term field.

Starting from any selection of fields in the result area, the user may open a context menu
of query-related actions, which also serves as a legend for icons that may appear in the
result header. Query actions modify the query state, not the data in the database. Whenever
a visual query is modified, the system generates and executes one or more corresponding
SQL queries to evaluate it, merges the returned flat results into a single nested result, and
displays the latter to the user. At the same time, the fields and iconography in the new
result’s header reflect the updated state of the modified query.

To keep the result layout compact, several aspects of the query state are indicated with
icons in the header but are not displayed in full until the user requests it. In these cases
we leverage well-established spreadsheet idioms to expose the underlying state. A filter
icon (V) next to a field label indicates the presence of a filter on that field, which can be ma-
nipulated by opening the filter popup from the context menu. A formula icon (fx) indicates
that the primitive field in question is a calculated field with an associated spreadsheet-style
formula. The actual formula can be edited using the formula bar above the result area, or
directly in any non-header cell belonging to the field’s column. Finally, as in a spreadsheet,
our system allows fields (columns) to be hidden from view and later recalled for inspec-
tion. If the hidden field was used for filtering or sorting, or is referenced from a formula,
a dashed cell icon (i:%) is shown for the relevant dependent field to indicate that the visible
result depends on a hidden portion of the query. Hidden fields can be recalled using the
field selector popup, which shows an expandable list of available fields, centered around
the field it was opened for. The field selector also serves to suggest new joins over known
foreign key relationships, and to display exact join conditions.

3.2.2 Query Model

We now discuss the specific structure of queries in our system. A visual query is modeled
as a nested relational schema that has been annotated with query- and presentation-related
properties, such as the state of a filter or the contents of a formula, on each field. We refer to

44

the annotated schema as the SIEUFERD query model. The term model is used here as in the
“model-view-controller” architecture; it denotes the portion of our system that maintains
the underlying state of the user interface. When SQL queries are generated from a visual
query and flat result sets have been assembled into a nested relational result, the schema of
the nested result is identical to the schema in the query model. This correspondence makes
it straightforward to translate high-level user interactions on the visualized query result to
concrete modifications on the underlying query model, and conversely, to indicate the state
of the query model in the table header of the visualized result. In this chapter, we will ex-
plain the SIEUFERD query model entirely in terms of its visual representation. Its internal
representation, expressiveness, and translation to SQL will be discussed in Chapter 4.

Table instantiation. The following is a simple query that instantiates the table called
coursEs and displays a selection of its fields:

courses —<

id |area title may_ may_ exam_type

_id pdf audit

56 2 Roman Art N Y Other
177 2 | Comedy Y Y Final
845 2 Russian Drama N N Other
1795 4 American Politics Y Y Final
2566 Junior Seminars N N Other
3921 4 Judicial Politics Y Y Final

Conceptually, the gray header area represents the query, while the area below shows
the result of the query. The header shows the relation field coursks in bold font with its
primitive child fields (ip, AREA_ID, etc.) below. Each row in the result is a fuple. In our
query model, each relation in the query model gets to retrieve data from one concrete table
in the underlying database; that relation is said to instantiate the database table.

Nesting and joins. Queries need to be able to incorporate data from multiple tables.
Commonly, tables need to be equijoined together, for example when the user wishes to
examine data spread across foreign key relationships in a normalized database schema.
In the SIEUFERD query model, the introduction of a new table instance can be done by
defining a nested relation, optionally constrained by an equijoin condition against its parent
relation:

45

courses <

id area title may_ may_ exam_ readings —<
id pdf audit type id >4 course author title
_id name

56 2 Roman Art N Y Other 44 56 Ramage Roman Art
8,838 56 Gombrich Art and Illusion

177 2 Comedy Y Y Final 4,998 177 Moliere The Miser
12,138 177 Feydeau A Flea in Her Ear
16,878 177 Reza Art

845 2 Russian Drama N N Other 603 845 Pushkin Little Tragedies
9,207 845 Chekhov The Seagull
12,366 845 Vampilov The Duck Hunt

1795 4 American Politics Y Y Final

2566 Junior Seminars N N Other 9,935 2566 Pierre Loti India
3921 4 Judicial Politics Y Y Final 2,570 3921 Rosenberg, The Hollow Hope
Gerald
17,629 3921 Lazarus, Closed Chambers
Edward

In the query above, the nested relation READINGS instantiates the database table with the
same name, and equijoins itself against its parent relation cOUrses on the coursg_Ip field,
as indicated by the join icon () on the latter. The other side of the equijoin condition is
the 1p field in the coursks relation. The latter information is omitted from the result layout
to save space, but is displayed in the field selector (Figure 3-1). The one-to-many icon (<)
on the READINGS relation indicates that our system determined the latter may contain more
than one tuple for each corresponding tuple in courskes, the parent relation. The icon is
also displayed on the coursks, indicating (as is common) that the root relation may contain
multiple tuples. Our system automatically makes these determinations based on primary
key constraints declared in the database and the join constraints set in the user’s query.

The joins described here have different semantics than the traditional flat joins encoun-
tered in SQL and most other visual query tools. Rather than duplicating tuples on one side
of the operator for each occurrence of a matching tuple on the other, each tuple from the
parent side of the join has a nested relation added to it holding zero or more matching tuples
from the child side. This operator is known formally as a nest equijoin [97], though we will
simply use the term join when unambiguous. One convenient property of nest equijoins is
that tuples on the left-hand side of the operator do not disappear when the join fails to find
matching tuples on the right; this can be seen in the query above for the course AMERICAN
Pourtics, which has no books in its reading list. This behavior can be changed by means of
the Hipe ParReNT IF EMPTY section, discussed later.

It is often desirable to hide technical primary key fields, fields made redundant by equi-
join conditions (e.g. COURSE_ID), or otherwise uninteresting fields, for presentation pur-
poses. Continuing the example above, our query semantics allows us to hide several fields
from the screen without altering the meaning of the joins or disturbing the order of the
tuples:

46

courses <

title may_ may_ exam_ readings <
pdf audit type author_name title

Roman Art N Y Other Ramage Roman Art
Gombrich Art and Illusion

Comedy Y Y Final Moliere The Miser
Feydeau A Flea in Her Ear
Reza Art

Russian Drama N N Other = Pushkin Little Tragedies
Chekhov The Seagull
Vampilov The Duck Hunt

American Politics Y Y Final

Junior Seminars N N Other Pierre Loti India

Judicial Politics Y Y Final Rosenberg, Gerald | The Hollow Hope

Lazarus, Edward

Closed Chambers

The hidden fields could be recalled at any time using the field selector. As before,
the field selector can also be used to see the exact join conditions between READINGS and
COURSES.

Nested relations can be used very effectively to display data spread over many tables
in a database schema. In the following example, we pull data from five database tables
(COURSES, AREA, READINGS, SECTIONS, MEETINGS) to see more information about each university
course:

courses —<
area title readings < sections <
title code author_ title g 2 meetings <
name ® 3 | day start end
Literature LA Roman Art Ramage Roman Art L 01 T 14:30 15:20
and the Arts Gombrich Art and Illusion Th 14:30 15:20
P 01 Th 19:30 20:20
Literature LA Comedy Moliere The Miser LO01 ™M |11:00 11:50
and the Arts Feydeau A Flea in Her W 11:00 11:50
Ear P O1 W 12:30 13:20
Reza Art P02 W 12:30 13:20
P03 W 13:30 14:20
P04 F 11:00 11:50
P05 W 14:30 15:20
P 06 Th 11:00 11:50
Literature LA Russian Drama Pushkin Little Tragedies S 01 T 11:00 12:20
and the Arts Chekhov The Seagull Th 11:00 12:20
Vampilov The Duck Hunt
Social SA American Politics L 01 M 11:00 11:50
Analysis W 11:00 11:50
P01 W 13:30 14:20
P02 M 13:30 14:20
P01 W 13:30 14:20
P03 M 14:30 15:20
P04 W 1430 15:20
P 05 Th |09:00 09:50
Junior Seminars ~ Pierre Loti | India S01 M 13:30 16:20
Crrmial CA Toidimial DALE A~ DAacambhAae~ Tha Uallawn, 1 n4 AL 14.ANn 141.CNA

Notice that tuples in the READINGS relation occur independently of tuples in the SEcTioNs
relation; this kind of visualization can not be constructed in tools based on flat tabular
results (see Related Work). Also notice the absence of the one-to-many icon (<) on the
AREA relation: because the latter relation was joined on its instantiated table’s primary key,

47

our system deduced that at most one tuple can exist in AREA for each parent tuple in COURSES.
The latter is a fact that the user cannot deduce by looking at the query result alone, since
the absence of a one-to-many relationship in the currently visible excerpt of the data is no
guarantee that such relationships may not exist elsewhere in the dataset, or when the query
is rerun on a future version of the dataset. Having a good mental model of where a one-
to-many relationship might occur is important when the user is constructing calculations,
as the presence of a one-to-many relationship typically implies the need to use aggregate
function to summarize data (see below).

A query may instantiate the same table more than once, from different relations. A
relation is thus analogous to a FROM clause term in a SQL query. The immediate child fields
of a relation always include a set of primitive fields each associated with a column in the
instantiated database table. Using the field selector (see Figure 3-1), the user may hide or
show these primitive child fields to achieve the effect of including or excluding fields from
the query’s SELECT clause.

Sorting. Each nested relation can be sorted on a sequence of its direct child fields,
indicated by subscripted sort icons (= 123) on the latter. In the following example, the root-
level coursks relation is sorted ascending on the Mmax_ENROLL field, while individual sets of
READINGS are sorted by AUTHOR_NAME, then by TITLE:

courses <
title = max readings < sections <
enroll author title =, g 2 meetings <
name = ® 3 day start end
Russian Drama 0 Chekhov The Seagull S01 T 11:00 12:20
Pushkin Little Tragedies Th 11:00 12:20
Vampilov The Duck Hunt
Junior Seminars 12 Pierre Loti India S01 M 13:30 16:20
Judicial Politics 24 lLazarus, Closed L 01 W 11:00 11:50
Edward Chambers F 11:00 11:50
Rosenberg, The Hollow Hope P 01 Th 14:30 15:20
Gerald P02 W 13:30 14:20
P04 W 11:00 11:50
P03 T 11:00 11:50
Roman Art 25 Gombrich Art and Illusion L 01 T 14:30 15:20
Ramage Roman Art Th 14:30 |15:20

P 01 Th 19:30 20:20

Following any explicit sort terms, our system automatically sorts every relation on a
tuple-identifying subset of its retrieved fields. This ensures that all query results are re-
trieved in a deterministic order. The automatic sort is usually on an indexed primary key;
see set projection below. It is possible to sort on both primitive and relation fields. Sorting
on a relation field causes the sort terms of said relation to be included in the sort terms
of the parent relation. In the following example, following the rules above, the coursgs
relation is effectively sorted first on AREA\CODE, then on AREA\ID, then COURSES\TITLE, then
COURSES\ID:

48

courses <

id area area = title = may_ may_

_id < id title code = pdf audit
177 2 2 Literature and the Arts LA Comedy Y Y
56 2 2 Literature and the Arts LA Roman Art N Y
845 2 2 Literature and the Arts LA Russian Drama N N
1795 4 4 Social Analysis SA American Politics 'Y Y
3921 4 4 Social Analysis SA Judicial Politics | Y Y
2566 Junior Seminars |N N

Sorting on a relation makes the most sense when the relation in question (e.g. AREA)
is known to have at most one tuple for each corresponding tuple in its parent relation
(coursks). Fields used for sorting (e.g. AREA\CODE) are projected into the sorted relation
(coursks) by the same mechanism that handles non-aggregate inward references in formu-
las; this handles the one-to-many case as well. See flat joins below.

Filter. Using the filter popup (Figure 3-1), a filter can be defined on any field, indicated
by the filter icon (V). Filters on primitive fields restrict the tuples of their containing
relation, while filters on relation fields restrict the set of tuples retrieved in that relation. In
the following example, the MEETINGS relation is filtered to show only tuples for which the
DAY is W:

courses <
title max readings < sections <~
enroll author title < 2 meetings <~
name ® 3 day ¥ start end
Comedy 99 Moliere The Miser L 01 W 11:00 11:50
Feydeau A Flea in Her P01 W 12:30 13:20
Ear P02 W 12:30 13:20
Reza Art P03 W 13:30 14:20
PO5 W 14:30 15:20
American Politics 78 L 01 W 11:00 11:50
POl W 13:30 14:20
POl W 13:30 14:20
P04 W 14:30 15:20
Judicial Politics 24 Rosenberg, The Hollow LO01 W 11:00 11:50
Gerald Hope P02 W 13:30 14:20
| azaric Clacad n NnAa AL 11.NN 11.CN

In our current implementation, filters can be defined to either select a set of values to
include (e.g. “only values M,W,F”), or to select a set of values to exclude (“all values
except M,W,F”). Other kinds of restrictions, such as ranges (“values between 5 and 10”)
or string matching (“values that start with INTRO”), can be expressed as filters on formulas
(see below), but could also be integrated directly into the filter state for improved usability.

By default, the effect of a filter in a nested relation is propagated all the way to the
root of the query by means of a HipeE PARenT IF EMPTY setting on each intermediate relation,
indicated by the arrow-towards-root icon ('\), as seen on the SEcTIONS and MEETINGS relations
in the previous example. In the example, the courses Roman Art and Russian Drama have
disappeared because they do not have any Wednesday sections. If, rather than retrieving

49

“a list of courses with at least one Wednesday section”, we wanted to retrieve “a list of all
courses, showing sections on Wednesday only”, we could deactivate HibE PARENT 1F EMPTY
on the SecTIONS relation:

courses <
title max readings < sections <
enroll| author title g 2 meetings <~
name ® 3 day ¥ start end
Roman Art 25 Ramage Roman Art
Gombrich Art and Illusion
Comedy 99 Moliere The Miser L 01 W 11:00 11:50
Feydeau A Flea in Her POl W 12:30 13:20
Ear P02 W 12:30 13:20
Reza Art P03 W 13:30 14:20
PO5 W 14:30 15:20
Russian Drama 0 Pushkin Little Tragedies
Chekhov The Seagull
Vampilov The Duck Hunt
American Politics 78 L 01 W 11:00 11:50
P01 W 13:30 14:20
P01 W 13:30 14:20
P04 W 14:30 15:20
Junior Seminars 12 Pierre Loti India
Tuidirial Dalitire 24 Dncanhara Tha HallAw 1 N1 \AS 11-NN 11-EN

Formulas. An important part of the expressiveness offered by SQL is the ability to
include scalar and aggregate computations over primitive values in any part of the query.
In the SIEUFERD query model, both kinds of calculations are supported by means of
calculated fields. A calculated field is a primitive field, added to any relation by the user,
that takes its value from a formula rather than from a particular column in an instantiated
database table. Like other fields, calculated fields can be sorted, filtered, or joined on.

SIEUFERD formulas are syntactically similar to spreadsheet formulas, allowing liter-
als, arithmetic operators, and named functions, but belong to and reference entire columns
of field values rather than hard-coded ranges of cells. This allows SIEUFERD queries, like
SQL queries, to be defined independently of the exact data that might reside in a database
at any given time. Without this design, the user might have to rewrite formulas if the data in
the underlying data source changes, or if other parts of the query are changed so as to add
or remove tuples in the result. Forgetting to update formulas when input data is changed is
a common kind of error in spreadsheets [55, 23], which we avoid.

The restriction that calculated fields always be primitive fields is an important one; we
do not wish formulas to take the role of a textual query language embedded within the
visual one. Our system’s formula language does not provide a relational algebra, but rather
allows simple computations over primitive values.

We will elaborate a bit on the previous point. Consider, hypothetically, that we decided
to design our system such that formulas could return entire relations rather than only prim-
itive values. To accommodate this, the formula language would have had to include not
only scalar and aggregate functions, but also functions returning relations and performing
operations on them. We already have a language that defines such functions—namely the
relational algebra, and its equivalent, SQL. Since the goal of our system is to provide a vi-

50

sual alternative to SQL, we consider it unacceptable to embed a SQL-like language within
our system’s user interface.

Continuing the course catalog example, we can calculate the duration of each meeting
of a course section:

courses <
title sections <
%" 2 meetings <
® 3 day start end fx duration
Roman Art L 01 T 14:30 15:20 50
Th 14:30 15:20 =minutes ([end] - [start])
P 01 Th 19:30 20:20 50
Comedy L 01 ™M 11:00 11:50 50
W 11:00 11:50 50
P ot w [12:30]13:20 50
P02 W 12:30 13:20 50
P03 W 13:30 14:20 50
P04 F 11:00 11:50 50
P05 W 14:30 15:20 50
P 06 Th 11:00 11:50 50
Russian Drama S 01 T 11:00 12:20 80
Th 11:00 12:20 80

The calculated field puration, marked with the formula icon (fx), is evaluated once for
each tuple in MEETINGS, its containing relation. Using another calculated field, we can add
up the durations as well, at the level of each course:

[[=sum ([[duration])

courses —<
title fx total sections <
duration g Z meetings <
® 3 day start end | fx duration
Roman Art 150y L 01 T 14:30 15:20 50
Th 14:30 15:20 50
P 01 Th 19:30 20:20 50
Comedy 400 L 01 M 11:00 11:50 50
W 11:00 11:50 50
PO1 W 12:30 13:20 50
P02 W 12:30 13:20 50
P03 W 13:30 14:20 50
P04 F 11:00 11:50 50
P 05 W 14:30 15:20 50
P 06 Th 11:00 11:50 50
Russian Drama 160 S 01 T 11:00 12:20 80
Th 11:00 12:20 80

When using aggregate functions such as sum or counr, the relation in which the cal-
culated field is defined determines the level at which aggregate values are grouped. In the
example above, because the TotaL puraTion field is a child of the coursks relation, a total
is calculated for each course rather than, say, for each section. Each course includes in its
total only tuples from the MEETINGS relation that are descendants of that course’s tuple in
the cOURSES relation.

51

Aggregate functions, with the exception of MmN and MaX, are sensitive to duplicates
in input values, as illustrated by the correct totals over identical puraTiONs in the exam-
ple above. The bag-like semantics of aggregate functions can be understood by consider-
ing a formula like =sum(|MEETINGS\DURATION]) to be shorthand for a more explicit notation
=SUMfie/q] ([MEETINGS\DURATION], [MEETINGS\ID]), where the aggregate function SuMg,q; con-
structs a set of (DURATION, ID) tuples and then calculates the sum from the value in the first
field of each such tuple. Whenever a primitive field (e.g. DURATION) is referenced from
within the argument of an aggregate function, a tuple-identifying subset of fields from the
referenced field’s containing relation (e.g. MEETINGS) is automatically included in the ag-
gregate input (e.g. the hidden primary key field MEETINGS\ID in the example above). Note
that our backslash notation serves only to make it clear which relation each referenced field
belongs to, for cases where there are multiple fields with the same label (e.g.).

The following query will illustrate a few more ways in which aggregate functions can
be used and combined:

[[=sum (if([type]l ="L", minutes(/[end] - [start]), 0))

courses <V

title fx lecture sections < Jfx number readings <71
duration :‘é’ 2 meetings < of title
3 day start end readings
Roman Art 100 L 01 T 14:30 15:20 2 Roman Art
Th 14:30 15:20 Art and Illusion
P 01 Th 19:30 20:20
Comedy 1000 L 01 ™M 11:00 11:50 3 The Miser
W 11:00 11:50 A Flea in Her Ear
P 01| W 12:30 13:20 Art
P 02 W 12:30 13:20
P 03| W 13:30 14:20
P 04 F 11:00 11:50
P 05 W 14:30 15:20
P 06 Th 11:00 11:50
Russian Drama 0 S 01 T 11:00 12:20 3 Little Tragedies
Th 11:00 12:20 The Seagull
The Duck Hunt
American 100 L 01 ™M 11:00 11:50 0
Politics W 11:00 11:50
P01 W 13:30 14:20
D N M 12:2N 142N

The highlighted formula, using again the more explicit notation from the previous
paragraph, would be evaluated as =SUMF(fieid]="L" MINUTES field2—field3),0)([SECTIONS\TYPE],
[MEETINGS\END], [MEETINGS\START], [SECTIONS\ID], [MEETINGS\ID]), first constructing a set of
(TYPE, END, START, SECTIONS\ID, MEETINGS\ID) tuples and then computing the sum of the values
yielded by evaluating the argument expression for each input tuple. Another formula in
the example above is that of the NUMBER OF READINGS field; it uses the count aggregate
function to count the number of tuples in the READINGs relation. The count aggregate is
the only function in our formula language that permits a relation field as an argument; the
NUMBER OF READINGS formula could be written as either =couNT([READINGS]) or, equivalently,
=COUNT([READINGS\ID]) or =COUNT([READINGS\TITLE]). Any non-nullable field in the READINGS
relation could be used in the latter case. Finally, note that the example query above

52

computes two independent aggregates (LECTURE DURATION and NUMBER OF READINGS), each
over its own input relation (secTioNs and READINGS, respectively). This is one example
of a multi-block query, that is, a query which requires multiple SELECT clauses in the
corresponding generated SQL query. Another example of a multi-block query would be a
query that uses the output of one aggregate function as an input to another. Such queries
are fully supported by our system.

Filters and aggregate functions. When an aggregate function references a relation
with a filter applied to it, the filter is evaluated before the aggregate. This allows conditional
sums to be computed without the use of =sum(ir(...))-type formulas, while always seeing
the exact tuples that contribute to the total. In the following example, we filter the SECTIONS
relation to only include lecture-type sections. There are also some empty sets of sections.
The ToTAL DURATION for each course changes accordingly:

courses <
title fx total sections <
duration < 2 meetings <
f_°‘3 day start 'end fx duration fx percent

Roman Art 1000 L 01 T 14:30 15:20 50 50.00
Th 14:30 15:20 50 50.00

Comedy 1000 L 01 ™M 11:00 11:50 50 50.00
W 11:00 11:50 50 50.00

Russian Drama 0

American Politics 100 L 01 ™M 11:00 11:50 50 50.00
W 11:00 11:50 50 50.00

Junior Seminars 0

Judicial Politics 1000 L 01 W 11:00 11:50 50 50.00
F 11:00 11:50 50 50.00

It is equally valid to define a filter on the field containing the aggregate function, e.g.
TOTAL DURATION in the example above, or its sibling fields, e.g. TiTLE. Such filters are analo-
gous to HAVING and WHERE clauses, respectively, in a SQL query block.

Flat joins. Traditional flat joins can be expressed by referencing a descendant relation
from a formula without enclosing the reference in an aggregate function. In the following
example, each course title is repeated once for each distinct author name in the reading list,
because the AuTHOR REFERENCE field in the coursks relation references the READINGS relation
without the use of an aggregate function:

53

courses <

title exam_ author readings <

type reference fx |author_name title
Roman Art Other Gombrich Gombrich Art and Illusion
Roman Art Other Ramage Ramage Roman Art
Comedy Final Feydeau Feydeau A Flea in Her Ear
Comedy Final |=/[author name] f The Miser
Comedy Final Reza ~ Reza Art
Russian Drama Other Chekhov Chekhov The Seagull
Russian Drama Other Pushkin Pushkin Little Tragedies
Russian Drama Other Vampilov Vampilov The Duck Hunt
American Final
Politics
Junior Other Pierre Loti Pierre Loti India
Seminars

Tnidirial Final | azaric Il azarmie FAwurard Clacad rhamhare

The actual behavior is that of a left join, with a null value being returned for the course
AMERICAN Pourtics, which has no readings in its reading list. To express an inner join in-
stead, the Hipe ParenT Ir EMPTY setting could be enabled on the READINGS relation. The left
join semantics of these inward formula references help our visual query language main-
tain some desirable properties. In particular, the mere introduction of a new calculated
field (e.g. AuTHOR REFERENCE) Will never cause tuples to disappear from said field’s con-
taining relation (e.g. AMERICAN PoLitics from coursgs). Furthermore, a scalar formula like
=IF(FALSE, [INREF], 42) can safely be constant-folded or otherwise considered equivalent to
=42. This would not be the case if formula references were resolved using inner joins
rather than left joins. Finally, formulas may use null values generated by left joins to detect
missing values. In the following example, a presentation title is generated for each course,
consisting of the ArReA of each course followed by its TITLE. Courses with no assigned AREA
(Junior SEMINARS) are handled as a separate case:

) =if (|[area\title] |is null, [title], concat(/[area\title], ": ", [title]l))

courses —<
prettified title fx area title may_ may_ exam_
title code pdf audit type

Literature and the Arts: Roman Art Literature and the Arts LA Roman Art N Y Other
|Literature and the Arts: Comedy | Literature and the Arts LA Comedy Y Y Final
Literature and the Arts: Russian Drama Literature and the Arts LA RussianDrama N N Other
Social Analysis: American Politics Social Analysis SA | American Politics Y Y Final
Junior Seminars Junior Seminars N N Other
Social Analysis: Judicial Politics Social Analysis SA | Judicial Politics Y G Final

The main use case for non-aggregate inward references is when the referenced relation
(e.g. AREA) is known to have at most one tuple for each corresponding tuple in the referenc-
ing relation (courses). This may be a guaranteed consequence of the child relation being
joined on its instantiated table’s primary key, as when traversing a foreign key relationship
in the forward direction, or simply a property of the input data. If neither is the case, a user
who entered a non-aggregate inward reference may be surprised to see duplicated tuples
in the referencing relation, or miss this nuance of formula semantics completely. This is
a potential usability problem. In the future, we may require inward references that pass

54

through one-to-many relationships (<) to always be enclosed in either an aggregate func-
tion or an explicit UNNEST function, otherwise showing the user a warning message (e.g.
“Reference to READINGS may yield more than one value; must be enclosed in an aggregate
or UNNEST function.”). The unNesT function would serve to suppress the warning and enable
the current behavior. An analogous UNNEST function exists in PostgreSQL, where it is used
to unpack and join in tuples from array values.?

Set projection. By default, tuples internally retrieved for a relation always include the
primary key fields of the relation’s instantiated table, even if the user has hidden those fields
from view on the screen. This allows our system to keep result tuples in a stable order as
the user hides or shows fields, and to keep a one-to-one relationship between tuples on
the screen and tuples in instantiated database tables. It also allows us to generate more
efficient SQL queries, for example by avoiding expensive SELECT DISTINCT statements.
The automatic inclusion of primary key fields in the projection of a particular relation can
be avoided by means of the CorLrLapse DupLicaATE Rows option, indicated by the bracket

icon ({):

courses < courses < courses <
title sections < title sections < { title sections < {

type status type status type
Roman Art L (0] Roman Art L (0] Roman Art L

P X P X P
Comedy L 0 Comedy L 0 Comedy L

P 0 P 0 P

P 0] P X Russian Drama S

P (0] Russian Drama S (0] American Politics L

P 0 American Politics L 0 P

P X P X Junior Seminars S

P X Junior Seminars S 0 Judicial Politics L
Riissian NDrama S 0 Tudicial Palitics | 0 P

When a relation has the CorLrapse DupLicaTE Rows option enabled, hiding a primitive
child field may cause the number of tuples returned to decrease, as only visibly unique
tuples are retrieved. This can be seen in the transition from the second to the third panel
above, as the startus field is hidden.

When an aggregate function references a relation that has the CoLLapse DupLicaTE Rows
option enabled on it, the set projection on the latter relation is evaluated before the aggre-
gate, as for filters. Thus, as before, the tuples that are used as inputs to aggregate functions
are the same tuples that the user can see on the screen:

thtp ://www.postgresql.org/docs/9.6/static/functions-array.html

55

http://www.postgresql.org/docs/9.6/static/functions-array.html

[[=count([sections])

courses <
title Jx count sections < {

type status
Roman Art 2/ L 0

P X
Comedy 3 L 0]

P 0

P X
Russian Drama 1 S 0
Armariran Dalitice 2 1 (a}

Outward references. It is permitted for a formula to reference fields outside its own
containing relation, as in the following example:

[(=100 * [duration] / [total duration]

courses —<
title Jx total sections <
duration £ 2 meetings <
® 3 day start end | fx duration fx percent
Roman Art 150 L 01 T 14:30 15:20 50 33.33
Th 14:30 15:20 50 33.33
P 01 Th 19:30 20:20 50 33.33
Comedy 400 L 01 ™M 11:00 11:50 50 12.50
W 11:00 11:50 50 12.50
POl W 12:30 13:20 50
P02 W 12:30 13:20 50 12.50
P03 W 13:30 14:20 50 12.50
P04 F 11:00 11:50 50 12.50
P OS5 W 14:30 15:20 50 12.50
P 06 Th 11:00 11:50 50 12.50
Russian Drama 160 S 01 T 11:00 12:20 80 50.00
Th 11:00 12:20 80 50.00

Here, the formula in the peErRcENT field references the TotaL DURATION field of the outer
coursks relation. This is analogous to a correlated subquery in SQL. Such outward ref-
erences are not crucial to our query model’s expressiveness; we eliminate them using a
decorrelation technique like that described by Van den Bussche and Vansummeren [105,
p- 8]. More specifically, we create a copy of the referenced relation as a descendant of the
referencing formula’s containing relation, and then replace the original outward formula
reference with an equivalent inward reference to the descendant copy. The decorrelation is
done one relation level at a time, with equijoin constraints being applied to match tuples in
the original and copied relations. For the example query above, a decorrelated equivalent
would be the following:

56

[=100 * [duration]|/ sum ([[total duration]))

courses <
id title sections <
g8 type num meetings <
5 % B B outl_sections
\f, % ,@, § b id course out2_courses
= S 8 =3 _id paid| g out2_sections <
g - o id 8 out2_meetings <
X g 5 id gle
& i = g
s x c§
B &
=)
56 Roman Art 56 L 01 105440463 50 33.33 105440463 56 56 150 105440463 56 86 105440463 50
16,196 105440463 50
105442389 56 87 10542383 50
105440463 50| 33.33 | 105440463 56 56 150 105440463 56 86 105440463 50
16,196 105440463 50
105442389 56 87 105442385 50
56 P 01 105442389 50 33.33 105442389 56 56 150 105440463 56 86 105440463 50
16,196 105440463 50
105442389 56 87 105442389 50
177 Comedy 177 L 01 105442238 50 12.50 | 105442238 177 177 400 10442238 177 393 105442238 50
16,313 105442238 50
105442239 | 177 394 105442239 50
105442240 177 395 105442240 50

More efficient decorrelation methods may be possible in certain cases.

Window functions. While not part of the operators we need for expressiveness at
the SQL-92 level, it is also possible to support window functions, such as cumulative sum
and moving average, from within the visual query interface. Such functions were intro-
duced in SQL:2003, and are supported for instance by PostgreSQL and Oracle, but not
by MySQL or SQLite. As an example, the formula below is translated to the SQL clause
SUM(Debit) OVER (PARTITION BY Customers.ID ORDER BY Date):

59 [=cuml_sum(/[Debit], [Customers], [Datel)

Customers <

Name Transactions <
Date = Debit fx Balance
John Smith 2007-07-01 -500 5300
2006-09-01 200 5800
2006-09-01 -500 5800
2005-10-01 200 6100
2005-07-01 200 5900
2004-09-01 200 5700
2004-07-01 200 5500
2002-09-01 5000 5300
2002-07-01 300 300
Kristian Krogh 2007-07-01 100 -200
2005-07-01 -500
2005-06-01 200 200
Cheryl 2007-09-01 -500 -1600
Williams 2007-06-01 -500 -1100
2NNA-1nN-N1 1NN -ARNN

In the example above, a list of (Datg, DEBIT) transactions are added up in order of in-
creasing dates to yield the balance after each day. The first argument to the cumL_sum
function is the primitive value to add at each iteration. The second argument is a relation

57

reference that specifies the level at which data should be partitioned; the key fields of that
relation are used as the partition key in the PARTITION BY clause. The third argument is the
field to order on for the purposes of evaluating the window function. While in the example
above, the window function happens to be ordered on the same field (Date) on which the
result of the TRANSAcTIONS relation is ordered, this need not be the case. For instance, the
user could now choose to sort results descending on the BALANCE column to show the days
with the highest balance first.

Note that when two transactions occur on the same date (e.g. 2006-09-01), the balance
at the end of the day is shown for both transactions. This follows the semantics of SQL’s
PARTITION BY clause, which ensure that the result of window functions are deterministic
with respect to partial orders.

Allowing ordering to be specified as an argument to a formula function like cumML_sum
is a bit of a kludge, since our system already has a different, more visual interface for
specifying the order of query results, and since desired orderings may be more complex
than a simple ascending sort on a single field. It is at the same time undesirable to make the
overall visual query system more complicated in order to make a presumably infrequently
used feature easier to use. A compromise could be to allow the user to omit the ordering
clause when first writing a window function formula, instead relying on the existing result
ordering, but then automatically rewriting the formula to insert the relevant order definition
if the user reorders the formula’s containing relation.

The example above was for a cumulative sum; the implementation and design consid-
erations would be similar for other window functions.

A particular use case for window functions is to be able to express complex top-K
queries such as “average sales by state of top 10 dealerships in each state”. In the latter
example, the input to the aggregate function would be filtered to include only results for
which the Row_NumBER window function is less than or equal to 10. In PostgreSQL, such
queries may be expressed either using the Row_NumBER window function or a LIMIT clause
in a correlated subquery, but SQL-92 includes neither, and cannot express such queries.

3.2.3 Architecture

Our visual query system allows a large class of queries to be expressed by end users. As
a necessary consequence, we can make few assumptions about how fast results can be
computed. In many cases, even though the final query desired by the user may be cheap
to compute, intermediate or explorative queries generated during interactive query building
may be expensive. Intermediate queries may even contain user errors, such as circular
dependencies in formulas. A key requirement of our system is to avoid getting the user
stuck in such states, and to keep the query building interface responsive and up to date even
when expensive or incorrect queries are encountered.

Our system’s basic architectural decision is to defer all query processing to a relational
database backend, generating SQL queries over JDBC and retrieving a complete new re-
sult every time the user modifies the query model. This produces transactionally consistent
results while avoiding complicated incremental evaluation logic. We then provide the nec-
essary smoke and mirrors to give the user an experience of responsive, incremental query
building. The key features to this effect are as follows:

58

instructors <
name_last name_first instructors_sections {~
sections {~
offerings < {X.i:
course_codes_ title exam_type readings <
offerings {<\.i: author_name title
course_codes <
departments num =
code

= %/ jybne} sasnod

Cooney Nicola 5 POR 110 Intensive Portuguese
POR 108 Introductory Brazilian Portuguese
POR 305 Poetry of Portugal ® 00O
POR 209 Portuguese Cultural Themes Fields | Filter |
POR 208 Portuguese in Context: Studies in Language
and Style) [l prerequisites
Robbins Esther 4 HEB 302 Advanced Hebrew Language and Style II O Ij.l reserve_cap
HEB 402 Coexistence through Theater and Film — -
HEB 102 Elementary Hebrew II (] [l assignments
HEB 107 Intermediate Hebrew II = Ij.l website
Trueman Daniel 4 MUS 532 Composition —
MUS 316 Computer and Electronic Music Composition -
MUS 314 Computer and Electronic Music through —
Programming, Performance, and Composition L |j-| peoplesoft_key
MUS 206 Tonal Syntax
Calvo Antonio 4 SPA 108 Advanced Spanish
SPA 307 Advanced Spanish Language and Style
SPA 102 Beginner's Spanish II % [Ef readings
SPA 309 Translation: Cultures in Context -
Mahmoud Hisham 4 ARA 302 Advanced Arabic II () [format
ARA 402 Advanced Arabic Skills Workshop II) W8l number

Figure 3-2: Temporary layout displayed during execution of a long-running (~1900ms)
query. The user has just unhidden the Exam_typE and ReaDINGS fields. The unhidden
fields are immediately displayed using placeholder icons (--*); meanwhile, generated SQL
queries run in the background to retrieve an updated result for the entire visual query.

Visual stability. Our query semantics ensure that nested result tuples from successive
steps of a visual query building process remain in the same order by default, and that the
set of logical tuples in a relation does not usually change as fields are hidden or shown. The
presentation properties of result layouts, such as table column widths, are based on average
and confidence interval values that do not change once a target number of unique sample
values have been collected from observed query results. Text breaking and font sizing is
done to ensure that even exceptionally long string values can be displayed at a given visual
width. See Section 5.4.2. Thus, even though an entirely new result set is generated every
time the user modifies the query, the visual transition from the old to the new result appears
seamless. Such visual stability is important for usability, because it allows the user to easily
spot which parts of a result actually changes in response to a modification to the query.

Decoupled query and result updates. The display of a nested table header, which
our system uses to communicate query state, need not be postponed until a query returns
with actual results. Better yet, upon a change to the query model, we can immediately
render a new table layout whose structure and indications are based on the updated query
model, but whose data is taken from whichever query completed most recently. For fields
not present in the old result, we show a placeholder icon (---) where data values would
normally appear. Such fields can still be displayed at the correct width as long as the
system has had a chance to measure values for that field at some earlier point in the query
building session (see Section 5.4.2). Meanwhile, updated SQL queries run while a non-
modal progress indication is shown in the toolbar area. Once the query completes, the
result layout is rendered again with actual results. The user does not need to wait for the
query to complete before making new changes. See Figure 3-2.

For example: When unhiding a previously hidden field, the user sees the result layout

59

B [=sum (#ref!)

plants_os <
company Jfx Sum of lobbying <*.::
Amounts in amount = cpi g
2012- 2 Cpiv o
dollars | nj
New Energy Corp 0 2012 1.0000 g2t
Maple Etanol SRL | {1, Broken reference in formula
IU,UUU T ZUlU U.730U (1L
20,000 2009 0.9315 g4
30,000 2009 0.9315 g3
10,000 2009 0.9315 g2
Gevo Inc 10,000 2012 1.0000 g2

N NNAN N1 4 AnNn G A1

Figure 3-3: High-level error handling. A referenced field was deleted, so the formula can
no longer be evaluated. The system shows a warning while evaluating the rest of the query
normally.

immediately update to accommodate the new table column, already at the correct width,
with placeholder icons seamlessly being replaced by data values as soon as the updated
query completes. When hiding a field, the temporary layout usually ends up being identical
to the final one. Pure presentation changes, such as the user editing a field label or the
system automatically remeasuring column widths (see Section 5.4.2), do not cause queries
to be re-executed.

Interruptable queries. If the user modifies the query before the previous query has
finished executing, the previous query is automatically interrupted using the database back-
end’s preferred mechanism. This is crucial for letting the user escape from long-running
queries, and also allows the user to perform multiple modifications to the query without
waiting for the exact result of each step to appear. The on-screen layout remains undis-
turbed by the automatic interruption and restarting of queries in the background.

Note that even long-running queries can be constructed with responsive result feedback
if the user can manage to temporarily filter the dataset down to a smaller size during query
construction. For instance, a user might speed up a query like “find the companies with
the greatest total reported lobbying expenditures” by temporarily filtering to only include
lobbying reports for a certain year. The user can then continue to tweak the way totals are
calculated, doing complex calculations to correct for inflation and so on, with intermediate
results being shown quickly at all times, and then only finally clear the original filter to run
the slower query across all lobbying years. This workflow is also a good example of why it
is important to let users easily modify operations, such as filters, that were specified many
steps earlier.

Automatic query limiting. All generated SQL queries include an automatic LIMIT
clause, retrieving initially 100 tuples total for each relation field. This populates the visible
part of a typical result window. If the user scrolls far enough down to see the end of the
result layout, and there are more tuples left, the query is re-executed using a limit twice
as large as before. This allows the user to reach tuple N in O(N) time. Infinite scrolling
appears seamless.

60

Table 3.1: User study participants and backgrounds. Users A-N participated in the forma-
tive study, users O-@ in the controlled study.

| Professional Area Educational Background ?;g:lma[B;lgzgmund/lbo}l)sngizc'lnming Other Tools

A | Data journalism Journalism Daily Weekly A bit of Python Access often, Tableau/OpenRefine occasionally

B | Business intelligence Linguistics Daily Daily Some PHP BrioQuery daily

C | Business intelligence Psychology Daily No No Spotfire daily, BrioQuery occasionally

D | Financial Philosophy, Research Adm. Daily No Learning basic Python | Some SAPGUI

E | IT decision-making Computer Science Weekly | In 1992 Java/VB years ago Some R

F | Business intelligence Operations Mgmt., Business Daily Frequently | VB.net BrioQuery daily

G | CS research, teaching CS, Commun., Art Hist., Lit. Monthly | Monthly Java/C years ago R along time ago

H | Business intelligence Sociology, Higher Education Daily No No BrioQuery daily

1 | Health policy Sociology Weekly | No No Access for survey entry once, SPSS in school

J | Investigative journalism English, Business/Econ. Journ. | Daily No Very basic Python Access weekly, e.g. for joins before continuing in Excel
K | Publishing Writing, Literature & Publishing | Daily Frequently* | No Crystal Rep. frequently*, 2 industry-specific systems
L | Health policy, research Public Health, Public Policy Daily* | No No Access for data entry*, knows SAS/Stata/SPSS/ArcGIS
M | Engineering data analytics | Finance, Management Daily Frequently* | Python/VB years ago | Access/Crystal Rep. frequently*; now Tableau, Alteryx
N | University administration | Math & Economics, Higher Ed. | Daily No No BrioQuery for canned reports, internal CRUD apps

O |IT Computer Science Daily Yearly Java/VB/Perl* Access monthly*

P | Bioinformatics CS, Bioinformatics Monthly | Weekly Weekly R monthly

Q | Electrical eng./research Electrical Eng., Systems Eng. Weekly | Tried once | C/Java/Fortran* MATLAB frequently*

R | Medicine MD, Adm. & Management Weekly | No No Electronic medical records

S | Bioinformatics/research Bioinformatics Weekly | Tried twice | Daily R daily, MATLAB

T | Bioinformatics/research Bioinformatics Daily Monthly Daily (Python, JS) Access monthly*, Spotfire daily*, R weekly

U | Biomedical/data science Chemical Eng./Statistics Monthly | Daily Some Python R weekly, Access for data entry*

V | Student Neuroscience Weekly | No Some Python Some MATLAB, SPSS, Access for data entry

W | Library adm./info science | Biology Weekly | No No BrioQuery monthly*, SAP, FileMaker

X | Student Electrical Engineering & CS Monthly | Once Daily R once, MATLAB

Y | Student Journalism Monthly | One course | One course (Java) N/A

Z | Student Journalism Weekly | No No N/A

Z | Journalism, teaching Journalism, Law Weekly | Monthly No Access*/OpenRefine/Tableau monthly, many others

@ | Research Electrical Engineering Weekly | No ‘Weekly (Python, C++) | MATLAB, Access for data entry*, R/SAS/SPSS

*In previous job.

High-level error handling. User-defined formulas introduce a variety of possible error

conditions, including circular references, broken references, type errors, and arithmetic
runtime errors. Our system detects and handles many such errors before they can reach
the database layer. This lets us produce more user-friendly error messages than if we had
tried to execute an erroneous generated SQL query and then passed the resulting error
message from the database and back to the user. In the result layout, formulas with errors
are highlighted in yellow, with a tooltip showing specific error messages if the cursor is
moved to the highlighted area. For query evaluation purposes, erroneous formulas are
compiled to literal null values, ensuring that the rest of the query can still be evaluated
normally. See Figure 3-3.

Complete high-level error handling requires the set of functions and data types avail-
able in formulas to be known to the system. It may also require functions such as arithmetic
division to be rewritten to return null instead of triggering runtime errors on, say, division
by zero. SIEUFERD includes a standardized set of formula functions that can be compiled
to the dialects of various database backends, currently PostgreSQL, MySQL, and Oracle.
Standardizing functions and data types allows a single unit test suite and online documen-
tation set to be used for all backend dialects.

Undo/redo. Undo/redo is supported by storing successive states of the modified query
model; a similar technique is used in Tableau [100, p. 90]. Like other kinds of query
modifications, undo/redo benefits from several of the previously mentioned features, e.g.
interruptable queries.

61

Table 3.2: Tasks and timings for standardized tasks used as part of the formative user study.
Error bars show the standard error of the mean.

Training

| Task ,Zafk N | Mean time to complete task (s)
la | Lobbying Manual join | 2a | 7 | 2741 e
1b | Totals { Formula 2b 716721 e
2a | Inflation Manual join 7| 123 ==
2b | Correction { Formula 7 | 109 ===~
3 | Single-level auto join 4-6 | 7| 96 =~
4 | Multi-level auto join 5-6 | 7| 101 ===+
5 | Filter via auto join 7| 107 ==~
6 | Multi-level auto join, again 6| 94 =~

60 120 180 240 300 360 420 480 540 600 660 720 780

Tasks done: Tasks 1-2 were done by users A-G. Tasks 3-6 were given to users B-I, with some
exceptions. Task order: User F did tasks 1-2 last. Order is otherwise as indicated. Hints: Training
tasks included hints as necessary. In task 2a, users D and G were told that they would need to use
the Joix feature.

3.3 Formative User Study

We conducted a formative user study with 14 participants (5 male, median age 42) from a
variety of technical and professional backgrounds; see Table 3.1 for a demographic sum-
mary. Most of the participants use Excel daily, or have had some need to work with struc-
tured data in their jobs.

In the first part of the study, done by users A-I, users were given standardized tasks
aimed at assessing the initial learnability of our tool. No prior training was given; instead,
initial tasks were designed to act as training tasks for subsequent ones. In the second
part of the study, and as time permitted during earlier sessions, users were given a chance
to do more open-ended tasks on datasets we provided, including some datasets from the
users’ own organization. Here, we gave participants demos and instructions for operating
our tool, in order to gather higher-level observations than would be possible during pure
learning tasks.

From screen and voice recordings of each user study session, we collected detailed
observations that were later coded and categorized, as well as timing data for standardized
tasks.

3.3.1 Standardized Tasks

This section describes tasks and timings for the standardized portion of our study. We
designed the standardized tasks to assess the initial learnability of our system’s basic query
operators, likely to cover a range of common queries. Tasks designated as training tasks
reflect the user’s first encounter with a particular feature, with few upfront instructions
given on how to proceed. If a user got stuck during a training task, hints were given and
any relevant observations noted, ensuring that the user progressed to the corresponding
follow-up task. See Table 3.2.

Formulas and manual joins. Tasks 1 and 2 correspond to the lobbying example from
Section 1.1, in two parts. In task 1, which functions as a training task, the user is started off

62

with a fresh query showing only the pLANTS_os table, and is asked to find the total amount
spent on lobbying by each organization. A minimal schema diagram is provided on paper,
showing the two tables involved and the fields to be matched in the join condition. The
user has to discover that the operation called Join is needed, and then figure out how to
use a formula to calculate totals. In task 2, the user is asked to modify the existing query
to calculate inflation-corrected totals, using consumer price index values from the cp1 table
and features that have already been used. The user now has to realize that another join
is needed, followed by one or two additional formulas. This task tests whether the user,
after only a single training task, has developed enough of a mental model of how joins and
formulas work to combine the two features to arrive at a single result.

Task 1, the training task, took users about 16 minutes on average, with 70% of the
time spent on the formula portion, after users figured out the initial manual join. Task 2, a
strictly harder task using the same features as task 1, took only about 4 minutes, 4.1 times
faster. The difference is statistically significant (p = 0.009 with two-tailed Welch’s t-test).
Comparing only times spent on the join portion of the tasks vs. times spent on the formula
portion of the tasks, the difference is only statistically significant for the latter (p = 0.004).
In this case, users solved the second formula task 6.2 times faster than the first.

Auto joins and filters. Tasks 3-6 involve automatic joins over known foreign key
relationships (auto joins), starting again from a fresh query showing a single base table.
Users are given a schema diagram on paper, with the relevant joins marked, and told that
because the system already knows about the relationships between the tables, it will not be
necessary to use the manual Join action. Tasks 3 and 4 ask the user to produce a report-
style query similar to the course catalog shown in Figure 3-1, first adding a table related
to the base table via a single join (e.g. READINGS), and then adding a table related to the
base table via multiple joins (SECTIONS, INSTRUCTORS_SECTIONS, INSTRUCTORS). In task 5, the
user is asked to filter the result on a field in a table that has not yet been joined into the
current query, specifically to “show only courses offered in Spring 06-07, where semester
names are stored in a separate table. This allows us to assess the user’s expectations about
interactions between nested joins and filters. In task 6, the user is started off with a fresh
new query, starting from a different base table (INnsTRucTORS). Having previously produced
a course catalog showing a list of instructors for each course, the user is now asked to
show a list of courses taught by each instructor. This repeats task 4, but from the opposite
end of the schema. Our timing data shows no significant difference between training and
follow-up tasks involving auto joins.

3.3.2 Observations

We now discuss a specific observations gathered from both the standardized and the open-
ended portions of the study. A selection of observations is summarized in Table 3.3.
Mode of interaction. A recurring theme in users’ initial attempts at using our system
was to explore areas outside the direct manipulation area: toolbars, menus, and a list of
database tables shown in a sidebar. Users CDFGH assumed that joins would need to be
initiated from somewhere outside the result area, such as by drag-and-drop in the list of
database tables, or by dragging a table into the result area. Such drag-and-drop interactions
are common in tools like Tableau and Microsoft Access. We gave users the hint that all

63

Table 3.3: Selected observations from the formative user study.

64

Title Observation (“The user...”) ‘ N ‘ Users
Query construction; fields and joins

Pulling data into view First assumed that joins would need to be initiated from outside the direct manipulation area. | 5 CD FGH

Tried to drag tables Attempted drag-and-drop operations in the table list outside the direct manipulation area. 3 F H M

Popular auto joins Reacted enthusiastically to auto join behavior (e.g. "fantastic”, "wow", "damn", "amazing"). 6 E GH JKL
Query construction; formulas and aggregates

Sum action Before learning they would have to write a formula, looked for an explicit "sum" action. 4 BCDE

Formula builder Looked for an Excel-style formula builder. 3 C G K

Sum without formula Suggested having a method to do a sum without manually having to write a formula. 2 A M
Situational awareness

Verifying aggregates Tried to visually verify the output of aggregate functions. 2 | AB

Verifying joins After first manual join, wanted to visually verify that join condition’s two sides were equal. 3 C E J

Bad default fields Had a harder time quickly grasping results due to bad field visibility defaults after joins. 8 | ABCDEFG 1

Massive lists of fields Had a harder time navigating schema in field selector due to large number of primitive fields. | 5 E I LM

Schema diagram Asked for or suggested a schema diagram feature (besides diagrams handed out on paper). 3 F] M
Understanding the query model; fields and joins

Identified need for join In task 2a, quickly understood that another join was required, and performed it correctly. 5 | ABC EF

Needed hint to use join In task 2a, after the learning task, required a hint that another join was required. 2 D G

Hidden ancestors In field selector, was briefly confused by checked descendants of expanded unchecked fields. | 4 B FG 1

Hiding relations When asked to hide a relation, selected all child fields and invoked HipE. 3 BC F
Understanding the query model; formulas and aggregates

Where to put formula After inserting a calculated field, had initial trouble learning where to enter the formula. 4 DEF K

Formulas made sense Noted that the all-column behavior of formulas and formula references made sense. 2 I L

Aggregates made sense Noted that aggregate function behavior, incl. grouping and subtotaling behavior, made sense. | 4 CEG K

Tried column reference Correctly assumed aggregate argument would be a column reference, not a range of cells. 5|/ ABC F H

Tried range reference First time, incorrectly assumed aggregate argument would be a range of cells, as in Excel. 4 DE G N

Formula at wrong level First time, incorrectly placed aggregate formula in same relation as argument to aggregate. 4 C FGH
Understanding the query model; filters

Filters and joins Had no trouble understanding how filters worked, including interaction with multi-level joins. | 4 B F H K

Filters and aggregates Had no trouble understanding interaction between filters and aggregate functions. 4 C FHK

Root sort to search Sorted a large table (728K rows), then scrolled downwards trying to search for items visually. | 2 | A G

Deep sort to search Sorted on field in deeply nested relation, hoping for root relation to be sorted on said field. 3 G L N

Infrequent filter user Reported not being a frequent user of Excel’s "filter" feature. 31A G N
Analogies to other tools

Thought of pivot tables ~ Mentioned thinking about pivot tables/other crosstab interfaces when first attempting tasks. 5 BC E HI

Intuitive selection/menu Had an easy time performing Excel-like column selection and operating the context menu. 6 B DE GHI

Looked for "unhide" Looked for a context menu action specifically named "unhide", as in Excel. 3 IK N

Field selector parent In field selector, looked for "parent directory" button like that of Windows XP’s file picker. 2 L N
Other details

Join dialog easy When doing first manual join, had no trouble with the Joix dialog. 6 | ABC E GH

Join dialog one stumble When doing first manual join, stumbled once in the Jon dialog, but quickly recovered. 2 DF

Drag in join dialog Tried drag-and-drop in the join dialog. Not necessary, but did not cause trouble either. 3 | ABC

Distracting "group" Was confused by a non-essential shortcut action called "group", which was later removed. 4 BC F H

What to COUNT Used the counT aggregate with a primitive argument, e.g. =counT([TITLE]). 3 B HI

actions required for tasks would be found in the central direct manipulation area and its
context menu. Users had no trouble operating the Excel-like selection and context menu.

Manual joins. The manual join dialog, quoting user C, was “actually very easy to
use”; most users moved through it quickly and correctly on their first attempt. Still, users
preferred auto joins once introduced to them, see below. Users CEJ wanted to visually
verify that the equijoin condition was satisfied, and were briefly confused because our
system automatically hid the redundant constrained field on the nested side of the join.
Users performing task 2 had no problems with the join portion of the task; only users DG
required a hint that they would need to use the Join feature again, while the rest realized
this on their own.

Formulas. When first attempting to perform a sum aggregation, users BCDE started
by looking for an explicit sum action, as would be found in Excel’s toolbar. Users CGK
looked for an Excel-style formula builder. Having eventually realized that they needed to
insert a calculated field and enter a formula themselves, users DEFK had initial trouble
learning how to physically enter the formula, trying for example to enter the formula in an
already-existing column, or in the column header.

In Excel, sums can be produced either using formulas or pivot tables. The two interfaces
are largely separate, with users often preferring one or the other. Our system follows the
formula approach. Users CH commented that they thought of pivot tables when first trying
to compute a sum, while users BEI thought of pivot tables during other tasks.

A significant difference between spreadsheet formulas and SIEUFERD formulas is that
the latter, like SQL queries, reference entire columns of values rather than an explicit range
of cells. Users ABCFH expected this on their first attempts to insert a reference in a sum
formula. Users DEGN expected the spreadsheet model, initially attempting to select a
range of cells. A related challenge was to understand the level at which a calculated field
should be inserted in order for sums to be grouped in the right way. The fact that the position
of a formula in the relation hierarchy determines the grouping of aggregate functions is a
further deviation from the spreadsheet model, while the lack of an explicit GROUP BY clause
may be confusing to SQL users. User H tried to specify the set of columns to group by
in the aggregate function itself, as in the formula =sum([NaME],[AMOUNT]), While user F
tried to hide every field other than the one to be summed. User G attempted to invoke the
Corraprse DupLicaTE Rows action. Users CFGH also tried placing the calculated field next
to the value to be summed rather than at the parent level. The latter has the trivial effect
of producing sums each over only a single input value. User G, who spent 20 minutes on
Task 2b, thought aloud while struggling with the latter problem:

“Wouldn't it be fantastic if there was a way simply to operate at that group level rather
than these individual entries? [After creating a new formula at the correct level:] Is it
doing it that way? Oh, that’s perfect. ... That is meeting my heart’s desire. But [wouldn’t
have the cue for that.”

User C: “Hmm, you can’t do calculated field by row, it only does it by column.” Asked
where the user would want the sum to appear: “Either in the top row, next to each name,
or at the bottom of each section.”

Despite initial difficulty with formulas in training task 1b, users applied them quickly
and accurately in follow-up task 2b. This is despite the follow-up task requiring more
steps (a join, a scalar function, and an aggregate function). This suggests users are able

65

to apply formulas effectively after first learning them, but that there is significant potential
for improved learnability. We agree with users AM, who suggested adding an explicit sum
action like that of Excel. This feature would automatically generate a sum formula above
the nearest one-to-many relationship, which would then serve as an example to the user to
learn from. Small improvements could also be made to make it easier to discover how to
edit formulas.

After initial learning, users appreciated the behavior of formulas. Users CEGK noted
explicitly that the behavior of aggregate functions, including grouping and subtotaling be-
havior, made sense. Users ILK also commented that the all-column nature of formula
references made sense and was an advantage over Excel’s range-style references. User K
noted:

“I just feel like I have a truer sense of what I'm adding up, or what’s being considered
in this format vs. the traditional Excel. Because [in Excel] you could be pulling from the
wrong places, you can be getting weird numbers, you could accidentally hit a field that now
ends up in your calculation.”

Users BHI, when asked to do a counting task, such as “find the instructor teaching the
highest number of courses”, used the count aggregate function with a primitive field as
an argument, using either the technical primary key (e.g. 1) or another field that the user
presumed to be an identifier for tuples in the relation to be counted (e.g. TiTLE). User H
noted that “this might not be the ideal way to do it” due to the potential for duplicated
titles. This suggests that users suspected that the count aggregate would collapse duplicate
input values, which is not actually the case. User B, when asked how one might count the
actual rows in the relation, inserted a constant formula with the numerical value “1” and
used a suM function to tally up the constants. None of the users discovered that a relation
reference can be used in the count aggregate instead of using an arbitrary primitive field
from the same relation.

Field selection; auto joins. Users performing tasks 3-6, or similar tasks on other
datasets, were generally able to use the auto join feature without trouble. The exception
was user N, who had a hard time because of the lack of visible indications in the result
area that more fields could be shown. User G also noted this issue. Users IKN specifically
looked for an action named “Unhide”, as in Excel. This suggests that our user interface
needs a more visible affordance for accessing hidden fields. We expect hidden fields to
be far more common in SIEUFERD than in Excel, since a typical database query projects
only a small subset of columns available from instantiated database tables. The design of
an improved unhide affordance should take this into account.

Users EGHJKL reacted particularly enthusiastically to the auto join feature, using
words such as “fantastic”, “wow”, “damn”, and “amazing”. User E noted:

“Yes, the manual join made sense, but that was a very simple situation. [wouldn’t want
to have done the joins on this [more complicated database]. The fact that I was just able to
double-click and expand it out, that meant, it dumbed the task down to the level that I was
happy performing it.”

User J: “It was so easy. It was extremely easy to do this. The idea of just being able
to just simply right-clicking on a column and identify what I want to include in this thing
without having to think about a SQL or Access query, it was just very intuitive.”

User L: “It’s pretty fast! ... For what it’s doing, it’s amazing.”

66

Field selection; conceptual model. One source of confusion was the fact that the field
selector may show a field as checked even when an ancestor relation is not. Such states
are permitted because they may be semantically significant in certain cases (e.g. when a
hidden relation is used as an input to an aggregate function and the CoLLAPSE DUPLICATE
Rows option is enabled on said relation). Users BFG expanded an unchecked relation field
in the field selector and were surprised to see child fields already checked despite not yet
being visible in the result area. This was due to our system attempting to set defaults for
visible fields in all newly introduced relations, hidden or not. User I, in contrast, attempted
to uncheck a parent relation after first checking several child fields that were meant to be
included in the result. This had the effect of hiding from view even the desired child fields
from the result. While users quickly recovered from these problems, the field selector
could be improved by using an alternative checkmark indication for fields that descend
from hidden relations.

Users BCF, when asked to hide a relation, multiple-selected all of its child fields in the
result area and invoked Hipe on them. We later modified the HipE action to recognize this
pattern and hide the common parent relation instead of each of its individual child fields.

Field selection; efficiency. One important problem was that of poor defaults for which
fields should be visible immediately after a new relation is introduced into the current
query. For manual joins, all (non-redundant) fields in the foreign table would be visible
in the nested relation; this made it hard to grasp the overall structure of the query without
first going through the step of hiding a number of irrelevant columns, usually necessitating
horizontal scrolling. For auto joins, in contrast, only primary key fields were displayed by
default. This also turned out to be a poor choice, because primary key fields often consist of
purely technical identifiers that neither help the user identify an entity in the database nor its
type. An example would be the relation EMPLOYEES(ID, FIRST_NAME, LAST_NAME), where the
database identifies each tuple by the technical primary key 10 (maybe a number, like “16”)
but where the user would rather like to see the first and last names of each employee—
despite the theoretical possibility that two employees might have the same name. Showing
only primary key fields by default made auto joins harder to work with than necessary,
requiring users to click four or five times in the field selector in order to introduce a new
relation and show a reasonable set of fields from that relation.

Post-study, in response to the problem of poor field visibility defaults, we modified our
system to allow a subset of columns from each database table to be marked as human-
readable heading fields. These are the fields that will initially be visible whenever the table
in question is introduced into a query. As suggested by users MN, we configure this setting
automatically. Various heuristics could work, including attribute ranking algorithms [34,
76], but for now, we simply look for column names containing the words “title” or “name”.

For databases containing a large number of fields per table, navigating the field selector
became cumbersome. This was noted by users EJM, who got a chance to try our tool on
a real data warehouse schema containing 22 interconnected tables with up to 40-73 fields
each (19 on average). User L also pointed this out for the smaller course catalog schema.
User E explains:

“You’ve got massive lists, and they’re not ordered alphabetically. You’'ve got table
names, and field names, and sometimes they are not very English.”

One part of the problem is that users spent a significant amount of time scanning up

67

and down looking for specific field names. Alphabetization would be problematic, as users
often expect fields to be in a certain order (the phone number always precedes fax number).
A search box in the field selector, on the other hand, like that of the filter popup, could work,
as suggested by users JM. A separate problem is the fact that the multitude of primitive
fields in the field selector obscures the overall structure of relation fields in the query,
including those accessible via auto joins. Users JM also commented that they would have
liked to see a schema diagram of some sort on-screen. In the future, we may consider
adding a second kind of field selector that shows relation fields only in a tree representation
that is fully expanded by default; this would provide a compact way to see the entire foreign
key structure of the database schema as reachable from the current query.

Filters. In task 5 and elsewhere, most users had no trouble applying the filter feature.
The exception was users AGLN, who first approached filter tasks by attempting to sort
rather than filter. Three of these users, users AGN, reported not being frequent users of
filters in Excel. Users had no trouble understanding the interaction between filters and
aggregate functions, nor with the behavior of filters on deeply nested relations. User E
solved a conditional sum task using a =sum(Ir([conpITION],[AMOUNT],0)) formula instead of
using the filter feature, but understood the filter approach as well.

3.3.3 General Sentiment

At the end of the session, users CDHIJK expressed that they had a high degree of under-
standing of the tool. User K, who had 2-300 hours of experience with SQL from their
previous job, noted:

“It’s probably fair to say that I am as comfortable with this as I am with SQL right now,
just because I haven’t used SQL that often in the recent past. Given 2 hours, I think I could
make an accurate report in this, allowing for mistakes, and fixing my mistakes. Take that
same period in SQL, and I think I would still be at sea.”

User H: “It feels like the learning curve was very fast. I mean, I felt like I didn’t know
much to begin with, but then I feel really comfortable with it now. I could totally do things
with it, if [had it.”

Users EJKL rated SIEUFERD favorably compared to existing commercial tools they
are familiar with.

User J: “It took me a lot longer to get anything useful out of Access after 1 first started
using that. So that’s huge. This is more intuitive than either Excel or Access. I think, for
the novice that doesn’t know what they’re doing, this can be very powerful.”

User L: “This is much more sophisticated than Excel. I think, if you know Excel, at the
intermediate level or above, then just playing around with this, you can figure it out.”

User E, on how one might use Excel to solve tasks similar to those given in the study:
“I couldn’t imagine doing that [course catalog] activity in Excel. The first example was
simple enough, but once you start to do a couple of VLOOKUPs, I think you’re starting to
go beyond what Excel is really about.” (VLOOKUP is a function that can be used in Excel
formulas to pull in data from other worksheets or cell ranges, analogous to a join.)

68

Table 3.4: Tasks used in the controlled study. Some additional bonus tasks were also
available to users who finished quickly. The database used is the 7-table version of the
“Northwind” example that shipped with older versions of Microsoft Access.

Type # ‘ Task ‘ Operations involved
Guided 1 | Show a list of products with the PropucTNaME and DiscoNTINUED fields visible. Field selection
2 | Find the total quantity sold of each product, via the quantities in the ORDERDETAILs table. | Join, aggregate
3 | Find the total sales for each product. This involves a UNITPRICE * QuaNTITY calculation. Scalar formula, aggregate
4 | Include in totals only orders shipped outside the US. Join, pre-aggregate filter
5 | Show the products with the most revenue first, hiding any order details if still visible. Sorting
Unguided 6 | Show customers and all their orders, sorted by customer. Field selection, join, sorting
7 | For each of the customers’ orders, show the total dollar amount for that order. Join, scalar formula, aggregate
8 | Show the name and phone number of the shipping company serving each order. Join, field selection
9 | Show only orders assigned to employee Margaret Peacock. Join, filter

3.4 Controlled User Study

In a second user study, we aimed to get a more precise idea of how users might rate our
system compared to an existing industry tool. We chose the “Query Design” facility of
Microsoft Access 2016 as a control. Being part of the Office Professional suite, it is one of
the most common visual query tools available. It is also a good example of a query builder
that uses a diagram-based approach rather than direct manipulation of results (see Related
Work).

The controlled study was a within-subjects counterbalanced design, measuring usability
using the System Usability Scale (SUS) [17]. Tullis and Stetson [103] recommend sample
sizes of 12-14 users to get reasonably representative results from within-subjects studies
based on the SUS survey; we collected data from 14 users (5 male, median age 36). See
Table 3.1 for a demographic summary. Only users OTZA had prior experience with the
Access query designer. We met with each user for a single study session, structured as
follows:

1. Complete demographic/background survey.

2. Briefly discuss the sample database that will be used for tasks, consulting a schema
diagram on paper. The paper diagram remains available to the user during the tasks that
follow.

3. Work through some standardized tasks to evaluate Tool 1. Stop after about 20 minutes.
The first tool is SIEUFERD for half of the users and Microsoft Access for the other half,
randomized.

4. Complete SUS survey for Tool 1.

5. Work through the same tasks in Tool 2, under otherwise identical conditions. Stop after
about 20 minutes.

6. Complete SUS survey for Tool 2.

7. Discussion and feedback.

The standardized tasks, all done on the 7-table “Northwind” example database that
shipped with older versions of Microsoft Access, are intended to be realistic examples of
queries that a user might want to run on such a database. They incorporate joins, filters,
sorting, scalar calculations and aggregates, but are limited to queries that can be expressed
in Microsoft Access’ visual query designer; this excludes queries requiring nested results as

69

Table 3.5: Mean SUS survey results for the controlled study, using various standard scales.
Higher scores are better. Error bars show the standard error of the mean.

Scale Tool ‘ Score (0-100)
Raw SUS Access 501 S

Sieuferd | 68t =8
Learnability Access | 491 o

Sieuferd | 64 ¢ =
Usability Access | 501 —

Sieuferd | 69t =
Percentile Access 6 =

Sieuferd | 521]

10 20 30 40 50 60 70 80 90 100

well as multi-block queries (e.g. aggregates used as inputs to other aggregates). The exact
tasks are listed in Table 3.4. In both tools, we configured foreign key relationships up front
so that the user would not have to manually specify exact join constraints between tables.
The first five tasks are guided training tasks, intended to expose the user to all features, in
both tools, that are needed to complete the subsequent unguided tasks. The guided tasks
tended to take about half of the 20 minutes that users had available to try each tool. After
the guided tasks, users were asked to try solving four unguided tasks without help. Since
the main purpose of tasks was to give the user enough of an impression of each system to
complete the subsequent SUS survey, we gave hints during unguided tasks whenever users
reported being stuck.

The results of the study are shown in Table 3.5. The raw SUS score is reported along
with separate Learnability and Usability scores as defined by Lewis and Sauro [69], as well
as a percentile rating among 30 other studies in the B2B (Business Software) category as
detailed by Sauro [91]. The difference in raw SUS scores between Access and SIEUFERD
is statistically significant (p = 0.0019 with two-tailed paired t-test).

Interpreting the results, with the caveat that these observations are based on only 20-
minute interactions with each tool, we see that SIEUFERD significantly outperformed
Microsoft Access in terms of usability. Most of the difference can be attributed to the
poor performance of Microsoft Access, considering its low ranking on the percentile scale;
SIEUFERD simply achieved an average rating compared to other business software. This
supports the original hypothesis of our paper: database querying is hard, but can be made
significantly easier using a direct manipulation interface. SIEUFERD still has significant
potential for improved usability. In conversations with users, the main requests for fu-
ture design improvements were (1) the ability to get an overview of the complete database
schema from within the query interface and (2) reduced dependency on formulas during
query building. This is consistent with observations from the formative study.

3.5 Berlin/BESDUI Benchmark

One limitation of the previous user studies is that the choice of tasks was made by the
same researcher who developed the software being evaluated. Another limitation was the

70

Table 3.6: Summary of BESDUI benchmark results for SIEUFERD, compared with ex-
isting results for two other systems. The capacity indicates whether or not the query in
question can be expressed in each system (as per the benchmark’s notation).

Virtuoso Facets Rhizomer SIEUFERD
Time Relative
Task #| Capacity Time (s)| Capacity Time (s)| Capacity Time (s) to Best

1 100% 274 0% 100% 30.7 1.1
2 100% 28.7 100% 12.0 100% 28.9 24
3 100% 52 100% 50 100% 8.3 1.7
4 0% 0% 100% 48.0

5 0% 0% 100% 552

6 0% 100% 48 4 100% 67.0 14
7 0% 100% 33 100% 6.7 2.0
8 100% 309 100% 20.3 100% 40.0 2.0
9 0% 0% 100% 22.7

10 100% 2.6 100% 2.6 100% 18.4 7.1
1 100% 38.8 100% 214 100% 39.8 1.9
12 50% 0% 50%

time we had available with each study participant; our hour-long controlled study left only
10-15 minutes to solve unguided tasks on each of the two systems under test, after a simi-
larly short sequence of training tasks on each system. The BESDUI benchmark [42] sug-
gests using a set of 12 queries, sourced from the earlier systems-oriented Berlin SPARQL
Benchmark [15], with a keystroke-level model (KLM) [21] to estimate the performance
of expert end-users operating a visual query system. Applying the BESDUI benchmark
on the SIEUFERD system gives us an opportunity to do an objective comparison of both
performance and functionality relative to other visual query systems evaluated using the
same benchmark. Furthermore, the detailed enumeration of steps required to construct
each benchmark query serves as good examples of the capabilities of the system and how
an expert user would make use of them in practice.

The detailed interaction steps required to construct each of the 12 queries in the BES-
DUI benchmark are listed in Table 3.7. The BESDUI benchmark, like the Berlin SPARQL
Benchmark, can be used with both RDF stores and relational databases; for the relational
SIEUFERD system we have assumed that foreign key relationships have been declared at
the database level as part of the schema definition. To date, the BESDUI benchmark has
been applied to two other systems; Rhizomer [18] and Virtuoso Facets®. Figure 3.6 shows
the results for SIEUFERD compared with Rhizomer and Virtuoso®*. Task 12 consists of a
query part and a data export part; SIEUFERD can do the former but not the latter, Rhizomer
vice versa.

Comparing the results in Figure 3.6, we see that the SIEUFERD system is the only one
of the three systems to be able to express all queries in the benchmark. On the other hand,
queries that can be expressed in at least one of the other two systems appear to be require
more steps in SIEUFERD. A larger part of the difference, however, we attribute to three

3http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtFacetBrowserInstallConfig
4Official result repository at https://github.com/rhizomik/BESDUT

71

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtFacetBrowserInstallConfig
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtFacetBrowserInstallConfig
https://github.com/rhizomik/BESDUI

Table 3.7: Exact interaction steps required to specify each of the 12 queries in the BESDUI
benchmark using SIEUFERD. The metrics K, P, and H refer to the number of mouse or
keyboard keypresses, mouse aiming operations, and switches between the mouse and the
keyboard required for each step, respectively. The speed is the estimated number of seconds
required to complete the task based on the indicated standard durations per metric. (Table

continued on the next page.) —
etrics

K P | H

Interaction Steps

1 0.2s} 1.1s! 0.4s|

Task 1: Look for products of type "sheeny" with product features "stroboscopes" and "gadgeteers", and a "productPropertyNumericl" gréater than "41150“ ‘

\Speed (s)

1. |Create and open a perspective from the "product” table o4 310
2. \Make the "propertyNum1", "productfeatureproduct.productfeature.label", and "producttypeproduct.producttype.label" fields visible 9 7 O
3. [Filter to show only products for which "producttypeproduct.producttype.label” is "sheeny" 41 31 0
4. Open the filter toolbox on the "productfeature.label" field 2! 2 0
5. ECIick "stroboscopes" and "gadgeteers" and close the filter box | 3! 2 0
6. iInsert a calculated field next to "product.label" 2! 2,0
7. iKey the cursor to the calculated column and type the formula "=[propertyNum1]>450 and count([productfeature\label])=2" (field 173 0 1
rreferences inserted by arrow keypresses) |
8. IFilter to show only products for which the formula is "true" (use keyboard shortcut since hand is already on keyboard) 6 0 0
Total Task 1 . 47) 19 1| 30.7
Task 2: List products of type "sheeny" with product features "stroboscopes" OR "gadgeteers", and a "productPropertyNumericl" greater than "450"
1. |Create and open a perspective from the "product” table 4 30
2. 'Make the "propertyNum1", "productfeatureproduct.productfeature.label”, and "producttypeproduct.producttype.label” fields visible ! 9! 700
3. IFilter to show only products for which "producttypeproduct.producttype.label” is "sheeny" 4 30
4, fOpen the filter toolbox on the "productfeature.label" field 2 2 0
5. ECIick "stroboscopes" and "gadgeteers" and close the filter box 3 2 0
6. !Insert a calculated field next to "product.label" 2! 20 0
7. fKey the cursor to the calculated column and type the formula "=[propertyNum1]>450" (field reference inserted by single arrow 8 0! 1)
keypress)
8. [Filter to show only products for which the formula is "true" (use keyboard shortcut since hand is already on keyboard) 6! 0 0
‘Total Task 2 | 38 197 1 28.9
Task 3: Get details about product "boozed"
1. \Create and open a perspective from the "product” table L4 3 o
2. 'Make all the fields visible (use keyboard shortcuts) 8! 0 1
3. |Open the filter box (keyboard shortcut) P00
4. Type "boozed", down, down, space, enter 10! 0 0
1230 31 1 8.3

‘Total Task 3

Task 4: Look for products of type "sheeny" with product features "stroboscopes" but NOT "gadgeteers", and "productPropertyNumericl" value greater than "300" and

"productPropertyNumeric3" smaller than "400"

1. |Create and open a perspective from the "product" table 4 3 0
2. 'Make the "nr", "propertyNum1", "propertyNum3", "productfeatureproduct.productfeature.label", and 11} 9! O
3"producttypeproduct.producttype.label" fields visible
3. iFiIter to show only products for which "producttypeproduct.producttype.label" is "sheeny" 41 3 O
4. Do a custom join operation to join in another instance of the productfeatureproduct table L5 5 0
5. iMake the "productfeatureproduct2.productfeature.label" field visible 41 3 O
6. iFilter for "stroboscopes” in "productfeatureproduct” 4i
7. (Filter for "NOT gadgeteers" in "productfeatureproduct2” 5 4 0
8. iInsert a calculated field next to "product.label" 2 2 0|
9. |Key the cursor to the calculated column and type the formula "=[propertyNum1]>300 and [propertyNum3]<400" (field references 17! 0 1
linserted by arrow key presses)
10. iFilter to show only products for which the formula is "true" (use keyboard shortcut since hand is already on keyboard) 6 0 0
Total Task 4 © 620 321 1) 48
Task 5: Look for products of type "sheeny" with product features "stroboscopes" and "gadgeteers" and a "productPropertyNumericl" value gréater than "300" plus
those of the same product type with product features "stroboscopes" and "rotifers" and a "productPropertyNumeric2" greater than "400"
1. |Create and open a perspective from the "product" table 4 30
2. 'Make the "nr", "propertyNum1", "propertyNum3", "productfeatureproduct.productfeature.label”, and 11} 9. 0
""producttypeproduct.producttype.label fields visible
3. [Filter to show only products for which "producttypeproduct.producttype.label” is "sheeny" 4 3l 0
4. Do a custom join operation to join in another instance of the productfeatureproduct table 5 5! 0|
5. 'Make the "productfeatureproduct2.productfeature.label" field visible 4 30
6. fFiIter for "stroboscopes" in "productfeatureproduct” 4 3 0
7. lInsert a calculated field next to "product.label” 2! 20 o
8. fKey the cursor to the calculated column and type the formula "=[pfp2.pf.label]='gadgeteers' and [propertyNum1]>300 or 52; Y
3[pfp2.pilabel]:'rotifiers' and [propertyNum2]>400" (field references inserted by mouse clicks)
9. IFilter to show only products for which the formula is "true" (use keyboard shortcut since hand is already on keyboard) 6 O O
‘Total Task 5 L 921 32 | 55.2

72

Interaction Steps

KLM Metrics
1.1s! 0.4s]
H Speed (s)

0.2s!
K

P

Task 6: Look for products similar to "boozed", with at least one shared feature, and a "productPropertyNumericl" value between "427 and 627" (100 more or less than

its value for boozed, 527) and a "productPropertyNumeric2" value between "545 and 945" (200 more or less than its value for boozed, 745)

\Total Task 7

1. Create and open a perspective from the "product" table 4 | :
2. Make the "propertyNum1", "propertyNum3", and "productfeatureproduct.productFeature" fields visible | 7! 6 0
3. |Do a custom join operation to join the existing instance of productfeatureproduct with another instance of productfeatureproduct on 5! 5 0
the productFeature field
4. Make "product2" then "propertyNum1", "propertyNum3", and "label" fields visible under productfeatureproduct2 (the second instance | 5! 4, 0
(of productfeatureproduct2) | | | |
5. [Filter "product2.label" to only include the product "boozed" (open filter with keyboard shortcut, type "boozed", click result and close ‘ 9! 83 23
filter popup)
6. Insert a calculated field next to "product.label" 2 2 0
7. Key the cursor to the calculated column and type the formula "=[propertyNum1]<[product2\propertyNum1]+100 and | 22 4 4
/[propertyNum1]>[product2\propertyNum1]-100" (field references inserted by mouse clicks) i : | |
8. 'Copy the formula to the clipboard from the formula bar 2! 202
9. Insert another calculated column next the previous one 2} 20 0
10. Key the cursor to the new calculated column and paste the formula L3
11. Change "propertyNum1" to "propertyNum3" in each place in the formula in the formula bar, and "100" to "200". | 20! 6 7
12. Filter the two formulas to only include values of "true" L 120 o o
‘Total Task 6 193] 42| 16 71.2
Task 7: Search products whose name contains "ales"
1. |Create and open a perspective from the "product” table 4 3 o
2. EOpen the filter and type "ales" 5! Lo
3. Select all the results (multiple selection via page down + space), then press enter to close the filter popup i 6 0 O
L 150 3] 1 6.7

Task 8: For the product "waterskiing sharpness horseshoes" list details for all its "offers" by Chinese vendors and still valid by "2008-05-28" plus details for all "reviews"

for this product having either "ratingl or rating2" [assumed to mean simply selecting the two fields "ratingl" and "rating2"]

©CEONOU A WN

oUuhsWN

\Total Task 10

1. |Create and open a perspective from the "product" table L4 3 0

. 'Open the filter popup and type "wat sha" (assume this makes the right product visible) 1 8! 03 13

. 'Select the "waterskiing sharpness horseshoes" product and close the filter popup 2 11

. 'Make all the relevant fields visible, including from the "offer" and "review" table instances 116 15 O

. Filter "product.offer.vendor.country" to China only. 4 3 0

/Insert a calculated column next to "offer.validto" : | 200

'Key the cursor to the new calculated column and enter the formula "=[validTo]>{2008-05-28}" L1600 L

. Filter to show only products for which the formula is "true” (use keyboard shortcut since hand is already on keyboard) : 6! 0ol 0!

. 'Deactivate "Hide Parent if Empty" on the "offers" table instance (to avoid hiding the product if there are no offers satisfying the 2} 0 1

\constraint--needed if we want to be technically equivalent to the left join in the SQL query example) '
Total Task 8 . 60 24 4! 40

Task 9: For the product "waterskiing sharpness horseshoes" list the "20" more recent "reviews" in "English"

1. |Create and open a perspective from the "product" table 41

. |Open the filter popup and type "wat sha" (assume this makes the right product visible) 1 8! 03 13

. Select the "waterskiing sharpness horseshoes" product and close the filter popup 2! 11

'Make the "review" table instance visible and its relevant fields. : 73 6 0

. [Filter "review.language" on "en" o4 3 o

. 'Sort descending on "reviewDate" (there is no LIMIT to be specified; the user can simply look at the 20 topmost rows. Explicit limits 2! 2 0

icould be supported by allowing the row_number() window aggregate function in formulas) i | i
'Total Task 9 1270 15! 2 22.7

Task 10: Get all available information about the author of "Review5481" ‘

1. Create and open a perspective from the "review" table 4] 33 o

2. 'Show the "review.nr" and "review.person" fields, and all fields under "review.person" | 103 9| 0!

3. Filter "nr" to show only Review5481 (use keyboard shortcuts) 1 10: 03 13
C240 12! 1, 18.4

Task 11: Look for the "cheapest" and still "valid" by "2008-06-15" "offer" for the product "waterskiing sharpness horseshoes" by a "US veﬁdor" that i§ able fo "deliver"

within "3 days"
1. Create and open a perspective from the "product” table a4 3 0
2. Open the filter popup and type "wat sha" (assume this makes the right product visible) 8! 0 1
3. Select the "waterskiing sharpness horseshoes" product and close the filter popup 2! 1
4. 'Make all the relevant fields visible P11 8 o
5. Filter "product.offer.vendor.country" to US only. L4 3 o
6. 'Insert a calculated column next to "offer.validto" o2 2 o
7. 'Key the cursor to the new calculated column and enter the formula "=[validTo]>{2008-06-15}" 16! o 1
8. 'Filter to show only products for which the formula is "true" (use keyboard shortcut since hand is already on keyboard) : 6! 0 0!
9. 'Sort ascending on "product.offer.price" o2 2 o
10. Filter on "product.offer.deliveryDays" to include "1", "2", and "3" | . 5o
| 61 24 3 39.8

‘Total Task 11

Task 12: Save in the local computer the information about the vendor for "Offer3499" and, if possible, restrict it to just label, homepage and country and map them to

"schema.org" terms name, url and nationality

1. 'Create and open a perspective from the "vendor" table 4 | |
2. %Show only the fields "label", "homepage", and "country", as well as "offer" and "offer.nr" 6!
3. [Filter "offer.nr" to show only Offer3499 (use keyboard shortcuts) ; 9! | ;
4. Hide "offer" P22 L
5. [Key to the "label" column's heading and rename it to "name”" (key right to the next column after editing). 3 7! 03 Oi
6. 'Rename "homepage" to "url" (key right to the next column after editing) 4 0: 0
7. Rename "country" to "nationality". | 12 10
8. [Export to CSV. (Assume this feature exists.) L4 4 0
‘Total Task 12 . 48, 14i 2 25.8

factors:

e The need, in SIEUFERD, to often click many times to select fields to display in
the query. This is because SIEUFERD only shows a small selection of heading-
type fields whenever a new relation is introduced into the current query. The latter
design decision was made after observations in the formative user study; SIEUFERD
displays query results in a nested table layouts by default, and there is only limited
horizontal space available for columns. Rhizomer, on the other hand, displays entities
in a form layout, showing all fields one level from the entity by default. Even though
this means that only a few entities can be shown at a time on the screen, there is less
of a need to hide and show individual primitive fields in preparation for doing filters
and other operations. In Chapter 5 we show how form layouts can be supported
from within SIEUFERD. In the future, we might change the policy for default field
visibilities based on whether the user is building a query from within a form layout
or a nested table layout.

e A lack of range filters in SIEUFERD. Rhizomer features range filters, which makes
it easy to specify conditions such as [vaLipTo] > {2008-05-28}. In SIEUFERD, such
conditions currently have to be specified as filters on boolean formulas. Range filters
could be a very useful addition to SIEUFERD.

e The need, in SIEUFERD, to open a context menu for every operation. Because
the KLM metric used in the benchmark does not take the mouse pointer’s required
travel distance and target size (Fitt’s law) into account, it is a bit biased against
SIEUFERD'’s interface, preferring a single click in a sidebar far off the screen over
two clicks close to the location of the data being manipulated.

e Some differences in assumptions about query tasks. For instance, in tasks 6, we
assume that propucTPrROPERTYNUMERIC] is defined as “100 more or less than its value
for boozed”, while the Rhizomer evaluation hard-codes the values 427 and 627 into
the query.

3.6 Conclusion

SIEUFERD is a visual query system that achieves SQL-like expressiveness from a pure
direct manipulation interface. Whereas previous direct manipulation systems either sacri-
fice expressiveness or hide the actual query from the user, SIEUFERD integrates the query
and its result into a single interactive visualization, using spreadsheet concepts like fil-
ters and formulas to expose the complete state of the current query. Compared with the
diagram-based query designer of Microsoft Access 2016, users greatly preferred our di-
rect manipulation interface, with the latter scoring 46 percentiles higher on a SUS-based
percentile scale.

74

Chapter 4

Semantics and Expressiveness

4.1 Overview

In the previous chapter, we presented SIEUFERD’s visual query language exclusively from
the user’s point of view, showing the various possible states of the SIEUFERD query model
as they would be displayed on the screen during an interactive query building session. In
this chapter, we discuss the specific data structure that defines the query model, and how the
various operations in our visual query language are mapped to changes in the query model.
We then show how a query in the query model is translated to SQL queries for evaluation.
Finally, we show how arbitrary SQL-92 queries, via an extended relational algebra, can
always be translated to a corresponding query in the SIEUFERD query model.

4.2 The Nested Relational Data Model

In plain SQL, a database query always returns a flat table of results, that is, a bag of
tuples of primitive values. As we have seen, however, a query in the SIEUFERD query
model can return nested results, allowing a greater deal of structure to be communicated
in the result of a query. Specifically, we allow queries to produce results from the
nested relational data model [53, 68], which we define next.

In the nested relational data model, a value is either a primitive or a relation, where a
relation is defined as a set of fuples, each containing a set of fields identified by labels, each
field containing a value, recursively. The schema of a value either defines the value to be
a primitive, or defines the value to be a relation, with schemas further specified for each of
the latter’s fields, recursively. See Figure 4-1. For our purposes, we will assume that the
schema of a relation can define more fields than are actually present in a conforming value;
this allows the result of a query to retain information about fields that are currently hidden
from view.

Besides using the nested relational data model as a data model for query results, we
also its concept of a schema in the definition of queries themselves, as will be seen next.

75

Table 4.1: Properties in the SIEUFERD query model, associated with each field in the
nested relational schema that defines a visual query. Along with the core set of properties
that are needed to define a database query, we also store various properties that define how
the result of the query is presented on the screen during interactive query construction; some
examples are shown here. P, R, and P R indicate properties applicable to primitive fields,
relation fields, or both, respectively. Properties with icons correspond directly to icons
shown in the result area and actions in the user-accessible context menu from Figure 3-1.

PR

PR
PR

PR

Example User-Defined Presentation Properties
Label. Presentation label for the field. Used in nested table headers, in the field selector,
and as part of the syntax for referencing fields from formulas. Defaults to the
original technical name of the column or table in the underlying database.
LabelTextStyle. Text style (font, size, etc.) for the field’s presentation label.
ValueTextStyle. Text style for data values associated with this field.

Example Auto-Measured Presentation Properties

ValueWidth. The column width to use for this field when rendering results in a table
layout. Typically an average or maximum of the visual widths of individual data
values, up to some limit, depending on the data type.

DecimalPlaces. For numeric fields, the number of decimal places to show in formatted
data values. The default heuristic tries to ensure that every numeric data value will
be shown with up to four of its significant digits.

SampleSize. The number of unique data values that were used the last time measured
properties such as ValueWidth and DecimalPlaces were calculated. Used to decide
when recalculations should happen.

Query Definition Properties

Visible. Boolean indicating whether this field should be visible in the result layout.

Y Filter. An optional filter condition. Filters are stored in a format that can be generated
from and restored to a spreadsheet-style filter selection UI.

T Sort. An optional ordinal indicating the position of this field among the parent
relation’s sort terms, plus an ascending/descending flag.

M JoinedOn. An optional reference to a primitive child field of the parent relation’s
parent relation. This denotes an equijoin condition between this field and the
referenced field, and handles the most common kind of join without requiring the
use of formulas and filters.

ColumnDefinition. Either the technical name of a column in the database table specified
by InstantiatedTable, or a formula expression over fields in the query model.

InstantiatedTable. The technical name of a database table to instantiate at this level.
Allowed to be absent, in which case semantics are equivalent to instantiating a
single-tuple, zero-column table.

{ CollapseDuplicateRows. Boolean indicating projection policy for primary key fields.
False by default, in which case the primary key fields of InstantiatedTable are
projected in intermediate and retrieved results even if not Visible.

K HideParentIfEmpty. Boolean indicating if an inner join rather than a left join should
be used between this relation and its parent. Set automatically by the filter UI, but
can be overridden.

~< OneToMany. Read-only boolean, set automatically to indicate to the user the presence
of a one-to-many relationship at this relation. Always on except for relations whose
JoinedOn conditions provably ensure that there would be only one nested child
tuple per parent tuple, e.g. for joins on the child relation’s primary key.

76

Relation Value Label for Relation Field (bold)

Sections <:.

3= Meetlngs -<{ M

3 V

a End Place Days < Irs idd e“
L

g_
& Tme Time Day
01 11:00 11:50 GUYOT 10 Thomas S. Duffy\
w Label for
F Primitive
P 01 13:30 14:20 GUYOT 155 T IThomas S. Duffy I Field
Nicole K Gotberg
Mark A Miller
P 03 15:30] 16:20JGUYOT 154 [Thomas | s Duffy Tuple
Nicole K Gotberg
Mark A Miller
P 04 19:00 19:50 GII Nicole K Gotberg
Mark A Miller

Primitive Values

Figure 4-1: Terminology of the nested relational data model, illustrated on a nested table
layout.

4.3 The SIEUFERD Query Model

A visual query is modeled as a nested relational schema that has been annotated with query-
and presentation-related properties on each field. The query-related properties, and some
examples of presentation-related properties, are shown in Table 4.1. The annotated schema,
which we will refer to as the SIEUFERD query model, fully defines both the SIEUFERD
query to be executed and how its results should be rendered on the screen.

We have defined the SIEUFERD query model so as to maintain a very particular re-
lationship between the structure of a query and the structure of its result. This is what
allows us to provide a single direct manipulation interface through which the user can edit
the query by manipulating the result of the query. When a SIEUFERD query is executed,
returning a nested relational result, the schema of the nested query result is identical to the
query model schema that defined the query in the first place. The correspondence between
the structure of the query and the structure of its result makes it straightforward to translate
high-level user interactions on the visualized query result to concrete modifications on the
underlying query model, and conversely, to indicate the state of the query model in the
table header of the visualized result.

The concept of encoding a database query in the schema of its own result is a key idea
in our design, and typically not how other query languages work. For instance, the abstract
syntax tree of a SQL query has no well-defined relationship with the schema of the query’s
table of results. In XQuery, the query and the result are both defined in the same data model
(XML), but the structure of the query is still not guaranteed to be reflected in the schema
of the result. The encoding of complex multi-block queries into simple annotations on the
schema of their own results is possible in part because we chose a nested data model for
results, as opposed to the flat tabular model of SQL results.

7

4.3.1 Encoding Examples

We return to a few of the visual query examples from Section 3.2.2, explaining how each
would be encoded in the query model’s data structure. The property concept refers to the
schema field properties that were defined in Table 4.1.

Table instantiation. Our first example was a simple selection of tuples from a table in
the database:

courses —<

id |area title may_ may_ exam_type

_id pdf audit

56 2 Roman Art N Y Other
177 2 | Comedy Y Y Final
845 2 Russian Drama N N Other
1795 4 American Politics Y Y Final
2566 Junior Seminars N N Other
3921 4 Judicial Politics Y Y Final

In the SIEUFERD query model, the query above is represented as a nested relational
schema whose root relation references the coursks table from its INSTANTIATEDTABLE prop-
erty, with primitive child fields storing the technical name of each table column in their
respective CoLuMNDEFINITION properties. The term technical name here refers to the string
that is used to identify a field or column in generated SQL queries. The separate prop-
erty LABEL holds the name that is actually displayed in the result layout for presentation
purposes. While LABEL defaults to the technical name of the field or column, the user can
edit the cell containing the label to change the label to something more human-readable if
desired.

In the example above, all fields have the VisIBLE property set to TRUE, while the FiLTER,
SorT, JOINEDON, CoLLapseDupLicATEROws, and HIDEPARENTIFEMPTY properties are cleared.
The read-only ONEToMANY property (—<) is not set by the user, but is set automatically
on the coursks relation as an indication that more than one tuple may be returned for that
relation.

Note that the INSTANTIATEDTABLE, CoLLAPSEDUPLICATEROWS, HIDEPARENTIFEMPTY,
and ONeToMaNy properties only apply to relation fields, while the JomepOn and
CorLumnDEFINITION Only apply to primitive fields, as indicated in Table 4.1.

Nesting and equijoins. In the next example, a nested relation field REaDINGS is added to
the coursEs relation after the latter relation’s existing primitive fields. The READINGs relation
has the InsTaNTIATEDTABLE property set to reference the READINGS table, and includes its
own primitive child fields each with the CoLumNDEFINITION property set to a corresponding
column in the READINGS database table. The JoINEDON property of the READINGS\COURSE_ID
field is set to reference the courses\ib field, denoting an equijoin condition. The presence
of an equijoin condition is indicated by the join icon (M). To avoid clutter, the referenced
field on the other side of the join condition is not displayed in the table header, but can be
seen in the field selector.

78

courses <

id area title may_ may_ exam_ readings —<
id pdf audit type id >4 course author title
_id name

56 2 Roman Art N Y Other 44 56 Ramage Roman Art
8,838 56 Gombrich Art and Illusion

177 2 Comedy Y Y Final 4,998 177 Moliere The Miser
12,138 177 Feydeau A Flea in Her Ear
16,878 177 Reza Art

845 2 Russian Drama N N Other 603 845 Pushkin Little Tragedies
9,207 845 Chekhov The Seagull
12,366 845 Vampilov The Duck Hunt

1795 4 American Politics Y Y Final

2566 Junior Seminars N N Other 9,935 2566 Pierre Loti India
3921 4 Judicial Politics Y Y Final 2,570 3921 Rosenberg, The Hollow Hope
Gerald
17,629 3921 Lazarus, Closed Chambers
Edward

Hidden fields. In the previous two examples, all fields had the VisiBLE property set
to TRUE. When a field is hidden, it remains present in the in the query model’s annotated
schema, but has the VisiBLE property set to FALSE. The primary visual effect is is that the
fields in question are now hidden from view:

courses <
title may_ may_ exam_ readings <
pdf audit type author_name title

Roman Art N Y Other Ramage Roman Art
Gombrich Art and Illusion

Comedy Y Y Final Moliere The Miser
Feydeau A Flea in Her Ear
Reza Art

Russian Drama N N Other = Pushkin Little Tragedies
Chekhov The Seagull
Vampilov The Duck Hunt

American Politics Y Y Final

Junior Seminars N N Other Pierre Loti India

Judicial Politics Y Y Final Rosenberg, Gerald | The Hollow Hope

Lazarus, Edward Closed Chambers

The VisiBLE property usually also determines whether data is retrieved for a
particular field or not, with a few exceptions (defined later) involving the Sort and
CorraprseDupLICATEROWS properties.

Note that it is permissible for a non-VisiBLE relation to have VisiBLE descendants. This
allows a relation to be hidden and unhidden without altering the visibility state of its child
fields. The visibility state of child field of a non-VisiBLE relation may also be semantically
significant in the case where the latter relation is referenced from an aggregate function and
has HibEDupLicaTEROWS enabled, as hiding and showing a field, even when the child of a
hidden relation, may change the number of tuples in the hidden relation for the purposes of

79

evaluating the aggregate. Thus, the VisiBLE property does not mean “visible on the screen”,
but rather “this field would be visible on the screen if its parent was visible on the screen”.

Sorting. The presence of a sort icon, either ascending (=) or descending (¥), and
possibly with a subscript (¥ 123) indicating the position of the sort term in the underlying
ORDER BY clause, fully defines the contents of a field’s Sort property. A sort icon without a
subscript has position 1. In the following example, the AREA and copk fields both have their
SorT property set to an ascending sort of position 1, while the courses\tiTLE field has the
SorT property set to an ascending sort of position 2:

courses —<
id area area =

177
56
845
1795
3921
2566

_id | pa id title

2 2 Literature and the Arts

4 Social Analysis
4 Social Analysis

A NNN

2 Literature and the Arts
2 Literature and the Arts

code =

LA
LA
LA
SA
SA

title =

Comedy

Roman

Art

Russian Drama
American Politics

Judicial

Politics

Junior Seminars

may_ may_
pdf audit
Y Y
N Y
N N
Y Y
Y Y
N N

Formulas. For calculated fields, a field’s CoLumnDEFINITION specifies a formula over
other fields in the query model instead of a column in its parent relation’s instantiated
database table. In the following example, the puration field has CoLumNDEFINITION set to
the formula =sumM([puraTioN]), indicated with the formula icon (fx). Only primitive fields
have a CoLUMNDEFINITION property.

[[=sum (|[duration]))

courses <
title Jx total sections <
duration < 2 meetings <
® 3 day start end
Roman Art 150 L 01 T 14:30 15:20
Th 14:30 15:20
P 01 Th 19:30 20:20
Comedy 400 L 01 M 11:00 11:50
W 11:00 11:50
P01 W 12:30 13:20
P02 W 12:30 13:20
P03 W 13:30 14:20
P04 F 11:00 11:50
P05 W 14:30 15:20
P/ 06 Th 11:00 11:50
Russian Drama 160 S 01 T 11:00 12:20
Th 11:00 12:20

Jx duration
50
50
50
50
50
50
50
50
50
50
50
80
80

Filter. If a field has a filter defined on it, the state of that filter is stored in the Firrer
property, with its presence indicated with the filter icon (V). Seeing the complete state
of the filter requires opening the filter popup. Internally, the FiLTer property simply holds
another formula of the same form that is used for calculated fields, with some restrictions.

80

The formula must (1) return a boolean value, (2) not contain aggregate functions, (3) ref-
erence only the filtered-on field or, for filters on relations, its primitive child fields, and
(4) be of a form that can be edited in filter popup UI. None of these restrictions affect the
expressiveness of the visual query language, as the user can always create a new calculated
field based on an arbitrarily complex formula, boolean or otherwise, and then filter on that
calculated field instead. In the following example, the AUTHOR_NAME column has the FiLTER
property set to the boolean formula =[AUTHOR_NAME] 1S "SHAKESPEARE" OR [AUTHOR_NAME]
1S "WILLIAM SHAKESPEARE".

offerings <
title Sample Reading List <~
author_name T title
Comedy Shakespeare A Midsummer Night's Dream
The Cultural Production of Early Modern Women Shakespeare The Rape of Lucrece; Venus and Adonis
Communication and the Arts: Hamlet in Eastern Europe William Shakespeare ‘-'é'";:'* 6
Topics in the Renaissance Shakespeare —
Forms of Literature: Intertextuality and Shakespeare |Shakespeare Fields | Filter |
The Renaissance in England: Sixteenth Century Lyric Shakespeare
Special Studies in Renaissance Drama: Imagining Shakespeare Search: |shakesp
Slavery and Freedom, 1558-1713 author_name
Approaches to _European History _ _ Shakespeare | (Include All)
From the Renaissance to the Modern Period: History, Shakespeare o
Philosophy, and Religion ¥ Shakespeare
Special Topics in Performance Practice Shakespeare L Shakespeare, Dr. Seuss, Words:
Forms of Literature: Shakespeare & Film Shakespeare ™ William Shakespeare
Shakespeare
Shakespeare
Charles Mee: The (Re) Making Project Shakespeare Including 2 values
Law and love: An anthropology of social forces William Shakespeare g TEar
The lvrir Shakeenpars Cnnnate

Other boolean properties. The state of the remaining properties, CoLLAPSEDUPLICATEROWS

and HipePArRenTIFEMPTY, is indicated directly with corresponding icons ({,’\). In the
following example, the CorLrapseDupLicaTERows and HIDEPARENTIFEMPTY properties are
both set to TRUE on the secTioNs relation field.

offerings <
title sections < {~
format status ¥
Introduction to African-American Literature: Harlem Renaissance to Present) X
Topics in African American Religion P X
Topics in African American Literature P X
The Caribbean in the American Imagination S X
Introduction to Anthropology L X
P X

4.4 Operations on the Query Model

We now discuss how the various high-level UI operations supported by SIEUFERD’s vi-
sual query language map to modifications on the underlying query model. Every query-
related action acts purely as a modification to the current instance of the SIEUFERD query
model. No modifications are made to the underlying relational database, and no additional

81

Vv | _|Data Tables
E cpi
1 lobbying
Fi plants_os

¥ || Perspectives

j plants_os
E3 None

Figure 4-2: The query list, which includes one automatically generated base query for each
table in the database (Darta TABLES), an empty query not instantiating any table (No~E), and
queries previously created by the user (PERSPECTIVES). The query list is used in the initial
selection of a template for a new query, as well as in the Jon dialog.

state need be kept between query actions beyond basic schema metadata such as the list
of available tables, table columns, and known foreign key relationships. Using operations
described below, the user can reach all valid states of the SIEUFERD query model.

Query list. Before entering the main query building interface, the user selects an ex-
isting query to use as a template for the new one. The available options include one auto-
matically generated base query for each table in the database, an empty query not instan-
tiating any table, as well as any queries previously created by the user. See Figure 4-2.
The automatically generated base queries consist of a single relation instantiating the ta-
ble in question, with primitive child fields selecting each of the table’s columns, as in our
very first example query. The empty template query consists of a single relation with the
InsTaNTIATEDTABLE property cleared, with no child fields. The latter template is useful pri-
marily for dashboard-style queries, where multiple independent subqueries are shown side
by side as nested relations under a singleton root relation.

Once the user has created a new query, all subsequent query actions, with the exception
of formula editing and label editing, are initiated from the context menu. We have seen the
context menu in the previous chapter; we show it again in Figure 4-3 for reference as we go
through each of its actions. The editing of formulas and labels can be done directly in cells
without opening the context menu, modifying the CoLumMnDEFINITION and LABEL properties,
respectively, in the underlying query model.

The context menu can be opened on any field or multiple selection of fields in the result
layout. When describing context menu actions below, we assume that only a single field
has been selected, although many of the actions can be defined to have meaningful behavior
for a selection of multiple fields as well.

Field selection. The selection of fields in the field selector, opened with the FiELDs
action in the context menu, lets the user directly modify the boolean VisiBLE property of
each field in the query model. See Figure 4-4. The HipE action in the context menu is
a shortcut that sets the VisiBLE property to FALSE for the selected field. The field that the
context menu was opened on determines which relation is shown as a root in the field
selector, as well as which field is initially selected in the field selector. This lets the user

82

courses < Fields... LK

title readings —< sections < Hide
title g g meetings < instructors. " nhide Sorted/Filtered
3 2 & beg_ end_ | instructors
~ 2 < time time - :
@
Roman Art ' Roman Art L0l T 1430 15:20 Meyer - Sort Ascendlr?g
Art and Tllusion Th 14:30 15:20 £ Sort Descending
01 Th 19:30 20:20 Meyer =, Sort Ascending after Previous
Comedy The Miser L 01 ™M 11:00 11:50 Barkan - ; :
=, Sort Descending after Previous
A Flea in Her Ear W 11:00 11:50 25 . 9
Art POl W 12:30 13:20 Lachman Clear Sorting
P02 W 12:30 13:20 N'\edrlaqe\ .
Y Filter... 8L
K Hide Parent If Empty
Clear Filter

{ Collapse Duplicate Rows
—< One-to-Many

X Join... |
fx Insert Calculated Field Before
Jx Insert Calculated Field After
Delete

Figure 4-3: The context menu, which serves as a starting point for all query-related actions.
The context menu can be opened on any field or multiply selected set of fields.

courses <
title readings < sections <
title é“ 2 meetings < instructors_sections {
33 § beg_ end instructors <
~ 2 < time time last first
Roman Art Roman Art L 01 T 14:30 15:20 Meyer Hugo
Art and Tllusion Th 14:30 15:20
P 01 Th 19:30 20:20 Meyer Hugo
Comedy The Miser L 01 ™M 11:00 11:50 Barkan ® O 06
A Flea in Her Ear W 11:00 11:50 Fields | Filter | |
Art P 01 W 12:30 13:20 Lachman
P 02 W 12:30 13:20 v @ |{EE| instructors_sections {
P 03 W 13:30 14:20 Niednagel .) i
P04 F 11:00 11:50 Barkan) [Hinstructor_id
P05 W 14:30 15:20 Fisher v | instructors <
P 06 Th 11:00 11:50 Fisher -) ‘ ‘
Russian Little Tragedies S 01 T 11:00 12:20 Hasty O [id w(instructor_id]
Drama The Seagull Th 11:00 12:20 (| [H peoplesoft_key
4 [first
() [H middle
() [H suffix

[] [1H] section_id m[sections \id]

Figure 4-4: The field selector. The user invoked the FieLps action from the context menu
while the rast field was selected, so the field selector shows the latter field as initially
selected along with its visible and non-visible sibling fields.

83

quickly open the relevant part of the schema tree from the result layout instead of having
to expand the entire tree in the field selector from the query’s root relation.

The exact logic for determining which relation to show as the root in the field selector,
based on the field or fields that were selected in the result layout, can be tweaked for
usability. The tree of fields is automatically expanded so that the selected field or fields can
be shown as selected when the field selector is initially opened.

One additional aspect of the field selector is the automatic suggestion of nested joins
over foreign key relationships, based on the INSTANTIATEDTABLE property of each relation.
Such joins are represented in the query model in the same way as manually added joins
(see below), but initially have their nested relation’s VIsIBLE property set to FALSE. The
latter ensures that the added relation has no semantic impact on the user’s query unless the
user decides to make it VISIBLE.

The UNHIDE SoRTED/FILTERED/REFERENCED action is a shortcut for unhiding currently in-
visible fields that are being sorted on, filtered on, or referenced from a formula, respectively.
This action is normally only visible in the context menu when actually applicable, though
we have shown its position in Figure 4-3 for completeness.

Sorting. The context menus’ various sorting-related actions lets the user reach all
meaningful states of the query model’s Sort property. SORT ASCENDING/DESCENDING sets
the Sort property on the selected field, with ordinal 1, and clears it on all sibling fields.
SoRT ASCENDING/DESCENDING AFTER PREVIOUS sets the Sort property on the selected field
without clearing the Sort property on sibling fields, instead using an ordinal one higher
than that of the sibling with the previously highest sort ordinal. CLEAR Sorr, if invoked on
a relation field, clears the Sort property on all of that relation’s child fields. If invoked on
a primitive field, it instead clears the Sort property for that field and any siblings with a
higher sort ordinal.

Filter. The FiLTER action opens the filter popup to let the user define a boolean condition
for the query model’s FiLTer property for the field in question. Setting or resetting a filter
also automatically sets the HIDEPARENTIFEMPTY property to TRUE or FALSE, respectively, for
all ancestor relations of the filtered field, although the this property can also be modified
directly using the HibE Parent Ir EmpTY action in the context menu. CLEAR FILTER is a
shortcut that lets the user clear a filter without opening the filter popup.

Collapse Duplicate Rows. This context menu action allows the user to directly modify
the boolean CoLLapseDupLICATEROWS property on the selected relation field. If a primitive
field is selected, the action applies to the parent relation.

One-to-Many. This context menu entry is always disabled, serving only as an indica-
tion of the state of the read-only ONEToMANY property and as a legend for the one-to-many
icon (—<).

Join. The Jov action, described in the most general way, allows the user to select a
relation in the current query and add to it, as a new nested child relation, a copy of an en-
tire other SIEUFERD query, optionally specifying equijoin conditions between the parent
relation and the new child relation. The selected equijoin conditions are then encoded in
the JoINEDON property of the new child relation’s primitive child fields. The other query to
copy into the current query, and the equijoin conditions, are selected in a dialog box, shown
in Figure 4-5. The list of other queries available to copy is the same as that shown when
initially creating a new query (Figure 4-2).

84

8 06

Join

Base Table:

HH plants_os

Fields in Base Table:
id

company
noplants
loccountry

feedstock
nameplate_cap_mgy

e

e

A join relates data in a base table and a foreign table through pairs of fields containing similar values.

T

=

Fields in Foreign Table:

s

o e e e e

ctid

uniqid
registrant_raw
registrant
isfirm
client_raw
client

ulorg |
amount
catcode
source

Iself
includensfs

Foreign Table:
v [Data Tables

E| cpi

[lobbying

[plants_os
v [:I Perspectives

@ plants_os
=1 None

First select a foreign table to join with, then select pair(s) of fields to match between the tables.

Figure 4-5: The Join dialog box, which is used to define custom equijoin conditions against
an arbitrary new table instance. The query list on the right is the same as that which was

shown in Figure 4-2.

85

| Cancel | [

OK

Most commonly, the user will use the Jon action to instantiate a single new table and
join it against a parent relation field in the current query. In this case, the other query to copy
into the current query is one of the template queries that our system creates automatically
for each table in the database.

For joins over foreign key relationships that are declared at the database level, use of
the JoIn action is not necessary; such joins will automatically be added and available in the
field selector by default.

Insert Calculated Field. The INsert CaLcuLATED FIELD BEFORE/AFTER actions add a
new primitive field as a sibling of the selected field, with the property CoLumMNDEFINITION
set to a default empty formula. The formula can then be edited directly in the query result
layout, or using the formula bar.

(For completeness, we also have an action that allows the user to add a calculated field
as a child of a selected relation. This action is only shown, and needed, in the rare case that
the selected relation has no existing children at all.)

Delete. The DEeLeTeE action can be used to delete primitive fields that have
CorLumnDEFRINITION set to a formula, or any relation field. It is disabled for primitive fields
that have CoLumMNDEFINITION set to refer to a database table column. The latter kind of
column may be hidden, but not deleted.

4.5 Query Evaluation

We now explain the steps required to translate a query in the SIEUFERD query model
to a set of SQL queries that can be executed on a relational database backend in order to
evaluate the SIEUFERD query. We first explain how a query in a simplified version of the
SIEUFERD query model can be translated to and evaluated as a single SQL query. We
then explain how to extend the simplified query model to support the retrieval of nested
relational results. Finally, we explain how a query in the fully general version of the
SIEUFERD query model can be rewritten as a query in the simplified query model.

4.5.1 Simplified Query Model

Definition. We define the simplified SIEUFERD query model to be equivalent to the gen-
eral query model, except with the following restrictions on queries:

e The VisiBLE property is set to FALSE for all relations except the root. This means that
all queries will return flat tabular results only.

The Sort property is always cleared.

For relations with CorLLapseDupLicaATEROwsS disabled, all of the INSTANTIATEDTABLE’S
primary key fields are VISIBLE.

Only VisiBLE primitive fields may have JoINeDON defined.

Only primitive fields may have Ficter defined.

86

e Each relation contains at most one aggregate function. That is, each relation field
may have at most one primitive child field with CoLumnDEFINITION set to a formula
containing an aggregate function.

e Formulas (set via CoLuMNDEFINITION) contain no inward references except to VISIBLE
primitive fields in the formula’s parent relation’s immediate child relations. An
inward reference in a formula means a reference to descendant of the formula’s
field’s parent relation that is not a sibling of the formula’s field.

e Formulas contain no outward references. An outward reference means a reference to
a field that is not a descendant of the formula’s parent relation.

Every query in the simplified query model is also a valid query in the general query
model, with equivalent semantics. The simplified query model is equivalent in expressive-
ness to the general query model, except that the simplified query model may only retrieve
flat tabular results with an unspecified order. We will lift the latter restriction in the next
subsection. In all cases we assume that queries contain no user errors such as circular
dependencies in formulas or join conditions.

Translation to SQL. In the simplified query model, each relation field and its subtree
can be considered an independent query that corresponds to a single SELECT statement in
SQL. To produce a SQL query for a given relation field, each of the relation’s child relations
is first recursively translated into a SELECT statement of its own. The parent relation then
builds its own SELECT statement, nesting the SELECT statements of its child relations in its
own FROM clause. The recursion stops when the translation reaches a relation with no child
relations. Note that the nested SELECT statements are not correlated subqueries, as they do
not refer to any columns defined in the outer query.

The general form of the SELECT statement generated for each relation is as follows:

SELECT projected_expressions

FROM
instantiated_table,
inner_joined_subquery_1, ..., inner_joined_subquery_N
LEFT JOIN Ieft_joined_subquery_1 ON left_join_condition_1

LEFT JOIN left_joined_subquery_M ON left_join_condition_M
WHERE inner join_condition_1 AND ... AND inner_join_condition_N
AND scalar_filter_ conditions
GROUP BY group_by_column_names
HAVING aggregate_filter_conditions

The various clauses are constructed as follows:

e SELECT clause: One column expression is generated for each VisiBLE primitive child
field of the relation being translated, based on the formula or column reference
in the CoLumnDEFINITION property. Expressions may reference columns in the
InsTANTIATEDTABLE Or any of the nested SELECT queries generated for child relations
in the FROM clause.

87

e FROM clause: The FROM clause first specifies the Cartesian product of the
INsTANTIATEDTABLE, if any, plus a nested SELECT statement for each translated child
relation for which HipEPARENTIFEMPTY is TRUE. The FROM clause then includes a
nested SELECT statement in a LEFT JOIN for each translated child relation for which
HipEPARENTIFEMPTY is FALSE. For each child relation, the JOoINEDON property of each
of that child relation’s primitive child fields is translated into an equijoin constraint
that is included either in the WHERE clause or, for left joins, the LEFT JOIN’s ON
clause.

If the equijoin condition of one LEFT JOIN clause references fields in a subquery
introduced via another LEFT JOIN clause, then the left joins are automatically ordered
so as to satisfy the dependency. The latter situation may occur if a relation is joined
on a calculated field with an inward reference to a sibling relation. It is a user error for
a circular dependency to exist in these dependencies, analogous to MySQL’s “Cross
dependency found in OUTER JOIN” error.

e WHERE clause: In addition to the inner join conditions mentioned in connection with
the FROM clause, the WHERE clause includes FirTer conditions set on the translated
relation’s non-aggregate primitive child fields. A primitive field is said to be an
aggregate field if its CoLumMmNDEFINITION property is set to a formula containing an
aggregate function, or to a formula that references an aggregate sibling field.

e GROUP BY clause: This clause lists all the non-aggregate fields from the SELECT
clause.

e HAVING clause: This clause lists FiLteErR conditions set on the translated relation’s
aggregate primitive child fields.

4.5.2 Nested Relational Results

The previously generated SQL queries only generate flat tabular results. A key feature
of our visual query language is the ability to generate nested relational results, whether
to visualize aggregate inputs during query construction or as a way to generate complex
form or report layouts. The semantics of queries returning nested relational results is most
easily explained by assuming the presence of a concatenating aggregate function such as
PostgreSQL’s 1soN_aGG'. This allows each query in the SITEUFERD query model to still be
translated into a single SQL query, but now returning a nested relational result encoded as
a JSON object.

We define the simplified query model with nested results to be equivalent to the simpli-
fied query model, but now allowing the VIsIBLE property to be set to TRUE on relation fields
other than the root, allowing the Sort property to be set on primitive fields, and allowing
more than one aggregate field in each relation.

To translate a query in the simplified query model with nested results to the plain sim-
plified query model, we follow the following steps:

Ihttps://www.postgresql.org/docs/9.6/static/functions-aggregate.html

88

https://www.postgresql.org/docs/9.6/static/functions-aggregate.html

1. Enclose the root relation of the original SIEUFERD query in a new otherwise empty
root relation. This will ensure that the translated SQL query returns a single tuple
containing a single JSON object, avoiding a the need for a special case for ordering
and retrieving tuples for from the query’s original root relation.

2. In depth-first order, for each VisIBLE non-root relation field in the query, add a new
VisiBLE primitive sibling field containing an aggregate formula
JSON_AGG(JSON_BUILD_OBJECT(d],...,d;) ORDER BY b1,...,b,,), where aj,...,a, are the
VisiBLE primitive child fields of the relation being processed, and by, ...,b,, are the
sort terms defined by those primitive child fields’ Sort property. Finally, set the
relation’s VISIBLE property to FALSE.

3. In depth-first order, eliminate cases where a relation contains more than one aggre-
gate field by replacing each aggregate field with a formula containing an inward ref-
erence to a new child relation that calculates only that aggregate by itself. The new
child relation is a copy of the original relation, but omits the other aggregate fields,
and has the JoINEDON property set on its non-aggregate primitive fields to equijoin
against the original relation’s GROUP BY fields.

4. When executing the generated SQL, interpret each returned JSON array as a nested
relation, and return the nested relational result.

The above method of retrieving nested relational query results is conceptually
simple, but assumes that the database backend supports the json_acG function. Our
actual implementation uses a more portable approach, retrieving the nested results of
a single SIEUFERD query using multiple SQL queries, in a manner similar to that of
SilkRoute [40]. We have not examined the difference in performance between the two
approaches; this would be interesting future work.

4.5.3 Desugaring the General Query Model

We have shown how queries in a simplified version of the SIEUFERD query model can be
translated to SQL for retrieval of either flat or nested results. We now outline how a query in
the general query model can be translated to a query in the simplified query model, lifting
the remaining simplifying restrictions.

The translation from a query in the general version of the SIEUFERD query model to
a query in the simplified query model is done through the following rewriting steps:

1. Make any primitive field that has Sort enabled on it VISIBLE.

2. Clear any filter on a relation field, instead inserting a new non- VisiBLE calculated field
as a child of the relation, defined by the boolean formula that defined the original
relation filter. Set a filter on the calculated field to only include values of TRUE.

3. In depth-first order, for any relation field with Sort enabled on it, add a new
primitive sibling field for each VisiBLE primitive child field of that relation, with
CorLumnDEFINITION set to a formula consisting of a single reference to that primitive

89

child field. Replace the Sort on the relation field with a sort on the added primitive
sibling fields.

4. Rewrite formulas such that every non-sibling reference is either to a field in the im-
mediate parent relation or an immediate child relation of relation containing the cal-
culated field. References that originally traversed multiple relations can be rewritten
to single-level references by adding non-VisiBLE formula fields in the intermediate
relations, each formula containing a single reference to the next level.

5. In depth-first order, for any formula referencing a non-VisiBLE primitive field in a
child relation, make the referenced field VisiBLE. Do the same for any non-VisiBLE
field with JoiNeDON defined.

6. Eliminate outward references in formulas by the method outlined on page 56.

Note that the translations done in this section have no impact on the way results are pre-
sented to the user on the screen. The translations are done only as a step in the algorithm for
generating SQL queries. For presentation purposes, it is always the original, untranslated
version of the query that is used to determine which fields are displayed, what labels and
icons are shown in the result header, and so on.

4.6 Expressiveness

Like Liu and Jagadish [71], we demonstrate relational completeness of our visual query
language by defining a translation from a complete set of operators in the relational algebra
(ocmxU-) to queries in our visual language. We also translate outer joins as well as the
extended projection and grouping operators [43, p. 213]; the latter two formalize scalar
and aggregate calculations, respectively. Assume set semantics in the relational algebra.

Notation. Let ¢, ¢,, and ¢, be relational algebra expressions. Let N(e) be the number
of attributes in e. Assume that the attribute names of any relational algebra expression
e are ¢[1],...,e[N(e)]. Define a formula, notated (...), to be a functional expression over
attribute names. Formulas are used both in the relational algebra and in the SIEUFERD
query model. Properties in the query model are used as defined in Table 4.1.

Translation from relational algebra. Let 7(e) be a translation from a relational algebra
expression e to a relation field in the SIEUFERD query model. We define #(e) recursively
as follows:

e Constants. If e = U, where U is a constant relation (i.e. a table in the database),
then #(e) is a relation field with INsTaNTIATEDTABLE = U. It has primitive child fields
named e[1],...,e[N(e)] with CoLum~NDEFINITION set to the technical column names
U[1],...,U[N(e)], respectively.

e Selection. If e = o¢(e,), where C is a boolean formula, then #(e) is a relation field
with the following child fields:

— A relation field #(e,).

90

— Primitive fields named e[l],...,e[N(e)] having CoLUMNDEFINITION =
(eqal1]),...,{eq[N(e)]), respectively.

— A primitive field with CoLumnDEFINITION = C, VIsIBLE turned off, and FILTER set
to include only values of TRUE.

e [nnerjouter joins, and Cartesian product. If e = e, M¢ ep,, where X is either an inner
join or left outer join and C is a boolean formula over attribute names in e, and ey,
then #(e) is a relation field with the following child fields:

— A relation field #(e,).

— A relation field #(oc(ep)) having HIDEPARENTIFEMPTY turned on iff X is an inner
join. The translation for o¢(ep) applies even though C may reference attributes
outside of ¢p,.

— Primitive fields named e[1], ...,e[N(e)] having CoLUMNDEFINITION =
(€al1]),....<ealN(ea)]), ep[11), ..., (en[N(en)]),

respectively.

The Cartesian product (X) is an inner join with C = (TRUE). A full outer join is the
union of two left joins.

Extended projection. If e = g, _e[1),....F,—e[n)(€a) Where each of F'y,..., F, is a formula
over attribute names in e,, then #(e) is a relation field with the following child fields:

— A relation field #(e,).
— Primitive fields named e[1],...,e[n], with CoLumNDEFINITION set to formulas
Fy,...,F,, respectively.

Grouping (aggregation). If e =4, ... a,(eq), where each of Ay, ..., A, 1s either a group-
ing attribute name or an aggregation operator applied to an attribute name in e,, then
we can use the same translation as for extended projection by permitting aggregate
functions in formulas. In this case, #(e) = t((A,)e[1]....(A,)—eln](€a))-

Set union. A conditional formula can be used with a Cartesian prod-
uct to produce the desired effect. If e=e, Uey,, with n = N(e), then
t(e) = t(F,>e[l],...Fy—e[n](€a X ep X V)) where V is the constant relation
{(FaLSE), (TRUE)} and F; denotes the formula (V[1]?e,[i]:epli]). In the fu-
ture, we might introduce an explicit unioN function as syntactic sugar for this kind
of construction; see Figure 4-6 for an example.

Set difference. Here, we can filter for null values generated by a left join. If e = e, —¢,

.....

Another approach would be to counT values in ¢, and filter for zero.

In the query model translations above, except when mentioned, the FILTER,
SorT, JoINEDON, and INSTANTIATEDTABLE properties are cleared, while the VISIBLE,
CovrrapseDupLicaTERows, and HIDEPARENTIFEMPTY properties are TRUE.

Note that queries created by the fully general translation above can usually be simpli-
fied, e.g. by combining selection, projection, and table instantiation in a single relation

91

courses <

3rows < course_title deptl cnuml dept2 cnum2 dept3 cnum3
i dept fx cnum fx
1 ANT 206 Human ANT 206 EEB 306 GEO 208
2 306 Evolution
3 GEO 208
1 APC 199 Math Alive APC 199 MAT 199
2 MAT 199
3
1 CLG 108 Homer CLG 108
2
3
1 WWS 313 Peacemaking WWS 313 POL 387
2 POL 387
3

[dept] =if([il/=1, [deptl], if([i]l =2, [dept2], [dept3]))
=union([deptl], [dept2], [dept3])

[cnum] =if ([[i] =1, [enuml], if([i] =2, [cnum2], [cnum3]1))

=union([cnum1l1], [cnum2], [chum3])

Figure 4-6: A union query. Following a classic schema design antipattern, the cOurses table
stores course codes using numbered table columns. To facilitate subsequent operations such
as filtering by course code, the query collects course codes under a single nested relation
via the helper table 3rows = {(1),(2),(3)}. An explicit unioN function, as proposed above,
would make the expression of such queries more elegant.

92

field, or by using the JoINeDON property instead of filters on formula fields.

93

94

Chapter 5

Result Layouts

5.1 Introduction

So far, we have discussed the visual query language that allows users to express arbitrary
database queries, but not how the results of those queries are actually formatted to be dis-
played. The latter is the topic of this chapter.

An important class of visualizations in everyday business use consists of the table-,
form-, and report-style views found in most tailored CRUD applications (see Chapter 1).
The data being displayed is typically structured, meaning that each value has an asso-
ciated type and label in a schema. Furthermore, the data frequently needs to be pre-
sented in a nested manner, because of the need to visualize one-to-many relationships
between entities in the database. For instance, when users request “a list of employees,
grouped by department” or “all information about a customer, including associated sup-
port tickets and a list of open orders,” what is being displayed is a structured nested view
of the underlying relational data. This is exactly the kind of data that is produced by
SIEUFERD’s visual query language, as well as by many previously proposed visual query
systems [50, 38, 107, 31, 72, 81, 63, 14, 108, 66, 86, 10, 2, 47, 3, 27, 83, 74, 25].

The problem lies in the hard manual labor involved in formatting nested data for dis-
play. Traditionally, a software developer has to define low-level details of the visual layout:
the location of labels, the dimensions of text fields, the width of table columns, the organi-
zation of form fields into columns on a page, and so on. Besides making the development
of new CRUD applications costly, requiring this kind of manual formatting work would be
unacceptable in an interactive query system like SIEUFERD, since every query manipu-
lation action can change the schema of the query result and thus require the output to be
reformatted.

In this chapter, we present a layout management algorithm that fully automates the
display of structured nested data using visual idioms seen in traditional hand-designed
database Uls: tables, multi-column forms, and outline-style indented lists. The system
gathers simple statistics about fields in the input schema, and uses these to make layout
decisions which are then applied uniformly across tuples in each input subrelation.

Our algorithm is illustrated in Figure 5-1. Layouts produced by our algorithm are hy-
brids between two existing types of layouts: nested table layouts and outline layouts. The

95

(a) Outline layout

(b) Basic hybrid layout

[Course Listings
+ [oept. [

Title [A Guided Tour of the Solar System

Description

[This course examines the major bodies of our’
ol system, emphasizing their surface
features, intemal structures, and atmospheres.
Topics include the origin of the solar system,
habitabilty of planets, and role of impacts in
planetary evolution. Terrestrial and giant
planets will be studied as wellas satelites,
comets, and asteroids. Recent discoveries from
planetary missions are emphasized. The course

Max Enroliment [140
May Audit?

is aimed primarily at non-science majors.

Website
Final Exam Type|Final I

Grading]
+ [Tite [MidTerm Exam
[Perc20]

« [Title [Quizzes
[Perclio]

« [Title JFinal Exam
Perc.[20

Course Listings |2

[Title

A Guided Tour of the Solar System

Descr

fiption | This course examines the major bodies of our
lr system, emphasizing their surface:
features, internal structures, and atmospheres.
Topics include the origin of the solar system,
habitabilty of planets, and role of impacts in
planetary evolution. Terrestrial and giant
planets will b studied s well as satelites,
comets, and asteroids. Recent discoveries from
planetary missions are emphasized. The course
aimed primarily at non-science majors.

tax.
tay

Audit? Y

Enrolimer

140

ebsite

inal
radi

Exam Type [Final I
ing Title i
&

MidTerm |20
Exam
Quizzes 10
Final Exam |20
B

recept

Participation
Other Bxam _[20
Problem Set |20
s)

« [TiteTer
Perc.[10

« [Titie [Other Exam
[Perc]20]

+ [Title TProblem Set(s
Perc.[20

[Sample Reading List

« [Author Name[Morrow and Owen

]

]

[Title [The Planetary System |

« [Author etal]
[Title: [The Cosmic Perspective]

« [Author Name[Consolmagno and Schaefer

[Title " [Worids Apart: A Textbook in Planetary Science

. \Aumr Name|Beatty et al

Toa et Sl Sy

\smmns
-« [Form:
Nut

[Instructors

~_JFirst_JThomas

List

s
Title

and Owen
[The Planetary System

. l@h T
[Title

etal
he Cosmic Perspective.

« [Author Name]Consolmagno and Schaefer

[Tite [Worlds Apart: A Textbook In Planetary Science
« [Author Name[Beatiy et al]
[Title [The New Solar System]
[Sections 1
+ [Fomat T
Number
Meetings |Beg. [End [Place [Days
Tme [Time Fl
15:00:00[1 0 M
w
F

TMiddie [Last |
Is. [Duffy |

Meetings

(c) Basic hybrid layout (wider)

+ [Course stings [g |2
B
2|
GO [207]
[AST [207
Title [AGuided Tour of the Solar System
Description | This course examines the major bodies of our solar system, emphasizing thelr surface features, Internal structures, and
atmospheres. Topics include the origin of the solar system, habitabilty of planets, and role of impacts n planetary evolution.
Terrestral and giant pianets will be studied as well as satelites, comets, and asteroids. Recent discoveries from planetary
missions are emphasized. The course s aimed primariy at non-sci
Miax. Enrolment[140 |
May Audi? [V |
Website
Final Exam Type|Final [
(Grading Tite K
Widterm |20
Exam
zz

Problem Set

)
[Sample Reading [Author Name [Titie
st Morrow and Owen | The Planetary System
Bennett et a. [The Cosic Perspective
Consolmagno and | Worids Apart: A Textbook in
aefer Planetary Scien
[Beaty et [The New Solar System
Sections 3[Z [Meetings [Tnstructors
SlE[e B [P [oas First Middle [Last
B8 Tme |Tme g
2
L [o1 11:00:00]1 0] M Tromas s [ouy
Z
F
P [or| 13:30:00 5T Thomas . [oufty
icole Gotber
ark —[iller
7 (03[15:30:00 W Thomas . [ouffy
icole Gotber
ark [Miller
7 (04 19:00:00 W icole Gotber
ark [Miller
7 [05[11:00:00]1 T icole Gotber
ark [Miller

[Course Listings [[2
|; 5

(d) Hybrid layout with justified tables

Course Listings
[AST 207
A Guided Tour of the Solar System
Description [This course examines the major bodies of our solar syster, emphasizing thelr surface features, ntemal structures, and
atmospheres. Topics include the origin of the solar system, habitabilty of planets, and role of impacts n planetary evolution.
Terrestrial and giant planets will be studied as well as sateltes, comets, and asteroids. Recent discoveries from planetary
missions are emphasized. The course is aimed primariy at non-science majors.
Vax. Envoliment 140
May Audiz [.
Final Exam Type|Final I
Grading tle
MidTerm Exam
Quizzes
Final Exam
Precept Particpation
[Other Exam
Problem Set(s)
Sample Reading [Author Name e
List lorrow and Owen Planetary System
nnett et . e Cosnic Pespectve
i d Schaefer t: A Textbook in Planetary Science
Bealty et a. e o o System
Sections g: Instructors
Beg. [End [Pace [Days First Widdle [Last
Time _[Time
Lo T1:00:00] 1 FCN T Thomas B Duffy
P o1 133000 15 Thomas Duffy
icole Gotberg
i Tt
P |03 153000 A W Thomas [Dufty
icole ‘@tmrﬂ
ark Miller
3 04 15:00:00] 154w icole }Givtberg
ark Miller
3 05 154 Th icole }Gﬁe{berg
ark Miller

Description

[An introduction to the science of water quality management and pollution control in natural systems; fundamentals of biological
and chemical transformations in natural waters; indentification of sources of pollution; water and wastewater treatment.
water quality modeling.

lax. Enrollment |58
tay Audit?

ebste
nal Exam Type] omer I
radin

Perc]
|De5\gn Project(s) 33
66
ther (See) 1
Sample Reading i
List & Schroeder Water Quai
Eckenfelder Principles of Water Quality Management
Metcalf & Eddy Wastevater Engineering
[Sayer & McCa Chemistry for Engineers
Sections g nstructors
Beg. [End [Pace [bays First Widdle [Last
Time _[Time.
T o 09 3o:onlmzso 00| FRIEN 008 ‘ T Peter IS [laffe
| Jeffery [Scoft—paul

Figure 5-1:

(e) Final hybrid layout with outline columns and justified tables

+ [Course Listings Max. Enrolment 140
May Audit?
[AST [207 [Website]
Title [A Guided Tour of the Solar System Final Exam Type|Final I
Description | This course examines the major bodies of our solar | Grading Title Perc
system, emphasizing their surface features, internal i Term Exam
structures, and atmospheres. Topics include the origin =
of the solar system, habitabilty of planets, and role of) Exam
impacts i planetary evolution. Terrestrial and giant ecapsipar Eipation
lanets wil be studied as well as satelites, comets,
and asteroids. Recent discoveries from planetary
missions are emphasized. The course is aimed S
primariy at non-science majors
uthor Name Trite

[Sample Reading [A
List

TThe Planetary System

nnett et al. Ee Cosmic Perspective

i d Schacfer Worlds Apart: A Textbook In Planetary Scence
eatty et a. [The New Solar System
Sections ng: Instructors
Beg. [End [Pace [Days First Midde |Last
Time _[Time Da
T [or T1:00:00]1 F T Thomas S. Dufty
i
F
P ot 13:30:00] [T Thomas £ O
icole Gotberg
ark Toler
P 03 15:30:00| 154 W Thomas [Duffy
icole ’@ﬂmﬂ
ark Y Miller
3 04 19:00:00| 154 W icole. }Qwerg
ark Miller
P |05 T1:00:00] 1 4 T icoe Gotberg
ark Miller
+[Course Listings [Dept.[Number] [Max. Enroliment[58]
[cee Jaz1 | May Au
GEO [a71 Website]
Title Introduction to Water Polution Technology. Final Exam Type|Other I
Description | An inroduction to the science of water qualty (Grading Title
management and pollution control in natural systems; Projec(s

fundamentals o biologcal and cerical

es
; indentification of [Other (see Instructor)
sources of pmmnnn water and wastewater treatment

methods;

water quality modeling.

| Sample Reading |Author Name_ itle
List hroeder |Water Quality
Eckenfelder Principles of Water Quality Management
| Metcalf & Eddy |Wastewater Engineering
| Sawyer & McCar | Chemistn Engineers
Sections i Instructors
‘Em Place Days First |Mu1dle Last
Doy
B 01 og 30 uo‘w 501 on‘msn 008 [Peter IR [raffe
Jeffery [Scott [Paull

(f) Schema-only hybrid layout used to partition columns in (e)

« [Course Listings

Dept. [Number] [Max. Enrollment
May Audit?

Tite

Description

Final Exam Type| I
(Grading Title TPerc]

Sample Reading [Author Rame Tite
st
Sectons o Tnstruciors
Beg. End Place Days First. Middle Last
Time_ | Time Day

We illustrate our algorithm by enabling its features one by one and producing successive

layouts of the data from Figure 5-3. All layouts are at the same scale. (a) is a basic outline layout; this layout
renders tuples in relation values as indented bullets, stacks the fields of each tuple vertically, and puts labels
to the left of primitive values and above relation values. (b) and (c) show basic hybrid layouts, at two different
widths, that use the outline layout at the first level but switch to nested table sublayouts wherever a table can
fit within the available horizontal space. (d) justifies the columns of the table sublayouts to fill the remaining
available horizontal space. (e) adds columns to the outline sublayout to use horizontal space more efficiently.
(f) is a schema-only layout generated by the algorithm to calculate ideal break points for the columns in (e).

Figure 5-2: Interactive adaptation of the layout of the data to be displayed, based on the
available horizontal space in an on-screen window.

nested table layout is the layout that has been seen many times in the previous two chap-
ters; it arranges tuples vertically, and the fields within each tuple horizontally. The outline
layout, on the other hand, arranges both tuples and fields vertically, in an indented bul-
let list. See Figure 5-1(a). The basic hybrid layout, shown in Figures 5-1(b), (c), and
(d), replaces the outline layout with a nested table layout for specific relation fields in the
schema, wherever such replacement can be done without making the layout too wide for
the available screen or page size. This leads to more compact layouts without introducing
horizontal scrolling. Finally, our algorithm reclaims additional wasted space by allowing
narrow fields in the outline layout to be arranged in columns, as shown in Figure 5-1(e).
The ideal placement of column breaks, as well as the decision to use an outline or table
layout for a given relation field, is done using an idealized layout produced using average
lengths of each field, shown in Figure 5-1(f). In all cases, the order of fields in the layout
is kept the same as in the schema of the input data.

We compare our hybrid layout system with pure outline and nested table layouts with
respect to space efficiency and readability, the latter with an online user study on 27 sub-
jects. In terms of screen area, our hybrid layouts are 3.9 and 1.6 times more compact
on average than outline layouts and horizontally unconstrained table layouts, respectively.
This increases the amount of data that can be shown in a given area without scrolling or
pagination. Furthermore, our user study shows hybrid layouts to be as readable as table
layouts even for large datasets that do require scrolling.

Our Java-based implementation of the layout algorithm, which is now a part of the
larger SIEUFERD system, can produce layouts based on data in any well-formed XML
document, or based on data retrieved from a relational database using the visual query
interface that was described in Chapter 3. For XML document inputs, a suitable schema
will be derived automatically. Generated layouts can either be rendered on screen through
a custom Swing component, as in Figure 5-2, or printed as vector graphics to paper or fully
text-searchable PDF files using the Java Printing API, as was done to produce the other
figures in this chapter. In either case, layouts adapt automatically to fit within the available
horizontal space. Figure 5-2 shows this demonstrated interactively by resizing a window
containing our custom Swing component.

97

=
Relation Value Label for Relation Field
------ LLi N\ L1 -
\ =
Sections \ |
5_:‘§ Meetings \ IInstructorsl
3 Beg. End Place Days Middle JLast I S 5
28| Time |[Time 9 1 ™ Label for Primitive Field =
R
L |01 11:00:00/11:50:00(GUYOT 10 M Thomas S. Duffy -”I R ‘
W
F
P (01| 13:30:00[14:20:00[GUYOT 155] T [Thomas S. Duffy] -Q— Tuple T
Nicole K Gotberg
A. Miller
P (03] 15:30:0016:20:00{ GUYOT 154 Thomas S. Duffy e
icole K Gotberg 7
Mark A Miller
P |04 19:00:00{19:50 Lo Nicole K Gotberg
Primitive Values 5o A Miller Pt
P (05| 11:00:00|11:50:00|GUYOT 154| Th Nicole K Gotberg g
Mark A. Miller P
il noononlocannleorenano [T oo D e -

Figure 5-3: The nested table layout is the most common way to visualize a nested relation.
Our version of this kind of layout, shown here, is used as a base case in our recursive
layout algorithm. Here, we show nested relational data generated from an academic course
catalog in nested table style, with one of the nested columns enlarged to show terminology.
Nested table layouts arrange tuples in the vertical direction and the fields of each tuple in
the horizontal direction, with all field labels collected in a header on top.

5.2 Layout Algorithm

We now describe our layout algorithm. For presentation purposes, we start by discussing
basic nested table and outline layouts, then discuss hybrid table/outline layouts, and finally
show the complete steps to produce the layouts automatically.

The purpose of the algorithm is to produce a compact but readable view of nested input
data that conforms to a non-recursive schema, or, more precisely, nested relational data.
Whenever possible, the regularity of the input data’s schema should be used to maximize
the readability of the data. For instance, a sequence of tuples with similar fields should
be rendered as a table, with proper column headings describing the name of fields in the
schema. We will not require user input informing layout decisions beyond what can be
derived from the data itself.

5.2.1 Nested Relations and Nested Table Layouts

Our algorithm operates on nested data conforming to a non-recursive schema. We have
chosen the nested relational model as the concrete data model for our implementation,
since it tends to lead to simple tree traversal code. It is equally feasible to use a different
nested data model such as that of XML, and in connection with the user study, we did write
a routine for importing arbitrary XML documents.

As in the previous chapters, we define the nested relational data model as follows: A
value is either a primitive or a relation, where a relation is defined as a set of fuples, each
containing a set of fields identified by labels, each field containing a value, recursively.
The schema of a value either defines the value to be a primitive, or defines the value to be
a relation, with schemas further specified for each of the latter’s fields, recursively.

98

Course Course Title

Code

g Grading Components
[}

Description

=
i
Dep # &
£l
=
[
a
n
Sections
;" ?—F Meetings
m E Instructor Times Place
E". First Last Name E Time
= Name -
Sample Reading List
Title
ECO | 385 Ethics and Economics EM MidTerm Exam -5
CHV 345 Take Home Final Exam 45
Papers 30
L 01
|Thomas Leonard | |T 11:00:00| iR
Th 11:00:00

| Economic Analysis and Moral Reasoning (EAMP)

Eco | 418 Strategy and Information

£ MidTerm Exam

30

Final Exam

50

| Game Theory for Applied Economists, 1992

Problem Set(s) 20
" [oiip Abreu | [* iroo:] FISHHEO3
Th | 11:00:00
‘" ‘|Wioletta Dziuda | [wiroo:00] FISHHEBO3 ‘
i ‘|Daisuhe Nakajima | [w 1o3mo0] FEHHEO ‘

Figure 5-4: An older version of the layout system, exhibiting various readability problems
due to (1) uncollapsed borders around every relation value, (2) alternating row colors at
more than one relation level, and (3) wrapping of columns within table rows.

Nested relational data is most commonly illustrated in a nested table layout. An anno-
tated example of such a layout is shown in Figure 5-3; it renders data about the first few
courses in an academic course catalog. A nested table layout consists of a header area
(shown in blue) and a content area (shown in beige). The header area presents the schema
structure of the displayed nested relation, with simple labels for columns containing prim-
itive fields and recursive labels for columns containing relation fields. Columns containing
relation fields may recursively contain columns for either primitive or relation subfields. In
the content area, tuples in the rendered relation are stacked vertically with row separators
between them. Each tuple renders its primitive values as simple strings and its relation
values recursively as the content area of another nested table.

Since we use nested tables as a base case for our layout algorithm, we experimented
with various visual tweaks to make them readable for a wide range of inputs. To minimize
visual noise, it is important to insert horizontal borders only between tuples rather than on
all four sides of them. This also ensures that a relation value containing only a single tuple
with primitive fields takes up no more vertical space than the same primitive fields had
they not been enclosed in a subrelation. If borders and margins are not carefully collapsed
where possible, the result easily becomes a cluttered mess of nested boxes, as illustrated in

99

Figure 5-4.

While remaining frugal with the use of borders, we found it crucial to leave a small
margin to the left and right of each nested relation value, preventing horizontal tuple sep-
arators from extending all the way to the vertical column separators. This can be seen in
Figure 5-3 for instance in the INsTRUCTORS column. Otherwise, unrelated tuples in sibling
relation values may appear to be connected if they line up by accident. During interactive
use, the same margin also prevents the cell selection cursor and any column selection high-
lights from extending all the way to the vertical column separator, providing a further hint
to the structure of the data.

Finally, we experimented with alternating row colors to enhance readability. We found
this to be effective only if applied solely to the root-level relation. Alternating row colors
at more than one level quickly gets confusing, as also illustrated in Figure 5-4.

5.2.2 QOutline Layouts

Nested table layouts, like the one previously seen, can quickly become extremely wide if
many fields are to be displayed. For on-screen interfaces, the need for horizontal scrolling
is undesirable, and for printing on paper, pagination in the horizontal direction is awkward.
As another basic alternative to the nested table layout, we consider the outline layout,
which is common among XML editing tools. Figure 5-1(a) shows the same data as before
rendered using such a layout.

In an outline layout, tuples are stacked vertically in an indented bullet list fashion; we
show one bullet per tuple. Unlike the nested table layout, which arranges tuples vertically
and the fields within each tuple horizontally, the outline layout arranges both tuples and the
fields within each tuple vertically. Thus, having more fields in a schema makes an outline
layout taller, not wider. In a tuple in an outline layout, primitive fields are rendered as
strings with their respective schema labels to the left, whereas relation fields are rendered
recursively with their schema labels above, extended to the full width of the layout area.
The color scheme is the same (blue and beige) for labels and values in an outline layout as
for the header and content area of nested tables, respectively.

The outline layout, unlike the nested table layout, supports the concept of a horizontally
constrained width. Like the layouts produced by our final algorithm, an outline layout can
be produced for any available width (with some minimum constraints), breaking text in
primitive value areas as necessary. Our system distinguishes between fixed- and variable-
length primitive fields; value areas for fixed-length primitive fields are always rendered at
their predicted width, whereas areas for variable-length primitive fields are rendered to the
full available width. This ensures that the visual width of a particular primitive field remains
the same between successive tuples, even when the actual value differs. The rationale
is two-fold. First, if layouts are to be used for data entry or data editing in a database
application, the width of an input field should be commensurate with the expected size of
its values. Second, keeping the perceived overall shape (gestalt) of successive tuples of the
same relation schema similar should make it easier for a user to visually scan for specific
fields in those tuples.

100

5.2.3 Hybrid Layout

Whereas nested table layouts quickly grow wide, outline layouts tend to be tall and narrow.
Outline layouts use space inefficiently by only starting values on the left-hand side of the
page, and by repeating schema labels once for every value. They are also harder to read than
table layouts, since they tend to put values from the same schema field but from different
tuples far apart.

In Figure 5-1(b), we introduce a hybrid layout that embeds nested tables inside an
outline layout. This saves vertical space compared to the pure outline layout in Figure 5-
I(a). Like for the outline layout, we assume that we are given a constrained amount of
horizontal space to work with, such as the screen size or page width for printing. We then
create a layout that is guaranteed to fit within this horizontal space. This avoids horizontal
scrolling or pagination, and ensures that the layout will only grow in the vertical direction
as more tuples or fields are added.

When building a hybrid outline/table layout, the algorithm must start at the root level
of the relation schema and decide, for each relation field, whether to render that relation
field using a nested table or another level of an outline layout. If the decision is made to
render a relation field using an outline layout, the decision process is repeated recursively
for each of its fields. If the decision is made to render a relation field using a nested table
layout, all child fields are rendered using a nested table layout as well. While our recursive
layout generation algorithm technically supports embedding outline sublayouts into nested
table layouts, this makes little typographical sense, and we do not make use of this case.

The decision to use an outline layout vs. a nested table layout for a given relation
schema could reasonably be made using a cost optimization strategy, for instance based on
the total area consumed by the layout in each case. However, because nested table layouts
almost invariably consume less area than corresponding outline layouts, a simpler heuristic
is possible: always use a nested table layout if there is enough horizontal space available
for it. This is the rule used in our algorithm; it is illustrated by contrasting the narrow lay-
out in Figure 5-1(b) with the wider layout of Figure 5-1(c). In Figure 5-1(b), the layout is
constrained to a small width, and small nested tables have been chosen by the heuristic for
relation fields Course LisTINGS, GRADING, SEcTIONS/MEETINGS, and SECTIONS/INSTRUCTORS.
All higher-level relations are rendered using outline sublayouts. In Figure 5-1(c), the same
data is rendered at a larger constrained width, allowing both the SampLE READING LisT rela-
tion field and the entire SEcTiONS relation field to be rendered as a nested table. Note that a
hybrid layout that is given enough horizontal space to work with will always degenerate to
a pure nested table layout.

Since the outline vs. nested table decision heuristic depends on whether or not there is
enough horizontal space for a table, the determination of minimum table column widths is
important at this stage. For relation fields, table columns are as wide as the sum of their
child fields’ columns, plus separator lines and side margins, as well as any extra space
needed to accommodate the relation column’s own header label. For fixed-width primitive
fields, the width of the table column is simply the width of the field. For variable-width
primitive fields, we experimented with various heuristics, and found the average width of
values in the field to be a sensible minimum, limited upwards to a constant value. The latter
constant should be within the recommended width of a standard book column, e.g. on the

101

order of 50 characters'. Primitive columns also need to be wide enough to accommodate
their schema labels, which may often be wider than the actual values in the fields. For the
latter case, we automatically use vertical column labels in tables if this makes the column
narrower for the purposes of the outline vs. nested table decision. Examples are the ForRmAT
and NumBer column header labels in Figure 5-1(c).

After the minimum widths of table columns have been determined and the decisions
to use outline vs. nested table sublayouts at each relation level have been made, addi-
tional horizontal space may be available to the right of nested table sublayouts. A separate
table justification step uses the remaining horizontal space to first, for readability, make
any previously vertical column headers’ labels horizontal. This is done in a greedy order to
minimize the number of remaining vertical column labels. Then, any remaining horizontal
space is distributed among columns holding variable-length primitive fields, in proportion
to their fields’ average lengths. The table justification step is illustrated in the transition
from Figure 5-1(c) to Figure 5-1(d).

Note again that layout styling decisions, such as table column widths or whether to
use an outline or a table sublayout for a given subrelation, are made once for each field
in the schema of the input data rather than once for each value in the input data. This
means, for instance, that in a given layout like Figure 5-1(c), every instance of the SEcTIONS
relation will be rendered in the same way (either as a table or an outline), regardless of its
actual content in each instance. The rationale is similar to that for making primitive fields
in outline mode always the same width. Note, however, that while the size and position
of fields in a layout will always stay consistent in the horizontal direction, individual text
boxes and lists of tuples may grow and shrink in the vertical direction, depending on the
data that is being laid out.

5.2.4 Columns in Outline Layouts

While the hybrid layouts layout shown in Figures 5-1(b), (c), and (d) save substantial area
compared to corresponding outline layouts, they still use horizontal space inefficiently in
cases where small primitive fields can not be made part of a table and where only tables
with narrow content can be used. In form-style database user interfaces, the traditional
solution is to make use of multiple columns of fields. Note that these are a different kind of
columns than the columns in nested tables; they allow different fields in an outline layout to
be organized in multiple adjacent stacks. We now show how our system can automatically
incorporate columns in outline sublayouts with no manual styling required.

We considered various approaches to the problem of introducing columns into outline
layouts. Design questions include how to pick the right number of columns to use, how to
pick the width of each column, whether to allow certain fields to span multiple columns,
and after which fields a new column should be started. We decided to make two simplifying
assumptions which seem to work reasonably in practice: (1) the number of columns to use
is based solely on the available horizontal space, and (2) every adjacent column has the
same width. So for a layout of a width corresponding to a typical letter-size page, for

'Robert Bringhurst’s The Elements of Typographic Style recommends 40 to 50 characters for multi-
column text; see http://webtypography.net/2.1.2.

102

http://webtypography.net/2.1.2

Table Layout

nokeT auno

Hybrid Layout

Figure 5-5: A comparison between our hybrid outline/table layout and a pure nested table
layout and a pure outline layout, for the case of displaying a single tuple with many fields,
including relational fields containing other nested tuples. Each layout is showing the same
data in its entirety, at the same scale and font size. Outline layouts waste space by concen-
trating data to the left of the screen and by repeating labels for each value. Table layouts
waste space when different fields in the same subrelation require different amounts of ver-
tical space. Table layouts also tend to become very wide, requiring horizontal scrolling if
viewed on a screen.

instance, the algorithm would use a two-column layout in the root level outline. However,
one complicating issue must still be dealt with: relation fields that could be rendered in
a table layout need to be allowed to span multiple columns if necessary. We settled on
the following rule: any relation field in an outline is excluded from participating in a set of
multiple columns if that would cause it to be rendered as an outline. There is no requirement
that the field would actually have to be rendered as a nested table if excluded, but if the
excluded field is rendered as an outline, that outline layout is subject to the usual heuristics
about whether to use columns or not at that next level.

For implementation purposes, the algorithm divides the fields of a relation displayed in
an outline layout into multiple column sets, each which contains again a list of columns,
each which contains the fields in the column. To populate column sets, the algorithm
iterates over outline fields in the order they appear in the schema, assigning each to the
current column set. If an excluded field is encountered, it is assigned to a new column
set of its own, and a new current column set started. No reordering of fields is done at
any point, as the order of fields in the schema is considered significant for presentation
purposes. After all fields have been assigned to column sets, each column set partitions
its assigned fields into columns. Figure 5-1(e) shows the final hybrid layout with column
support. The example layout has a single outline sublayout with 3 column sets; the first
column set has two columns and contains the fields Course LisTiNGs through DEscrIPTION
in the first column and the fields Max. ENroLLMENT through GRADING in the second column.
The second and third column sets each have only one column with a single field in each,
containing the fields SampPLE READING List and SecTiONS, respectively.

The partitioning of columns in a column set, that is, after what fields to start each

103

column, requires a heuristic. Simply giving each column the same number of fields does
not work well, since some fields frequently take up more vertical space than others. A
better approach is to split the columns so as to minimize the total vertical space consumed;
this can be done easily with a dynamic programming routine. However, if this is done
independently for each tuple being rendered, two tuples might end up having differently
partitioned columns, with different fields starting the columns in each case. This is not ideal
for readability. Instead, as before, we make the decision of where to begin new columns
only once for the entire layout.

To allow calculation of optimal column partitioning positions on the basis of only ag-
gregate information about the input, we allow our layout generation algorithm to generate
schema-only versions of sublayouts. For instance, the schema-only layout for the layout in
Figure 5-1(e) is shown in Figure 5-1(f). In a schema-only layout, variable-length primitive
fields are sized, with simulated line breaking, according to the average width of the field
in the entire dataset. Relation fields are rendered, in outline or table form, with a single
placeholder tuple only, but subsequently padded such that the size of the subrelation layout
is proportional to the average cardinality of that relation throughout the entire dataset. Thus
in Figure 5-1(f), the DescriptTiON field is taller than the TiTLE field, and there are about two
rows’ worth of vertical space allocated in the SAMPLE READING LisT table. Optimal column
partitioning decisions are then made using these estimated schema-only layouts. The final
layout is shown in Figure 5-1(e) (a larger version was seen in Chapter 1, Figure 1-5).

The final class of hybrid layouts produced is considerably more compact than both the
outline and the nested table layouts, and can be produced automatically with no manual
input. Figure 5-5 shows a scale comparison between the three layout styles, each showing
a single nested tuple from the course catalog example. In this case, the hybrid layout would
permit significantly more data to be fit on a single screen without scrolling in either the
vertical or the horizontal direction. We can also see that large nested table layouts often
waste space whenever two values in the same tuple take up different amounts of vertical
space.

5.2.5 Implementation

To produce the hybrid layouts described, our system makes two passes over the input
data while maintaining a stylesheet as the only other common data structure. Like the
SIEUFERD query model, which was described in the previous chapter, the stylesheet maps
schema fields and property types to property values, that is, each field in the schema has
one value for each property. See Table 5.1 for the list of stylesheet properties. Before
the algorithm starts, a subset of properties will already have been set as constants, such as
the choice of fonts and separator styles. Our algorithm’s first pass over the input data is
during the MEASURE phase, which finds the average rendered width of each primitive value
and the average cardinality of each relation value. The application of heuristics to set re-
maining stylesheet properties is then done in a subsequent pass over the schema only, the
Auto-STYLE phase. Finally, the output layout is constructed in the LavouT phase, which
is the second pass over the input value. The Auto-StYLE and the LAvout phases execute
the same code, but with the Auto-StYLE phase traversing a schema-only version of the data
structure used to maintain context, and using the aforementioned heuristics to set undefined

104

0E Unpaginated Hybrid Layout m
£ Paginated Hybrid Layout ——=
60 - Unpaginated Outline Layout mmmmm
L Paginated Outline Layout ——=
Unpaginated Tabular Layout mmmmm

Total Layout Area
(US Letter-size pages or equivalent)

RelationalPrinceton Auction321Gone SigmodRecord SwissProt DBLP Mondial NASA TPCHPart ProteinSequence CoursesReed

Figure 5-6: Total area consumed by layouts of each of the three types. Outline and Hybrid
layout widths are constrained to 8 inches, and are shown both with and without pagination.

stylesheet properties whenever they are encountered. The heuristics for setting stylesheet
properties during the Lavout phase are described in Table 5.1.

5.3 Evaluation

We evaluated three aspects of our system: runtime performance, the area consumed by
generated layouts, and the readability of large layouts as measured by the time taken for
human subjects to solve question tasks about the rendered data. As sample datasets, we
picked one XML file from each of the 10 categories in the XML Data Repository at the
University of Washington?, except for the Treebank dataset, which is the only one with a
recursive schema. We used the “preview” version of each dataset to make sure visualiza-
tions would be of a realistic size for human perusal. We also included one dataset from
a relational database containing the complete course catalog for a semester at Princeton
University (ReLaTioNALPRINCETONHUGE), and a subset containing only the courses from one
department (ReLATIONALPRINCETON). See Table 5.2.

5.3.1 Runtime Performance

For runtime measurements, we ran all phases of the layout algorithm in sequence, and
repeated the entire sequence multiple times. The runtimes for individual phases were av-
eraged, less initial dry runs. Resulting runtime statistics for two datasets are shown in
Table 5.3, for 30 runs plus 3 dry runs. The machine used had an Intel Core 2 Duo CPU and
4GB of RAM.

Our two sets of runtime measurements suggest, as expected, that both the MEasURE and
Lavout phases run in time roughly proportional to the size of the input data, as measured
by the size of the output layouts. Also as expected, the time consumed by the Auto-STYLE
phase does not depend on the size of the input data, as it depends only on the schema and
input stylesheet. For the larger ReLaTioNaALPRINCETONHUGE dataset, the fact that the Layout
phase does not take significantly more time to run than than the MEASURE phase suggests
that the main bottleneck of the Lavour phase is the line breaking code that determines

2@G. Miklau, http://www.cs.washington.edu/research/xmldatasets/www/repository.html

105

http://www.cs.washington.edu/research/xmldatasets/www/repository.html

Table 5.1: Properties defined, for each field in the schema, by a stylesheet. P, R, and P R
indicate properties applicable to primitive fields, relation fields, or both, respectively. We
have omitted color- and border-related properties.

Basic Styling Constants
OutlineBulletStyle. Bullet type for bulleted tuples in outline sublayouts.
OutlineIndentWidth. Indentation amount for bulleted tuples in outline sublayouts.
OutlineTupleSpaceHeight. Vertical space between tuples in outline sublayouts.
TableNestSpaceSideWidth. Horizontal margin amount for nested tables.
LabelTextStyle. Text style for outline labels or table headers.
ValueTextStyle. Text style for values in outline or table sublayouts.

RRRRR

o o

Constant Heuristic Parameters
OutlineMaxLabelWidth. Maximum width of labels in outline sublayouts.
OutlineColumnMinWidth. Minimum width of each outline column.
P |OutlineMinValueWidth. Minimum width of a primitive value in an outline.
P |OutlineSnapValueWidth. Multiple to round up to when setting the width of a non-
variable primitive value in an outline sublayout.
P |TableMaxPrimitiveWidth. Maximum width that can be allocated to a table
sublayout column with variable-length primitive values, before table
justification.

~ R

Properties Set During Measure Phase
R [OutlineLabelWidth. Width of labels in outline sublayouts. Sibling fields all use the
same width, which is defined at the parent relation level.

R | AverageCardinality. The average number of tuples in each subrelation.
P |IsVariableLength. Whether a primitive field holds long strings of variable length.
P | ValueDefaultWidth. Average width of primitive values in this field when rendered
with ValueTextStyle, or maximum width for non-variable length fields.

Properties Set During Auto-Style Phase

P R |StartNewOutlineColumn. True for the first field in each column of an outline
column set. The heuristic partitions columns based on schema-only layouts that
use ValueDefaultWidth and AverageCardinality to estimate field sizes.

P R |StartNewQutlineColumnSet. True for the first field in each outline column set.
Column sets allow some sibling fields to be organized in multiple columns and
others not. The heuristic puts a field in its own single-column column set if it
would otherwise contain an outline sublayout.

P R |UseVerticalTableHeader. Whether to display a label in a table header vertically.
The heuristic initially assumes vertical labels for primitive fields if this makes
the column narrower, but restores as many horizontal labels as possible when
the table is justified.

PR |TableColumnWidth. The width of each table column. Primitive columns are
ValueDefaultWidth wide before justification; relation columns are the sum of
their children plus twice TableNestSpaceSideWidth. Columns are also extended
to accomodate their labels, as necessary.

R [UseTable. Whether to use an outline or a table sublayout for this relation. A table
sublayout is used iff it its width before justification is less than or equal to the
available horizontal space.

106

Table 5.2: Quantitative statistics related to the size and complexity of datasets referred to in
this chapter. The depth of a primitive value is the number of enclosing relation values that
must be traversed to reach the primitive value from the root. The plural depth only counts
non-singleton enclosing relations.

© =

S S S S

§ :‘E Z§ § = Q T = T =
Dataset #*x O B %A #* |SQ | |STQ|=KA
RelationalPrincetonHuge 828463 | 59887 | 18751 | 225 | 4 2.25 4
RelationalPrinceton 21 811 1359 419 | 220 | 4 2.20 4
Auction321Gone 13 679 250 61| 296 | 4 1.00 1
SigmodRecord 12 360 953 560 | 501 | 6 2.51 3
SwissProt 13559 | 1566 809 | 3.15| 5 1.94 3
DBLP 22012 | 1493 310 210 | 3 1.09 2
Mondial 15046 | 3032 | 1020 | 3.63| 5 248 4
NASA 18218 854 731 | 6.16 | 8 343 5
TPCHPart 10 607 901 101 | 2.00| 2 1.00 1
ProteinSequence 11236 953 494 1 385 | 6 1.94 3
CoursesReed 4 858 800 200 | 233 | 3 1.00 1

Table 5.3: Runtime measurements for each phase of the layout algorithm. Standard error
is within 3% in each case.

Dataset Pages Algorithm fhase Runtime (s)
vlo2 ¥
3 A 2 3
< S S =
S| §| & @
= < N <
RelationalPrinceton 12| 1.03 029 | 0.83 | 0.0014
RelationalPrincetonHuge 455 | 40.16 | 0.31 | 42.43 | 0.0451

107

the size of rectangles assigned to display primitive values, since said line breaking code
is common to both phases. Profiling has confirmed this to be the case. For the smaller
RELATIONALPRINCETON dataset, the time to perform Auto-StyLE and Layour for a new width
is interactive. Pagination time is insignificant, but roughly proportional to the number of
pages in the output.

5.3.2 Layout Space Efficiency

To evaluate the space efficiency of our layouts, we compared, for each dataset, the area
consumed by our own hybrid layout vs. the area consumed by a pure outline layout and
a pure nested tabular layout. Each layout was produced by our layout manager, with the
latter two using a hard-coded value of raLsE and TRUE for the UseTaBLE stylesheet property
at every field to force the layout manager into pure outline and pure nested tabular mode,
respectively.

Figure 5-6 compares the total area of each kind of layout for every dataset. The unpag-
inated area of a layout is that of the smallest rectangle enclosing it. The paginated area,
for hybrid and outline layouts, is the number of pages consumed by the layout times the
imageable (non-margin) area available on each page. Thus, the latter includes space wasted
at the end of each page whenever the pagination algorithm has opted to break the page at an
earlier but less awkward place. Since pure tabular views of an entire dataset are generally
too wide to fit on a regular letter-size page, the tabular layout is rendered as a single, very
large page. In cases where the tabular layout is actually narrow enough to fit on a page,
notably the the SiGmopREcorD, TPCHPARrT, and CoursesREED datasets, the hybrid layout is
nearly identical to the tabular layout, except that the pagination algorithm may be used to
break up the hybrid layouts in the vertical direction. The ratio of the area consumed by an
unpaginated outline layout to that consumed by an unpaginated hybrid layout is 3.9:1 on
average. Similarly for tabular to hybrid layouts, it is 1.6:1 on average.

Looking at the data from Figure 5-6, we see that the hybrid layout consumes less area
than the corresponding outline layout for every dataset, with or without pagination en-
abled. The difference is greatest, between 4 and 13 times, in the cases where the hybrid
layout corresponds to a pure nested tabular layout, namely SicmopRecorp, TPCHPARrT, and
CoursesREED. In these cases the schema of the data was flat or almost flat, and so a standard
table layout would make very efficient use of the space. In the other cases, the hybrid lay-
outs are about half the size of outline layouts on average. The smallest difference was for
the Auction321GonE dataset, where the outline layout was 1.3 times the size of the hybrid
layout. In this case the schema was nested in several levels, but contained only singular
relations (relations only ever holding a single tuple) beyond the top level, so there were no
opportunities for the hybrid layout algorithm to introduce tables into the lower levels of the
layout. The modest saving over the outline layout came from the hybrid layout’s ability
to display data in an outline tuple over two columns. A more significant difference was
for the MonpiaL dataset, where the outline layout was 3.3 times the size of the hybrid lay-
out. Here the hybrid layout made good use of both tuple columns and the ability to render
subrelations as tables, and only used one level of outline bullets.

While pure nested tabular layouts cannot be constrained to a page width like the out-
line and hybrid layouts, they tend to consume less total area than the outline layouts. See

108

Mean Time to Solve Correctly (s)

270

Hybrid Layout, Subtask A mmmm —| Hybrid Layout, Subtask B
Outline Layout, Subtask A — 240 - Outline Layout, Subtask B |
Tabular Layout, Subtask A - 210 Tabular Layout, Subtask B s

180
150
120

90

60

Mean Time to Solve Correctly (s)

30

S 2.5 3. 4., 3. 6., 7. ES 9. N 2.5 3.,
Aucy; Sie, Swy;. -Dp, Moy,,,. ON4 TP Proy.. ~Co, Ayes: < Sio,
o, Moy, Issp, Lp nd;; S4 Cp, lejp, Urge, Cliog, 5., €Mog,
032 IGOne RECOI'([Top al arg SeqUeﬂce Weed n32, anelee%

4 3 6. 7 Sp. 9
Sw,‘“ Pry IDBL » Mun iy Nag 4 by PCHPa,T rorel.nseC
q

Task Number-Data Set Name (Subtasks A) Task Number-Data Set Name (Subtasks B)

Figure 5-7: The mean time to solve each task in the user study, grouped by the kind of
layouts that were used to generate the PDFs subjects used to solve the task. The error bars
show the Standard Error of the Mean. Subtasks B were given to subjects directly after
Subtasks A, and were in each case identical to Subtask A except for a small emphasized
change in the question text.

again Figure 5-6. For Auction321GonNE, NASA, PROTEINSEQUENCE, SwissProt, the hybrid
layout still consumes between 30% and 80% less area than the tabular layout. This is be-
cause nested tables waste large amounts of space whenever a row contains cells of variable
heights, such as when one empty and one well-populated subtable are placed horizontally
adjacent to each other on the same row of a parent table.

5.3.3 Readability

To evaluate the readability of our layouts, we conducted a between-subjects online user
study using Amazon Mechanical Turk® and StudyCaster, a Java-based tool we developed
to allow test subjects to stream timestamped recordings of their computer screens to our
server with a minimum of effort. In an initial public recruiting stage of the study, workers
were offered $0.25 to launch the StudyCaster and solve a chart-making task that required
the workers to have Microsoft Excel installed on their machines. In the second and main
stage of our experiment, we gradually invited qualified Mechanical Turk workers from
the first stage directly to do a second task, worth $3.00. This task contained, for each
subject, 9 different two-part questions, each two-part question being based on a separate
PDF file with a layout generated from one of our 9 XML sources from the UW XML
repository. The questions were a mix requiring the subjects to do both scanning across
multiple similar entities (e.g. “What is the Brand number of the product sold in a Jumbo
Bag container at a Retail price of less than $950?” or “How many articles were published
in Volume 12, Number 3?”) and lookup between the attributes and related entities of a
single entity (e.g. “What is the name of the person who was responsible for digitizing the
earlier work by authors X?”). See Figure 5.4. To reduce potential noise from subjects’
varying familiarity with their PDF readers’ search feature, the PDF files were rasterized,
effectively disabling the feature for everyone. All subjects were given the same questions

3http ://www.mturk. com

109

0
urXeSR e
Quey, ce ced

http://www.mturk.com

‘ Data Set ‘ Question Given (subtask A/B variations in curly brackets)

1 | Auction321Gone | What is the size of the hard drive of the computer with the {shortest|longest} “Time Left”
on the auction?

2 | SigmodRecord How many articles were published in {Volume 12, Number 3|Volume 14, Number 1}?

3 | SwissProt What organism (“‘Species”) has an author with the last name “{ Poovaiah|Cognetti}” listed
amonyg its references?

4 | DBLP How many articles are listed under the “{Inproceedings|Mastersthesis}” category?

5 | Mondial What percentage of the population of {Germany|Gibraltar} is listed with “Roman
Catholic” as their religion?

6 | NASA What is the name of the person who was responsible for digitalizing (“Ingesting”) the
earlier work by authors {Spencer and Jackson|Larink, Bohrmann, Kox, Groeneveld, and
Klauder}?

7 | TPCHPart What is the “Brand” number of the product sold in a “Jumbo Bag” container at a “Retail-

price” of {less|more} than $950?

8 | ProteinSequence | What is the last name of the first author listed in the references for the protein identified by
the “Id” code “{ CCMQR|CCWHC}?

9 | CoursesReed How many 0.5-unit { Chemistry (“CHEM”)|Biology (“BIOL”)} courses are mentioned in
the list?

Table 5.4: Question tasks given in the user study.

Hybrid Layout, Subtask A
Outline Layout, Subtask A [
Tabular Layout, Subtask A mmmmm
Hybrid Layout, Subtask B
Outline Layout, Subtask B
Tabular Layout, Subtask B mmmm

Correct/Total Response Fraction
)
%

L-Auctipy, 321Gop Z‘Sig""’dReca,d lswis,,pm[4-DBLp 3-Mongjy 6-NASA 7~TPCHP3,,
e
Task Number-Data Set Name

8~ProzeinSequenCe Q‘CoulsesReed

Figure 5-8: The fraction of correct responses to each task in the user study. The error bars
show the Standard Error of the Mean when assigning value a value of 1 for correct answers
and O for incorrect answers.

and datasets in the same order. However, the type of layout provided for each dataset was
randomized, with the constraint that each subject would see 3 datasets rendered with each
of the 3 kinds of layout types. The order of the layout types was round-robined such that
datasets number 1, 4, and 7 would use the same layout types, as would 2, 5, and 8, and
as would 3, 6, and 9. Each of the 18 total questions (from 9 two-part questions) would be
shown in the StudyCaster pop-up window, which allowed us to measure the exact amount
of time the subjects spent viewing, and hence presumably spent working on, each question.
The StudyCaster software also allowed us to further limit timings to when workers had
the correct PDF file in focus in their PDF reader to answer the currently shown question
(sampled from the Win32 API at 5Hz), and to exclude time idle more than 5 seconds from
keyboard or mouse activity (same). The idle time rule was used to decrease noise from
workers taking a break from the computer while having a question open on the screen.
Our user study yielded data from 27 subjects. An additional 6 subjects completed the
study, but were not included in the dataset due to technical problems uploading their screen
recordings and timing data. The 18 task questions were answered correctly by 88% of
subjects on average, with too limited variation to draw conclusions about possible impact

110

Table 5.5: Summary of statistical tests run on the dataset from Figure 5-7. Only tasks for
which the ANOVA yielded p<0.05 are shown. For Tukey HSD pairs with p<0.05, we also
show the relative differences in average task completion times.

Task| Levene | ANOVA | Tukey HSD (follow-up to find differences | Mean-Time-to-

(hetero- between pairs) Solve Ratio
scedasti-

city) Outline v. i Outline v. i Tabular v. |Outline: Outline:

Hybrid : Tabular { Hybrid | Hybrid i Tabular
#H o p p p p P
2A] 05312 0.0012 | 0.0019 i 0.0169 0.8006 | 2.05 i 2.80
2B| 0.0627 | 0.0034 | 0.0036 : 0.0448 09279 | 340 i 262
3B| 0.2889 | 0.0032 | 03047 : 0.0023 : 0.0962 : 281
5A[0.7976 | 0.0072 | 0.0200 : 0.0142 i 0.8521 211 | 274
5B| 0.0389 | 0.0174 | 0.0251 0.0532 0.9999 | 4.97
8A[0.1099 | 0.0101 | 0.0092 : 0.0996 0.8201 1.88
8B| 0.3409 | 0.0004 | 0.0048 i 0.0008 : 03129 | 2.00 i 4.16
9A| 0.4104 | 0.0034 | 0.0050 i 0.0119 : 0.9553 246 i 220
9B| 0.1812 | 0.0107 | 0.0108 : 00530 : 0.7919 | 4.69

of layout type on correctness. See Figure 5-8. Figure 5-7 shows the average time taken
to complete each subtask for each layout type. Each subject’s timing is included in the
average for each subtask only if the subject answered that question correctly.

To test our user study for statistical significance, we considered the timing data from
each of the 18 subtasks separately. In each case, we thus had 3 sets of measurements of
the time taken to solve the task correctly, one for each kind of layout presented to the
user. Timings for incorrectly solved tasks were omitted for this part of the data analysis.
We first ran Levene’s test to confirm that our experiment design conformed to ANOVA’s
assumption of homogeneous variances between the 3 measurement populations in each
case. In only 1 of the 18 cases (Task 5B) was Levene’s test significant (indicating non-
homogeneous variances) with p < 0.05, suggesting that this is a reasonable assumption.
We thus proceeded to use ANOVA to analyze the results, with a Tukey Honest Significance
Difference (HSD) test as a follow-up in cases where the ANOVA was significant. Since
we are doing 18 tests, we should require p < 0.05/18 for strictly significant ANOVAs, as
per the Bonferroni correction. There are two significant results to this confidence level,
for tasks 2A and 8B. For the purposes of discussing results, however, we have done the
Tukey HSD follow-up test for all tasks with ANOVAs up to p < 0.05. This allows us to
list all the most significantly different pairs of timings between different layout types, as
shown together with the relevant p-values in Table 5.5. Note that we can expect about one
(18 %0.05) of the borderline-significant ANOVAs in this table to be due to chance.

Looking at the follow-up tests from Table 5.5, we can see no significant differences in
the task completion times between the tabular vs. the hybrid layouts. We do however see
consistent differences both between the outline and the hybrid layouts as well as between
the outline and the tabular layouts. These differences are present in both subtasks of several
questions, suggesting that they are relevant both when users are first learning to do a task
and when they immediately after do a second similarly structured task. In terms of relative

111

task completion times, it is clear that both the hybrid and the tabular layouts outperform the
outline layout, in both cases being completed 2.9 times faster on average for the tasks listed
in Table 5.5. We believe outline layouts are harder to read because (1) they are large and
require the user to scroll more to look through a given amount of data and (2) they exhibit
less spatial regularity than the other layouts.

The relatively high performance of the nested tabular layouts suggests that for the kinds
of large datasets we had our users work with, the very regular structure of the tabular layout
can outweigh its disadvantages of taking up more space and requiring both horizontal and
vertical scrolling. However, the tabular layout would be a poor choice for smaller datasets,
such as the common database application requirement of showing the details of a single
entity with all its attributes and related subentities. In this case, data that would fit on a
single screenful when formatted with the hybrid layout would likely exceed the width of
the screen when formatted with the pure table layout, requiring horizontal scrolling rather
than no scrolling at all, and making very poor use of vertical space, since the top-level table
would have only a single row. The pure outline layout, on the other hand, would fit in the
required horizontal space, but would likely exceed available space in the vertical direction,
also requiring scrolling. Future evaluation could focus on layout performance on smaller,
form-size datasets.

In terms of space efficiency, outline views lose in most of the cases, with hybrid layouts
performing significantly better. In almost every case, unpaginated hybrid layouts also per-
form as well as or better than unpaginated tabular layouts. It is worth noting that tabular
layouts are not, by their nature, constrained horizontally. So they can not, for instance, be
printed on paper, unlike the hybrid layouts. The user study shows a less clear difference,
though outline views to still tend to fare the worst. It is slightly surprising to see the very
large pure table layouts outperform the other layouts in a few cases; this is an interesting
result.

5.4 Extensions

This section discusses features that were added to the layout generation system after the
previously discussed evaluation, in support of the complete visual query system that was
discussed in Chapter 3.

5.4.1 Interactive Features

While our evaluation focused on the static aspects of our layout management algorithm,
our implemented system now includes multiple features oriented towards interactive use.
A requirement for many kinds of interactions is to be able to make selections among
displayed elements in the layout. Our system supports a spreadsheet-like cursor which
can be used to select any cell in the layout, where a cell is defined as either a label for a
primitive field, a label for a relation field, or a primitive value. Selections can be made
either by clicking the mouse or by moving the cursor with keyboard navigation keys (arrow
keys, Home/Enp, and Page Up/PaGe Down). Because the aforementioned definition of a cell
serves to ensure that no two cells can ever overlap, determining the cell to be selected in the

112

case of a mouse click is a simple matter of determining what cell occupies, or is closest to,
the point at which the mouse was clicked. For keyboard-based cursor movement, we found
the cursor behavior to feel the most natural when the relative motion of the cursor followed
the physical location of the cells in the visual layout rather than the logical location of the
cells in the schema. To make keyboard cursor movement work well when traversing cells
arranged in various non-trivial configurations, we store the cursor state as an (x,y)-position
on the layout rather than simply as a pointer to the selected cell. This generalizes the
behavior seen in existing spreadsheets for instance when moving the cursor across merged
cells.

By dragging the cell cursor across fields in a layout, or by moving the cell cursor while
pressing appropriate keyboard modifiers (SHirt or CTRL/CoMMAND), the user may select any
number of fields at a time. When the layout system is used as a front-end to our visual
query system, such multiple selection can be used with query actions such as Hipe and
CLEAR FirTER in order to quickly apply the action to multiple fields. Actions such as Join,
Firer, and Sort AsceNDING also define meaningful behaviors on multiple selections. Note
that our current system only supports multiple selection of fields (e.g. table columns), since
all the operations of our visual query language are designed to operate on fields rather than,
say, tuples or individual cells. Once our system is extended to support data editing, support
for multiple selection of tuples or cells would be useful as well, for instance for use with
operations such as DELETE.

An additional feature is the ability to interactively override the stylesheet settings made
by the automatic layout manager. This has the potential to significantly improve readability
of output layouts, since the user can use their domain knowledge to decide where labels are
superfluous and can be omitted, what fields should serve as titles and thus be emphasized
with larger fonts, and such.

Finally, our system supports “frozen” table headers which stay put at the top of the
screen for as long as a table is partially visible in the scrolling viewport. This works both
for pure table layouts and where table layouts are contained within outline layouts (hybrid
layouts).

5.4.2 Stable Interactive Layouts

In the standalone version of our layout algorithm, the measurements made in the MEASURE
phase are done on the same input data that is subsequently laid out in the LAvout phase.
This means that two datasets with identical schemas may nevertheless be rendered using
different layout decisions. In our visual query system, it is desirable for output layouts to
stay consistent across the many intermediate results that are generated as the user performs
a sequence of query manipulation actions. For example, the width of table columns should
not usually change as a result of applying a filter or sorting operation, as this would make
it difficult for the user to see exactly what changed as a result of applying the operation in
question. Similarly, the retrieval of more rows during infinite scrolling should retain the
layout decisions that were made for the original dataset.

In our visual query system, the properties that make up the layout algorithm’s stylesheet
(Table 5.1) can be stored alongside the properties that define the SIEUFERD query model
(Table 4.1). The combined data structure defines not only the query to be executed to

113

instructors <

first middle last

Alfred J. Acres

Dilip 1. Abreu
Laura L. Adams
Duncan Nichoas ' Menge
Leonid viktorovich Alekseyev
Kamal Abdelfattah
Christopher H. Achen
Tobias Adrian
Samar C Abou-Nemeh
Catherine

Figure 5-9: Strategies used to render exceptionally long string values at a given prescribed
width. Text is broken at word boundaries (SAMAR CATHERINE), or the font size is decreased
(VikTorovicH), or both (NicnorLas LuscHeEnco). When sufficient vertical space is available,
text rendered at a smaller font size is shifted down to ensure baseline alignment with text
in adjacent cells (VIKTOROVICH).

retrieve results, but also how to render those results on the screen. Because the layout
stylesheet is now part of the state that defines the current query, we can reuse layout-related
state from one intermediate query result to the next.

We define an additional stylesheet property SampLESIZE, initially zero, which is used
to inform an improved version of our layout algorithm’s MEASURE phase. A field’s
SampLESIZE is defined as the number of distinct observed values that went into the statistics
currently stored about that field’s data (i.e. AVERAGECARDINALITY for relation fields, and
IsVarIABLELENGTH and VALUEDEFAULTWIDTH for primitive fields). The improved MEASURE
phase performs new measurements for a field only if the old sample size is less than 50 and
new sampling would increase the sample size by at least 75%, with the latter requirement
waived if the old sample size is less than 15 and the new measurement would increase the
sample size. These heuristics were developed by trial and error; the specific parameters
were chosen to work well given our default query limit of 100 tuples prior to infinite
scrolling. In the visual query system, measured stylesheet properties like SAMPLESIZE,
AVERAGECARDINALITY, ISVARIABLELENGTH, and VALUEDEFAULTWIDTH are preserved in the
event that a field is temporarily hidden, and are also carried along when a relation is copied
from one query to another during an automatic or manual join operation.

Since, in particular, the layout property dealing with column widths (VALUEDEFAULTWIDTH)
is no longer guaranteed to be based on measurements of the actual data to be rendered,
we need a strategy for dealing with exceptionally long string values. The solution is
to apply a combination of line breaking and font sizing; see Figure 5-9. Fields for
which IsVARIABLELENGTH is true tend to contain long-form text such as comments or
descriptions, and are first broken into paragraph lines on word boundaries. Fields for
which IsVARIABLELENGTH 1s false tend to contain data less suitable for line breaking,
such as phone numbers, email addresses, mailing address lines, or proper names. In the
latter case, or when line breaking still yields a text layout too wide to fit in the available

114

Columns | /= YEAR{Order Date) |~/ QUARTER(Order Date) ||+ MONTH(Order Date)]

Rows | Region) Product Category Il Measure Names)

Horizontal Axis 2007 2008

. . Qi @ Q3 Q4 at @2 Q3
Vertlcal AXIS Total Total Total October Movemb.. Decemb.. Total Total Total Total
Central Furniture Profit ($) 16 -1,233 3640 -918 24 -394 -3.481 -1,243 47
Sales (S) 40 10750 18881 21,450 291 21742 46412 10313 358
Office Profit (3) -3.810 1,788 128 455 494 206 1155 -1,498 621 7
Supplies Sales () 33,282 7,725 1,443 3335 2,303 998 6,637 5,508 2,166 47
Technology | Profit (S) 2,508 73 5,192 6,803 3610 10213 3984 5,429 8.3
Sales (5) 19,224 574! 17,942 81,847 13833 95680, 51399 26003 754
Total Profit (3) 1,196 482 8,960 455 6,178 3840 10473 975 3565 138
Sales (S) 52997, 19049, 38,065 3335 105800 15123 124058 103319, 38481 1160
East Furniture Profit (S) -21,436 438 282 214 34 248 =27 1,64
Sales (3) 68,473 4299 1,268 2936 2277 5213 28,313 9,14
Office Profit (S) 18,389 29,027 3312 230 68 136 -435 7534 137 9.1
SUppues Sales (S) 44821, 67488 15323 10778 2,652 1110 14540 33939 4251 258
Technology | Profit (S) 3,360 486 2124 885 868 4113 595 23

Measure Values Sales (5) 25,935 2114 8,537 4155 4155 15381 35130 141
[sUMProfit Total Profit (5) 313 2899 5719 -18 798 -10; ; 13,0
SUMET))' Sales (3) 139,280 73807 25128 13,713 6,807 3,38 Aggregatlon Area 49,1
Grand Total Profit () 883 20479 14679 438 5976 373 14422 10274 570 DR
Sales (5) 192276 92956 63193 17,040 112,407 18510 147,966 153,130 74558 1651
< >

Figure 5-10: An example of a classic crosstab visualization, generated using Tableau
(with our annotations). Crosstabs accumulate tuples of data, e.g. (East, FURNITURE) and
(2007, Q4, OctoBER), on both the vertical and horizontal axes, and then aggregate remain-
ing fields, e.g. ProriT and SALES, in a central area grouped by the intersection of tuples on
the two axes.

horizontal space, for instance due to long words, the font size of the entire text layout is
decreased by the amount necessary to fit the text layout in the available horizontal space.

A convenient side-effect of stable layouts is that a typical interactive query session
spends very little time in the layout’s MEASURE phase; measurements are typically done
once and then stay constant. Some extra logic can be added to handle special cases where
measurements should always be recalculated, for instance when a formula is changed.
Avoiding line breaks in fields for which IsVariaABLELENGTH is false furthermore speeds up
the generation of layouts in the LayouT phase, as we can assume certain dimensions for
each text box without performing expensive calls into the font rendering subsystem.

5.4.3 Crosstabs

In all the table layouts we have seen so far, the structure of the table header was fully
defined by the schema of the input data, with tuples always accumulating under the header
in the vertical direction. Another kind of table layout, the crosstab (cross-tabulation), works
differently. In a crosstab, tuples of data may accumulate on both the horizontal and vertical
axes, intersecting to form aggregations in the table’s central aggregation area. This is the
kind of visualization that is produced by Excel’s pivot tables; see Gray et al. [46] for a
discussion. Crosstabs are also supported by most business intelligence tools. Figure 5-10
shows an example, generated by Tableau.

In SIEUFERD, cross-tabulations can be supported as a simple extension to our nested

115

instructors <

name_ name_
last first

ms <"
courses taught fx instructors_sections {"
sections < {~
courses < {~
titte 7

te

=% ybney
S=251N00
D wsey §

— 1 Jewioj

Benziger Jay 16 S08-09 3 N Chemical Engineering Laboratory

|Independent Work |
Senior Thesis

FOB-09 2 I Catalytic Chemistry L
Energy Solutions for the Next Century

S06-07 3 NN Chemical Engineering Laboratory L
Independent Work
Senior Thesis

FO6-07 1 Engineering in the Real World: The L
Technology, The Markets, and The
Common Good

S05-06 3 I Chemical Engineering Laboratory L
Independent Work
Senior Thesis

F05-06 2 N Catalytic Chemistry L
Engineering in the Real World: The
Technology, The Markets, and The
Common Good

S04-05 2 . Chemical Engineering Laboratory L
Senior Thesis

Soboyejo Winston 14 S08-09 3 I Global Technology L

Introduction to Bioengineering and
Medical Devices
Introduction to Biomedical Innovation
and Global Health

FOB-09 2 I Engineering Design L
Fracture Mechanics

S06-07 2 I Introduction to Bioengineering and L
Medical Devices
Special Topics in Mechanical and
Aerospace Engineering

F06-07 2 I Engineering Design L

Criirtiiral Matariale

Figure 5-11: Input data for the crosstab example in Figure 5-12, shown here in a regular
nested table layout.

116

auoy wiogany

adapur Jo1uss S
1 pue ABajens

JIWOU0IB0DI | |
way) [eRua [R

Jue sa4NPnas
soido] |eidads

S2INPNAS
iRy Jo ubisaq R &
3u3 sdedsolsy
saido] |eidads
0Asq [edIPE
7} UORONPOJU]

S|SaYL JoIuas
\ Juspuadspu]

16u3 [eanusyd T

A apn
4} > S9SIN0d
) > suoRdes
39S~ s103NISUl
£0-90S

*f ybne) sa54n02

format 7 —

PUVDG] WD Aswul |

Buissanold abewr

uonew.oju] pue Abajens

suoned)ddy pue sydesuc)

:52)Wou023 Jo sa|didulld padueApy

I Ansiway) |elauag

Ansiwsy)

s[euey :ANSILBYD [BIBUSD paduBApY
SINC)

SIOUOH - AnsiwayD [BI3USD) PaduBApY

s2.NPNAS
1991S Jo Joineyag pue ubisag pasueapy

SIUBYIR| 34Mmdeld
ubisaq bulizauibug

AImus) XaN 3y 10j suonnjos Abssug
Ansiwayd ondjee

A =
4} > S9sIN0d

) > suondes
4} SUOI}AS™ S103INJISUl

60-804

"I9pBaY 9[qe) AY) UI SaN[BA BJEp WOIJ SUIpN[oul InOAL] qBISSOId 9y} WOoIJ
9[qe[IEAR UIBWIAI SUONIOE 0BJIA)UL A1onb [ensn oy [[y "UOne[aI SWYAL 9y} U0 pa[qeus uondo Jumjewio] qeissord e sey nq ‘1 [-G 211
JO Je)) 0] [BONUAPI SI AIAY UMOYS AIonb oy], "SUONOAIIP (SYOLONALSNI) [BONIOA PUB (SIWHEAL) [BIUOZLIOY Y} YI0q Ul d)e[nwindde ued sopdm
‘sAoy Surdnoid se 1opeay 9[qes ayy ur yeadde 03 (pazorell ‘60-80S "S'9) sanfea eiep Suimofe Aq "QYAANAILS Ul qeIsso1d y :Z[-S 2In31

[

xf jybne} sa54n02

format ¥

SPNEUY pUS UpoL We4eny

SHOM Juapuadapur JoIuas

11 AI03U] JIWOU0IB0.IW
11 AIO3UL DILIOU0DT PadUBAPY

11 AnsiwR) [esauln

JUSWUOJIAUT UBQJN B4} PUB S3.N)aNaS
13lold yosessay Juspuadepul
sa/manns

8)240u0) panJojulsy Jo ubiseq
s2INPNnS

19915 Jo Joineyag pue ubisag pasueapy
Uie2H [eqo|9 pue

uONRACUL [E2IP3WICIg 0} UORINPeIU]
S321A2Q [EIIP3SIA

pue bBuusauibusclg 0} uononNpo.nul
ABojouyd31 [eqo|n

SIS3YL JOIUSS

10/ Juspuadapur]

AlojeloqeT buusaubug [eaIway)

A 9
‘) > S9sIn0d

W} > suoRdas
4} SUOI}IBS™ S103INJISUl

% 60-80S

R ¢

RN

xf jybne} sssinod

Tiw>- suuey

(43

(4}

€1

€1

1

= v
= —

courses taught fx

Aajpeig

diia

Maq0y

=01=I]

UOoISUIM

Aer

1S4l 2weu

uosuppIq

naiqy

douesads3y]

¥0(eD)

ofakoqos

Jabizuag

5E swWweu
>- s10nsul

117

table layouts. In the stylesheet, we add a boolean CrosstaB option that can be enabled on
any relation field. When enabled, the relation in question has its immediate nested tuples
arranged horizontally instead of vertically, with non-aggregate primitive fields automati-
cally projected to form grouping keys in the table header. This is shown in the transition
from the plain nested table in Figure 5-11 to a crosstab in Figure 5-12. In the example, for
every tuple in the INsTRUCTORS relation, each nested tuple in the TERMs relation appears in
its own nested table column, aligned with corresponding TERMS tuples in other INSTRUCTORS
tuples. Another use case for crosstab layouts is to display key-value data in table form; see
Figure 5-13.

Unlike traditional crosstabs, such as those produced by Tableau, SIEUFERD crosstabs
work like fully general nested tables. This allows arbitrarily nested data to be displayed in
the crosstab’s aggregation area. For instance, we can show the exact tuples that contribute
to each aggregate value, as shown in the INSTRUCTORS_SECTIONS relation in Figure 5-12. Fur-
thermore, all of the SIEUFERD system’s query-related actions, such as FiLTer, Sort, HiDE,
and editing of labels and formulas, work as usual from within crosstab layouts, including
from data values in the table header. The same goes for other interaction features such
as cursors, frozen headers, and infinite scrolling, and custom formatting options. One ex-
ception is that the Sort action is not meaningful on the crosstab’s aggregated fields, e.g.
COURSES TAUGHT in Figure 5-12. On the other hand, Sort can be used to define the horizontal
order of crosstab tuples, while FiLTer can be used to cherry-pick them.

In our visual query system, the data tuples that make up a crosstab header are retrieved
using a generated SQL query that runs separately from the SQL queries used to evaluate
the main result. This generated query is similar to that which would be used to populate the
query interface’s filter popup if a filter was opened on the Crosstas relation. The retrieved
ordered list of header tuples become part of the layout’s stylesheet, ensuring that the layout
can then be built in a single pass over the main result.

It is not, in general, possible to build the list of crosstab header tuples purely from
the main result, since the LIMIT-constrained main result is not guaranteed to include every
value that should appear in the header, and since the appropriate order of heading tuples
would not be inferable. This is the reason why we run a separate SQL query to retrieve
crosstab header tuples. The latter separate query can still have a LIMIT clause on it, but
its ORDER BY clause will be configured such that the leftmost N crosstab header tuples are
always guaranteed to be retrieved.

5.4.4 Numeric Formatting and Visualization

Is is useful, when generating layouts, to pay some special attention to the formatting of
numerical data values. These may originate from the data source itself, or be returned by
formula functions such as count and AVERAGE. Most importantly, numeric values displayed
in a table column should always be right-aligned, with the same number of digits (possibly
zero) shown after the decimal point for every value in the column. During the MEASURE
phase of our layout management algorithm, we use a heuristic to determine a reasonable
number of decimal places to show for numeric values in each primitive field, and then stick
to this decision across the entire generated layout. The heuristic is to show the minimum
number of decimal places needed to ensure that every observed value is displayed with

118

OSP_AWARD —<::

AWARD_ TITLE

EFFECTIVE_

DATE =

1996-06-01 CAREER: Randomization in Graph Optimization Problems
1997-09-16 Sloan Research Fellow

1997-10-01 Packard Fellowship in Science and Engineering
1999-06-15 Merrill Lynch Research-Engineering-LCS
1999-06-15 Randomization and Efficient Algorithms
1999-06-15 Haystack

1999-07-01 Haystack Per-User Information Environment
2000-04-15 Randomization in Graph Optimization

2000-05-01 O2P

Custom Column <~
3K_EQUIP_THRESHOLD fxY:: HUMAN_SUBJECTS_FLAG INTEREST_REVENUE
OSP_AWARD_CUSTOM_FIELDS < OSP_AWARD_CUSTOM_FIELDS < OSP_AWARD_CUSTOM_FIELDS <

value description value description value description

Undetermined or Non
Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non
has human subjects Interest Bearing

Yes Yes Unknown Unkown if this award 0 Undetermined or Non

has human subjects Interest Bearing
0 Undetermined or Non

Interest Bearing

Figure 5-13: Displaying key-value data in a table format using a crosstab layout. The ta-
ble 0SP_AWARD_CUSTOM_FIELDS(AWARD_KEY, FIELD_NAME, FIELD_VALUE) stores data about each
OSP_AWARD as key-value pairs instead of keeping each field in its own database column (this
schema design antipattern is the “opposite” of that seen in Figure 4-6). A crosstab layout
can be used to arrange the fields in table columns for display purposes.

organizations <
spreadsheet organization

American Farm Bureau
Biotechnology Industry
Organization (BIO)

Associations
Associations

Plantas Cargill, Inc. 21,065,239 W
Plantas Sunoco 19,785,044
Associations National Farmers Union 12,778,592 W
Associations National Biodiesel Board 11,081,026 =
Associations Renewable Fuels Association 11,000,939 =
Plantas Archer Daniels Midland 10,100,000 =
Plantas Valero Renewable Fuels 10,011,000 =
Associations Corn Growers Associations 8,928,200 m
Plantas Murphy Oil 7,440,000 m
Plantas POET Biorefining 5,951,897
Associations Union of Concerned Scientists 5,925,416 B
Associations American Chemical Society 5,719,640 B
Green Chemistry Institute

Associations BlueGreen Alliance 5,538,000 H
Plantas Land O' Lakes 5,225,000 u
Associations Growth Energy 5,104,000 B
Associations American Soybean Association 3,485,000 1
Associations Soybean Associations 3,485,000 1
Plantas Tate & Lyle 2,685,640 1
Plantas Louis Dreyfus Commodities 2,310,050 1
Associations American Coalition for Ethanol 1,820,066 |
Plantas Abengoa Bioenergy Corp. 1,650,000 |
Associations Southern Research Institute 1,610,000 |

Accnriatinne | Emiiranmantal Warkina Crann 1577086 1

Figure 5-14: Bar chart and heat map visualizations. The heat map is

122,639,168 NE—
117,651,477 1 ——

lobbying by quarter < {

A = 2012 2011 2011 2011 2011 2010 2010 2010 201
q2 fx ql q4 q3 q2 ql q4 q3 q2 ql
il Sfelllamt| frilamt| feillamt| feillamt| frilamt| friliamt| feiliamt feilamt| frill
1,653,052 6,780,455 1,629,825 1,518,799 1,432,736 1,602,048 1,348,055 1,321,743 1,876,591 1,803

2,701,000 2,581,000 2,595,000 2,685,000 2,615,000 2,545,000 2,970,000 2,815,000 2,735,000 2,930

400,000 440,000 440,000 440,000 460,000 420,000 603,046 555179 657,042 671
450,000 450,000 510,000 580,000 540,000 540,000 520,000 510,000 510,000 510
10,000 20,000 110,000 120,000 80,000 150,000 110,000 200,000 160,000 220
499,474 758,948 758,948 454,474 478,987 699,850 471,243 469,672 461,520 431
286,609 315,844 334,502 338,975 598,736 548,500 546,000 263250 275,161 655
400,000 390,000 550,000 400,000 700,000 430,000 370,000 330,000 400,000 450
215,000 226,000 202,000 219,000 227,000 240,000 220,000 207,000 232,000 235
245,000 235000 175000 245000 195000 205,000 155000 205000 155,000 180
350,000 250,000 230,000 330,000 290,000 200,000 330,000 650,000 680,000 830
90,000 430,000 210,000 240,000 250,000 460,000 235,000 245,000 255000 465
64371 69,700 96,193 157,867 93,503 167,006 147,577 163,700 458,909 103
90,000 60,000 50,000 50,000 80,000 80,000 40,000 40,000 50,000 40
200,000 258,000 440,000 265000 245000 240,000 1,250,000 810,000 220,000 180
360,000 300,000 220,000 300,000 260,000 290,000 230,000 220,000 400,000 170
300,000 360,000 400,000 390,000 410,000 370,000 408,000 428,000 466,000 506
40,000 40,000 35000 30,000 30,000 30,000 30,000 30,000 30,000 40
40,000 40,000 35000 30,000 30,000 30,000 30,000 30,000 30,000 40
30,000 30,000 60,000 30,000 30,000 60,000 30,000 60

111,012 113,812 87,227 91,915 86,117 115862 73,293 70,242 80,115 80
130,000 150,000 180,000 150,000 150,000 90,000 70,000 70,000 70,000 60
50,000 40,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000 30
1z2a72 oaan c2nen ceaim 7i0ne miEie 19 2in edeta o201 2n

created by color-

coding the result of a sum formula in a calculated field (amT) in a crosstab layout.

119

either their full precision or at least four significant digits, up to a maximum limit of six
decimal places. When the layout system is used as part of our interactive visual query
system, the full precision of numbers can still be seen in the formula bar, except when the
number originates from a formula. This behavior mirrors that of Excel.

It is useful to display large numbers using a thousands separator character; for instance,
in the US, the number 5129744.23 might be displayed as “5,129,744.23”. We always do
this by default, except for fields that, during the MEeasURE phase, are only observed to
contain integers of four digits or less. This avoids rendering years such as 2016 as “2,016”.
A similar policy exists in the SI Standard®.

Bar charts and heat maps can be easily supported by allowing the magnitude of a nu-
merical value to be indicated with a bar or a color, respectively. These formatting options
can also be used in a crosstab to produce two-dimensional visualizations. See Figure 5-
14. The Tableau/Polaris system uses crosstabs as a basis for a large number of similar
two-dimensional visualizations [99].

5.5 Conclusion

We have presented a layout management algorithm that automates the display of structured
nested data using the traditional visual idioms of hand-designed database Uls: tables, multi-
column forms, and outline-style indented lists. By default, the widths of generated layouts
are constrained so that only vertical scrolling may be necessary to view the data in its
entirety. Our stylesheet system is further designed such that two input values mapping to
the same schema field will always be styled in a similar way. Our hybrid layouts are 3.9
and 1.6 times more compact on average than outline layouts and horizontally unconstrained
table layouts, respectively, and are as readable as table layouts even for large datasets. We
believe that our system can function as a single output system for most of the data views
commonly required in domain-specific database applications, whether they be large tables
required to display information about many entities at once or form views that must display
many details of a single entity compactly without scrolling.

4http ://www.bipm.org/en/publications/si-brochure/section5-3-4.html

120

http://www.bipm.org/en/publications/si-brochure/section5-3-4.html

Chapter 6

Conclusion

We now discuss the extent to which the problems outlined in the Introduction has been
solved, discuss future work, and summarize our contribution.

6.1 Discussion

6.1.1 Direct Manipulation

We have claimed that our visual query system satisfies the requirements of a
direct manipulation interface. We here discuss the extent to which our own system satisfies
the requirements of such a system, as described by Shneiderman [92] and, in the context
of visual query systems, Liu and Jagadish [71] and Nandi et al. [78].

e Divide query specification into progressive refinement step, and use intermediate re-
sults to help users formulate the query [71]. This corresponds to our own requirement
R1 (see Chapter 1), or a similar requirement as stated by Nandi et al.: Users [may]
manage, query, and manipulate data by directly interacting with it [78]. This re-
quirement is clearly satisfied by our own system, as illustrated by the example query
building session from Section 1.1. SIEUFERD queries are built using a series of ac-
tions, each initiated by the user by means of interacting with data from the previous
version of the query.

e Continuously present data to users, after each data manipulation [71]. This is a
variation of the previous requirement. Again, SIEUFERD satisfies the requirement,
always showing on the screen the result of each progressively refined query. Even
when a query takes a long time to execute, SIEUFERD can immediately update the
result layout to reflect a modified query, using stale data to fill the screen while wait-
ing for updated results.

e Rapid, reversible, incremental actions [92]. As previously alluded to, all interactions
in the SIEUFERD system happen at interactive speed, even if the underlying queries
take a long time to execute. The speed of database queries depends on the size of
the database, the indices available for query optimization, and the specific queries

121

constructed. In the data sources we used for our user studies, it was rare to see a
query take more than a second to execute.

All query actions in the SIEUFERD system are reversible by means of undo/redo ac-
tions. Furthermore, undoing an action automatically cancels any long-running query
that might be executing.

The concept of incremental actions was covered by the previous requirements.

e Enable the user to modify an operation specified many steps earlier without redo-
ing the steps afterwards [71]. This is a more general variation of the reversibility
requirement, corresponding to requirement R2 from our introduction (Chapter 1). It
is not enough to allow the user to undo their way back to the operation that should
be modified; the user must instead somehow be able to point to a representation of
the operation and modify it directly. Arguably, this should be done without having to
leave the direct manipulation interface. For instance, manually modifying a part of a
generated SQL query or data manipulation script would not count as a solution here.

In SIEUFERD, the solution to the problem of directly being able to modify queries is
to associate every part of the query state with a column in the query’s nested relational
result. Each column then becomes an affordance for manipulating its own portion of
the query state, such as a filter or a formula. Because we allow results to take the
form of a nested relation rather than only a simple flat table, we are able to encode a
very expressive query language into the schema of the result.

While our current query manipulation actions work well for manipulating individ-
ual query operators such as filters and formulas, they are of limited use for more
structural changes to a query, such as inserting a new relation between two existing
relations in order to group on a subset of fields. This may be required for instance
when doing aggregation with a custom grouping, or when preparing a query for use
with a crosstab layout. An example was seen in Figure 5-11, where the TERMS relation
was inserted between INSTRUCTORS and INSTRUCTORS_SECTIONS relations. Such queries
are expressible using the existing query actions, but are awkward to construct!, and
may require operations to be redone if the user wishes to change the structure of the
query, violating requirement R2. In the future, we propose to solve this problem
by providing reversible higher-level query manipulation actions, such as Group and
UNGroup, that will rewrite the query to insert or extract relations according to com-
mon patterns. Note that these actions would act only as a symbolic manipulation
of the current visual query; they do not require extensions to the SIEUFERD query
model.

e Visibility of the object of interest [92]. Evaluating this requirement requires defining
what exactly the object of interest is in context of a visual query language. Is it the
data in the database, or the query being built by the user? If we consider the object
of interest to be the query rather than the data, then many of the Diagram-based

"For example, in Figure 5-11, the TErRMs relation is actually another instance of the INSTRUCTORS table,
self-joined against its parent relation INSTRUCTORs on the table’s primary key, with the formula TERM using an
inward reference to a hidden child field of the coursks relation containing the term of the course.

122

systems mentioned in Chapter 2 would qualify as direct manipulation systems, since
the user is able to directly manipulate a diagram representing a query. We reject this
definition, however, as the previous requirements make it clear that the user should
be manipulating data in the database, for instance through the result of a query, rather
than an abstract representation of a query in isolation. Looking at example data, and
running intermediate versions of a query, is an essential part of the workflow for
developing complex database queries. In systems that do not successfully integrate
the manipulation of queries with the display of results, users will find themselves
looking back and forth between the query representation on one side of the screen
and a separate result representation on the other.

If the object of interest is the result of a query, then our system satisfies this require-
ment; the result of the current query is always visible on the screen at all times.
However, our system goes one step further, also displaying the query that produced
that result. The need to do so is not completely obvious; the systems in Chapter 2’s
Hidden Algebraic category, for instance, display the result of a query without rep-
resenting the query itself somehow in the interface. As it turns out, displaying the
query on the screen is a prerequisite for letting the user manipulate arbitrary parts of
it, per the previous requirement.

With respect to the state of the current query, a possible point of objection is that our
system does not show the entire state of the query on the screen at one time. Notably,
showing the state of a filter, the definition of a formula, or the content of hidden
columns requires the user to take additional action, such as opening the filter popup,
moving the cell cursor, or opening the field selector, respectively. This is a conscious
design decision, based on a tradeoff between completeness and conciseness of the
visual state representation. In the case of filters and formulas, the use of partially
hidden state is already well-established in spreadsheet interfaces. Hidden columns,
while supported in spreadsheets, have a more prominent role in SIEUFERD due
to the large number columns available for display in a typical database query. As
discussed in connection with our user study, our system should include a more visible
affordance for unhiding columns, without cluttering up every column header with
extra indications.

We considered alternative designs for the field selection interface, including overlay-
ing a ghost image of hidden columns onto the result layout during selection. How-
ever, this would make the list of field names hard to read, as they would be continue
one after another on a single line, and also likely require horizontal scrolling. The
current approach, with the names of available fields being listed vertically, was cho-
sen for its compactness and readability. It is also easy to quickly unhide a number
of fields to see the data in each, exactly where it would appear in the result layout.
Any undesired fields can then be hidden again, without reentering the field selector,
by means of the Hipg action. Note that the root field displayed in the field selector is
based on the field for which the FieLps action was invoked, allowing the user to go
directly to the desired relation to rather than having to navigate the field hierarchy
from within the field selector.

123

o The display should indicate a complete image of what the current status is, what
errors have occurred, and what actions are appropriate [92]. The completeness of
the state representation was discussed in connection with the previous requirement.
With regard to error states, the SIEUFERD interface includes a facility for commu-
nicating error messages to the user from within the direct manipulation interface, as
was shown in Figure 3-3. The context menu acts as a complete list of actions that
can be invoked during query construction, with column header icons indicating the
presence of existing state that can be modified. One thing missing is a better affor-
dance for opening the context menu in the first place. In the future, we might show a
spreadsheet-style filter dropdown button whenever the user hovers over a column.

e Replacement of complex command language syntax by direct manipulation of the
object of interest [92]. Our system replaces manipulation of textual SQL queries
with direct manipulation of data in the database.

One possible objection is our system’s use of formula expressions, a textual lan-
guage. The scope of the language, however, is limited to arithmetic expressions,
and except for the use of column-based references, the language is similar to that
of spreadsheet formulas. Like in a spreadsheet, the editing of formulas is done by
direct manipulation of the location where the formula’s result will end up, and ref-
erences can be inserted by clicking or keyboard-selecting the column to reference.
The use of column-based references should also make formulas simpler to read than
spreadsheet formulas. We do not believe that the use of formulas disqualify spread-
sheets from being considered a direct manipulation interface. In fact, the original
VisiCalc spreadsheet, for which formula calculations was the defining feature, is one
of Shneiderman’s original examples of a direct manipulation interface [92]. The au-
thor believes the textual expression PRICE * (1 - Discounr) is in fact the best possible
way to visualize the calculation Price * (1 - Discount). That said, it would be useful
to have an explicit Sum action to help users create the formula for this particularly
common use case.

We considered giving aggregate functions a special representation in the SIEUFERD
query model, for instance as an optional decoration that could be applied to any
numerical column. The hope would be that the formula language could then omit
aggregate functions entirely. However, the formula language would then have re-
quired a special syntax for referencing the aggregate result of a column, negating
any simplifications. Besides, aggregate functions in formulas are a well-established
spreadsheet concept. We thus decided on the current design.

6.1.2 Expressiveness of the Visual Query Language

We have already evaluated the formal expressiveness of our visual query language. The
expressive power is equivalent to that SQL-92, plus the ability to generate nested results.
By achieving SQL-like expressiveness from a true direct manipulation interface, we believe
SIEUFERD has solved the visual query language problem.

124

6.1.3 Use and Readability of Layouts

During user studies involving visual query building, we have only so far used the layout
manager to produce plain nested table layouts. We believe some more work is required
before the form-style hybrid layouts can be used effectively during query construction.

The first improvement needed is to actually provide a user interface for switching be-
tween form and table layouts. Rather than showing a single query result using two different
layouts, we believe the form layout could be used as a detail pane for the table layout, show-
ing more information for a single selected row. This requires some changes in how state is
stored in the user interface, as the two panes will now be showing a different selection of
fields. It may also be desirable to jump from one detailed form layout to another, to drill
down on specific entities, or to magnify a table in a form layout to a full table layout. This
requires both design and implementation work.

A second improvement relates to the readability of form-style hybrid layouts. For bet-
ter readability, the system should track which field or fields in each relation best represents
a human-readable heading for items in that relation, and display these headers in larger
font. The font of the header should decrease with the depth of each relation. Improve-
ments should also be made to the appearance of outline columns in hybrid layouts, as they
currently make layouts hard to read.

Relating to both table and form layouts, complicated queries may contain many levels
of relations, leading to a large number of field labels being stacked on top of each other.
It could be useful for the user to have a way to hide or collapse labels to make the query
result more readable. The downside is that selecting a relation’s label is currently the only
way to initiate certain actions, such as filtering on the relation in question. More generally,
it would be useful for the user to be able to customize layout formatting details. This is
currently possible only via a debugging interface.

6.2 Future Work

6.2.1 Query Interface

In the current query interface, some queries are expressible yet awkward to construct;
examples include greater-than/less-than conditions, grouping on custom attributes, and
UNION-type queries. Here, the interface could be improved without significant changes
to the underlying query model. For instance, we could include support for range filters,
explicit Group/UNGroup rewriting actions (discussed in the previous section), and the pre-
viously proposed syntactic sugar for unions (Figure 4-6), respectively.

We would also like to implement Section 3.3.2’s recommendations related to working
with databases with a large number of fields per table.

We would like to implement a type system for columns and formulas. This will improve
error messages for user formulas. It is also a prerequisite for editing support (see below).

Despite the theoretical idea that all query optimization should be left to the database
backend, there are many ways to generate the SQL queries required for evaluating a
SIEUFERD query, some of which optimize better than others. One area of future work

125

involves the implementation and evaluation of various optimizations in the generated SQL
queries.

6.2.2 The CRUD Application Use Case

In our introduction, we mentioned the various kinds of views that are found in typical
Create-Read-Update-Delete (CRUD) applications. Our visual query interface, in combina-
tion with our automatic layout generator, can produce all of these views. Table views are
covered by our layout manager’s nested table layouts, forms and reports are covered by
our layout manager’s hybrid layouts, while search forms can be replaced by filters opened
in hybrid layouts. But as mentioned in the previous section, our system currently lacks a
user interface for managing and navigating between these views. This problem needs to be
solved before our system can hope to replace CRUD applications.

More importantly for the CRUD application use case, all views generated by our visual
query system are currently read-only. In the future, we hope to incorporate editing of data.
The semantics of our visual query language are already well-suited for producing updatable
views, and the automatic form layouts produced by our layout algorithm can serve as a good
user interface for the common task of editing individual entities in the database and all their
related information. The ability to edit data would allow SIEUFERD to act as a complete
schema-independent end user front-end for relational databases.

6.3 Conclusion

This thesis has presented SIEUFERD, a visual query system. The system’s visual query
language is the first to support both the specification and subsequent modification of arbi-
trary SQL queries from within a pure direct manipulation interface. The system’s graphical
output engine is the first to fully automate the generation of nested table-, form- and report-
style layouts based on observed statistical measurements of the data in query results. The
complete system allows end-users to produce all output displays commonly found in tai-
lored CRUD database applications, using a small set of spreadsheet-like operations.

By directly manipulating nested relational results, the user can express a relationally
complete set of query operators plus calculation, aggregation, outer joins, sorting, and
nesting. This covers the full set of query operators generally considered as the minimum
to model SQL, and expresses, for example, all SELECT statements valid in SQL-92. At the
same time, the user always remains able able to track and modify the state of the complete
query. Whereas previous direct manipulation systems either sacrifice expressiveness or
hide the actual query from the user, SIEUFERD integrates the query and its result into
a single interactive visualization, using spreadsheet concepts like filters and formulas to
expose the complete state of the current query.

Compared with the diagram-based query designer of Microsoft Access 2016, users
greatly preferred our direct manipulation interface, with the latter scoring 46 percentiles
higher on a SUS-based percentile scale. For data-minded people of all professions, we
believe that SIEUFERD’s interaction style holds promise as an alternative to hand-coded
SQL.

126

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,
Philip A. Bernstein, Michael J. Carey, Surajit Chaudhuri, Surajit Chaudhuri, Jeffrey
Dean, AnHai Doan, Michael J. Franklin, Johannes Gehrke, Laura M. Haas, Alon Y.
Halevy, Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish, Donald Koss-
mann, Samuel Madden, Sharad Mehrotra, Tova Milo, Jeffrey F. Naughton, Raghu
Ramakrishnan, Volker Markl, Christopher Olston, Beng Chin Ooi, Christopher Ré,
Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom. The Beckman
report on database research. Communications of the ACM, 59(2):92-99, January
2016.

Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. DataPlay: Interactive
tweaking and example-driven correction of graphical database queries. In Proceed-
ings of the 25th annual ACM symposium on User interface software and technology
(UIST ’12), pages 207-218, New York, NY, USA, 2012. ACM.

Stefan Achler. GBXT: A gesture-based data exploration tool for your favorite
database system. In Model and Data Engineering, pages 224-237. Springer In-
ternational Publishing, Cham, Switzerland, 2014.

Christopher Ahlberg. Dynamic Queries. PhD thesis, Institutionen for datavetenskap,
Chalmers tekniska hogskola, Géteborg, Sweden, 1996.

Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight cou-
pling of dynamic query filters with starfield displays. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’94), pages 313-317,
New York, NY, USA, 1994. ACM.

Michele Angelaccio, Tiziana Catarci, and Giuseppe Santucci. Query by Diagram: A
fully visual query system. Journal of Visual Languages & Computing, 1(3):255-273,
1990.

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R.

MclJones, James W. Mehl, et al. System R: A relational approach to database man-
agement. ACM Transactions on Database Systems (TODS), 1(2):97-137, 1976.

127

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Eirik Bakke and Edward Benson. The schema-independent database Ul: A proposed
holy grail and some suggestions. In Proceedings of the 5th Biennial Conference on
Innovative Data Systems Research (CIDR ’11), 2011.

Eirik Bakke and David R. Karger. Expressive query construction through direct
manipulation of nested relational results. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16), pages 1377-1392, New York,
NY, USA, 2016. ACM.

Eirik Bakke, David R. Karger, and Robert C. Miller. A spreadsheet-based user in-
terface for managing plural relationships in structured data. In Proceedings of the
29th International Conference on Human Factors in Computing Systems (CHI ’11),
pages 2541-2550, New York, NY, USA, 2011. ACM.

Eirik Bakke, David R. Karger, and Robert C. Miller. Automatic layout of structured
hierarchical reports. IEEE Transactions on Visualization and Computer Graphics,
19(12):2586-2595, December 2013.

Elena Baralis and Jennifer Widom. An algebraic approach to static analysis of active
database rules. ACM Transactions on Database Systems (TODS), 25(3):269-332,
September 2000.

Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered and
quantum treemaps: Making effective use of 2D space to display hierarchies. ACM
Transactions on Graphics (TOG), 21(4):833—-854, October 2002.

Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James
Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and analyzing
linked data on the semantic web. In Proceedings of the 3rd International Semantic
Web User Interaction Workshop (SWUI °06), 2006.

Chris Bizer and Andreas Schultz. The Berlin SPARQL benchmark. The Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), 5(2), 2009.

Francois Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux, and Jean Vander-
donckt. Towards a dynamic strategy for computer-aided visual placement. In Pro-
ceedings of the workshop on Advanced Visual Interfaces (AVI "94), pages 78-87,
New York, NY, USA, 1994. ACM.

John Brooke. SUS: A quick and dirty usability scale. In Patrick W. Jordan, Bruce
Thomas, Bernard A. Weerdmeester, and Ian L. McClelland, editors, Usability eval-
uation in industry, pages 189—194. Tailor & Francis, London, UK, 1996.

Josep Maria Brunetti, Roberto Garcia, and S6ren Auer. From overview to facets and

pivoting for interactive exploration of semantic web data. International Journal of
Semantic Web & Information Systems, 9(1):1-20, January 2013.

128

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Reichwein,
Herkimer Gottfried, and Sherry Yang. Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal of Functional Pro-
gramming, 11:155-206, March 2001.

Bin Cao and Antonio Badia. SQL query optimization through nested relational al-
gebra. ACM Transactions on Database Systems (TODS), 32(3):18, 2007.

Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level model
for user performance time with interactive systems. Communications of the ACM,
23(7):396-410, July 1980.

Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Batini. Visual
query systems for databases: A survey. Journal of Visual Languages & Comput-
ing, 8(2):215-260, 1997.

Jonathan P Caulkins, Erica Layne Morrison, and Timothy Weidemann. Spreadsheet

errors and decision making: Evidence from field interviews. Journal of Organiza-
tional and End User Computing, 19(3):1, 2007.

Yolande E. Chan and Veda C. Storey. The use of spreadsheets in organizations:
Determinants and consequences. Information & Management, 31(3):119-134, 1996.

Kerry Shih-Ping Chang and Brad A. Myers. Using and exploring hierarchical data
in spreadsheets. In Proceedings of the 34th Annual ACM Conference on Human
Factors in Computing Systems (CHI ’16), New York, NY, USA, 2016. ACM.

Peter Pin-Shan Chen. The Entity-Relationship model—toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9-36, 1976.

Woei-Kae Chen and Pin-Ying Tu. VisualTPL: A visual dataflow language for report
data transformation. Journal of Visual Languages & Computing, 25(3):210-226,
2014.

Ed Huai-Hsin Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to
information visualization. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis ’97), pages 17-24, 1997.

Richard Chimera and Ben Shneiderman. An exploratory evaluation of three in-
terfaces for browsing large hierarchical tables of contents. ACM Transactions on
Information Systems (TOIS), 12:383—406, October 1994.

Petr Chmelar, Radim Hernych, and Daniel Kubicek. Interactive visualization of
data-oriented XML documents. In Tarek Sobh, editor, Advances in Computer and
Information Sciences and Engineering, pages 390-393. Springer Netherlands, 2008.

Chris Clack and Lee Braine. Object-oriented functional spreadsheets. In Proceed-
ings of the 10th Glasgow Workshop on Functional Programming (GlaFP ’97), 1997.

129

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

E. F. Codd. Relational completeness of data base sublanguages. In Database Sys-
tems, pages 65-98. Prentice Hall, 1972.

Edgar F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377-387, June 1970.

Gautam Das, Vagelis Hristidis, Nishant Kapoor, and S. Sudarshan. Ordering the
attributes of query results. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 395406, New York, NY, USA, 2006.
ACM.

Chris J. Date, Burt Grad, and Thomas Haigh. Oral history of C. J. Date. In Oral
History Collection. Computer History Museum, Mountain View, CA, USA, June
2007.

Emilia Diaz-Struck. Ethanol industry battles to keep incentives, May
2013. Investigation for the New England Center for Investigative Re-
porting and Connectas, available at http://eye.necir.org/2013/05/26/
ethanol-industry-battles-to-keep-incentives.

Sami El-Mahgary and Eljas Soisalon-Soininen. A form-based query interface for
complex queries. Journal of Visual Languages & Computing, 29:15-53, 2015.

Richard G. Epstein. The TableTalk query language. Journal of Visual Languages &
Computing, 2(2):115-141, 1991.

Ronald Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM Transactions on Database Systems (TODS), 2(3):262-278, 1977.

Mary Fernidndez, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang-
Chiew Tan. Silkroute: A framework for publishing relational data in XML. ACM
Transactions on Database Systems (TODS), 27(4):438-493, 2002.

Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically generating user in-
terfaces. In Proceedings of the 9th International Conference on Intelligent User
Interfaces (IUI °04), pages 93—100, New York, NY, USA, 2004. ACM.

Roberto Garcia, Rosa Gil, Juan Manuel Gimeno, Eirik Bakke, and David R. Karger.
Besdui: A benchmark for end-user structured data user interfaces. In Proceedings of
the 15th International Semantic Web Conference (ISWC ’16), to appear. Springer,
2016.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems:
The Complete Book. Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2nd
edition, 2009.

M. Ghoniem, J. Fekete, and P. Castagliola. A comparison of the readability of graphs
using node-link and matrix-based representations. In Proceedings of the IEEE Sym-
posium on Information Visualization (InfoVis *04), pages 17-24, 2004.

130

http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives
http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives

[45] Martin Graham and Jessie Kennedy. A survey of multiple tree visualisation. Infor-
mation Visualization, 9(4):235-252, 2010.

[46] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Mu-
rali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggre-

gation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1:29-53, 1997.

[47] Yanbo Han, Guiling Wang, Guang Ji, and Peng Zhang. Situational data integration
with data services and nested table. Service Oriented Computing and Applications,
7(2):129-150, 2013.

[48] G. D. Held, M. R. Stonebraker, and E. Wong. INGRES: A relational data base sys-
tem. In Proceedings of the National Computer Conference and Exposition (AFIPS
'75), pages 409—-416, New York, NY, USA, 1975. ACM.

[49] Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong. Logics with ag-
gregate operators. Journal of the ACM (JACM), 48(4):880-907, July 2001.

[50] Geert-Jan Houben and Jan Paredaens. A graphical interface formalism: Specifying
nested relational databases. In Proceedings of the IFIP TC2 Working Conference on
Visual Database Systems, pages 257-276, 1989.

[51] Yannis E. Ioannidis. Visual user interfaces for database systems. ACM Computing
Surveys (CSUR), 28(4es), 1996.

[52] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David Salesin. Adap-
tive grid-based document layout. ACM Transactions on Graphics (TOG), 22(3):838—
847, July 2003.

[53] G. Jaeschke and H. J. Schek. Remarks on the algebra of non first normal form rela-
tions. In Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (PODS ’82), pages 124—138, New York, NY, USA, 1982. ACM.

[54] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,
Arnab Nandi, and Cong Yu. Making database systems usable. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data, pages
13-24, New York, NY, USA, 2007. ACM.

[55] Diane Janvrin and Joline Morrison. Using a structured design approach to reduce
risks in end user spreadsheet development. Information & management, 37(1):1-12,
2000.

[56] Magesh Jayapandian and H. V. Jagadish. Automated creation of a forms-based
database query interface. Proceedings of the VLDB Endowment, 1:695-709, Au-
gust 2008.

131

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Magesh Jayapandian and H. V. Jagadish. Expressive query specification through
form customization. In Proceedings of the 11th International Conference on Ex-
tending Database Technology (EDBT ’08), pages 416427, New York, NY, USA,
2008. ACM.

Josef Jelinek and Pavel Slavik. XML visualization using tree rewriting. In Pro-
ceedings of the 20th Spring Conference on Computer Graphics (SCCG 04), pages
65-72, New York, NY, USA, 2004. ACM.

Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Proceedings of the 2nd Con-
ference on Visualization (VIS "91), pages 284-291, Los Alamitos, CA, USA, 1991.
IEEE Computer Society Press.

Minsuk Kahng, Shamkant B. Navathe, John T. Stasko, and Duen Horng Chau. Inter-
active browsing and navigation in relational databases. Computing Research Repos-
itory/arXiv, abs/1603.02371, 2016.

S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data analysis and
visualization: An interview study. IEEE Transactions on Visualization and Com-
puter Graphics, 18(12):2917-2926, December 2012.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:
Interactive visual specification of data transformation scripts. In Proceedings of the
2011 annual conference on Human Factors in Computing Systems (CHI ’11), pages
3363-3372, New York, NY, USA, 2011. ACM.

Eser Kandogan, Eben Haber, Rob Barrett, Allen Cypher, Paul Maglio, and Haixia
Zhao. Al: End-user programming for web-based system administration. In Proceed-

ings of the 18th Annual ACM Symposium on User Interface Software and Technology
(UIST "05), pages 211-220, New York, NY, USA, 2005. ACM.

William Kent. A simple guide to five normal forms in relational database theory.
Communications of the ACM, 26:120-125, February 1983.

Henry F. Korth and Mark A. Roth. Query languages for nested relational databases.
In S. Abiteboul, P. Fischer, and H. Schek, editors, Nested Relations and Complex
Objects in Databases, volume 361 of Lecture Notes in Computer Science, pages
190-204. Springer Berlin/Heidelberg, 1989.

Keith Kowalzcykowski, Alin Deutsch, Kian Win Ong, Yannis Papakonstantinou,
Kevin Keliang Zhao, and Michalis Petropoulos. Do-It-Yourself database-driven web
applications. In Proceedings of the 4th Biennial Conference on Innovative Data
Systems Research (CIDR 09), 2009.

Dariusz Krdl, Jacek Oleksy, Malgorzata Podyma, and Bogdan Trawinski. The anal-
ysis of reporting tools for a cadastre information system. In Proceedings of the 9th

International Conference on Business Information Systems (BIS ’06), pages 150—
163, 2006.

132

[68] Mark Levene. The Nested Universal Relation Database Model, volume 595 of Lec-
ture Notes in Computer Science. Springer Berlin/Heidelberg, 1992.

[69] James R. Lewis and Jeff Sauro. The factor structure of the system usability scale. In
Proceedings of the 1st International Conference on Human Centered Design (HCD
"09)/HCI International 2009, pages 94—103, Berlin, Heidelberg, 2009. Springer-
Verlag.

[70] Leonid Libkin and Limsoon Wong. On the power of aggregation in relational query
languages. In Sophie Cluet and Rick Hull, editors, Proceedings of the 6th Interna-
tional Workshop on Database Programming Languages (DBPL "97), Lecture Notes
in Computer Science, pages 260-280. Springer Berlin/Heidelberg, 1998.

[71] Bin Liu and H. V. Jagadish. A spreadsheet algebra for a direct data manipulation
query interface. In Proceedings of the IEEE 25th International Conference on Data
Engineering (ICDE °09), pages 417-428, April 2009.

[72] Nikos Lorentzos and Konstantinos Dondis. Query by Example for Nested Tables. In
Database and Expert Systems Applications, pages 716-725. Springer, 1998.

[73] Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte. Show Me: Automatic presenta-
tion for visual analysis. IEEE Transactions on Visualization and Computer Graphics
(TVCG), 13(6):1137-1144, November/December 2007.

[74] Richard Matthew McCutchen, Shachar Itzhaky, and Daniel Jackson. Initial report on
Object Spreadsheets. Technical Report MIT-CSAIL-TR-2016-001, MIT Computer
Science and Artificial Intelligence Laboratory, January 2016.

[75] Nancy McDonald and Michael Stonebraker. CUPID-the friendly query language.
In Proceedings of the ACM Pacific 75 Conference, pages 127-131, 1975.

[76] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a crowd: Selecting
attributes for maximum visibility. In Proceedings of the 24th International Con-
ference on Data Engineering (ICDE ’08), pages 356-365, Washington, DC, USA,
April 2008. IEEE Computer Society.

[77] Richard Mitchell, David Day, and Lynette Hirschman. Case study: Fishing for in-
formation on the Internet. In Proceedings of the First Information Visualization
Symposium (InfoVis *95), pages 105-111, Los Alamitos, CA, USA, October 1995.
IEEE Computer Press.

[78] Arnab Nandi, Lilong Jiang, and Michael Mandel. Gestural query specification. Pro-
ceedings of the VLDB Endowment, 7(4):289-300, 2013.

[79] Quang Vinh Nguyen and Mao Lin Huang. EncCon: An approach to construct-
ing interactive visualization of large hierarchical data. Information Visualization,

4(1):1-21, 2005.

133

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Raymond R. Panko and Salvatore Aurigemma. Revising the Panko—-Halverson tax-
onomy of spreadsheet errors. Decision Support Systems, 49(2):235-244, 2010.

Yannis Papakonstantinou, Michalis Petropoulos, and Vasilis Vassalos. QURSED:
Querying and reporting semistructured data. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, pages 192-203, New
York, NY, USA, 2002. ACM.

Jonathan D. Pemberton and Andrew J. Robson. Spreadsheets in business. Industrial
Management & Data Systems (IMDS), 200(8):379-388, 2000.

Robert Pienta, Acar Tamersoy, Alex Endert, Shamkant Navathe, Hanghang Tong,
and Duen Horng Chau. VISAGE: Interactive visual graph querying. In Proceedings
of the International Working Conference on Advanced Visual Interfaces (AVI ’16),
pages 272-279, New York, NY, USA, 2016. ACM.

Stavros Polyviou, George Samaras, and Paraskevas Evripidou. A relationally com-
plete visual query language for heterogeneous data sources and pervasive querying.
In Proceedings of the 21st International Conference on Data Engineering (ICDE
'05), pages 471-482, Washington, DC, USA, 2005. IEEE Computer Society.

Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. A critical review of the lit-
erature on spreadsheet errors. Decision Support Systems, 46(1):128—138, December
2008.

Li Qian, Kristen LeFevre, and H. V. Jagadish. CRIUS: User-friendly database de-
sign. Proceedings of the VLDB Endowment, 4(2):81-92, 2010.

Neil Raden. Shedding light on shadow IT: Is Excel running your business? Techni-
cal report, Hired Brains, Inc., January 2005.

Ramana Rao and Stuart K. Card. The table lens: Merging graphical and symbolic
representations in an interactive focus + context visualization for tabular informa-
tion. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI °94), pages 318-322, New York, NY, USA, 1994. ACM.

Thomas Reschenhofer and Florian Matthes. An empirical study on spreadsheet
shortcomings from an information systems perspective. In Proceedings of the 18th
International Conference on Business Information Systems (BIS ’15), pages 5061,
Cham, Switzerland, June 2015. Springer International Publishing.

George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. Pol-
yarchy visualization: Visualizing multiple intersecting hierarchies. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’02),
pages 423-430, New York, NY, USA, 2002. ACM.

Jeff Sauro. A practical guide to the System Usability Scale: Background, bench-
marks & best practices. Measuring Usability LLC, 2011.

134

[92] Ben Shneiderman. Direct Manipulation: A step beyond programming languages.
IEEE Computer, 16(8):57-69, 1983.

[93] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages,
page 336, Los Alamitos, CA, USA, 1996. IEEE Computer Society.

[94] Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and
Ian Horrocks. Experiencing OptiqueVQS: A multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society,
15(1):129-152, March 2016.

[95] M. Spenke and C. Beilken. A spreadsheet interface for logic programming. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’89), pages 75-80, New York, NY, USA, 1989. ACM.

[96] Michael Spenke, Christian Beilken, and Thomas Berlage. Focus: The interactive
table for product comparison and selection. In Proceedings of the 9th Annual ACM
Symposium on User Interface Software and Technology (UIST ’96), pages 41-50,
New York, NY, USA, 1996. ACM.

[97] Hennie J. Steenhagen, Peter M. G. Apers, and Henk M. Blanken. Optimization of
nested queries in a complex object model. In Proceedings of the 4th International
Conference on Extending Database Technology (EDBT ’94), pages 337-350, New
York, NY, USA, 1994. Springer New York.

[98] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 8(1):52—-65, 2002.

[99] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query, analy-
sis, and visualization of multidimensional databases. Communications of the ACM,
51(11):75-84, November 2008.

[100] Christopher Richard Stolte. Query, analysis, and visualization of multidimensional
databases. PhD thesis, Stanford University, Stanford, CA, USA, 2003.

[101] Michael Stonebraker and Joseph M. Hellerstein. What goes around comes around.
In Joseph M. Hellerstein and Michael Stonebraker, editors, Readings in Database
Systems. The MIT Press, Cambridge, MA, USA, 4th edition, 2005.

[102] Keishi Tajima and Kaori Ohnishi. Browsing large HTML tables on small screens.
In Proceedings of the 21st Annual ACM Symposium on User Interface Software and
Technology (UIST "08), pages 259-268, New York, NY, USA, 2008. ACM.

[103] Thomas S. Tullis and Jacqueline N. Stetson. A comparison of questionnaires for
assessing website usability, 2004. Usability Professionals Association (UPA) 2004
Conference.

135

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Jerzy Tyszkiewicz. Spreadsheet as a relational database engine. In Proceedings of
the 2010 International Conference on Management of Data (SIGMOD ’10), pages
195-206, New York, NY, USA, 2010. ACM.

Jan Van den Bussche and Stijn Vansummeren. Translating SQL into the rela-
tional algebra. Course notes, Hasselt University and the Free University of Brus-
sels, retrieved April 2016. http://cs.ulb.ac.be/public/_media/teaching/
infoh417/sql2alg_eng.pdf.

Amy Voida, Ellie Harmon, and Ban Al-Ani. Homebrew databases: Complexities
of everyday information management in nonprofit organizations. In Proceedings of
the Annual Conference on Human Factors in Computing Systems (CHI ’11), pages
915-924, New York, NY, USA, 2011. ACM.

Lutz Wegner, Sven Thelemann, Jens Thamm, Dagmar Wilke, and Stephan Wilke.
Navigational exploration and declarative queries in a prototype for visual informa-
tion systems. In Clement Leung, editor, Visual Information Systems, volume 1306
of Lecture Notes in Computer Science, pages 199-218. Springer Berlin/Heidelberg,
1997.

Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F Churchill, George Levchenko,
and Jayavel Shanmugasundaram. WYSIWYG development of data driven web ap-
plications. Proceedings of the VLDB Endowment, 1(1):163-175, 2008.

Shengdong Zhao, Michael J. McGuffin, and Mark H. Chignell. Elastic hierarchies:
Combining treemaps and node-link diagrams. In IEEE Symposium on Information
Visualization (InfoVis "05), pages 57-64, October 2005.

Caroline Ziemkiewicz, R. Jordan Crouser, Ashley Rye Yauilla, Sara L. Su, William
Ribarsky, and Remco Chang. How locus of control influences compatibility with
visualization style. In 2011 IEEE Conference on Visual Analytics Science and Tech-
nology (VAST ’11), pages 81-90, October 2011.

M. M. Zloof. Query-by-Example: A data base language. IBM Systems Journal,
16(4):324-343, 1977.

136

http://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf

	1 Introduction
	1.1 Querying for Non-Programmers
	1.1.1 An Example Session in the SIEUFERD Query Builder Interface

	1.2 Background
	1.3 User Interfaces for Databases
	1.3.1 Tailored CRUD Applications
	1.3.2 Spreadsheets
	1.3.3 Business Intelligence Tools

	1.4 Contributions
	1.4.1 A Visual Query Language
	1.4.2 Automatic Formatting of Query Results
	1.4.3 Prototype Implementation

	1.5 Thesis Organization

	2 Related Work
	2.1 Visual Query Systems
	2.2 Structured Data Visualization
	2.2.1 Tree Visualization
	2.2.2 Visualization of Flat Tabular Data
	2.2.3 Document Layout Systems
	2.2.4 Automatic Form Generation

	3 A Visual Query Language
	3.1 Introduction
	3.2 System Description
	3.2.1 Overview
	3.2.2 Query Model
	3.2.3 Architecture

	3.3 Formative User Study
	3.3.1 Standardized Tasks
	3.3.2 Observations
	3.3.3 General Sentiment

	3.4 Controlled User Study
	3.5 Berlin/BESDUI Benchmark
	3.6 Conclusion

	4 Semantics and Expressiveness
	4.1 Overview
	4.2 The Nested Relational Data Model
	4.3 The SIEUFERD Query Model
	4.3.1 Encoding Examples

	4.4 Operations on the Query Model
	4.5 Query Evaluation
	4.5.1 Simplified Query Model
	4.5.2 Nested Relational Results
	4.5.3 Desugaring the General Query Model

	4.6 Expressiveness

	5 Result Layouts
	5.1 Introduction
	5.2 Layout Algorithm
	5.2.1 Nested Relations and Nested Table Layouts
	5.2.2 Outline Layouts
	5.2.3 Hybrid Layout
	5.2.4 Columns in Outline Layouts
	5.2.5 Implementation

	5.3 Evaluation
	5.3.1 Runtime Performance
	5.3.2 Layout Space Efficiency
	5.3.3 Readability

	5.4 Extensions
	5.4.1 Interactive Features
	5.4.2 Stable Interactive Layouts
	5.4.3 Crosstabs
	5.4.4 Numeric Formatting and Visualization

	5.5 Conclusion

	6 Conclusion
	6.1 Discussion
	6.1.1 Direct Manipulation
	6.1.2 Expressiveness of the Visual Query Language
	6.1.3 Use and Readability of Layouts

	6.2 Future Work
	6.2.1 Query Interface
	6.2.2 The CRUD Application Use Case

	6.3 Conclusion

