
Fast Simulation of Stochastic Biochemical Reaction
Networks on Cytomorphic Chips

by

Sung Sik Woo
B.S., Electrical Engineering

KAIST (2009)
S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

c⃝ Massachusetts Institute of Technology 2016. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 29, 2016
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rahul Sarpeshkar
Thomas E. Kurtz Professor, Dartmouth College, and Visiting Scientist,

Research Laboratory of Electronics, MIT
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students



2



Fast Simulation of Stochastic Biochemical Reaction Networks

on Cytomorphic Chips

by

Sung Sik Woo

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

The large-scale simulation of biochemical reaction networks in cells is important in
pathway discovery in medicine, in analyzing complex cell function in systems biol-
ogy, and in the design of synthetic biological circuits in living cells. However, cells
can undergo many trillions of reactions over just an hour with multi-scale interacting
feedback loops that manifest complex dynamics; their pathways exhibit non-modular
behavior or loading; they exhibit high levels of stochasticity (noise) that require ex-
pensive Gillespie algorithms and random-number generation for accurate simulations;
and, they routinely operate with nonlinear statics and dynamics. Hence, such sim-
ulations are extremely computationally intensive and have remained an important
bottleneck in computational biology over decades.

By exploiting common mathematical laws between electronics and chemistry, this
thesis demonstrates that digitally programmable analog integrated-circuit ‘cytomor-
phic’ chips can efficiently run stochastic simulations of complex molecular reaction
networks in cells. In a proof-of-concept demonstration, we show that 0.35 µm BiC-
MOS cytomorphic gene and protein chips that interact via molecular data packets
with FPGAs (Field Programmable Gate Arrays) to simulate networks involving up to
1,400 biochemical reactions can achieve a 700x speedup over COPASI, an efficient bio-
chemical network simulator. They can also achieve a 30,000x speedup over MATLAB.
The cytomorphic chips operate over five orders of magnitude of input concentration;
they enable low-copy-number stochastic simulations by amplifying analog thermal
noise that is consistent with Gillespie simulations; they represent non-modular load-
ing effects and complex dynamics; and, they simulate zeroth, first, and second-order
linear and nonlinear gene-protein networks with arbitrary parameters and network
connectivity that can be flexibly digitally programmed. We demonstrate successful
stochastic simulation of a p53 cancer pathway and glycolytic oscillations that are con-
sistent with results obtained from conventional digital computer simulations, which
are based on experimental data.

We show that unlike conventional digital solutions, an increase in network scale or
molecular population size does not compromise the simulation speed and accuracy of

3



our completely parallel cytomorphic system. Thus, commonly used circuit improve-
ments to future chips in our digital-to-analog converters, noise generators, and biasing
circuits can enable further orders of magnitude of speedup, estimated to be a million
fold for large-scale networks.

Thesis Supervisor: Rahul Sarpeshkar
Title: Thomas E. Kurtz Professor, Dartmouth College, and Visiting Scientist, Re-
search Laboratory of Electronics, MIT

4



Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor, Professor

Rahul Sarpeshkar. From the moment he first interviewed me during the MIT visit

day, he has been nice, friendly, and caring. I could feel many times that he really

cares about my well-being. Not only that, he is a man of extraordinary intelligence.

It has been my pleasure to do research under his guidance, while having been exposed

to and influenced by his unique insight, deep knowledge, and passion for pursuing real

science and “high-hanging fruit”. I can confidently say that he is the best advisor for

me.

I would like to thank the members of my thesis committee: Professor Sanjoy

Mitter, Professor Bruce Tidor, and Professor Jeremy England. They have given

great advice and suggestions on my research and shown their willingness to help find

ways to improve it. I feel privileged to have these prominent professors in my thesis

committee.

I would also like to thank my academic advisor, Professor Jacob White. I have

enjoyed visiting and talking with him about various subjects, from ordinary matters

to scientific matters. He has always been willing to help anything he could, so that I

can successfully complete the PhD program.

I am very grateful that I have been with such great colleagues in the Analog

Circuits and Biological Systems Group: Current members including Areen Banerjee,

Jaewook Kim, Ji Zeng, Jonathan Teo, and Susan Davco, and former members includ-

ing Anne Ziegler, Isaac Weaver, Lorenzo Turicchia, Ramiz Daniel, and Soumyajit

Mandal. Without them, I could simply not have gotten to this point. It has been

intellectually and emotionally pleasing to interact with these electrical engineers and

biologists on a daily basis. Special thanks to Jaewook, for his contribution to design-

ing noise generators and ADCs in cytomorphic chips, fruitful discussions on diverse

topics, and the refreshing times we had together at Fenway Park.

I would like to acknowledge the financial support from the Korea Foundation for

Advanced Studies (KFAS), which made my research possible.

5



Next, I would like to thank D-Lab, MIT’s program for international development,

and all the people I have met in this field who do amazing work: Amy Smith, Libby

Hsu, Amit Gandhi, Matt McCambridge, Elizabeth Moreno, Dan Sweeney, Jack Whip-

ple, Nancy Adams, Debora Leal, Cheetiri Smith, and Hyung-joon Kim. They have

given me huge motivation to hone my skills and be equipped as an engineer who can

make positive changes in the world.

When I face hardships during the PhD program, several Korean friends at MIT

have helped and encouraged me to persevere and not become exhausted. I am thank-

ful to Young Gyu Yoon, Jin-hong Choi, Jiyoun Chang, Hyunryul Ryu, Dongsuk Jeon,

Hyung-Min Lee, Hyun Ho Boo, Soohong Kim, Taehong Kwon, Seungbun Lim, Do

Yeon Yoon, and Juho Kim.

Many thanks to Pastor Tae Whan Kim and my friends in First Korean Church

in Cambridge, especially the members of CN1B and KOA Groups and the choir.

Because of their support, I have been able to stand fast.

I am much obliged to Doctor Peter Maggs and the staff at Mount Auburn Hospital

for taking good care of my health in 2015.

I am truly grateful for the unconditional support and countless hours of prayers

of my family. I will never forget their sacrifice. My parents, Soon Koo Woo and

Choon Hie Yu, and my sister, Youn Sik Woo, have allowed me to take this wonderful

opportunity to study abroad. My father-in-law, Joo Min Lee, and mother-in-law,

Kyung Hee Kim, have also shown their support, kindness, and love. I would also

want to thank my relatives in Boston—my cousin brother, David Choi, and sister-in-

law, Mimi Kim, and their cheerful daughters.

Ji Yung Lee, my lovely wife, has always been by my side, supporting, loving,

caring, and understanding me in every way at every moment. I cannot be more

grateful that I am with someone who shows me what true love, faith, and patience

are. I love you.

Finally, this thesis is dedicated to my heavenly Father, who teaches me his ways

and leads me in the right direction. I can do everything through him who gives me

strength.

6



Contents

1 Introduction 21

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Prior Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Software implementations . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Digital Hardware Implementations . . . . . . . . . . . . . . . 28

1.2.3 Analog Hardware Implementations . . . . . . . . . . . . . . . 30

1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Mapping Cells to Electronics . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.1 Gene-Protein Networks in Cells . . . . . . . . . . . . . . . . . 35

1.4.2 Similarities Between Chemical Reactions and Transistor Oper-

ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.3 Current-Mode Circuits . . . . . . . . . . . . . . . . . . . . . . 40

1.4.4 Transistor Models of Activator / Repressor Circuits . . . . . . 43

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 The Gene Chip 49

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Building-Block Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.1 Mass Action and Michaelis-Menten Reaction Block . . . . . . 53

2.2.2 Hill Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3 ITD Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.4 Analogic DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.5 Gain & Time Constant Block . . . . . . . . . . . . . . . . . . 71

7



2.2.6 Noise Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2.7 DAC and ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Design Considerations in BiCMOS Cytomorphic Design . . . . . . . . 80

2.4 Simulation of Synthetic Genetic Circuits . . . . . . . . . . . . . . . . 82

2.4.1 Repressilator . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4.2 Feed-Forward Loop Network . . . . . . . . . . . . . . . . . . . 86

2.4.3 Delay-Induced Oscillator . . . . . . . . . . . . . . . . . . . . . 88

2.5 Specifications of the Chip . . . . . . . . . . . . . . . . . . . . . . . . 90

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 The Protein Chip 93

3.1 Architecture of the Protein Chip . . . . . . . . . . . . . . . . . . . . . 94

3.2 The Protein Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Protein Block Configurations for Various Network Topologies . . . . . 100

3.3.1 Cascade (Figure 3-5(a)) . . . . . . . . . . . . . . . . . . . . . 103

3.3.2 Degradation (Figure 3-5(a)) . . . . . . . . . . . . . . . . . . . 103

3.3.3 Fan-out (Figure 3-5(b)) . . . . . . . . . . . . . . . . . . . . . . 104

3.3.4 Dissociation / Replacement (Figure 3-5(c)) . . . . . . . . . . . 106

3.3.5 Dimerization (Figure 3-5(d)) . . . . . . . . . . . . . . . . . . . 106

3.3.6 Monomerization (Figure 3-5(e)) . . . . . . . . . . . . . . . . . 107

3.3.7 Michaelis-Menten Reaction (Figure 3-6(a)) . . . . . . . . . . . 108

3.3.8 Fan-in (Figure 3-6(b)) . . . . . . . . . . . . . . . . . . . . . . 109

3.3.9 Loop (Figure 3-6(c)) . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Programmability of the Protein Chip . . . . . . . . . . . . . . . . . . 111

3.5 Simulation Examples of Biological Processes . . . . . . . . . . . . . . 113

3.5.1 p53 Signaling Pathway . . . . . . . . . . . . . . . . . . . . . . 117

3.5.2 Glycolysis Pathway . . . . . . . . . . . . . . . . . . . . . . . . 122

3.6 Specifications of the Protein Chip . . . . . . . . . . . . . . . . . . . . 127

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8



4 Toward Large-Scale Simulation of Biological Networks 131

4.1 The Architecture of the Cytomorphic System . . . . . . . . . . . . . 131

4.2 Implementation of the Cytomorphic Board . . . . . . . . . . . . . . . 134

4.3 Speed Comparison with Software . . . . . . . . . . . . . . . . . . . . 137

4.4 A Discussion of Simulation Speed . . . . . . . . . . . . . . . . . . . . 146

4.4.1 Analog vs. Digital . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4.2 Overcoming Speed-Limiting Factors . . . . . . . . . . . . . . . 149

4.4.3 Expected Performance After Improvements . . . . . . . . . . . 156

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Conclusions 159

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.1 Hardware Enhancements . . . . . . . . . . . . . . . . . . . . . 162

5.2.2 Software Enhancements . . . . . . . . . . . . . . . . . . . . . 164

5.2.3 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . 165

9



10



List of Figures

1-1 High-level block diagram of the cytomorphic system. . . . . . . . . . 33

1-2 Overall architecture of the cytomorphic PC board and the cytomorphic

chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1-3 (a) The whole genome map [30] and (b) various cellular processes [60] of

Mycoplasma genitalium. (a) From [Claire M. Fraser et al. The Minimal

Gene Complement of Mycoplasma genitalium. Science, 270(5235):397–

404, 1995.]. Reprinted with permission from AAAS. (b) Reprinted from

[Jonathan R. Karr et al. A whole-cell computational model predicts

phenotype from genotype. Cell, 150(2):389–401, July 2012.], Copyright

2012, with permission from Elsevier. . . . . . . . . . . . . . . . . . . 36

1-4 A simplified overview of gene-protein interactions in cells [78]. Copy-

right 2009 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1-5 Analogies between (a) molecular flux in chemical reactions and (b)

electronic current flow in subthreshold transistors [79,116]. Copyright

2009 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1-6 Schematic of a typical current-mode circuit used throughout our sys-

tem. It is assumed that all transistors are equally sized and the well is

tied to the source for all transistors. . . . . . . . . . . . . . . . . . . . 41

1-7 Schematic representation of (a) the activator and (b) the repressor

circuit in E. coli. The corresponding 8-transistor circuits to model (c)

the activator and (d) the repressor circuit [16]. Copyright 2011 IEEE. 44

11



1-8 Biological fluorescence data for the genetic circuits of (a) Figure 1-7(a)

and (b) Figure 1-7(b), plotted with fits to the data by MATLAB and

SPICE simulations of the circuit of (a) Figure 1-7(c) and (b) Figure

1-7(d) [16]. Copyright 2011 IEEE. . . . . . . . . . . . . . . . . . . . . 47

2-1 Die micrograph of the 2.6 mm × 3.9 mm cytomorphic chip fabricated

in an AMS 0.35 µm BiCMOS process. The left inset is a layout screen

capture of one gene block (2x magnification). . . . . . . . . . . . . . . 54

2-2 (a) Simple representation of an enzyme-substrate binding reaction, E+

S ⇌ ES. (b) Block diagram representation of the same reaction. . . . 55

2-3 A cascade reaction network to depict how “total” and “free” variables

are defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2-4 Transistor schematic of the reaction block of Figure 2-2(b). . . . . . . 59

2-5 (a) MATLAB and (b) chip data for the Michaelis-Menten reaction

block in steady state, with (solid lines) and without (dotted lines)

substrate depletion, which represents a typical loading effect. The

switches in Figure 2-4 were used to experimentally introduce the effects

of loading (or not). Lines shown in (b) are connection between points,

not any fits, unlike in Figure 2-6, where MATLAB fits and chip data

are explicitly compared. Note that chip data are ADC outputs divided

by the scale factors to obtain current levels. Chip parameters: IEtot =

100 nA, IStot = 100 pA–10 µA, and IKD = 50 nA. . . . . . . . . . . . 60

2-6 Chip data (circles) plotted on top of MATLAB data (lines). . . . . . 61

2-7 A cytomorphic circuit implements a Hill coefficient greater than 1 by

amplifying the voltage difference between VSfree and VKD, using hybrid

bipolar-and-above-threshold circuits. . . . . . . . . . . . . . . . . . . 62

2-8 (a) MATLAB and (b) chip data for the Hill block in steady state, for

three Hill coefficients, 1 (solid lines), 2 (dotted lines), and 4 (dashed

lines). Chip parameters: IEtot = 100 nA, IStot = 100 pA–10 µA, and

IKD = 50 nA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

12



2-9 (a) Simplified diagram showing the key reactions of the ITD block. (b)

Block diagram of the ITD block. The integrator models the produc-

tion and degradation of transcription factor; MM_Static models the

steady-state behavior of inducer-transcription factor binding; the two

MM_Basic blocks model the dynamics of transcription factor-DNA

binding when the transcription factor is bound to an inducer (TFbnd

input) or not (TFfree input). . . . . . . . . . . . . . . . . . . . . . . . 65

2-10 (a) MATLAB and (b) chip data for the ITD block in steady state.

Chip parameters: IEtot1(TFtot) = 100 nA, IStot1(Indtot) = 100 pA–10

µA, IKD1 = 50 nA, and IEtot2(DNAtot) = 30 nA. Also, IKD2 = 50 nA

and IKD3 = 10 µA for solid lines, and IKD2 = 10 µA and IKD3 = 50 nA

for dotted lines. The dashed line in (a) indicates the level of DNAtot,

from which DNAfree can be estimated. . . . . . . . . . . . . . . . . . 68

2-11 Circuit used in the analogic DAC to compute the three probabilities

(p0, p1, and p2) of a DNA binding site. . . . . . . . . . . . . . . . . . 69

2-12 (a) MATLAB and (b) chip data for the analogic DAC in steady state.

Chip parameters (two ITD blocks): IEtot1(TFtot) = 200 nA, IStot1(Indtot) =

100 pA–10 µA, IKD1 = 50 nA, IEtot2(DNAtot) = 30 nA, IKD2 = 50 nA

and IKD3 = 10 µA. Chip parameters (Analogic DAC): 1) β11 = 100

nA, other βij = 0 (two activators), 2) β00 = 100 nA, other βij = 0 (two

repressors), and 3) β01 = 100 nA, other βij = 0, (one repressor and one

activator). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2-13 Current-mode low-pass filter (LPF) circuit used to set the gain and the

time constant of transcription (and translation). . . . . . . . . . . . . 71

2-14 (a) MATLAB and (b) chip data over time for the gain & time constant

block, for three gains (0.5, 1, and 2) and two time constants (0.25s and

1s). The step function shown in (a) is the input to the block. Chip

parameters: C = 1 µF and (IA, IB) = (25, 12.5), (25, 25), (25, 50),

(100, 50), (100, 100), and (100, 200) (units are nA). . . . . . . . . . . 73

13



2-15 Operating mechanism of the noise generator [63]. (a) A “random” clock

is generated by using a thermal-noise amplifier, a comparator, and a

divide-by-2 circuit. (b) A current-controlled oscillator, a frequency

divider, and a frequency-locked loop operate to regulate the mean fre-

quency of the random clock, which is used to turn on and off IA of the

the gain & time constant block. . . . . . . . . . . . . . . . . . . . . . 75

2-16 Noise generated by (a) a MATLAB simulation using the Gillespie al-

gorithm and (b) the noise generator block in the chip, for relatively

low numbers of molecules. 1 nA of Iout is mapped to correspond to

approximately two molecules. . . . . . . . . . . . . . . . . . . . . . . 77

2-17 Comparison of SNR obtained from the MATLAB data and the chip

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2-18 Block diagram of (a) the digital-to-analog converter (DAC) and (b)

the analog-to-digital converter (ADC). . . . . . . . . . . . . . . . . . 79

2-19 Modified LPF to solve practical problems in the circuit of Figure 2-13. 82

2-20 (a) Repressilator circuit [26]. (b) Deterministic and (c) stochastic sim-

ulation results of MATLAB, using the mathematical model provided

in [26]. (d) Deterministic and (e) stochastic simulation results of the

chip, which is programmed using the parameters in Table 2.1. (a)

Reprinted by permission from Macmillan Publishers Ltd: [Nature] (M.

B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcrip-

tional regulators,” Nature, vol. 403, no. 6767, pp. 335338, Jan. 2000),

Copyright 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

14



2-21 (a) Feed-forward loop network [25]. (b) MATLAB simulation results

of the mathematical model and (c) experimental data from the feed-

forward loop network constructed in S. cerevisiae, for three different

promoters, TX, T8, and T18 [25]. (d) Simulation results of the chip;

the tetramerization and concentration-limiting functions were imple-

mented in MATLAB using molecular data packets from the chip. (a)-

(c) Reprinted by permission from Macmillan Publishers Ltd: [Nature

Biotechnology ] (T. Ellis, X. Wang, and J. J. Collins, “Diversity-based,

model-guided construction of synthetic gene networks with predicted

functions,” Nature Biotechnology, vol. 27, no. 5, pp. 465471, May

2009.), Copyright 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2-22 (a) Delay-Induced Oscillator Network [82]. (b) MATLAB simulation

results of the mathematical model in equation (2.34) and (c) chip sim-

ulation results. (a) Reprinted figure with permission from [W. Mather,

M. Bennett, J. Hasty, and L. Tsimring, “Delay-induced degrade-and-

fire oscillations in small genetic circuits,” Phys. Rev. Lett., vol. 102,

p. 068105, Feb 2009.] Copyright 2009 by the American Physical Society. 89

3-1 Die micrograph of the 4.3 mm × 4.0 mm cytomorphic chip fabricated

in an AMS 0.35 µm BiCMOS process. The left inset is a layout screen

capture of one of the four identical protein block groups (2x magnifi-

cation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3-2 Transistor schematic of the protein block. . . . . . . . . . . . . . . . . 97

3-3 Block diagram of the protein block. . . . . . . . . . . . . . . . . . . . 98

3-4 Block symbol of the protein block. . . . . . . . . . . . . . . . . . . . . 100

15



3-5 Configuration examples for various reactions and network topologies.

(a) Cascade with degradation (∅→A, A→B→C, C→∅). (b) Fan-out

(A+B⇌C, A+D⇌E). (c) Dissociation (A⇌B+C). (d) Dimerization

(A+A⇌Adimer). (e) Monomerization (Adimer⇌A+A). Green, blue,

and red blocks denote a protein block, an input variable, and an output

variable, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3-6 Configuration examples for various reactions and network topologies

(continued). (a) Michaelis-Menten reaction (E+S⇌ES→E+P). (b)

Fan-in with degradation (∅→A, ∅→B, A⇌C, B⇌C, C→∅). (c) Loop

(∅→A, A→B→A, B→∅). Green, blue, and red blocks denote a pro-

tein block, an input variable, and an output variable, respectively. . . 102

3-7 Chip simulation results for cascade with degradation. (a) A→B→C→D→E

and (b) E→∅ added. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3-8 Chip simulation result for a Michaelis-Menten reaction (E+S⇌ES→E+P).109

3-9 (a) The ARF model and (b) the ATM model (only showing the re-

actions changed from the ARF model) of the p53 signaling pathway

[100]. Reprinted figures originally published in [C. J. Proctor and

D. A. Gray, “Explaining oscillations and variability in the p53-Mdm2

system,” BMC Syst. Biol., vol. 2, p. 75, 2008], available from:

http://www.biomedcentral.com/1752-0509/2/75. Copyright 2008 Proc-

tor and Gray; licensee BioMed Central Ltd. This is an Open Access

article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0). . . . . . . 115

3-10 Protein block configuration for the ARF model. . . . . . . . . . . . . 116

3-11 (a) Deterministic and (b) stochastic simulation results of software for

the ARF model. (c) Deterministic and (d) stochastic simulation results

of the chip for the ARF model. To be consistent with the original

published plots (Fig. 12 and 13 in [100]), the total levels (free + bound

amounts) of p53 and Mdm2 are plotted. . . . . . . . . . . . . . . . . 120

16



3-12 (a) Deterministic and (b) stochastic simulation results of software for

the ATM model. (c) Deterministic and (d) stochastic simulation results

of the chip for the ATM model. To be consistent with the original

published plots (Fig. 12 and 13 in [100]), the total levels (free + bound

amounts) of p53 and Mdm2 are plotted. . . . . . . . . . . . . . . . . 121

3-13 Simulation results from (a) software and (b) the chip for the 12 decom-

posed unidirectional reactions to model the first enzymatic reaction in

the glycolysis pathway, GLC+ATP→F6P+ADP. . . . . . . . . . . . . 123

3-14 Simulation results from (a) software and (b) the chip for the mathe-

matical model of the glycolysis pathway [94]. . . . . . . . . . . . . . . 126

4-1 High-level block diagram of the cytomorphic system. . . . . . . . . . 132

4-2 Overall architecture of the cytomorphic PC board and the cytomorphic

chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4-3 A prototype of the cytomorphic board to run large-scale simulations. 135

4-4 Experimental setup for testing the cytomorphic board. . . . . . . . . 135

4-5 The waveforms for the levels of LacI molecules, obtained from stochas-

tic simulations of the repressilator network (see Section 2.4.1), using

(a) software (10 runs in series) and (b) the cytomorphic board (1 run

in parallel). Units – (a) x axis: minute, y axis: number of molecules,

(b) x axis: second, y axis: ADC output (1 ADC output ≈ 2.5 molecule.

Variations may exist among chips.) . . . . . . . . . . . . . . . . . . . 138

4-6 The waveforms for the levels of p53 molecules, obtained from stochastic

simulations of the p53 network (see Section 3.5.1), using (a) software

(10 runs in series) and (b) the cytomorphic board (1 run in parallel).

Units – (a) x axis: hour, y axis: number of molecules, (b) x axis:

second, y axis: ADC output (1 ADC output ≈ 0.1 molecule. Variations

may exist among chips.) . . . . . . . . . . . . . . . . . . . . . . . . . 139

17



4-7 COPASI (left) and chip (right) data for a simple 7-reaction network

(∅ k1−→A k2−→∅, ∅ k3−→B k4−→∅, and A+B
k5−⇀↽−
k6

C k7−→∅), for two different pa-

rameter sets [63]. Parameters (for both software and the chip): (a)

k1 = 1.2 × 104, k2 = k4 = 120, k3 = 3.6 × 104, and k5 = k6 = k7 = 0.

(b) k1 = 1.2 × 104, k2 = k4 = k7 = 120, k3 = 3.6 × 104, k5 = 1.2, and

k6 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4-8 The relationship between simulation time and the number of molecules,

for stochastic simulation performed using COPASI and the chip [63].

Chip simulation is done with three different time and magnitude map-

pings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4-9 The relationship between simulation time and the number of reactions,

for stochastic simulation performed using COPASI and the chip [63]. 142

5-1 Evolution of the cytomorphic chips, fabricated in (a)(b) a CMOS pro-

cess and (c)-(e) a BiCMOS process. . . . . . . . . . . . . . . . . . . . 163

18



List of Tables

1.1 Typical Parameter Values in Cellular Networks . . . . . . . . . . . . 37

2.1 Parameter Mappings for Repressilator Simulation . . . . . . . . . . . 85

2.2 Performance Characteristics of the Gene Chip . . . . . . . . . . . . . 91

3.1 The Number of Copies for Output Variables . . . . . . . . . . . . . . 113

3.2 Chip Parameters for p53 Simulation . . . . . . . . . . . . . . . . . . . 116

3.3 Chip Parameters for Glycolysis Simulation . . . . . . . . . . . . . . . 122

3.4 Performance Characteristics of the Protein Chip . . . . . . . . . . . . 128

5.1 Comparison of Various Approaches for Biological Simulations . . . . . 161

19



20



Chapter 1

Introduction

This chapter presents the need for building a tool for high-speed simulations of biolog-

ical networks and the summary of previous work to accomplish it. We describe how

the deep similarities between chemistry and electronics enable us to devise efficient

digitally programmable analog current-mode transistor circuits that quantitatively

represent gene-protein networks in cells. We outline how our utilization of analog and

digital computation combines analog efficiency with digital flexibility and robustness,

thus addressing challenges faced by previous methods.

1.1 Motivation

Scientists have constantly yearned for unveiling the marvels and mechanisms of living

organisms. Two emerging fields that take unique approaches towards an improved

understanding of living systems are systems and synthetic biology: Systems biology

is devoted to revealing complex interactions between the components of biological

systems [13, 57, 71]. It uses a holistic view to explain causes and effects existing in

those systems. On the other hand, synthetic biology is a field focusing on engineering

biological circuits and systems [11, 49, 66, 110, 116, 131]. It encompasses various pur-

poses, including manipulation of existing genetic networks to create useful functions,

artificial construction of completely new biological systems, and design and analysis

of small-scale synthetic systems to better understand the complex behaviors of larger

21



biological networks.

A powerful tool for modeling and simulation of biochemical reaction networks is

highly important in both of the areas: It enables analysis and prediction of cellular

functions of interest; by providing anticipated results and optimum design parameters,

it may reduce the number of experiments that have to be conducted before attain-

ing desired outcomes and thus save considerable resources; just like the creation of

faithful models and simulators opened up a new era in semiconductor industry, it

may facilitate the design of sophisticated synthetic circuits; and, by employing high-

throughput searching and learning algorithms, it can contribute to filling the gap

of unknowns in biology (effects of certain molecules, missing parameters, pathways,

principles, etc.). Many pathways and parameters are still unknown even for rela-

tively well-characterized reaction networks such as glycolysis. Several advantages of a

circuits approach to systems and synthetic biology are discussed in [116] and in [111].

Several efforts have been made to create such simulators1. Software simulations

have first become widely available, utilizing various math problem solvers, general-

purpose programming languages, application-specific software for biological simula-

tions, standardized representation formats, and biological databases. However, serial

processing within the boundary of conventional von Neumann computing architec-

ture poses formidable computational challenges. Simulation time grows prohibitively

as the target networks contain multiscale, nonlinear, non-modular, stochastic, and

feedback dynamical effects, which are common traits in gene-protein networks. For-

tunately, it has been proven in many areas that utilizing special-purpose hardware

can often be an effective solution to tackle such challenges. Yet, no promising solu-

tion has been developed so far in expediting the simulation of large-scale stochastic

biochemical reaction networks.

It should be emphasized that both stochastic simulation and large-scale simulation

are becoming increasingly important as the fields of systems and synthetic biology

grow. For example, drug resistance in infectious diseases and cancer are often the

results of stochastic effects, which cannot be emulated by deterministic simulations

1See Section 1.2 for details.

22



[69, 125]. Many other phenomena that are driven by random events, such as ageing,

phenotypic heterogeneity, occurrence of certain diseases due to rare formation of

malicious proteins, and cells’ response to DNA damage, can only be studied with

stochastic models as well [100, 101, 137]. On the other hand, large-scale simulations

provide a holistic understanding of how organisms work. Just as how big data has

turned out to be useful in various applications (e.g., optimizing delivery system or

bus routes) shortly after becoming available, a wealth of knowledge extracted from

large-scale biological systems will help us discover what has been unseen or elusive to

date [60,90].

Therefore, the goal of this thesis is to build a high-performance simulation, analy-

sis, and design tool which can open up new opportunities for studying and construct-

ing complex networks in systems and synthetic biology. This work can serve as a

stepping-stone to the aspiration for simulating a whole human body someday in the

future.

1.2 Prior Methods

This section outlines various approaches that have been taken so far by researchers for

simulation of biological systems. Broadly speaking, they can be categorized into three

groups: software implementations, digital implementations, and analog or hybrid

analog-digital implementations.

When reviewing prior methods, we decided to include a few works related to sim-

ulation of neuronal networks. By modeling and simulating the functions of neurons,

neuronal simulations aim at 1) learning the mechanisms of the brain and 2) creating

a new brain-inspired computing paradigm called cognitive computing [90]. Neuronal

networks and cellular networks are similar to each other in that they both com-

pute with an enormous number of highly efficient units—cells and neurons—which

construct massively parallel and complex structures. From a hybrid analog-digital

computational point of view, they share 13 similarities, which have been outlined

in [116]. Interestingly, the number of synapses in the human brain is estimated to be

23



on the same order (1014) as the optimistic number of biochemical reactions per cell

cycle in E. coli [28,138]. Thus, it seems clear that both networks can take advantage

of a high-performance simulation tool.

1.2.1 Software implementations

MATLAB provides a SimBiology toolbox2 to aid in the modeling and simulation of

biological systems. Graphical programming tools including Simulink3 or LabVIEW4

are useful for intuitive modeling and visualization. General-purpose programming

languages like C/C++ and Python enable more efficient simulation than MATLAB

at the expense of longer development time. For example, when it comes to executing

loop statements or large-scale programs, C/C++ tends to be superior to MATLAB

in terms of simulation speed. It is thus common to start a project with MATLAB to

benefit from its ease of use and translate the code to C/C++ as it goes beyond the

prototype stage, if performance matters.

Computational biology researchers often use software that is specifically devel-

oped to simulate biochemical reaction networks. COPASI5 [54], SynBioSS6 [52], and

CellDesigner7 [32] are examples of such software. Most of them are capable of run-

ning stochastic simulations as well. They are useful not only because they are faster

and more efficient than typical math solvers, but also because they offer convenient

graphical user interfaces, which alleviates the need for programming skills.

Compared to hardware realizations, software realizations enable shorter develop-

ment time, faster modification, and easier scale-up. Scalability can be enhanced by

modular design through object-oriented programming. Codes can mostly remain un-

changed regardless of the type and the specifications of the operating system and

computer hardware. Higher performance can easily be achieved by simply upgrading

the hardware of the computer. On the contrary, custom hardware designs generally

2http://www.mathworks.com/products/simbiology/
3http://www.mathworks.com/products/simulink/
4http://www.ni.com/labview/
5http://www.copasi.org/
6http://synbioss.sourceforge.net/
7http://www.celldesigner.org/

24

http://www.mathworks.com/products/simbiology/
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/
http://www.copasi.org/
http://synbioss.sourceforge.net/
http://www.celldesigner.org/


have to undergo an extensive revision if their fabrication process, supply voltage, or

clock speed changes.

Furthermore, more and more online databases such as BioNumbers8 [88], Regu-

lonDB9 [34], BioModels10 [59], and ProNIT11 [65] are becoming available, from which

users can download a large amount of data and manipulate and load them to a

software application of their choice. An XML-based format called Systems Biology

Markup Language (SBML12) [56] was also invented to represent biochemical network

models in a unified way. As a result, models can be shared among researchers using

different software tools, as long as the tools support SBML. This saves a tremendous

amount of energy needed to rewrite models according to the file format of each soft-

ware. Models represented in SBML and stored in databases have more chances to

be influential and long-lasting. In fact, many investigators, when publishing a jour-

nal paper, publicize their models, databases, custom-developed softwares, and their

manuals.

However, with a software-dependent solution, there is a prohibitive increase in

simulation time when the complexity and the scale of biological models increase.

Here we provide some examples: ∼200 hours of a 6-reaction system can easily take

20 hours to simulate with the exact stochastic simulation algorithm (SSA) on 6 CPU

cores [74]; with faster stochastic methods, a day is required to simulate 100 minutes

of a 100-reaction system on an 800 MHz Pentium III computer [28]; [118] and [119]

estimated that, using a Java simulator engine on a 500 MHz Pentium II computer, and

an efficient stochastic algorithm on highly simplified networks, stochastic simulation

of the whole 1014 biochemical reactions during a cell cycle of E. coli would take

about 12 years; in a recent prominent work, a whole-cell computational model of the

bacterium Mycoplasma genitalium was produced [60]. It was shown that the model

has an ability to generate results that both match existing experimental knowledge

8http://bionumbers.hms.harvard.edu/
9http://regulondb.ccg.unam.mx/

10https://www.ebi.ac.uk/biomodels-main/
11http://www.abren.net/pronit/
12http://sbml.org/

25

http://bionumbers.hms.harvard.edu/
http://regulondb.ccg.unam.mx/
https://www.ebi.ac.uk/biomodels-main/
http://www.abren.net/pronit/
http://sbml.org/


and possess predicting power which can bring about meaningful biological discovery.

However, although M. genitalium has the smallest genome of any free-living organism

(∼525 genes), the software implemented in MATLAB runs 10 hours on a 128-node

Linux cluster running in parallel to simulate a single division of a cell, even with highly

oversimplified primarily deterministic methods and no Poisson stochastic modeling.

To fulfill their subsequent goal of extending their work to a bigger organism, such as E.

coli (∼4400 genes) or a human cell (∼25,000 genes), substantially more computational

power is needed. Software simulation is tractable for deterministic simulations of

modest-size biological networks but infeasible for larger-scale networks or even for

modest-size stochastic networks. In general, the cost of simulating a highly parallel,

stochastic, stiff, collective analog bio-molecular network via a traditional serial digital

von Neumann approach is not optimal.

Stochastic simulation focuses on randomness in chemical reactions—randomly

moving molecules bumping into each other to create a chemical reaction event. It is

unpredictable and probabilistic; thus, when the number of molecules is low, random

fluctuation in molecular concentration manifests itself more evidently. To simulate

such behavior, the Gillespie Stochastic Simulation Algorithm (SSA) [36, 40, 41] ran-

domly selects a reaction to occur and the time it will occur in each iteration, based

on the reaction rates of all reactions. Then, it updates the time and the molecule

count of each species and moves on to the next iteration. This method is considered

“exact” in the sense that it produces time course trajectories that are in exact accor-

dance with the underlying chemical master equation. However, it is slow because it

simulates only one reaction event at a time, requiring lots of iterations, and the tasks

to be performed in each iteration are computationally expensive (especially random

number generation). In addition, an increase in network scale, molecular population

size, or stiffness inevitably increases the number of reaction events to be simulated

and thus increases simulation time. Finally, several runs are needed to obtain sta-

tistical variances, which further increases computational cost. Therefore, for many

practical applications, the cost simply becomes too high to be tractable. Although

several algorithms have been developed to enhance simulation speed, it comes at the

26



expense of a loss of accuracy. See Section 4.4.1 for further discussions.

Biological systems exhibit a number of feedback, nonlinear, and non-modular

dynamical behaviors. Due to these complexities, their simulations become mathe-

matically hard problems, mostly having no analytic (or closed-form) solution. Con-

sequently, numerical methods such as the Runge-Kutta method are essential. In

addition, biochemical networks are often numerically stiff, owing to the coexistence

of fast timescales (e.g., binding between inducers and transcription factors) and slow

timescales (e.g., transcription, translation, and dilution). To avoid numerical stability,

maintain Nyquist sampling rates, and ensure accuracy in such stiff systems, a small

time step is essential, which drastically increases the time required for simulation.

Solvers specialized in stiff differential equations exist (e.g., ode15s of MATLAB), but

they sacrifice accuracy and are still expensive.

One can attain better performance by using state-of-the-art CPUs and memo-

ries, multi-core or multi-threading techniques, distributed computing with a cluster

of computers, optimized algorithms, a compiled language instead of an interpreted

language, or codes rewritten in lower level languages (e.g., from MATLAB to C, C to

Assembly). In fact, these methods can certainly increase simulation speed, but their

limitations are still apparent: For instance, a group of researchers of IBM demon-

strated the phenomenal cat-scale cortical simulation—1.6 billion neurons and 8.87

trillion synapses—using the Dawn Blue Gene/P supercomputer with 147,456 CPUs

and 144 TB of memory and the power consumption of 1.13 MW [4]. It took 643

seconds for the supercomputer to simulate one second of brain activity per Hz of

mean neuronal firing rate. However, using a ton of cores is not a practical nor easily

accessible solution. Essentially fast-and-serial modern digital CPUs with von Neu-

mann bottlenecks and logic basis functions are not optimized for slow-and-massively-

parallel noisy analog biological networks. The human cortex can be considered as a

system with ∼22 billion locally interacting computing cores (neurons) that as a whole

consumes only ∼14.6 W; the human body is a system with ∼100 trillion locally in-

teracting computing cores (cells) consuming only ∼80 W [116]. This architectural

27



discrepancy implies that brute-force approaches may not be the best idea to solve the

problem.

IBM researchers’ endeavor to overcome this fundamental limit has been reflected

in their recent project to develop a neuromorphic chip that contains one million neu-

rons [87], which will be introduced in more detail in the next section. Another effort

has been made by the researchers at the University of Illinois at Urbana-Champaign

to achieve speedup by leveraging graphics processing units (GPUs) to run their orig-

inal stochastic simulation software [47,106]. The architectural benefits of GPUs have

enabled parallel, faster execution of computationally intensive algorithms such as ran-

dom number generation, offering up to two orders of magnitude speedup. As a result,

their computing power has expanded from single-cell simulation to simultaneous sim-

ulation of multiple cells (colonies). Both cases described in this paragraph advocate

the paradigm shift from software-only to hardware assisted methods. This thesis aims

to extend this paradigm shift even further by creating digitally programmable analog

chips with highly efficient hardware, thus enabling the best of the analog and digital

worlds to be integrated in a scalable fashion.

1.2.2 Digital Hardware Implementations

In hardware realizations, hardware (analog or digital electronic circuits) undertakes

the core computation; meanwhile, software may be involved in creating a user interface

(UI), programming hardware, visualization of results, or less intensive calculations.

A video card is a great example. Although CPUs can carry out any digital functions,

such versatility is obtained by sacrificing performance. That is, CPUs are not op-

timized for manipulating computer graphics which requires high-throughput, highly

parallel data processing. On the other hand, video cards are dedicated hardware

designed specifically to accelerate such tasks.

When utilizing digital hardware, it is important to choose between general-purpose

hardware such as Field Programmable Gate Arrays (FPGAs) or Complex Programmable

Logic Devices (CPLDs) and special-purpose hardware, so called Application Specific

Integrated Circuits (ASICs). Modern FPGAs are armed with remarkable capacity

28



and performance (20 nm process, >4.4 millions of logic cells, >130 Mb of RAM, and

>5.8 Tb/s of total transceiver bandwidth for Virtex R⃝ UltraScaleTM). They serve as

a great platform where a user can rapidly develop high-speed massively parallel digital

functions, a capability that we utilize in our digitally programmable analog systems

as well. The usability of FPGAs is thus expanding beyond the prototyping stage.

Some prior work in [108] and [22] has not surprisingly, taken a purely-FPGA-based

approach to accelerate the simulation of biological processes and has achieved modest

speedups, but not as great as we have been able to achieve or is possible through our

hybrid analog-digital approach.

Specialized hardware, through leveraging full customization, is used to offer max-

imum performance and efficiency for specific applications. By sacrificing flexibility,

it gives a potential to exceed the speed and scale that general-purpose hardware can

achieve. Anton by D. E. Shaw Research, for example, is a special-purpose supercom-

puting chip to accelerate simulation of molecular dynamics. It enabled millisecond-

scale atomic-level simulations of molecules for the first time, for proteins with a rel-

atively small number of amino acids, such as 100, and for a short protein folding

time13 [123]. TrueNorth created by IBM’s scientists in 2013 is another exceptional

integrated circuit which generates supercomputing power [87]. Having an architec-

ture inspired by the brain, it has an ability to run large-scale neural applications in

real-time, with one million neurons and 256 million synapses per chip. Compared

to the Dawn Blue Gene/P supercomputer mentioned in Section 1.2.1, TrueNorth is

demonstrated to be at least 100 times faster and 130,000 times more energy efficient.

H. Park et al. built a proof-of-concept compiler to simulate how a network of dedi-

cated stochastic processors could achieve speedup over traditional methods [97]. They

showed that strongly coupled networks could achieve orders-of-magnitude speedup

due to resource sharing but that this benefit did not port to loosely coupled networks

as in many biological systems; nevertheless even these networks, achieved an order of

magnitude improvement.

13Surprisingly, a 512-node Anton machine simulates a benchmark system at a rate of 16.4 us/day.
It takes two months to reach a millisecond. Note this intensity of just a molecular simulation!

29



1.2.3 Analog Hardware Implementations

Although the benefits of an analog approach have been argued for years and proven

in many high-performance systems, some even in patients [15, 86, 109, 115, 116], it is

the imminent and widely-accepted end of Moore’s law that has led to an increasing

and new appreciation for analog hardware. For example, the U.S. Defense has re-

cently articulated the possibility that analog probabilistic computing can offer orders

of magnitude improvements in efficiency as well [84]. Theoretical proof that analog

computation is more efficient than digital computation at low or moderate precision

is provided in neural and electronic systems [109,116] and in actual living cells [110].

The absolute necessity for computations in severely energy-limited cells to be analog

and probabilistic has also recently been shown [110]. Furthermore, for multiscale bio-

logical models, it is difficult to achieve fast simulation using purely digital approaches,

even with parallel processing techniques (see Section 4.4.1). In essence, the hybrid

analog-digital nature of many biological systems implies that incorporating analog

computation may provide great advantages in capturing certain behaviors in them.

Emulating biochemical reaction networks in cells using analog electronic circuits

has been a topic of steady interest since 1950s [16,50,51,55,75,78,79,83,96,104,129].

Researchers have discovered in common that analog circuits are effective at quanti-

tatively reproducing biological behaviors. However, they had applications limited to

specific behaviors (usually mapping specific equations onto circuits) [50, 51, 75, 96],

were power- and area-inefficient due to the use of power-hungry operational ampli-

fiers or discrete components [50,51,75], presented less realistic circuit models and no

physical hardware [16, 83, 96, 104, 129], adopted too abstracted models [55, 78, 129],

or suffered from mismatch effects (no steady-state solutions) [75, 79]. None of them

achieved the scale of more than 20 unit blocks (e.g., 6 in [78], 12 in [55], and 20

in [129]). It thus appears that no hardware simulation of gene-protein networks in

a large scale has been demonstrated so far. Besides, none of the prior approaches

seem to have exploited the fact that analog chemical circuits and analog electronic

circuits are deeply similar with respect to stochastics, flows, and implementation due

30



to common Boltzmann laws [79, 116]. Thus, they have not built efficient transistor-

based circuits as this thesis proposes to do. This may partly be because of the lack

of unveiled biological networks in the past, resulting in less demand for simulations.

Fortunately, although many effects in biology are still unknown, a wealth of models

and parameters of large-scale biological networks are being unearthed every day.

Substantial efforts have also been made with respect to emulating neural networks

with analog circuits in silicon, from relatively small scales [21, 23, 68, 77] to large

scales [8, 117]. The pros and cons of analog vs. digital approaches are discussed

in a rigorous fashion in [116]. As these attempts have produced meaningful results

in neuroscience, so studies on modeling and large-scale integration of gene-protein

networks on silicon wafers can have a major impact in systems and synthetic biology.

1.3 Our Approach

In a nutshell, we envision a proof-of-concept high-speed chipset to simulate large-scale

gene-protein networks. Five lessons were learned from reviewing previous approaches:

1. Simulations of large-scale gene-protein networks have been performed with soft-

ware but not with hardware. However, parallel computation using hardware is

critical to boosting speed, and an efficient mapping between electronics and

chemistry allows to achieve parallelism efficiently.

2. Large-scale hardware simulations have been performed for neural networks but

not for gene-protein networks.

3. When simulating a network which has low-precision and multiscale characteris-

tics (as it is in many biological systems), analog hardware may be more efficient

than digital hardware.

4. To build a flexible system amenable to the simulation of a wide range of bio-

chemical networks, elementary blocks should be made sufficiently general and

programmable.

31



5. To build a physical chip that integrates many genes and proteins, it is required

to thoroughly address various design requirements (e.g., area, power, number

of pins, on-chip connectivity, etc.) and non-idealities (e.g., mismatch, noise,

crosstalk, process variation, parasitic capacitance, leakage, etc.), from compo-

nent level to system level. Practical and realistic design choices must be made.

Hence, the very first design choice we make is that we use analog hardware as a

primary method for computation. As opposed to digital computation that discards

all information except “0” and “1”, analog computation keeps and uses all intermedi-

ate values. Thus analog computation can extract more information from a transistor,

becoming inherently more efficient. Since nature is full of analog functions and ex-

hibits incredible efficiency, our approach resembles that of nature. In fact, mappings

between molecular flux and electron flow, molecular noise and transistor noise, and

the conservation law for molecules (flux balance analysis) and electrons (Kirchhoff’s

current law) are transparent and intuitive with analog circuits but not with digital

circuits. Power and time for computation may be saved by the clever use of such nat-

ural mappings based on physical basis functions existing in analog circuits [79, 116].

In this sense, the term “cytomorphic” that compose the title of this thesis reflects the

fact that our chip not only emulates the operations of cells but also is inspired by

the underlying computation principle of cells. The principle is, in a phrase, collective

analog computation [109, 116], where many imprecise analog units collectively com-

pute to perform complex or precise functions [140]. For example, recent work has

shown that analog computation can also be made arbitrarily precise like digital com-

putation: Four 4-bit-precise spiking-neuron-like analog adders adding via Kirchhoff’s

current law and interacting via a pulsatile carry implemented 16-bit-precise analog

addition, which could be made scalably and arbitrarily precise.

Digital circuits can offer robustness, scalability, and programmability to our sys-

tem. Although analog circuits are efficient in nonlinear, feedback, and stochastic

computations, they are susceptible to corruption due to noise. Since the noise ac-

cumulates over cascaded stages and over time, at some point, analog signals should

32



Figure 1-1: High-level block diagram of the cytomorphic system.

be converted to a digital format to maintain the information, as rigorously analyzed

in [116]. Similarly, as for long-term storage of data, digital memory (e.g., SRAM)

is more appropriate than analog memory (e.g., capacitors). It is thus not surpris-

ing that biology also employs digital-like schemes, e.g., all-or-none spikes of neurons

(communication), on/off states of genes (signal restoration), or lysis-lysogeny decision

(decision making) [110].

Our system is built upon this hybrid analog-digital design methodology. To max-

imize efficiency, tasks are optimally assigned to analog and digital domains: Analog

circuits constitute efficient parallel processing cores; digital circuits implement recon-

figurability of parameters and connections, memory, etc.; FPGAs digitally control

and program cytomorphic chips, establish data communication throughout the sys-

tem, and implement error correction and other digital signal processing; and software

offers a convenient user interface, graphically presents chip data, compiles a model,

and analyzes data. Analog-to-digital converters (ADCs) and digital-to-analog con-

verters (DACs) incorporated in cytomorphic chips allow to cross between analog and

digital domains.

Figures 1-1 and 1-2 are pictorial representations of our overall methodology (see

Section 4.1 to find detailed descriptions). To realize our goal, we first conceive and

implement seven building-block circuits to quantitatively model fundamental bio-

molecular circuits in cells. These blocks include 1) the mass-action fundamental

33



Figure 1-2: Overall architecture of the cytomorphic PC board and the cytomorphic
chips.

reaction block, 2) the Hill block, 3) the Inducer-Transcription-factor-DNA (ITD)

binding block, 4) the analogic DAC, 5) the gain and time constant block, 6) the noise

generator, and 7) the ADC and the DAC (see Sections 2.1 and 2.2). These building-

block circuits are then composed and scaled to construct the “gene chip” (Chapter 2)

and the ”protein chip” (Chapter 3), specialized in modeling and simulating genetic

networks and protein networks in cells, respectively.

Finally, for fast and parallel simulation of large-scale networks, an array of these

chips are laid out on a printed circuit board (PCB) with an FPGA-like architecture,

i.e., an array of gene and protein blocks interacting via routing channels, within and

amongst the chips (Chapter 4). This work lays a foundation for massively parallel

simulations of biological systems ranging from relatively small synthetic genetic net-

works such as repressilator [26] and genetic toggle switch [35] to metabolic pathways

such as glycolysis and Krebs cycle, to whole-cell scale networks such as 525 genes in

M. genitalium, and to multi-cell scale networks such as a colony, a tissue, an organ,

34



and ultimately a whole body. High-throughput simulations will eventually lead to

the discovery of unknown parameters and pathways via machine learning algorithms,

which may highly influence the field of medicine.

1.4 Mapping Cells to Electronics

This section aims at bridging the gap between cells and electronics. Our unique

approach, originated from the deep similarities between chemistry and electronics

[79, 116], leads us to leverage analog translinear circuits to build transistor models

of gene-protein networks. We show how these models quantitatively represent the

steady-state behaviors of genetic activator and repressor circuits in E. coli.

1.4.1 Gene-Protein Networks in Cells

Cells are indeed miraculous devices, of which all creatures are composed. Despite

their tiny size (see Table 1.1), they contain diverse sophisticated biological networks

such as metabolic, protein-protein, and gene regulatory networks, which process an

astounding amount of information. Nonetheless, each cell only consumes less than 1

pW of power [116]. Figure 1-3 shows the entire genome and various cellular processes

of M. genitalium, the smallest known free-living organism [30, 60]. As the figure

illustrates, many genes, proteins, metabolites, and other small molecules collectively

operate to maintain the life and functionality of organisms. Our goal is to study such

mechanisms in a holistic approach, through enabling large-scale simulations.

Table 1.1 shows typical values of parameters in cellular networks that help us

set the design requirements of our system [3, 27, 92]. For example, to simulate a

bacterial genetic network, programmable timescales of 70 dB dynamic range, at least

40 dB dynamic range of protein concentration, and 20 dB of signal-to-noise ratio are

necessary. When studying the dynamics of transcriptional networks, the dynamics

of inducer-transcription factor binding can be well approximated to be at steady

state [3].

Figure 1-4 shows a simplified overview of gene-protein interactions in cells, where

35



(a)

(b)

Figure 1-3: (a) The whole genome map [30] and (b) various cellular processes [60] of
Mycoplasma genitalium. (a) From [Claire M. Fraser et al. The Minimal Gene Com-
plement of Mycoplasma genitalium. Science, 270(5235):397–404, 1995.]. Reprinted
with permission from AAAS. (b) Reprinted from [Jonathan R. Karr et al. A whole-
cell computational model predicts phenotype from genotype. Cell, 150(2):389–401,
July 2012.], Copyright 2012, with permission from Elsevier.

36



Table 1.1: Typical Parameter Values in Cellular Networks

Parameter Bacteria
(E. coli)

Yeast
(S. cerevisiae)

Mammalian cell
(Human Fibroblast)

Cell volume 0.5–5 µm3 20–160 µm3 100–10000 µm3

Concentration of
one protein/cell ∼1 nM ∼1 pM ∼0.1 pM

Cell cycle time 20–40 min 70–140 min 15–30 hr

Transcription time ∼1 min ∼1 min ∼30 min

Translation time ∼2 min ∼2 min ∼30 min

mRNA lifetime 2–5 min 10 min–1 hr 10 min–10 hr
Inducer-transcription factor
binding time ∼1 ms ∼1 s ∼1 s

Transcription factor-DNA
binding time ∼1 s

Concentration for a
signaling protein 10 nM–1 µM 10 nM–1 µM 10 nM–1 µM

Signal-to-noise ratio 0–20 dB 0–20 dB 0–20 dB

Figure 1-4: A simplified overview of gene-protein interactions in cells [78]. Copyright
2009 IEEE.

37



the production of a protein molecule is controlled by the reactions among inducers,

transcription factors, and DNA. SX is a kind of small inducer molecules which comes

into the cell and binds to activator molecules (X) to change their state from X to

X∗. This binding reaction can be written as SX + X
kf−⇀↽−
kr

X∗, where kf and kr

are the forward and reverse reaction rate constants, respectively. The mathematical

representation of this reaction is given by

d[X∗]

dt
= kf [SX ][X]− kr[X

∗] (1.1)

[Xtot] = [X] + [X∗] (1.2)

where [Xtot] refers to the total concentration of the activator molecules. From the

above equations, the concentration of X∗ at steady state can be derived as

0 = kf [SX ] ([Xtot]− [X∗])− kr[X
∗] (1.3)

[X∗] = [Xtot]

(
[SX ]/KD

[SX ]/KD + 1

)
(1.4)

where KD = kr/kf is the dissociation constant of the reaction.

When the activated transcription factor X∗ is formed, it binds to the enhancer site

of DNA with a high binding affinity. Then, it recruits the enzyme RNA polymerase

(RNAp in Figure 1-4), which binds to the promoter region of DNA and initiates

transcription—a process where a particular gene in the DNA is copied into a cor-

responding messenger RNA (mRNA) transcript. This mRNA is in turn used as a

templete to produce a protein through the translation process.

On the other hand, SY is a kind of inducer molecules which binds to repressor

molecules (Y ) to change their state from Y to Y ∗. These Y ∗ molecules then bind

to a particular site of DNA to prevent the RNA polymerase from binding to DNA.

Thus, as opposed to the activator molecules, the binding of the repressor molecules

decreases the rate of transcription. This mechanism of regulating the expression

levels of mRNA or protein by using transcription factors and other proteins is called

transcriptional regulation. It is a vital and clever strategy of a cell to sense and

38



Figure 1-5: Analogies between (a) molecular flux in chemical reactions and (b) elec-
tronic current flow in subthreshold transistors [79,116]. Copyright 2009 IEEE.

respond to environmental signals and conduct various housekeeping activities.

1.4.2 Similarities Between Chemical Reactions and Transistor

Operations

This section describes the “cytomorphic mapping” which serves as the fundamental

motivation and idea to port biochemical reaction networks to electronic circuits. Fig-

ure 1-5 shows the deep analogies between molecular flux in chemical reactions and

electronic current flow in the transistors operating in the subthreshold regime [116]:

Reactant and product concentrations in chemical reactions are analogous to elec-

tron concentrations at the source and the drain in transistors, respectively; forward

and reverse reaction rates are analogous to forward and reverse electronic current

flows, respectively; as the presense of enzymes exponentially changes reaction rates

by lowering the activation energy, so the gate voltage exponentially changes current

flow rates; and, interestingly, the stochastics of molecular shot noise is mapped into

the stochastics of Poisson shot noise in transistors. Several constraints present in

chemistry such as flux balance analysis and thermodynamic energy balance are also

present in electronics, in the form of Kirchhoff’s current law and Kirchhoff’s voltage

law, respectively.

Another important similarity is that the electrochemical potential exists in the

form of “log(molecular concentration)+energy” in chemistry and “log(electronic cur-

39



rent)+voltage” in transistors [110]. This arises from the logarithmic and exponential

basis functions that analog transistors naturally have. As such, it is easy to use

log-domain analog circuits to create any dynamical systems of the form

dx

dt
= C+Dx+ E(x⊗ x) + Fu+G(x⊗ u) (1.5)

y = Hx+Ku (1.6)

where x, y and u denote the vectors for reactant concentrations, output concentra-

tions (linear combinations of all species), and input variables, respectively [79]. The

matrix coefficients represent chemical-reaction kinetic parameters and ⊗ indicates the

outer product. The above equation is general enough to create any combination of

zeroth-, first-, and second-order chemical reactions.

Therefore, log-domain cytomorphic circuits built on top of this principle can be

very effective in making a quantitative connection between chemistry and electron-

ics [16, 78, 79]. They will serve as the fundamental building blocks to construct a

rapid and efficient tool to run highly parallel stochastic simulations, as will be shown

in the following chapters. Furthermore, the analogy in Figure 1-5 reveals that analog

circuit design principles accumulated over decades can be utilized to create highly

efficient log-domain synthetic circuits in cells [17] or to symbolically represent molec-

ular circuits as a unifying language to help analyze and design complex biological

circuits [131].

The next two sections describe the basic ideas to build log-domain current-mode

circuits and how they can be used to create highly compact 8-transistor analog circuits

to model transcriptional regulation depicted in Section 1.4.1.

1.4.3 Current-Mode Circuits

Contrary to voltage-mode circuits which represent information by node voltages,

current-mode circuits represent information by current flowing through the branches

of the circuit. Since current levels represent the dynamic range of signals, current-

mode circuits are suitable for low-power, low-voltage, and wide-dynamic-range ap-

40



Figure 1-6: Schematic of a typical current-mode circuit used throughout our system.
It is assumed that all transistors are equally sized and the well is tied to the source
for all transistors.

plications. Some functions such as multiplication, integration, filtering, and other

nonlinear operations can often be easily implemented in the current-mode domain.

Several current-mode circuits logarithmically compress an input current to a voltage,

process it in the log domain to yield desired behaviors, and exponentially expand it to

create an output current. Thus, such current-mode signal processing is often referred

to as log-domain signal processing.

In 1975, Barrie Gilbert invented a useful subclass of current-mode circuits called

translinear circuits [37]. They leverage the exponential current-voltage (I-V) charac-

teristic of bipolar junction transistors (BJTs) or MOS transistors in weak inversion.

The I-V characteristic is given by

I = ISe
VBE/ϕt (BJT) (1.7)

I = I0Se
κSVGS/ϕt (MOS transistor in weak inversion) (1.8)

where IS is the reverse saturation current of a BJT, ϕt is the thermal voltage, I0S

is the pre-exponential current of an MOS transistor in weak inversion, and κS is the

constant representing the channel divider. For subthreshold MOS transistors, the

well should be tied to the source to remove the undesirable body effect.

Figure 1-6 shows a typical current-mode circuit which consists of 4 transistors.

This simple block and the underlying principle are widely utilized throughout our

41



system to construct various types of current-mode circuits. If we apply Kirchhoff’s

voltage law around the closed loop indicated by the red line, it simply results in

∑
n∈CW

Vn =
∑

n∈CCW

Vn. (1.9)

This equation tells that the sum of clockwise voltages (i.e., voltage rise) is equal to

the sum of counter-clockwise voltages (i.e., voltage drop). If the 4 transistors have

the same dimensions, it is straighforward to show that because of the exponential I-V

relationship in equation (1.8), the above equation becomes

∏
n∈CW

In =
∏

n∈CCW

In. (1.10)

That is, the product of clockwise currents equals to the product of counter-clockwise

currents in the loop. This is called the translinear principle [37]. Hence, the two

equations that describe the behavior of the circuit in Figure 1-6 are given by

ISIXf = IXbIKD (1.11)

IXt = IXb + IXf . (1.12)

Solving these two equations for IXb and IXf yields

IS (IXt − IXb) = IXbIKD (1.13)

IXb (IS + IKD) = ISIXt (1.14)

IXb = IXt

(
IS/IKD

IS/IKD + 1

)
(1.15)

IXf = IXt

(
1

IS/IKD + 1

)
. (1.16)

Note that equation (1.15) is equivalent to equation (1.4), where [Xtot], [X∗], [SX ],

and KD in equation (1.4) correspond to IXt, IXb, IS, and IKD in equation (1.15),

respectively. Thus, it can be seen that the 4-transistor circuit in Figure 1-6 effi-

ciently represents the steady-state behavior of the binding reaction, where molecular

42



concentrations are mapped into electric current levels.

1.4.4 Transistor Models of Activator / Repressor Circuits

This section shows that current-mode circuits similar to the one in Figure 1-6 can be

repeatedly used to create compact analog transistor models of synthetic activactor

and repressor circuits in E. coli. The models are capable of producing input-output

characteristics that quantitatively represent the mathematical models and experimen-

tal biological data for those bacterial genetic circuits. Such quantitative agreement

gave us motivation to proceed to the rest of the work in the thesis, with current-mode

circuits as the primary computing devices.

This section contains the work that was previously published as a paper in the Pro-

ceedings of the 2011 IEEE Biological Circuits and Systems Conference [16], Copyright

2011 IEEE. Reprinted with permission from the publisher. All biological experiments

are conducted by Ramiz Daniel.

First, Figure 1-7(a) is a representation of a simple synthetic activator circuit.

AraC is a transcriptional activator that is constitutively produced. When it binds

to an Arabinoise (Arab) inducer, it changes to an activated form and binds to the

DNA. Then, it enhances the rate of transcription via the PBAD promoter. EGFP is

a reporter protein which allows us to monitor the change in the expression level from

the PBAD promoter, by using a standard fluorescence technique.

Figure 1-7(c) shows a subthreshold transistor circuit model of the activator circuit

in Figure 1-7(a). It is basically a cascade of the two current-mode circuits presented

in Figure 1-6, one modeling the inducer-activator binding and the other modeling

the activator-DNA binding. The resistive divider composed of R1 and R2 models the

Hill coefficient (m = (R1 + R2)/R2) of the inducer-activator binding. Iinducer, IKm ,

IXT
, and IX∗ represent the inducer concentration, the dissociation constant for the

inducer-activator binding, the total activator concentration, and the inducer-activator

complex concentration, respectively. IKd
, IG, IZ0 , and IGFP correspond to the dissoci-

ation constant for the activator-DNA binding, a combined rate of transcription-factor-

dependent protein production based on RNA polymerase and ribosomal activities, the

43



(a) (b)

(c)

(d)

Figure 1-7: Schematic representation of (a) the activator and (b) the repressor circuit
in E. coli. The corresponding 8-transistor circuits to model (c) the activator and (d)
the repressor circuit [16]. Copyright 2011 IEEE.

44



basal level of fluorescence, and the level of (green) fluorescence which is proportional

to the level of EGFP.

Similar to the derivation process of equation (1.15), the equation for each of the

two binding reactions can be derived:

IX∗ = IXT

(
(Iinducer/IKm)

m

(Iinducer/IKm)
m + 1

)
(1.17)

IGFP = IG

(
IX∗/IKd

IX∗/IKd
+ 1

)
+ IZ0 . (1.18)

If we substitute equation (1.17) into equation (1.18), we obtain

IGFP = IG

 IXT

(
(Iinducer/IKm )m

(Iinducer/IKm )m+1

)
/IKd

IXT

(
(Iinducer/IKm )m

(Iinducer/IKm )m+1

)
/IKd

+ 1

+ IZ0 (1.19)

=
IG

1 +
IKd

IXT

(
1 +

(
1

Iinducer/IKm

)m) + IZ0 . (1.20)

Remarkably, the above equation has the form that is identical to the equation

derived for the observed fluorescence level in biological experiments, described in

prior modeling work in [2]:

Z =
G

1 + 1
x

(
1 +

(
1
I

)m) + Z0 (1.21)

where Z, G, x, I, and Z0 correspond to IGFP , IG, IXT
/IKd

, Iinducer/IKm , and IZ0 in

equation (1.20), respectively.

In a similar fashion, the behavior of the genetic repressor circuit in Figure 1-7(b)

is modeled by the subthreshold transistor circuit in Figure 1-7(d). For this circuit,

solving for the level of IGFP yields

IGFP =
IG

1 +
IXT

/IKd

1+(Iinducer/IKm )m

+ IZ0 (1.22)

and this is identical to the equation describing the observed fluorescence of EGFP

45



derived by [2]:

Z =
G

1 + x
1+Im

+ Z0. (1.23)

Note that there exists a physical symmetry between the electronic citcuit in Figure

1-7(c) and Figure 1-7(d). For the former circuit, the inducer-activator complex can

bind to the DNA and the binding leads to higher expression of GFP. Thus, between

the two arm currents of the two differential pairs, the left arm currents are chosen. On

the other hand, for the repressor circuit, the “free” repressor molecules can bind to the

DNA, and it leads to lower expression of GFP. Thus, between the two arm currents,

the right arm currents are chosen. Due to the activation effect of Arabinose and de-

repression effect of IPTG, the expression level of EGFP increaes as the inducer level

increases for both circuits. This symmetry suggest that the same electronic circuit

can be used to model both the activator and repressor genetic circuits, by simply

implementing digital programmability which allows to choose which arm current to

take.

Finally, the activator and repressor genetic circuits in Figure 1-7(a) and Figure

1-7(b) are built on a plasmid and transfected into E. coli using standard genetic ex-

perimental techniques [73], whose measurement results are shown in Figure 1-8. The

MATLAB fit to equation (1.21) and (1.23) and the SPICE simulation result obtained

from the electronic circuit in Figure 1-7(c) and 1-7(d) are also plotted in Figure 1-8.

The plots illustrate that both the MATLAB and SPICE simulation generate identical

fits to experimental data for a wide range of inducer levels.

Overall, this modeling and experimental work suggests that the use of current-

mode analog transistor circuits can be an effective method to model and simulate the

behavior of biological mechanisms. Although this section only presented circuits to

capture the static (steady-state) behvaiors of biological models, the following chapters

will show various current-mode circuits that quantitatively reproduce the dynamic

behaviors as well.

46



(a)

(b)

Figure 1-8: Biological fluorescence data for the genetic circuits of (a) Figure 1-7(a) and
(b) Figure 1-7(b), plotted with fits to the data by MATLAB and SPICE simulations
of the circuit of (a) Figure 1-7(c) and (b) Figure 1-7(d) [16]. Copyright 2011 IEEE.

47



1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 describes the cytomorphic current-mode

building-block circuits that faithfully represent fundamental bio-molecular functions

in cells. These blocks are composed and laid out on a silicon chip that we call the “gene

chip”. The capability of the gene chip to run deterministic and stochastic simulations

of well-known synthetic genetic networks is illustrated.

In Chapter 3, the ”protein chip” designed to capture complex dynamic behaviors of

protein networks is presented. The protein chip is mainly composed of multiple copies

of a versatile “protein” block which can be configured to model mass-action kinetics of

any combination of zeroth, first, and second-order reactions, with wide-dynamic-range

parameters. The chip simulation results of a p53 signaling pathway and a glycolysis

pathway are shown, which quantitatively match with software simulation data.

Chapter 4 describes how these cytomorphic chips can be utilized to create a sys-

tem which enables fast simulation of large-scale biochemical reaction networks. We

show that the scalable architecture and parallelization incorporated in our system

allow us to achieve speedup over conventional methods without compromising simu-

lation accuracy, especially for simulation of multiscale networks. A proof-of-concept

demonstration is carried out on a board capable of simulating up to 1,400 reactions

using 20 cytomorphic chips. Three factors that may hinder simulation speed of the

system are characterized and several ways to address them are discussed.

Finally, Chapter 5 concludes the thesis with the summary of author’s contributions

and future work.

48



Chapter 2

The Gene Chip

Gene regulatory networks are one of the primary decision making machinery in cells.

They sense a great variety of environmental signals such as temperature, levels of

metabolites, and availability of nutrients and respond accordingly [3]. Such environ-

mental conditions are encoded by active or inactive states of transcription factors.

Active transcription factors can bind DNA to regulate gene expression. Because of

their importance as a controller, a sensor, a regulator, and a conveyor of information,

gene regulatory networks must be studied to better understand cellular behaviors.

Our gene chip is designed to fulfill this purpose.

In this chapter, we shall illustrate the blueprint of the gene chip in the following

organization: We start with introducing the seven building-block circuits of the chip

to model fundamental bio-molecular functions and our motivation to build them in

Section 2.1. Section 2.2 describes the implementation of the building-block circuits

along with chip measurement data. Section 2.3 discusses design considerations that

are important in BiCMOS cytomorphic chip design. Section 2.4 discusses how cyto-

morphic building-block circuits may be composed to simulate synthetic biochemical

reaction networks and architects this composition for three concrete biological ex-

amples. Section 2.5 summarizes the overall specifications of the chip. Section 2.6

concludes the chapter by summarizing our contributions.

This chapter contains the work that was previously published as an article in the

IEEE Transactions on Biomedical Circuits and Systems [139], Copyright 2015 IEEE.

49



Reprinted with permission from the publisher.

2.1 Introduction

The modeling and simulation of biochemical reaction networks in living cells that

involve small molecules, DNA, RNA, and proteins is challenging for at least two

reasons: 1) We still have a vast ignorance of the pathways and parameters of such

networks, though our knowledge about them is rapidly increasing every day; 2) A fast,

high-throughput simulation-and-modeling tool that can rapidly enable exploration,

validation, learning, and constraining of the vast parameter and connectivity spaces

with known experimental data is lacking. Just as Google helps us search for solutions

amongst big-data spaces today, constantly learning to do better, if such a tool existed

for the vast space of reaction networks, it could help us predict and design new

experiments for further discovery.

However, it is computationally intensive and daunting to faithfully model cell-

to-cell variability; Poisson stochastics due to modest molecular counts or high Fano

factors in multiple state variables; host and environmental context; the feedback

“loading” of downstream state variables on upstream state variables; diffusion and

compartmentalization; cell-cycle and cell-division effects; unpredictable “cross talk”

via shared polymerase, ribosome, ATP, protease, and RNAase resources; molecular

toxicity due to high-copy-number, cross reactive, or drug effects; and interactions

between cell-cell communication, regulatory, metabolic, developmental, and signaling

pathways. Yet, many of these effects are important in systems and synthetic biology

and in actual disease: For example, stochastics is important for tumor drug resistance

[125] and for antibiotic drug resistance of “persister cells” [69]. Metabolic loading and

molecular toxicity [110, 136], loading of one circuit by another [19], the breakdown

of logic abstractions, and interactions between cellular resources [12, 110], have all

prevented synthetic circuits from exceeding even six logic parts in one cell after almost

two decades of research [102]. Therefore, there is motivation to create a fast-and-

flexible simulation, modeling, and design tool where the addition of complexity in

50



modeling does not drastically compromise the speed of the simulation as it often does

today.

Fortunately, the exponential Boltzmann equations that govern stochastic electron

flow in a transistor and stochastic biochemical reaction flux in a chemical reaction are

deeply mathematically similar as described in Section 1.4.2. This similarity enables

us to map biochemical circuits to log-domain transistor circuits with a few handfuls

of transistors per gene or protein [16, 78–80, 110, 116]. In turn, log-domain circuit

motifs for linearization [130] have been mapped to create highly part-count efficient

circuits in living cells [17]. The “cytomorphic” mapping of Figure 1-5, can enable

rapid and highly parallel stochastic simulations of a single cell on a few chips and

speedup multi-cell simulations on multi-chip electronic boards [116]. Therefore, we

were motivated to create a few fundamental molecular circuits that could be composed

and scaled to model large biochemical reaction networks. This chapter describes

these fundamental building-block cytomorphic circuits. This chapter also focuses on

establishing quantitative agreement of the cytomorphic chip measurements with prior

biological measurements and models.

The building-block circuits may be classified into seven important categories:

1. Basic BiCMOS current-mode analog circuits exploit the log-domain cytomor-

phic mapping to capture the exact dynamics of fundamental mass-action

molecular kinetics such as association, dissociation, and degradation. These

fundamental circuits are general enough to capture subtle effects such as load-

ing, fan-out, feedback, and substrate depletion through the use of a few explicit

connections and Kirchhoff’s current law. A wide dynamic range of operation

and low power consumption are achieved through the use of bipolar and sub-

threshold MOS transistors that function at low current levels.

2. The ability to model cooperative binding is enabled by tunable Hill-function

building-block circuits.

3. An “ITD” block built by a composition of above current-mode circuits enables

mapping of the exact differential equations of inducer-transcription-factor

51



binding and transcription-factor-DNA binding including forward and re-

verse reactions, degradation, protection from degradation of transcription fac-

tors bound to DNA, and the change in DNA binding affinity of transcription

factors when bound by an inducer.

4. An “analogic” current-mode circuit determines the transcription rate of genes

based on the probability of multiple transcription-factor DNA binding sites be-

ing occupied or unoccupied in a combinatorial fashion with the relative mRNA

production rate of each such combinatorial state programmable by the user.

This strategy enables us to implement any arbitrary “analogic promoter

function” that is capable of complex saturating digital logic or probabilistic

analog behavior depending on the molecular concentration.

5. A current-mode low pass filter (LPF) circuit enables the gain and dynamics

of mRNA and protein production and degradation to be represented.

6. A stochastics circuit intentionally amplifies analog Poisson noise in transis-

tors to represent biological fluctuations in mRNA and protein concentrations at

very low copy numbers and at relatively high noise levels. The Poisson nature

of biochemical reaction fluxes automatically maps biological noise to electronic

noise at high copy numbers and relatively low noise levels [116]. Thus, these

circuits are most useful for reliably modeling highly stochastic and relatively

low signal-to-noise-ratios in biological cells.

7. ADCs and DACs convert between analog currents and digital bits to enable

our chips to communicate with each other via digital input/output (I/O), and

with off-chip digital processors and computers.

Off-chip digital processors synergistically interact with our chips to carry out

various functions: reading digital data from the chips; decoding the data; performing

high-speed digital signal processing as necessary (e.g., scaling, diffusion, time delay,

and error correction); encoding the data to create or modify molecular data packets

via address and data strings; storing the programmable address connectivity amongst

52



gene and protein circuits; and communicating data to other chips or to a computer.

For simplicity, the data in this chapter were collected with a data-acquisition board

(NI PXI-6541) that interacted with our chip and with MATLAB on a computer.

A high-performance FPGA (e.g., from the Xilinx Spartan family) could perform all

of these functions as well. Shift registers, SRAM blocks, and switches on

the chip enable programmability of parameters (e.g., reaction rates, dissociation

constants, Hill coefficients, and time constants) as well as connectivity.

2.2 Building-Block Circuits

This section describes the details of the seven building blocks that can be programmed

to capture the essential dynamics of molecular basis-function circuits in cells. These

blocks were implemented in a proof-of-concept VLSI chip fabricated in an AMS 0.35

µm BiCMOS process. As shown in Figure 2-1, the chip contains identical gene blocks.

To prove the functionality of on-chip building block circuits, the input-output char-

acteristics for each basis-function circuit created on the chip was compared with ideal

simulation results produced by MATLAB. MATLAB was also used to perform chip

programming and readout of chip data via a NI PXI-6541 data-acquisition board. To

obtain values of chip data shown in this section, the outputs of ADC’s from the chip

were converted into actual current levels via measured scale factors.

2.2.1 Mass Action and Michaelis-Menten Reaction Block

Among various different approaches to represent gene-protein networks, including

directed graphs, Bayesian networks, Boolean networks, differential equations, and

master equations [18], our circuit schematics are based on ordinary differential equa-

tions (ODEs) that automatically incorporate Poisson stochastics into electron current

fluxes [116]. Electron copy number is analogous to molecular copy number. We as-

sume that the laws of mass action determine chemical reaction kinetics. The most

fundamental molecular basis functions that need to be implemented are the rate

equations of the following four elementary reactions:

53



Figure 2-1: Die micrograph of the 2.6 mm × 3.9 mm cytomorphic chip fabricated in
an AMS 0.35 µm BiCMOS process. The left inset is a layout screen capture of one
gene block (2x magnification).

54



(a) (b)

Figure 2-2: (a) Simple representation of an enzyme-substrate binding reaction, E +
S ⇌ ES. (b) Block diagram representation of the same reaction.

1. Production: ϕ → E

2. Degradation: E → ϕ

3. Association: E + S → ES

4. Dissociation: ES → E + S

All complicated biochemical reaction networks can be decomposed into a series

of these reactions. Figure 2-2(a) shows a simple diagram to depict a network with

an association (forward) and a dissociation (reverse) reaction. A block diagram we

use to model the same network is shown in Figure 2-2(b). For the two diagrams,

typical symbols to describe Michaelis-Menten kinetics are used — E for enzyme, S for

substrate, ES for enzyme-substrate complex, kf and kr for rate constants of forward

and reverse reactions, respectively, and KD = kr/kf for the dissociation constant

of ES. This block is the main building block of our system, which is capable of

simulating all of the four elementary reactions listed above. The production and

degradation reactions can often be more efficiently simulated by simpler blocks as

well.

55



Figure 2-3: A cascade reaction network to depict how “total” and “free” variables are
defined.

The block diagram of Figure 2-2(b) basically solves the following three differential

equations:

d[EStot]

dt
= kf [Efree][Sfree]− kr[ESfree] (2.1)

d[Efree]

dt
= −kf [Efree][Sfree] + kr[ESfree] (2.2)

d[Sfree]

dt
= −kf [Efree][Sfree] + kr[ESfree]. (2.3)

Note that Etot, Stot, and EStot in Figure 2-2(b) are “total” variables that include

all downstream quantities necessary for “loading.” They are used to compute the

“free” variables, Efree and Sfree. ESfree is the free amount of ES available that is not

bound up in any downstream reactions. If ES is not used anywhere, EStot becomes

equal to ESfree, a special case in which the steady state output of this network is

given by

[EStot] = [Etot]

(
[Sfree]/KD

1 + [Sfree]/KD

)
. (2.4)

Figure 2-3 is drawn to further illustrate the notion of “total” and “free” variables.

Let’s consider a cascade reaction network where multiple substrates bind to an enzyme

in sequence. In stage n, the inputs are denoted as En
tot and Sn

tot, from which En
free

and Sn
free are obtained and in turn ESn

tot is computed. This ESn
tot becomes Etot of

56



the next stage. That is,

ESn
tot = En+1

tot (2.5)

ESn+1
tot = En+2

tot (2.6)

ESn+2
tot = · · · (2.7)

Besides, as the braces in Figure 2-3 indicate, Etot of each stage is the sum of Efree

values of the current stage and all subsequent stages. Accordingly, Efree of the current

stage is given by

En
free = En

tot − ESn
tot = En

tot − En+1
tot . (2.8)

It should be emphasized that the use of “total” variables allows the solutions of

differential equations to reach their desired steady-state values. For example, consider

a simple transformation reaction A
kf−⇀↽−
kr

B. A conventional way of solving this in analog

hardware is to implement two separate differential integrator circuits to represent the

time derivative of [A] and [B], respectively, as has been demonstrated previously [79].

The two time derivatives are given by

d[A]

dt
= −kf [A] + kr[B] (2.9)

d[B]

dt
= α1kf [A]− α2kr[B] (2.10)

where α1 and α2 are the scale factors to account for inevitable mismatch present in

any analog transistor circuits. The above equations have the solution of the form

[A] = c1e
λ1t + c2e

λ2t (2.11)

[B] = c3e
λ1t + c4e

λ2t (2.12)

where λ1 and λ2 are the eigenvalues of the Jacobian matrix of the network, given by

J =

−kf kr

α1kf −α2kr

 . (2.13)

57



The eigenvalues of this matrix can be obtained by solving

λ2 + (kf + α2kr)λ+ (α2kfkr − α1kfkr) = 0. (2.14)

Equations (2.11) and (2.12) show that unless one eigenvalue is zero, the steady-

state solutions go to 0 or ∞. From (2.14), we see that a zero eigenvalue arises when

α2kfkr − α1kfkr = 0, i.e., α1 = α2. Since transistor mismatch is largely determined

by “random” process variations, it is practically impossible to meet this condition.

On the other hand, with our scheme using “total” variables, the network is de-

scribed by

[A] = [Atot]− α[B] (2.15)

d[B]

dt
= kf [A]− kr[B] (2.16)

where α is a scale factor to represent transistor mismatch. Deriving the time derivative

of [A] from (2.15) yields

d[A]

dt
= −α · d[B]

dt
(2.17)

= −αkf [A] + αkr[B]. (2.18)

Thus, the Jacobian matrix of the network given by

J =

−αkf αkr

kf −kr

 (2.19)

has an eigenvalue of zero, which indicate that our circuit can produce a steady-

state solution (other than 0 or ∞). Intuitively, the former method requires two

balances (equations (2.9) and (2.10)) to be satisfied at the same time (i.e., both

derivatives reaching zero). However, they are essentially the same equations except

that mismatch is present. Hence, they cannot be satisfied. On the other hand, our

method requires only one balance (equation (2.16)) to be satisfied, which is possible.

58



Figure 2-4: Transistor schematic of the reaction block of Figure 2-2(b).

Figure 2-4 shows the transistor schematic of the block diagram in Figure 2-2(b),

constructed based on BiCMOS current-mode circuits [116]. The circuit consists of

a multiplier, an integrator, and two subtractors. The multiplier block composed of

Q1–Q4 and M1 calculates ISfreeIEfree/IKD from two variables IEfree and ISfree and

one parameter IKD. The differential integrator block formed by Q5–Q10 and M4–M6

gives
dIEStot

dt
=

(
ISfreeIEfree

IKD

− IESfree

)
· Ikr
Cϕt

(2.20)

which is equivalent to (2.1). Multiple copies of its output current are created, which

are used for subtraction to compute Efree and Sfree or sent to other blocks. Each of

the two subtractors is easily created by the two currents gathering into a node. Thus,

current-mode circuits effectively implement multiplication and integration through

Kirchhoff’s voltage law (KVL) and addition and subtraction through Kirchhoff’s cur-

rent law (KCL). The switch shown in Figure 2-4 is useful in experimentally illustrating

the effects of loading in biochemical circuits as discussed later.

Figure 2-5(a) and 2-5(b) show the MATLAB simulation results and the chip data,

respectively, of the block in Figure 2-2(b). It was assumed that ESfree = EStot,

since we are at first, modeling a single biochemical reaction, which is not part of a

cascade network with loading. We discuss loading effects that affect ESfree later.

The steady-state values of Efree and EStot are plotted, while Stot is varied from 100

59



(a)

(b)

Figure 2-5: (a) MATLAB and (b) chip data for the Michaelis-Menten reaction block
in steady state, with (solid lines) and without (dotted lines) substrate depletion,
which represents a typical loading effect. The switches in Figure 2-4 were used to
experimentally introduce the effects of loading (or not). Lines shown in (b) are
connection between points, not any fits, unlike in Figure 2-6, where MATLAB fits
and chip data are explicitly compared. Note that chip data are ADC outputs divided
by the scale factors to obtain current levels. Chip parameters: IEtot = 100 nA, IStot =
100 pA–10 µA, and IKD = 50 nA.

60



Figure 2-6: Chip data (circles) plotted on top of MATLAB data (lines).

pA to 1 µA and Etot and KD are fixed at 100 nA and 50 nA, respectively. It can be

seen from Figure 2-6 that with the concentration scale mapped from 100 nM to 115

nA for EStot, the MATLAB plot becomes a reasonable fit to the chip data. Although

not shown, this Michaelis-Menten reaction block in the chip mimics the dynamics of

the MATLAB model as well.

The dotted traces of Figure 2-5 correspond to the results when substrate depletion

(substrate being used up whenever it binds to an enzyme) is ignored, i.e., when the

switch in Figure 2-4 to subtract ES from Stot is programmed as “off” and loading

effects such as substrate depletion are ignored. By comparing the dotted and solid

traces, the effect of substrate depletion can be clearly observed. Generally, this ef-

fect is ignored by many researchers, under the assumption that substrate is much

more abundant than enzyme, or to simplify analytic solutions. However, substrate

depletion may exert a noticeable effect when the level of substrate is comparable to en-

zyme. Common protease, RNAase, ATPase, polymerase, or ribosome resources that

are shared amongst many circuits exhibit “resource depletion” that manifests in an

analogous fashion to the substrate-depletion example shown here. Figure 2-5 shows

that such depletion manifests as an increase in the effective KD and Hill coefficient

values [17]. It should be noted that, since physical cytomorphic circuits represent

61



Figure 2-7: A cytomorphic circuit implements a Hill coefficient greater than 1 by
amplifying the voltage difference between VSfree and VKD, using hybrid bipolar-and-
above-threshold circuits.

biomolecular circuits efficiently, this loading effect is captured by the simple addition

of a wire and a switch in Figure 2-4.

2.2.2 Hill Block

The Hill coefficient is a parameter used in biochemistry to characterize the effect of

cooperative binding. Note that (2.4), which is realized by the circuit of Figure 2-4

has a Hill coefficient of 1. Figure 2-7 shows how we can build steeper Hill-coefficient

circuits. The voltage difference between the logarithm of ISfree and IKD is amplified

to yield

V ′
Sfree − V ′

KD = n (VSfree − VKD) (2.21)

that then gives the term (ISfree/IKD)
n in place of ISfree/IKD in (2.4). This ampli-

fication is done by a differential amplifier operating in the above-threshold regime

(created by the abovethreshold current Iabove), where its gain is set by the ratio be-

tween
√

W/L of upper (M1 and M2) and lower (M3 and M4) PMOS transistors. By

digitally programming the effective size of the upper transistors between 1x to 16x

through switching bits, we can alter the Hill coefficient between 1 and 4. This range

of Hill coefficients enables us to represent almost all cases of biological operation.

Figure 2-8(a) and 2-8(b) show the MATLAB simulation results and the chip data,

62



respectively, of the Michaelis-Menten reaction block in Figure 2-2(b), for different

Hill coefficients. All variables are the same as in Section 2.2.1, except that the Hill

coefficient is set as 1, 2, or 4 respectively. As Figure 2-8 reveals, the chip data exhibit

the same behavior as the MATLAB model.

2.2.3 ITD Block

Each of the two ITD blocks shown in Figure 2-1 simulates the dynamics of inducer-

transcription factor binding and transcription factor-DNA binding. Figure 2-9(a)

is a simplified diagram of the ITD block depicting the key reactions among inducer

molecules (I), transcription factors (TF ), and DNA binding sites (DNA). The names

of the molecules and bound complexes are self-explanatory. Both TF and I-TF are

allowed to bind to DNA with programmably different binding affinities. The binding

of an inducer to a transcription factor causes its binding affinity to DNA to typically

change by a factor of 10 to 100 in cells. Some transcription factors (e.g., AraC)

can act both as an activator and as a repressor, depending on whether inducers are

bound or not. All of these cases can be modeled by our ITD and analogic DAC blocks

(described in the next section).

A more detailed block diagram representation of the same network is shown in

Figure 2-9(b). First, the MM_Static block models inducer-transcription factor bind-

ing and is a modified version of the circuit described in [16]. Since the dynamics of

inducer and transcription factor binding is usually a few orders of magnitude faster

than the dynamics between transcription factors and DNA binding [3,92], such bind-

ing is assumed to reach steady state nearly instantaneously, and is therefore neglected,

as in most models.

The two MM_Basic blocks represent the basic Michaelis-Menten reaction blocks

shown in Figure 2-2 and 2-4. The Stot input for the two blocks is represented by TFbnd

and TFfree, equivalent to I-TF and TF in Figure 2-9(a) respectively. Since a DNA

binding site can be bound with either I-TF or TF , TFbnd and TFfree represent “total

substrate variables” for the DNA, and Figure 2-9(a) and 2-9(b) effectively implement

a competitive fan-out condition for the DNA binding site. The amount of TF -DNA

63



10-1 100 101 102 103 104

Stot (nM)

0

20

40

60

80

100

120

140

C
on

ce
nt

ra
tio

n 
(n

M
)

EStot
Efree

(a)

10-1 100 101 102 103 104

Stot (nA)

0

20

40

60

80

100

120

140

160

C
ur

re
nt

 (
nA

)

EStot
Efree

(b)

Figure 2-8: (a) MATLAB and (b) chip data for the Hill block in steady state, for
three Hill coefficients, 1 (solid lines), 2 (dotted lines), and 4 (dashed lines). Chip
parameters: IEtot = 100 nA, IStot = 100 pA–10 µA, and IKD = 50 nA.

64



(a)

(b)

Figure 2-9: (a) Simplified diagram showing the key reactions of the ITD block. (b)
Block diagram of the ITD block. The integrator models the production and degrada-
tion of transcription factor; MM_Static models the steady-state behavior of inducer-
transcription factor binding; the two MM_Basic blocks model the dynamics of tran-
scription factor-DNA binding when the transcription factor is bound to an inducer
(TFbnd input) or not (TFfree input).

65



from the bottom MM_Basic block is subtracted from DNAtot to yield the total

number of DNA sites available for I-TF binding in the top MM_Basic block. The

net unbound DNA from the top MM_Basic block is the Efree input to the bottom

MM_Basic block. It is worth noting that the top MM_Basic block explicitly uses

the switch in Figure 2-4 to achieve correct loading since its input is an Etot input.

In contrast, the bottom MM_Basic block, does not use this switch since its input is

already an Efree input.

The integrator block in Figure 2-9(b) is a differential integrator with production-

rate and degradation-rate inputs that determine the total amount of the transcription

factor. A circuit similar to the integrator included in the MM_Basic block and de-

scribed in [116] is used. We modeled the protection effect of DNA on transcription

factor degradation [17]: The degradation rate of a transcription factor can drop when

it binds to DNA because a certain part of it is hidden and it becomes harder for a

protease to digest the transcription factor. Thus, in Figure 2-9(b) different degra-

dation rate constants (r1 and r2) multiply the amount of transcription factor that

is unbound (TFunprot) or bound (TFprot) to DNA, respectively. The sum of the two

multiplied results is the negative input of the integrator block.

Our ITD model was chosen because it captures important gene-protein dynamics

seen in practice. Figure 2-9(b) shows that it is constructed by a straightforward

arrangement and wiring of blocks in Figure 2-4 and 2-9. Here we list the assumptions

inherent in our ITD model, which are explicitly or implicitly used by most other

models that fit biological data as well, e.g., those described in [3]:

1. The binding of inducers to transcription factors occurs at a much faster rate

than the rest of the network and can thus be assumed to be nearly instantaneous.

2. The affinity of inducers to transcription factors remains the same, regardless of

whether transcription factors are bound to DNA or not.

3. The degradation of inducers is ignored; when a transcription factor degrades,

its associated inducer is automatically freed.

66



4. When multiple binding sites for the same transcription factor exist on the DNA,

each binding event is independent of other events.

Though it is not very useful for fitting biological data in most situations, it is possible

to not make any of the above assumptions and to design more complex cytomorphic

ITD circuits that capture other scenarios.

Figure 2-10(a) and 2-10(b) show the steady-state simulation results of the ITD

block using MATLAB and the chip, respectively, for equivalent parameter sets. As

for the inducer-transcription factor binding, the same variables are used as in Section

2.2.1. As for the transcription factor-DNA binding, DNAtot = 30 nA, and two differ-

ent parameter sets are used for KD2 and KD3: 1) KD2 = 50 nA, KD3 = 10 µA (solid

traces) and 2) KD2 = 10 µA, KD3 = 50 nA (dotted traces). The former is the case

when only TFbnd can bind DNA, and the latter is when only TFfree can bind DNA.

The amount of DNAtot is drawn in Figure 2-10(a) as a dashed line, so readers can

estimate the amount of DNAfree = (DNAtot − I-TF -DNA− TF -DNA). It can be

seen that the chip produces outputs that are very similar to the plots generated by

MATLAB.

2.2.4 Analogic DAC

Our models assume two sites in a DNA promoter where transcription factors can bind,

which is typical for most microbes. Different transcription factors can bind different

binding sites. The rate of mRNA synthesis varies depending on the probabilistic state

of each binding site. In the ITD model in Figure 2-9(a), binding sites can be bound

by either I-TF or TF , or by neither. Correspondingly, there are three outputs of each

ITD block, I-TF -DNA, TF -DNA, and DNAfree, which are output to the analogic

DAC. Then, using the circuit shown in Figure 2-11, the three binding probabilities of

67



10-1 100 101 102 103 104

Inducer (nM)

0

20

40

60

80

100

120

140

C
on

ce
nt

ra
tio

n 
(n

M
)

TFbnd TFfree I-TF-DNA TF-DNA

DNAtot

(a)

10-1 100 101 102 103 104

Inducer (nA)

0

20

40

60

80

100

120

140

160

C
ur

re
nt

 (
nA

)

TFbnd TFfree I-TF-DNA TF-DNA

(b)

Figure 2-10: (a) MATLAB and (b) chip data for the ITD block in steady state. Chip
parameters: IEtot1(TFtot) = 100 nA, IStot1(Indtot) = 100 pA–10 µA, IKD1 = 50 nA,
and IEtot2(DNAtot) = 30 nA. Also, IKD2 = 50 nA and IKD3 = 10 µA for solid lines,
and IKD2 = 10 µA and IKD3 = 50 nA for dotted lines. The dashed line in (a) indicates
the level of DNAtot, from which DNAfree can be estimated.

68



Figure 2-11: Circuit used in the analogic DAC to compute the three probabilities (p0,
p1, and p2) of a DNA binding site.

a site, p0, p1, and p2, are computed as

p0 = Ione

(
IDNAfree

IDNAfree + II−TF−DNA + ITF−DNA

)
= Ione

(
IDNAfree

IDNAtot

)
(2.22)

p1 = Ione

(
II−TF−DNA

IDNAfree + II−TF−DNA + ITF−DNA

)
= Ione

(
II−TF−DNA

IDNAtot

)
(2.23)

p2 = Ione

(
ITF−DNA

IDNAfree + II−TF−DNA + ITF−DNA

)
= Ione

(
ITF−DNA

IDNAtot

)
(2.24)

where Ione is a constant reference current which corresponds to 100% probability. An

identical circuit is used for a second binding site, with p0, p1, and p2 used in place of

Ione such that all nine probabilities, p00, p01, p02, p10, p11, p12, p20, p21, and p22, for

two binding sites can be computed. For example, p00 is given by

p00 = Ione

(
IDNAfree1

IDNAtot1

)(
IDNAfree2

IDNAtot2

)
. (2.25)

The net mRNA synthesis rate is determined by the sum of the probabilities of the

promoter being in each of the nine states multiplied by the relative mRNA synthesis

rate, from β00 to β22, corresponding to that state [45]. That is,

prodmRNA =
2∑

i=0

2∑
j=0

pijβij

Ione
(2.26)

where pijβij

Ione
can be obtained by using the multiplier included in Figure 2-4.

69



10-1 100 101 102 103 104

Inducer (nM)

0

20

40

60

80

100

120

140

P
ro

du
ct

io
n 

ra
te

prod
mRNA

 (2 act)

prod
mRNA

 (2 rep)

prod
mRNA

 (1 rep/1 act)

(a)

10-1 100 101 102 103 104

Inducer (nA)

0

20

40

60

80

100

120

140

160

C
ur

re
nt

 (
nA

)

prod
mRNA

 (2 act)

prod
mRNA

 (2 rep)

prod
mRNA

 (1 rep/1 act)

(b)

Figure 2-12: (a) MATLAB and (b) chip data for the analogic DAC in steady state.
Chip parameters (two ITD blocks): IEtot1(TFtot) = 200 nA, IStot1(Indtot) = 100 pA–
10 µA, IKD1 = 50 nA, IEtot2(DNAtot) = 30 nA, IKD2 = 50 nA and IKD3 = 10 µA.
Chip parameters (Analogic DAC): 1) β11 = 100 nA, other βij = 0 (two activators),
2) β00 = 100 nA, other βij = 0 (two repressors), and 3) β01 = 100 nA, other βij = 0,
(one repressor and one activator).

70



Figure 2-13: Current-mode low-pass filter (LPF) circuit used to set the gain and the
time constant of transcription (and translation).

Figure 2-12(a) and 2-12(b) show the plots of the mRNA production rate simulated

by MATLAB and the chip, respectively. Three different configurations were made for

the analogic DAC: 1) every βij = 0 except β11 = 100 nA (i.e., two activators), 2)

every βij = 0 except β00 = 100 nA (i.e., two repressors), and 3) every βij = 0 except

β01 = 100 nA (i.e., one repressor and one activator). Since the parameters for the two

ITD blocks were set such that I-TF -DNA increases as inducer level increases, for

each configuration, the level of prodmRNA 1) increases; 2) decreases; and 3) increases

and then decreases, as shown in both Figure 2-12(a) (MATLAB) and Figure 2-12(b)

(Chip).

2.2.5 Gain & Time Constant Block

Figure 2-13 shows a current-mode low-pass filter capable of setting the gain and time

constant of transcription. The input current Iin is mRNA synthesis rate generated

by the analogic DAC, the output current Iout is mRNA concentration, and the two

programmable currents IA and IB set the gain (IB/IA) and the time constant (Cϕt/IA)

[116]. That is,
Iout(s)

Iin(s)
=

IB/IA

1 + s
(

Cϕt

IA

) (2.27)

71



which is equivalent to the following differential equation:

d[mRNA]

dt
= αmRNA − γmRNA[mRNA] (2.28)

where αmRNA = IinIB/(Cϕt) and γmRNA = IA/(Cϕt) are the production and degrada-

tion rate of mRNA, respectively. The gain term may also include a protein production-

rate constant (whose unit is proteins/mRNA·s). In this case, Iout becomes the rate

at which a protein is produced, which can directly be used as the TFprodrate input of

an ITD block. Occasionally, the kinetics of mRNA and protein molecules are lumped

into a single production rate and a degradation rate, under the condition that the

time scale of protein dynamics is much slower than mRNA. Then, Iout corresponds

to the protein concentration.

Figure 2-14(a) and 2-14(b) show the MATLAB simulation data and the chip data,

respectively. The gain & time constant block were tested for three different gains,

0.5, 1, and 2, and two time constants, 0.25 s and 1 s, for a step input [shown as the

dotted trace in Figure 2-14(a)].

2.2.6 Noise Generator

Intrinsic noise in cells, also known as molecular noise, arises from the probabilistic

arrivals and collisions of molecules in biochemical reactions. As a result, genetically

identical cells respond differently to the same environmental conditions. This cell-

to-cell variability can be simulated by solving a set of equations that determine the

probability that a system with a given initial condition will have each of the discrete

states of molecular populations at a given time. This equation is known as the

“chemical master equation” [85], which is written as

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− vj)P (x− vj, t|x0, t0)− aj(x)P (x, t|x0, t0)] (2.29)

where P (x, t|x0, t0) is the probability that the system will have a state x at time t,

given that its state at time t0 is x0, and aj(x) is the propensity function for each

72



0 0.5 1 1.5 2 2.5 3 3.5 4
Time (seconds)

0

50

100

150

200

250

m
R

N
A

 tr
an

sc
rip

t

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (seconds)

0

50

100

150

200

250

300

Io
ut

 (
nA

)

(b)

Figure 2-14: (a) MATLAB and (b) chip data over time for the gain & time constant
block, for three gains (0.5, 1, and 2) and two time constants (0.25s and 1s). The step
function shown in (a) is the input to the block. Chip parameters: C = 1 µF and
(IA, IB) = (25, 12.5), (25, 25), (25, 50), (100, 50), (100, 100), and (100, 200) (units
are nA).

73



reaction [42]. However, since the above equation has to be written for each of the

possible states, solving the chemical master equation easily becomes intractable as the

number of state variables increases. Thus, instead of computing the whole probabil-

ity distribution of a system, we can create individual instantiations of stochastic time

trajectories of molecular populations using a Monte Carlo method called the Gille-

spie algorithm. In this method, randomness is embedded in trajectories themselves.

That is, each instantiation generates different stochastic trajectories, and statistical

characteristics such as mean and variance at a given time can be obtained from the

result of many instantiations.

The original Gillespie algorithm is considered “exact” since it is derived from the

same fundamental premise as the chemical master equation, without any approxima-

tion [42]: the probability that a reaction with a propensity function aj(x) will occur

in some infinitesimal time interval dt is aj(x)dt. The resulting stochasticity in bio-

chemical reactions is well modeled by the Poisson shot noise of electronic current in

subthreshold transistors with electron copy number analogous to molecular copy num-

ber [116]. Important stochastic characteristics including the “burst factor” observed

in genetic networks [95] are faithfully reproduced in cytomorphic circuits [78,110,116]

as an effective current gain. In the gain & time constant block presented in Section

2.2.5, the signal-to-noise ratio (SNR) at the output (Iout) is proportional to the size

of the capacitor C and the current level; by adjusting the capacitor or current, any

desired SNR can be achieved [116]. However, for SNR’s below 15–25 dB (which is the

case when the number of molecules is relatively small) capacitor sizes and the current

levels can be small in electronics deteriorating the reliability and controllability of

the noise level [78, 116]. A noise generator which can create artificially high levels

of noise is therefore desirable. The basic idea is to probabilistically generate reac-

tion events according to the rate constants and the number of reactant molecules for

each reaction, which is analogous to the fundamental premise of the chemical master

equation stated above. This enables simulation of stochasticity that is inherent in

any reactions, e.g., plus and minus reactions in equations (2.1) and (2.28).

Figure 2-15 depicts the operating mechanism of the noise generator we created on

74



(a)

(b)

Figure 2-15: Operating mechanism of the noise generator [63]. (a) A “random” clock is
generated by using a thermal-noise amplifier, a comparator, and a divide-by-2 circuit.
(b) A current-controlled oscillator, a frequency divider, and a frequency-locked loop
operate to regulate the mean frequency of the random clock, which is used to turn
on and off IA of the the gain & time constant block.

75



the chip [63], which is similar to that described in [116] except that it uses amplified

analog thermal noise instead of a pseudo-random number generator. As shown in

Figure 2-15(a), our circuit amplifies analog thermal noise that inherently exists in

any transistor and compares it with a threshold voltage (Vth). Then, the comparator

output (Vcomp) goes through a divide-by-2 circuit to create a “random” clock (Vrnd)

which exhibits pure Poisson characteristics with a mean duty cycle of 0.5. As il-

lustrated in Figure 2-15(b), this random clock is used to turn on and off IA of the

the gain & time constant block to generate noise, via charging and discharging the

capacitor node [78, 116]. A current-controlled oscillator (CCO) is used to produce

a reference clock signal whose frequency is proportional to the output current Iout.

The feedback loop around the phase frequency detector functions such that the mean

frequency of the random clock is equal to that of the reference clock, by automatically

finding Vth which produces the desired frequency. Thus, the mean frequency of the

random clock is proportional to Iout. In addition, the mean frequency is inversely

proportional to the gain factor βSNR. By increasing βSNR, artificially generated shot

noise is increased, which mimics the high levels of noise seen in biology [78,116]. [116]

provides a mathematical explanation of how the charge on the electron is effectively

increased by this mechanism to amplify inherent shot noise in transistors.

Figure 2-16(a) and 2-16(b) show noise generated in MATLAB using a Gillespie

algorithm for molecular production and degradation [40] and using the noise generator

in the chip, respectively, for relatively low numbers of molecules. In this simulation,

we arranged for 1 nA of Iout to correspond to approximately two molecules (per

cell). The comparison between the SNR obtained from the MATLAB data and the

chip data is shown in Figure 2-17. It can be seen that the artificial noise generator

implemented in the chip generates noise that is very similar to that from a Gillespie

algorithm, both visually and quantitatively. The good agreement with the Gillespie

algorithm, a widely used method to model biological noise, is in accord with noise

measurements and theories of Poisson noise in transistors and in cells [95,110,113,116].

Such work allows us to achieve fast-and-accurate stochastic Gillespie simulations on

custom analog chips. Thus we can enable improvements over methods such as tau

76



(a)

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

0

200

400

600

800

1000

1200

1400

1600

Io
ut

 (
nA

)

(b)

Figure 2-16: Noise generated by (a) a MATLAB simulation using the Gillespie al-
gorithm and (b) the noise generator block in the chip, for relatively low numbers of
molecules. 1 nA of Iout is mapped to correspond to approximately two molecules.

77



Figure 2-17: Comparison of SNR obtained from the MATLAB data and the chip
data.

leaping [41], Langevin-noise addition, or limited-moment simulations of actual Fokker-

Planck equations [29, 99] that necessarily require accuracy to be compromised for

speed on general-purpose digital computers.

2.2.7 DAC and ADC

The analog circuits inside the cytomorphic chip primarily use currents to represent

variables and parameters. On the other hand, chip-to-processor and chip-to-computer

communication is done digitally. It is thus important to have a scheme to convert

between analog currents and digital bits.

The gene block in Figure 2-1 includes 40 digital-to-analog converters (DACs),

which requires us to design a power- and area-efficient DAC, while preserving reason-

able precision, dynamic range, and linearity. To this end, we first took a stable bias

current of 11.5 µA created by an on-chip current generator and then used a current

splitter similar to that described in [20] to divide the current into halves, 13 times

in succession; the 1st, 3rd, 5th, 7th, 9th, 11th, and 13th bias voltage outputs served as

global reference voltages for the whole chip.

78



(a)

(b)

Figure 2-18: Block diagram of (a) the digital-to-analog converter (DAC) and (b) the
analog-to-digital converter (ADC).

Figure 2-18(a) shows the block diagram of a single DAC. It selects one of the eight

reference voltages (VREF<7:0>) with a 3-bit digital input (SEL<2:0>) and an 8-to-1

analog multiplexer, applies it to the gate of M1 to convert it back to a current, and

additionally divides this current into halves, four times in succession. The sum of the

four resulting currents, turned on or off by another 4-bit digital input (IN<3:0>),

is the output current of the DAC. In summary, each DAC uses seven bits (stored in

SRAM or shift registers) to determine its output current level—three bits to select a

range in an exponential fashion and four bits to select a value in a linear fashion. This

mechanism of coarse and fine selection enables an experimentally measured output

dynamic range of the DAC from 29 pA to 21 µA; we only use a range of 100 dB from

100 pA to 10 µA in our circuits to ensure robustness to leakage and voltage-headroom

effects. Furthermore, distributing reference voltages instead of currents allows us to

save area and power which would otherwise be consumed by numerous current mirrors

and distributing wires. We were careful about using sufficiently large transistors for

converting between reference voltages and currents to mitigate the effect of mismatch,

and about using thick-and-wide metal wires to minimize voltage drops.

79



The number of analog-to-digital converters (ADCs) depends on the maximum

number of variables that need to be monitored or digitally processed off chip. For

example, one may want to monitor 10 to 50 variables per chip. Hence, the top

consideration when choosing an ADC topology is to minimize the number of output

bits, so that the pin count devoted to this ADC on the chip is minimized. Therefore,

we choose a current controlled oscillator-based (CCO-based) ADC shown in Figure

2-18(b), which is a first-order noise-shaping oversampling ADC [64]. The advantages

of this ADC include compactness that comes from its simple architecture and its

inherent noise shaping property. The current-to-frequency nonlinearity in the CCO,

the major drawback of this architecture, can be easily compensated for by the use of a

mapping table that is stored off chip. In our implementation, each CCO-based ADC

operates at a sampling frequency of 5 MHz, and generates one-bit digital outputs

that are averaged and down-sampled off chip to achieve analog-to-digital conversion.

2.3 Design Considerations in BiCMOS Cytomorphic

Design

We chose to use a BiCMOS process technology to leverage good matching, high

Early voltage, and most importantly, the nearly ideal wide-dynamic-range exponen-

tial current-voltage (I-V) characteristics of bipolar transistors. As explained in Sec-

tion 1.4.3, translinear circuits utilize the exponential characteristics as an essential

basis function, which both bipolar transistors and subthreshold MOS transistors have.

However, in the case of MOS transistors, the saturation current follows the form of

iDS = KeκSVGS/ϕt (2.30)

in subthreshold operation (low levels of current) and

iDS = K(VGS − Vt)
2 (2.31)

80



in above-threshold operation (high levels of current).

Unfortunately, switching from one operation regime to the other does not occur

abruptly at a certain point. It rather gradually changes the behavior, and in the

middle of the change (called the moderate inversion region) appears a mixed behavior

between the two. This implies that the distortion due to the square term of equation

(2.31) may cause a perceptible amount of error particularly around the upper edge

of the subthreshold region. Typically, current levels between 100 pA to 1 µA are

considered as subthreshold current levels. Below 100 pA is less reliable owing to

leakage and noise, and above 1 µA is dominated by the above-threshold square-

law relation. However, simulation results showed that even at 100 nA and 1 µA,

a reasonably sized MOS transistor already yields as high as ∼26% and ∼78% of

error, respectively. This suggests that the actual usable operating range of current is

smaller.

On the contrary, bipolar transistors exhibit exponential I-V behavior over a very

wide range of current. This is greatly helpful in increasing the dynamic range of

variables, which in turn brings about several benefits (see Section 4.4.2). For example,

we can exploit this wider current range by increasing all current levels ten times.

Then, the effect of leakage current and parasitic poles is reduced by ten times, leading

to less error and better stability. Thus, we implemented 100 dB dynamic range, from

100 pA to 10 µA, for most on-chip variables represented as current levels.

Extra care is needed to avoid potentially negative effects of bipolar transistors

due to finite base currents effects and forward biasing of the base-collector junction.

For example, we used the modified circuit shown in Figure 2-19 to solve practical

problems that we encountered in the circuit of Figure 2-13: In this circuit, M3 is

inserted as a buffer (source follower) which supplies the base currents of Q1 and Q2

on behalf of Iin. This buffer is also useful in that it can rapidly charge the base node,

thereby reducing parasitic-capacitance effects if any. The npn transistor Q5 minimizes

base-current effects in Q3 and Q4 without any body-effect voltage losses, while the

PMOS transistor M4 (whose source is tied to the well) minimizes base-current losses

in Q5 itself, while drawing no current from the VC node. The overall cascaded buffer

81



Figure 2-19: Modified LPF to solve practical problems in the circuit of Figure 2-13.

formed by Q5 and M4 also keeps VC at a good DC operating point, which is necessary

for the current mirror coupled to VC to function in saturation. The cascode current

mirror formed by M7–M10 changes the direction of IA since every current on chip is

assumed to be supplied as a source current. Finally, M2 serves as a buffer that enables

Q3 to always operate in its forward active region. The techniques described in this

paragraph were also applied to all current-mode circuits in the chip, e.g., multipliers

and integrators shown in Figure 2-4.

2.4 Simulation of Synthetic Genetic Circuits

To show the potential of our chip as a simulation tool for quantitatively modeling

bio-molecular circuits, we emulated the models of several well-known synthetic ge-

netic networks. To do so, we composed and programmed the basis-function circuits

described in Section 2.2 to architect the network. This section illustrates how the

simulations of three bio-molecular networks—the repressilator [26], a feed-forward

loop network [25], and a delay-induced oscillator [82]—can be implemented with the

chip.

82



Figure 2-20: (a) Repressilator circuit [26]. (b) Deterministic and (c) stochastic sim-
ulation results of MATLAB, using the mathematical model provided in [26]. (d)
Deterministic and (e) stochastic simulation results of the chip, which is programmed
using the parameters in Table 2.1. (a) Reprinted by permission from Macmillan Pub-
lishers Ltd: [Nature] (M. B. Elowitz and S. Leibler, “A synthetic oscillatory network
of transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335338, Jan. 2000),
Copyright 2000.

83



2.4.1 Repressilator

The repressilator network shown in Figure 2-20(a) is a circuit that helped pioneer

the field of synthetic biology [26]. It creates a self-sustaining oscillation by using

three repressors in a ring form, similar to a ring oscillator made with three cascaded

inverters in electronic systems.

First, from the two dimensionless equations and parameters given in Box 1 of [26],

we derived the original differential equations that determine the dynamic behavior of

mRNA and protein concentrations of each repressor species:

dmi

dt
= −5.8× 10−3mi +

0.5

1 +
( pj
40

)2 + 5× 10−4 (2.32)

dpi
dt

= −1.2× 10−3pi + 116× 10−3mi. (2.33)

Next, scale factors for time and concentration scaling were selected. The time

constant for transcription factor-DNA binding is ∼1.25 ms in the chip (when C = 50

pF and Ikr = 1 nA are used for the MM_Basic blocks in the ITD circuit), and the

mRNA time constant is assumed to be 20 times bigger (25 ms) such that the former

dynamics can be seen as nearly instantaneous. Then, 1/(5.8× 10−3) = 172 s of bio-

logical time is mapped into 25 ms of electronic time, corresponding to approximately

7000x speedup. Concentration scaling was performed such that 10 monomers of pro-

tein or mRNA were mapped into 1 nA of current in the chip. Based on these scaling

parameters, all other biological parameters were scaled to electronic chip parameters,

as summarized in Table 2.1.

After programming these parameters and the connectivity of the circuit into the

SRAM and shift registers of the chip, we simulated the network on the chip. Figure

2-20(b) and 2-20(c) show the deterministic and stochastic simulation results of MAT-

LAB, respectively, using the biological values given in Table 2.1; Figure 2-20(d) and

2-20(e) show the deterministic and stochastic simulations results of the chip, respec-

tively, using the chip parameters given in Table 2.1. For the stochastic simulation, the

noise generator described in Section 2.2.6 was turned on to produce artificial noise

84



Table 2.1: Parameter Mappings for Repressilator Simulation

85



in each mRNA concentration. It can be seen that the waveforms from MATLAB

and the chip are highly correlated, with the scale factors close to those described

in the previous paragraph. As opposed to software simulations, running stochastic

simulations does not increase the simulation time of our highly parallel circuits.

2.4.2 Feed-Forward Loop Network

The feed-forward loop network shown in Figure 2-21(a) has two repressors, LacI and

TetR, that repress the expression of yEGFP, and TetR also represses the production

of LacI [25]. The inputs of the network that regulate yEGFP expression are ATc and

IPTG inducers. Experiments were conducted with three different TetR-regulated

promoters to study the effect of promoter strength.

Just as in the repressilator simulation of Section 2.4.1, concentration scale factors

and chip parameters were determined from mathematical models and parameters

described in the supplementary material of [25]. 1 ng/ml of ATc, 1 µM of IPTG, 1

AU (arbitrary unit for fluorescence level) of yEGFP, and 1 nM of repressor protein

concentration were mapped to 1 nA of current. Each biological model that represented

inducer-repressor binding or repressor-DNA binding was approximated on the chip

using a dissociation constant and a Hill coefficient. In addition, to prevent conditions

where LacI tetramer concentration becomes excessively high due to the [LacI]4 term

in the mathematical model, we assumed an upper concentration bound of 1 µM

(which is consistent with the typical values given in [92]). To accomplish these goals,

MATLAB read the value of LacI monomer concentration from a first gene block on

our chip, processed it with tetramerization and concentration-limiting functions, and

fed the result back to the chip as the IEtot input of the MM_Static portion of a

second gene block. This example illustrates how our chip can be synergistically used

with off-chip tools such as MATLAB or an FPGA that can extend its capabilities

via traditional software if needed. Mathematical models yield better fits of biological

data if concentration-limiting functions are not applied, but only at unphysically high

values of LacI that are not implementable either in biology or on our chips over a

dynamic range of even 100 dB. Thus, our chip automatically enables discovery of

86



Figure 2-21: (a) Feed-forward loop network [25]. (b) MATLAB simulation results
of the mathematical model and (c) experimental data from the feed-forward loop
network constructed in S. cerevisiae, for three different promoters, TX, T8, and
T18 [25]. (d) Simulation results of the chip; the tetramerization and concentration-
limiting functions were implemented in MATLAB using molecular data packets from
the chip. (a)-(c) Reprinted by permission from Macmillan Publishers Ltd: [Nature
Biotechnology ] (T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided
construction of synthetic gene networks with predicted functions,” Nature Biotech-
nology, vol. 27, no. 5, pp. 465471, May 2009.), Copyright 2009.

87



unphysical parameters in mathematical models.

Figure 2-21(b)–(d) show MATLAB simulation results from a mathematical model,

experimental results from the network constructed in S. cerevisiae, and chip simu-

lation results. In all cases, where concentrations of molecules were at physically

plausible levels, our chip produced results that matched the biological data at least

as well as the published mathematical model (the average percentage error for six

cases was 64% in the published mathematical model [25] versus 62% in our chips). In

one case where concentration limiting functions were applied, the chip produced lower

average percentage error than the mathematical model (24% versus 34% for the top

row of Figure 2-21(b)–(d) at an IPTG concentration of 1 mM). In other cases where

the concentration limiting functions were applied, both the chip and mathematical

models performed poorly (errors that exceeded 200% in both cases).

2.4.3 Delay-Induced Oscillator

A pure delay is hard to implement efficiently with analog continuous-time systems

since it requires an infinite number of state variables or a Pade approximant circuit.

However, a pure delay is extremely easy to implement with digital systems. Although

our system exploits analog and stochastic computation for its computationally inten-

sive portions, our chips communicate digitally with external devices via on-chip ADCs

and DACs. Thus, we have the flexibility to add digital basis functions like delays to

supplement our on-chip analog basis functions. To demonstrate such flexibility, we

simulated a delay-induced oscillator shown in Figure 2-22(a), where the time delay

in the negative feedback loop due to transcription, translation, protein folding, and

multimerization causes oscillations in the autorepression network [82]. The model

in [82] is described by
dr

dt
=

α

1 +
(

rτ
C0

)2 − γr
1 + r

R0

− βr (2.34)

where r is the number of repressor molecules, rτ is a delayed version of r (i.e.,

rτ (t) = r(t − τ)), τ is the delay time, α is the production rate of the repressor,

C0 is the dissociation constant for repressor-DNA binding, γr is the maximum rate

88



Figure 2-22: (a) Delay-Induced Oscillator Network [82]. (b) MATLAB simulation
results of the mathematical model in equation (2.34) and (c) chip simulation results.
(a) Reprinted figure with permission from [W. Mather, M. Bennett, J. Hasty, and
L. Tsimring, “Delay-induced degrade-and-fire oscillations in small genetic circuits,”
Phys. Rev. Lett., vol. 102, p. 068105, Feb 2009.] Copyright 2009 by the American
Physical Society.

89



of degradation due to protease, R0 is the dissociation constant for repressor-protease

binding, and β is the rate of degradation due to dilution.

This network was simulated by the chip with the following configuration: One ITD

block in Figure 2-9(b) provides an integrator to model production and degradation of

repressor. The Ir1 and Ir2 inputs of the integrator correspond to γr and β, respectively.

MM_Static is utilized to mimic the binding between repressor and protease and TFbnd

and (TFtot−TFbnd) are directed to the Ir1 and Ir2 sides of the integrator, respectively.

The output of the integrator generates r, which is conveyed off chip as digital bits via

the operation of the ADC. MATLAB reads the value of r, delays it, and programs the

chip to send the delayed value to another ITD block, where repressor-DNA binding

can be computed via an MM_Static circuit within the ITD. Finally, the TFfree

output of the latter ITD block is sent to the TFprodrate input of the first ITD block

to complete the auto-repressory feedback loop.

Figure 2-22(b) and 2-22(c) show the MATLAB and chip simulation results, re-

spectively. The parameters used in MATLAB are τ = 1 s, α = 300, C0 = 10, γr = 80,

R0 = 1, and β = 0.1 (same as Fig. 2 presented in [82]). Their corresponding chip

parameters were also selected, with a one-to-one time mapping and 1 molecule-to-1

nA concentration mapping. Taking these scale factors into account, it can be seen

that fairly similar results were produced by MATLAB and by our chip.

2.5 Specifications of the Chip

Table 2.2 summarizes the important performance characteristics of the chip. The

values of the parameters suggest that our chip can model the wide range of parameters

found in cells (listed in Table 1.1).

Digitally programmable analog systems have been reported [5, 6, 15, 24, 31, 38,

46, 67, 89, 96, 112, 115, 120, 121, 133–135], and have shown tremendous potential in

medical and computing applications [116]. Work described in [109,110,116] contains

an extensive discussion of the pros and cons of analog versus digital computation

including issues relevant to speed, precision, power, flexibility, and programmability.

90



Purely custom digital implementations have also been used to model protein folding

[123] or to model visual neuronal networks [122]. Our work suggests that prior work

on deterministic analog computation could be efficiently extended to deterministic

and stochastic simulations of living cells via our digitally programmable cytomorphic

circuits.

2.6 Conclusion

In this chapter, we described a 0.35 µm BiCMOS silicon chip that quantitatively

models fundamental molecular circuits via efficient log-domain cytomorphic transis-

tor equivalents. These circuits include those for biochemical binding with automatic

representation of non-modular and loading behavior, e.g., in cascade and fan-out

topologies; for representing variable Hill-coefficient operation and cooperative bind-

ing; for representing inducer, transcription-factor, and DNA binding; for probabilistic

gene transcription with analogic representations of log-linear and saturating opera-

tion; for gain, degradation, and dynamics of mRNA and protein variables in tran-

Table 2.2: Performance Characteristics of the Gene Chip
Parameter Value
Technology AMS 0.35 µm BiCMOS
Supply voltage 3.3 V
Dynamic range of variables (DAC output) 100 dB (100 pA–10 µA)
Number of DACs per gene block 40
Hill coefficient 1–4
Time constant of TF-DNA binding 1.25 ms–12.5 ms
Time constant of mRNA, protein 1.25 ms–12.5 s
Programming clock frequency 1 MHz
Programming time 0.3 ms
ADC sampling clock frequency 5 MHz
ADC readout time 2–20 ms
ADC input range 1 nA–10 µA
Number of ADCs per chip 12
Signal-to-noise ratio 4–35 dB
Power consumption < 10 mW
Chip size 2.6 mm × 3.9 mm

91



scription and translation; and, for faithfully representing biological noise via tunable

stochastic transistor circuits. The use of on-chip DACs and ADCs enables multi-

ple chips to interact via incoming and outgoing molecular digital data packets and

thus create scalable biochemical reaction networks. The use of off-chip digital proces-

sors and on-chip digital memory enables programmable connectivity and parameter

storage.

We showed that published static and dynamic MATLAB models of synthetic bi-

ological circuits including repressilators, feed-forward loops, and feedback oscillators

are in excellent quantitative agreement with those from transistor circuits on the

chip. Computationally intensive stochastic Gillespie simulations of molecular pro-

duction are also reproduced by the chip and can be reliably tuned over the range of

signal-to-noise ratios observed in biological cells.

Our work suggests that biological design, simulation, and analysis of circuits in

living cells, which is very important in synthetic and systems biology, can greatly

benefit from a cytomorphic transistor circuit approach. Such an approach captures

the analog, digital, probabilistic, dynamic, stochastic, nonlinear, non-modular, and

complex network and circuit behavior of biochemical reaction networks on compact

transistor circuits very efficiently and naturally. Our chip’s circuits function over

more than five orders of magnitude of molecular concentration, which is more than

adequate for representing the dynamic range of any given protein, DNA, RNA, or

small-molecule state variable in cells.

92



Chapter 3

The Protein Chip

Our second cytomorphic chip, namely the protein chip, is built to model protein-

protein interaction networks within the cell. They play a vital role in various cellular

processes such as metabolism, signal transduction, and transcriptional regulation. For

example, in the p53 signaling model described in Section 3.5.1, a signal indicating

DNA damage is passed along through a biochemical chain of events (i.e., protein

signaling), which eventually regulates the activity of p53 and Mdm2 proteins. The

p53 protein acts as a transcription factor to activate the transcription of Mdm2,

and the Mdm2 protein product in turn enhances the degradation of p53, forming a

negative feedback loop. The latter interaction occurs on the protein level and thus on

a much faster timescale than the former transcriptional interaction. This enhances

the stability of the loop. Because of such an advantage, this type of feedback is

commonly found in cellular networks [3].

Since protein networks exhibit complex dynamics and various forms of network

topologies (e.g., cascade, feed-forward and feedback loop, fan-in, fan-out, and load-

ing), an important design requirement of the protein chip is to have versatile com-

putational units which can be flexibly programmed in terms of parameters, network

connectivity, and initial conditions. Thus, we design the “protein block”, a universal

analog computational unit of the chip featuring several digitally programmable com-

ponents. It is explained in Section 3.1 along with the overview of the protein chip.

Section 3.3 shows how to configure multiple copies of the blocks to model diverse

93



Figure 3-1: Die micrograph of the 4.3 mm × 4.0 mm cytomorphic chip fabricated in
an AMS 0.35 µm BiCMOS process. The left inset is a layout screen capture of one
of the four identical protein block groups (2x magnification).

types of reactions and network topologies. Section 3.5 describes how the protein chip

can be used to simulate the computational models of biological networks, by provid-

ing simulation examples for the p53 signaling pathway and the glycolysis pathway.

Section 3.6 summarizes the specifications of the chip, and Section 3.7 concludes the

chapter.

3.1 Architecture of the Protein Chip

The primary purpose of the protein chip is to model and simulate the dynamics of

general chemical reactions among various proteins and small molecules in biological

systems. The current version of the chip is capable of modeling the mass-action

kinetics of up to 60 unidirectional reactions with 60 state variables: 20 forward and

20 reverse reactions, both of which can be of zeroth, first, or second order, and 20

degradation reactions of first order. The transistor circuits to model these reactions

94



constitute 20 universal bidirectional reaction blocks, i.e., the protein blocks, which

are the main computational units. Their details will be explained in the following

sections. In the next chapter, we demonstrate how several protein and gene chips can

be composed together with FPGAs to form scalably large digitally programmable

biochemical reaction networks.

Figure 3-1 shows a die micrograph of the chip fabricated in an AMS 0.35 µm

BiCMOS process, where essential components are labeled. The chip is divided into

4 identical groups, each of which contains 5 copies of protein blocks, a 350-bit shift

register, 41 digital-to-analog converters (DACs), and a noise generator.

Within the chip, the protein blocks are connected to one another via a routing

bus. The data to set the connectivity among the blocks is stored in SRAM, which is

programmed by the operation of the shift registers fed with a bitstream created by

the FPGA. The shift registers also hold various information including selection bits

for switches, Hill coefficients, and the 7-bit numbers used by DACs to create analog

currents. These electric currents serve as the primary means to represent variables and

parameters of the protein block. When it is necessary to transmit certain variables off

chip, ADCs convert them to digital bits and send to the output pins of the chip (1 bit

per variable). The FPGA periodically reads and processes the ADC outputs, which

may be transferred to other chips for computation or to the computer for creating

real-time plots. Finally, the noise generator operates to artificially generate high levels

of noise for stochastic simulations.

It is important to note that core computation takes place on the chip and in the

continuous time and continuous signal domain, while off-chip communication and

data processing take place in the discrete time and discrete signal domain. Fur-

thermore, regardless of the number of variables, all on-chip and off-chip operations

are performed simultaneously. This parallelization is the key to developing a system

whose simulation time does not increase with the scale of the target network.

Detailed descriptions of some of the circuits, including the Hill circuit, the DAC,

the ADC, and the noise generator can be found in Chapter 2.

95



3.2 The Protein Block

The protein block is a versatile computational unit capable of modeling a maximum

of three reactions—a forward and a reverse reaction and a degradation reaction—with

programmable mass action rate constants. Figure 3-2 shows the transistor schematic

of the protein block. The block heavily utilizes current-mode circuits, and to make

full use of them, they are implemented in a BiCMOS process technology which of-

fer an exponential current-voltage relationship over a wide range of current levels.

Basically, the block consists of two subtractors to model “loading” (see the follow-

ing paragraphs), a Hill circuit to compute the forward rate with a Hill coefficient

(IAfree(IBfree/IKDfw)
n) (see Section 2.2.2), two multipliers to compute the reverse

(ICfreeIDfree/IKDrv) and the degradation (ICfreeIratC/IOne) rates, respectively, and an

integrator to integrate these rates to create an analog current equivalence of molecular

concentration.

This integrator circuit is a three-input differential current-mode integrator de-

signed specifically for the protein block. According to the translinear principle ap-

plied to the three loops around 1) Q1–Q4, 2) Q3–Q6, and 3) Q4 and Q7–Q9 [38],

respectively, the time derivative of the output current is given by

dICtot

dt
=

Ikr
Cϕt

· Ifw − Ikr
Cϕt

· Irv −
Ikdeg
Cϕt

· Ideg

= (forward rate) - (reverse rate) - (degradation rate)
(3.1)

where Ifw corresponds to IAfree(IBfree/IKDfw)
n, Irv to ICfreeIDfree/IKDrv, and Ideg

to ICfreeIratC/IOne. The transistors M1, M2, M5, M6, and M8 serve as buffers (IBuf

= 1 µA), and another buffer composed of Q5 and M4 supplies the base current of Q3

and Q4 without causing any base-current loss from the capacitor node (VC) or voltage

error due to the body effect (see Section 2.3). CLK and CLK are digital random

clock signals generated by the noise generator, which turn on and off the current

charging the capacitor to induce fluctuations in the capacitor voltage, as described in

the prior chapter or in [116].

Figure 3-3 is a block diagram of the circuit in Figure 3-2, showing its 7 inputs,

96



Figure 3-2: Transistor schematic of the protein block.

97



Figure 3-3: Block diagram of the protein block.

11 outputs, 6 parameters, and 3 switches (see Section 3.4 for details). Among them,

here are the ones that are used most frequently: Atot / Btot / Cfree (inputs), Afree

/ Bfree / Ctot (outputs), and KDfw / kr (parameters). The rest are used for special

occasions and for block-to-block connections. Note that some inputs, outputs, and

switches, as well as current mirrors to create output variables are omitted in Figure

3-2 for simplicity. Note also that kr and kdeg in Figure 3-3 are mapped into the

physical circuit parameters of Ikr/Cϕt and Ikdeg/Cϕt, respectively. Our circuit has

an additional degree of freedom in representing a D variable that interacts with C to

effectively generate a reverse reaction current dependent on the concentrations of D

and C. While this freedom is useful in the most general cases for composing arbitrary

networks as we discuss later, for simplicity, we shall begin with a discussion of just

A, B, and C in the discussion that follows.

In a typical configuration for a binding reaction, where Dfree/KDrv=1, ratC=kdeg=0,

98



and n=1, the model in Figure 3-3 solves

d[Ctot]

dt
= kf [Afree][Bfree]− kr[Cfree] (3.2)

[Afree] = [Atot]− [Ctot] (3.3)

[Bfree] = [Btot]− [Ctot] (3.4)

where kf=kr/KDfw. As seen from the above equations, the amount of the product

Ctot is subtracted from the “total” amount of the reactants, Atot and Btot, to obtain

the “free” amount of the reactants, Afree and Bfree. This models the effect of “loading”

present in any binding reaction: Whenever two reactants A and B react to produce a

product C, the number of A and B is decreased by the number of produced C. These

two inherent feedback loops are explicitly represented in Figure 3-3.

Hence, as their names imply, Atot and Btot are “total” variables that include all

downstream quantities (see Section 2.2.1). If Atot and Btot are constants and Ctot

is not used in any downstream reaction (i.e., Cfree=Ctot), the equations above are

simply equivalent to the following set of differential equations:

d[Cfree]

dt
= kf [Afree][Bfree]− kr[Cfree] (3.5)

d[Afree]

dt
= −kf [Afree][Bfree] + kr[Cfree] (3.6)

d[Bfree]

dt
= −kf [Afree][Bfree] + kr[Cfree]. (3.7)

As such, the use of these “total” variables and the subtraction mechanism allows

us to compute at most three differential equations at the cost of one (since subtraction

is essentially free with analog currents). Not only that, it also enables convergence

of solutions by avoiding the divergence problem which may originate from circuit

mismatches when the three equations are computed independently in three separate

circuits, as in other programmable analog hardware to solve differential equations

[15,75,79]. See Section 2.2.1 for further discussions.

Figure 3-4 shows the symbol of the protein block which displays the heart of

99



Figure 3-4: Block symbol of the protein block.

its computation and essential input and output ports. This symbol will be used

throughout the rest of this article to describe the schemes to configure the protein

blocks.

3.3 Protein Block Configurations for Various Net-

work Topologies

This section demonstrates how connection among the ports and manipulation of

switches can implement various types of reactions and network topologies found in

chemistry. For explanatory purposes, configurations for simple networks are presented

in Figures 3-5 and 3-6 as sample cases. In reality, the same principles can be used

to construct complex reaction networks (e.g., a combination of multiple fan-out and

fan-in with reversible reactions) in a scalable fashion.

Note that the distinction between “total” and “free” variables described in Section

3.2 calls for extra care in making connections between ports. For example, the degra-

dation rate of a species is supposed to be proportional to its “free” amount; however,

the Ctot output of a block corresponds to the “total” amount. Thus, if this Ctot is

used as a reactant in a downstream block (as Atot or Btot), whatever is left (Afree

or Bfree) is returned to the original block, as the Cfree input, and used to produce

the degradation rate.

100



(a)

(b)

(c)

(d) (e)

Figure 3-5: Configuration examples for various reactions and network topologies.
(a) Cascade with degradation (∅→A, A→B→C, C→∅). (b) Fan-out (A+B⇌C,
A+D⇌E). (c) Dissociation (A⇌B+C). (d) Dimerization (A+A⇌Adimer). (e)
Monomerization (Adimer⇌A+A). Green, blue, and red blocks denote a protein block,
an input variable, and an output variable, respectively.

101



(a)

(b)

(c)

Figure 3-6: Configuration examples for various reactions and network topologies (con-
tinued). (a) Michaelis-Menten reaction (E+S⇌ES→E+P). (b) Fan-in with degrada-
tion (∅→A, ∅→B, A⇌C, B⇌C, C→∅). (c) Loop (∅→A, A→B→A, B→∅). Green,
blue, and red blocks denote a protein block, an input variable, and an output variable,
respectively.

102



3.3.1 Cascade (Figure 3-5(a))

Cascade is a type of chemical process where a product of a reaction serves as a reactant

of the following reaction. In our framework, it can be modeled as follows:

1. Insert the current block’s Ctot to Atot (or Btot) of the next reaction block. In

the current block, Afree=Atot–Ctot; Bfree=Btot–Ctot.

2. In case a reverse reaction or a degradation reaction exists in the current block,

bring Afree (or Bfree) from the next block to Cfree of the current block. Repeat

step 1 and 2 until the end of the cascade chain.

3. For the last block of the cascade chain, its Ctot is not used anywhere, such

that Ctot and Cfree are identical as configured in the rightmost block of Figure

3-5(a).

Note that in the example cascade network in Figure 3-5(a) which models ∅→A,

A→B→C, and C→∅, the leftmost block implements a zeroth-order reaction (∅→A).

Thus, Atot should be a constant parameter, Btot/KDfw is set as 1, and both A_FB_EN

and B_FB_EN should be switched off. The two blocks on the right each implement

a first-order reaction (A→B and B→C). Thus, Atot is a variable, Btot/KDfw is 1,

and only A_FB_EN is switched on.

3.3.2 Degradation (Figure 3-5(a))

If a block has a nonzero degradation rate, it decreases Ctot. Then, since Afree=Atot–

Ctot, Afree effectively increases, although it should not. In reality, degradation of

Ctot decreases the pool of its generating Atot variable, thus keeping Afree=Atot–

Ctot constant. This means that degradation fluxes in a given variable should be back

propagated to all total variables upstream of it that it is a part of, as in Figure 3-5(a).

Therefore, the algorithm for network composition simply becomes:

1. In each stage, receive the degradation rate from its subsequent stage at the

Cdeg port. In case of fan-out, there may be multiple rates coming.

103



2. Add the degradation rate of the current stage, whose rate constant is set by ratC

and kdeg in Figure 3-3. The resulting “lumped” rate is at the rv_up output.

3. Send rv_up to the previous stage. For second-order reactions such as A+B→C

and C→∅, the degradation rate of [C] should be propagated to both of the

previous stages (i.e., the two blocks responsible for [A] and [B], respectively).

To serve this purpose, two copies of rv_up are generated in each block.

Figure 3-7 shows the chip simulation results of a simple cascade reaction network,

A→B→C→D→E. From Figure 3-7(a), It can be seen that all [A] become [E] over

time, so that the final value of [E] is matching with the initial value of [A]. Figure

3-7(b) is the result when a degradation reaction E→∅ is added to the network. The

value of [E] decreases as expected, while the remaining free variables remain the same.

3.3.3 Fan-out (Figure 3-5(b))

Fan-out is a network topology where one species serves as a reactant of multiple

reactions. Assuming that [A] is such a species, the following is the configuration

strategy for fan-out:

1. Designate one block as the main block where [Atot] comes in.

2. Take the Ctot outputs of all the blocks where [A] is used as a reactant ([C]

and [E] in Figure 3-5(b)) and subtract them from [Atot] of the main block to

compute [Afree]. Note that Ctot of the main block is subtracted inside the

block by enabling the A_FB_EN switch, and thus not seen in Figure 3-5(b).

3. Send the resulting [Afree] to Atot (or Btot) of another block that uses [A] as

a reactant. For this non-main block, disable the A_FB_EN (or B_FB_EN)

switch, since the incoming variable [Afree] is already the desired “free” amount.

4. If there is a third block using [A] as a reactant, send the Afree output of the

second block to the Atot (or Btot) port of the third block. Repeat this for all

such blocks.

104



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s)

0

20

40

60

80

100

120

C
ur

re
nt

 (
nA

)

A
B
C
D
E

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s)

0

20

40

60

80

100

120

C
ur

re
nt

 (
nA

)

A
B
C
D
E

(b)

Figure 3-7: Chip simulation results for cascade with degradation. (a)
A→B→C→D→E and (b) E→∅ added.

105



This method preserves scalability since it does not require additional subtractors

or variable copiers (i.e., current mirrors) proportional the number of fan-out blocks.

Note also that Dfree/KDrv should be set as 1 for both protein blocks in Figure 3-5(b)

because the reverse reactions are first-order in this particular example.

3.3.4 Dissociation / Replacement (Figure 3-5(c))

This is how to configure when reactions have two products (e.g., dissociation and

replacement reactions), assuming that [A] is a reactant and [B] and [C] are the two

products:

1. If [B] and [C] do not degrade or have the same degradation rate constants, they

will have identical values in terms of “total” variables. In this case, compute

A⇌B with a block and use one copy of Ctot as [Btot] and another copy as

[Ctot].

2. If [B] and [C] have different degradation rate constants, they need to be con-

sidered separately using two blocks. One block computes A⇌B+C to obtain

[Btot] and sends its forward (rate_fw) and reverse (rate_rv) rates to the Cprod

and Cdeg inputs of the other block, respectively, to obtain [Ctot]. This [Ctot]

is sent to the Dfree input of the former block to produce the reverse reaction

rate, i.e., kr·Cfree·Dfree/KDrv in Figure 3-3.

It should be pointed out that in terms of dealing with the “total” variable, [Atot]

keeps track of only the [B] side and the [C] side is on its own, forming a separate

branch. That is, [Afree]=[Atot]–[Btot] ([Ctot] is irrelevant) and only the degradation

of [Btot] is propagated to [Atot].

3.3.5 Dimerization (Figure 3-5(d))

Dimerization is a special type of synthesis reaction which calls for special treatment.

The key is to have the same species for the two reactants and consider the fact that the

106



production of one dimer consume two monomers (i.e., [Afree]=[Atot]–2[Adimertot] in

Figure 3-5(d)).

1. First, [Atot] goes into the Atot port, and Ctot is subtracted from [Atot] via the

routing bus. Besides, another subtraction occurs inside the block by enabling

the A_FB_EN switch. Thus, Ctot (=[Adimer]) is subtracted twice from [Atot]

to yield [Afree].

2. Take the Afree output and connect it to the Btot input. Disable B_FB_EN

since math is done for [Afree] in step 1.

3. When [Adimer] degrades, [Atot] should degrade twice as fast. Hence, send both

of the two rv_up outputs to the Cdeg input of the block which produces [Atot].

3.3.6 Monomerization (Figure 3-5(e))

Monomerization is the reverse process of dimerization, where one reactant produces

two products of a kind. Thus, half the amount of the product should be subtracted

from the reactant (i.e., [Adimerfree]=[Adimertot]–[A]/2 in Figure 3-5(e)) and Cfree

and Dfree should receive the same variable. The trick to realize this is as below:

1. Add two of the Ctot outputs and treat it as [Atot]. Then, one Ctot corresponds

to half of [Atot], which is subtracted from [Adimertot] inside the block to create

the desired value of [Adimerfree].

2. Connect [Afree] (equal to [Atot] in Figure 3-5(e) since it is used nowhere else)

to Cfree. In addition, link the Cfree_cp output to the Dfree input, so that both

Cfree and Dfree take [Afree] as inputs.

3. When a degradation rate comes from the next stage, it becomes double due to

the addition of the two Ctot outputs in step 1. To offset this effect, set kdeg of

this stage and all upstream stages as half the value of that of the next stage.

Then, half of the degradation rate of [Atot] propagates to [Adimertot] and all

upstream “total” variables, as desired.

107



3.3.7 Michaelis-Menten Reaction (Figure 3-6(a))

Michaelis-Menten kinetics is one of the most well-known models of enzymatic dy-

namics. It forms a loop topology in terms of the enzyme, which may require complex

connections. However, we describe a simpler way of implementing a Michaelis-Menten

reaction network:

1. Use a block to model E+S⇌ES, a typical reversible synthesis reaction.

2. Use another block to model ES→P. Just like a cascade configuration, connect

Ctot of the first block to Atot of the second block, and Afree of the second block

to Cfree of the first block.

3. Send Ctot of the second block to add to the Atot input of the first block.

4. When [Ptot] degrades, propagate it to [EStot] and [Stot] but not to [Etot], by

making connections between rv_up ports and Cdeg ports accordingly.

If [Ptot] does not degrade, the amount of [Ptot] produced is equal to that of [E]

released with [P]. Thus, adding that [Ptot] to Atot of the first block would yield

the right value of [Efree]. Furthermore, even when [Ptot] degrades, the configuration

above leads to mathematically correct results, and here is why: The expressions

derived from the network in Figure 3-6(a) are given by

[Efree] = [Etot]− [EStot] + [Ptot] (3.8)

[Sfree] = [Stot]− [EStot] (3.9)

[ESfree] = [EStot]− [Ptot]. (3.10)

Since the degradation of [Ptot] propagates to [EStot] and [Stot], the amount of

[ESfree] and [Sfree] are preserved as desired. [Efree], on the other hand, is also

preserved because the change in –[EStot] and +[Ptot] cancel out and [Etot] does not

change with the degradation of [Ptot]. Therefore, all the results come out right.

Figure 3-8 shows the chip simulation result for a typical Michaelis-Menten reaction

configured as in Figure 3-6(a). It can be observed that by the action of the enzymes,

108



0 0.5 1 1.5 2 2.5

Time (s)

0

10

20

30

40

50

60

70

80

C
ur

re
nt

 (
nA

)

S
ES
P

Figure 3-8: Chip simulation result for a Michaelis-Menten reaction
(E+S⇌ES→E+P).

all [S] are gradually converted to [P] over time and [ES] is formed when the enzymes

are at work.

3.3.8 Fan-in (Figure 3-6(b))

Fan-in is the case when a species is produced by two or more different reactions, which

necessitates the most sophisticated setup among all topologies. The basic principle

is to add or subtract whatever amount that comes from or goes to other reaction

branches, respectively, in the current and all upstream stages, just like the amount

that degrades is subtracted in the current and all upstream stages. If this idea is

not implemented properly, it may lead to physically impossible situations where Ctot

tries to go above Atot or Btot or below zero. The algorithm for fan-in is given by:

1. Among all the blocks that produce the same species (e.g., [C] in the example

of Figure 3-6(b)), designate one block as the main block (in Figure 3-6(b), the

top right block).

2. Gather all rates in the main block. That is, send all the forward (rate_fw) and

reverse rates (rate_rv) of the other (non-main) blocks to the Cprod and Cdeg

109



ports of the main block, respectively. This creates the “total” forward (fw_tot)

and reverse (rv_tot) rates, which are used to compute Ctot in the main block.

Note that this rv_tot includes the degradation rate.

3. Send fw_tot and rv_tot to Cprod and Cdeg of the non-main blocks, respec-

tively. When multiple non-main block exists, one block receives the two rates

and sends its own fw_tot and rv_tot to the next block.

4. In each of the non-main block, subtract its own forward and reverse rates from

the “total” forward and reverse rates, respectively. This is done by flipping the

four FF_EN switches shown in Figure 3-3, and the results are produced at the

fw_up and rv_up ports.

5. Propagate fw_up and rv_up of each block to its upstream stages.

6. Connect Ctot of the main block to Ctot_in of the non-main blocks, so that

Afree and Bfree of these blocks can be calculated. For the non-main blocks, the

Ctot switch shown in Figure 3-3 should be toggled up for this purpose.

7. The main block receives Cfree from the subsequent stage, or from its own Ctot

when no subsequent stage exists, as in Figure 3-6(b). The copy of Cfree (i.e.,

Cfree_cp) is sent to the Cfree port of the non-main blocks, so that they can

compute the reverse rates.

Note that the algorithm described above is the most general method which works

for all fan-in cases. If a network consists of irreversible reactions or reactions where

the reactant is not consumed (e.g., transcription or translation), its configuration

becomes much simpler.

3.3.9 Loop (Figure 3-6(c))

Loop indicates the case in which the last reaction of a pathway regenerates the re-

actant of the first reaction. A well-known example in biology is the citric acid cycle,

where oxaloacetate serves as both the first reactant and the final product. When

110



the final reaction of a loop is irreversible, its configuration is relatively simple, as

illustrated in Figure 3-6(c) and described below:

1. Form a cascade configuration, from the first to last reaction.

2. Add the final product (Ctot of the right block in Figure 3-6(c)) to the Atot

input of the first reaction block in the loop, similar to the trick used for the

Michaelis-Menten reaction.

3. To prevent this Ctot from increasing without bound, set an arbitrary degrada-

tion rate for it.

4. Propagate this degradation rate to all upstream blocks except the one which

creates [Atot] (the left block in Figure 3-6(c)). Or, propagate to all upstream

blocks and offset this in [Atot] by sending the rate also to Cprod of the block

creating [Atot]. In this case, set kr of the block equal to kdeg and adjust the

forward and reverse reaction rates using KDfw and KDrv.

On the other hand, when the final reaction is reversible, it can be implemented

by the combination of fan-out and fan-in configurations. For example, the network

given by A⇌B⇌C⇌D⇌A can be considered as having a fan-out from [A] to [B] and

[D] and a fan-in from [B] and [D] to [C].

3.4 Programmability of the Protein Chip

When designing the protein chip, we have paid particular attention to add suffi-

cient flexibility (e.g., diverse digitally programmable parameters with wide range;

several useful input and output ports and programmable on-chip interconnection

among them) such that the dynamics of most gene-protein networks can be mod-

eled using a combination of protein blocks. The following are the summary of the

programmable components of a protein block:

1. 6 parameters: (KDfw), (KDrv, kr), and (kdeg, ratC) are used to control

forward, reverse, and degradation rates, respectively. These five parameters are

111



set by the currents generated by DACs and programmable over a dynamic range

of 100 dB. The Hill coefficient, n, can be tuned between 1 and 4 by programming

the effective size of an above-threshold transistor.

2. 3 types of switches: The A_FB_EN and B_FB_EN switches are used to

select the order of reaction. For a second-order reaction, they are both switched

on, so that the two feedback loops described in Section 3.2 are at work; for a

first-order reaction, only A_FB_EN is on and Btot is set to be constant (or

vice versa); and for a zeroth-order reaction, both are off, and both Atot and

Btot are constants. They are also switched off when reactants such as DNA

or mRNA are recycled after use by polymerases or ribosomes and thus not

effectively consumed when products are made. In the latter cases, reactants

may be depleted from the cytoplasm and reside in the nucleus but they are not

consumed. Other cases where these switches are manipulated are depicted in

Section 3.3 (e.g., fan-out). Next, the four FF_EN switches are used for fan-in

configurations (see Section 3.3.8). Lastly, the Ctot switch is responsible for 1)

fan-in configurations, 2) setting Ctot’s initial condition, and 3) stabilizing the

integrator during startup and when not in use. To implement the latter two

functions, the output of each integrator is connected to the reverse rate input

(i.e., ICtot→Irv in Figure 3-2) before simulation starts.

3. 7 input and 11 output ports: Atot, Btot, Ctot, Afree, Bfree, and Cfree

are widely used for most reactions; Dfree is used to model a second-order re-

verse reaction for dissociation/replacement and monomerization configurations;

rate_fw and rate_rv are used for dissociation/replacement and fan-in configu-

rations; rv_up and Cdeg are used to transmit degradation rates; and, rv_tot,

fw_tot, fw_up, Ctot_in, Cprod, Cfree_cp, and Dfree_cp are used for fan-in

and loop configurations. All of these input and output ports can be connected

to any other ports via a routing bus composed of 100 parallel wires. Since vari-

ables are represented by electric currents, merging of multiple signals at a node

results in addition or subtraction, depending on the direction of each current.

112



Finally, as for the output variables that may be sent to multiple ports in certain

configurations, multiple copies of currents are produced to handle every possible

case. Table 3.1 shows the number of copies for each output variable.

Table 3.1: The Number of Copies for Output Variables
Output Variable(s) Number of Copies

Ctot 5 (3 positive, 2 negative)
Afree, Bfree 2

rate_fw, rate_rv 1
fw_up, rv_up 2

fw_tot, rv_tot, Cfree_cp, Dfree_cp 1

3.5 Simulation Examples of Biological Processes

This section demonstrates the functionality and usability of the protein chip by pro-

viding two examples of simulating the dynamics of well-known biological processes,

the p53 pathway [100] and the glycolysis pathway [94], based on their published

models.

The mathematical models of the two pathways are obtained from BioModels

Database [59], which offers curated computational models of a variety of biological

processes in SBML format [56]. To port these software models to the protein chip,

they have to go through a certain procedure: First, the models are analyzed to find

out how rate laws are represented, the order of reactions, the range of parameters,

and species concentrations.

This information serves as a foundation for determining the time and magnitude

mappings. The time mapping determines the simulation speed of the chip and is

set by considering the range of parameters available in protein blocks. For example,

when a simple degradation reaction A→0 with the rate of 1 s-1 is mapped into a

protein block where C=50 pF, I=10 nA, the rate of the block is I/(Cϕt)≈8,000 s-1,

corresponding to 1:8000 mapping between chip time and biological time. The fastest

rate constant in the biological network is mapped into the largest available current

113



so that the simulation runs at its maximum speed. In addition, when a network

contains feedback loops, high gain along with time delay arising from parasitic poles

might cause instability and in turn unwanted oscillations in the protein blocks. In

this case, the time mapping is also determined by the stability condition in those

blocks. That is, parameters are selected such that a dominant pole is created at a

frequency low enough to render the effect of parasitic poles negligible, so that the loop

is stable. On the other hand, the magnitude mapping is carried out such that the

range of the level of variables in the chip reliably covers that in the target biological

network. Based on these time and magnitude mappings, biological parameters are

converted to chip parameters (which are outlined in Section 3.4).

Next, the models are analyzed with respect to the structure of the network and

the interaction among its state variables. This informs how many protein blocks

are needed, which reactions each protein block models, and how interconnections

among the blocks are made. When making interconnections, the methods described

in Section 3.3 are utilized depending on the types of reactions. More details on how

to configure protein blocks can be found in the two specific examples in this section.

After determining all the chip parameters and connections, a user can input these

settings in a software program running in MATLAB. A bitstream is then generated to

convey them to an FPGA. For the testing purposes, an Opal Kelly XEM6310 module

featuring the Xilinx Spartan-6 FPGA is mounted on a printed circuit board (PCB)

along with our protein chips. The FPGA uses the information in the bitstream

to generate programming bits to orchestrate the operation of the chips and reads

variables from the chips as needed, which are sent to MATLAB to graphically show

the simulation results in real time. To verify the chip operation, we compared them

with the software simulation results of COPASI [54] (by importing the SBML files

downloaded from BioModels Database) and MATLAB (by constructing the target

network using the ideal models of the protein block in Simulink, as in Figure 3-3).

114



(a)

(b)

Figure 3-9: (a) The ARF model and (b) the ATM model (only showing the reac-
tions changed from the ARF model) of the p53 signaling pathway [100]. Reprinted
figures originally published in [C. J. Proctor and D. A. Gray, “Explaining oscilla-
tions and variability in the p53-Mdm2 system,” BMC Syst. Biol., vol. 2, p. 75,
2008], available from: http://www.biomedcentral.com/1752-0509/2/75. Copyright
2008 Proctor and Gray; licensee BioMed Central Ltd. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

115



Figure 3-10: Protein block configuration for the ARF model.

Table 3.2: Chip Parameters for p53 Simulation

116



3.5.1 p53 Signaling Pathway

The p53 signaling pathway shown in Figure 3-9 is a network of great significance

involved in DNA repair, apoptosis, and suppressing cancer [100]. The authors of [100]

mathematically account for the stabilization (i.e., activation) of p53 due to DNA

damage, using two stochastic models of the network, the ARF and ATM model. The

models particularly focus on explaining the sustained oscillatory behavior observed

in cells as long as the damage remains, caused by a negative feedback loop with delay

arising from intermediate steps (e.g., transcription and translation).

Table 3.2 summarizes the reactions in both models, their reactions rate constants,

and chip rate constants set via time and magnitude mappings. Note that the reaction

numbers in the leftmost column match with those in Figure 3-9. Furthermore, as an

example to illustrate block-to-block connections, the configuration for the ARF model

is presented in Figure 3-10. The reactions that each block is responsible for and the

parameters of the block selected to simulate those reactions are also listed in Table

3.2.

Basically, for the ARF model, 7 protein blocks are used to model 14 reactions

with 8 state variables. The blocks 1–4 form a negative feedback loop (p53 production

→ Mdm2mRNA → Mdm2 → Mdm2_p53 → p53 degradation) and the blocks 5–

7 comprise a cascade reaction (IR event → damDNA → ARF → ARF_Mdm2 →

Mdm2 degradation) which triggers an oscillation in the loop. As for the ATM model,

9 blocks (blocks 1–5 and 8–11) are used to model 20 reactions with 11 state variables.

An oscillation is triggered by the phosphorylation of Mdm2, which is in turn caused

by the irradiation (IR) event.

Time and Magnitude Mappings

For the ARF model, the dynamics of the reactions 2–4 in determines the time map-

ping, since it requires both a high gain and a fast time constant, posing a stability

threat to the protein block 2. We found that up to the time mapping of 106:1 between

biological time and chip time, the simulation ran without any unwanted ringing in

117



the waveforms. Thus, 30 hours of the system behavior can be simulated in approxi-

mately 0.1 s. Given that the maximum magnitude for all the species in this model is

approximately 350 molecules, 1 molecule is mapped into 1 nA of current in the chip.

It is a bit more challenging to maintain stability for the ATM model, since it

contains very fast time constants—those for the dephosphorylation of p53 and Mdm2

that are more than 500 times faster than the fastest time constant of the ARF model.

Besides, due to the high rate constant for Mdm2 phosphorylation, the loop gain of the

block 10 (i.e., ATMA/KDfw) goes as high as 800. This high gain lowers the level of

Mdm2free, which in turn creates low-frequency parasitic poles. The combined effect

of the high gain, fast time constant, and low-frequency parasitic poles leads to an

undesirable oscillation in the block. Hence, we first reduced the rate constants for

Mdm2 phosphorylation and dephosphorylation (reactions 20 and 21) by 100 times.

This adjustment hardly changes the simulation result because the rapid equilibrium

approximation requires that the rate constant of the reaction 21 is much greater than

that of the reaction 22, and the former are still 12.5 times greater than the latter after

adjustment. In addition, to decrease the impact of parasitic poles, the magnitude and

time mappings are altered such that 1 molecule corresponds to approximately 3 nA

of current, and 105 s of biological time to approximately 1 s of electronic time.

Connections among Protein Blocks

The block-to-block connections for the ARF model are straightforward and self-

explanatory in Figure 3-10. However, there are a few points that require special

attention: As explained in Section 3.4, the A_FB_EN and B_FB_EN switches

should be set according to the order of reaction—for example, zeroth for the p53

synthesis, first for transcription, translation, and degradation reactions, and second

for the p53/Mdm2 binding. However, except for the reactions 2 and 12, reactants

are not consumed by reactions, in which case the corresponding A_FB_EN and

B_FB_EN switches are disabled. Next, note that the rates of Mdm2-dependent p53

degradation (reaction 4) and ARF-dependent Mdm2 degradation (reaction 14) should

be propagated to the blocks that produce p53tot (block 1) and Mdm2tot (block 4),

118



respectively. Note also that Mdm2 reacts with both p53 and ARF, so the fan-out

configuration described in Section 3.3.3 is applied for the blocks 2 and 7. As for the

ATM model, the fan-out configuration is needed for p53 and Mdm2, and the fan-in

configuration for Mdm2mRNA.

Analysis of the Chip Results

The 8 plots in Figures 3-11 and 3-12 are the deterministic and stochastic simulation

results of software and the chip, for the ARF and the ATM model, when a short

irradiation event occurs at time=0. It can be seen that the chip simulations produce

the waveforms that are highly correlated to those of the software simulations, taking

into account the time and magnitude scale factors described previously. To perform

stochastic simulations, p53, Mdm2, Mdm2mRNA, ARF, and p53mRNA are selected

as stochastic variables, where the noise generators add noise.

Note that the oscillatory behavior of the ATM model is exhibited only when

noise is added, due to the averaging effect present in the deterministic model [100].

That is, it is a kind of biological phenomena which can only be studied by taking

stochastic modeling approaches. For such phenomena, deterministic simulations are

not sufficient to verify that the model adequately reflects the essence of the biological

process enough to explain the data acquired from biological experiments [137]. Our

chip can potentially provide huge speedup in such cases, especially because of the

fact that running stochastic simulations, regardless of the number of reactions or

number of molecules, essentially does not increase the chip simulation time. The

stochastic simulation for the ARF and ATM model took 0.1 s and 2.5 s, respectively,

in COPASI on a 3.4 GHz computer consuming nearly tens of Watts of power in its

microprocessor, and 0.1 s and 1 s, respectively, in our mm-size chip consuming 30

mW of power. Thus, we are already seeing some speedup over software even for this

relatively simple network. Much higher advantages can arise when the scale of the

network is increased as we outline in the next chapter.

119



Figure 3-11: (a) Deterministic and (b) stochastic simulation results of software for
the ARF model. (c) Deterministic and (d) stochastic simulation results of the chip
for the ARF model. To be consistent with the original published plots (Fig. 12 and
13 in [100]), the total levels (free + bound amounts) of p53 and Mdm2 are plotted.

120



Figure 3-12: (a) Deterministic and (b) stochastic simulation results of software for
the ATM model. (c) Deterministic and (d) stochastic simulation results of the chip
for the ATM model. To be consistent with the original published plots (Fig. 12 and
13 in [100]), the total levels (free + bound amounts) of p53 and Mdm2 are plotted.

121



3.5.2 Glycolysis Pathway

Glycolysis is one of the most important metabolic pathways which converts glucose

into pyruvate. Our target model presented in [94] consists of 10 reactions, most of

which are enzyme-catalyzed reactions. The oscillatory behavior of glycolysis has been

studied by researchers, since quantitative analysis of the behavior can give insight into

characterizing the kinetics of its pathway. Our goal was to reproduce the oscillation

of this relatively complex biological system on the chip.

Decomposing the Reactions

Table 3.3: Chip Parameters for Glycolysis Simulation

It should be noted that the rate laws of enzyme-catalyzed reactions in biochemical

networks are often not expressed as mass action kinetics. However, it is in fact possi-

ble to decompose most such rate equations into rates based on mass action kinetics.

For example, the first reaction of the glycolysis pathway, GLC+ATP→F6P+ADP,

is known to be an irreversible ordered bi-bi mechanism, with the rate expression of

V1[ATP][GLC]/((K1+[GLC])(K2+[ATP])) [94]. Such mechanism can be decomposed

122



0 50 100 150 200 250 300 350 400 450 500

Time (min)

0

5

10

15

20

25

30

35

40

45

50

C
on

ce
nt

ra
tio

n 
(m

M
)

GLC
F6P
ATP
ADP

(a)

(b)

Figure 3-13: Simulation results from (a) software and (b) the chip for the 12 decom-
posed unidirectional reactions to model the first enzymatic reaction in the glycolysis
pathway, GLC+ATP→F6P+ADP.

123



into these reactions: E+A⇌EA, EA+B⇌EAB, and EAB→E+P+Q (refer to Table

3.3 to see notation and selected chip parameters). Figure 3-13 reveals that the chip

simulation of these reactions, i.e., 12 unidirectional reactions for block 1–6, produces

the dynamics that are in good agreement with software simulation (refer to the map-

pings in the following section).

Another reaction in the pathway, F6P+ATP→FBP+ADP, involves allosteric in-

hibition and activation by ATP and AMP, respectively, and can be decomposed into

the 8 unidirectional reactions shown in Table 3.3 [94, 132]. Their kinetic rate con-

stants can be derived from the original “lumped” rate expression to yield the same

dynamics.

For some rate equations that appear frequently, it may be possible to design a

few dedicated circuits to create those equations. The block to set a Hill coefficient

(parameter “n” in Figure 3-3) or the analogic DAC in the gene chip (see Section

2.2.4) are the examples of such circuits. As for the functions more suitable for digital

computation, such as delay, the FPGA will readily be able to process them. Finally,

in many cases where abstraction is allowed, it may be sufficient to approximate the

input-output characteristics of a given function using the Hill coefficient and the

dissociation constant (KDfw in Figure 3-3) of the protein block.

Protein Block Configuration

To carry out a time mapping, the fastest dynamics in the system needs to be clari-

fied. For the reactions where rapid equilibrium approximation or quasi-steady-state

approximation is applied to produce the desired rate law (e.g., the reactions for block

4 and 5 in Table 3.3), we expect their dynamics to be faster than others. As such, the

values of their kr were set to be 10 times larger than that of the block which create

the final rate at which the products are produced (e.g., block 6). Then, the stability

of those blocks with high kr dictates that a rate of 1 min-1 in biology is mapped into

approximately 54.5 s-1 in the chip, corresponding to 3270x faster simulation than bio-

logical time. In addition, since the maximum concentration of all species is about 37

mM in software simulation, 1 mM of concentration was mapped into approximately

124



100 nA of current in the chip.

Based on these mappings, the rate constants for the decomposed reactions can

be used to determine the chip parameters. Table 3.3 shows the 10 reactions in the

glycolysis pathway decomposed into 54 unidirectional reactions with 30 state variables

and the parameters selected for each protein block. Note that one additional block

(block 26) is required to compute the reverse rate of block 10, since a Hill circuit is

needed to set the rate. One protein chip contains 20 protein blocks, so it is necessary

to use two chips to simulate the glycolysis pathway. Block 1–10, 17–20, and 24–26

are located in the first chip and block 11–16 and 21–23 are in the second chip.

Next, we set the connections between the input and output ports of the blocks,

using 48 wires and 29 wires of the routing bus of the first and the second chip, re-

spectively. Interestingly, the glycolysis pathway contains many different types of re-

actions and topologies illustrated in Section 3.3—irreversible and reversible reactions,

Michaelis-Menten reactions (all enzymatic reactions), cascade (GLC→F6P→FBP→...),

fan-out (e.g., ATP used in multiple reactions), fan-in (e.g., ADP produced in mul-

tiple reactions), and loop (e.g., NAD→DPG→...→ACA⇌NAD). For each case, the

algorithms described in Section 3.3 were employed to route signals. Furthermore,

2ADP⇌AMP+ATP and FBP⇌2GAP were implemented in a way similar to the

configuration for dimerization and monomerization, respectively, and the reactions

that take the form of A+B→C+D were implemented using the configuration method

for replacement reactions.

Analysis of the Chip Results

For the chip simulation of the glycolysis pathway, the primary sources of error were

current mismatches (due to random variations in transistor sizes) and the limited

resolution of the DACs (4-bit in all ranges). In fact, we found that the effect of

these non-idealities on the glycolysis simulation was high, because it is a long chain

of reactions with the aforementioned complexities. Software simulations of the model

also showed that its dynamics is sensitive to such non-idealities, e.g., changes in

the initial levels of substrate concentrations. Thus, to alleviate the difficulties of

125



(a)

(b)

Figure 3-14: Simulation results from (a) software and (b) the chip for the mathemat-
ical model of the glycolysis pathway [94].

126



this simulation, we incorporated two simplifications: First, to mitigate the effect

of the error caused by the DACs, chip-to-chip connections were made by directly

sending analog current variables. Second, since the ATP concentration remains nearly

constant, we set it as a constant value, which decreases the complexity of the network.

Figures 3-14(a) and 3-14(b) show the results of the simulations run by software and

the chip, respectively. In can be seen that the chip simulation is successful in capturing

the small oscillations in the network. In periodic steady state, when the time scale

factor is taken into account, the period of oscillation in the chip simulation is 17.6%

higher than that in the software simulation. The oscillation amplitude of NADH

shows the biggest discrepancy, because it is particularly sensitive to the mismatches

in the variables sent between the blocks in the feedback loop around NADH. The

delay due to parasitic capacitances in the system also has an effect of increasing both

the amplitude and period of oscillation.

The lessons learned from these simulations are threefold: First, with the capability

of the protein chip, the dynamics of the biological networks that are small-scale or

less sensitive to mismatches (e.g., genetic networks, where connections are simpler

because reactants are not consumed in transcription and translation) can be effectively

modeled and simulated. Second, even for a relatively complex network such as a

glycolysis pathway, the chip is able to reproduce the essential behavior of its dynamics.

Third, to precisely simulate subtle dynamics of sophisticated large-scale networks,

efforts should be made to reduce simulation errors. It can be achieved by employing

various error correction techniques, many of which are outlined in textbooks such

as [116] for systems such as ours.

3.6 Specifications of the Protein Chip

Table 3.4 outlines the performance characteristics of the protein chip. The dynamic

range of 100 dB (five orders of magnitude) is wide enough to represent reaction

rates and molecular concentrations of many biochemical reaction networks in living

cells [3, 92]. A protein block currently occupies 0.04 mm2 in the chip. Note that

127



Table 3.4: Performance Characteristics of the Protein Chip
Parameter Value
Technology AMS 0.35 µm BiCMOS
Supply voltage 3.3 V
Maximum number of reactions 60
Maximum number of state variables 60
Number of protein blocks 20
Number of noise generators 4
Area occupied by one protein block 0.04 mm2

Dynamic range of variables (DAC output) 100 dB (100 pA–10 µA)
Number of DACs per protein block 8
Hill coefficient 1–4
Typical kr, kdeg range 0.4–40,000 s-1

Number of wires in the routing bus 100
Programming clock frequency 5 MHz
Programming time 70 µs
ADC sampling clock frequency 5–40 MHz
ADC readout time 2.5 µs–2 ms
ADC input range 100 pA–10 µA
Number of ADCs per chip 24
Signal-to-noise ratio 4–35 dB
Power consumption ∼30 mW
Chip size 4.3 mm × 4.0 mm

128



this area will shrink with the use of modern process technologies that offer smaller

transistor sizes and better matching properties [98].

3.7 Conclusion

We have presented a 0.35 µm BiCMOS cytomorphic chip capable of simulating the

mass-action kinetics of up to 60 chemical reactions by configuring universal analog

computational units, i.e., the protein blocks. Several features of the protein block,

including various digitally programmable parameters with wide dynamic range, care-

fully designed input and output ports, and connection mechanisms of those ports

depending on reactions types and network topologies, provide the chip the ability to

model and simulate arbitrary biochemical reaction networks in cells.

The detailed simulation examples of two published computational models, the p53

and the glycolysis pathways, suggest that the chip effectively captures the dynamics

of such networks and enables reduction in simulation time even in a relatively small-

scale network with 11 state variables. As one of the possible ways of simulating the

rate laws not expressed as mass action kinetics, we demonstrated how the reactions

can be decomposed to create the desired dynamics.

Furthermore, since it is indeed time-consuming to manually set the parameters

and connections of large-scale networks, we are also working toward developing a

compiler which automates this task. It will eventually take a mathematical model

from a standard database such as BioModels Database, analyze and process it, and

yield chip programming bits in an optimized fashion [1].

With these concerted efforts, including the strategies to scale and to reduce the

effect of mismatches, in the near future, we expect to achieve the computing power

capable of executing the deterministic and stochastic simulation of biological net-

works with more than thousands of genes and proteins, providing orders-of-magnitude

speedup over conventional simulation methods.

129



130



Chapter 4

Toward Large-Scale Simulation of

Biological Networks

This chapter is devoted to describing the complete cytomorphic system which can

carry out large-scale simulations and provide performance benefits, built with an ar-

ray of gene chips and protein chips presented in previous chapters. First, Section

4.1 explains the scalable and parallel architecture of the system, which is essentially

an ensemble of cytomorphic chips, FPGAs, and software. In Section 4.2, for demon-

strating purposes, we show a proof-of-concept implementation of the system (i.e., the

cytomorphic board) and its test results. Section 4.3 compares the speed performance

of the board with COPASI [54], a widely used software application to simulate bio-

chemical reaction networks. Finally, Section 4.4 discusses the factors that promote

or constrain the speedup of the system, how to overcome those constraints, several

performance trade-offs present in our architecture, and the advantages of our design

over alternative approaches.

4.1 The Architecture of the Cytomorphic System

Figure 4-1 shows the high-level block diagram of the cytomorphic system, which

illustrates the general flow of interactions between components. Basically, the sys-

tem is divided into computer (software) and cytomorphic-board (hardware) domains.

131



Figure 4-1: High-level block diagram of the cytomorphic system.

Figure 4-2: Overall architecture of the cytomorphic PC board and the cytomorphic
chips.

132



A computer talks with an FPGA, which in turn talks with cytomorphic chips. A

compiler analyzes given biological models represented in standard formats such as

SBML [56] to generate optimized configurations for the analog component instances

in the cytomorphic chips [1]1. A bitstream is then generated to convey the interpreted

model to the FPGA. The FPGA stores the information in memory elements and uses

it to produce programming bits to set the configurations (i.e., parameters, connectiv-

ity, initial conditions, etc.) of the chips. Not only that, if needed, the FPGA carries

out various functions that are suitable in the digital domain, including establishing

connections among the chips through periodic read, decode, encode, and write op-

erations, performing high-speed digital signal processing such as scaling, time delay,

and error correction, and transferring data to a computer to create real-time plots for

users or to analyze the results with software tools (e.g., sensitivity analysis).

By encapsulating and streamlining what happens behind the scene—the transi-

tion and communication between different layers and domains (software and hard-

ware; MATLAB, SBML, compiler language, FPGA language, and chip-specific data

representation; analog and digital; and continuous and discrete)—the system can be

considered as a black box which rapidly gives out outputs when inputs are fed in.

Without knowing hardware details or underlying principles, a user can interact with

a user interface to load and simulate biological models and benefit from accelerated

simulation.

Figure 4-2 is a visual representation of the architecture of the cytomorphic board.

It emphasizes the array of cytomorphic chips mounted on the board, communicating

with each other via an FPGA, and the arrays of gene blocks and protein blocks in

the gene chips and the protein chips, respectively, interconnected with each other via

on-chip routing channels. The serial port on the board serves as an interface between

the FPGA and the computer. The details of the gene chip and the protein chip can be

found in Chapters 2 and 3, respectivly, and the actual implementation of the board

1The development of this compiler is being led by the Program Analysis and Compilation Group
at MIT. See [1] for more information. Since it is not yet fully compatible with our system, the chip
testing results presented in this thesis are obtained via manually interpreting biological models and
configuring chips.

133



can be seen in Section 4.2.

On this board, by mounting a number of chips, parallel simulation of large quan-

tities of gene-protein interactions can be performed. This is one of the main ideas

to achieve speedup, as in multi-core computation techniques or dedicated hardware

accelerators such as graphics processing units (GPUs). Note that there exist various

computing devices in the board working in different domains: When molecular basis

functions (e.g., binding reactions and Hill functions) are directly mapped into analog

building blocks in the chips, their computation takes place in the continuous time

and continuous signal domain; on the other hand, the FPGA operates in the discrete

time and discrete signal domain, when it performs read, write, and additional data

processing; ADCs and DACs in the chip allow to cross between these continuous and

discrete domains. These analog and digital devices synergistically interact with each

other to attain efficiency, flexibility, and robustness.

Most importantly, all of the above operations run “simultaneously”, regardless of

the number of reaction mechanisms to simulate or the number of variables to read

and write, and those operations altogether handle all the computationally intensive

portion of the simulation. Otherwise, if a computer (which typically talks with hard-

ware through a serial cable and executes commands in a serial fashion) undertook any

intensive data processing during the running time, it would undermine the idea of full

parallelization, inevitably becoming a bottleneck of simulation. Thus, the computer

in our system only takes part in tasks that are irrelevant to main computation, such

as taking user commands, analyzing models, and data plotting. Ensuring parallelism

in every aspect of the design while avoiding serial data processing or communication

is the key to harnessing the potential of the cytomorphic chips to the full extent and

further increasing the scale and speed of the system.

4.2 Implementation of the Cytomorphic Board

The scalable architecture of our cytomorphic system enables massively parallel com-

putation, and it can be realized by constructing a massively parallel array of cyto-

134



Figure 4-3: A prototype of the cytomorphic board to run large-scale simulations.

Figure 4-4: Experimental setup for testing the cytomorphic board.

135



morphic chips and FPGAs on a printed circuit board (PCB) substrate. Figure 4-3

shows a prototype of such a board. It has the dimensions of 15.9 × 12.0 inches and

consists of 10 gene chips, 10 protein chips, and an FPGA module. Figure 4-4 shows

the setup for our chip measurements.

Each gene chip, specialized in modeling the dynamics of inducer-transcription-

factor-DNA binding, transcription, and translation, can simulate up to 80 reactions.

Each protein chip, on the other hand, can simulate up to 60 reactions of general

biochemical reaction networks. Both chips possess 4 noise generators. Hence, this

board provides a computing power to simulate up to 1,400 reactions in total, with 80

stochastic state variables. Note that as shown in Figure 4-4, the boards can be stacked

on top of each other. Although we only tested with one board to prove the concept,

we have enough parts to build 4 boards and stack them. This will create a peak

computing power equivalent to 5,600 reactions, with 320 stochastic state variables.

The FPGA module mounted in the middle of the board is Opal Kelly’s XEM6310

FPGA integration modeule2. It features the Xilinx Spartan-6 FPGA and 124 I/O

pins to interface with the chips. Using this module instead of a separate FPGA chip

eliminates the time-consuming tasks to configure the FPGA and set up FPGA-to-chip

and FPGA-to-computer interfaces.

Each cytomorphic chip currently requires 8 digital signals for initial programming

of the chip and variable updates. Among them, 4 signals are clock and enable signals

which can be shared among all the chips. Thus, with 124 I/O pins, the FPGA module

is able to simultaneously write to all the 20 chips on the board, while reading out 40

variables from the chips. Note that we can take advantage of remarkable technical

improvements of modern FPGAs. For example, Xilinx’s Virtex UltraScale FPGAs3

offer >5.5 millions of logic cells, >88 Mb of memory, and >1,400 I/O pins, providing

substantial capacity to orchestrate the operation of a large number of chips in a

parallel fashion.

With the completed prototype of the board, the functionality of individual cy-

2https://www.opalkelly.com/products/xem6310/
3http://www.xilinx.com/support/documentation/selection-guides/

ultrascale-fpga-product-selection-guide.pdf

136

https://www.opalkelly.com/products/xem6310/
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf


tomorphic chips was first tested, using various biological network models simulated

previously in Sections 2.4 and 3.5. After verifying the functionality, we proceeded

to run simulations in all of the chips at once, for the same networks. By doing so,

we verified that all the chips were reliably producing simulation results at the same

time and that the FPGA was successful in controlling 20 chips simultaneously. For

example, Figuress 4-5 and 4-6 show the waveforms for the stochastic simulations of

10 repressilator networks and 10 p53 networks, respectively, performed both in the

board and in software. The variables representing the levels of LacI molecules and p53

molecules are plotted over time for the former and the latter network, respectively.

Chip-to-chip variations exist in the system due to various sources of errors such

as mismatches in ADC characteristics or in reference current sources for DACs. They

can be compensated for by applying mapping tables or scale factors (stored in the

FPGA) for the inputs and outputs of the chips, based on the measured characteristics

of individual chips, as is now routinely used in analog-to-digital converters for non-

linearity, gain, and offset error correction. Note also that the simulations to produce

results for Figures 4-5 and 4-6 are performed in parallel in the cytomorphic board

and in series in software. The performance gain we achieved through implementing

this board is discussed in the following section.

4.3 Speed Comparison with Software

From the stochastic simulations of 10 repressilator and p53 networks described in the

previous section, a simple but important attribute of our system can be seen—that

simulation time is irrelevant to network scale. This is because all computations are

performed in parallel, including the read and write operations of the FPGA. Note

that in drawing this relationship, we assumed that the number of simulated networks

represents the network scale. It is reasonable to make this assumption because for

the Gillespie algorithm [39, 40], as far as simulation time is concerned, what matters

is the number of reactions and the total reaction rate. Accordingly, 10 copies of

a network can be viewed as computationally analogous to a bigger network with

137



0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

0 500 1000
0

2000

4000

6000

8000

(a)

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

0 0.5 1
0

1000

2000

3000

4000

(b)

Figure 4-5: The waveforms for the levels of LacI molecules, obtained from stochastic
simulations of the repressilator network (see Section 2.4.1), using (a) software (10
runs in series) and (b) the cytomorphic board (1 run in parallel). Units – (a) x axis:
minute, y axis: number of molecules, (b) x axis: second, y axis: ADC output (1 ADC
output ≈ 2.5 molecule. Variations may exist among chips.)

138



0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

0 10 20 30
0

200

400

600

800

(a)

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

(b)

Figure 4-6: The waveforms for the levels of p53 molecules, obtained from stochastic
simulations of the p53 network (see Section 3.5.1), using (a) software (10 runs in
series) and (b) the cytomorphic board (1 run in parallel). Units – (a) x axis: hour, y
axis: number of molecules, (b) x axis: second, y axis: ADC output (1 ADC output
≈ 0.1 molecule. Variations may exist among chips.)

139



10 times more reaction mechanisms with similar reaction rates. In case of the p53

pathway, a simulation of 10 copies took 30 s in COPASI (on a 3.4 GHz computer)

and 1 s in our system, corresponding to a 30x speedup.

Next, we were motivated to examine the maximum speed gain the board can

provide. In a nutshell, the board gives greater advantages for long stochastic simula-

tions of networks containing many fast reactions. This is essentially the same as the

condition for the simulation of stiff systems, where fast and slow timescales coexist.

Simulation runs slowly because the time step size goes small to capture fast dynamics,

while the number of time steps becomes large to account for slow dynamics [42,137].

In biochemical reaction networks, fast dynamics is produced by the existence of large

reaction rate constants and/or high molecule copy numbers.

For instance, Figure 4-7 shows the stochastic simulation results of COPASI and

the chip, for a simple 7-reaction network which consists of ∅ k1−→A k2−→∅, ∅ k3−→B k4−→∅,

and A+B
k5−⇀↽−
k6

C k7−→∅ [63]. 1 molecule is mapped into 1 nA of current and the time

mapping is 1:1. It can be seen that the data from COPASI and the chip show good

quantitative agreement to each other. To investigate the relationship between reaction

rate and simulation time, this network was simulated for various parameters.

Figure 4-8 presents the change in measured simulation time, as the number of

molecules increases and time constants are fixed [63]. That is, the degradation/reverse

rate constants (k2, k4, k6, and k7) are fixed and the synthesis/forward rate constants

(k1, k3, and k5) are varied such that the desired number of molecules are created for

all three species. For software simulation, the former rate constants are set as k2 =

k4 = k6 = 3.2× 103 s-1 and k7 = 0 and the time to simulate the time span of 1 second

is measured. For chip simulation, three different time mappings are applied to map

the software parameters to the chip: The top, middle, and bottom lines in Figure 4-8

represent the measured simulation time when the rate constant of 3.2× 103 s-1 in the

software model is mapped into 3.2×103, 3.2×104, and 3.2×105 s-1, respectively, which

yield the simulation time of 1, 0.1, and 0.01 second, respectively. Next, Figure 4-9

shows the change in measured simulation time, as the number of replicated reactions

increases (1:1 time mapping, 1 molecule=1 nA, molecule count=3000 for all species)

140



0 1 2 3 4 5 6 7 8 9

Time (s)

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 m

ol
ec

ul
es

A (COPASI)
B (COPASI)

0 1 2 3 4 5 6 7 8 9

Time (s)

0

50

100

150

200

250

300

350

400

C
ur

re
nt

 (
nA

)

A (Chip)
B (Chip)

(a)

0 1 2 3 4 5 6 7 8 9

Time (s)

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 m

ol
ec

ul
es

A (COPASI)
B (COPASI)
C (COPASI)

0 1 2 3 4 5 6 7 8 9

Time (s)

0

50

100

150

200

250

300

350

400

C
ur

re
nt

 (
nA

)

A (Chip)
B (Chip)
C (Chip)

(b)

Figure 4-7: COPASI (left) and chip (right) data for a simple 7-reaction network
(∅ k1−→A k2−→∅, ∅ k3−→B k4−→∅, and A+B

k5−⇀↽−
k6

C k7−→∅), for two different parameter sets [63].

Parameters (for both software and the chip): (a) k1 = 1.2 × 104, k2 = k4 = 120,
k3 = 3.6 × 104, and k5 = k6 = k7 = 0. (b) k1 = 1.2 × 104, k2 = k4 = k7 = 120,
k3 = 3.6× 104, k5 = 1.2, and k6 = 0.

141



101 102 103

Number of molecules

10-2

10-1

100

101

S
im

ul
at

io
n 

tim
e 

(s
)

Chip (1molecule=1nA)
Chip (1molecule=10nA)
Chip (1molecule=100nA)
COPASI (Direct method)

Figure 4-8: The relationship between simulation time and the number of molecules,
for stochastic simulation performed using COPASI and the chip [63]. Chip simulation
is done with three different time and magnitude mappings.

0 20 40 60 80 100 120 140 160

Number of reactions

0

100

200

300

400

500

600

700

800

S
im

ul
at

io
n 

tim
e 

(s
)

Chip (1molecule=1nA)
COPASI (Direct method)

Figure 4-9: The relationship between simulation time and the number of reactions,
for stochastic simulation performed using COPASI and the chip [63].

142



[63]. Essentially, the two figures illustrate the fact that as the number of molecules

or the number of reactions scales, simulation time increases nearly proportionally in

software but remains unchanged in our platform. In other words, higher total reaction

rates require longer simulation time only for software. The peak speedup is achieved

when the rates are highest.

What determines this peak speedup is the dynamic range of the mean random

clock frequency. In the current implementation of the noise generator circuit, it

has to be configured according to the reaction rate constant. That is, owing to its

architecture, faster reaction rate constants (high Ikr/C) lead to higher levels of noise.

Thus, as we map a given rate constant of a model to a faster rate constant in a

cytomorphic chip, the noise level has to be reduced accordingly via switching certain

digital selection bits, such that the mean frequency of the random clock for a given

molecule number is increased. However, this programmable frequency range has an

upper limit. For example, for a magnitude mapping of 1 molecule = 1 nA, the highest

reaction rate constant for the chip is kr = 3.2× 103 s-1. This corresponds to 1:1 time

mapping between software and chip parameters, so in this case, the time the chip

takes to simulate the time span of 1 second simply becomes 1 second.

On the other hand, for the given time and magnitude mappings, when the molecule

number increases, the mean frequency of the random clock also increases automati-

cally to adjust the level of noise, by the operation of a molecule-number sensing circuit

and a frequency-locked loop [63]. At around 3,000 molecules (= 3,000 nA), however,

the frequency reaches its maximum value. Beyond this point, the noise circuit can

no longer produce appropriate levels of signal-to-noise ratio (SNR). In sum, when 1

molecule is mapped into 1 nA, the fastest chip simulation time is 1 second (with the

time mapping of 1:1), and the peak speedup (∼20x for the 7-reaction network, as

shown in Figure 4-8) arises when the molecule number is around 3,000.

Another important point to note is that when the molecule number is low, there

is a chance to simulate faster by manipulating the magnitude mapping. For example,

as shown in Figure 4-8, software simulation runs faster than chip simulation when

143



the number of molecules is 1004. In this region, there may be less motivation to

use the chip. However, if we change the time mapping such that 1 second of the

model is mapped into 0.1 second of the chip, the chip simulation can be run in 0.1

second. Then, why not use this time mapping from the beginning? The reason

is as follows: With the mappings described in the previous paragraph, there is no

more room to adjust the time mapping; the noise circuit is already configured to

produce the highest frequencies possible, so this new time mapping results in excessive

molecular fluctuations. A trick to alleviate this constraint is to adjust the magnitude

mapping as well. If we map 1 molecule to 10 nA instead of 1 nA, the SNR for a

given molecule number effectively increases, thereby compensating for the amount

decreased by adjusting the time mapping. Consequently, it allows to use the new

time mapping which leads to faster chip simulation.

However, it should be noted that this comes at the expense of a reduced dynamic

range of molecule levels. Since the mean random clock frequency reaches it maximum

value at 3,000 nA, the new magnitude mapping dictates that the maximum molecule

number is now 300. Thus, in this particular case, the dynamic range of species

concentrations has been reduced by a factor to 10. Therefore, this scheme can be

used when it is assured that the molecule levels stay within a certain boundary. If

so, adaptive changing of mappings enables similar degrees of speedup over software

in a wide range of molecular copy numbers, as depicted in Figure 4-8. Furthermore,

it is also possible to apply different magnitude mappings for different species, by

leveraging scaling functions of FPGAs and on-chip multipliers. This technique will

help when high and low molecule levels coexist in a system.

Finally, the maximum performance of the cytomorphic board is exhibited when the

full capacity of all noise generators is utilized. The aforementioned 7-reaction system

uses 3 noise generators. As shown in Figure 4-9, as we simulate more replicated

reactions with the same reaction rate, the board provides higher speed advantage

over software—up to 700x over COPASI and 30,000x over MATLAB, when all 80

4Note that in light of the typical number of molecules in cells [92], this is an unlikely condition,
especially when simulating large-scale networks.

144



noise generators (4 per chip × 20 chips) are used to simulate 160 reactions with

stochasticity.

Note that as the number of reactions increases, software simulation time increases

faster than proportionally. This is due to the nature of the Gillespie algorithm5:

In every iteration of the algorithm, there are tasks whose cost is relevant to the

number of reactions (e.g., calculating the propensity function of each reaction) and

irrelevant to the number of reactions (e.g., two random number generations). Among

these tasks, random number generation is the most expensive and dominates the

total computation time [81]. In addition, when the number of reactions (with the

same rate) or molecular copy numbers increases, it leads to a proportional increase

in the total reaction rate and in turn the number of time steps. When the number

of reactions is small, this results in a nearly proportional increase in simulation time.

However, when it becomes large, the cost of the tasks that is dependent on the number

of reactions becomes increasingly expensive. Thus, both the number of time steps

and the work load in each time step increase, so simulation time increases faster

than proportionally. In other words, simulation time is approximately the function of

xy(ax+ b) (a≪b), where x is the number of reactions, y is the number of molecules,

a is the cost of tasks that are dependent on the number of reactions, and b is the

cost of tasks that do not vary with the number of reactions. When x is small, this

expression behaves like bxy (proportional to the number of reactions), and when x is

big, it behaves like ax2y (proportional to the square of the number of reactions). This

reemphasizes that our system will provide greater advantages as the scale grows.

Note also that COPASI is a state-of-the-art software application optimized for

simulation of biochemical reaction networks. As a reference, we simulated the same

7-reaction system in MATLAB, a commonly used mathematical solver, using the

same Gillespie algorithm6. It took approximately 45 times longer than in COPASI,

elucidating that MATLAB may be a less desirable environment to run stochastic

5Specifically, the direct method is considered here.
6To run this simulation, we used an open-source MATLAB function available in this link (Copy-

right (c) 2012, Nezar Abdennur): http://www.mathworks.com/matlabcentral/fileexchange/

34707-gillespie-stochastic-simulation-algorithm

145

http://www.mathworks.com/matlabcentral/fileexchange/34707-gillespie-stochastic-simulation-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/34707-gillespie-stochastic-simulation-algorithm


simulation of biological networks.

Prudent readers might wonder why the p53 network simulation could only achieve

a 30x speedup over COPASI. This is because it is limited by stability, rather than

noise generation. The next section describes this issue and how to overcome it to

achieve faster simulation.

4.4 A Discussion of Simulation Speed

4.4.1 Analog vs. Digital

In the previous section, we showed how to utilize our cytomorphic computer to accel-

erate simulation. However, in fact, digital approaches using multi-core technologies,

GPUs, FPGAs, or custom digital integrated circuits might also create computing ca-

pabilities that surpass that of software. Such efforts are introduced in Sections 1.2.1

and 1.2.2. On the other hand, we also introduced in Sections 1.2.3 and 1.3 analog

approaches to develop computing systems and the merits they can provide. Indeed,

whether analog or digital solutions can yield better results is dependent on applica-

tions, and the best would be an optimized combination of the two worlds [109, 114].

Thus, we would like to highlight the most crucial reasons why the strategy to imple-

ment analog-circuit-based computing cores can thrive in our application:

1. Most biological systems inevitably span multiple scales in terms of timescale,

network size, or molecular population size. The system we designed is largely

immune to this multiscale nature (see Section 4.3), whereas digital tools suffer

when simulating such systems with stochasticity. This is because they necessi-

tate a large number of computationally expensive random number generations,

owing to a large number of time steps and a large computational load in each

time step [81].

Despite the possibilities to ease this computational challenge by algorithmic im-

provements (e.g., the next reaction method by Gibson & Bruck [36]) and parallel

processing (e.g., the use of GPUs [70,127]), some multiscale barriers are trickier

146



to overcome. For example, the first reaction method contains several types of

tasks which can take advantage of parallel computing, especially random num-

ber generation (one per reaction per time step). However, because of this, when

the number of reactions becomes large, the total computational cost for random

number generation grows prohibitively high. Thus, the direct method is often

more preferable. However, although the number of random number generation

per time step is fixed as 2 for the direct method, an increase in the number

of reactions has a direct impact on the number of time steps (especially if the

number of "fast" reactions increases). Consequently, the number of random

number generation increases. In addition, the both methods slow down nearly

proportionally as the molecular population increases. Thus, digital acceleration

techniques may bring about substantial benefits when executing multiple runs

of small-scale simulations, but not as much for multiscale simulations.

Let’s reexamine this in a more intuitive manner. If the total reaction rate7

increases, it means that reaction events occur more frequently. This requires

small time intervals to be created by the Gillespie algorithm, since it separately

accounts for each reaction event. That is, it randomly generates one event,

updates the molecule count of corresponding species, and then move on to the

next iteration. In other words, to distinguish between two reaction events oc-

curring almost at the same time, the algorithm has to reduce the size of the

discrete time step. As a result, the number of time steps and in turn simu-

lation time increase. On the other hand, analog computation is characterized

by asynchronous, continuous-time, and continuous-signal processing and direct

mapping of the state variables of dynamical system models to physical entities

(e.g., voltages and currents) of analog circuits. Electrons go around the system

to compute and change state variables at every moment of time, by moving

toward the same direction (addition) or opposite directions (subtraction) or ac-

cumulating on a capacitor (integration), etc. As such, if two reaction events

occur almost at the same time, it is inherently accounted for in the continuous-

7The sum of the rates of all reactions in the system.

147



time domain, without any special treatment to distinguish between the two.

Updating opeations also happen naturally and immediately, via explicit wire

connections and Kirchhoff’s current law which enable straightforward addition

and subtraction functions. This fundamental difference between analog and

digital computation suggests that analog computation makes it possible to im-

plement genuine parallel processing of biochemical reactions and thus may be

a better fit for our application.

2. Contrary to the analog solution, most digital methods to tackle the above issues

necessarily demand accuracy to be compromised for speed. For example, the

explicit tau-leaping method allows multiple reaction events to occur during a

time interval, thereby performing better when molecule numbers are relatively

high [41,103]. However, it comes at the price of a loss of accuracy and yet cannot

completely remove the molecule-number dependency. Other approximate algo-

rithms including the Langevin approaches, the implicit tau-leaping algorithm,

and the slow-scale stochastic simulation algorithm also sacrifice accuracy to

gain speed [42]. Unfortunately, there is little unifying theory as to the required

accuracy of stochastic simulation algorithms for biological studies [137]. Yet,

we view it as an opportunity where our system can be leveraged to shed light

on such uncertainties.

3. Studies have shown theoretically and experimentally that at the levels of pre-

cision which biological systems commonly use for computation, analog compu-

tation can be much more energy efficient than digital computation [109, 110],

both in electronics and in cells. Grounded on the cytomorphic mapping, our

computing units use the rich basis functions that already exist in analog transis-

tor citcuits for addition, multiplication, integration, noise generation, etc. This

eliminates the cost for reinventing these functions with logic gates. Although

we did not aim at optimizing power consumption in this thesis project, our

chips consume tens of mW of power and still perform faster simulation than

a microprocessor, which typically consumes tens of Watts. Furthermore, by

148



achieving higher speedup by using the techniques outlined in Section 4.4.3, our

system will be able to offer considerably higher power efficiency. It will become

an appealing trait in this era of putting more emphasis on producing higher

performance “per power”.

4.4.2 Overcoming Speed-Limiting Factors

We mentioned in the previous section that our analog-circuit-based computation is

much less susceptible to the challenges arising from multiscale stochastic models.

Which factors then limit the speed of our system? In this section, we discuss three

factors that govern simulation time and several trade-offs associated with the system.

Dynamic Range

The most straightforward factor that may affect simulation speed is the dynamic range

of variables. Let’s first consider the range of the parameters that represent reaction

rate constants. Since rate constants are proportional to Ikr/C and Ikr is produced by

a digital-to-analog converter (DAC), their range is determined by the range of electric

current which the DACs can create (see Section 2.2.7). The DACs are able to produce

at least five orders of magnitude of current levels (100 pA–10 µA), so if C is fixed,

the dynamic range of reaction rate constants is 100 dB. This is sufficient to model

and simulate most gene-protein networks [3,92], with time mappings that enable fast

simulation. Besides, to add more flexibility to the system, the current implementation

of the cytomorphic chips allows the placement of external capacitors to increase the

value of C (originally, 10–50 pF). Unless the leakage current of external capacitors

goes too high, this essentially eliminates the lower bound of rate constants. However,

since it takes up the pins of the chips, when the system is scaled, this feature should

only be permitted for a portion of building blocks.

Next, the dynamic range of the variables representing molecular concentration is

also determined by the output current range of DACs, as well as the operating range of

the current-mode circuits in the system. Thus, it also spans five orders of magnitude,

149



which again is wide enough to model the majority of gene-protein networks [3, 92].

Furthermore, if there exist species with molecule levels that go beyond the range,

they can separately be mapped into smaller levels of current within the range. In

this case, the associated KD (dissociation constant) levels should also be adjusted

with the same scale factor. If these species react with other species with a different

magnitude mapping, the amount of products should be properly scaled before being

subtracted from the amount of reactants, using current-mode multipliers in the chip.

In fact, if the molecule copy number of these species is so high that the number

of products is relatively negligible, these scaling and subtraction operations may be

omitted. The method described above is similar to automatic gain control, a widely

used technique in analog circuit design, which allows the system to operate for wider

ranges of molecular concentrations.

With the wide ranges of variables and additional flexibilities, it seems that the dy-

namic range rarely confines simulation speed and there is little motivation to improve

it. Nevertheless, there exists another important motivation. That is, the dynamic

range influences the other two speed-limiting factors, so wider ranges may lead to

faster simulation speed. This will be explained in the following sections.

How big is the room for improving the dynamic range? First of all, since we

use a BiCMOS process technology which allows us to use bipolar transistors that

exhibit nearly ideal exponential current-voltage characteristics over a very wide range

of current, our current-mode cicuits yield accurate results even with higher current

levels. In addition, for a bipolar transistor, a 10-fold increase in the collector current

results in less than a 0.1 V increase in its base-emitter voltage. Thus, as long as

the biasing circuits are slightly modified such that all bipolar transistors operate in

the forward-active mode, the current-mode circuits will operate faithfully with higher

levels of current. On the other hand, the current mirrors in the building blocks

are implemented with MOS transistors. At higher (above-threshold) current levels,

as their drain current increases, their gate-source voltage increases rapidly and the

transistors run out of the voltage headroom8. Simulation results show that without

8This effect of course may be mitigated by designing current mirrors with bipolar transistors.

150



much change in design, the current mirrors operate reliably up to 100 µA of current.

In fact, current levels higher than 100 µA may be impractical in terms of power

consumption of the chip. Hence, this level seems to be a reasonable target for future

chips. Modifying other components of the system (e.g., DACs and ADCs) for the

maximum operating current of 100 µA will also be a straightforward task.

Noise Generation

In Section 4.3, it is described that at a magnitude mapping of 1 molecule = 1 nA,

the highest reaction rate constant for the chip is kr = 3.2 × 103 s-1, and this is

determined by the programmable range of the random clock frequency. Currently,

its upper bound is limited because of a 700 fF capacitor placed at the output of the

thermal noise amplifier to low-pass filter the amplified noise. This low-pass filtering

is done to produce appropriate levels of noise for sufficiently small rate constants. If

we remove the capacitor, the capacitance seen at the output will reduce from 700

fF to around 5.4 fF, thereby increasing the cutoff frequency of the filter by 130x.

Meanwhile, the lower bound of the frequency can be preserved by making the value

of this capacitance digitally programmable. Taking into account the fact that we

can use better process technologies (which offer smaller parasitic capacitances and

faster speed), when estimated conservatively, we will be able to achieve at least a

100x higher random clock frequency. This means that reaction rate constants can be

increased as high as kr = 3.2× 105 s-1.

It is also explained in Section 4.3 as to how to leverage an extra dynamic range

of variables to decrease simulation time, via manipulating both time and magnitude

mappings. If we earn a 10x wider dynamic range with the modifications described in

the previous section, and alter the mappings as necessary, the rate constants much

higher than kr = 3.2×105 s-1 will be available. This will enable faster chip simulation

when molecule levels are low.

151



Stability

For the protein block introduced in Section 3.2, let’s consider a case where it is config-

ured to model a simple reversible binding reaction (A+B⇌C), i.e., Dfree/KDrv=1,

ratC=kdeg=0, n=1, and Cfree=Ctot. Let’s also assume that the concentration of

species B is much higher than A (i.e., [Atot]≪[Btot] and [Bfree]≈[Btot]). In the

negative feedback loop formed around A, there exist two major poles affecting its

stability—one “dominant” pole created at the capacitor node of the integrator and

the other “parasitic” pole created by a current mirror which mirrors Afree before it

enters a multiplier. To ensure good stability of the loop with a reasonable phase mar-

gin, the frequency of the parasitic pole should be higher than the crossover frequency

(where the magnitude of the loop gain becomes 1). Hence, the criteria for stability is

given by (
IBtot

IKDfw

)(
Ikr
C

)
<

IAfree

Cpar

(4.1)

where C is the value of the integrator capacitor and Cpar is the parasitic capacitance

seen at the gate node of the current mirror.

The above expression indicates that the stability of the loop is influenced by the

combined effect of multiple parameters and variables and more importantly, that

stability is directly related to simulation speed. That is, the upper bound of the term

Ikr/C, proportional to the reaction rate constant9, is set by the above criteria. For

example, if IBtot/IKDfw is 100, IAfree is 1 nA, and Cpar is 1 pF, the upper bound of

Ikr/C becomes 10 (which corresponds to kr≈400 s-1). Thus, if the three conditions,

1) high IBtot/IKDfw, 2) high Ikr/C, and 3) low IAfree, occur at the same time, a

stability threat is posed. In this case, to meet the criteria, the time mapping ought

to be adjusted such that we simulate with lower values of Ikr/C. It should also be

noted that this criteria is meaningful only when the feedback loop exists. If reactants

in a reaction are not consumed (as in transcription or translation), no feedback loop

exists, and stability does not become an issue.

Let’s now examine the implications of each term. First, IBtot/IKDfw is a term

9The reaction rate constant, kr, is equal to Ikr

Cϕt
. Thus, Ikr

C = 1 yields approximately kr = 40 s-1.

152



which sets the percentage of species A that is used up to produce the product C,

since ICtot

IAtot
=

IBtot/IKDfw

1+IBtot/IKDfw
at steady state. For example, when IBtot/IKDfw is 100,

99% of A is consumed to produce C. In most biological systems, the typical range

of IBtot/IKDfw is 0.1–10 and it rarely goes higher than 100. The higher IBtot/IKDfw

goes, the smaller Ikr/C should be to fulfill the stability criteria. It therefore limits

how fast chip simulation can run.

Second, as far as IAfree is concerned, what matters is the minimum level of IAfree,

which unfortunately happens when IBtot/IKDfw is highest in most cases. Obviously,

the miminum level of IAfree is affected by the magnitude mapping. For example, if

1 molecule is mapped into 1 nA and the molecule number changes between 1–1,000

molecules, min(IAfree) is 1 nA. To achieve a higher speedup, it is desirable that this

min(IAfree) is higher, which can be done by changing the magnitude mapping such

that 1 molecule is mapped into higher levels of current. Thus, a higher speedup can be

achieved by simply consuming more power (i.e., speed-power trade-off). This also im-

plies that efforts to increase the dynamic range (as described in the ‘Dynamic Range’

section above) will make additional room for boosting simulation speed. Lastly, a

clever use of automatic gain control (e.g., applying separate magnitude mappings for

low-copy-number species) will allow for faster simulation for the given dynamic range

of the chip.

Third, the parasitic capacitance, Cpar, has to be small to obtain a higher speedup.

Cpar is proportional to the transistor size of the current mirror, which is in turn de-

termined by the design requirement regarding accuracy. Ideally, the two transistors

used in the current mirror to copy current levels should have the same electrical prop-

erties. However, random mismatches exist between them due to process variations

(e.g., statistical variation in the scattering of dopant atoms). A way to reduce these

mismatches is to increase the size of the transistors. Thus, the desired accuracy de-

termines the transistor size, the transistor size sets the parasitic capacitance size, and

finally, the parasitic capacitance size affects simulation speed via the stability criteria

in (4.1). This reveals a speed-precision and an area-precision trade-off existing in our

design.

153



In summary, the goal to perform faster simulation can be accomplished by sac-

rificing power or precision. However, in fact, there are more possible ways to tackle

the speed limit caused by stability. Here we list a few:

1. The value of Cpar can be reduced by two different methods. First, if we switch

from a 0.35 µm to a 0.13 µm process technology, the matching constant for

the threshold voltage (AV T ) of an MOS transistor will improve approximately

by 3x [98]. This means that the required transistor area (i.e., W×L) to yield

the same matching characteristics will be reduced by 9x. Therefore, the value

of Cpar will also decrease by 9x. Second, the effective Cpar can be reduced by

inserting a buffer transistor between the drain and gate of the input transistor

of the current mirror (similar to M3 in Figure 2-19). Then, on behalf of IAfree,

the buffer will charge the gate node. Assuming that the current through the

buffer transistor is sufficiently high, the frequency of the parasitic pole increases

by a factor of Cpar/CD, where CD is the capacitance seen at the drain node. For

our transistor sizing, Cpar is ∼1 pF and CD is ∼2.4 fF. This corresponds to more

than a 400x improvement. It should be emphasized that to fully take advantage

of this technique, buffers should be placed in every node which might create a

low-frequency parasitic pole (especially, potential high-impedance nodes created

by small current). Considering the combined effect of those parasitic poles, we

believe that the effective value of Cpar can be reduced by at least 100x.

2. The lower bound of IAfree can be limited by artificially adding a small current

Ibasal. In normal conditions where Ibasal is negligible compared to IAfree, it causes

little impact on the calculation result of the block. However, when IBtot/IKDfw

surges, the level of IAfree decreases until it is limited by Ibasal. Then, what

appears at the output (ICtot) at steady state is IbasalIBtot/IKDfw instead of

IAfreeIBtot/IKDfw (which is smaller). In cases where this causes an intolerable

amount of error, the same level of current may be subtracted from the output

node to cancel it out. In this case, extra care is needed to minimize the mismatch

between the two currents. Furthermore, the scale factor for the magnitude

154



mapping affects the size of the error. That is, if higher levels of current are

used to represent molecule numbers, the effect of Ibasal on the output will be

smaller. Thus, having a wide dynamic range of operating current is helpful in

implementing this strategy as well.

3. A limiting function can be implemented to prevent excessively high values of

IBtot/IKDfw. Such values that appear in mathematical models may sometimes

be unphysically high in real biological systems, in which case the limiting func-

tion can be useful. Most molecules in biochemical reactions are rarely above

10KD, likely for reasons of energy consumption in the cell [110], which may nat-

urally limit parameters to physical rather than artificial mathematical modeling

ranges. Besides, even if they are physical values consistent with experimental

results, the function does not significantly change simulation results in most

cases. For example, when IBtot/IKDfw increases from 100 to 1000, the value of
ICtot

IAtot
=

IBtot/IKDfw

1+IBtot/IKDfw
changes from 0.99 to 0.999. This is less than a 1% differ-

ence, likely to be irrelevant in most biological situations. The limiting function

can be implemented digitally in FPGAs or as a special circuitry in cytomorphic

chips.

4. Under certain conditions, fast dynamics can be neglected. For example, let’s

consider a simple 3-reaction network, A
k1−⇀↽−
k2

B k3−→∅. If the transformation between

A and B occurs on a much faster timescale than the degradation of B (i.e.,

k1+ k2 ≫ k3), the transformation reactions rapidly reach chemical equilibrium.

In this case, we can assume that it reaches equilibrium “instantaneously” and the

equilibrium is maintained at all times. Then, the concentration of B becomes

[B] =
k1
k2

[A] (4.2)

and the degradation rate of B is given by

d[B]

dt
= k3[B] =

k1k3
k2

[A]. (4.3)

155



This is called the rapid equilibrium assumption. Once we use it to remove

fast timescales of a model, we can change the time mapping to run faster chip

simulation.

5. Alternatively, fast dynamics can be separately mapped into slower timescales of

the chip. That is, in the above example, as long as the condition of k1+k2 ≫ k3

is satisfied, the rapid equilibrium assumption is valid in terms of the accuracy of

the resulting dynamics. Thus, in cases where k1 and k2 are significantly greater

than k3, they can be reduced by the same ratio, as long as the error it casuses

is within a tolerable range. Just like the previous method, such adjustments

made in the fast dynamics can lead to faster simulation.

Therefore, we have at least seven different strategies to alleviate the speed con-

straint posed by stability. A compiler may be able to analyze given computational

models of biological networks to choose which techniques to use for which reactions.

Taken together, it seems feasible to improve our circuit such that max(IBtot/IKDfw) is

100, min(IAfree) is 10 nA, and Cpar is 10 fF. Then, the upper bound of Ikr/C becomes

10,000, corresponding to kr ≈ 4× 105 s-1.

4.4.3 Expected Performance After Improvements

We have shown in the previous section that automatic gain control techniques and

commonly used circuit improvements in our current-mode circuits, DACs, noise gen-

erators, and biasing circuits can bring about at least 100x faster simulation speed.

To create supercomputing power, such efforts should be accompanied by strategies

to integrate larger quantaties of computational units in a chip. The most straightfor-

ward way to accomplish it is to switch to a process technology with a smaller feature

size. Using a commercially available 0.13 µm BiCMOS process offered by IHP or

GlobalFoundries, the area occupied by a unit computational block will be reduced

approximately by 4–9x, while the accuracy of computation is preserved [98]. Another

straightforward method is to build bigger size chips. Since the die size of a protein

chip is 4.3 mm × 4.0 mm (17.2 mm2), a 25 mm × 25 mm (625 mm2) chip will give

156



us 36x more area. We can also employ other area-saving techniques including 1) us-

ing a minimum number of shared DACs and dynamic current mirrors to periodically

update parameters and variables, 2) reducing the number of parameters by sharing

several global parameters, and 3) adding simplified blocks that are less flexible but

smaller in size. Although it is challenging to provide an accurate estimation at this

point, it seems possible to integrate more than 100x greater number of computational

units in a chip.

In light of the 700x peak speedup over COPASI demonstrated in Section 4.3, a

100x improvement by addressing the speed-limiting factors in Section 4.4.2, and a

100x increase in the system scale as described in the previous paragraph, a simple

calculation of the peak speedup factor for the improved system yields 700×100×100 =

7 × 106. With this speedup, simulation of a reaction network which takes a year in

COPASI will take 4.5 seconds in the board. Note that this calculation excludes the

fact that software simulation time increases faster than proportionally as the number

of reactions increases.

It is worth noting that there are ongoing efforts by researchers to utilize huge

quantities of chips to realize massively parallel simulation. One such effort is the

SpiNNaker Project which aims at building a neuromorphic system with more than a

million computational cores (18 cores per chip) [33,91]. Scaling our system to such a

scale would entail great challenges regarding power, area, data communication, and so

forth, but it would undoubtedly amplify the capabilities of the system. The design of

on-chip molecular data packet routers and other circuitry that enable direct chip-to-

chip communication will help solve potential communication bottlenecks [58,87,93].

4.5 Conclusion

The value of our hybrid analog-digital cytomorphic computer will culminate in run-

ning very-large-scale stochastic simulations. To elucidate the feasibility of increasing

simulation scale, we implemented a proof-of-concept board which can control and

simulate with a large number of chips in a parallel fashion. The board is stuffed with

157



10 gene chips and 10 protein chips, along with an FPGA, and has a computing power

capable of modeling up to 1,400 biochemical reactions. It was demonstrated that the

board enables up to a 700x speedup over COPASI, an efficient biochemical system

simulator, and 30,000x over MATLAB.

More importantly, is was shown that the simulation speed and accuracy of the

system is immune to the network scale or molecular population size. This suggests

that our system may be well-suited for fast stochastic simulation of multiscale models.

In addition, the three factors that limit the speedup of our system—dynamic range,

noise generation, and stability—were examined in detail. Finally, based on the lessons

learned through implementing this demonstration, we proposed several well-known

and established circuit techniques to improve simulation speed and scale, which is

expected to create more than a million speedup.

158



Chapter 5

Conclusions

5.1 Summary

This thesis project initiated after realizing the critical needs for a high-speed compu-

tation tool in systems and synthetic biology and how pervasive software methods are

ill-suited for the simulation of large-scale biochemical reaction networks that include

parallel, nonlinear, non-modular, stochastic, and feedback dynamical effects. We saw

that it is mainly because conventional methods have been performing computation

to study networks that compute with a totally different mechanism. Therefore, our

goal was to create a cell-inspired electronic system which can address this issue. Here

are the summary of the contributions we made to this area:

1. Leveraging the mathematical similarities between chemistry and electronics and

the rich analog basis functions inherent in transistor circuits, we designed seven

efficient building blocks using BiCMOS log-domain current-mode circuits. They

can quantitatively represent fundamental bio-molecular functions in cells, which

include complex behaviors such as biochemical binding with non-modular or

loading effects, cooperative binding, probabilistic gene transcription, stochas-

ticity, etc. In doing so, they do not make on/off digital approximations but

fully capture analog effects. The use of bipolar junction transistors enables

these circuits to function over more than five orders of magnitude of molecular

159



concentration. The seven building-block circuits serve as universal and versatile

computational units throughout the system.

2. By composing the building-block circuits, hybrid analog-digital integrated-circuit

cytomorphic gene and protein chips are constructed in a 0.35 µm BiCMOS

process. Both chips feature digitally programmable network connectivity and

wide-dynamic-range reaction-rate constants and initial conditions, which are

flexible enough to model mass-action kinetics of arbitrary zeroth, first, and

second-order reactions in gene-protein networks. A scheme to use “total” and

“free” variables and corresponding building-block configuration mechanisms are

described, which allows for transient and steady-state solutions of differential

equations in the presence of transistor mismatch. The use of on-chip ADCs and

DACs enables the chips to interact digitally via an FPGA and thus provides

robustness and scalability to the system. The deterministic and stochastic sim-

ulations of published models of biological networks such as a repressilator, a

p53 signaling pathway, and a glycolysis pathway produce chip data that show

good quantitative agreement with those obtained from conventional software

simulations. The noise generators incorporated in the system enable stochastic

simulations by amplifying analog thermal noise that is consistent with Gillespie

simulations.

3. A proof-of-concept system which integrates and orchestrates hardware (i.e., cy-

tomorphic chips and FPGAs), software, analog, and digital computations is

implemented. An array of cytomorphic chips are mounted on a PCB, along

with an FPGA, to create a computing power capable of simulating networks

involving up to 1,400 biochemical reactions. Experimental results show that

with the capacity of our current implementation, the system can achieve a

peak speedup of 700x over COPASI and 30,000x over MATLAB. Through this

demonstration, it is shown that the system has not only a scalable architecture

amenable to massively parallel computation but also a fundamental structural

advantage over classic purely digital solutions. That is, an increase in network

160



scale or molecular population size does not require the simulation speed or ac-

curacy to be sacrificed. This finding suggests that the system may be able to

provide tremendous performance advantages when further scaled, particularly

for simulation of multiscale networks.

4. Finally, strategies to upgrade the speed and scale of the system are presented.

For this, the three speed-limiting factors of the system—dynamic range, noise

generation, and stability—are scrutinized and practical solutions are proposed

for each of them. It is shown that those solutions, combined with circuit tech-

niques to miniaturize our system, will enable further orders of magnitude of

speedup, estimated to be more than a million fold.

Table 5.1: Comparison of Various Approaches for Biological Simulations

Property
General-Purpose
Processors
(e.g., CPU)

Special-Purpose
Processors
(e.g., GPU)

Reconfigurable
Hardware
(e.g., FPGA)

Custom
Digital
ICs

Custom
Analog
ICs

Our
Hybrid
System

Speed + ++ ++ ++ +++ +++

Power
Efficiency + ++ ++ ++ +++ +++

Flexibility +++ +++ +++ ++ + ++

Scalability ++ ++ ++ ++ + +++

Dynamic
Range +++ +++ +++ +++ + ++

Precision +++ +++ +++ +++ + ++

Ability to
Parallelize + ++ ++ ++ +++ +++

Ease of
Development +++ ++ ++ + + +

Table 5.1 shows the comparison of important characteristics of various approaches

for solving the computational challenge that this thesis deals with. Although some-

what generalized, it gives an overview of pros and cons of each method. Overall, the

solution this thesis proposes can offer high speed and power efficiency and reasonable

flexibility, dynamic range, and precision, at the expense of development time and cost.

The idea of direct mapping in the continuous domain allows our system to achieve

parallelism naturally and thus maintain high speed even for large-scale simulations.

161



In a sense, this work is an endeavor to bridge the huge performance gap between

human-engineered systems and biological systems [110, 116]: To achieve high per-

formance, our system mimics the wise computational paradigm of cells—the use of

efficient analog computing units to carry out massively parallel computation. On the

other hand, our system is built to better understand or synthesize complex biological

networks and in turn gain more wisdom from them, by enhancing the ability to sim-

ulate, analyze, and design such networks. We hope that this positive feedback can

give a fresh insight into computational principles that are generally applicable to the

field of biology and electronics.

5.2 Future Work

5.2.1 Hardware Enhancements

The cytomorphic chips have evolved over years through five iterations of chip fabrica-

tion, as shown in Figure 5-1. The first two chips were fabricated in a UMC 0.18 µm

CMOS process and the next three chips were redesigned and fabricated in an AMS

0.35 µm BiCMOS process. Yet, there are still lots of opportunities to improve our

hardware:

1. Several circuit techniques can be used to tackle speed-limiting factors and en-

hance simulation speed. They include increasing the dynamic range of variables,

increasing the range of random clock frequency, reducing the effective parasitic

capacitance, etc. Refer to Section 4.4.2 for detailed explanations.

2. Integrating a greater number of computational units in a chip is one of the keys

to creating higher computing power for large-scale simulations, as described in

Section 4.4.3. It can be accomplished by implementing the ideas of shared DACs

(using dynamic current mirrors), global parameters, small-sized static blocks,

etc. We can also take advantage of better transistor matching, smaller transistor

size, and more number of metal layers that modern process technologies can

offer.

162



(a) (b)

(c) (d) (e)

Figure 5-1: Evolution of the cytomorphic chips, fabricated in (a)(b) a CMOS process
and (c)-(e) a BiCMOS process.

163



3. Eventually, it will be required to create an improved platform where a huge

number of cytomorphic chips and FPGAs can systematically be operated in

parallel (see Section 4.4.3). To prevent a potential communication bottleneck,

an on-chip router which enables molecular data packets to be sent via direct

chip-to-chip connections may be developed. To save chip area, communication

channels may be divided into local and global channels, dedicated to interactions

among neighboring building-block circuits and distant circuits, respectively.

4. To increase computation accuracy, various error reduction techniques such as

fully differential circuitry, common-mode feedback, autozeroing (to cancel off-

sets in current-mode circuits), and lookup tables (to compensate for the vari-

ability in ADCs and DACs) can be employed.

5. The structure of the noise generator in the system can be improved to produce

proper levels of noise for lower levels of SNR. This will open up new opportu-

nities for very-low-copy-number stochastic simulations.

5.2.2 Software Enhancements

A computer is a suitable platform for converting software models of biological net-

works to the chip representation and running rich software algorithms for network

analysis and parameter searching. These operations can be carried out in the follow-

ing ways:

1. Without a compiling tool, it is in fact cumbersome and time-consuming to set up

a chip simulation by manually interpreting software models and configuring the

chip. A typical user of our simulation tool would not want to handle such tasks.

The development of a compiler will drastically reduce this burden, enabling

greater ease of use, especially for large-scale simulations.

Thus, the primary role of the compiler is to inspect biological networks repre-

sented in standard formats such as Systems Biology Markup Language (SBML)

[56] to generate configurations for the building-block instances of our system.

164



Based on the given specifications of the chip, it first creates a netlist describing

the optimal set of building blocks to use, connectivity among them, and the

parameters for each block. In doing so, the compiler carries out signal mag-

nitude mapping such that the dynamic range of variables in the chip reliably

covers that in the target biological network. Additionally, the compiler deter-

mines the time mapping such that the chip performs simulation at a maximum

speed. Finally, the compiler converts the netlist to a bitstream to be sent to

the FPGA. Therefore, thanks to this compiler, a user will ultimately be able

to write a model in SBML or download one from BioModels Database [59] and

immediately run it on the chip.

A preliminary method to do compilation has already been explored at the Pro-

gram Analysis and Compilation Group at MIT. The details of the idea and

implementation of the compiler can be found in [1]. Its compatibility with our

system and actual simulation with hardware are yet to be tested.

2. Although more and more pathways and kinetic parameters are being discovered

and becoming publicly available [59, 62, 65, 88], a ton of them still remain un-

known [14,53,105]. Thus, to further enhance the utility of our high-throughput

computing device, it is important to explore ways to use it in conjunction with

existing searching and learning algorithms running on a digital computer. It

may also be needed to develop an optimized method that makes best use of

our unique hybrid analog-digital environment. This effort may be synergis-

tically combined with other useful approaches to finding parameters, such as

improving experimental techniques for measuring parameters [48, 76, 126] and

predicting parameters without experimental analysis [7, 43, 44,72,124].

5.2.3 Future Applications

The system we have built has potential to be used for many applications:

1. Various large-scale gene-protein networks can be simulated for exploring net-

work topologies, discovering parameters, analyzing complex cell functions, pre-

165



dicting and preventing diseases, and optimizing drug dosage. We are cur-

rently looking at several pathways related to matabolism, cancer, cell cycle,

and chemotaxis. Ways to incorporate reaction-diffusion equations may also be

explored, to account for space-dependent effects.

2. Our stochastic simulator can be utilized to study rare stochastic effects that

may lead to macroscopic consequences. They include drug resistance (due

to random mutations), ageing (due to the stochastic failures of DNA dam-

age repair), phenotypic heterogeneity (due to noisy gene expression), chemo-

taxix (due to the random switching between tumble and swim phases), and

the onset of Alzheimer’s disease (due to the random formation of plaques and

tangles) [69,101,125,137].

3. Our system can be used to facilitate the design of synthetic circuits in living

cells. The synthetic biology community has been finding the “design rules” for

engineering synthetic circuits [9, 10, 102], appreciating the potential of analog

approaches [17, 110], and recognizing the importance of understanding and ex-

ploiting the stochasticity in cells [102, 128, 141]. In the near future, it would

be far easier to design and assemble synthetic circuit “modules” to construct

complex large-scale systems in an automated fashion. These systems may be

“uploaded” into target cells to regulate their functions, by interacting with ex-

isting networks such as cell-cycle, cancer, and metabolic pathways [61,107]. All

of these trends will increase the demand for a powerful tool for design, analysis,

and simulation of biological networks. Our cytomorphic system may have an

opportunity to play an important role in this area, as CAD tools have played

in the semiconductor industry.

4. Owing to the ability of cytomorphic chips to model various forms of linear and

nonlinear differential equations (e.g., the one in equation (1.5)), the system may

be used as a general-purpose stochastic differential equation solver. Thus, the

application of the system may be further extended to other fields, including

physics, engineering, finance, and economics.

166



It seems clear that this work has an interdisciplinary nature as well as plenty

of room for improvements. Hence, further innovations can be best achieved by the

collaborative efforts of experts in diverse fields including circuit design, synthetic and

systems biology, computer science, and numerical simulation.

167



168



Bibliography

[1] Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard. Configuration Synthesis
for Programmable Analog Devices with Arco. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, pages 177–193, New York, NY, USA, 2016. ACM.

[2] G. K. Ackers, A. D. Johnson, and M. A. Shea. Quantitative model for gene
regulation by lambda phage repressor. Proceedings of the National Academy of
Sciences, pages 1129–1133, 1982.

[3] U. Alon. An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman and Hall, Boca Raton, Florida, 2007.

[4] R. Ananthanarayanan, S.K. Esser, H.D. Simon, and D.S. Modha. The cat is
out of the bag: cortical simulations with 109 neurons, 1013 synapses. In High
Performance Computing Networking, Storage and Analysis, Proceedings of the
Conference on, pages 1–12, Nov 2009.

[5] A. G. Andreou, K. A. Boahen, P. O. Pouliquen, A. Pavasovic, R. E. Jenkins,
and K. Strohbehn. Current-mode subthreshold MOS circuits for analog VLSI
neural systems. IEEE Transactions on Neural Networks, 2(2):205–213, March
1991.

[6] M. W. Baker and R. Sarpeshkar. Low-Power Single-Loop and Dual-Loop AGCs
for Bionic Ears. IEEE Journal of Solid-State Circuits, 41(9):1983–1996, Septem-
ber 2006.

[7] Michael A. Beer and Saeed Tavazoie. Predicting Gene Expression from Se-
quence. Cell, 117(2):185–198, April 2004.

[8] B.V. Benjamin, Peiran Gao, E. McQuinn, S. Choudhary, AR. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A Merolla, and K. Boahen.
Neurogrid: A mixed-analog-digital multichip system for large-scale neural sim-
ulations. Proceedings of the IEEE, 102(5):699–716, May 2014.

[9] Jennifer A. N. Brophy and Christopher A. Voigt. Principles of genetic circuit
design. Nature Methods, 11(5):508–520, May 2014.

169



[10] Jarred M. Callura, Charles R. Cantor, and James J. Collins. Genetic switch-
board for synthetic biology applications. Proceedings of the National Academy
of Sciences, 109(15):5850–5855, April 2012.

[11] D. Ewen Cameron, Caleb J. Bashor, and James J. Collins. A brief history of
synthetic biology. Nature Reviews Microbiology, 12(5):381–390, May 2014.

[12] Stefano Cardinale and Adam Paul Arkin. Contextualizing context for synthetic
biology–identifying causes of failure of synthetic biological systems. Biotechnol-
ogy Journal, 7(7):856–866, July 2012.

[13] Han-Yu Chuang, Matan Hofree, and Trey Ideker. A decade of systems biology.
Annual Review of Cell and Developmental Biology, 26:721–744, 2010.

[14] John Cole, Michael J. Hallock, Piyush Labhsetwar, Joseph R. Peterson, John E.
Stone, and Zaida Luthey-Schulten. Stochastic Simulations of Cellular Processes:
From Single Cells to Colonies. In Computational Systems Biology, pages 277–
293. Elsevier, 2014.

[15] G. E R Cowan, R.C. Melville, and Y. Tsividis. A vlsi analog computer/digital
computer accelerator. Solid-State Circuits, IEEE Journal of, 41(1):42–53, Jan
2006.

[16] R. Danial, S. S. Woo, L. Turicchia, and R. Sarpeshkar. Analog transistor models
of bacterial genetic circuits. In Proceedings of the 2011 IEEE Biological Circuits
and Systems (BioCAS) Conference, pages 333–336, San Diego, CA, November
2011.

[17] Ramiz Daniel, Jacob R. Rubens, Rahul Sarpeshkar, and Timothy K. Lu. Syn-
thetic analog computation in living cells. Nature, 497(7451):619–623, May 2013.

[18] Hidde de Jong. Modeling and simulation of genetic regulatory systems: a liter-
ature review. Journal of Computational Biology: A Journal of Computational
Molecular Cell Biology, 9(1):67–103, 2002.

[19] Domitilla Del Vecchio, Alexander J Ninfa, and Eduardo D Sontag. Modular cell
biology: retroactivity and insulation. Molecular Systems Biology, 4(1), 2008.

[20] T. Delbruck and A Van Schaik. Bias current generators with wide dynamic
range. In Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004
International Symposium on, volume 1, pages I–337–I–340 Vol.1, May 2004.

[21] V. Douence, A. Laflaquière, G. Le Masson, T. Bal, Thierry Bal, and Gwen-
dal Le Masson. Analog electronic system for simulating biological neurons. In
in Proceedings of the International Work-Conference on Artificial and Natural
Neural Networks, IWANN, pages 188–197, 1999.

170



[22] J.E. Duarte, J. Velasco-Medina, and P.A Moreno. Hardware simulation of
yeast glycolytic oscillations. In Bioinformatics and Biomedicine Workshops
(BIBMW), 2011 IEEE International Conference on, pages 396–399, Nov 2011.

[23] D. Dupeyron, S. Le Masson, Y. Deval, G. Le Masson, and J.-P. Dom. A
BiCMOS implementation of the Hodgkin-Huxley formalism. In , Proceedings of
Fifth International Conference on Microelectronics for Neural Networks, 1996,
pages 311–316, February 1996.

[24] R. Timothy Edwards and Gert Cauwenberghs. Synthesis of Log-Domain Fil-
ters from First-Order Building Blocks. Analog Integrated Circuits and Signal
Processing, 22(2-3):177–186, March 2000.

[25] Tom Ellis, Xiao Wang, and James J. Collins. Diversity-based, model-guided con-
struction of synthetic gene networks with predicted functions. Nature Biotech-
nology, 27(5):465–471, May 2009.

[26] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of
transcriptional regulators. Nature, 403(6767):335–338, January 2000.

[27] Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia, and Peter S. Swain.
Stochastic gene expression in a single cell. Science, 297(5584):1183–1186, 2002.

[28] Drew Endy and Roger Brent. Modelling cellular behaviour. Nature,
409(6818):391–395, January 2001.

[29] A. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im
Strahlungsfeld. Annalen der Physik, 348(5):810–820, January 1914.

[30] Claire M. Fraser, Jeannine D. Gocayne, Owen White, Mark D. Adams, Re-
becca A. Clayton, Robert D. Fleischmann, Carol J. Bult, Anthony R. Kerlavage,
Granger Sutton, Jenny M. Kelley, Janice L. Fritchman, Janice F. Weidman,
Keith V. Small, Mina Sandusky, Joyce Fuhrmann, David Nguyen, Teresa R.
Utterback, Deborah M. Saudek, Cheryl A. Phillips, Joseph M. Merrick, Jean-
Francois Tomb, Brian A. Dougherty, Kenneth F. Bott, Ping-Chuan Hu,
Thomas S. Lucier, Scott N. Peterson, Hamilton O. Smith, Clyde A. Hutchison,
and J. Craig Venter. The minimal gene complement of mycoplasma genitalium.
Science, 270(5235):397–404, 1995.

[31] D. R. Frey. State-space synthesis and analysis of log-domain filters. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
45(9):1205–1211, September 1998.

[32] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, and H. Ki-
tano. CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks.
Proceedings of the IEEE, 96(8):1254–1265, August 2008.

[33] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The SpiNNaker Project.
Proceedings of the IEEE, 102(5):652–665, May 2014.

171



[34] Socorro Gama-Castro, Heladia Salgado, Alberto Santos-Zavaleta, Daniela
Ledezma-Tejeida, Luis Muñiz-Rascado, Jair Santiago García-Sotelo, Kevin
Alquicira-Hernández, Irma Martínez-Flores, Lucia Pannier, Jaime Abra-
ham Castro-Mondragón, Alejandra Medina-Rivera, Hilda Solano-Lira, César
Bonavides-Martínez, Ernesto Pérez-Rueda, Shirley Alquicira-Hernández,
Liliana Porrón-Sotelo, Alejandra López-Fuentes, Anastasia Hernández-
Koutoucheva, Víctor Del Moral-Chávez, Fabio Rinaldi, and Julio Collado-Vides.
RegulonDB version 9.0: high-level integration of gene regulation, coexpression,
motif clustering and beyond. Nucleic Acids Research, 44(Database issue):D133–
D143, January 2016.

[35] Timothy S. Gardner, Charles R. Cantor, and James J. Collins. Construction of
a genetic toggle switch in escherichia coli. Nature, 403(6767):339–342, January
2000.

[36] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation
of chemical systems with many species and many channels. The Journal of
Physical Chemistry A, 104(9):1876–1889, 2000.

[37] B. Gilbert. Translinear circuits: a proposed classification. Electronics Letters,
11(1):14–16, January 1975.

[38] Barrie Gilbert. Translinear circuits: An historical overview. Analog Integrated
Circuits and Signal Processing, 9(2):95–118, March 1996.

[39] Daniel T Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403–434, December 1976.

[40] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[41] Daniel T. Gillespie. Approximate accelerated stochastic simulation of chem-
ically reacting systems. The Journal of Chemical Physics, 115(4):1716–1733,
2001.

[42] Daniel T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review
of Physical Chemistry, 58:35–55, 2007.

[43] Abel González Pérez, Vladimir Espinosa Angarica, Julio Collado-Vides, and
Ana Tereza Ribeiro Vasconcelos. From sequence to dynamics: the effects of
transcription factor and polymerase concentration changes on activated and
repressed promoters. BMC Molecular Biology, 10:92, 2009.

[44] Joshua A Granek and Neil D Clarke. Explicit equilibrium modeling of
transcription-factor binding and gene regulation. Genome Biology, 6(10):R87,
2005.

172



[45] Nicholas J. Guido, Xiao Wang, David Adalsteinsson, David McMillen, Jeff
Hasty, Charles R. Cantor, Timothy C. Elston, and J. J. Collins. A bottom-
up approach to gene regulation. Nature, 439(7078):856–860, February 2006.

[46] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J.
Douglas, and H. Sebastian Seung. Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947–951, June
2000.

[47] Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-
Schulten. Simulation of reaction diffusion processes over biologically relevant
size and time scales using multi-GPU workstations. Parallel Computing, 40(5-
6):86–99, May 2014.

[48] Petter Hammar, Mats Walldén, David Fange, Fredrik Persson, Özden Baltekin,
Gustaf Ullman, Prune Leroy, and Johan Elf. Direct measurement of transcrip-
tion factor dissociation excludes a simple operator occupancy model for gene
regulation. Nature Genetics, 46(4):405–408, April 2014.

[49] Jeff Hasty, David McMillen, and J. J. Collins. Engineered gene circuits. Nature,
420(6912):224–230, November 2002.

[50] Edward H. Hellen, Syamal K. Dana, Jürgen Kurths, Elizabeth Kehler, and
Sudeshna Sinha. Noise-aided logic in an electronic analog of synthetic genetic
networks. PLoS ONE, 8(10):e76032, 10 2013.

[51] Edward H. Hellen, Evgenii Volkov, Jurgen Kurths, and Syamal Kumar Dana.
An electronic analog of synthetic genetic networks. PLoS ONE, 6(8):e23286, 08
2011.

[52] Anthony D. Hill, Jonathan R. Tomshine, Emma M. B. Weeding, Vassilios
Sotiropoulos, and Yiannis N. Kaznessis. SynBioSS: the synthetic biology mod-
eling suite. Bioinformatics, 24(21):2551–2553, November 2008.

[53] Christoph Hold and Sven Panke. Towards the engineering of in vitro systems.
Journal of the Royal Society Interface, 6(Suppl 4):S507–S521, August 2009.

[54] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Na-
talia Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer.
COPASI—a COmplex PAthway SImulator. Bioinformatics, 22(24):3067–3074,
December 2006.

[55] T.-c.D. Huang and C.A Zukowski. Reconfigurable digital/analog processor ar-
ray for the simulation of gene regulatory networks. In Circuits and Systems,
2006. MWSCAS ’06. 49th IEEE International Midwest Symposium on, vol-
ume 1, pages 552–556, Aug 2006.

173



[56] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, and the
rest of the SBML Forum, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-
Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I.
Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S.
Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew,
D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nel-
son, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu,
H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang.
The systems biology markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics, 19(4):524–531,
March 2003.

[57] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems
biology. Annual Review of Genomics and Human Genetics, 2:343–372, 2001.

[58] N. Imam and R. Manohar. Address-Event Communication Using Token-Ring
Mutual Exclusion. In 2011 17th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pages 99–108, April 2011.

[59] N Juty, R Ali, M Glont, S Keating, N Rodriguez, Mj Swat, Sm Wimalaratne,
H Hermjakob, N Le Novère, C Laibe, and V Chelliah. BioModels: Content,
Features, Functionality, and Use. CPT: Pharmacometrics & Systems Pharma-
cology, 4(2):55–68, February 2015.

[60] Jonathan R. Karr, Jayodita C. Sanghvi, Derek N. Macklin, Miriam V.
Gutschow, Jared M. Jacobs, Benjamin Bolival, Nacyra Assad-Garcia, John I.
Glass, and Markus W. Covert. A whole-cell computational model predicts phe-
notype from genotype. Cell, 150(2):389–401, July 2012.

[61] Jay D. Keasling. Synthetic biology and the development of tools for metabolic
engineering. Metabolic Engineering, 14(3):189–195, May 2012.

[62] Ingrid M. Keseler, Amanda Mackie, Martin Peralta-Gil, Alberto Santos-
Zavaleta, Socorro Gama-Castro, César Bonavides-Martínez, Carol Fulcher,
Araceli M. Huerta, Anamika Kothari, Markus Krummenacker, Mario La-
tendresse, Luis Muñiz-Rascado, Quang Ong, Suzanne Paley, Imke Schröder,
Alexander G. Shearer, Pallavi Subhraveti, Mike Travers, Deepika Weerasinghe,
Verena Weiss, Julio Collado-Vides, Robert P. Gunsalus, Ian Paulsen, and Pe-
ter D. Karp. EcoCyc: fusing model organism databases with systems biology.
Nucleic Acids Research, 41(D1):D605–D612, January 2013.

[63] J. Kim*, S. S. Woo*, and R. Sarpeshkar. Fast and precise simulation of stochas-
tic biochemical reactions with amplified thermal noise in transistor chips. to be
published.

[64] Jaewook Kim, Tae-Kwang Jang, Young-Gyu Yoon, and SeongHwan Cho. Anal-
ysis and design of voltage-controlled oscillator based analog-to-digital converter.

174



Circuits and Systems I: Regular Papers, IEEE Transactions on, 57(1):18–30,
Jan 2010.

[65] M. D. Shaji Kumar, K. Abdulla Bava, M. Michael Gromiha, Ponraj Prabakaran,
Koji Kitajima, Hatsuho Uedaira, and Akinori Sarai. ProTherm and ProNIT:
thermodynamic databases for proteins and protein-nucleic acid interactions.
Nucleic Acids Research, 34(Database issue):D204–206, January 2006.

[66] Roberta Kwok. Five hard truths for synthetic biology. Nature News,
463(7279):288–290, January 2010.

[67] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead. Advances in
neural information processing systems 1. chapter Winner-take-all Networks
of O(N) Complexity, pages 703–711. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1989.

[68] S. Le Masson, A Laflaquiere, T. Bal, and G. Le Masson. Analog circuits for
modeling biological neural networks: design and applications. IEEE Transac-
tions on Biomedical Engineering, 46(6):638–645, June 1999.

[69] Kim Lewis. Persister cells. Annual Review of Microbiology, 64(1):357–372, 2010.

[70] Hong Li and Linda Petzold. Efficient Parallelization of the Stochastic Simulation
Algorithm for Chemically Reacting Systems On the Graphics Processing Unit.
Int. J. High Perform. Comput. Appl., 24(2):107–116, May 2010.

[71] Vladimir A Likic, Malcolm J. McConville, Trevor Lithgow, and Antony Bacic.
Systems Biology: The Next Frontier for Bioinformatics. Advances in Bioinfor-
matics, 2010:e268925, February 2011.

[72] Xiao Liu, David M. Noll, Jason D. Lieb, and Neil D. Clarke. DIP-chip: Rapid
and accurate determination of DNA-binding specificity. Genome Research,
15(3):421–427, March 2005.

[73] H. Lodish et al. Molecular Cell Biology. W. H. Freeman and Company, New
York, 6 edition, 2008.

[74] J.-B. Lugagne, D.A Oyarzun, and G.-B.V. Stan. Stochastic simulation of enzy-
matic reactions under transcriptional feedback regulation. In Control Confer-
ence (ECC), 2013 European, pages 3646–3651, July 2013.

[75] E.F. MacNichol. An analog computer to simulate systems of coupled bimolec-
ular reactions. Proceedings of the IRE, 47(11):1816–1820, Nov 1959.

[76] Sebastian J. Maerkl and Stephen R. Quake. A Systems Approach to Mea-
suring the Binding Energy Landscapes of Transcription Factors. Science,
315(5809):233–237, January 2007.

175



[77] Misha Mahowald and Rodney Douglas. A silicon neuron. Nature,
354(6354):515–518, December 1991.

[78] S. Mandal and R. Sarpeshkar. Circuit models of stochastic genetic networks. In
IEEE Symposium on Biological Circuits and Systems (BioCAS), pages 109–112,
Beijing, China, November 2009.

[79] S. Mandal and R. Sarpeshkar. Log-domain circuit models of chemical reactions.
In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), pages 2697–2700, Taipei, Taiwan, May 2009.

[80] S. Mandal and R. Sarpeshkar. Electronic system for modeling chemical reactions
and biochemical processes, October 9 2012. US Patent 8,285,523.

[81] Bo Marr and Jennifer Hasler. Compiling probabilistic, bio-inspired circuits on
a field programmable analog array. Frontiers in Neuroscience, 8, May 2014.

[82] William Mather, Matthew Bennett, Jeff Hasty, and Lev Tsimring. Delay-
induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett.,
102:068105, Feb 2009.

[83] E.E. May and R.L. Schiek. Simulating metabolism in escherichia coli k-12 – a
circuit-based approach. In Biomedical Circuits and Systems Conference, 2006.
BioCAS 2006. IEEE, pages 85–88, Nov 2006.

[84] Robert McMillan. Darpa Has Seen the Future of Computing And Its Analog,
August 2012.

[85] Donald A. McQuarrie. Stochastic approach to chemical kinetics. Journal of
Applied Probability, 4(03):413–478, December 1967.

[86] Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[87] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy,
Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yu-
taka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar
Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk,
Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron inte-
grated circuit with a scalable communication network and interface. Science,
345(6197):668–673, 2014.

[88] Ron Milo, Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer.
BioNumbers—the database of key numbers in molecular and cell biology. Nu-
cleic Acids Research, 38(Database issue):D750–D753, January 2010.

[89] B. A. Minch. Synthesis of multiple-input translinear element log-domain fil-
ters. In Proceedings of the 1999 IEEE International Symposium on Circuits
and Systems, 1999. ISCAS ’99, volume 2, pages 697–700 vol.2, July 1999.

176



[90] Dharmendra S. Modha, Rajagopal Ananthanarayanan, Steven K. Esser, An-
thony Ndirango, Anthony J. Sherbondy, and Raghavendra Singh. Cognitive
computing. Commun. ACM, 54(8):62–71, August 2011.

[91] Don Monroe. Neuromorphic Computing Gets Ready for the (Really) Big Time.
Commun. ACM, 57(6):13–15, June 2014.

[92] Uri Moran, Rob Phillips, and Ron Milo. Snapshot: Key numbers in biology.
Cell, 141(7):1262 – 1262.e1, 2010.

[93] Javier Navaridas, Mikel Luján, Jose Miguel-Alonso, Luis A. Plana, and Steve
Furber. Understanding the Interconnection Network of SpiNNaker. In Proceed-
ings of the 23rd International Conference on Supercomputing, ICS ’09, pages
286–295, New York, NY, USA, 2009. ACM.

[94] K. Nielsen, P. G. Sørensen, F. Hynne, and H. G. Busse. Sustained oscillations
in glycolysis: an experimental and theoretical study of chaotic and complex pe-
riodic behavior and of quenching of simple oscillations. Biophysical Chemistry,
72(1-2):49–62, May 1998.

[95] Ertugrul M. Ozbudak, Mukund Thattai, Iren Kurtser, Alan D. Grossman, and
Alexander van Oudenaarden. Regulation of noise in the expression of a single
gene. Nature Genetics, 31(1):69–73, May 2002.

[96] Konstantinos I. Papadimitriou, Guy-Bart V. Stan, and Emmanuel M. Drakakis.
Systematic computation of nonlinear cellular and molecular dynamics with low-
power cytomimetic circuits: A simulation study. PLoS ONE, 8(2):e53591, 02
2013.

[97] Hyungman Park and A Gerstlauer. Toward a fast stochastic simulation proces-
sor for biochemical reaction networks. In Application-Specific Systems, Archi-
tectures and Processors (ASAP), 2013 IEEE 24th International Conference on,
pages 50–58, June 2013.

[98] M.J.M. Pelgrom, H.P. Tuinhout, and M. Vertregt. Transistor matching in ana-
log cmos applications. In Electron Devices Meeting, 1998. IEDM ’98. Technical
Digest., International, pages 915–918, Dec 1998.

[99] M. Planck. Sitzungsber. Preuss. Akad.Wiss. Phys.Math. Kl, 325:3, 1917.

[100] Carole J. Proctor and Douglas A. Gray. Explaining oscillations and variability
in the p53-Mdm2 system. BMC Systems Biology, 2:75, 2008.

[101] Carole J. Proctor, Ilse Sanet Pienaar, Joanna L. Elson, and Thomas B. L.
Kirkwood. Aggregation, impaired degradation and immunization targeting of
amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach.
Molecular Neurodegeneration, 7:32, 2012.

177



[102] Priscilla E. M. Purnick and Ron Weiss. The second wave of synthetic biology:
from modules to systems. Nature Reviews Molecular Cell Biology, 10(6):410–
422, June 2009.

[103] Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gillespie.
Stiffness in stochastic chemically reacting systems: The implicit tau-leaping
method. The Journal of Chemical Physics, 119(24):12784–12794, December
2003.

[104] S.M. Rezaul Hasan. A novel mixed-signal integrated circuit model for dna-
protein regulatory genetic circuits and genetic state machines. Circuits and
Systems I: Regular Papers, IEEE Transactions on, 55(5):1185–1196, June 2008.

[105] Elijah Roberts, Andrew Magis, Julio O. Ortiz, Wolfgang Baumeister, and Zaida
Luthey-Schulten. Noise contributions in an inducible genetic switch: a whole-
cell simulation study. PLoS computational biology, 7(3):e1002010, March 2011.

[106] Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes:
high-performance stochastic simulation method for the reaction-diffusion mas-
ter equation. Journal of Computational Chemistry, 34(3):245–255, January
2013.

[107] Warren C. Ruder, Ting Lu, and James J. Collins. Synthetic Biology Moving
into the Clinic. Science, 333(6047):1248–1252, September 2011.

[108] Lukasz Salwinski and David Eisenberg. In silico simulation of biological network
dynamics. Nature Biotechnology, 22(8):1017–1019, August 2004.

[109] R. Sarpeshkar. Analog versus digital: Extrapolating from electronics to neuro-
biology. Neural Computation, 10(7):1601–1638, October 1998.

[110] R. Sarpeshkar. Analog synthetic biology. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2012),
March 2014.

[111] R. Sarpeshkar. Guest Editorial—Special Issue on Synthetic Biology. IEEE
Transactions on Biomedical Circuits and Systems, 9(4):449–452, August 2015.

[112] R. Sarpeshkar, M. W. Baker, C. D. Salthouse, J. J. Sit, L. Turicchia, and S. M.
Zhak. An analog bionic ear processor with zero-crossing detection. In ISSCC.
2005 IEEE International Digest of Technical Papers. Solid-State Circuits Con-
ference, 2005., pages 78–79 Vol. 1, February 2005.

[113] R. Sarpeshkar, T. Delbruck, and C.A. Mead. White noise in mos transistors
and resistors. Circuits and Devices Magazine, IEEE, 9(6):23–29, Nov 1993.

[114] R. Sarpeshkar and M. O’Halloran. Scalable hybrid computation with spikes.
Neural Computation, 14:2003–2038, September 2002.

178



[115] R. Sarpeshkar, C. Salthouse, Ji-Jon Sit, M. W. Baker, S. M. Zhak, T. K. T. Lu,
L. Turicchia, and S. Balster. An ultra-low-power programmable analog bionic
ear processor. IEEE Transactions on Biomedical Engineering, 52(4):711–727,
April 2005.

[116] Rahul Sarpeshkar. Cytomorphic electronics: cell-inspired electronics for sys-
tems and synthetic biology. In Ultra Low Power Bioelectronics: Fundamentals,
Biomedical Applications, and Bio-Inspired Systems, chapter 24. Cambridge Uni-
versity Press, Cambridge, 2010.

[117] J. Schemmel, D. Bruderle, A Grubl, M. Hock, K. Meier, and S. Millner. A wafer-
scale neuromorphic hardware system for large-scale neural modeling. In Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,
pages 1947–1950, May 2010.

[118] M. Schwehm. Fast stochastic simulation of metabolic networks. Proceedings of
German Conference on Bioinformatics (GCB 2001), pages 223–226, 2001.

[119] Markus Schwehm. Parallel stochastic simulation of whole-cell models. Pro-
ceedings of the 2nd International Conference on Systems Biology (ICSB 2001),
pages 333–341, 2001.

[120] E. Seevinck. Companding current-mode integrator: a new circuit principle
for continuous-time monolithic filters. Electronics Letters, 26(24):2046–2047,
November 1990.

[121] E. Seevinck, E. A. Vittoz, M. du Plessi, T. H. Joubert, and W. Beetge. CMOS
translinear circuits for minimum supply voltage. IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Processing, 47(12):1560–1564,
December 2000.

[122] J. s Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajen-
dran, J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman. A 45nm CMOS
neuromorphic chip with a scalable architecture for learning in networks of spik-
ing neurons. In 2011 IEEE Custom Integrated Circuits Conference (CICC),
pages 1–4, September 2011.

[123] David E. Shaw, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo, J. P.
Grossman, C. Richard Ho, Douglas J. Lerardi, István Kolossváry, John L.
Klepeis, Timothy Layman, Christine McLeavey, Martin M. Deneroff, Mark A.
Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael
Theobald, Brian Towles, Stanley C. Wang, Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson, and Kevin J.
Bowers. Anton, a special-purpose machine for molecular dynamics simulation.
Communications of the ACM, 51(7):91, July 2008.

[124] Ryan K. Shultzaberger, Lindsey R. Roberts, Ilya G. Lyakhov, Igor A. Sidorov,
Andrew G. Stephen, Robert J. Fisher, and Thomas D. Schneider. Correlation

179



between binding rate constants and individual information of E. coli Fis binding
sites. Nucleic Acids Research, 35(16):5275–5283, August 2007.

[125] Sabrina L. Spencer, Suzanne Gaudet, John G. Albeck, John M. Burke, and
Peter K. Sorger. Non-genetic origins of cell-to-cell variability in TRAIL-induced
apoptosis. Nature, 459(7245):428–432, May 2009.

[126] Gary D. Stormo and Yue Zhao. Determining the specificity of proteinDNA
interactions. Nature Reviews Genetics, 11(11):751–760, November 2010.

[127] Kei Sumiyoshi, Kazuki Hirata, Noriko Hiroi, and Akira Funahashi. Accelera-
tion of discrete stochastic biochemical simulation using GPGPU. Frontiers in
Physiology, 6, February 2015.

[128] Jeffrey J. Tabor, Travis S. Bayer, Zachary B. Simpson, Matthew Levy, and
Andrew D. Ellington. Engineering stochasticity in gene expression. Molecular
bioSystems, 4(7):754–761, July 2008.

[129] Ilias Tagkopoulos, Charles Zukowski, German Cavelier, and Dimitris Anastas-
siou. A custom fpga for the simulation of gene regulatory networks. In Proceed-
ings of the 13th ACM Great Lakes Symposium on VLSI, GLSVLSI ’03, pages
132–135, New York, NY, USA, 2003. ACM.

[130] M. Tavakoli and R. Sarpeshkar. A sinh resistor and its application to tanh
linearization. IEEE Journal of Solid-State Circuits, 40(2):536–543, February
2005.

[131] J. J. Y. Teo, S. S. Woo, and R. Sarpeshkar. Synthetic Biology: A Unifying View
and Review Using Analog Circuits. IEEE Transactions on Biomedical Circuits
and Systems, 9(4):453–474, August 2015.

[132] Y. Termonia and J. Ross. Oscillations and control features in glycolysis: numer-
ical analysis of a comprehensive model. Proceedings of the National Academy
of Sciences of the United States of America, 78(5):2952–2956, May 1981.

[133] Chris Toumazou, F. J. Lidgey, and David Haigh. Analogue IC Design: The
Current-mode Approach. IET, 1990.

[134] Y. Tsividis, N. Krishnapura, Y. Palaskas, and L. Toth. Internally varying ana-
log circuits minimize power dissipation. IEEE Circuits and Devices Magazine,
19(1):63–72, January 2003.

[135] Y. P. Tsividis, V. Gopinathan, and L. Toth. Companding in signal processing.
Electronics Letters, 26(17):1331–1332, August 1990.

[136] Andreas Wagner. Energy constraints on the evolution of gene expression. Molec-
ular Biology and Evolution, 22(6):1365–1374, 2005.

180



[137] Darren J. Wilkinson. Stochastic modelling for quantitative description of het-
erogeneous biological systems. Nature Reviews Genetics, 10(2):122–133, Febru-
ary 2009.

[138] Theodore M. Wong, Robert Preissl, Pallab Datta, Myron Flickner, Raghaven-
dra Singh, Steven K. Esser, Emmett McQuinn, Rathinakumar Appuswamy,
William P. Risk, Horst D. Simon, and Dharmendra S. Modha. 1014. IBM
Technical Paper, November 2012.

[139] S. S. Woo, J. Kim, and R. Sarpeshkar. A Cytomorphic Chip for Quantita-
tive Modeling of Fundamental Bio-Molecular Circuits. IEEE Transactions on
Biomedical Circuits and Systems, 9(4):527–542, August 2015.

[140] Sung Sik Woo and R. Sarpeshkar. A spiking-neuron collective analog adder with
scalable precision. In Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on, pages 1620–1623, May 2013.

[141] Mae L. Woods, Miriam Leon, Ruben Perez-Carrasco, and Chris P. Barnes.
A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene
Oscillators. ACS Synthetic Biology, 5(6):459–470, June 2016.

181


	Introduction
	Motivation
	Prior Methods
	Software implementations
	Digital Hardware Implementations
	Analog Hardware Implementations

	Our Approach
	Mapping Cells to Electronics
	Gene-Protein Networks in Cells
	Similarities Between Chemical Reactions and Transistor Operations
	Current-Mode Circuits
	Transistor Models of Activator / Repressor Circuits

	Thesis Organization

	The Gene Chip
	Introduction
	Building-Block Circuits
	Mass Action and Michaelis-Menten Reaction Block
	Hill Block
	ITD Block
	Analogic DAC
	Gain & Time Constant Block
	Noise Generator
	DAC and ADC

	Design Considerations in BiCMOS Cytomorphic Design
	Simulation of Synthetic Genetic Circuits
	Repressilator
	Feed-Forward Loop Network
	Delay-Induced Oscillator

	Specifications of the Chip
	Conclusion

	The Protein Chip
	Architecture of the Protein Chip
	The Protein Block
	Protein Block Configurations for Various Network Topologies
	Cascade (Figure 3-5(a))
	Degradation (Figure 3-5(a))
	Fan-out (Figure 3-5(b))
	Dissociation / Replacement (Figure 3-5(c))
	Dimerization (Figure 3-5(d))
	Monomerization (Figure 3-5(e))
	Michaelis-Menten Reaction (Figure 3-6(a))
	Fan-in (Figure 3-6(b))
	Loop (Figure 3-6(c))

	Programmability of the Protein Chip
	Simulation Examples of Biological Processes
	p53 Signaling Pathway
	Glycolysis Pathway

	Specifications of the Protein Chip
	Conclusion

	Toward Large-Scale Simulation of Biological Networks
	The Architecture of the Cytomorphic System
	Implementation of the Cytomorphic Board
	Speed Comparison with Software
	A Discussion of Simulation Speed
	Analog vs. Digital
	Overcoming Speed-Limiting Factors
	Expected Performance After Improvements

	Conclusion

	Conclusions
	Summary
	Future Work
	Hardware Enhancements
	Software Enhancements
	Future Applications



