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ABSTRACT 

In natural environments, sounds are often not static. Usually, moving objects require the 

most attention, e.g. for identifying the presence and direction of a moving vehicle, or 

detecting and tracking the trajectory of a predator or prey.  Faster time-varying location 

cues can occur in acoustic environments containing many spatially distributed sound 

sources, like at a cocktail party.  In this case, we can identify the locations of the sources 

by “glimpsing” at short-duration localization cues when the sound energy from one 

source dominates the mixture.  Even faster time-varying spatial cues result from 

reverberation in an echoic environment and we perceive them as spatially diffuse.  We 

qualitatively perceive motion, a cocktail party, and reverberation differently, and these 

three percepts are determined by how quickly the spatial cues are moving.  How these 

percepts come about in the auditory system is unknown. 

Here, we studied how neurons encode time-varying location cues and how the neural 

code relates to perception.  Our focus was on time-varying interaural time differences 

(ITD), one of the main cues for localizing sounds in the horizontal plane.  We recorded 

from single neurons in the inferior colliculus (IC) in the auditory midbrain of 

unanesthetized rabbits. The IC is the site of an obligatory synapse in the auditory 

pathway and one of the first stages of processing following the initial extraction of spatial 

cues in the brainstem.  We hypothesized that the IC exhibits limitations in its ability to 

encode time-varying ITD that give rise to these different percepts.   

First, we show that IC neurons are more “sluggish” on average at synchronizing to the 

time-varying ITD than to amplitude modulations presented at a static ITD. Binaural 

sluggishness has been proposed based on human psychophysics but never validated 

neurophysiologically in the IC.  Second, we show that most neurons are unable to 

synchronize to the time-varying ITD at speeds where humans no longer perceive 

fluctuations. Instead, neurons exhibit a change in average firing rate that corresponds to 

binaural decorrelation of the noise for very fast time-varying ITD, and this may explain 

the percept of a spatially diffuse sound at these speeds.  

We further recorded neural responses to slow-moving ITDs in opposite directions within 

the range of perceived motion. Using a generalized linear model to parse the neuron’s 

response into ITD-following and direction selectivity components, we show that the 
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responses of IC neurons are dominated by their ability to follow the ITD more than 

direction selectivity.  In parallel experiments, we asked human participants to either 

identify the motion direction or detect the slow-moving ITD in the same stimuli and 

determined the threshold durations for direction identification and for detection for each 

participant.  Direction identification threshold durations were larger than detection 

threshold durations.  We then implemented neural classifiers that either identified the 

motion direction or detected the slow-moving ITD based on single-neuron responses to 

the stimuli, and we found that the classifier exhibited duration thresholds that matched 

human thresholds on both tasks.   

Together, these results suggest that temporal limitations of neural responses in the IC 

may give rise to the limiting speeds of time-varying localization cues where we perceive 

motion, “glimpse” the position of a source amidst a mixture, and perceive a spatially 

diffuse background in a reverberant environment. 

 

Thesis Supervisor: Bertrand Delgutte, PhD 

Title: Professor of Otolaryngology, Harvard Medical School 
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Chapter 1 
 
General Introduction 
 

 

Time-varying localization cues in the natural environment: 

 In natural environments, the most ethologically important objects are usually not 

static.  Detecting and identifying the trajectory of prey or a predator is important for an 

animal’s survival.  Similarly, detecting an oncoming car or identifying which way an 

ambulance is going affects our decision to cross the street or drive through an 

intersection.  How the auditory system makes these inferences, and how important it is 

ecologically, is still not entirely clear.  Nevertheless, we can track the motion with our 

head, albeit less accurately than vision (Leung et al. 2015).  Motion improves our ability 

to focus on a source when stationary distractors are present (Saberi et al. 2002; Davis et 

al. 2016), and self motion improves our ability to localize sounds in the periphery 

(Wightman & Kistler 1999).  So the presence of motion does improve our ability to parse 

an auditory scene.   

 Time-varying location cues do not solely come from spatially moving objects.  

When there are many spatially distributed and time-varying sources present, like at a 

cocktail party, what we hear are localization cues quickly varying in time (Faller & 

Merimaa 2004).  Even in these environments, we can still identify where different 

sources are coming from (Santala & Pulkki 2011; Yost & Brown 2013).  We may do this 

by catching the short “glimpses” of a sound when its energy is particularly strong (Yost 

& Brown 2013).  When a “target” noise alternates with another “masker” noise and the 

target and masker are at different locations, the locations discriminable when the target is 
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presented for only 5 ms, but the discriminability rapidly drops below 20 ms and larger 

separations are needed (Bernstein et al. 2001; Reed et al. 2016)  

Even faster variations in localization cues (below 5 ms) can come from reflections 

of the sound bouncing off objects or walls in the environment, also known as 

reverberation.  When two clicks are presented quickly in succession (< 5 ms) from two 

separate locations, listeners hear a fused image, suggesting that our auditory system is 

adept at interpreting these very fast variations in localization cues as a single source 

rather than two separate sources (Litovsky et al. 1999).  The inability to distinguish 

between quickly alternating localization cues may also result from spatially diffuse 

sources of sound like some sound textures (McDermott & Simoncelli 2011), including 

running water in a nearby river or the noise of a nearby flock of seagulls.  Indeed, natural 

binaural sounds contain variations in interaural phase differences that are beyond those 

considered ethologically useful (Młynarski & Jost 2014) because the interaction of sound 

coming from many locations can binaurally decorrelate the incoming sounds.  Binaural 

decorrelation also occurs in reverberant environments.  The amount of binaural 

decorrelation between the two ears can change the spatial width of the image that we 

perceive (Culling et al. 2001; Whitmer et al. 2012).  Thus, the perception of a spatially 

diffuse sound may be related to binaural decorrelation resulting from localization cues 

that are varying quickly in time. 

 Intuitively, because we perceive motion, spatially separated sound sources, and 

reverberation or spatially diffuse sounds differently, time-varying localization cues 

should result in three different ethologically relevant percepts that depend upon the speed 

of the variation.  Qualitatively, this is what others have observed for sounds with a time-
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varying interaural time difference (ITD) (Licklider 1950; Perrott & Musicant 1977; 

Grantham & Wightman 1978; Siveke et al. 2008) or a time-varying interaural level 

difference (ILD) (Grantham 1984).  When listeners are presented with a noise or pure 

tone that has an oscillating localization cue and the speed of that variation is changed, 

three different percepts are perceived: motion at slow speeds (<8-10 Hz), modulation or 

“flutter” without motion at fast speeds (10 Hz - 50 Hz), and a spatially diffuse sound at 

very fast speeds (> 50 Hz).  If both a time-varying ITD and a time-varying interaural 

correlation are varying, fluctuations may be perceived up to 1 kHz (Siveke et al. 2008).  

 Our ability to hear time-varying binaural cues does not extend to the same high 

speeds where we can hear time-varying monaural cues (Grantham & Wightman 1978; 

Grantham & Wightman 1979; Grantham 1984).  Monaural amplitude modulation of noise 

can be detected up to 1 kHz (Viemeister 1979).  Additionally, masking of a diotic probe 

tone persists for longer durations following an instantaneous transition from correlated to 

anticorrelated noise than for a noise with an instantaneous decrease in sound level 

(Kollmeier & Gilkey 1990).  These results suggest that binaural processing in the 

auditory system is “sluggish” relative to monaural processing.  How the different 

percepts for time-varying locations cues arise in the auditory system, and how they may 

differ from the coding of amplitude modulation, is still unclear.  

 Variations in interaural level differences (ILD) and variations in monaural 

spectral cues are also important for detecting, discriminating, and identifying the 

direction of motion (Harris & Sergeant 1971; Blauert 1972).  Additionally, people are 

better at detecting fast modulations in ILD than fast modulations in ITD (Grantham 

1984).  Thus, the presence of time-varying ILD and time-varying monaural cues 
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potentially improves motion perception and glimpsing in the natural environment.  

Nevertheless, the perceptions of motion, fluctuations, and a spatially diffuse sound occur 

for sounds with where only the ITD is changing without any monaural fluctuations in 

level.  Because our interest is in the temporal limitations of binaural processing, from 

here on our focus will solely be on time-varying ITD and time-varying interaural 

correlation. 

  

Temporal limitations in binaural processing:  

 Where might these limitations arise?  ITDs are initially encoded in the superior 

olivary complex (SOC) (Grothe et al. 2010).  At low frequencies most neurons in the 

SOC encode ITDs of the sound’s fine structure, and at high frequencies most neurons in 

the SOC encode ITDs of on the sound’s envelope.  The nuclei in the SOC project to the 

inferior colliculus (IC) in the midbrain, where neurons are sensitive to both fine-structure 

and envelope ITD (Kuwada & Yin 1983; Yin et al. 1984; Joris et al. 2006; Devore & 

Delgutte 2010).  We can perceive motion and fluctuations resulting from time-varying 

ITD in both the fine structure (Perrott & Musicant 1977; Licklider 1950) and the 

envelope (McFadden & Pasanen 1975), so both types of ITD cues are potentially relevant 

for broadband sounds in the natural environment.  Limitations in coding that reduce the 

detectability of time-varying ITD at high speeds may be present at any of these stages as 

well as more central stages.  The inputs to the SOC are bandpass filtered by the cochlea 

and lowpass filtered in the auditory nerve, which limits the speed of the both phase and 

level fluctuations.  Beyond the SOC, lowpass filtering via synaptic inputs can further 

limit the speeds of possible variations in firing rate.  If the perceptual limitations of time-
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varying ITD arise in the SOC or the IC, evidence of these limitations should be present in 

the coding abilities of IC neurons.  

 Interestingly, no evidence of binaural sluggishness has been found in the IC.  Joris 

et al. (2006) measured neurons in the IC of anesthetized cats while presenting broadband 

noise with a sinusoidally time-varying interaural correlation.  Several of the neurons 

could keep up with fluctuations in interaural correlation up to 1 kHz, well above the 

modulation frequencies that we can detect (Grantham 1982).  Additionally, Shackleton & 

Palmer (2010) recorded from the IC of anesthetized guinea pigs while playing stimuli 

where a “target” tone is presented soon after an instantaneous inversion in interaural 

correlation of a background masking noise.  They expected to see a masking effect of the 

response to the probe tone following this transition, since this masking effect has been 

observed psychophysically in humans (e.g. Kollmeier & Gilkey 1990).  They found 

instead that neurons could respond to the probe tone even at the shortest time scales 

measured (minimum of 30 ms).  Based on these results, both Joris et al. and Shackleton 

and Palmer proposed that binaural sluggishness might arise at higher levels of the 

auditory system above the IC.   

 In the dorsal nucleus in the lateral lemniscus of gerbils, however, Siveke et al. 

(2008) found that more neurons significantly synchronized to amplitude modulated noise 

at frequencies above 64 Hz than to the noise stimuli with oscillating binaural cues.  This 

was true even for their “phasewarp” stimuli with both a time-varying ITD and time-

varying interaural correlation, which was detectable at high modulation frequencies 

similar to amplitude modulation detection.  They found that detection based on firing rate 

could account for the difference in detectability of the “phasewarp” stimulus relative to 
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other stimuli with oscillating correlation, but performance using firing rates did not match 

human performance at the highest modulation frequencies (500-1000 Hz).  

 Comparing neurophysiological limits in time-varying ITD and perceptual limits is 

also complicated by the fact that so many different thresholds have been observed, and 

the thresholds particularly depend upon the experimental paradigm. For tasks where 

participants detect motion relative to a static source or identify motion direction, 

performance decreases rapidly for stimuli with durations below 100 ms (see Carlile & 

Leung 2016 for review).  When the task is to detect a brief change in the interaural 

correlation of a noise or “binaural gap”, thresholds are even shorter and vary depending 

upon the correlation of the noise played during the “gap”.  When a correlated or 

anticorrelated noise is the “gap” and is flanked by binaurally uncorrelated noise, 

thresholds are between 20-40 ms (Boehnke et al. 2002).  When the uncorrelated noise is 

used as the “gap” and is flanked by correlated or anticorrelated noise, thresholds can be 

as low as 3-5 ms (Akeroyd & Summerfield 1999; Boehnke et al. 2002).  Other studies 

have found threshold durations for detectable time-varying binaural ITD and time-

varying interaural correlation spanning the range of 15-400 ms (for review see 

Shackleton & Palmer 2010; Lüddemann et al. 2016).  A proper comparison of the neural 

data to these psychophysical thresholds will clearly depend on the types of stimuli used 

as well as the questions asked. 

 

Direction selectivity in the auditory system: 

 There is some evidence that IC neurons are selective to the direction of a time-

varying ITD.  The first observation of direction selectivity to sound motion in the inferior 
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colliculus was found in anesthetized cats.  Altman (1968) measured responses to a click 

train with a time-varying ITD.  He found numerous neurons whose average firing rates 

were larger when the click train moved towards 0 µs ITD than when it moved away from 

0.  Also in cats, Yin and Kuwada (1983) presented binaural beats with carrier frequencies 

equal to the best frequency of the low-frequency neurons (< 3 kHz).  Binaural beats are 

pure tone stimuli where the interaural phase difference changes linearly from 0 to 360° in 

once cycle.  14% of the neurons they recorded from fired more for one direction of 

motion than for the other.  Similar results were observed in unanestheized rabbits 

(Fitzpatrick et al. 2009), even for binaural beat speeds well above those where humans 

can no longer hear modulation of the binaural beat (Licklider 1950).  Spitzer and Semple 

(1991, 1993) extended these findings in both anesthetized gerbils and cats.  Using 

interaural phase modulated tones, similar to binaural beats but with a narrower range of 

interaural phases, they found differences in firing rate for different directions of motion. 

These results were not observed for phase-locking neurons in the superior olive that 

likely project to the IC, but were observed for non-phase locking neurons in the superior 

olivary complex and in the IC (Spitzer & Semple 1998).  However, the firing rate of 

neurons may also be suppressed following a transient increase in firing irrespective of 

what is going on in the stimulus.  The suppression in firing is also known as spike-rate 

adaptation.  Others have argued that “direction selective” responses can largely be 

explained by adaptation rather than direction selectivity per se (Cai et al. 1998; McAlpine 

et al. 2000; Borisyuk et al. 2002).  

 While spike-rate adaptation may explain the dynamic responses observed in the 

IC for time-varying ITD and stimuli with time-varying interaural phases, it does not 
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discount the presence of direction selectivity.  But more importantly, it is still unclear 

how the patterns of firing may be used to ultimately identify the trajectory of motion.  

The pattern of firing available in the IC must be used somehow in order to identify the 

motion direction of a sound source.  Humans can do this, and there is some evidence that 

true direction selectivity for auditory motion may be present in other cortical areas of the 

brain of monkeys (Ahissar et al. 1992; but see Scott et al. 2009) and humans (Jiang et al. 

2014).  If direction selectivity in the IC is relevant for perceiving motion direction, we 

would expect IC neurons to show distinct firing rates for different motion directions, like 

in the retina (Barlow & Levick 1965; Grzywacz & Amthor 2007).  Additionally, a 

classifier should be able to properly identify the motion direction of a time-varying ITD 

based on the firing rates of this population of neurons.  

 

Relevance of neural noise: 

 Very few of the studies listed above have taken into account inherent neural noise 

as a possible factor for limiting the detectability of a time-varying ITD or the ability to 

identify its direction.  For example, when averaged over a long period of time, a neuron 

may be appear to significantly synchronize to a noise with a modulating ITD or interaural 

correlation at speeds that can no longer be perceived, but the strength and phase of the 

synchronization may vary on a trial-by-trial basis, as has been observed for neural 

responses to amplitude modulation (Yin et al. 2011).  In vision, classification of motion 

direction based on single neuron responses in the medial temporal lobe has been used to 

successfully predict direction identification performance in monkeys (Britten et al. 1992).  

We are only aware of a small of studies that have attempted to classify the motion 
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direction of sounds based on cortical responses measured with fMRI in humans (Jiang et 

al. 2014; Jiang et al. 2016).  Whether or not it is possible to classify the motion direction 

of a sound based on single neuron responses seems to be completely unexplored. 

 

Summary of thesis: 

 In Chapter 2, we compare the firing rates and synchronization strengths of IC 

neurons in unanesthetized rabbits to time-varying ITD and amplitude modulations at the 

same set of modulation frequencies.  Contrary to previous literature (and our initial 

hypothesis), we find that neurons in the IC significantly synchronize to higher 

modulation frequencies for amplitude-modulated noise than for time-varying ITD.  This 

could be a neural correlate for binaural sluggishness.  Furthermore, while nearly all 

neurons are unable to synchronize to the time-varying ITD at high modulation 

frequencies, they exhibit a change in firing rate that tends towards the rate for binaurally 

uncorrelated noise.  An optimal process using single-neuron responses to detect the 

dynamic ITD reached its worst performance around 64 Hz, which is close the modulation 

frequency where human listeners had the most difficulty detecting a time-varying ITD in 

the classic study by Grantham and Wightman (1978). 

 In Chapter 3, we examine the ability for IC neurons to encode linearly time-

varying ITD (“ITD sweep”) within binaurally uncorrelated noise.  We then use a 

generalized linear model to separate the contributions of ITD following, direction 

selectivity, and spike rate adaptation to the responses of these neurons.  We find that the 

temporal response patterns of neurons in the IC can be described better by their ability to 

follow the ITD of the sweep than by direction selectivity, suggesting that direction 
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selectivity is of little to no importance in encoding the ITD sweeps.  Furthermore, we 

assess the performance of an optimal classifier that identifies the motion direction or 

detects the ITD sweep based on single neuron responses, and we compare the 

performance of this classifier to human performance by identifying the ITD sweep 

durations for both tasks where performance is at threshold (75% correct responses).  Both 

the neural classifier and human participants exhibit similar threshold durations for 

direction identification and detection.  Additionally, both neural and perceptual threshold 

durations for detection are significantly lower than the thresholds for direction 

identification. 

 This thesis provides evidence for temporal limitations for binaural processing in 

the IC that match those proposed in the psychophysics literature.  We also provide 

evidence for distinct thresholds for direction identification and for detection that can 

partly explain the wide range of threshold durations observed across psychophysics 

studies (see Shackleton & Palmer 2010; Carlile & Leung 2016; Lüddemann et al. 2016).  

The results from this work identify possible neural correlates for the three percepts 

qualitatively observed for time-varying ITD: motion, fluctuation, and spatially diffuse 

sound.  
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Chapter 2 
 
Neural coding of time-varying interaural time differences and time-varying 
amplitude in the inferior colliculus  
 
 

Sound sources in natural environments are usually not static, but our understanding of how the 

auditory system processes time-varying sound position is still lacking. Here, we directly 

compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband 

noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal 

amplitude modulation (SAM) over a wide range of modulation frequencies.  Based on prior 

research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to 

modulation frequency, might use a common mechanism to encode time-varying information in 

general.  Instead, we found weaker temporal coding for dynamic ITD compared to amplitude 

modulation and stronger effects of adaptation for amplitude modulation.  The differences in 

temporal coding of dynamic ITD compared to SAM at the single-neuron level could be a neural 

correlate of “binaural sluggishness”, the reduced detectability of time-varying binaural cues at 

high modulation frequencies, for which a physiological explanation has so far remained elusive.  

At ITD-variation frequencies of 64 Hz and above where the effectiveness of a temporal code was 

reduced, noise with a dynamic ITD could still be distinguished from noise with a constant ITD 

through differences in average firing rate in many neurons, suggesting a frequency-dependent 

tradeoff between rate and temporal coding of time-varying binaural information.   
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Introduction: 

In natural environments, interaural time differences (ITD), a dominant cue for localizing 

sounds in the horizontal plane (Wightman & Kistler 1992), usually change over time.  Slow 

changes in ITD produced by a moving sound source or head motion are usually perceived as 

motion (Blauert 1972; Perrott & Musicant 1977).  Fast changes in ITD occur in the presence of 

multiple spatially distributed sound sources (Faller and Merimaa, 2004; Yost and Brown, 2013), 

and very fast changes in ITD come from the spatial dispersion of acoustic reflections resulting in 

reverberation (Litovsky et al. 1999).  Clearly our perceptions of motion, spatially distributed 

sound sources, and reverberation are different, but the time scale at which this change in 

perception occurs and how it is represented in the brain are still unclear. 

The detection of modulations in binaural cues has been studied psychophysically (for 

review, see: Bernstein 1997; Shackleton & Palmer 2010; Carlile & Leung 2016). In a classic 

study, Grantham and Wightman (1978) measured the subjects’ ability to discriminate broadband 

noise with a sinusoidally-varying ITD from noise with a static ITD.  Performance worsened with 

increasing modulation frequency up to around 20-50 Hz but then improved at higher modulation 

frequencies up to 500 Hz.  These high-frequency improvements could not be explained by 

monaural cues alone.  Subjects reported detecting the time-varying ITD at high frequencies 

through a difference in spatial extent of the sound image rather than from a percept of motion.  In 

contrast, monaural amplitude modulations can be detected up to 1-2 kHz with a gradual, 

monotonic degradation in performance (Viemeister 1979).  Grantham and Wightman concluded 

that the performance at low modulation frequencies may represent the processing of auditory 

motion, which is “sluggish” relative to monaural processing.  At high modulation frequencies a 

secondary binaural mechanism may be at play. 
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        A neural correlate and explanation for binaural sluggishness, however, remains elusive.  

Joris et al. (2006) examined the sensitivity of neurons in the inferior colliculus (IC) of 

anesthetized cats to time-varying interaural correlations of broadband noise.  They found that the 

upper frequency limit of phase locking to the sinusoidal correlation was much higher than the 

detection limits observed psychophysically and close to the neural limits for phase locking to 

monaural amplitude modulation.  Siveke et al. (2008) showed high phase-locking limits for 

neurons in the dorsal nucleus of the lateral lemniscus for “phasewarp” broadband stimuli having 

both a time-varying ITD and a time-varying interaural correlation.  Shackleton and Palmer 

(2010) also found shorter time constants in the IC of anesthetized guinea pigs in response to 

tone-in-noise stimuli with abrupt transitions in interaural phase than expected from 

psychophysical studies of binaural detection.  These studies have led to the suggestion that the 

sluggishness of binaural processing may arise at higher stages of the auditory system.  They also 

raise the possibility that time-varying spatial cues and amplitude modulation may be processed 

similarly in the IC.  Other studies have demonstrated that amplitude modulation can affect the 

range of firing rates and tuning to binaural beats (d’Angelo et al 2003; Sterbing et al 2003), 

source azimuth, and distance (Kuwada et al 2012).  Dietz et al. (2014) examined the effects of 

amplitude modulation on the localization of binaural beats at high modulation frequencies, but 

only when the amplitude modulation and the binaural beats were at the same modulation 

frequency.  The sensitivity of IC neurons to time-varying ITD has not been directly compared 

with sensitivity to amplitude modulation in the same neurons, which would be a more direct test 

of binaural sluggishness (see Fitzpatrick et al (2009) for this comparison in the auditory cortex).   

Here, we recorded from neurons in the IC of unanesthetized rabbits in response to 

broadband noise with a time-varying ITD, and compared with responses to sinusoidally 
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amplitude modulated (SAM) broadband noise for the same modulation frequencies.  Our results 

suggest that the coding mechanisms for time-varying ITD and SAM are largely distinct, which 

could be a correlate of binaural sluggishness.  We also suggest that a rate code might explain the 

detectability of rapidly varying ITDs within the range of reverberation. 

 

Methods: 

Dynamic ITD stimuli 

 Stimuli with time-varying ITD (henceforth “dynamic ITD” stimuli) were derived from a 

broadband noise (0-50 kHz) carrier synthesized with a 100 kHz sampling rate.  The noise was 

first segmented into 10.9 ms windows with 50% overlap between successive windows.  In each 

window, the signal was upsampled to 1 MHz and then resampled with the desired time-varying 

delay at a resolution of 1 µs (Figure 1a).  Only a half segment starting 0.9 ms after the window 

onset was used in order to avoid edge effects associated with upsampling.  Concatenating these 

half segments created broadband noise with a time-varying delay relative to the original sound.  

A dynamic ITD was produced by presenting the original broadband noise signal in the ear 

contralateral to the recording site and the processed signal with time-varying delay to the 

ipsilateral ear.   

With this method, the dynamic ITD could follow any arbitrary ITD trajectory.  We used 

triangular modulations, which produce constant rates of change in ITD in each direction.  The 

accuracy of the ITD trajectory was verified by computing the running cross-correlation function 

between the signals at the two ears using half-overlapping 2 ms Hanning windows (Figure 1b).  

We chose triangular modulations to facilitate comparison with previous neurophysiological 
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studies that used pure tone stimuli with linearly-varying ITD (Spitzer & Semple 1993; McAlpine 

et al. 2000).   

 

 Subjectively, listening to dynamic ITD stimuli over headphones produces different 

percepts depending on the rate of modulation (Grantham & Wightman 1978; Siveke et al. 2008).  

Up to ~2 Hz the interaural location of the broadband noise can be explicitly tracked as it moves 

between the two ears.  Between 2-8 Hz, the dynamic ITD stimulus is perceived to move back 

and forth between the ends of its trajectory.  Above 8 Hz, the noise no longer sounds like it is 

Figure 1: (A) Creation of a time-varying interaural delay in a window of broadband noise.  The original 
signal was zero-padded in the frequency domain to ten times its original length resulting in a 10x 
upsampled signal.   The upsampled signal was then resampled with a time-varying delay.  The original 
noise was presented through the contralateral channel, and the delayed noise was presented through the 
ipsilateral channel, resulting in a dynamic ITD. (B) Cross-correlation of the two channels for 1 second of a 
4 Hz dynamic ITD stimulus as a function of time.  For the stimulus shown in this figure the magnitude of 
the spectrum below 50 Hz and above 17 kHz was set to zero.  Each cross-correlation was performed 
within 2 ms cosine windows.  Neighboring windows were half-overlapping. 
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moving, but a time-varying quality of the sound (a faint beating or flutter) can still be perceived.  

Between 32-500 Hz, the perception of flutter fades, and the noise is perceived to widen spatially.  

Around 500-1000 Hz the noise sounds binaurally uncorrelated, as if independent samples of 

noise were presented at each ear.  Because these high modulation frequencies produce spectral 

fluctuations that are audible monaurally, we did not examine frequencies above 256 Hz in this 

study.   

In an early version of the dynamic ITD stimulus, the time-varying delay was created 

without upsampling by shifting the broadband noise in one ear by one sample point for every 10 

µs ITD step in the triangular ITD trajectory.  These early dynamic ITD stimuli were used for 12 

neurons.  For 4 neurons, the shifting was done only in one ear.  For these stimuli, a clear 

“buzzing” could be perceived monaurally for frequencies above 100 Hz, so we restricted our 

dynamic ITD and SAM recordings to 64 Hz and below.  For the 8 remaining neurons, the shift 

was performed in one ear or the other depending on whether the ITD was increasing or 

decreasing, so that the time-varying delay in each ear was either decreasing or constant.  No 

monaural effects were heard for these stimuli at 128 and 256 Hz so these frequencies were used 

for recordings.   

A major goal of this study was to compare responses to dynamic ITD stimuli with 

responses to sinusoidal amplitude modulation (SAM) in the same neurons.  Compared to 

sinusoidal modulations, triangular modulations contain additional frequency components at 

integer multiples of the fundamental modulation frequency.  These components arise from 

discontinuities in the rate of change of ITD every half period.  In principle, a neuron could 

respond to the higher frequency components of the modulation, making comparison to responses 

to SAM stimuli hard to interpret.  Indeed, Spitzer and Semple (1993) found slightly sharper 
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peaks in firing rate for sinusoidal motion than for triangular motion in gerbil IC neurons, which 

they attributed to the accelerations of ITD that are present in the sinusoidal modulation.  To 

address the difference, we separately recorded the responses of 9 neurons to both triangularly-

modulated and sinusoidally-modulated dynamic ITD and compared their responses and looked 

primarily at temporal and adaptation metrics. 

 

Animal preparation 

 All surgical and experimental procedures using Dutch-belted rabbits were approved by 

the Animal Care Committee of Massachusetts Eye and Ear.  Three female rabbits were used in 

these experiments. Surgeries for implantation of a head bar and cylinder and the subsequent 

craniotomy were as described previously (Day et al. 2012; Slama & Delgutte 2015).  Briefly, 

under ketamine/xylazine anesthesia the rabbit's skull was exposed, and a stainless steel bar and 

cylinder were fixed to the skull using dental cement.  The cylinder was positioned along bregma 

in order to provide access to either IC.  After a week of post-operative care, the rabbit was 

habituated to the experimental setup over a 7-8 day period.  A craniotomy was then made under 

isoflurane anesthesia, and recording sessions began 2-3 days afterwards.  The rabbit was 

monitored by a video camera during the recording sessions which lasted 2.5 hours and took place 

over a period of 8-12 months. 

 

Experimental Preparation 

 All neural recordings were done in a soundproof chamber.  The rabbit was restrained in a 

spandex sleeve and its head clamped through the head bar during the recording sessions.  Sound 

was delivered via custom made ear inserts, either composed of a vinyl polysiloxane impression 
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material (DENTSPLY International Reprocil) or constructed from polyethylene foam inserts 

(Comply P-Version Foam Tips).  Stimuli were generated in MATLAB, converted into an analog 

signal using a 24-bit digital-to-analog converter (National Instruments PXI-4461), and delivered 

to speakers (Beyerdynamic DT-48) attached to the ear inserts via tubes.  In-ear calibrations were 

performed using an Etymotics ER-7C probe tube microphone.  The probe tube was positioned in 

each ear insert such that the end of the probe tube was 1.5-2 cm from the tympanic membrane 

(Kuwada et al. 1987).  The in-ear calibrations were used to design an inverse digital filter that 

was applied to all broadband stimuli in order to produce a flat spectrum over the range 50 Hz to 

17 kHz at the tip of the probe tube. 

  

Electrophysiology 

 Most neurons were recorded using a flexible polyimide linear microelectrode array with 4 

platinum/iridium-based contacts (Microprobe).  The impedance of each contact was between 0.2-

1 MΩ and the contacts were spaced 150 µm apart.  The electrode was advanced through the dura 

into the IC using a micropositioner (Kopf Model 650).  Signals from the microelectrode were 

sent through a Plexon head stage and PBX preamplifier before being digitized at 50 or 100 kHz 

for computer processing.  In early experiments, 4 neurons were isolated with epoxy-insulated 

tungsten microelectrodes (A-M Systems).  The procedure for processing signals from these 

electrodes has been described previously (Day et al. 2012). 

 Single neurons in the IC were detected using a search stimulus consisting of two 200 ms 

bursts of broadband noise at 50-65 dB SPL with ITDs of 0 and +300 µs (contralateral leading), 

respectively.  Once a neuron with stable spike shape and amplitude was isolated, spike times 

were measured by a manually set voltage threshold crossing and stored for later analysis.  During 
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post-hoc analysis, neurons were excluded if > 1% of the interspike intervals were less than 1 ms 

in order to ensure that they were single neurons.   

 

Stimulation protocols: Static stimuli: 

 Once a neuron was isolated, a static ITD tuning curve was measured: 300 ms broadband 

noise bursts were presented every 600 ms with ITDs ranging from ‒900 to +900 µs in increments 

of 100 µs.  Each ITD was presented 10 times and the ITDs were randomly interleaved.  The 

sound level was usually 40-60 dB SPL, which was typically 20-35 dB above rate-level threshold 

for broadband noise.  A neuron was included only if its static ITD tuning was statistically 

significant by a one-way ANOVA of the spike counts with ITD as factor (p < 0.001) (Hancock et 

al. 2010; Day et al. 2012; Chung et al. 2016).  We also measured rate-level curves using 300 ms 

broadband noise bursts over 5-70 dB SPL in 5 dB steps.  Each sound level was presented 10 

times in random order.  The noise for rate-level characterization was usually set at the ITD 

exhibiting the maximal firing rate within the range of ITDs chosen for the dynamic ITD stimulus 

(see below).  Frequency tuning was characterized either by an automatic threshold tracking 

procedure with 100 ms tone pips (Kiang & Moxon 1974), or, when this method failed (e.g. due 

to suppressive responses), by measuring firing rate as a function of frequency for a 100 ms tone 

at 10-20 dB above rate threshold.  For simplicity, we use the term “best frequency (BF)” to refer 

either to the frequency exhibiting the lowest threshold with the tracking procedure or to the 

frequency eliciting the maximum firing rate in the iso-level paradigm.  Based on their sharp 

frequency selectivity, and an orderly increase in best frequency with electrode depth on most 

penetrations, it is likely that most of the neurons we recorded from were located in the central 

nucleus of the IC (Aitkin et al. 1972; 1975).    
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Stimulation protocols: Dynamic stimuli: 

 Both SAM noise and dynamic ITD stimuli were presented at 40-60 dB SPL, at the same 

level as for measuring static ITD tuning.  For both stimuli, modulation frequency was varied 

over 2-256 Hz with octave spacing.  Each modulation frequency was presented 5 times for 5 

seconds with 4 ms sine-square onset and offset ramps and 1 second of silence in between 

presentations.  For dynamic ITD stimuli, the range of ITD variation was always ±300 µs around 

a center ITD so as to roughly encompass the physiological ITD range for Dutch-belted rabbits 

(Day et al. 2012).  The center ITD was chosen separately for each neuron so that the ITD range 

would be located within a portion of the static ITD tuning curve where firing rate varied nearly 

monotonically with ITD.  The blue arrow in Figure 2a illustrates the ITD range of the dynamic 

ITD stimulus relative to the static ITD tuning curve in an example neuron.  This choice was 

intended to elicit a temporal pattern of response that would resemble the expected response 

pattern to SAM noise, namely a unimodal distribution over the course of the modulation period.  

Across our neuronal sample, the center of the ITD range of the dynamic ITD stimulus was 

chosen between ‒600 to +600 µs, but most often it was either 0 µs (22/66 neurons) or +300 µs 

(contralateral leading, 19 neurons).  With these choices, the firing rate increased nearly 

monotonically as the ITD increased in 51/66 neurons, and the firing rate decreased with 

increasing ITD in the remaining 15 neurons. 

In addition to the dynamic ITD stimuli with different modulation frequencies, two 

“unmodulated” stimuli of equal duration and repetition rate were also presented: one with a static 

ITD at the center of the dynamic ITD trajectory, and one consisting of binaurally uncorrelated 
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noise.  The presentations of all dynamic ITD and unmodulated stimuli were randomly 

interleaved.  

SAM broadband noises were presented with an ITD located at the point within the 

dynamic ITD’s trajectory that produced the maximum firing rate to static ITD stimuli (red arrow 

in Figure 2a).  SAM stimuli with different modulation frequencies were randomly interleaved 

with an unmodulated (constant amplitude) broadband noise at the same ITD.   

When time permitted, static ITD tuning was measured a second time after testing all 

dynamic stimuli to verify stability of recording.  Data were excluded if the average difference 

between the new static ITD tuning curve and the original one was >20% of the original ITD 

curve’s firing rate maximum. 

 

Data analysis 

 To compute temporal modulation transfer functions (tMTFs) for dynamic ITD and SAM 

stimuli, the strength of phase locking to each modulation frequency was quantified using the 

vector strength (VS) (Goldberg & Brown 1969) computed over the entire 5-s stimulus duration 

excluding the onset response.  The duration of the onset response, which ranged from 10-200 ms, 

was determined individually for each neuron by visually inspecting the raster plot.  The analysis 

interval always consisted of an integer number of modulation periods.  Statistical significance of 

the VS was determined using the Rayleigh test (Mardia & Jupp 2000) with p < 0.001 criterion.  

The “synchronization limit” was determined for each neuron and each stimulus type (SAM or 

dynamic ITD) by linearly interpolating the Rayleigh statistic between the highest modulation 

frequency where VS was significant and the next highest frequency to find the frequency 

intercept corresponding to p=0.001 (Figures 2c, 3c).  In addition, the temporal best modulation 
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frequency (tBMF) was determined by quadratic interpolation around the maximum of the tMTF 

and the two adjacent points.  Lastly, the 6 dB cutoff frequency was determined by linear 

interpolation at the frequency where VS was equal to half the maximum.  If the synchronization 

limit or 6 dB cutoff frequencies were beyond the range of measured values, they were excluded 

from population analysis.  

In order to obtain rate modulation transfer functions (rMTF) for SAM and dynamic ITD 

stimuli, the average firing rate was computed for each modulation frequency over the stimulus 

duration excluding the first 500 ms of each 5-s trial.  Standard error bars (Figure 2e for example) 

were computed by dividing the 5 stimulus trials × 4.5 s/trial into 45 segments of length 500 ms. 

We did this because a 500-ms stimulus duration is often used in psychophysical experiments and 

we wanted to define average firing rate in a way that would be appropriate for ROC analysis (see 

below).  The average firing rate during the 1 second in between stimuli was also computed and is 

labeled “Stimulus Off” in the plots.   

We classified the shapes of the rMTFs for SAM relative to their firing rate to the static 

noise based on classification schemes used in previous studies (Carney et al. 2015; Kim et al. 

2015).  A neuron was “band-enhanced” if its maximum firing rate was 1 SD above the 

distribution of firing rates for the static noise, a neuron was “band-reject” if its minimum firing 

rate was 1 SD below the static noise rates, and a neuron was “complex” if it passed both criteria.  

Neurons that did not pass either of these criteria were classified as “flat”.  We also computed the 

minimum and the maximum modulation frequencies of the rMTFs using quadratic interpolation.   

We quantified the strength of rate coding of modulation frequency by the mutual 

information (MI) in bits: 

𝑀𝐼 = 𝑝(𝑠, 𝑟)𝑙𝑜𝑔!
𝑝(𝑠, 𝑟)
𝑝 𝑠 𝑝(𝑟)

!∈!!∈!
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where p(s) is the probability distribution of modulation frequencies (assumed to be uniform), p(r) 

is the probability distribution of spike counts across all modulation frequencies, and p(s,r) is the 

joint distribution of spike count and modulation frequency.  Bias in MI estimates due to low 

sampling sizes was removed using a bootstrap resampling method (Chase & Young 2005; 

Devore & Delgutte 2010).  MI is always bounded upward by the entropy of the stimulus set, 

which was 3 bits since there were 8 equally probable modulation frequencies. Reaching this 

bound would mean that each modulation frequency is uniquely coded by a particular spike count 

that is identical on every trial.   

 

Analysis of adaptive effects 

 Previous studies of responses of IC neurons to tonal stimuli with time-varying ITD 

(Spitzer & Semple 1998; McAlpine et al. 2000; Ingham & McAlpine 2004) have suggested that 

firing rate adaptation may underlie some of the observed selectivity to the direction of ITD 

motion.  If an IC neuron shows firing rate adaptation, one would expect the response to a 

dynamic ITD stimulus to occur earlier and show a sharper rising edge when the stimulus moves 

from an ITD evoking a low firing rate in the static condition to an ITD evoking a large firing rate 

than when the stimulus moves in the opposite direction.  To test this prediction, two metrics were 

derived from temporal response patterns (period histograms) to dynamic ITD stimuli: the mean 

response phase and the skewness of the spike distribution.   

The mean response phase to SAM and dynamic ITD stimuli was computed from the 

period histogram for each modulation frequency as described by Goldberg and Brown (1969). A 

straight line was fit to the mean phase as a function of modulation frequency to estimate the 

mean group delay and phase intercept (Figure 2d).  Because of issues with phase unwrapping 
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resulting from the wide spacing between tested modulation frequencies, the fitting was done in 

three steps: 1) the line was first fit to the lower-frequency phases that increased monotonically 

with modulation frequency, 2) integer numbers of cycles were added or subtracted to the phases 

at the higher modulation frequencies to minimize their distance to the fitted line, 3) the line was 

refit to the phases at all frequencies for which VS was statistically significant.  Typically this 

method produced good fits: the median R2 was 0.996 for dynamic ITD stimuli and 0.992 for 

SAM.  Occasionally, however, R2 could be as low as 0.7.  The latter usually occurred when the 

mean phases were not strictly increasing at low modulation frequencies.  If such cases occurred 

(16/116 responses to either SAM or dynamic ITD stimuli), the set of frequencies used in step (1) 

was selected based on visual identification of the most appropriate phases for initially fitting the 

straight line, usually between 2 and 32 Hz. 

The slope of the fitted line represents the mean group delay of response, reflecting neural 

transmission delays as well as the cochlear traveling wave delay.  The 0-Hz intercept of the fitted 

line represents the neuron’s preferred phase after removing the group delay.  Our reference for 

phase intercepts was always the phase at which the excitatory drive is maximum, i.e. the phase of 

maximum amplitude for SAM stimuli, and the ITD within the trajectory evoking the maximum 

firing rate in the static condition for dynamic ITD stimuli.   With this convention, the phase 

intercept is expected to be zero in the absence of dynamic processes such as adaptation.  

Adaptation would cause the response phase to lead relative to this reference, resulting in a 

negative phase intercept.   

 A second metric derived from the period histogram that may serve as an indicator of 

adaptation is circular skewness (Pewsey 2004): 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑁 𝑠𝑖𝑛 2(𝜃! − 𝜃)

!

!!!
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where 𝜃! is the phase of each spike and 𝜃 is the mean phase (Figure 2f).  Skewness can range 

from ‒1 to +1.  In the absence of dynamic processes such as adaptation, the temporal firing 

patterns to dynamic ITD stimuli would be symmetric around the mean phase so the skewness 

would be 0. 

 

Receiver operating characteristic (ROC) analysis: 

 We used receiver operating characteristic (ROC) analysis (Green & Swets 1988) to 

quantify the performance achievable by an ideal observer of single-neuron responses in two 

discrimination tasks: (1) discrimination of a dynamic ITD stimulus from a static ITD stimulus 

located at the center of the dynamic ITD’s trajectory; (2) discrimination of a SAM stimulus from 

unmodulated noise (see also Nelson & Carney 2007; Carney et al. 2014). For each task, 

performance based on rate and temporal codes was compared.  We describe the ROC analysis for 

the dynamic ITD detection task; methods for the SAM detection task are identical except for the 

stimuli being discriminated. 

  For ROC analysis of rate coding, spike counts from each neuron were computed in 500 

ms response bins, excluding the first 500-ms of each 5-s trial, resulting in a distribution of 45 

spike counts for each stimulus.  This was done for dynamic ITD stimuli at each modulation 

frequency and also for the static ITD stimulus.  In many cases, the mean firing rate to dynamic 

ITD stimuli is higher than the rate for the static ITD stimulus.  Assuming that the dynamic ITD is 

detected when the spike count on a given trial exceeds a certain spike count criterion, the 

probability that a dynamic ITD stimulus is correctly detected is the fraction of trials in which the 

spike counts exceeds the criterion.  Similarly, the fraction of trials in which the spike count for 

the static ITD stimulus exceed the criterion represents the probability of “false alarms” (incorrect 
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detection of the static ITD stimulus).  The ROC curve is obtained by plotting the probability of 

correct detection against the probability of false alarm as the spike count criterion is 

systematically varied from the lowest to the highest spike count.  In psychophysics, the area 

under the ROC curve is equal to the percent correct in a 2-interval, 2-alternative-forced-choice 

detection task (Green & Swets 1988).  Thus, we refer to the area under the neural ROC curve as 

the neural percent correct score.  Because an adaptive threshold procedure widely used in 

psychophysics (Levitt 1971) converges to 71% correct probability, we also use this value as a 

threshold for neural detectability.   

The above reasoning assumes that the dynamic ITD stimulus evokes a higher firing rate 

than the static ITD stimulus, which is indeed what is observed in a majority of cases.  However, 

in some cases, the dynamic ITD stimulus evoked a lower firing rate than the static ITD stimulus, 

resulting in a neural percent correct score lower than 50%.  Since a decrease in firing rate as well 

as an increase provides a cue for detection that would be available to an ideal observer, we 

consider that a neuron detects the dynamic ITD if its percent correct score is either greater than 

71% or less than 29%. 

 For ROC analysis based on a temporal code, the VS and mean response phase were 

computed for each of the same 45 response bins as in the rate analysis.  ROC curves were 

constructed from the distribution of “phase-projected vector strength” (VSpp), defined by the 

following equation (Yin et al. 2011): 

𝑉𝑆!! = 𝑉𝑆! cos θ! − θ  

where 𝑉𝑆! is the vector strength for the ith response trial, θ! is the mean response phase for that 

trial, and θ is the mean response phase averaged across all trials.  By projecting the complex 

vector strength (magnitude and phase) for each trial along the direction defined by the mean  
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response phase, VSpp alleviates the ill-conditioned nature of the unprojected VS for low spike 

counts (for example, a trial with just one spike always yields a vector strength of 1 regardless of 

the spike phase).  VSpp was computed for each dynamic ITD stimulus and for the static ITD 

stimulus to construct an ROC curve and determine a neural percent correct score for each 

modulation frequency in the same way as for the rate analysis.  The threshold for neural 

detectability based on a temporal code was set to 71% since VSpp is expected to always be at 

least as large for dynamic ITD stimuli as for static ITD stimuli. 

  

Results: 

We recorded from 297 ITD-sensitive single neurons or multi-neuron clusters in the IC of 

3 unanesthetized rabbits.  These neurons showed statistically significant tuning of their firing 

rates to static ITD stimuli (ANOVA, p < 0.001).  Responses to both SAM and dynamic ITD 

Figure 2: (A) Static ITD tuning curve measured in an example neuron (BF = 3512 Hz).  The dashed blue 
arrow designates the ITD range of the dynamic ITD stimulus presented for this neuron.  The solid red 
arrow designates the ITD of the SAM stimulus.  (B) Period histograms for the dynamic ITD and SAM for 
this neuron.  (C) tMTFs for SAM (red) and dynamic ITD (blue).  The dotted lines connect to vector 
strengths that are not significant, marked by circles (p > 0.001 by the Rayleigh test with Bonferroni 
correction).  Thick arrows mark the tBMFs, diamonds mark the 6 dB cutoff, and thin arrows mark the 
synchronization limits.  For this neuron, both the tBMF and the synchronization limit are higher for SAM 
than for dynamic ITD (Sync. Limit: SAM = 169 Hz, Dynamic ITD = 82 Hz; Peak VS: SAM = 0.81, 
Dynamic ITD = 0.65; 6 dB cutoff: SAM = 56 Hz, Dynamic ITD = 43 Hz; tBMF: SAM = 23 Hz, Dynamic 
ITD = 11 Hz). (D) rMTFs for SAM (red) and dynamic ITD (blue) with STE.   The average rates to the 
unmodulated stimuli for both SAM and dynamic ITD are shown as dashed lines.  For this neuron, the MI 
was higher for SAM than dynamic ITD (SAM = 0.95, Dynamic ITD = 0.10). (E) Mean phases for SAM 
(red) and dynamic ITD (blue) along with the linear fit (SAM: group delay = 20.1 ms, phase-intercept = -
0.28 cycles, R2 = 0.98; Dynamic ITD: group delay = 17.2 ms, shifted phase-intercept = -0.06 cycles, R2 = 
0.98).  Only phases where phase-locking was significant are shown. (F) Skewness as a function of 
modulation frequency for SAM (red) and dynamic ITD (blue).  Skewness values at modulation 
frequencies with non-significant phase-locking are labeled with dots. 
 

Figure 3: Example a low BF neuron (BF = 842 Hz).  Figures are plotted in the same way as Figure 2.  
Sync. Limit: SAM was beyond measured values, Dynamic ITD = 52 Hz; 6 dB cutoff: SAM = 184 Hz, 
Dynamic ITD = 35 Hz; tBMF: SAM = 15 Hz, Dynamic ITD = 14 Hz; Peak VS: SAM = 0.42, Dynamic ITD 
= 0.25.  SAM MI = 0.42; Dynamic ITD MI = 0.24.  SAM: group delay = 11.5 ms, shifted phase-intercept = 
-0.04 cycles, R2 = 0.997; Dynamic ITD: group delay = 20.5 ms, shifted phase-intercept = -0.09 cycles, R2 = 
0.9996. 
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stimuli were measured in 113 of these recordings; 66 of these were identified as single neurons.  

The 66 neurons spanned a wide range of BFs (95 Hz to 19 kHz); 24 had BFs below 2 kHz, where 

ITD sensitivity of rabbit IC neurons with broadband noise stimuli is primarily dependent on the 

temporal fine structure (Devore & Delgutte 2010).  Of those low frequency neurons, 17 had BFs 

below 1 kHz.   

 

Temporal coding of SAM and dynamic ITD stimuli 

Figure 2b shows temporal response patterns (period histograms) from one neuron (BF = 

3512 Hz) for SAM and dynamic ITD stimuli as a function of modulation frequency.  The period 

histograms for SAM had sharper peaks and appeared more skewed than those for dynamic ITD. 

The firing rate was nearly constant with modulation frequency for dynamic ITD stimuli but 

showed much greater variations for SAM stimuli (Figure 2e).  For both stimuli, the neuron’s 

ability to phase-lock to the modulation period was quantified by the VS, which was plotted 

against modulation frequency to obtain a temporal modulation transfer function (tMTF) (Figure 

2c).  In this neuron the tMTFs had bandpass shapes for both stimuli, but both the peak VS and 

the best modulation frequency were larger for SAM than for dynamic ITD.  In addition, both the 

6 dB cutoff frequency (where VS falls to 50% of maximum) and the synchronization limit (the 

highest frequency where VS is significantly greater than zero (Rayleigh test, p > 0.001)) were 

higher for SAM than for dynamic ITD (see Figure 2c). 

 The BF of the neuron in Figure 2 was 3512 Hz, in a range where static ITD sensitivity 

for broadband noise in rabbit IC is dependent on the cochlear-induced envelope (Devore & 

Delgutte 2010).  Similar trends were observed for lower frequency neurons, where ITD 

sensitivity is predominantly dependent on the temporal fine structure.  Figure 3 shows results 
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from a lower-frequency neuron (BF=842 Hz) in a range where ITD tuning is dependent on the 

temporal fine structure.  As in Figure 2, the tMTFs have bandpass shapes for both SAM and 

dynamic ITD (Figure 3c) and the peak VS, 6 dB cutoff and synchronization limit are all higher 

for SAM than for dynamic ITD, indicating stronger temporal coding of modulations for SAM.  

However, unlike in Figure 2, the range of firing rates across frequency observed for SAM was 

similar to the range for dynamic ITD (Figure 3e), which was uncommon across our sample of 

neurons.   

 

 

Figure 4: (A) The fraction of neurons out of 66 with significant vector strengths at each modulation 
frequency for SAM (red) and dynamic ITD (blue). (B) Vector strength of all of the neurons measured 
(n=66) for SAM and dynamic ITD at each modulation frequency.  Lines mark median values. 
 

37



 

 

 On average, neurons showed stronger phase locking to SAM than to dynamic ITD (Figure 

4), and more neurons significantly phase locked to SAM than dynamic ITD at 128 and 256 Hz.  

Among 62 neurons that significantly phase locked to at least one modulation frequency for both  

SAM and dynamic ITD stimuli, the median tBMFs (Figure 5a), 6 dB cutoffs (Figure 5b), and 

synchronization limits (Figure 5c) were significantly higher for SAM than for dynamic ITD 

(Wilcoxon signed-rank, two-tailed: tBMF, n = 62, W = 1649; 6 dB cutoff, n = 55, W = 1892; 

sync. limit, n = 36, W = 572; p < 0.001 for all measures).  Additionally, the median peak vector 

Figure 5: Comparison of SAM and dynamic ITD tBMFs (n = 62) (A), 6 dB cutoffs (n = 55) (B), 
synchronization limits (n = 36) (C), and peak vector strengths (n = 62) (D).  Only neurons with tBMFs, 
6 dB cutoffs, and synchronization limits below 256 Hz are included.  All of these metrics were 
significantly higher for SAM than dynamic ITD across the population (Wilcoxon signed-rank test: p < 
0.001).  In all of these plots, neurons with BF below 2 kHz are shown in purple squares, neurons with 
BF above 2 kHz are shown in green dots, and neurons where the BF was unclear (2 neurons) are 
shown in black diamonds.   
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strength (Figure 5d) was significantly higher for SAM than for dynamic ITD across the neuronal 

sample (n = 62, W = 1892, p < 0.001), showing that temporal coding was generally more salient 

for SAM.  Peak vector strengths for SAM and dynamic ITD were significantly correlated across 

the sample (Kendall's τ = 0.41, p < 0.001).  There was also a weak correlation for 6 dB cutoffs (τ 

= 0.27, p = 0.004).  However, there was no significant correlation between tBMFs (τ = 0.09, p = 

0.30) nor synchronization limits (τ = 0.22, p = 0.06).  These weak correlations, along with the 

clear differences in median coding metrics between the two stimuli suggest that, while the 

temporal coding of SAM and dynamic ITD may be influenced by a common factor, the two are 

likely to be largely mediated by distinct mechanisms.  When comparing low BF (< 2 kHz) to 

high BF (> 2 kHz) neurons, we found no significant difference between tBMFs, 6 dB cutoffs, 

synchronization limits, and peak vector strengths for both SAM and for dynamic ITD (Mann-

Whitney U test: p > 0.05), suggesting that temporal coding of dynamic ITD is similar whether 

ITD sensitivity is dependent on the envelope or the temporal fine structure. 

 

Effect of Adaptation 

Previous studies of the coding of pure tone stimuli with time-varying ITD have suggested 

a role for firing rate adaptation in creating apparent sensitivity to the direction of ITD motion in 

the responses of IC neurons (Spitzer & Semple 1993; Cai et al. 1998; McAlpine et al. 2000; 

Borisyuk et al. 2002; Ingham & McAlpine 2004; Wang & Peña 2013).  Here we used two 

metrics derived from temporal response patterns (period histograms) to assess a possible 

influence of adaptation on responses to SAM and dynamic ITD stimuli. 

First, a straight line was fit to the mean phase of the period histogram as a function of 

modulation frequency to compute a group delay and a phase-intercept for both dynamic ITD and 
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SAM (Figures 2d, 3d).  This was done for 58 neurons.  Although these linear fits were generally 

very good, on average, phase data for dynamic ITD were fit better than the SAM response 

phases: The median R2 were 0.996 and 0.992 for 

dynamic ITD and SAM respectively, and the 

difference was significant (Mann-Whitney U-test, 

U = 3997, p < 0.001).  In 8 neurons, a linear fit 

could not be obtained because either there were 

too few data points exhibiting significant phase 

locking or a straight line poorly fit the phase data.  

Across the neuronal sample (Figure 6a), 

there was no significant difference between the 

median group delays for SAM and dynamic ITD 

(SAM = 17.0 ms, dynamic ITD = 18.2 ms, 

Wilcoxon signed-rank, two-tailed: W = 774, p = 

0.53), and the two delays were significantly 

correlated (Kendall's tau: τ = 0.32, p < 0.001).  

Even so, SAM group delays could be very 

different from dynamic ITD group delays in some 

neurons.  There was no significant difference 

between group delays for low BF and high BF 

neurons, both for SAM and for dynamic ITD 

(Mann-Whitney U test: SAM, U = 513; 

dynamic ITD, U = 505, p > 0.05).   

Figure 6: (A) Scatter plot of group delays 
computed for the SAM and dynamic ITD 
responses in each neuron (58/66 neurons).  (B) 
Scatter plot of phase intercepts.  Neurons that 
had an excitatory maximum was at 0.5 cycles for 
the dynamic ITD are shown as filled symbols, 
open symbols correspond to neurons where the 
excitatory maximum was at 0 cycles (see 
Methods).  Colors and shapes are the same as in 
Figure 5. 
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In the absence of adaptation, phase 

intercepts (Figure 6b) are expected to be 

near zero when a neuron fires maximally at 

the peak amplitude of a low-frequency 

SAM stimulus or when the instantaneous 

ITD in a dynamic stimulus approaches the 

ITD producing the maximum firing rate 

with static presentation.  Across the 

neuronal sample, the median phase 

intercept for dynamic ITD stimuli (‒0.02 

cycles) was significantly less than 0 

(Wilcoxon signed-rank, two-tailed: W = 

336, p < 0.001).  This result is consistent 

with the idea that adaptive effects cause 

phase leads for time-varying binaural 

temporal cues (McAlpine et al. 2000; 

Borisyuk et al. 2002), but the effect was 

weak.  The median phase intercept for 

SAM (‒0.07 cycles) was smaller than 0 by 

a greater amount (W = 408, p < 0.001), 

suggesting stronger adaptation effects for 

SAM.  Indeed, across the neuronal sample 

phase intercepts were significantly greater 

Figure 7: (A) Skewness across the population (n = 66) 
at each modulation frequency (red for SAM, blue for 
dynamic ITD).  Skewness is only shown at 
modulation frequencies with significant phase 
locking.  Solid lines designate the median values of 
each distribution.  The medians of the skewness for 
SAM were significantly different than dynamic ITD 
for 2, 4, and 16 Hz (p values are based on the two-
tailed Mann-Whitney U test with Bonferroni 
correction).  None of the dynamic ITD medians were 
significantly different than zero.  (B) The maximum 
magnitude skewness values for SAM and dynamic 
ITD across the population (n = 62).  Colors are the 
same as in Figures 5 and 6. 
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(less negative) for dynamic ITD than for SAM (Wilcoxon signed-rank, two-tailed: W = 1152, p 

= 0.022).  Whereas phase intercepts for dynamic ITD stimuli were relatively tightly clustered 

near 0, intercepts for SAM showed much greater scatter, so that there was no significant 

correlation between intercepts for the two stimuli (Kendall's tau: τ = 0.12; p = 0.19).  In 5 

neurons, the phase intercept for SAM was close to 0.5 cycles (Figure 6b), suggesting the SAM 

stimulus suppressed neural responses near the amplitude maxima.  There was a slightly 

significant difference between phase intercepts of low and high BF neurons for dynamic ITD 

(Mann-Whitney U test: U = 669, p = 0.006), but not for SAM (U = 531, p = 0.76).  

For both SAM and dynamic ITD stimuli, the period histograms could be very asymmetric 

for low modulation frequencies but the asymmetry tended to disappear at higher modulation 

frequencies (e.g. Figure 2b).  This asymmetry was quantified by the circular skewness of the 

period histogram at modulation frequencies where a neuron exhibited significant phase-locking 

(Rayleigh test with Bonferroni correction, p < 0.001).  For SAM stimuli, skewness was often 

negative for low modulation frequencies (Figure 7a), meaning that the rise in firing rate towards 

the peak of the distribution was steeper than the fall in firing rate beyond the peak, consistent 

with an adaptive process.  At higher modulation frequencies, a few neurons showed large 

positive skewness values, but these were unusual. When pooled across the population, the 

median skewness for SAM stimuli was significantly less than the median skewness for dynamic 

ITD stimuli for 2, 4, and 32 Hz (Mann-Whitney U test with Bonferroni correction for each 

modulation frequency, see Figure 7a).     

We compared the skewness with the largest magnitude across modulation frequencies for 

SAM relative to dynamic ITD in the 62 neurons (Figure 7b).  The median maximum skewness 

across the neuron sample was weakly but significantly less than 0 for SAM (median = ‒0.12, 
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Wilcoxon signed-rank, two-tailed: W = 671, p = 0.03) but not for dynamic ITD (median = ‒0.04, 

W = 783, p = 0.17).  There was no significant difference in median skewness between SAM and 

dynamic ITD (Wilcoxon signed-rank, two-tailed: W = 1205, p = 0.11), nor a significant 

correlation between the two (Kendall’s tau: τ = 0.03, p = 0.71).   

Since adaptation is expected to result in a suppression of firing following an initial rise in 

activity (McAlpine et al. 2000), these results suggest that adaptation is stronger for SAM than 

dynamic ITD, particularly below 32 Hz.  However, because vector strengths were also larger for 

SAM than dynamic ITD (Figure 4), the greater skewness for SAM stimuli may have been a by-

product of the stronger phase locking.  Indeed, there was a weak negative correlation between 

skewness and VS when data for the two stimuli were combined (Pearson’s correlation: ρ = -0.11, 

p = 0.003).  However, after partialing out the effect of VS on skewness, the median skewness for 

SAM and dynamic ITD were still significantly different at 2 and 16 Hz (Mann-Whitney U test 

with Bonferroni correction: 2 Hz, U = 3605, p < 0.01; 4 Hz, U = 3293, p = 0.078; 8 Hz, U = 

3628, p = 0.294; 16 Hz, U = 3690, p < 0.001; 32-256 Hz, p > 0.05). 

 

Comparison of responses to triangular and sinusoidal modulations of dynamic ITD: 

 In 9 neurons (BF = 277 – 6553 Hz), separate from the 66 neurons studied with SAM, we 

recorded responses to both sinusoidal and triangular ITD modulation with the same ITD range 

and center ITD.  While we found differences in temporal coding for SAM and dynamic ITD, we 

wanted to ensure that these differences were not simply due to our choice of dynamic ITD 

modulation.  
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 Figures 8a and b show the vector strength and skewness respectively sinusoidal and 

triangular modulations of dynamic ITD in a single neuron (BF = 4296 Hz).  This neuron showed 

some of the largest differences in temporal coding of the population with a larger peak vector 

strength and higher tBMF for sinusoidal than triangular modulation.  For the sampling of 

neurons, however, there was no significant difference between tBMFs, peak VS, or 6 dB cutoffs 

between the two types of ITD modulation (Wilcoxon signed-rank test, p > 0.05) (Figures 8c-f).  

Synchronization limits for the sinusoidal modulation were significantly larger than for triangular 

modulation, but the difference was very small (0.19 octaves, W = 0, p = 0.016).  Likewise, there 

were no significant differences between the median skewness at all modulation frequencies 

measured (Mann-Whitney U test, p > 0.05) (Figure 8g).  We conclude from this that there are no 

significant differences in temporal coding for sinusoidal and triangular dynamic ITD 

modulations.  Furthermore, the differences observed between dynamic ITD and SAM temporal 

coding cannot be explained by differences in triangular and sinusoidal modulation. 

 

 

Figure 8: (A) and (B) show the vector strengths and skewness for dynamic ITD with a sinusoidal 
trajectory (light blue dashed) and a triangular trajectory (blue dashed) for a single neuron (BF = 4296 
Hz).  The labels of tBMF, 6 dB cutoff, and synchronization limit are the same as in Figure 2 and 3. (tBMF: 
Triangular = 25 Hz, Sinusoidal = 45 Hz; 6 dB cutoff: Triangular = 88 Hz, Sinusoidal = 94 Hz; Sync. Limit: 
Triangular = 108 Hz, Sinusoidal = 119 Hz; Peak VS: Triangular = 0.23, Sinusoidal = 0.31). (C) tBMF, (D) 
6 dB cutoff, (E) synchronization limit, and (F) peak vector strengths for triangular and sinusoidal 
dynamic ITD modulations in 9 neurons.  Colors and shapes are labed by BF identically to Figures 6-8.  
Only synchronization limits were significantly different (Wilcoxon signed-rank test, p = 0.016) but by a 
small amount. (G) Skewness for sinusoidal (light blue) and triangular (blue) modulations for the same 9 
neurons.  We have plotted only skewness at modulation frequencies where the vector strength was 
significant (Rayleigh test with Bonferroni correction, p < 0.001).  The lines are plotted at median values.  
Only one neuron significantly synchronized to 128 Hz and no neurons significantly synchronized to 256 
Hz.  From 2-64 Hz, there were no significant differences between the median skewness (Mann-Whitney U 
test, p > 0.05). 
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Rate coding of SAM and dynamic ITD stimuli: 

 Figures 2e and 3e show the average firing rate as a function of modulation frequency for 

SAM and dynamic ITD for two example neurons.  In Figure 2e, the firing rate for SAM stimuli 

is clearly enhanced over the unmodulated response over a wide range of modulation frequencies 

(2-64 Hz).  Such neurons with “band enhanced” SAM tuning are frequently observed in IC 

(Langner & Schreiner 1988; Nelson & Carney 2007). In contract, the variations in firing rate 

with modulation frequency are much less pronounced for dynamic ITD and the firing rate 

remains close to that for a static-ITD stimulus.  While such clear difference between SAM and 

dynamic ITD is not observed in Figure 3e, this neuron was unusual in this respect.  We 

classified SAM rate tuning curves relative to their firing rates for the unmodulated noise, based 

on the classification scheme in previous studies (Carney et al. 2015; Kim et al. 2015).  Across the 

population, 13 SAM rMTFs neurons were classified 

as band-enhanced, 25 as band-reject, 14 as complex, 

10 neurons had flat rMTFs.  The median frequency 

exhibiting the maximum firing rate was 18 Hz 

(interquartile range of 10-56 Hz), and the median 

frequency with a firing rate minimum was 103 Hz 

(interquartile range of 64-129 Hz). 

We used mutual information (MI) to 

quantify the rate coding of modulation frequency in 

each neuron (see Methods).  The median MI across 

the neuronal sample was significantly larger for 

SAM than for dynamic ITD (n = 66, SAM: MI = 

Figure 9: MIs for SAM and dynamic ITD 
across the population (n = 66).  MIs were on 
average significantly larger for SAM than 
dynamic ITD (Wilcoxon signed-rank test: p < 
0.001).  Colors and shapes are identical to 
Figures 5-8. 
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0.68, ITD: MI = 0.11; Wilcoxon signed-rank, two tailed: W = 2151, p < 0.001) (Figure 9).  

There was also no significant difference in MI between low BF and high BF neurons for either 

stimulus (Mann-Whitney U test: SAM, U = 

683; dynamic ITD, U = 822; p > 0.05 for 

both). 

Despite the weaker variation in firing 

rates for dynamic ITD compared to SAM, 

many neurons showed small but systematic 

changes in firing rate with modulation 

frequency for dynamic ITD stimuli, 

particularly at high modulation frequencies.  

For the two neurons in Figure 10, the mean 

firing rate to dynamic ITD stimuli was close 

to the rate for a static ITD stimulus located at 

the center of the dynamic ITD trajectory for 

modulation frequencies below 16 Hz.  At 

higher modulation frequencies, the firing rate 

to dynamic ITD stimuli approached the firing 

rate to interaurally uncorrelated noise, whether 

the latter was higher (Figure 10a) or lower 

(Figure 10b) than the rate to the static ITD 

stimulus.   

To test whether the changes in firing 

Figure 10: Dynamic ITD firing rates measured for 
two different neurons: (A) CF = 3250 Hz, (B) CF = 
842 Hz.  Error bars are SE.  The neuron in (B) is 
the same as the neuron in Figure 3.  For many 
neurons, average firing rates at high modulation 
frequencies tended towards their average firing 
rate for uncorrelated noise (green dot-dashed line).  
For (A), the noise with the time-varying delay, 
typically presented to the ipsilateral channel, was 
presented diotically.  A diotic presentation of the 
time-varying delayed signal could not explain the 
increase in firing rate (purple circles). 
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rate at high modulation frequencies might be caused by spectrotemporal distortion in the 

dynamic ITD stimulus, the channel of the dynamic ITD stimulus processed to have a time 

varying delay (which is normally presented to the ipsilateral ear) was presented diotically in 6 

neurons.  If the change in rate was due to monaural features of the stimulus with time-varying 

delay, we would expect to see similar changes in firing rate at high modulation frequencies with 

diotic presentation.  However, such changes were not observed for any of these neurons (see 

open circles in Figure 10a for an example). 

 

We compared the firing rates for the dynamic ITD stimuli at 2 and 256 Hz with the firing 

rates for the static ITD stimulus and for binaurally uncorrelated noise.  To make the firing rates 

comparable across the population, we normalized the firing rates to dynamic ITD stimuli in each 

neuron so that a normalized rate of 0 means the raw firing rate equals the rate for the static ITD 

stimulus, while a normalized rate of 1 corresponds to the rate for uncorrelated noise (Figure 11).  

The median normalized firing rates at 2 Hz were not significantly different from 0 (Wilcoxon 

signed-rank test: W = 240, p = 0.88) but they significantly smaller than 1 (W = 60, p < 0.001).  

Figure 11: For each neuron, its firing rate for the 2 and 256 Hz dynamic ITD stimuli was normalized by 
the its firing rate for the static ITD and its firing rate for the binaurally uncorrelated noise (see Results).  
If the normalized firing rate was 0, the firing rate was equal to the rate for the static ITD (marked by the 
blue dashed line in the histogram).  If the normalized firing rate was 1, the firing rate was equal to the rate 
for binaurally uncorrelated noise (marked by the dot-dashed green line).  One neuron had a normalized 
firing rate of 35 for 256 Hz; this rate is not shown.   
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Additionally, the median normalized firing rates at 256 Hz were not significantly different from 

1 (W = 177, p = 0.16) but significantly larger than 0 (W = 424, p < 0.001).  From this we 

conclude that, at low modulation frequencies, the average firing rate for the dynamic ITD tends 

to approach the firing rate for a static ITD stimulus, which produces a spatially focused percept.  

In contrast, at high modulation frequencies, the firing rate to dynamic ITD stimuli approaches the 

rate binaurally uncorrelated noise, which produces a spatially diffuse percept. 

For most neurons, the change in firing rate to dynamic ITD stimuli away from the rate 

evoked by a static ITD stimulus and towards the rate produced by uncorrelated noise occurred at 

around 64 Hz.  This is roughly the frequency range where subjects’ performance in the Grantham 

and Wightman (1978) study started to improve again after decreasing at lower frequencies.  This 

observation suggests that a rate code may be available for detecting dynamic ITD stimuli at high 

modulation frequencies where temporal coding is less effective.   

 

ROC analysis: 

 ROC analysis was used to quantify the ability of an ideal observer to discriminate a 

dynamic ITD stimulus from a static ITD stimulus positioned at the center of the dynamic ITD 

trajectory based on the responses of a single neuron.  This task is similar to that performed by the 

subjects of Grantham and Wightman (1978), except we used a fixed ±300 µs ITD modulation 

depth while these authors varied modulation depth to find threshold.  We examined ideal 

observer performance separately for the rate code based on spike counts and a temporal code 

based on the phase-projected vector strength (VSpp, see Methods).  For each modulation 

frequency, the percent correct score of the ideal observer in a two-interval, two-alternative forced 

choice task was determined based on the distributions of spike counts and VSpp across stimulus 
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trials. Note that the dynamic ITD trajectory was usually chosen for each neuron so as to lie along 

a portion of the static ITD tuning curve showing a steep change in firing rate with ITD.  Because 

this choice leads to large changes in instantaneous firing rate depending on instantaneous ITD, 

we are approximately assessing each neuron’s optimal performance using a temporal code in this 

task.    

 

Blue lines in Figure 12 show the spike counts (Figure 12a), VSpp (Figure 12b), and 

percent correct scores based on rate (Figure 12c) and temporal (Figure 12d) codes as a function 

Figure 12: Median spike counts (A) and phase-projected vector strengths (B) from the 45 500 ms bins for 
the neuron from Figure 2.  Solid lines are the responses for each modulation frequency (blue for dynamic 
ITD, red for SAM), and dashed lines are the responses for the noise positioned at the center of the ITD 
trajectory (blue) and the unmodulated noise at the same ITD as the SAM stimulus (red).  Error bars mark 
the 75th and 25th percentiles of the distributions.  Percents correct computed based on this distributions 
are shown below (C and D respectively).  Dashed lines mark 71% and 29%. 
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of modulation frequency for the example neuron from Figure 2.  The temporal code (Figure 

12b) provides good discrimination (large percent correct) at low modulation frequencies, but 

performance falls to near chance (50%) above 64 Hz.  In contrast, the rate code (Figure 12a) 

performs poorly at 2 and 4 Hz, but provides sufficient information to exceed 71% correct at 

higher frequencies. This value corresponds to asymptotic performance in the 2-up, 1-down 

threshold tracking procedure widely used in psychophysics (Levitt 1971). 

The results of the ROC analysis for discrimination of dynamic ITD from static ITD 

stimuli are summarized for our neuronal sample in Figure 13a.  The percent correct scores using 

the rate code (purple dots) and temporal code (green dots) are shown for every neuron in the 

lower panel, along with the fraction of neurons that met the 71% correct threshold criterion as a 

function of modulation frequency in the upper panel.  Since stimuli can be detected through 

either an increase or a decrease in firing rate, percent correct scores below 29% were also 

considered to meet the threshold criterion for the rate code (see Methods).  Over half the neurons 

had percent correct scores above 71% using the temporal code for frequencies of 32 Hz and 

below, but this fraction rapidly fell to near 0 at higher modulation frequencies.  In contrast, with 

the rate code, performance increased with increasing modulation frequency with most of the 

increase occurring above 64 Hz.  However, only 41 neurons (66%) had rate-based percent 

correct scores outside of the 29-71% threshold boundary for at least one modulation frequency.  

In contrast, 55 neurons (89%) had percent correct scores above 71% using the temporal code, 

suggesting the temporal code is more effective overall.  
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Discrimination of the dynamic ITD from the static ITD appears to be possible based on 

the responses of single neurons, but the performance of single neurons is noisy (for example, see 

Figure 12c).  More realistically, human listeners are likely to pool information across multiple 

neurons to perform the task.  The performance of a classifier that optimally combines 

information across neurons will generally be dominated by the neurons that provide the most 

reliable information for the task (Green & Swets 1988), either by rate or by temporal coding.  

Taking the maxima of the fractions of neurons that met the 29-71% threshold using the rate and 

temporal codes to estimate performance based on the better of the two codes yields a 

nonmonotonic curve with a shallow minimum at 64 Hz.  This minimum roughly matches the 

modulation frequency where the performance of Grantham and Wightman’s (1978) subjects in 

detecting sinusoidally-varying ITD was poorest, although the nonmonotonicity in performance 

was more pronounced in the perceptual data than in the neural data.   

 For comparison, we also applied ROC analysis to characterize the performance of an 

ideal observer using single-neuron responses to discriminate SAM noise from unmodulated noise 

in a two-interval, two-alternative forced choice task. This is the same analysis as performed by 

Nelson and Carney (2007) and Carney et al. (2014) based on responses of rabbit IC neurons, 

except we are keeping the modulation depth at 100% rather than adjusting it to find the detection 

threshold.  Red lines in Figures 12c and 12d show the percent correct scores of the example 

neuron from Figure 2 in AM detection using the rate and temporal codes, respectively.  

Figure 13: (A) Population ROC analysis for detecting the dynamic ITD stimulus in a two-alternative 
forced choice task with a static ITD noise positioned at the center of the ITD trajectory.  Bottom plots 
show the percent correct for all neurons using a rate (purple circles) and temporal (green dots) code for 
discrimination (n = 62).  Upper plots show the percentage of neurons whose percentages for correct 
detection for each code were outside of the boundary labeled with a grey dashed line in the bottom plot 
(>71% or <29% for rate, >71% for temporal). (B) Population ROC analysis for detecting SAM for a two-
alternative forced choice task with an unmodulated noise at the same ITD (n = 62). 
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Performance using the temporal code is very high for modulation frequencies up to 32 Hz, but 

degrades rapidly at higher frequencies to approach chance at 256 Hz.  A slight decrease in 

performance reflecting the bandpass shape of the tMTF is also discernible at low frequencies.  

Performance using the rate code exceeds 71% correct for frequencies up to 32 Hz, and then falls 

abruptly to around 29% correct at 128 Hz, reflecting the suppression of firing rate at high 

frequencies relative to the response to static ITD stimuli in this neuron (Figure 2e). 

   The results for AM detection are summarized for the neuronal sample in Figure 13b.  

Using the temporal code, percent correct scores were high for modulation frequencies up to 32 

Hz, above which the fraction of neurons with percent correct scores over 71% fell gradually with 

increasing frequency.  In contrast, performance using the rate code gradually improved with 

increasing modulation frequency up to 32 Hz, above which 70-80% of neurons had percent 

correct scores outside the 29-71% boundary.  At these high modulation frequencies (64 Hz and 

above), the performance was driven by rate suppression in a majority of neurons, as shown by 

the large number of percent correct scores below 29%.  Suppression of firing rate to AM stimuli 

is consistent with previous reports on responses of IC neurons to SAM (Krishna & Semple 2000; 

Nelson & Carney 2007; Kim et al., 2015).  Unlike the ROC analysis for dynamic ITD stimuli, 

where the population performance using the best of the rate or temporal codes was 

nonmonotonic, population performance for SAM noise using the better of the two codes was 

nearly constant over the entire 2-256 Hz range.  This stability contrasts with the behavioral 

modulation detection thresholds measured in rabbits by Carney et al. (2014), which have a 

nonmonotonic dependence on modulation frequency with optimum performance at 64 Hz (see 

Discussion).   
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Discussion: 

        We directly compared the responses of IC neurons in unanesthetized rabbits to SAM and 

dynamic ITD stimuli for the same modulation frequencies.  We observed higher tBMFs, 6 dB 

cutoffs, synchronization limits, and peak vector strengths for SAM than dynamic ITD in most 

neurons.  We also observed, on average, both larger skewness in the period histograms and larger 

deviations from 0 in phase intercepts for SAM than dynamic ITD, suggesting a greater influence 

of adaptive processes for SAM stimuli.  Although peak vector strengths and 6 dB cutoffs for 

SAM and dynamic ITD were weakly correlated, no correlation was observed for any of the other 

response metrics, contrary to the hypothesis that sensitivity to SAM and dynamic ITD are shaped 

by a common mechanism.  Lastly, we found stronger rate coding for SAM than for dynamic 

ITD.  Together, these results suggest that the mechanisms underlying sensitivity of IC neurons to 

SAM and dynamic ITD are largely distinct.   

We also measured the responses to triangular and sinusoidal dynamic ITD and found that 

temporal coding was very similar for both trajectories.  This agrees with Spitzer & Semple’s 

(1993) finding that the responses to sinusoidal and triangular time-varying ITDs for pure tones 

are similar.  Based on this, we think that our use of triangular modulations instead of sinusoidal 

modulations for dynamic ITD does not affect the comparison of dynamic ITD coding with SAM.  

In any case, compression in cochlear mechanics and synaptic transmission severely distort 

modulation waveforms, so that the modulations in the firing rates of auditory-nerve fibers in 

response to SAM noise are clearly not sinusoidal, making the goal of precisely matching 

monaural and binaural modulation waveforms hard to achieve.    

        Based on previous IC studies using tone stimuli with time-varying ITD in anesthetized 

animals (Spitzer & Semple 1993; McAlpine et al. 2000) we expected both the skewness and the 

55



 

phase-intercepts to deviate markedly towards the leading side in the presence of a dynamic 

ITD.  Instead, we saw a small but significant shift in the median phase intercept across the 

population without any significant effects on skewness.  It is possible that the modulation 

frequencies we tested were too high to observe the strongest adaptive effects.  Both IC data 

(Spitzer & Semple 1998) and a model of directional selectivity in IC (Borisyuk et al. 2002) show 

the largest phase leads at 1 Hz, while the lowest frequency we tested was 2 Hz.  On the other 

hand, Fitzpatrick et al. (2009) only found weak direction selectivity with binaural beat stimuli in 

IC of Dutch-belted rabbits.  There are too many differences between paradigms to identify the 

reason for the differences in results across studies. 

        Although changes in firing rate with modulation frequency were small for dynamic ITD 

stimuli, they occurred fairly consistently at high modulation frequencies.  If the initial cross-

correlation stage for ITD detection is unable to keep up with fast changes in ITD, it may respond 

as if the inputs are binaurally uncorrelated.  The frequency at which this transition occurs would 

depend upon the width of the coincidence window and the time course of envelope fluctuations 

in cochlear output (Joris 2003).  In contrast, changes in rate with frequency for SAM may be 

caused by inhibitory mechanisms (Nelson & Carney 2004). 

        Our results suggest a temporal code could be used at low modulation frequencies and a 

rate code at high frequencies for detecting both SAM and dynamic ITD stimuli.  While there is 

considerable evidence for dual codes for AM stimuli in both IC (Langner & Schreiner 1988; 

Nelson & Carney 2007) and auditory cortex (Liang et al. 2002; Yin et al. 2011), to our 

knowledge such a scheme has not been explicitly proposed for binaural processing.  

Because rate coding of dynamic ITD stimuli improved at high modulation frequencies 

where temporal coding was degraded, the fraction of neurons with a percent correct score 
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exceeding the 29-71% threshold criterion based on either code showed a weakly nonmonotonic 

dependence on modulation frequency, with a minimum at 64 Hz (Figure 13a, top).   While this 

is qualitatively similar to the trend in human detection thresholds measured by Grantham and 

Wightman (1978), a rigorous comparison is not possible because we measured neural detection 

performance for a fixed range of ITD variation (600 µs) of adjusting the range of dynamic ITDs 

to find a detection threshold. This was done so that detection performance could be characterized 

over a wide range of modulation frequencies while also measuring responses to SAM noise in 

every neuron within the recording time typically achievable in our unanesthetized preparation.  

Nevertheless, the frequency dependence of performance measured with a fixed ITD range could 

in principle parallel the trend in thresholds measured by varying the ITD range if the percent 

correct scores varied similarly with ITD range across frequencies.    

For modulation frequencies of 64 Hz and above, fewer than half the neurons reached the 

29-71% threshold criterion using a 600 µs range of ITD variation.  In this frequency range, the 

subjects of Grantham and Wightman (1978) had dynamic ITD detection thresholds of 40-100 µs. 

Thus, only a very small fraction of our neurons, if any, would be expected to reach 29-71% 

correct performance for dynamic stimuli with ITD ranges near human thresholds, making it 

necessary to invoke pooling of information across neurons with subthreshold performance to 

account for human performance (Parker & Newsome 1998).  A caveat is that we are comparing 

performance of rabbit IC neurons with human performance.  Although, to our knowledge, 

behavioral detection thresholds for time-varying ITDs have not been measured in rabbit or any 

other nonhuman mammal, both static ITD discrimination thresholds (Ebert et al. 2008) and AM 

detection thresholds (Carney et al. 2014) are higher in rabbits than humans, making it likely that 

detection thresholds for dynamic ITDs would also be higher in rabbits. 
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        For SAM detection, neural percent correct scores based on the temporal code remained 

relatively high up to 128 Hz, while rate-based scores were already high by 16 Hz, so that 

performance based on the best of the two codes remained nearly constant over the entire 

frequency range (Figure 13b).  Again, a direct comparison with behavioral results is difficult 

because we measured neural performance for a fixed 100% modulation depth, while behavioral 

modulation detection thresholds (as in Viemeister (1979) for humans and Carney et al. (2014) for 

rabbits) were obtained by adjusting the stimulus modulation depth.  Carney et al. (2014) 

measured modulation detection thresholds of rabbit IC neurons, but only for one modulation 

frequency at each recording site.  Because neural modulation detection thresholds roughly 

matched rate-based thresholds but fell below synchrony-based thresholds, they argued that 

rabbits do not make use of a temporal code in modulation detection.  However, for low 

modulation frequencies (2-32 Hz), their rate based thresholds for SAM noise were always higher 

than the behavioral thresholds, while some of their synchrony thresholds were within the range 

of behavioral thresholds.  Moreover, even if neural synchrony thresholds are lower than 

behavioral thresholds, this does not rule out that a temporal code may be used for detection, 

albeit inefficiently.  Without more suitable data to assess the frequency dependence of neural 

thresholds, a role for temporal coding at the midbrain level in AM detection cannot be ruled out, 

especially at low modulation frequencies where the temporal code is largely maintained in the 

auditory cortex (Liang et al. 2002).  

 The lower synchronization limits and weaker phase locking observed in IC neurons for 

dynamic ITD stimuli compared to SAM noise could be interpreted as a neural correlate of the 

“binaural sluggishness” observed psychophysically with dynamic ITD stimuli (Grantham & 

Wightman 1978).  The performance of Grantham and Wightman’s subjects improved for 

58



 

frequencies above 50 Hz, and we have suggested that this transition in performance may 

correspond to a switch from a temporal code to a rate code.  Rate coding might also explain the 

detectability of high-frequency time-varying binaural cues observed in other studies. For 

example, using a “phasewarp” broadband noise stimulus having both a time-varying ITD and 

time-varying interaural correlation, Siveke et al. (2008) found that humans could detect 

modulations up to 1 kHz.  In contrast, studies using stimuli with time-varying interaural 

correlation alone (Grantham 1982; Siveke et al. 2008) have observed lower detection limits (50-

128 Hz).  

As suggested by Siveke et al. (2008), it is possible that time variations in ITD are 

specifically necessary to produce sufficiently strong rate cues to distinguish stimuli with time-

varying binaural cues from a static source at high frequencies.  Using ROC analysis of rate 

coding, Siveke et al. (2008) found that neurons in the dorsal nucleus of the lateral lemniscus 

(DNLL) of anesthetized gerbils could detect phasewarp stimuli against binaurally uncorrelated 

noise at higher modulation frequencies than they detected noise stimuli with sinusoidally-varying 

interaural correlation.  In contrast, Joris et al. (2006) found that neurons in the IC of anesthetized 

cat rarely showed changes in firing rate for stimuli with time-varying correlation without a time-

varying ITD relative to a static stimulus.    

        In summary, at low modulation frequencies, temporal coding of time-varying ITDs by IC 

neurons was “sluggish” relative to the temporal coding of SAM.  The temporal coding at these 

frequencies may be important for encoding motion at slow speeds.  For the mid-range of 

modulation frequencies, this may produce the perception of modulation and allow spatially 

separated sources to remain distinguishable perceptually.  At higher modulation frequencies, a 

secondary mechanism, namely a rate code, allowed time-varying ITDs to remain detectable 
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against a static sound.  The secondary mechanism may be important for encoding reverberant or 

other spatially diffuse sounds in everyday environments where localization cues change rapidly. 
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Chapter 3 
 
Neural coding of time-varying interaural time differences in the inferior 
colliculus explains human performance in motion direction 
identification and binaural gap detection 
 

 

While motion is important for parsing a complex auditory scene, how it is encoded in the 

auditory system is still unclear.  Perceptual studies suggest that our ability to identify the 

direction of motion is limited by the duration of the moving sound, yet we can detect the 

presence of brief changes in interaural correlation with much higher temporal precision.  

Here, we recorded from single neurons in the inferior colliculus of unanesthetized rabbits 

when presented with noise stimuli with brief, linearly time-varying interaural time 

difference (“ITD sweep”).  We also presented these sounds to human listeners and 

measured their ability to either detect the ITD sweeps or identify their motion direction.  

We found that the neurons respond primarily by following the instantaneous ITD rather 

than by exhibiting true direction selectivity.  Furthermore, using an optimal classifier to 

decode the single-neuron responses, we find that single-neuron threshold durations of 

ITD sweeps for both direction identification and detection in IC neurons match human 

threshold durations in these tasks. 
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Introduction: 
 
 In the previous chapter we observed that neurons in the IC exhibit a decrease in 

temporal coding and an increase in rate coding of dynamic ITD between 32-128 Hz.  This 

transition occurred roughly where participants in Grantham & Wightman’s (1978) 

identified the noise with flutter to detect the dynamic ITD at lower modulation 

frequencies and identified the spatially diffuse noise at high modulation frequencies.  But 

there is a second transition in our perception of time-varying ITD at even lower 

modulation frequencies: we perceive the sound as moving at slow speeds and we 

perceive fluctuation without motion at faster speeds.  As we have shown, IC neurons can 

significantly synchronize beyond the perception of “motion”.  So how does the transition 

from “motion” to “fluctuation” occur? 

 The limit of human perception of motion has been studied for pure tones with a 

time-varying interaural phase (Perrott & Nelson 1969; Perrott & Musicant 1977), 

broadband noise with a time-varying ITD (Grantham & Wightman 1978; Siveke et al. 

2008), click trains (Blauert 1972), and harmonic complex tones (Feron et al. 2010) (for 

review see Carlile & Leung, 2016; Shackleton & Palmer, 2010).  In these studies, a sound 

is no longer perceived as moving above about 8 Hz or for switching periods of around 

200 ms (Feron et al, 2011, measured a limit of 3 Hz, although participants continued to 

hear the sounds moving back and forth between the ears at higher speeds).  Similarly, 

Grantham (1986) and Chandler & Grantham (1992) showed that the minimum angle at 

which listeners identify a sound as “moving” asymptotes for sound durations above 100-

600 ms, suggesting that the perception of motion may be limited by a minimum 

integration time in the auditory system.  Interestingly, this temporal limit is also similar to 
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the limit for identifying the direction of motion (Carlile & Leung, 2016, Fig. 2).  Thus, 

the limiting duration of around 100 ms may be the duration below which the trajectory of 

a sound can no longer be identified.  If there are direction-selective neurons in the 

auditory system, they should exhibit a similar limitation. 

 The earliest stage of the auditory system to exhibit selectivity to the direction 

motion is the inferior colliculus.  Direction sensitivity has been observed in this nucleus 

in cats (Altman 1968; Spitzer & Semple 1991; Spitzer & Semple 1993), gerbils (Spitzer 

& Semple 1991; Spitzer & Semple 1993), guinea pigs (McAlpine et al. 2000; Ingham et 

al. 2001), rabbits (Douglas C Fitzpatrick et al. 2009), and owls (Wagner & Takahashi 

1992; Wang & Peña 2013).  Specifically, these studies have observed differences in 

firing rates at a given position of a moving sound depending upon the direction of 

motion.  However, many modeling studies have shown that this apparent direction 

selectivity can be explained by rate-based adaptation (Cai et al. 1998; Borisyuk et al. 

2002; Wang & Peña 2013), since high firing rates result in a firing rate suppression at 

later times, irrespective of the starting position of the stimulus (McAlpine et al. 2000).  

Thus, the “direction selectivity” observed here is different from true direction selectivity 

observed in the visual system, where selectivity to a particular direction of motion is the 

same irrespective of the spatial extent of the motion or stimulus type (Barlow & Levick 

1965; Albright 1984).   That said, the auditory system can adapt to the direction of 

motion over a long period of time, resulting in motion aftereffects (Grantham 1989; Dong 

et al. 2000), which suggests that there may still be weak direction selectivity present in 

the responses of these neurons or others at higher levels of the auditory system.  In order 

to properly identify direction selectivity, a neuron’s “direction selective” response needs 
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to be dissociated from its response to the instantaneous position of the sound and its rate-

dependent adaptation. 

 Additionally, while we may not be able to perceive motion in short duration 

sounds, we should be able to identify that they are present even amidst a noisy 

background.  This should be true if we can “glimpse” the spatial position of multiple 

sources for time-varying ITD faster than speeds where we perceive motion.  More 

specifically, if we present a moving “probe” embedded in a binaurally uncorrelated noise 

“masker”, our ability to detect the probe should extend to speeds where we can no longer 

identify its direction.  The ability to detect a short probe noise embedded in binaurally 

uncorrelated noise is known as a “binaural gap detection” task (Boehnke et al, 2002; 

Luddemann et al 2016).  For the specific condition where the masker is binaurally 

uncorrelated noise, threshold durations are between 20-40 ms (Boehnke et al, 2002; 

Luddemann et al 2016), which is shorter than the threshold durations for motion detection 

and direction identification measured in previous studies.  How the difference between 

these two threshold durations comes about is still unclear, but the difference suggests that 

a neuron may fire at a distinct rate for the moving sound relative to the uncorrelated noise 

“masker” even when the time-varying ITD is too fast for the neuron to encode motion 

direction. 

Here, we recorded from neurons in the IC of unanesthetized rabbits in response to 

linearly time-varying ITDs (“ITD sweep”) embedded in binaurally uncorrelated noise.  

To capture both fast and gradual dynamics in firing rate that cannot be captured with a 

typical histogram approach, we modeled each neuron’s response using a point process 

model whose spiking probability was determined by ITD-following, direction-selective, 
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and spike history components.  We show that the responses of neurons in the IC are 

largely dominated by ITD-following.  Furthermore, we presented these same ITD sweeps 

to human listeners and asked them in two separate tasks to either identify the motion 

direction of the sweeps or detect the presence of a sweep.  We show that a classifier that 

uses single neuron responses matches human thresholds for both identifying the sweep 

direction and detecting the sweep. 

	

Methods: 

ITD Sweep stimuli: 

 All ITD sweep stimuli used broadband noise (50 Hz – 15 kHz).  The “sweeps” 

were a linearly time-varying ITD that changed from -300 to +300 µs ITD (the “positive-

going” sweep, or “+ sweep”) or from +300 to -300 µs (the “negative-going” sweep, or “- 

sweep”) (see Figure 1a and Figure 2 for an examples).  For the psychophysical task, a 

positive ITD refers to an ITD that is leading in the right ear.  For the neurophysiology, a 

positive ITD is leading in the ear contralateral to the recording site.  Sweep durations 

varied from 1000 ms to 31.25 ms in octave steps.  Because the range of the ITD sweep 

was always the same (-300 to +300 µs ITD), shorter sweep durations corresponded to 

faster rates-of-change of ITD.  Each of these sweeps was preceded and followed by 

binaurally uncorrelated broadband noise such that the total duration of each stimulus was 

2 s.   Qualitatively, the binaurally uncorrelated noise was perceived as spatially diffuse or 

split into two different noises, one at each ear.  During the sweep for long sweep 

durations the noise sounded like a moving, spatially focused image.   
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 We generated a time-varying ITD in these noise stimuli in a similar manner to the 

dynamic ITD stimuli in Chapter 2.  To create the sweeps, an unfiltered noise was 

initialized at a 100 kHz sampling rate (40 kHz for the psychophysics).  In one ear (the left 

ear for psychophysics, the ipsilateral ear for neurophysiology), the noise was upsampled 

by 10x to a sampling rate of 1 MHz (400 kHz for psychophysics) using an FFT.  From 

the upsampled noise, the noise was then resampled with delays based on the linear ITD 

trajectory of the sweep with a resolution of 1 µs (2.5 µs for psychophysics).  The noise 

with the time-varying delay was then preceded and followed by an independent noise, 

resulting in a binaurally uncorrelated noise in each ear before and after the sweep.  The 

overall stimulus was then filtered between 50 Hz and 15 kHz in both ears.  Qualitatively 

we were unable to perceive any spectral distortions in the ear containing the time-varying 

delay, and monaurally the ITD sweep could not be detected.  

 

Psychophysics: 

 All psychophysics experiments were done in a soundproof booth and sounds were 

presented using Sennheiser HD 280 pro over-ear headphones.  All ITD sweeps started 

and ended with binaurally uncorrelated noise such that the overall duration of each 

stimulus was 2 s.  The sweeps had a span of 600 µs with a center ITD of 0, -300 or +300 

µs.  The different center ITDs were included to prevent participants from simply 

identifying the motion direction based on the lateral position of the sweep at a particular 

moment in time (e.g. at the end of the trajectory).  Participants were trained to identify 

the motion direction of 2-second long ITD sweeps that started and ended with 0.5 

seconds of binaurally uncorrelated noise (total stimulus duration of 3 seconds).  Each 
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block contained 12 trials, six of which were 

centered on 0 µs, three centered on -300 µs 

and the last three centered on +300 µs.  

Center ITDs were randomly varied within a 

block.  The order of the center ITDs within 

a block was random.  Participants 

completed 2 – 6 blocks of training. 

Initially, 6/33 participants were trained 

instead on 1-second long sweeps that 

started and ended with 0.5 seconds of 

uncorrelated noise, identical to the longest-

duration sweeps tested. For these stimuli, 

each block consisted of 20 trials: ten 

centered on 0 µs, five centered on -300 µs 

and five centered on +300 µs.  We 

switched to the other training regimen 

after the first 6 participants because the 1-

second sweep duration was not hypothesis 

neutral.   

After training, participants did the 

ITD sweep direction identification task 

using the 2-second long ITD sweep stimuli 

(Figure 1a).   Within a block, all ITD 

Figure 1: (A) Stimulus for the direction 
identification task.  Participants were presented 
with a 2 second long noise that contained a sweep 
(black arrow) flanked by binaurally 
uncorrelated noise (speckled region).  
Participants were asked to identify the direction 
of motion of the sweep, either to the left or to the 
right; a sweep moving to the right is shown here.  
The corresponding ITDs are shown.  Center 
ITDs were either -300, 0, or 300 µs and randomly 
varied between trials in a block; a center ITD of 
0 µs is shown here.  Sweep durations randomly 
varied across blocks.  The center ITD of the 
sweep always occurred at 1000 ms. (B) After the 
direction identification tasks, participants 
performed a sweep detection task.  They were 
presented with 2 1-second long noises separated 
by 500 ms of silence.  One of the two noises had a 
sweep, which always had a center ITD of 0 µs 
and the sweep direction could be to the left or to 
the right.  Participants were asked to identify 
which of the two noises contained a sweep.  
Sweep durations varied across blocks of trials. 
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sweeps had the same duration.  Each block consisted of 20 trials: for ten trials, the ITD 

sweeps were centered on 0 µs, for five trials sweeps were centered on -300 µs, and for 

five trials sweep were centered on 300 µs.  Initially, listeners were given blocks where 

ITD sweep durations successively decreased, from 1000 ms to 31.25 ms durations in 

octave steps.  After these first 6 blocks the ITD sweep durations were randomized.  

Participants completed 24 blocks of this task, four for each of the six sweep durations, 

giving a total of 80 trials for each duration. 

The shortest sweep durations were close to binaural gap detection thresholds for 

correlated noise embedded in binaurally uncorrelated noise (20-40 ms, see Boehnke et al. 

2002; Lüddemann et al. 2016).  Because of this, direction identification could 

theoretically be limited by the participant’s ability to detect the sweep rather than an 

inability to identify motion direction per se.  Alternatively, the thresholds for sweep 

detection and direction identification may be distinct.  To examine these possibilities, 

participants performed a sweep detection task following the direction identification task 

(Figure 1b).  Participants were presented with two 1-second long noises on each trial 

separated by 0.5 seconds of silence.  We used shorter stimulus duration for the detection 

task in order to reduce testing time.  One of the two noises contained a short segment 

containing a sweep that was 125 ms, 62.5 ms or 31.25 ms in duration.  The segment was 

padded with binaurally uncorrelated noise in order to maintain an overall stimulus 

duration of 1 second.  The sweeps were centered on 0 µs and the motion direction was 

randomized across trials.  The other interval on each trial contained binaurally 

uncorrelated noise with no sweep.  Participants were asked to identify which of the two 

noises contained a “sweep”, a term that they were familiar with from the previous 
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direction identification task.  Typically participants mentioned that they performed this 

task by identifying a gap in the binaurally uncorrelated noise.  Sweep durations were 

constant within each block and randomized across blocks.  Listeners completed 12 blocks 

of this task, four for each sweep duration. 

 

Psychophysics analysis: 

 We computed the percent correct responses for direction identification for each 

sweep duration and for each center ITD.  Nearly all participants showed a sigmoidal 

variation in performance going from around 100% correct at the longest sweep durations 

to around 50% correct at the shortest durations.  However, there was a wide variability in 

the slopes and midpoints of these curves.  We used nonlinear least squares to fit a 

sigmoid model to the percentage of correct responses for sweeps centered on 0 µs.   The 

model took the form: 

𝑃𝐶 𝑑 =
50

1+ exp [−(log! 𝑑 − log! 𝑑!")𝜏 ]
+ 50 

We looked at two parameters: d75, the threshold duration at 75% correct, and the slope 

through d75 equal to 50/4τ.   

 Similarly, the percentage of correct responses for the sweep detection task tended 

to be near 100% around the longest sweep durations tested and dropped below 75% at 

31.25 ms. We fit the same sigmoid model to the sweep detection percentage of correct 

responses in order to identify d75 and the slope through d75 for detection. 
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Neurophysiology: 

 We recorded from single neurons in the IC of two unanesthetized Dutch-belted 

rabbits.  The procedure for attaching a headpost, craniotomy, and neural recording is 

identical to that used in the previous chapter and has been described in other studies 

(Devore & Delgutte 2010; Day et al. 2012).  All recordings here were done using a 

flexible polyimide linear multielectrode array (Microprobe).  

 IC neurons were identified based on their response to a search stimulus consisting 

of two 200 ms bursts of broadband noise, one at 0 µs and one at +300 µs, separated by 

200 ms and repeating every 1000 ms.  Spike times were measured by threshold crossing.   

 

Stimuli, neurophysiology: 

 Once a neuron was isolated, we measured its frequency response map to 100 ms 

pure tone bursts separated by 100 ms gaps of silence.  The tones were randomly varied 

between frequencies of 20 Hz and 18 kHz in ¼-octave steps and sound levels of 5 dB 

SPL to 70 dB SPL in 5 dB steps.  Each frequency-level pairing was repeated 1-3 times.  

We think many of our recordings were made in the central nucleus of the IC because of 

an observed increase in best frequency with increasing depth and a lack of habituation to 

successive repetitions of the tonal stimuli, which are characteristics of the central nucleus 

(Aitkin et al. 1972; Aitkin et al. 1975). 

 ITD tuning was measured using 300 ms bursts of broadband noise separated by 

300 ms of silence.  The ITD of the noise was randomly varied between -1500 and +1500 

µs in 150 µs steps, and each ITD was presented ten times.  We looked at the average 

firing rate during the stimulus presentation as a function of static ITD.  The significance 
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of the ITD tuning was assessed based on an 

ANOVA of the firing rates (Hancock et al. 

2010; Day et al. 2012; Chung et al. 2016).  

Only neurons with significant ITD tuning 

were tested with sweep stimuli (p < 0.001).   

 The presentations of each sweep 

duration and direction were randomly 

interleaved.  In addition to the positive-

going sweep and negative-going sweep 

stimuli, 2-second-long “0 µs ITD” stimuli 

were also presented, randomly interleaved 

with the ITD sweep stimuli (see Figure 2 

for all stimuli).  The 0 µs ITD stimuli 

started and ended with binaurally 

uncorrelated noise and a noise at a 

constant 0 µs ITD was presented for the 

sweep duration instead of a sweep.  In 46/62 neurons, we also presented a 2-second long 

binaurally uncorrelated noise stimulus (Figure 2).  Each of the ITD sweeps and the 

uncorrelated noise were presented 10-15 times. 

 

Single unit spike isolation and stability: 

 Each unit required at least 25 minutes of recording time during which the spike 

height and shape could vary.  The isolation of the neuron and the stability of the 

Figure 2: We presented each neuron with a 
positive-going sweep, a negative-going sweep, a 
“0 µs ITD” stimulus, and 2 seconds of 
binaurally uncorrelated noise.  Each of these 
stimuli was presented 15 times for 6 different 
stimulus durations: 1000, 500, 250, 125, 62.5, 
and 31.25 ms.  All of the sweeps had a range of 
600 µs and were centered on 0 µs ITD.  
Positive ITDs are for ITDs contralateral to the 
IC recording site. 
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recording were tested post hoc based on two criteria.  Firstly, at each spike time the spike 

waveforms were extracted in a 1 ms window (50 sample points) with the peak centered at 

0.5 ms.  The peak-to-peak voltage (Vpp) for each spike was then calculated.  Then, a 

number of “noise” segments equal to the number of spikes was retrieved by randomly 

sampling segments of the signal that did not overlap with spikes or with each other.  The 

Vpp of each of these noise segments was also calculated.  Within each 10-second period 

of the recording, the signal-to-noise ratio (SNR) of the mean Vpp of the spikes and the 

mean Vpp of the noise was calculated.  A neuron was excluded if its SNR dropped below 

2.5 during any 10-second period of the overall recording time.   

Secondly, we assessed the stability in the spike shape.  The signal and noise 

segments were normalized so that each had a minimum of 0 and a maximum of 1.  

Principal components analysis was then used to transform these normalized waveforms 

into a set of orthogonal dimensions that maximized their overall variance.   As a result, 

each spike has a set of coordinates (“scores”) for each dimension of the orthogonal space, 

transformed by a set of coefficients.  The distance between the noise and the spike 

distribution of scores was calculated using: 

𝑑′ =
(𝜇!,!"#$% − 𝜇!,!"#$%)
𝜎!,!"#$%𝜎!,!"#$%

!

!

 

where each µi and σi are the mean and standard deviation of the distribution of scores for 

the signal and noise along one of the orthogonal dimensions.  Similarly, we calculated the 

d’ to assess the consistency of the spikes between recordings for different stimulus 

presentations (pure tones, static ITD noise, ITD sweeps).  The normalized spikes were 

transformed using the same coefficients as those identified for spikes in an earlier 
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recording, and the d’ was calculated between the reference spikes and the later spikes.  A 

recording was rejected if either the d’ between the spikes and the noise was below 4 or if 

the d’ between successive recordings of the same neuron was greater than 3.  Typically 

the d’ between different units had values of 5 and above. 

 A neural recording was identified as a single unit based on visual inspection of the 

spike shape variance, spike sorting following PCA on the original non-normalized and 

the normalized spikes, and based on the percentage of inter-spike intervals less than 1 ms 

which was typically <1% of the total number of ISIs (Day & Delgutte 2016).  While the 

latter criterion was passed for all recordings for the static ITD and ITD sweep stimuli, it 

occasionally failed for recordings of the frequency response areas using pure tones that 

sometimes had 1-2% of ISIs below 1 ms. When this occurred, it was often because there 

were fewer spikes, so we did not exclude these neurons.  

  

Characteristic frequency: 

The characteristic frequency (CF) of the neuron was identified from frequency 

response areas based on the method described in Palmer et al. (2013).  First, the mean 

firing rate during the stimulus presentation was calculated for each frequency and level.  

A distribution of “spontaneous” firing rates was calculated by computing the mean and 

standard deviation of the average firing rates of the neuron at the lowest sound level (5 

dB) for all frequencies.   The frequency response area (FRA) was then filtered with a 2-D 

kernel that was triangular in level with a 2.5 dB half-width and Gaussian in frequency 

with a standard deviation of 1/8 octave.  For each frequency we identified the lowest 

“threshold” level for which the firing rate was either greater than the mean plus 4 SD of 
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the spontaneous firing rate or greater than the mean spontaneous rate plus 0.15 times the 

range of the original, unfiltered firing rates (see Palmer et al, 2013).  The CF was then 

calculated by quadratic interpolation of the original firing rate at the frequency 

corresponding to the lowest threshold and the neighboring two frequencies at the same 

level.  The CF was then validated by visual inspection.  For 2 inhibitory neurons where 

tone bursts only reduced the firing rate, the CF was identified by visual inspection. 

 

Generalized linear model of ITD sweep response: 

 We expected that the instantaneous spiking probability of each unit would be a 

function of the instantaneous ITD of the ITD sweep (“ITD-following”), the direction of 

motion of the ITD sweep (“direction selectivity”), and the recent history of spiking.  

Here, we assume that both the contribution of ITD-following and direction selectivity are 

dependent on the ITD and the sweep duration.  The ITD-following component is a one-

to-one mapping of the instantaneous ITD to the neuron’s instantaneous spike probability 

that should hypothetically match the neuron’s response to the static ITDs.  If a neuron 

just followed the ITD of the sweep and was not direction selective, the response to the 

negative-going sweep would be a time-reversed version of its response to the positive-

going sweep (Figure 3a).  The direction selectivity component captures differences in 

spike probability associated with the direction of ITD motion at the instantaneous ITD of 

the sweep.  A perfectly direction selective neuron that does not follow the ITD of the 

sweep would show enhanced firing in one direction of motion and suppressed firing in 

the other direction at the same instantaneous ITD (Figure 3b).   
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In previous studies, neurons in the IC have shown apparently direction-selective 

responses to variations in the motion direction of a time-varying ITD, but these responses 

could qualitatively be explained by firing rate adaptation (Cai et al. 1998; Borisyuk et al. 

2002; Wang & Peña 2013).  We therefore included a spike history dependent component 

to separate the contribution of rate adaptation from a potential contribution of direction 

selectivity.  Spike history has been used in the past to model the effects of firing rate 

Figure 3: (A) If a neuron shows a variation in ITD following weights and the direction selectivity 
and spike history weights are constant at 1, then the neuron’s response to the “- sweep” would be 
time-reversed version of the response to the “+ sweep”. (B) If a neuron did not follow the ITD (the 
ITD-following weights were constant), and its direction selectivity was greater than 1, then the 
neuron’s firing rate would be enhanced for the “+ sweep” and suppressed for the “- sweep”. (C) If 
the neuron did not show ITD-following or direction selectivity and its spike history components 
were below 1 for short pre-spike times, then we would expect the average response to have an 
immediate suppression in firing following the transient between the binaurally uncorrelated noise 
and the sweep. (D) Example conditional intensity function for a neuron responding to a 1000-ms 
positive-going sweep.  In this case the spike history weights are suppressive.  Spike times are 
shown by the black dots at the top.  Notice that the spike history weights reduce the probability of 
firing immediately after each spike. 
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adaptation (Truccolo et al. 2005; Pillow et al. 2005).  Even if a neuron showed 

dependence of firing rate on ITD and no direction selectivity, it could still respond 

dynamically following the change from binaurally uncorrelated noise to the sweep, 

because a step increase in firing will cause a suppression of firing at later times (Figure 

3c).  The result is on average a monotonically decaying firing rate, but locally the spike 

history acts by suppressing (or enhancing for some neurons) the spike probability 

following each spike (Figure 3d).  

 These three components (ITD-following, direction selectivity, and spike history) 

determine the neuron’s instantaneous probability of spiking.   We used a generalized 

linear model to estimate the time-varying conditional intensity function of this 

inhomogeneous Poisson process (Brown et al. 2002).  The conditional intensity function 

was modeled as: 

𝜆 𝑡 𝜃,𝐻! = exp 𝑤!"# 𝐼𝑇𝐷 𝑡 ,𝑑 + 𝑠𝑔𝑛 𝐷𝐼𝑅 ×𝑤!"# 𝐼𝑇𝐷 𝑡 ,𝑑 + ℎ!𝑛!!!

!

!!!

	

The rightmost term is the spike history dependence, which weights each of the spike 

counts nt-u at time lags up to U = 300 ms preceding the current time t, by the weights hu.  

The weights in wITD and wDIR are both functions of the instantaneous ITD (ITD(t)) and the 

sweep duration (d).  These weights were defined for a discrete set of ITDs, 

specifically -300, -150, 0, 150, and 300 µs.  At any time t when the instantaneous ITD 

was not equal to one of these discrete ITDs, wITD and wDIR were determined using linear 

interpolation: 

𝑤(𝐼𝑇𝐷 𝑡 ,𝑑) = 𝑤!(𝑑)
𝐼𝑇𝐷 𝑡 − 𝐼𝑇𝐷!!!
𝐼𝑇𝐷! − 𝐼𝑇𝐷!!!

+ 𝑤!!!(𝑑)
𝐼𝑇𝐷! − 𝐼𝑇𝐷(𝑡)
𝐼𝑇𝐷! − 𝐼𝑇𝐷!!!
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where wi and wi-1 correspond to the weights for ITDi and ITDi-1 respectively for ITDi > 

ITDi-1.  The direction selectivity component wDIR is multiplied by the sign of the motion 

direction (sgn(DIR)), which is 1 for a positive-going sweep, -1 for a negative-going 

sweep, and 0 for a stationary stimulus.  During the binaurally uncorrelated noise 

preceding and following each sweep (or 0 µs ITD stimulus), the conditional intensity 

function was fit by the sum of a constant weight for the binaurally uncorrelated noise 

(wUncor), a direction selectivity weight of 0, and the same spike history weights as in 

Equation (1).  Overall, the parameters in θ include the ITD-dependent weights (wITD), the 

weight for the uncorrelated noise (wUncor), the direction selectivity weights (wDIR), and the 

spike history weights (h).  

 A full description of model fitting can be found in the Appendix.  Briefly, model 

fitting was done in two steps.  First, the model was fit to all 0 µs ITD stimuli 

simultaneously (six durations, 10-15 trials), which fit wUncor and h in the absence of any 

ITD motion. Next, the remaining components, wITD and wDIR, were estimated by fitting 

the model separately to the sweeps for each sweep duration while holding wUncor and h at 

their previously fitted values.  In doing so, we assume that the intensity function for the 

uncorrelated noise and the history component are invariant to the sweep duration or ITD 

motion direction.  All model fitting was done on the spike times binned at 1 ms.  For one 

neuron we did not include the history components in the fitted model because the fitted 

history components were either equal to or greater than 1 which resulted in a 

monotonically increasing average model response that could not reliably be used for 

classifying direction identification and detection (see Direction identification of ITD 

sweeps from neural responses later in Methods).   
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 The conditional intensity function equation above can also be expressed as: 

𝜆 𝑡 𝜃,𝐻! = exp 𝑤!"# 𝐼𝑇𝐷 𝑡 ,𝑑 ×exp (𝑠𝑔𝑛 𝐷𝐼𝑅 𝑤!"# 𝐼𝑇𝐷 𝑡 ,𝑑 )× exp (ℎ!𝑛!!!)
!

!!!

 

We use this formulation of the model when representing each of the components (as in 

Figure 3).  The exponential of the ITD-following weight describes the neuron’s firing 

rate at each instantaneous ITD and sweep duration.  We express this component in spikes 

per second.  This quantity is multiplied by the exponential of the direction selectivity 

weight times the sign of the ITD sweep direction, which acts to facilitate or suppress the 

firing rate.  Lastly, the exponential of the history components multiplicatively suppresses 

(or enhances for some neurons) the firing rate based on the recent spiking history.   

 After the model was fit for each neuron, we identified the minimum time lag for 

each neuron that had a spike history weight less than 0.5 (the “halfpoint”).  We used this 

to compare the range of time lags during which spike history components were 

suppressive across the population.  We chose to use a nonparametric approach because 

there was a wide variation in the shapes of the spike history components.   

 

Goodness-of-fit: 

 We assessed the goodness-of-fit of the model using the time-rescaling test (Brown 

et al. 2002; Truccolo et al. 2005).  The interspike intervals (ISI) were rescaled by the 

monotonic transform: 

𝑧! = 1− exp [− 𝜆 𝑡 𝜃,𝐻! 𝑑𝑡

!!

!!!!!!

] 
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where the conditional intensity function is integrated from the previous spike time si-1 to 

the current spike time si.  If the conditional intensity function properly captures the 

variation in firing rate, the distribution of zi should be uniform over [0,1] (Brown et al. 

2002).  From this we assessed the goodness of fit using a Kolmogorov-Smirnov test 

comparing the cumulative distribution function of z to a uniform distribution of an equal 

number of ISIs.  We computed the goodness-of-fit separately for each ITD sweep 

stimulus separately.  We also used this test to assess the goodness-of-fit to the binaurally 

uncorrelated noise which was not included in the initial model fit. 

 

Effects of stimulus duration on ITD-following: 

 We quantified the changes in the ITD-following weights with stimulus duration in 

two ways.  Let RITD be the ITD-following weights expressed as a firing rate, namely: 

𝑅!"# 𝐼𝑇𝐷! ,𝑑 = exp 𝑤!"# 𝐼𝑇𝐷! ,𝑑  

where ITDi is -300, -150, 0, 150, or 300 µs ITD.  First we computed the duration-

dependent “dynamic gain” (also called “gain”) equal to the ratio of the standard deviation 

of the ITD-following rates to the standard deviation of the static ITD firing rates.  The 

gain quantifies the increase in the range of ITD-following weights with changes in 

stimulus duration.  A gain > 1 means that the range is larger than the rates for static ITD 

tuning, and a gain < 1 means that there is less variability.   

 We also computed the Pearson correlation coefficient between the ITD-following 

weights and the firing rates for the same set of ITDs in the static condition, which 

quantifies the similarity between the shapes of the firing rates for the ITD-following 

weights and the static ITD tuning.  A maximum correlation of 1 implies that the firing 
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rate for the ITD-following weights and the static ITD tuning covary with respect to ITD, 

irrespective of the magnitude of the variability.   

 We then examined how many neurons had correlations that were significantly > 0 

for each sweep duration.  The “threshold” correlation value (0.805) was computed for a 

significance value of p = 0.05 using a one-tailed Student’s t test.  To ensure that the 

percentage of neurons passing this threshold correlation was not due to chance, we 

bootstrap resampled the ITD-following weights and static ITD firing rates with 

replacement to get a sampling of 62 correlations, equal to the number of recorded 

neurons, and then computed the percentage of correlations that passed the threshold for 

significance.  This was repeated 500 times to get a distribution of percentages 

corresponding to chance. 

 

Quantifying the relative contributions of ITD-following and direction selectivity: 

 Once the model was fit to the sweep responses and zero ITD responses at each 

sweep duration, we created “ITD-following only” and “direction selectivity only” models 

with conditional intensity functions λITD and λDIR respectively.   To create the “ITD-

following only” model we set the direction selectivity components to zero (wDIR(ITD,d) = 

0).  For the “direction selectivity only” model we set all ITD-following components to 

ITD-following weight at 0 µs ITD for that sweep duration (wITD(ITD,d) = wITD(0,d)).  The 

history components (h) were included in both models.  We then computed the likelihood 

of each model to the spike trains in all trials for each ITD sweep stimulus: 

𝑙[𝑛|𝜆] =
𝜆!
!!𝑒!!!
𝑛!!!
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where λt is the model conditional intensity function at time t, and nt is the spike count at 

time t.   Lastly, we calculated the likelihood ratio (LR) between the ITD-following only 

model and the direction selectivity only model: 

𝐿𝑅 =
𝑙[𝑛|𝜆!"#]
𝑙[𝑛|𝜆!"#]

 

A likelihood ratio greater than 1 implies that the ITD-following only model captures the 

timing of spikes better than the direction selectivity only model.  To compare the model 

fits across neurons for each sweep duration, we summed the log-likelihood ratios for the 

positive-going sweep and the negative-going sweep. 

 

Direction identification of ITD sweeps from neural responses: 

 Neurons in the IC respond to ITD sweeps with a time-varying firing rate that 

provides information about the direction of motion of the sweep. While the spiking of 

these neurons is highly variable, on average there is a trend in firing that should be 

distinct for different sweep directions if the neuron is properly capturing the variation in 

ITD.  Theoretically, a part of the brain that is responsible for judging the direction of the 

sweep has implicit knowledge about the average response of the neuron and uses this 

information to assess how likely the positive-going sweep or the negative-going sweep 

explains the neuron’s response.  Thus, in order to assess how well the ITD sweep 

direction could be decoded from a neuron’s response on each trial, we compared the 

spike train to an average response template generated by the full model, including ITD-

following, direction selectivity, and spike history components, and quantified 

performance assuming an optimal classifier is using the single-neuron responses to do the 

task. 
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 For each sweep duration, we fit the full model to the positive-going, negative-

going, and 0 µs ITD stimuli with one trial of each stimulus left out.  Using the parameters 

from the generalized linear model, a new conditional intensity function was simulated by 

stepping through each time bin in the trial, from 450 ms following stimulus onset to 2000 

ms, and computing the conditional intensity function.  The average intensity function, or 

Λ(t), was created by iteratively regenerating the conditional intensity function and spike 

counts for each trial and averaging the functions:  

Λ 𝑡 =
1
𝑀 𝜆(𝑡|𝜃,𝐻!

!)
!

!!!

 

where 𝐻!! is the history of simulated spikes generated on iteration m, and M=500.  We 

computed the average conditional intensity function for each sweep direction (Λ+(t) for 

the positive-going sweep and Λ-(t) for the negative-going sweep). 

 We then scored the response in each left-out trial based on its similarity to the 

average response of the model to each sweep direction by computing the log of the 

likelihood ratio between the array of spike counts for the trial and each of the average 

responses for each possible sweep direction, which is the optimal classification for a 2-

alternative forced choice task (Green & Swets 1988).  The log of the likelihood ratio was 

computed by: 

𝑆𝑐𝑜𝑟𝑒!"# = log (𝑝 𝑛 Λ! )− log (𝑝 𝑛 Λ! ) 

where n is the array of spike counts for the left-out trial, and the likelihood of the average 

intensity function given n is: 

𝑝[𝑛|Λ 𝑡 ] =
Λ 𝑡 !!exp [−Λ 𝑡 ]

𝑛!!!
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where nt is the spike count at time t.  Each likelihood was calculated for the response over 

the duration of the sweep.  Then, each trial was classified as a positive-going sweep if the 

score was greater than or equal to 0 and a negative sweep otherwise.  The percentage of 

correct classifications was then computed by dividing by the total number of trials (2x the 

number of trials for each sweep direction, 30 trials for most neurons).  This percentage 

was computed for each stimulus duration. 

 

ITD sweep detection from neural responses: 

 Similarly, we assessed the neuron’s ability to detect the sweep relative to 

binaurally uncorrelated noise by assuming that a classifier compares the response during 

the trial to the expected response (average intensity function) to either sweep and the 

expected response to binaurally uncorrelated noise.  The average intensity function to 

either sweep (Λ+(t) and Λ-(t)) and the average intensity function to binaurally 

uncorrelated noise (Λunc(t)) were generated iteratively as described above.  We then 

simulated a 2-interval 2-alterative forced choice task similar to the psychophysical 

detection task in the following manner.   

 First, we picked one trial containing a sweep in either direction (n1) and one 

containing binaurally uncorrelated noise (n2).  Next, we computed the average response 

of the model for both sweep directions (Λ+(t) and Λ-(t)) as well as the average response to 

binaurally uncorrelated noise (Λuncor(t)).  The average intensity functions for each sweep 

direction were generated based on a model fit to all trials except the selected trial.  Then 

for each of the trials we computed the likelihood of the average intensity function given 

the array spike counts n as described above.  The likelihood was computed between 500 
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and 1500 ms of the response on each trial, equivalent to the stimulus durations used in the 

psychophysical task.  The score for sweep detection was given by: 

𝑆𝑐𝑜𝑟𝑒!"# = log [
𝑝 𝑛! Λ! 𝑡 + 𝑝 𝑛! Λ! 𝑡 ×𝑝 𝑛! Λ!"# 𝑡
𝑝 𝑛! Λ! 𝑡 + 𝑝 𝑛! Λ! 𝑡 ×𝑝 𝑛! Λ!"# 𝑡

] 

The detection score is equivalent to the log-likelihood of a 2-interval 2-alternative forced 

choice task (Green & Swets 1988) where each interval is twice as likely to contain 

binaurally uncorrelated noise than either sweep and detection can correspond to either a 

positive-going sweep or a negative-going sweep.  We calculated this score for each 

pairing of trials with binaurally uncorrelated noise and trials for either sweep (2x the 

number of trials squared, 450 pairings for most neurons).  The percentage of correct 

responses was calculated by the number of scores greater than or equal to 0 divided by 

the total number of pairings.  The percentage of correct responses was calculated 

separately for each sweep duration. 

 

Neurometric functions for direction identification and detection: 

 After computing the percentage of correct responses for direction identification 

and detection at each sweep duration, the same sigmoid model used to analyze the 

psychophysical data was fit to the percent correct curves for each neuron.  We then 

identified the threshold duration and slope of the neurometric function for both direction 

identification and for detection. 
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Figure 4: (A) Average performance of the participants for direction identification for center ITDs of 
300 µs (red), 0 µs (black), and -300 µs (blue).  Significance values were calculated by a Tukey’s HSD 
test. (B) Overall average performance for direction identification (black) and sweep detection (red).  
Thick lines show participants the performed at or above 75% correct for at least one sweep duration, 
and thin pale likes show participants with percents correct below this criterion. The participants that 
performed at or above 75% correct were included in later analyses. (C) The sigmoid model was fit to 
the percents correct in order to compute the threshold, the duration resulting in 75% correct, and the 
slope through the threshold duration. (D) Thresholds for direction identification and detection for the 
participants that passed the 75% criterion. (E) Comparison of individual direction identification and 
detection thresholds in participants that passed the 75% criterion for both tasks. 
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Results: 

Psychophysics: 

 Participants were 33 self-described normal hearing listeners (21 male, 12 female), 

ages from 21 - 64 years old (median = 31 years).  The direction identification and sweep 

detection tasks were performed in blocks of 20 trials where each block contained stimuli 

of the same duration.  Listeners were presented with 4 blocks for each sweep duration.  

Across all participants, there was a weak but significant increase in performance across 

blocks in direction identification at the 1000 ms sweep duration (Kruskal-Wallis test with 

Bonferroni correction for 6 sweep durations, 1000 ms: χ2 = 14.0, p = 0.026) but not at the 

other durations (p > 0.05).  However, a difference was only found between the first block 

and the last 2 blocks (Mann-Whitney U test with Bonferroni correction: p < 0.05).  For 

this reason, we chose to look at percent correct scores for direction identification 

averaged over the last 3 blocks of each sweep duration after the participant’s performance 

seemed to have reached an asymptote.  This left a total of 30 trials per duration at a center 

ITD of 0 µs ITD, 15 trials for -300 µs ITD, and 15 trials for 300 µs ITD.  There was no 

effect of the block number on performance for detection (Kruskal-Wallis test with 

Bonferroni correction, p > 0.05).  For detection, 4 blocks of 80 trials were included for 

each sweep duration. 

 On average, there was a clear decrease in direction identification performance 

with a decrease in sweep durations for all center ITDs (Kruskal-Wallis test,  -300 µs: χ2 = 

43.5, p < 0.001; 0 µs: χ2 = 65.7, p < 0.001; 300 µs: χ2 = 52.6, p < 0.001) (Figure 4a).  The 

largest changes in performance occurred between 125-250 ms.  We also found a 

significant difference in performance with center ITD (Friedman test: χ2 = 7.32, p = 
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0.026) in that the performance for sweeps centered on 0 µs ITD was significantly better 

than for sweeps centered on -300 and +300 µs ITD (Wilcoxon signed-rank with 

Bonferroni for 3 comparisons, -300 to 0 µs: W = 3273, p < 0.001; 0 to +300 µs: W = 

8710, p < 0.001; -300 to +300 µs: W = 5366, p = 0.26).  Even though we did two different 

training regimens (6 participants were trained with 1000 ms sweeps, 27 were trained with 

2000 ms sweeps), we found no significant difference in performance between the two 

groups for the 1000 ms sweeps during testing (Mann-Whitney U: U = 107.5, p = 0.63). 

 In each block we presented sweeps with center ITDs of either -300 or 300 µs in 

addition to 0 µs ITD in order to prevent listeners from identifying the direction of motion 

based on the lateralization of the sounds at the beginning or end of the trajectory.  

However, this did not completely rule out the possibility of judging the direction based 

on lateralization.  For instance, for a sweep moving from -600 µs to 0 µs ITD, the listener 

could theoretically identify the motion as rightward (a positive-going ITD) by 

recognizing that -600 was the left-most (most negative) possible ITD of the set of ITDs in 

the experiment.  The same logic can be applied if the sweep ended at -600 µs.  To test 

whether participants used such a strategy, the percentages of correct responses for 

direction identification were recalculated based on the lateral position at the start of the 

sweep.  If listeners identified the direction based on the lateral position at the start of the 

sweep, they should do better for sweeps starting from a position on the left or a position 

on the right than for sweeps with a starting position in the center.  If the sweep started in 

the center, this strategy would result in chance performance.  Alternatively, if they 

identified the direction based on the end of the sweep, they should show the opposite 

trend in performance.  We found no effect of starting position on performance (Friedman 
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test: χ2 = 4.08, p = 0.13).  Thus, we conclude participants were indeed identifying the 

direction of the ITD sweep based on the change in ITD rather than identification of 

specific ITDs in the trajectory. 

 While all participants showed a decrease in performance with decreasing sweep 

duration, the durations at which this decrease was steepest varied across individuals.  As 

shown in Figure 4b, most individuals who could perform the task well (> 75% correct 

detection for at least one sweep duration) showed a sigmoid trend in performance.  The 

threshold duration at which the sigmoid crossed 75% correct varied across individuals, 

resulting in a large variability in performance around 250 and 125 ms sweep durations.  

Furthermore, the median performance for detection was significantly better than direction 

identification at 125 ms and below (Figure 4b) (Mann-Whitney U test with Bonferroni 

correction: 125 ms, U = 642.5; 62.5 ms, U = 581; 31.25 ms, U = 785; p < 0.001 for all 

sweep durations).  Thus, the variability in performance for direction identification could 

not be explained by an inability to hear the sweep amidst the flanking binaurally 

uncorrelated noise.  Indeed, the threshold durations for direction identification and 

detection appeared markedly distinct. 

We quantified the dependence of sweep duration on performance for direction 

identification and detection for each individual by fitting a sigmoid model to the 

percentages of correct scores (“psychometric function”) (Figure 4c).   The model 

assumed that all participants exhibited a maximum performance of 100% correct for long 

sweep durations and a minimum performance of 50% correct for short sweep durations.  

Model fitting yielded two parameters for each individual: the sweep duration resulting in 

a performance of 75% correct (“threshold duration”) and the slope (%correct/octave) 
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through that midpoint.  We only fit this model for individuals that performed at 75% or 

above for at least one sweep duration (n=26/33 for direction identification, n=32/33 for 

detection).  On average, threshold durations were 5.3 times higher for direction 

identification than for detection (Figure 4d), and the difference between them was 

significant (median direction identification threshold = 232.3 ms, median detection 

threshold = 43.4 ms; Mann-Whitney U test: U = 1172, p < 0.001).  Slopes of the 

neurometric functions were similar for both tasks (median direction identification slope = 

24.9 %correct/octave, median detection slope = 20.0 %correct/octave; U = 809, p = 0.52).  

The better performance in detection relative to direction identification can be clearly seen 

by comparing direction identification and detection threshold durations for participant 

who passed the 75% criterion for both tasks (n=26) (Figure 4e).  For these participants, 

there was no correlation between the direction identification and detection threshold 

durations (Kendall’s tau: τ = 0.14, p = 0.33) or between the slopes of each (τ = 0.16, p = 

0.43).  This suggests that the factors limiting thresholds are distinct for the two tasks. 

 

Modeling the neural responses to ITD 

sweeps: 

 We recorded from 101 ITD-sensitive 

neurons, determined based on an ANOVA 

test (p < 0.001) (Hancock et al. 2010; Day et 

al. 2012; Chung et al. 2016).  For 62 of these 

neurons, responses to ITD sweep stimuli 

were measured for at least 10 trials, and the 

Figure 5: Example FRA for one neuron. The 
FRA is color coded by the average firing rate 
during the stimulus, shown in the color bar on 
the right of each plot. CF = 4150 Hz.  
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recordings were deemed stable enough 

and sufficiently well isolated to be 

included in later analysis.  

Characteristic frequencies ranged from 

293 Hz to 18.1 kHz (median 3.81 kHz, 

19 neurons with CF < 2 kHz, 43 with 

CF > 2 kHz) (see Figure 5 for 

example FRAs). 

 Figure 6a shows the static ITD 

tuning for an example neuron (CF = 

4150 Hz) and Figure 6b shows its 

response to the positive-going (red), 

negative-going (blue) sweeps, and 0 µs 

ITD stimulus (black), as well as the 

response to binaurally uncorrelated 

noise (grey) at the bottom of the 

figure.  We’ve plotted the average 

firing rate across all 15 trials when the 

average firing rate is computed in a 50 

ms bin.  The trend in firing rate is clear 

with the larger bin size.  As expected 

based on the neuron’s static ITD 

tuning, the firing rate starts high and 

Figure 6: (A) Static ITD tuning curve of the example 
neuron shown in Figure 5 (CF = 4150 Hz).  The 
trajectories of the ITD sweep stimuli are shown on 
above the tuning curve (blue arrow for positive-going 
sweep, red arrow for negative-going sweep, black dot 
for the 0 µs ITD stimulus).  (B) Response of the 
example neuron in (A) to the positive-going (blue) 
and negative-going (red) ITD sweeps, the 0 µs ITD 
stimulus (black), and the binaurally uncorrelated 
noise in the bottom plot (grey).  In each plot the grey 
speckled regions mark when the noise is binaurally 
uncorrelated, and the white regions are during the 
ITD sweeps.  These post-stimulus time histograms 
were calculated using 50 ms bins. 
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decreases over time as the negative-going sweep goes from positive ITDs to negative 

ITDs.  Similarly, the firing rate for the positive-going sweep increases over time as 

expected based on the static ITD tuning.  Some of the dynamics at the beginning of the 

sweep are also captured by the response to the 0 µs ITD stimulus, suggesting that some of 

the response to the negative-going sweep may be explained by adaptation. 

 However, for the larger bin size, the trends are difficult to see for the shortest 

sweep durations.  If we reduce the bin size, it becomes clear that the neuron does respond 

very briefly at the shortest sweep durations (not shown).  On the other hand, the shorter 

bin size captures more neural noise and makes the subtle trends in firing at the longest 

sweep durations hard to see.  Our intention in this study was to examine the neural 

responses to these ITD sweep stimuli and ultimately classify the sweep directions based 

on these responses.  Clearly, examining the firing rate using a histogram approach as 

shown in Figure 6b highly depends upon the bin size.  For this reason, we chose to 

model the firing rates as a point process using a generalized linear model.  The model 

reduced the overall dynamics in the response to a smaller number of parameters in order 

to avoid overfitting while capturing fast dynamics in the response that could be present at 

the shortest sweep durations. 

 We modeled the responses of each of the 62 neurons to the ITD sweep stimuli 

under the assumption that the log probability of firing at each time point was a linear 

combination of a set of weights dependent on the instantaneous ITD (“ITD-following”), 

components that quantified the magnitude of enhancement or suppression in firing 

depending upon the direction of the ITD sweep (“direction selectivity”), and suppression 

or enhancement based on spike history.  Data from example neuron are shown in Figure 
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7 (CF = 4150 Hz).  This is the same neuron shown in Figure 6.  The ITD-following 

components (Figure 7a) follow the same trend in firing rate that is expected based on the 

neuron’s static ITD tuning (Figure 7a).  Additionally, the range of the ITD-following 

weights increases with decreasing sweep duration.   

 

 We modeled the direction selectivity component as a function of both the 

instantaneous ITD and sweep duration.  If a neuron “preferred” one of the two motion 

directions, all of its direction selectivity components would be either greater than 1 or 

less than 1.  In the rabbit retina, for example, direction selective ganglion cells have a  
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preferred direction irrespective of the initial position of the stimulus (Barlow & Levick 

1965).  Whether or not neurons in the IC have a preferred direction is unclear.  There is 

some evidence for preferred motion directions for time-varying ITDs in IC neurons using 

rotating stimuli such as binaural beats (Yin & Kuwada 1983; Fitzpatrick et al. 2009; 

Dietz et al. 2014, Fig. 3d & f at 32 and 64 Hz).  Additionally, we expected the shape of 

the direction selectivity components to be consistent for all sweep durations.  In the rabbit 

retina, for example, a neuron’s direction selectivity is consistent for a wide range of 

motion speeds and displacements (Grzywacz & Amthor 2007).    

 In the neurons we recorded, we did not find evidence of “preferred” directions for 

IC neurons, and the shape of the direction selectivity components was often varied across 

sweep durations.  For the example neuron shown in Figure 7, there is a shallow but 

consistent slope that is above 1 for negative ITDs and below 1 for positive ITDs (Figure 

Figure 7: GLM modeling and analysis for the same example neurons shown in Figure 5 and 6. (A) 
ITD-following, (B) direction selectivity, and (C) spike history weights for this neuron.  The thick 
lines in A and B show the weights for the GLM fit to all trials.  Each of the thin lines are the 
weights for the models fit to all trials with one trial left out.  The halfpoint for this neuron was -7 
ms.  (D) The Kolmogorov-Smirnov (KS) statistic from the time-rescaling test is shown for each 
sweep duration and each sweep type (black for 0 µs ITD, blue for positive-going sweep, red for 
negative-going sweep).  This statistic is equal to the maximum distance between the cumulative 
distribution function for the time-rescaled ISIs and the unity line – an example is shown in the 
inset.  The stars designate KS statistics that fail the time-rescaling test (p < 0.05 with Bonferroni 
correction for 18 conditions).  The time rescaling test failed for most sweep durations and sweep 
types.  (E) Gain (blue) and correlation (orange) as a function of sweep duration. Interestingly, the 
correlation increased with decreasing sweep duration, which was uncommon in the population of 
neurons studied. (F) Average responses of the model for the positive- and negative-going sweeps 
with a1000 ms sweep duration (top) and 31.25 ms sweep duration (bottom).  The GLM shows the 
general trends in firing rate for the longest sweep durations while capturing the brief responses 
for the shortest sweep duration. (G) Direction selectivity scores computed for responses to trials 
when a positive-going sweep (blue) or negative-going sweep (red) was presented.  If the score is 
equal to or above 0 then the trial is classified as a positive-going sweep, and otherwise it’s 
classified as a negative-going sweep. (H) Detection scores for trial pairings between a sweep and 
binaurally uncorrelated noise.  Scores greater than 0 are classified correctly. (I) Percentage of 
correct responses for direction identification (black) and detection (red) for this neuron based on 
the direction identification scores and detection scores shown in (G) and (H).  This neuron was 
produced one of the best performances for ITD sweep detection. 
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7b).  The slope is present for all sweep durations except the shortest one, where the slope 

is inverted.  We observed this sloping shape in the direction selectivity components in 

several other neurons.  

 

 

Figure 8: GLM model and analysis for another example neuron with a low CF (CF = 475 Hz), 
plotted identically to Figure 7. The static ITD tuning curve is shown as an inset to (A).  This 
neuron was one of 8 that had spike history weights > 1.4.  The halfpoint was -1 ms.  For this 
neuron, the model significantly fit the data for all sweep durations and sweep types (D) even 
though the KS statistics are very similar to the neuron in Figure 7.   This neuron also had a lower 
firing rate than the neuron in Figure 7, as can be seen from the model’s average response (F).  
This neuron produced the best performance for direction identification of all of the neurons 
studied (G). 
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 Data from an example neuron with a low CF (CF = 475 Hz) are shown in Figure 

8.  Again, the neuron’s ITD-following component qualitatively matched what was 

expected based on the static ITD tuning curve (Figure 8a, static ITD tuning shown in the 

inset): for negative ITDs the firing rate was low, and the firing rate increased as the ITD 

increased.  There were no consistent trends in the direction selectivity components for 

this neuron (Figure 8b). 

 Often the spike history components had an effect only at short time lags.  The 

spike history components rapidly asymptote to 1 for both example neurons shown here 

(Figure 7c and 8c).  The neuron in Figure 8c showed an enhancement in spiking 

probability at time lags of -2 to -3 ms rather than the usual suppression, as for the neuron 

in Figure 7c.  We occasionally but infrequently observed enhancement at short time lags 

in our population of neurons: 8 neurons had spike history components that exceeded a 

magnitude of 1.4.  To compare the range of time lags over which the spike history 

components in our population of neurons were suppressive, we identified the minimum 

time lag for each neuron that had a spike history weight less than 0.5 (the “halfpoint”). Of 

the 50/62 neurons that had spike history components below 0.5, the median of the 

halfpoints was -7 ms (interquartile range of -3 to -9 ms).  This is much shorter than the 

adaptation time constants measured for instantaneous changes in interaural phase 

difference measured in the IC of anesthetized guinea pigs (52.9 ± 26.4 ms, Ingham & 

McAlpine 2004).   

 Taken together with the trends in the direction selectivity components we 

observed, we think that the spike history components captured very short-term adaptation 

associated with refractoriness whereas the direction selectivity components may have 
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captured some longer-term adaptation.  Specifically, we observed sloping direction 

selectivity components, as in Figure 7b, in several of the neurons we recorded.  If we 

consider their effect on a neuron where the ITD-following weights are constant, the 

resulting response would be a steady decrease in firing rate over time for both the 

positive-going and negative-going sweeps.  This trend in firing rate could also be 

explained by an adaptive component associated with subthreshold events that was not 

properly captured by spike history. 

 

Assessing goodness-of-fit: 

 We assessed the goodness-of-fit of each model using the time-rescaling test 

(Brown et al. 2002; Truccolo et al. 2005).  The interspike intervals (ISI) of the response 

were rescaled based on the predicted firing rate (conditional intensity function) of the 

model, and the rescaled ISIs were compared to a uniform distribution by a Kolmogorov-

Smirnov (KS) test (see inset of Figure 7d).  If the model properly fits the spiking 

variability, the rescaled ISIs will be uniformly distributed, and there will be no difference 

between cumulative distribution for the rescaled ISIs and a uniform distribution with the 

same number of ISI (the KS plot will be the identity line).  The KS statistic is equal to the 

largest distance between the identity line and the KS plot.  The model produced a good fit 

for many of the neurons in the population (p > 0.05 with Bonferroni correction for all 18 

ITD sweep stimuli).  For example, the fit for the neuron in Figure 8d was good for all 

stimuli.  However, there were several neurons for which the model did not produce a 

good fit for the responses to many of the sweep stimuli, as for the neuron in Figure 7d.  

Comparing the KS statistics to the mean firing rates for each ITD stimulus showed that 
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the test failed most often when the firing rates were high (Figure 9).  This is also true for 

the neuron in Figure 7, which had a high firing rate.  It is likely that the test failed 

primarily because there were simply more ISIs for these neurons, since the significance 

of the KS statistic is inversely proportional to the square root of the number of samples 

(Feller 1948).  We also found that the model fit the responses to binaurally uncorrelated 

noise well, even though those responses were not included when fitting the model 

(Figure 9, see Appendix for more details). 

 

 Based on this analysis, our model properly captures the variance in firing for most 

of the data, but fails primarily for high-firing neurons.  Our model only captured spike-

dependent adaptation but did not account for other sources of adaptation such as 

adaptation associated with subthreshold events.  Including a stimulus-dependent time lag 

component (e.g. Weber & Pillow 2016) may further improve the model fit for the high-

firing neurons. 

Figure 9: Mean firing rates are plotted 
against KS statistics for KS statistics 
that passed (dot) or failed (x’s) the 
time rescaling goodness-of-fit test.  
Black dots are the plots for the fits to 
each sweep of each neuron.  Failed 
tests here had KS statistics with p < 
0.05 with Bonferroni correction for all 
1116 comparisons.  Red dots and x’s 
are the passed and failed time 
rescaling tests for the binaurally 
uncorrelated noise (p < 0.05 with 
Bonferroni for 46 comparisons). 
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Contribution of ITD-following and direction selectivity: 

 We assessed the contribution of the ITD-following components and the direction 

selectivity components on each neuron’s overall response by computing the likelihood 

ratio between the model where the direction selectivity weights were removed (“ITD-

following only”) given the data and a model where the ITD-following weights were 

removed (“direction selectivity only”) given the data.  If the neuron’s response was 

dominated by ITD following, then the ITD-following only model will better capture the 

variability in the neuron’s response than the direction selectivity only model, and the 

likelihood ratio will be greater than 1.  If the neuron’s response was dominated by 

direction selectivity, then the likelihood ratio will be less than 1.  Many of the neurons 

had likelihood ratios greater than 1 for all sweep durations (Figure 10).  There were a 

number of neurons with likelihood ratios below 1 for at least one sweep duration, but 

they typically did not go far below zero.  Thus, nearly all of the neurons in the population 

were dominated by ITD following. 

 

Figure 10: For each neuron, we computed the ratio of the likelihood of ITD-following only 
model given the neural response to the likelihood of the direction selectivity only model given 
the neural response.  A likelihood ratio greater than 1 means that the ITD-following only 
model captures the time-varying spike probability better than the direction selectivity only 
model.  The percentage of neurons with likelihood ratios greater than 1 is shown for each 
sweep duration (n = 62).  Many of the neural responses had higher likelihoods using the ITD-
following only model than the direction selectivity only model.   
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Effect of sweep duration on ITD following component: 

 Since the ITD-following only model captured the firing variability in most 

neurons, we next analyzed how the ITD-following components were affected by sweep 

duration.  If the inability to identify the motion direction of the ITD sweeps was due to an 

inability for the auditory system to follow the ITD, then we would expect the range of 

firing rates in the ITD-following components to decrease with decreasing sweep duration.  

Instead, we found that the range of the weights of the ITD-following components 

increased in magnitude with decreasing stimulus duration for many of the neurons we 

recorded, including the example neurons in Figures 7 and 8.  

 First, we quantified the increase in variability of the ITD-following components 

by the “dynamic gain”, relating the standard deviation in the ITD-following components 

to the standard deviation in firing rates for ITD tuning.  For both example neurons, the 

gain increased with decreasing sweep duration (blue in Figure 7e and 8e). This trend 

was also apparent across the population of neurons (Figure 11a): there was a significant 

increase in the median gain with decreasing sweep duration (Kruskal-Wallis test: χ2 = 

31.8, p < 0.001).  Only 8/62 neurons showed a gain for the 31.25 ms sweep duration that 

was smaller than the gain for the 1000 ms sweep duration.  Nevertheless, the median gain 

at 1000 ms was larger than 1 in many neurons, implying that even at the slowest sweep 

duration some neurons had a stronger dependence on ITD than predicted from the static 

ITD tuning.   
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 Second, we used the correlation 

between the ITD-following weights and the 

static ITD tuning to quantify changes in the 

shape of tuning with sweep duration (Figure 

11b, see Figure 7e and 8e in orange for 

examples).  For the majority of neurons 

correlation decreased with decreasing sweep 

duration, although 12/62 neurons showed an 

increase in correlation (as in Figure 7e).  

The median correlation across the population 

significantly decreased with decreasing 

sweep duration (Kruskal-Wallis test: χ2 = 31.5, p < 0.001).  However, a high percentage 

of the neurons had ITD-following components that were significantly correlated with 

their static ITD tuning (Student’s t-test, p < 0.05, see Figure 11b for correlation threshold 

Figure 11:  (A) Gain for the population of 62 
neurons.  Red lines designate neurons with the gain 
decreased from 1000 ms to 31.25 ms.  On average 
though, the gain increased with decreasing sweep 
duration. (B) Correlations for the population.  Red 
lines designate neurons where the correlation 
increased with sweep duration, contrary to the 
average.  In both plots, the thick black line marks 
the median values.  Significance values are based 
on the Tukey HSD test.   A dashed black line shows 
the threshold for significant correlations with p < 
0.05 based on a one-tailed Student’s t test.  (C) 
Percentage of neurons whose correlations were 
significant based on the criterion shown in B. The 
black dashed line shows the percentage of neurons 
that would occur by chance, and the grey area 
designates the upper and lower quartiles of the 
distribution of percentages (see Methods).  For all 
sweep durations, it is clear that many neurons have 
ITD-following components hat are significantly 
correlated with their static ITD tuning. 
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and Figure 11c for percentages of neurons).  Even at 31.25 ms, 40% of neurons had 

correlations that were significant, and this proportion was well above chance.  Taken 

together, neurons remain similarly tuned to ITD at short sweep durations as they are for 

static ITDs and in fact show larger variations in firing rate for shorter sweeps.  Both of 

these are contrary to the hypothesis that direction identification is limited by the IC’s 

ability to follow the ITD.   

 

Direction identification and detection performance based on the neural response: 

 In general, the IC neurons we recorded appear to follow the ITD and maintain 

their static ITD tuning for all sweep durations.  These attributes may be sufficient to 

allow a classifier both to identify the direction of the sweep and to detect the presence of 

a sweep.  A neuron’s average response should be characteristic for a particular sweep 

direction, and the likelihood that the response on any trial corresponds to a positive-going 

sweep, a negative-going sweep, or binaurally uncorrelated noise (in the detection task) 

depends on the likelihood that the spike train on that trial matches some average expected 

response for either of the sweeps.  Thus, we modeled the direction identification task 

based on the neural spike train in a single trail by computing log of the likelihood ratio of 

the spike train in the trial given the average responses for the positive-going sweep and 

the negative-going sweep.  We used the log of the likelihood ratio to quantify the 

performance of an optimal classifier that is using single-neuron responses to do the 

direction identification and detection tasks, both of which are 2-alternative forced choice 

tasks (Green & Swets 1988). 
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 We first calculated the average response of the neuron to each sweep direction 

and each sweep duration by iteratively generating a response to each sweep and 

averaging the responses for 500 iterations using the model fit to all trials except the left-

out trial (see Figure 7f and 8f). We then scored the response of each trial by computing 

the log of the likelihood ratio of the response on the left-out trial given average response 

to the positive-going sweep relative to the likelihood that the response matches the 

average response to the negative-going sweep, called ScoreDIR (Figure 7g).   A positive 

ScoreDIR means that it is more likely that the spike train on a given trial matches the 

average response to the positive-going sweep, and a negative ScoreDIR means that it is a 

better match to the negative-going sweep.  We then classified the trial based on whether 

its score was positive (for “+ sweep”) or negative (for “- sweep”).  We calculated the 

percentage of correct responses over all trials (20-30 trials) (Figure 7i and 8g).    

 Similarly, we calculated the average response of the neuron to a constant 

binaurally uncorrelated noise and then scored the response of a pair of left-out trials.  The 

first one contained the response for a sweep in either direction and the second contained a 

response for binaurally uncorrelated noise.  The score was based on the likelihood ratio 

corresponding to a 2-interval 2-alternative forced choice task (Green & Swets 1988), 

called ScoreDET (Figure 7h).  This is identical to the paradigm performed by the human 

participants in our study.  When calculating ScoreDET, we paired the trials such that the 

sweep always came first.  A positive ScoreDET means that it was more likely that the 

sweep came first (the correct order), and a negative ScoreDET means the sweep came 

second (the incorrect order).   The percent correct was equal to the number of positive 

ScoreDET out of the total number of pairings (200-450 total pairings) (Figure 7i and 8g). 
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 We performed the direction classification on 62 neurons and the detection 

classification on 46 neurons.  Figure 12a and 12b show the overall percentage of correct 

responses for direction identification and detection respectively.  Performance varied 

widely across neurons.  In particular, several neurons performed direction identification 

very accurately; the neuron in Figure 8g produced the one of the highest average 

performance for direction identification.  Likewise, the performance of many of the 

neurons for sweep detection was extremely high; the neuron in Figure 7i is an example.  

Figure 12c shows the percentage of neurons for which the percentage of correct 

responses was above 75%.  Overall, a higher percentage of neurons were better for 

detecting a sweep than for identifying its direction.  There was no significant correlation 

between neural CF and the average percent correct for direction identification (Kendall’s 

tau: τ = 0.09, p = 0.32) and there was also no significant correlation with detection (τ = 

0.03, p = 0.80) (Figure 12d).  There was no significant difference between low CF (< 2 

kHz) and high CF (> 2 kHz) neurons in their average percent correct for direction 

identification (Mann-Whitney U: U = 585.5, p = 0.85) and no significant difference 

Figure 12: (A) Percent correct direction identification for 62 neurons and (B) percent correct 
detection for 46 neurons.  Thick lines mark neurons where the performance was at or above 75% 
correct for at least one sweep duration.  (C) For all sweep durations there was a higher 
percentage of neurons where classifiers performed above 75% for detection than for direction 
identification.  These numbers decreased with decreasing sweep duration. (D) Average percent 
correct for direction identification (black) and detection (red) as a function of the neuron’s CF.  
(E & F) Static ITD tuning curves color-coded by average performance for the direction 
identification and detection tasks.  The highest performance is shown in red and the lowest 
performance in blue – color bars are shown on the right of each plot. The best performing 
neurons for direction identification tended to have monotonic tuning curves between -300 and 300 
µs.  The best performing neurons for detection had large variations in firing rate in their static 
ITD tuning, irrespective of shape. 
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between these two populations in their average percent correct for detection (U = 423, p 

= 0.61).   

 We next examined the relationship between a neuron’s static ITD tuning and the 

average performance of a classifier using the neuron’s responses for direction 

identification or detection.  We did this to identify trends in ITD tuning that may relate to 

performance.  The neurons with the best direction identification performance tended to 

have large, monotonic tuning within the range of the ITD sweep (Figure 12e).  In 

contrast, neurons with symmetric tuning curves typically did not provide good 

classification for direction identification.  If a neuron’s firing rate followed the ITD of the 

sweep and its ITD tuning curve was monotonic, it would produce a discernable response 

for the positive-going sweep relative to the negative going sweep (see Figure 3a for 

example).  If instead the neuron’s ITD tuning curve was symmetrical, then the response 

would be identical for either sweep direction.  The trend in static ITD tuning curves 

suggests that classification of the ITD sweep direction is primarily based on the neuron’s 

ability to follow the ITD.  This is consistent with our finding that ITD following is 

stronger the direction selectivity.  For detection, neurons with a high range of firing rates 

in their static ITD tuning produced the best performance (Figure 12f). 

 

Comparison of neural and psychophysical thresholds: 

 Similar to our analysis of the psychophysics, we measured threshold durations for 

direction identification by fitting a sigmoid model to the percentage of correct responses 

for each neuron (“neurometric function”).  We did this only for neurons that performed at 

or above 75% correct for at least one sweep duration.  Despite the large spread in 
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threshold durations for direction 

identification and for detection, the 

medians were significantly different 

(Figure 13a) (median direction 

identification threshold = 171 ms, median 

detection threshold = 64 ms; Mann-

Whitney U: U = 2254, p = 0.0034).  There 

were 29 neurons that produced 

performances at or above 75% correct for both direction identification and detection 

(Figure 13b).  The difference between threshold durations for direction identification and 

for detection was borderline significant (Wilcoxon signed-rank: W = 308, p = 0.050) and 

there was no correlation between their thresholds (Kendall’s tau: τ = -0.16, p = 0.23).  We 

also found no significant difference between the neural slopes (median direction 

identification slope = 11.5 %correct/octave, median detection slope = 12.4 

%correct/octave; Mann-Whitney U: U = 2332, p = 0.23).  

Figure 13: (A) Thresholds for direction 
identification and detection computed based on 
the classifier performance using the IC neuron 
responses (blue dots) and threshold for 
psychophysics (black circles).  Neural thresholds 
and psychophysical thresholds are only included 
if the percent correct was at or above 75% for at 
least one sweep duration.  Two direction 
identification thresholds were > 2000 ms, two 
detection thresholds were < 10 ms and one 
detection threshold was > 2000 ms – these 
threshold durations are not shown.  The black 
circles are identical to the data plotted in Figure 
4d.  Significance values are based on Mann-
Whitney U test. (B) Thresholds for direction 
identification and detection plotted for individual 
neurons (blue dots) and individual participants 
(black circles).  The black circles are identical to 
the data plotted in Figure 4e.   
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 We then compared the neurometric threshold durations and slopes with those 

calculated from the psychometric functions.  There was no significant difference between 

the neural and psychophysical thresholds for direction identification (U = 1496, p = 0.43) 

or for detection (U = 1706, p = 0.15) (Figure 13a).  This was surprising given that 

neurons were able to follow the ITD of the sweep at even the shortest durations for many 

neurons.  Neurometric slopes were significantly shallower than psychometric slopes for 

both direction identification (U = 1270, p < 0.001) and detection (U = 1267, p < 0.001).    

 Together, these results suggest that the temporal limits in the IC may explain the 

limits of motion direction identification and ITD sweep detection in humans.  However, 

we found that neurons in the IC can still follow the ITD quite well at the shortest sweep 

durations.   Thus, we think that the limits in direction identification appear to be due to 

limitations in the ability to identify the motion direction from single-trial neural responses 

resulting from neural noise.  For shorter sweep durations, neurons fire fewer spikes, and 

the inherent variability in firing makes the responses less reliable for direction 

identification. 

 

Discussion: 

 We recorded from neurons in the IC of unanesthetized rabbits in response to 

broadband noises containing a linearly time-varying ITD (“ITD sweep”).  We also 

presented these stimuli to human participants and asked them to identify the motion 

direction of the ITD sweeps or detect the sweeps in two separate tasks.  We found that 

neurons in the IC responded dynamically to the ITD sweeps and that their responses were 

dominated by their ability to follow the ITD rather than by true direction selectivity.  
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Classifiers that use the responses of single neurons to either identify the motion direction 

of the ITD sweeps or detect the sweeps exhibit on average the same threshold durations 

as the human participants on both tasks.    

 Our results suggest that direction identification may be limited by neural noise: 

many IC neurons could follow the ITD of the sweeps at the shortest sweep durations we 

measured, but they could not be used reliably for direction identification.  However, it is 

unlikely that the participants in our study were using one IC neuron at a time in order to 

perform the task.  More likely multiple neurons in the IC are observed simultaneously or 

“pooled” when a participant performs either of the tasks.  When neurons are pooled 

together, performance generally improves (Delgutte 1996; Parker & Newsome 1998).  

Performance may be limited by correlations in neural noise between pairs of neurons, 

also called noise correlations (Averbeck et al. 2006).  Only a couple of studies using 

anesthetized gerbils have looked at noise correlations in the IC, and noise correlations 

appear to be very small and do not limit the information gained by pooling (Garcia-

Lazaro et al. 2013; Belliveau et al. 2014).  Additionally, neurons in the IC may be pooled, 

but information may be further limited at regions of the auditory system above the IC, 

such as the thalamus or cortex.  Understanding how single-neuron information can be 

used to perform a task is essential to understand how information is encoded in the brain 

(see Parker & Newsome 1998), but how this information my be pooled across neurons 

requires further study. 

 The equivalence of neurometric and psychometric threshold durations has 

interesting implications for the coding of time-varying ITD.  Several previous studies 

have argued that the temporal precision of firing in the IC allows neurons to respond to 
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time-varying binaural cues, such as changes in interaural correlation, faster than humans 

can detect them psychophysically (Shackleton & Palmer 2010).   In our population, a 

number of neurons had threshold durations for direction identification and detection that 

were lower than human threshold durations.  Because there are some neurons that can be 

used to identify the motion direction well at the shortest sweep durations, it does appear 

that direction identification may be suboptimally coded.  Our human participants received 

very little training, and training greatly improved direction identification of moving 

sounds (Perrott & Marlborough 1989; for comparison to other studies see Carlile & 

Leung 2016).  With additional training, it is possible that participant performance might 

improve to levels close to the best performing neurons.  

 We found that a point process model with ITD-following and no direction 

selectivity matched the response for nearly all neurons better than a model with direction 

selectivity and no ITD-following, suggesting that neurons primarily respond by following 

the ITD.  Furthermore, the neurons that produced the best performance for direction 

identification were usually neurons with sloped static ITD tuning curves within the range 

of the ITD sweeps, again implying that ITD-following is dominating performance for 

direction identification.  Other studies had found evidence for direction selectivity using 

rotating tones (Yin & Kuwada 1983; Douglas C Fitzpatrick et al. 2009; Dietz et al. 2014), 

but only a small number of neurons were direction selective and the speeds at which 

direction selectivity was present were inconsistent with human perception of motion (e.g. 

Perrott & Musicant 1977).  Furthermore, direction selectivity observed in other studies 

using other oscillating stimuli could be explained by stimulus-independent parameters 

such as rate adaptation (Cai et al. 1998; McAlpine et al. 2000; Borisyuk et al. 2002; 
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Wang & Peña 2013).  Overall, it is unlikely that direction selective responses in the IC 

are used for inferring the trajectory of the ITD sweeps.   

 Our focus here was on manipulations of ITD to examine motion direction 

identification without monaural changes in loudness, but motion direction identification 

is possible monaurally when other localization cues are present (Harris & Sergeant 1971).  

Auditory motion aftereffect is stronger when the adapting stimulus is a time-varying ILD 

instead of an ITD sweep (Carlile & Leung 2016), which suggests that neural direction 

selectivity may be stronger when binaural and monaural level cues are present.  This may 

also be the case for IC neurons.  

 Grantham (1986) argued that the auditory system detects motion by taking 

“snapshots” of the moving sound at two different times and identifying a difference 

between the two locations in each snapshot (see also Middlebrooks & Green 1991).  Our 

results are in agreement with this hypothesis: At the level of the IC neural responses are 

dominated by ITD following rather than direction selectivity, so it is likely that a higher 

area of the brain is determining the direction of motion by comparing the firing rates of 

the neurons at two different points in time.  There is some evidence that cortical areas in 

humans such as the medial temporal area are direction selective because auditory motion 

direction can be decoded from fMRI activity in these areas (Jiang et al. 2014; Jiang et al. 

2016).  It is possible that this comparison occurs somewhere between the IC and cortex, 

but even in the primary auditory cortex of macaques direction selectivity in single 

neurons appears to be fairly weak (Ahissar et al. 1992; Scott et al. 2009).  Thus, exactly 

where the decoding of motion direction occurs is still unclear. 
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 In the visual system, detecting and identifying the direction of spatial changes in 

luminance, also called “first-order motion”, appears to utilize velocity selective and 

direction selective neurons in the visual cortex (Cavanagh & Mather 1989).  Interestingly, 

the perception of auditory motion is more similar to the more complex “second-order 

motion” based on motion of textures or color patterns when the average luminance is 

constant (Cavanagh & Mather 1989).  While the detection of first-order motion is limited 

by velocity (Seiffert & Cavanagh 1998), detection of second-order motion is limited by 

displacement (Seiffert & Cavanagh 1998) and direction identification of second-order 

motion is limited by stimulus duration (Derrington et al. 1993).  Motion detection and 

direction identification in audition also seem to be limited by displacement and duration 

rather than by velocity (Grantham 1986).  Additionally, the perception of second-order 

motion in vision is attention-dependent (Cavanagh 1992).  In our study, 26/33 the 

participants were unable to do the direction identification task, and several participants 

mentioned that the direction identification task required a great deal of attention (in 

contrast, participants mentioned that the detection task was easier and were usually 

listening for a “gap” in the noise and not necessarily the sweep).  It is possible that 

attention may be important for motion perception in audition, similar to the perception of 

second-order motion in vision. 

 Many psychophysical studies have used various methods to estimate the binaural 

integration time of the auditory system within which interaural time differences and 

interaural correlations are calculated (for review see Shackleton & Palmer 2010 and 

Carlile & Leung 2016).  The integration time can be quantified by the equivalent 

rectangular duration (ERD) that contains the same amount of energy as the temporal 
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window that the participants use.  In a review of the literature on binaural integration 

times, Lüddemann et al. (2016) pointed out that the ERD estimates vary widely across 

studies, with individual values between 30-400 ms and mean values of 50-210 ms 

(Shackleton & Palmer (2010) cite studies with resulting ERD of 15-50 ms as well).  

Lüddemann et al. argue that the variation in ERD may be explained by both differences 

in paradigms across studies and differences in the way the ERDs were calculated.  The 

median psychophysical threshold durations and the neural threshold durations that we 

measured for direction identification and detection fall at either end of this range 

(psychophysical and neural threshold durations respectively: 43 and 64 ms for detection, 

232 and 171 ms for direction identification).  This supports the view that the variance in 

ERD is due in part to differences in paradigms.  

 We found that neurometric threshold durations for direction identification and for 

detection on average matched human performance.  A caveat to this result is that we are 

comparing neural data in rabbits with psychometric measurements in humans.  It is 

possible that psychophysical threshold durations for direction identification and for 

detection are larger in rabbits than in humans.  It has been suggested that rabbits make 

suboptimal use of temporal codes for other tasks, such as amplitude modulation detection 

(Carney et al. 2014).  Furthermore, inputs from cortical areas could affect the responses 

of IC neurons during a behavioral task – indeed, corticocollicular projections appear to be 

important for plasticity during learning for a sound localization task (Bajo et al. 2010). 

Further experiments where neural recordings and behavior are done simultaneously 

would more closely elucidate the importance of ITD-following in the IC for direction 

identification. 
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 Our results demonstrate that the differences between threshold durations for both 

ITD sweep direction identification and detection are consistent with differences in 

classification performance using single-neuron responses in the IC.  The coding schemes 

described here may relate closely to our ability perceive time-varying ITD as well as 

detect glimpses of objects of interest in a complex auditory scene.  

 

Appendix: 

Determining response latency: 

All model fitting and data analysis was performed in Matlab (Mathworks).   

Spikes were binned at 1 ms such that there were either 0, 1 spikes in nearly all bins.  

Some neurons did show 2 spikes in a single bin, but this occurred very rarely (the 

percentage of bins with 2 spikes ranged from 0% to 0.019% across the sample of 

neurons, with a median of 0.0006%). First we estimated the latency of the response by 

fitting the static ITD responses with a model weighted by shifted versions of the static 

ITD stimulus, namely: 

𝜆!" 𝑡|𝑤! = exp [ 𝑤!𝑈(𝑡 − 𝑑)
!

!!!

] 

U(t) equals 1 when the stimulus is on and 0 otherwise, equivalent to the difference in unit 

steps (U(t) = u(t-T)-u(t)) for a static ITD duration of T.  wd is the weighted contribution 

of stimulus delay on the response at time t, resulting in a time-varying conditional 

intensity function λst.  The model was fit simultaneously to all static ITD durations (1000, 

500, 250, 125, 62.5 and 31.25 ms) for delays between 0 and 150 ms without 

regularization (using “glmfit” in Matlab).  Because the resulting weight vector was often 

noisy, the weights wd were smoothed using a Gaussian kernel with a standard deviation 
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of 2 ms. We identified the latency by the maximum wd for d > 5 ms if the response to the 

static ITD was excitatory relative to the binaurally uncorrelated noise or the minimum wd 

if the response was inhibitory.  In general latencies were between 10-30 ms.  We used 

this latency in subsequent model fitting to adjust the stimulus vectors so that the timing of 

the stimulus variables matched the timing of the expected response. 

 

 Model fitting with regularization: 

Because of the large number of model parameters (5 ITD-following weights + 1 

uncorrelated noise weight + 5 direction selectivity weights + 300 spike history weights = 

311 parameters) and the relatively few spikes exhibited by some neurons, we used elastic 

net regularization when fitting the model (Zou & Hastie 2005; Friedman et al. 2010).  

The model was fit by minimizing the deviance 𝐷(𝜃)  between the model and the 

measured spike train (McCullagh & Nelder 1989; Dobson 1990): 

𝐷 𝜃 = 2 𝑛! log𝑛! −𝑛!log [𝜆 𝑡 𝜃,𝐻! ]
!

− [𝑛! − 𝜆 𝑡 𝜃,𝐻! ] 

where nt is the spike count at time t, and λ(t|θ,Ht) is the conditional intensity function of 

the model and θ is the set of parameters in the model (ITD-following, direction 

selectivity, weight for uncorrelated noise, and spike history).  Minimizing the deviance is 

equivalent to maximizing the log-likelihood of the model given the data (Dobson 1990).  

We minimized the deviance using elastic-net regularization (Zou & Hastie 2005; 

Friedman et al. 2010), namely: 

𝜃 = argmin
!

𝐷 𝜃 − 𝛾𝑃!(𝜃)
!

 

where γ is the regularization parameter and Pα(θ) is defined by: 
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𝑃! 𝜃 =
1
2 1− 𝛼 𝜃 !!

! + 𝛼 𝜃 !! 

For α ! 1, this form of regularization enforces a sparsity penalty.  However, it does not 

exhibit wild behavior when coefficients are correlated, which is a problem with other 

sparsity-enforcing regularization techniques (LASSO for example) (Friedman et al. 

2010).  While we expected many of the linear coefficients to be close to zero, preliminary 

analysis showed that there were weak correlations between ITD-following and direction-

selectivity coefficients.  Thus, we chose α = 0.9 in order to capture both the sparsity and 

the correlations between the coefficients (Friedman et al. 2010).   

 The fitting was done using “lassoglm” in Matlab which uses interatively 

reweighted least squares (Friedman et al. 2010) to find the weights that minimize the 

deviance for an array of γ values.  This program also includes an additional constant term, 

λ0, to the conditional intensity function.  When the regularization parameter is very large, 

all of the model weights will be set to zero and λ(t|θ,Ht) = λ0. For each fitting we chose 

the largest γ that minimized the deviance.  Because the sum of the linear interpolant used 

to compute the ITD-following weight is 1 at each time point, the constant term included 

for regularization can be completely accounted for by the ITD-following weights in our 

model.  After model fitting, we added λ0 to each of the ITD-following weights for the 

fitted sweep duration, wITD(ITDi,d) in order to get the final ITD-following weights for the 

model. 

 

Determining weights for spike history and binaurally uncorrelated noise: 

 Model fitting was done in a two-step process: first we fit the weights for the 

uncorrelated noise and the history components to the static ITD responses, then we fit the 
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ITD-following and direction selectivity weights separately for each ITD sweep duration.  

This two-step process reduced the number of parameters being fit to the ITD sweep types 

for each sweep duration, greatly reducing computation time.   

  After computing the latency, we first fit weights for the ITD-following 

component at 0 µs ITD, the binaurally uncorrelated noise (wUncor), and 300 spike history 

components (up to a time lag of -300 ms) to the neuron’s response to all stationary 

stimuli, with stationary ITD durations of 1000, 500, 250, 125, 62.5, and 31.25 ms and 10-

15 trials of each.  The stationary stimulus can be described by a step function from the 

binaurally uncorrelated noise to a 0 µs ITD and back to binaurally uncorrelated noise, 

needing only 2 weights to map the stimulus to the response.  Any dynamics in the 

response to the stationary stimuli is attributed to adaptation, which is in principle 

captured by the spike history components. 

 In the second step, we fit the full model to the responses to the ITD sweeps while 

holding wUncor and h fixed to the values found previously, under the assumption that the 

response to the binaurally uncorrelated noise and the spike history weights are the same 

irrespective of the sweep duration or ITD sweep duration.  This assumption was validated 

later by testing the goodness-of-fit of the model to the response to the binaurally 

uncorrelated noise stimulus, which was not included in the model fitting.  Specifically, 

we fit the ITD-following weights (wITD) and the direction selectivity weights (wDIR), a 

total of 10 parameters, to the 0 µs ITD, positive-going sweep, and negative-going sweep 

stimuli for each sweep duration separately.  
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Goodness-of-fit for responses to binaurally uncorrelated noise: 

 We also used the time-rescaling test to assess the goodness-of-fit of the model to 

the response for binaurally uncorrelated noise, which was not included in the model 

fitting.  Responses to binaurally uncorrelated noise were recorded in 46 neurons.  The KS 

statistics for the binaurally uncorrelated noise showed a similar dependence on firing rate 

as for the ITD sweep stimuli (Figure 9).  In 7/46 neurons the test failed for uncorrelated 

noise (p < 0.05 with Bonferroni correction for 46 neurons). For these neurons, the test 

also failed for at least one of the ITD sweep stimuli.  The KS statistic for the binaurally 

uncorrelated noise was consistently smaller than the maximum KS statistic for the ITD 

sweeps.  This suggests that the model properly fit the responses to the binaurally 

uncorrelated noise for most neurons, and when the time-rescaling test failed the fits were 

no worse than the fits to the responses for the ITD sweeps. 
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Chapter 4 
 
General Discussion and Future Directions 
 
 

 In this thesis, we recorded from neurons in the inferior colliculus of 

unanesthetized rabbits while presenting noise with a time-varying ITD.  We assessed how 

well these neurons could be used to identify the motion direction of the time-varying ITD 

and encode fluctuations in these stimuli.   

 In Chapter 2, we found that IC neurons were unable to keep up with the 

fluctuations in a periodically time-varying ITD “dynamic ITD” to the same modulation 

frequencies that they could for diotic amplitude modulated noises.  This finding may be a 

neural correlate for binaural sluggishness.  We also found that neurons responded to 

dynamic ITD at high modulation frequencies with a firing rate similar to that produced by 

binaurally uncorrelated noise, and often this firing rate differed from the rate for a noise 

with a static ITD.  As a result, firing rate could be used to detect the dynamic ITD relative 

to a static ITD at high modulation frequencies where temporal coding was insufficient.  

The worst performance using either code occurred around 64 Hz, roughly where humans 

had the most trouble detecting the dynamic ITD in Grantham & Wightman's (1978) 

study.   

 In Chapter 3, we presented broadband noises with a linearly time-varying ITD 

(“ITD sweep”) and examined how the motion direction of these noises was encoded.  In 

two separate tasks, we also measured the threshold durations at which human participants 

could identify the motion direction of the sweeps or detect the sweeps.  We used a 

generalized linear model to parse the contributions of ITD-following and direction 
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selectivity to the neuron’s overall firing rate.  We found that the temporal firing patterns 

for nearly all neurons could be better explained by the neuron’s ability to follow the ITD 

more than by true direction selectivity.  However, neurons could follow the ITD to the 

shortest sweep durations measured, so our inability to identify the direction of motion of 

the ITD sweep at short durations does not appear to be limited by the IC’s ability to track 

the ITD.  We then examined how well an optimal classifier could use the single-neuron 

responses to identify the motion direction or detect the ITD sweeps, similar to the tasks 

performed by the human participants.  On average, the threshold duration for detecting 

the ITD sweeps flanked by binaurally uncorrelated noise was lower than the threshold 

duration for identifying its direction in both perceptual and neural data.  Moreover, there 

was no significant difference between the threshold durations using the neural classifier 

and human psychophysical performance for either of these tasks.  Thus, it is more likely 

that motion direction identification of a time-varying ITD is limited by neural noise than 

by limitations in ITD coding. 

 In our stimuli, the ITD “sweep” was flanked at the start and end by binaurally 

uncorrelated noise.  In order to detect the sweep at short durations, participants 

mentioned that they listened for a “gap” in the flanking noise because the ITD sweep 

sounded more spatially focused than the binaurally uncorrelated noise.  This task is 

similar to a binaural detection task where listeners are required to detect a binaural “gap” 

of correlated or anticorrelated noise that is flanked at the beginning and the end by 

uncorrelated noise (Boehnke et al. 2002; Lüddemann et al. 2016).  The median threshold 

duration for the detecting the ITD sweeps was 43 ms, which is close to the threshold 

durations of 20-40 ms measured in the earlier studies.  Interestingly, if the binaural gap 
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detection task is performed for a stimulus where the “gap” contains binaurally 

uncorrelated noise and the flankers are either correlated or anticorrelated, binaural gaps 

are detectable down to 3-7 ms durations (Akeroyd & Summerfield 1999; Boehnke et al. 

2002; Lüddemann et al. 2016).  Some studies have proposed a neural correlate for the 

differences in detectability for these two binaural gap detection tasks.   For example, 

Lüddemann et al. (2016) show that late-evoked auditory potentials in humans show this 

expected trend: the threshold duration at which the potential is significantly larger than 

noise is shorter for gaps with uncorrelated noise than for gaps with correlated or 

anticorrelated noise.  Similarly, Chait et al. (2005) found that peak latencies in MEG 

qualitatively matched the speed at which humans could detect a change in interaural 

correlation, which was shorter for transitions from correlated to uncorrelated noise than 

for transitions from uncorrelated to correlated noise.    

 Are there neural correlates in the IC for the differences in thresholds for binaural 

gap detection?  This seems possible since the average neurometric threshold durations for 

ITD sweep detection matched the psychophysical threshold durations in humans, and the 

durations were longer than the threshold durations previously measured for detecting 

binaural gaps containing uncorrelated noise (3-7 ms).  Shackleton & Palmer (2010) 

showed that neurons can respond to probe tones presented 30 ms after an instantaneous 

inversion in the interaural correlation of a masking noise, but they did not examine 

responses for transitions to or from binaurally uncorrelated noise.  Wang & Li (2015) 

showed that IC neurons might respond to brief gaps of binaurally uncorrelated noise 

when surrounded by diotic noise, but they did not examine these responses for various 
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gap durations.  Thus, a more thorough examination of the neural coding of binaural gaps 

in the IC is needed. 

 Several studies have suggested that we may be able to distinguish between 

multiple sources in a complex environment (a cocktail party, for example) by catching 

“glimpses” of the location of each source when its amplitude dominates the mixture 

(Faller & Merimaa 2004; Yost & Brown 2013).  But these environments usually also 

contain background noise that is not restricted to a particular location (e.g. reverberation 

or multi-talker babble).   Listening for a single talker amidst a spatially diffuse 

background is also an important task for a “cocktail party”-like listening situation.  The 

binaural gap detection task with binaurally uncorrelated noise as the “masker” is a 

simplified version of this type of situation – the listener is required to detect a spatially 

focused sound amidst a diffuse background.  How the auditory system encodes a spatially 

focused target in this task, as far as we are aware, is still largely unstudied.   

 Here we show that neurons in the IC can respond quickly to the change in spatial 

extent, allowing the ITD sweep with flanking binaurally uncorrelated noise to remain 

detectable at short durations.  The ability for neurons to temporally lock in this way may 

degrade after sensorineural hearing loss, particularly with background noise present 

(Henry & Heinz 2012).  On the other hand, hearing loss can also increase the strength of 

temporal coding to the sound envelope in the auditory periphery (Henry et al. 2014).  

How sensorineural hearing loss affects the ability for IC neurons to respond to a spatially 

focused sound amidst a diffuse background is also worth studying in the future. 

 Several studies have shown that if listeners are presented with a moving source in 

one direction for a long period of time, participants identify a static sound played 

121



afterwards as moving in the opposite direction (Grantham & Wightman 1979; Grantham 

1989; Dong et al. 2000).  These studies have identified the effect as a motion aftereffect 

that has been interpreted as evidence for motion direction sensors in the auditory system.  

We found that the responses of neurons in the IC are better explained by ITD following 

than direction selectivity, so if direction selectivity exists in the auditory system it may 

occur at higher levels.  Motion aftereffect is also present in vision and it is well known 

that there are neurons throughout the visual system, even in the retina, that respond more 

strongly to one direction of motion than the other (Hubel & Wiesel 1962; Barlow & 

Levick 1965; Albright 1984).  However, motion aftereffect in vision is characterized by 

the presence of motion without a change in location (Wohlgemuth 1911; Nakayama 

1985).  It is unclear from the studies on auditory motion aftereffect whether or not this is 

the case, since these studies asked participants to judge the motion direction and but not 

identify the position.  This could be examined further by having participants identify the 

direction of motion of a target sound on some trials or the position on others to validate if 

the motion aftereffect is similar to that observed in vision.   

 Overall, our results identify duration thresholds and modulation thresholds that 

may relate to the boundaries of hearing motion, fluctuations, and spatially diffuse noise in 

environments with time-varying ITDs of various speeds.  We also think that these 

percepts for artificial time-varying ITD stimuli have ecological validity for identifying 

the trajectories of moving sounds, identifying the positions of multiple sounds sources in 

a complex acoustic environment, and suppressing the masking effects of diffuse 

background sounds such as reverberation.  At this point, however, the extent to which 

these time-varying ITDs are present in a real environment is speculation.  We can better 
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understand the distribution of time-varying ITDs in natural scenes by quantifying the 

statistics of time-varying ITDs in binaural recordings of various environments and 

identifying the sources of these statistics (for example, see Młynarski & Jost 2014 for the 

statistics of static binaural cues).  We predict that the distributions of time-varying 

statistics within the range of our perception of “fluctuating” time-varying ITD come from 

spatially discriminable sound sources, and time-varying ITDs within the range of our 

perception of motion come from moving objects or self-motion.   

 Additionally, how the statistics of time-varying ITDs are encoded in auditory 

neurons would be very interesting to study in the future.  It may be that our ability to 

focus on a single talker at a cocktail party, or identify the trajectory of an ambulance 

going by, relates directly the auditory system’s ability to encode the most important time-

varying ITDs in the environment while suppressing very fast time-varying ITDs, like 

reverberation, that are not ethologically relevant (for example, see Slama & Delgutte 

2015).  Neurons in the IC may be sensitive to the statistics of localization cues, since they 

can adapt their tuning based on the distribution of interaural level differences presented 

(Dahmen et al. 2010).  While our results suggest ways for how these time-varying ITDs 

are encoded, examining how these mechanisms deal with real time-varying ITDs in the 

natural environment can have a large impact on understanding how we parse everyday 

complex scenes.  
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