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Abstract

This thesis presents the results of an experiment at the Bates Linear Accelerator Center in
which cross section measurements for deuteron electrodisintegration near threshold were made
at high momentum transfer with good energy resolution. The experiment was performed at a
constant scattering angle of 160* at bombarding energies of 347, 576, 754, 820 and 913 MeV.
The corresponding measured Q 2 values were 8.7, 20.5, 31.6, 36.0, and 42.4 fm- 2. Threshold
cross sections averaged over 0-3 MeV and 0-10 MeV in En, were calculated. Measurements were
also obtained for elastic electron-deuteron scattering and elastic electron-hydrogen scattering
(the latter only at 913 MeV).

The analysis of the data involved accurately determining the elastic line shape. Landau
straggling, external Bremsstrahlung radiation, and internal Bremsstrahlung radiation (both
from the scattered electron and target nucleus) were included. A Monte Carlo simulation
was written to include the geometry of the target cell, target collimating slits and model the
acceptance of the electron spectrometer. The elastic line shape and spectrometer acceptances
agreed very well with the data.

The averaged threshold cross sections were compared with existing data in the region of
overlap. Good agreement was seen with the Saclay data which was averaged over 0-3 MeV in
En,. And comparison to the poorer resolution SLAC measurement which was averaged over
0-10 MeV in En, also showed good agreement.

Comparisons of the data were made with theoretical calculations. The standard nonrel-
ativistic meson-exchange calculations agree only qualitatively agree with trend of the data.
These calculations are very model dependent since a fully relativistic theory is not yet present.
Hybrid quark-hadron calculations which put quark degrees of freedom in the deuteron wave
functions at small distances agree with the overall magnitude of the data.

Thesis Supervisor: Dr. Claude F. Williamson
Title: Senior Research Scientist
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Chapter 1

Introduction

This thesis presents new measurements of deuteron threshold electrodisintegration at high mo-
mentum transfer. These measurements were made with good momentum resolution which
allowed the threshold cross sections to be averaged over 0 to 3 MeV in Es,, for comparison with
previous measurements from Saclay [1]. The Q2 of the measured points ranged from 8 to 42
fM- 2 extending the previous Saclay measurements which ended at 27 fm- 2. The data were also

averaged over 0 to 10 MeV in En, for comparison with a poorer resolution SLAC measurement
[2].

This thesis is divided into six chapters. The first chapter discusses the physics of the
electrodisintegration reaction and defines the kinematic variables used throughout this thesis.
The second chapter describes the experimental setup and the procedures used to acquire the
data. Chapters three, four, and five are devoted to data analysis. The last Chapter presents
the results and makes comparisons with other data and theoretical calculations.

1.1 Electron-Deuteron Scattering

In any experiment where one wishes to learn more about a particular phenomenon (e.g. nu-
clear structure), it is desirable to use a well understood interaction to probe the object under
study. Thereby one can hope to achieve a clean theoretical separation of the phenomenon from
the interaction. The electromagnetic interaction (QED) satisfies this criterion, and electron
scattering experiments have aided us tremendously in our fundamental understanding of the

19
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n OMeV 0+ T = 1
nfl 'S0  pp

M1 isovector-spin flip

-2.2 MeV 3 1+ T = 0

Figure 1-1: Isospin states for a two nucleon system.

nucleus. The deuteron being the simplest nucleus also allows a direct test of nucleon-nucleon

interactions without the complications of many-nucleon effects.

The deuteron is a bound state between a proton p and neutron n (nucleons), and is the

only two-nucleon bound state that exists. It is bound by only 2.225 MeV. The ground state

of the deuteron has a J of 1+ with a total spin of 1. Because of the nuclear tensor force, the

ground state is not a pure S state (L = 0) but has a small admixture of D state (L = 2) of 4 -

7%. The finite quadrupole moment of the deuteron ground state is a reflection of this nuclear

tensor force.

By analogy with spin angular momentum, we can assign an isospin, T, of one half to each

nucleon. The ground state of the deuteron can then be thought of as an isosinglet, T = 0. The

isovector state, T = 1, of the two-nucleon system corresponds to nn (TZ = -1), np (T, = 0)

and pp (Tz = +1) systems. These states are illustrated in Figure 1-1 for L = 0 and are not

bound. However, for the deuteron the isovector state iSo is barely unbound and its presence

can be seen in electron-deuteron scattering.

In Figure 1-2 the spectrum of scattered electrons is shown for electron-deuteron scattering

near threshold. The peak located at 0 MeV of excitation is the deuteron elastic peak. From this

peak until the breakup threshold (2.225 MeV) the spectrum is featureless due to the absence

of any bound excited states. However, just above threshold another peaked structure appears.

I.



1.1. Electron-Deuteron Scattering 21

This peak results from the M1 transition from the deuteron ground state to the unbound

isovector scattering state 1S0 illustrated in Figure 1-1. By performing the measurement at

large scattering angles this transition is enhanced. This can be shown from the general formula

for unpolarized single-arm electron scattering

d2o 7

dk - [VL(0)RL + VT(O)RT], (1.1)

where am is the Mott cross section, 17 is the recoil factor, RL and RT are the longitudinal and

transverse nuclear response functions, and VL and VT are their corresponding kinematic factors.

Q4
VL= -4 (1.2)

V = + tan 2 -(1.3) VT= 2q2 2

Since the M1 transition from the deuteron ground state is purely transverse, the breakup cross

section is very nearly proportional to VTRT. Therefore, at backward angles the cross section. is

enhanced by transverse kinematic factor due to the VT term. For 1550 the enhancement factor

is roughly 20. The experiment presented in this thesis measured the cross section at 160* where

the enhancement factor is 32.

Near threshold the cross section is dominated by this transition at this bombarding energy.

For higher values of excitation energy larger angular momentum scattering states contribute to

the cross section. It turns out that this transition is an ideal place to study the meson-exchange

current aspects of the nucleon-nucleon interaction.

Illustrated in Figure 1-3 is the electrodisintegration reaction. An incident electron of energy

E transfers a virtual photon to the deuteron and scatters at an angle 0 with energy E'. The

deuteron absorbs the virtual photon and reacts to the interaction. If the energy transferred by

the virtual photon is large enough, the interaction can cause the deuteron to break apart. Since

the deuteron is weakly bound this happens for energy transfers greater than 2.225 MeV. The

variable En, is the resulting relative energy of the emerging neutron-proton system, and just at

breakup E., = 0. Since the nuclear binding is believed to result from virtual meson exchange,

electron scattering experiments which are sensitive to the charge and current structure, can

provide information on the currents resulting from such processes. Notice that in Figure 1-3 it

was left unclear how the virtual photon actually coupled to the deuteron. Since the deuteron

is composed of nucleons, the simplest picture is that the virtual photon couples only to the
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nucleon currents (one-body current). This is called the impulse approximation (IA) and the
scattering amplitude for this process is proportional to the following matrix element,

(ISO I i ylod 1 + 3 D1) (1.4)

which can be separated as follows,

(ISo i 0body 3 1) + (1SoI tj atI3D1) , (1.5)

where T^'oOd is the one-body operator for the M1 transition. The first matrix element is
the amplitude for the S, -+ 'So transition and the second is the amplitude for the 3D, ->

ISO transition. However, due to the presence of mediating virtual mesons the photon can
also couple to the meson-exchange currents (MEC) which is a two-body current. These are
illustrated in Figure 1-4a-b. The first graph represents a coupling of the virtual photon to a
mediating pion in flight. The second graph is a nucleon-antinucleon pair excitation process.
In Figure 1-4c the virtual photon excites a nucleon isobar resonance, the lowest mass being
the A(1232) resonance. This is a one-body A-isobar current (IC). The contribution from these
processes to the scattering amplitude is expressed by the following matrix elements,

( iSonI , + 3 D) + ('SolIT,. 3 1+ 3 D1) + ('SolIA 1 3S1 + 3 D1) . (1.6)

At high momentum transfers where the spatial resolution of the virtual photon becomes
smaller than the size of the deuteron the effects of the MEC should become more apparent.
Using the value 4 fm for the size of the deuteron we obtain a rough estimate that MEC should
become more prominent for Q2 > 2.5 fm- 2 . This is indeed the case as can be seen in Figure 1-5
[3]. The dotted curve is the impulse approximation calculation (IA), the dashed curve includes
pion-exchange currents, the dot-dashed includes rho-exchange currents and finally the solid
curve includes the effect of isobar currents (IC) (see Figure 1-4). The open squares are data
from a measurement made at Saclay where the threshold cross sections have been averaged
over 0 to 3 MeV in En, [1]. The calculations used the Paris potential to generate the ground
state and scattering state wave functions and are evaluated at Ep = 1.5 MeV. As can be
seen in Figure 1-5, the result from the IA calculation disagrees strongly with the trend of the
data for even modest values of Q 2. In particular, the IA calculation predicts a large minimum
in the threshold cross section at Q 2 ~ 12 fm- 2 which is not present in the data. The IA
minimum is due to a destructive interference between the amplitudes for the 3s, _, 1So and
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7r

b)

7T

c)

Figure 1-4: Meson-exchange current diagrams and an isobar-current diagram. a) Interaction
with a 7r in flight. b) Pair creation term. c) Excitation of a A-isobar resonance.

3D1 -+ 'So transitions (see Equation 1.5). Because of the cancellation of one-body currents

almost the entire strength at Q 2 ~ 12 fm- 2 is due to non-nucleonic degrees of freedom. Indeed,

including MEC and IC brings the theory into good agreement with the Saclay data. This

agreement is a striking example of the necessity of including mesonic degrees of freedom in

order to obtain agreement. of theory to experiment. Above a momentum transfer of about 25

fM- 2 the theoretical curves calculated with different meson-exchange potentials diverge sharply,

reflecting the sensitive cancellation of the one-body and two-body amplitudes. This region (25

fm- 2 < Q2 < 40 fm- 2 ) is accessible at the Bates facility, and the motivation for this experiment

was to provide accurate data in this range of momentum transfer where there is great model

sensitivity to the two-body currents. At even higher momentum transfers, such as will be

available at the CEBAF facility, shorter range coiponents of the nucleon-nucleon interaction

can be probed. Eventually, a more appropriate description in terms of the constituent quarks

and gluons should be given and measurement of deuteron threshold electrodisintegration at

very high Q 2 may provide such information.
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Figure 1-5: Threshold electrodisintegration cross section evaluated at Ep = 1.5 MeV [3]. The
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1.2 Kinematics and Definitions

The variables used to define the kinematics of deuteron electrodisintegration are presented in

this section. These notations will be used throughout the thesis.

Illustrated in Figure 1-3 is the electrodisintegration reaction. From the figure the following

4-momenta are defined as follows:

Pe = (Ep ) (1.7)

Pd = (Md, 0) (1.8)

Pe' = (E',p ) (1.9)

Pd = (E', pd') (1.10)

where E (E') is the initial (scattered) electron energy and f (p) its 3-momentum and Md is

the mass of the deuteron where it is taken to be initially at rest. The 4-momentum transferred,

Q, is given by the expression

Q = Pe - Pe' = (E - E', ff- P--) .(.

From conservation of 4-momentum we have the following relation

Pe + Pd = Pe+ P (1.12)

which can be rewritten as

Pe - Pe' + Pd = Pd . (1.13)

Squaring the above equation gives the expression

P2 + p12 + p2 - 2e -Pe' + 2 Pd - 2P' - Pd Pd2 (1.14)

where the inner products are defined as follows

P' = EE'-f - (1.15)

P2 = Mest . (1.16)

I I ~
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For the deuteron final momentum, Pd, the square of the 4-momentum is written as follows:

pd2 = (Mn + MV + En,)2 (1.17)

where the kinematic variable En, is the relative separation energy of the final neutron-proton

system when the deuteron breaks apart. Since Mn + M, = Md + 2.225 this result can be

re-expressed in terms the an excitation energy, Eexc, where Eexc = 2.225 + En,,.

P12 = (Md + Eezc)2  (1.18)

Solving Equation 1.14 for the scattered electron energy, E', we obtain the well known formula
for ultra-relativistic electron scattering,

1 E2
E'= -(E - Eexc - EeXC) (1.19)

2Md

where the recoil factor, 17, and excitation energy are given by the expressions

= 2E 2
7 = 1+ -- sin2() (1.20)

Md 2
Eec = 2.23+ En, . (1.21)

The square of the 4-momentum transfer can be also evaluated to yield the following result for

ultra-relativistic electrons.

Q2 = -4EE'sin 2(0/2) (1.22)
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Chapter 2

Experimental Apparatus and Procedure

2.1 Overview

The experiment to measure the threshold electrodisintegration of the deuteron was performed

at the MIT-Bates Linear Accelerator Center which is located in Middleton, Massachusetts.

The experimental run started on April 12, 1990, and was completed May 26, 1990. During this

period, the threshold measurements were made at five different incident electron energies, 347,

576, 754, 820, and 913 MeV, with a scattering angle of 1600. Our highest energy, 913 MeV,

was also the highest energy achieved to that time at the Bates LINAC. The incident electrons

scattered from a liquid deuterium target and were momentum analyzed with the high resolution

spectrometer, ELSSY, located in the North Experimental Hall. The corresponding Q2 points

were as follows: 8.7, 20.5, 31.6, 36.0, and 42.4 fm-2.

Because the threshold cross sections were expected to be as small as 10-40 cm2 /sr/MeV

at the highest Q2 point, considerable effort had to be devoted to the design of the experiment.

In particular, the count rate which is given by luminosity, L, times cross section, a, times solid

angle, R, had to made as large as possible in order to make the measurement feasible. Good

resolution (< 1.5 MeV FWHM) was also required to separate the elastic peak from the breakup

threshold (2.2 MeV). Unfortunately, all of these experimental constraints are coupled and in the

end one must arrive at an acceptable compromise. For example, a liquid deuterium target was

used in this experiment, and the usable thickness had to be limited to less than 5 centimeters

due to the energy resolution constraint. The liquid deuterium target was cooled by a 200 Watt

29
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cryogenic helium refrigerator. The capacity of the refrigerator limited the intensity of beam

current that we could use (< 50 IpA). In the end, the counting rate at the highest Q2 point was

only expected to be 2 counts per day. This put stringent limits on the level of background that

we could accept (< 2 counts/day).

The sources of background can be grouped into two categories: beam dependent and beam

independent. The beam dependent source comes from having an electron beam on a target

and is also called target related background. The beam independent source comes from cosmic

rays triggering the detection system. Making the measurement near the deuterium elastic peak

helped to eliminate some sources of target related background due to kinematics. Other more

exotic multi-step processes such as ro production quickly followed by its decay, ir -+ 77,
and then pair production, - -4 e+e-, could generate electrons within our acceptance. This

contribution was estimated to be to small. The largest source of target related background was

electron scattering from the aluminum target cell. These electrons were effectively eliminated by

designing target collimating slits which blocked electrons scattered from the target cell entrance

and exit windows from entering the spectrometer acceptance. Unfortunately, electrons from the

beam halo could scatter from the sides of the target cell and be accepted into the spectrometer.

Therefore, beam halo monitors (phototubes upstream and downstream of the target) were used

to monitor the quality of the beam. Secondary emission monitors (SEM) were also used to shut

down the experiment if the beam drifted significantly from its predetermined line.

The beam independent source was reduced by making improvements to the existing ELSSY

focal plane detection system. To provide better transverse angle (4) resolution two new hori-

zontal drift chambers (HDC) were designed and constructed. This allowed a cut to be placed

on the angular distribution to help separate real electron events from cosmic rays with large

transverse angles (Of ). A new gas Cherenkov detector was also designed and constructed to

separate pions from electrons. Unfortunately, cosmic muons with energies greater than 2 GeV

could still trigger the Cherenkov detector and therefore appear as an electron. This small frac-

tion of events was reduced by using lead-glass shower-counter blocks. These separate the cosmic

muons from the electrons based on the difference in their electromagnetic shower development.

A muon is inefficient in generating an electromagnetic shower and will therefore deposit little

of its energy inside the detector. However, an electron will generate a large shower and deposit

most or all of its energy in the detector.

The improvements made to the focal plane detection system allowed us to measure cross

sections as small as 10-40 cm 2/sr/MeV with good resolution. Our measurements also represent

the smallest cross sections that had been measured at that time at the Bates laboratory.

Chapter 2. Experimental Apparatus and Procedure
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2.2 Electron Beam

The Bates LINAC provided an electron beam with energies ranging from 350 to 900 MeV.
The average beam current used in this experiment was 25 I&A with a 1% duty factor. The
energy spread in the incident beam was 0.3% and was dispersed on the target. This dispersion
when coupled to the ELSSY spectrometer dispersion provides a condition known as dispersion
matching [4]. In this mode resolutions in momentum loss, P/P, of the order of 104 (0.01%)
are achievable in the ELSSY focal plane. This is more than an order of magnitude better than
the resolution of the incident electron beam. When the system is fully dispersion matched the
dispersion of the beam, (Xl 6)Beam, and its height are given by the following expressions for
elastic scattering [5],

1 (x16 )ELssy 6.70
(X16)Beam = - - - [cm/%] , (2.1)

2.0 (X)ELSSY 7

Beam Height = 2.0 [cm], (2.2)

where (XI 6 )ELSSY and (XIX)ELSSY are the spectrometer first-order matrix elements (see Ap-
pendix F), and 77 is the recoil factor,

2EBeam.2
77= 1 + E sm 2(0/2). (2.3)

In this experiment we tried to run fully dispersion matched when possible. However, since
our peak widths were very broad, of the order of 1.5 MeV FWHM due to energy straggling,

this was not an important factor in the resolution.

2.3 Liquid Deuterium Target System

The Bates high power liquid deuterium target system was used in this experiment. This system

is capable of producing either a liquid deuterium or a liquid hydrogen target. Targets of both
isotopes were used in this experiment. The design, operation, and safety of the system is

discussed in detail elsewhere [6] [7]. In the following sections only a brief description is given
of this system.

I.
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2.3.1 Overview

The liquid deuterium target system consisted of three main parts: a 200 Watt cryogenic helium

refrigerator, a target loop, and a gas handling valve panel. The 200 Watt refrigerator was used

to supply cryogenic helium to a counterflow heat exchange located inside the target loop to

provide liquefaction. The gas handling valve panel was used to direct the flow of the target

gas from a 3100 gallon reservoir to the target loop. A schematic diagram of the target loop

is shown in Figure 2-1 illustrating some of its features. The target loop is roughly one meter

high and a half a meter wide and contains 10 liters of liquid target when full. The liquid was

circulated in the loop by two vaneaxial fans to speeds of the order of 2 m/s. The heater currents

were modulated by the beam current so as to maintain a constant heat load on the target at

all times. Not indicated in the target loop figure were several temperature sensors. These

consisted of both diode and thermocouple temperatures sensors. These were monitored during

the experiment, as well as the target loop pressure, for safety considerations and accurate liquid

density information. The information from the various sensors was also written to magnetic

tape as part of the data acquisition system. The electron beam passes through the section

illustrated in the figure as the removable target piece. This is discussed in more detail in

the following section. The target loop was mounted inside the North Hall scattering chamber

assembly with feedthroughs at the top for the cryogenic helium and gaseous deuterium.

2.3.2 The Target Cell

The geometry of the target cell is shown in Figure 2-2. The cell was made of aluminum and

the wall thickness was .037 inches. The equation describing the inner and outer cell shapes was

modeled as
(2.4)

and the following parameters for the inner and outer shapes were determined, ai = 4.671 cm,

b = 1.606 cm, m; = 2.295, and a, = 4.765 cm, b, = 1.700 cm, m, = 2.310 respectively.

The target collimating slits indicated in the figure were attached to a metal strut which

was mounted from the top of the scattering chamber. The purpose of the slits was effectively

to eliminate the electrons which scattered from the entrance and exit window of the target cell,

and their design is discussed in Appendix B. These slits also define the usable target length and

were accurately aligned using the theodolite mounted at the back of the ELSSY spectrometer.

In Table 2.1 the coordinates for each of the slit edges are given. The ELSSY horizontal slits
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Figure 2-1: A schematic diagram of the Bates liquid deuterium target loop.
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Table 2.1: The target collimating slit coordinates.

which are indicated in the figure are
a distance of 200 cm.

194 cm away the pivot point and the vertical slits are at

2.4 ELSSY Spectrometer System

2.4.1 ELSSY Spectrometer

The Energy Loss Spectrometer System (ELSSY) is the Bates high resolution 900 MeV/c mag-

netic spectrometer [4]. When the system is fully dispersion matched resolutions of the order of

104 in 6P/P are achievable. The principle behind dispersion matching is to focus all beam

particles with the same energy loss at the same point on the focal surface. A diagram of the

spectrometer is shown in Figure 2-3 along with nine representative rays. The nine rays emerge

from the target with three values of Ot and three values of 6. For each value of 6 the rays

are focused at the rear of the spectrometer. The curve connecting the points illustrates the

approximate location of the focal surface. In Appendix A the shape of the ELSSY focal sur-

face is discussed in detail. The focal plane detection system is also shown at the rear of the

spectrometer. The spectrometer is a split dipole design with a.90* vertical bend. The design

value for the bending radius, R, for the central ray (6 = 0 and Of = 0) is 2.23 meters. The

Edge Coordinates
a y -4.79 cm

z -11.04 cm
b y -2.25 cm

z -3.63 cm
c y -3.94 cm

z = -12.16 cm
d y -1.40 cm

Z_= -5.59 cm
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The ELSSY Spectrometer

Target

Below-Ground Pit
Y X

Focal Plane
Instrumentation

Figure 2-3: The ELSSY spectrometer is shown with rays of three different values of energy

loss and vertical scattering angle. The curved line connecting the focal points in the rear of

the spectrometer is the approximate location of the focal surface. Also shown is the ELSSY
detector package.
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force experienced by the central ray is given by the Lorentz equation:

F = is x B . (2.5)
C

This can be reduced as follows:

7mv 2  e
R = -vB, (2.6)

RC

Pcent - eR (2.7)
B c

where Pent is the momentum of the central ray. The quantity Pc.at/B is often referred to as

the spectrometer constant. Evaluating this constant, eR/c, for ELSSY gives us the design value
for the spectrometer constant.

Pcent = 66.85 MeV/c/kG. (2.8)
B

The forward and reverse transfer matrix elements for the spectrometer are presented in Ap-
pendix F.

2.4.2 Focal Plane Instrumentation

Shown in Figure 2-4 is a close-up view of the focal plane detection system. The detection system

consisted of a vertical drift chamber (VDC), two horizontal drift chambers (HDC), a pair of

scintillators, a gas Cherenkov detector, and an array of 14 lead-glass Cherenkov detectors. The

VDC was inclined at a nominal angle of 45* to coincide as nearly as possible with the focal

surface which is indicated by the dashed line in the figure (see Appendix A). The HDCs were

also inclined at 450.

The VDC was used to measure the focal plane coordinates xVDC and 6f of the scattered

electrons in the rear of the spectrometer. XVDC is the x-displacement along the VDC. The

dotted line shown inside of the VDC chamber illustrates the orientation of the signal wires:

perpendicular to the plane of the page. The offset, x,, of the central ray from the center of

the VDC needs to be calibrated. This was done in the energy calibration. The two horizontal

drift chambers were used to measure YVDC and Of where YVDC is the y-displacement at the

VDC and of is the transverse angle. The lines shown inside of the HDC chambers illustrates

the orientation of their signal wires: in the plane of the page. The scintillators were used for



timing. The gas Cherenkov and lead-glass blocks were used for particle identification. The
experimental trigger consisted of a good scintillator and a good Cherenkov or lead-glass signal.
In the following sections the salient features of each of the detector's operation and analysis is
discussed.

2.4.3 VDC

In the paper by Bertozzi et al. [8] the design, operation, and analysis of the VDC is discussed
at some length. This will not be repeated here. But some corrections that were made to the
existing VDC analysis will be presented. These corrections are primarily for the reconstruction
of the focal plane angle, Of. They were necessary in order to obtain agreement with the Monte
Carlo simulation for the focal plane angle. In this sense the Monte Carlo was a valuable tool
for finding many subtle errors in the VDC.analysis.

2.4.3.1 Vertical-distance Lookup Table Calibration

Shown in Figure 2-5 is a typical electron track incident on the VDC with angle 0 and the hit
pattern illustrating the drift-paths which follow the field lines. The spacing between the signal
wires, u, is 0.250 inches (6.35 mm). The dotted circles represent the approximate extent of
the radial field region for each drift cell. The measured drift-times in each cell come from the
shortest drift-paths and are calculated from the delay line readouts as follows:

td = -(tL + tR) + offset , (2.9)

where tL and tR are the TDC stop times from the opposite ends of the delay line. Since the
VDC used three delay lines in the readout, only three drift-times could be obtained per event.
The wire numbers, n1 , n2, and n3, of the triggered cells are given by the difference, tL - tR, for
each delay line. The vertical distances, yi, y2, and y3, shown in the figure are the distances from
the signal wire to the intersection of the ray with the center of the cell. These distances need
to be reconstructed in order to calculate the focal plane variables, xVDC and Of (Of = 450 - 0).
This is accomplished by using a drift-time to vertical-distance lookup table; y = y(td). The
lookup table is constructed using the integral-drift-time method [9].
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Figure 2-4: The focal plane detection system. The dashed curve illustrates the approximate

location of the focal surface. The axes, Yf and YVDC, point out of the page.
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ni n2  ns

Figure 2-5: The VDC drift cells along with a typical track.

In Figure 2-6 a drift-time histogram for a quasi-elastic spectrum is shown. Mathematically
this histogram can be expressed by the quantity, dNldtd, the number of counts per unit drift-
time channel. This can be separated as follows:

dN _dNdyi dNdd- d -.td- Vd , (2.10)

tdia yda d

where dN/dy is the number of counts per unit vertical-distance and vd is the drift velocity.
Therefore, if the drift-cell has been uniformly illuminated (dN/dy = constant), the shape of
the drift-time histogram reflects the drift velocity. For the VDC this is misleading for two

reasons. First, because of the three delay line readout system there is a maximum allowable
vertical-distance for each angle of incidence. This maximum distance is found from geometry

by setting the vertical-distances on adjacent cells of the same delay line equal. The result is as

follows:

yrnaa(O) - ~tan96. (2.11)2

The finite vertical angle acceptance, iC, then causes a spread in the maximum vertical-

distances which leads to the drop off at large drift-times even though the drift velocity is well
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Figure 2-6: A VDC drift-time histogram.

saturated (see Figure 2-6). The width of the falloff, Atd, is given by the following formula for

small AG: Am:_3

Atd = '"" - sec2 (0) A, (2.12)
Vd Vd

where (0) is the average angle.

Secondly, the sharp peak at the beginning of the histogram is mostly an effective increase

in drift velocity due to the change in the geometry of the field lines near the wire [8]. The

magnitude of this increase is proportional to the angle of the inclined track. The more normal

it is with respect to the VDC signal plane, the larger this peak becomes, and the converse is

also true. However, the lookup table for the VDC can still be constructed.

From Equation 2.10 we obtain the following equation provided that dN/dy is a constant.

___ (I dN
y(td) - d dt. (2.13)

dN/dy J d

For the VDC the quantity dN/dy will be constant for td < t2 as indicated in the drift-time

histogram. Therefore this equation is valid only in this range. The constant, dN/dy, can then

I.
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Figure 2-7: A VDC vertical-distance histogram.

be determined from the drift velocity. For drift times between t1 and t2 the drift velocity and
dN/dy should be constant. Therefore we have the following equality,

dN = 1 d(N)flt (2.14)
dy Vd dt

where d(N)flat/dt is the average number of counts per unit channel between tj and t2 where
the histogram is flat. The drift velocity for the VDC is roughly 50 /sm/ns. Therefore, a lookup
table of vertical-distance as a function of drift-time can be generated from Equation 2.13 for
td < t2 as follows:

y(td) = d /d dt . td < t2 (2.15)
d(Ng /f~ dt 10 dt

For drift-times greater than t2 , the equation for y(td) can then be extrapolated linearly using
the drift velocity. The result of this procedure generates a complete lookup table of vertical-
distance as a function of drift-time. Shown in Figure 2-7 is the vertical-distance histogram
generated from the VDC drift-time histogram, Figure 2-6, using this lookup table.
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dmin(y, 0) = y + R(l - sec 8) . d > R . (2.16)

Using this relation we can re-express the condition d > R in terms of the vertical-distance y for

rayo.

dmin(yoB0 ) > R > yo+R(1-sec0o)

Yo R/ cos o.

(2.17)

(2.18)

-4
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2.4.3.2 Vertical-distance Correction

For the VDC, tracks with different incident angles have different drift-time spectra. Specifically,

the peak at small drift times in the drift-time histogram becomes larger or smaller for steeper

or shallower tracks respectively. Therefore, different incident angles will have different lookup

tables. This presents a problem since we do not have drift-time spectra for each incident angle

but an averaged histogram as shown in Figure 2-6. However, for small vertical angle acceptances

the resultant drift-time histogram is a good representation of the drift-time histogram for the

average angle, (0). Therefore, the lookup table constructed from this histogram is correct only

for the average angle. If the central ray passes through the middle of the VDC this average

angle is 450 ((Of) = 0). For angles, 0 # (0), the lookup table vertical-distances need to be

corrected due to the incident angle dependence. The problem is illustrated in Figure 2-8 where

two pairs of incident rays and their shortest drift-paths are shown for an idealized field shape

geometry. The radius of the radial field region for the VDC is R 5 0.1 cm.

Suppose we have calibrated a lookup table for rayo (the ray with Oo = (0)) and consider the

arbitrary ray with 0 5 00. Since their shortest drift-paths are the same they will have the same

drift-time. Therefore, the lookup table will assign them the same value of vertical-distance, yo.

But clearly from the figure this is not correct since they intersect the Y-axis at different points.

Rayo intersects the Y-axis at yo and the arbitrary ray at y. In order to obtain the correct value

of the vertical-distance for the arbitrary ray a correction, Ay, needs to be added to the lookup

distance, yo. This is accomplished as follows.

First, consider the case where the drift-path, d, is greater than or equal to the radius of the

radial field region: d > R. Then an equation for the shortest drift-path, dmin, can be obtained

from the geometry shown in Figure 2-8 by setting the slope of the ray equal to the slope of the

circle. The point on the circle which satisfies this condition is where the electron drift changes

direction and is illustrated in the figure. The resulting expression for the shortest drift-path is

as follows:
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Figure 2-8: A close-up view of an idealized VDC drift cell. Each
shown with its minimum drift-path.

of the two pairs of rays is
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Let us assume that we have a correct lookup table of vertical-distances for rayo and consider

an arbitrary ray (see Figure 2-8). The minimum drift-paths are given as follows:

do = yo + R(1 - sec 0), (2.19)

d = y+R(1-sec9). (2.20)

When d = do both rays will be assigned the same vertical-distance from the lookup table. The

correction, Ay, for the arbitrary ray is obtained by setting d = do.

Ay = y - yo = R(sec9 - sec0o) , Yo R/ cos Oo . (2.21)

Therefore, vertical-distances from the lookup table should be corrected according to their angles

as follows:

ycorr = yiookup + R(sec 9 - sec Oo) , yolcup RI cos 00 , (2.22)

where ylokup = yo. Notice that for 0 = 90 the correction term goes to zero.

The same procedure can be done for drift-paths less than R. The minimum drift-path is

given by,
d,in(y,0) = y cos , d < R, (2.23)

and the correction, Ay, is given as follows:

AY = Y - YO = Yo( - 1) , yo < R/ cos o. (2.24)
cos 9

The corrected vertical-distance from the lookup table is expressed as follows:

cos Go
Ycorr = Ylookup Cos e Ylookup < RI cos 0. (2.25)Cos 0

A typical range for the angles, 0, is 450 80 mr. Using Equation 2.21 the size of the vertical-

distance correction is of the order of 100 Pm.

In order to use this correction when analyzing the VDC, the angle, 9, needs to be known.

This is accomplished as follows. Consider Figure 2-5 with an arbitrary track of angle 9. The

lookup table will give us the vertical-distances, Y1, Y2, and y3 for each cell. The corrections to

452.4. ELSSY Spectrometer System
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the vertical-distances, Ay1 , AY2 , and Ay3 depend on the angle 6. Using the outer two cells to

construct the angle 0 we have the following self consistent equation for the angle:

0 = ta-1 t Y1 + Ay1(0) + y3 + Ay3(0) (2.26)

Using Equation 2.21 for the vertical-distance corrections (d > R), this can be rewritten as

follows: sinG _ y1 + y3 + 2R(sec 0 - sec 0o) (2.27)
cosG 2u

Solving this equation gives us the expression for the corrected angle:

Cos= yZ + V1 +Y2 -Z2
1+Y2 (2.28)

where

Y _ 9y + y3 - 2R sec 00 ,2.29)
2u

Z = . (2.30)
U

The focal plane angle is then given by the expression, Of = 45* - G, where 45* is the nominal

angle of incline for the VDC.

This correction depends only on two parameters, R and 0o: the radius of the radial field

region and the average angle respectively. The radius R was determined from the design of the

VDC to be R = 0.1 cm (ideal case). The average angle depends on the momentum and angular

acceptances of the spectrometer. For a uniform angular acceptance with position on the VDC,

this is given by the average angle passing the center of the VDC. For this experiment the center

of the VDC was located at a b ~ -2%. Therefore, using the matrix element (016) = 11.648

(Appendix F) the average angle chosen was Oo ~ 460. The correction to the focal plane angle

was then ~ 10 mr. This was a 10% systematic effect.

2.4.3.3 VDC Sag Correction

The VDC was inclined at a nominal angle of 45* at the rear of the spectrometer and was

supported only at its ends. The weight of the chamber induced a small amount of vertical sag

whose shape can be roughly approximated as parabolic. This sagging affected the measurement

46
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of the focal plane angle Of, Of = 450 -0 (see previous section), since the angle of the local plane
(450) will change from one end of the VDC to the other end. This was corrected for as follows.

The maximum amount of vertical sag at the center of the chamber was measured to be
s = 1.9 0.1 mm and the total length L = 813 mm. Since the amount of sagging was small it
can be described approximately as parabolic.

Y XVDC 2(2.31)

The correction to the focal plane angle is then expressed as follows:

dy 8s si (2.32)
X ~ L2XVDC - nI Osag sag

0 ,ag [mr] = 0.231 xVDC *cm] (2.33)

Of = Of + Oag . (2.34)

At the ends of the VDC's active area, xVDC = 30 cm, the correction is of the order of 7
milliradians.

2.4.3.4 Vertical-distance Sum Cuts

For events which had three consecutive cell wire hits, the vertical-distances (see Figure 2-5),

Yi, Y2, and y3 , were then added together as follows:

S12 = yi + Y2 ,

S13 = yi + y3 ,

S23 = Y2 + Y3 -

Since the electron track through the VDC is a straight line these summed distances are given by

geometry. For example, a 45* track would have S13 = 2u. Shown in Figure 2-9 are histograms

of the summed distances. The summed distance, yi + y3, is roughly centered at 2u and the

width is proportional to the vertical angle acceptance, AO, of the spectrometer.
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Figure 2-9: The vertical-distance sum histograms for the VDC. The dashed lines are the cuts
that were used to define acceptable values for the sums.
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Any very small or very large vertical-distance -sum corresponds to focal plane angles which
are not in the vertical angle acceptance. As shown in the figure only small anomalous drift-
sums exist in the spectrum. These are believed to be caused by pre-empted stops in the VDC
drift cells from Moller scattering inside the chamber. The idea is as follows: Of the two Moller
scattered electrons, one must continue to move very nearly in the original direction (~, 00) in
order to create a trigger while the other (~. 90*) passes near a cell wire. In order to eliminate

these events, cuts were placed on the vertical-distance sum histograms (see Figure 2-9). The
lost events were included in the VDC inefficiency correction. This correction was of the order
of 1.4%.

These pre-empted stops also affect the drift-time spectrum by increasing the number of
shorter drift times. This is shown in Figure 2-10 where the dashed histogram includes the
vertical-distance sum cuts and the solid histogram does not. The vertical-distance sum cuts
affect the drift-time histogram differentially, more counts are lost at shorter drift-times. The
dashed histogram thus reflects the true drift-time spectrum. Therefore, when generating the
vertical-distance lookup table the dashed histogram was used.

2.4.4 HDC

The design, operation, and construction of the horizontal drift chambers (HDCs) is discussed
in detail elsewhere [10] and will not be repeated here. In this section only the features relevant
to its analysis are presented.

The two horizontal drift chambers which are shown in Figure 2-4, HDC1 and HDC2, are
identical in design. Each chamber contains two signal planes and each signal plane is read out
with one delay line. A signal plane consists of 8 anode wires (20 psm gold-plated tungsten)
spaced at 1.2 inch intervals. The drift-time and wire number for each plane are given by the
sum and difference between the TDC stop times from the opposite ends of the delay line. A
cross sectional view of a chamber is shown in Figure 2-11 where only half of the active area
is illustrated. This represents an end-on view for each HDC chamber (see Figure 2-4). The
two signal planes are separated by 3/4 inch and staggered by half the wire spacing. Between
the signal wires are located field shaping wires (20 pm beryllium-copper). These wires are also
located symmetrically above and below the signal plane (1/8 inch) with a spacing of 0.1 inches
and define the drift cell. The maximum drift-distance for each cell is 0.6 inches (15.24 mm).

Also illustrated in Figure 2-11 is a typical electron track and the associated drift-distances
for each signal plane: d, and d2. Since the focal plane angle Of is small (~- 10 mr), the
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Figure 2-10: The difference between the VDC drift-time histograms when the vertical-distance
sum cuts are included. The dashed histogram includes the sum cuts the solid histogram does

not.
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Figure 2-11: The wire geometry of the HDC illustrating the signal wires and the drift-cells.
A typical particle track is also shown with a transverse angle of. This track intercepts the

chamber at an angle of 450 - Of.
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Figure 2-12: The two HDCs and a typical particle track with a transverse angle of of. This

track intercepts the chambers at an angle of 450 - Of. YVDC is located at the VDC.

drift-distance sum, d1 + d2, should be roughly half the wire spacing, 15.24 mm. The chamber

resolution for the drift-distances is 9 150 pm. This gives us an angular resolution for each

chamber of the order of 8 mr.

The second chamber, HDC2, was separated vertically from HDC1 by 18.1 centimeters. This

chamber was also displaced a quarter of a wire spacing from HDC1 to completely stagger the

four signal plane wires symmetrically and is illustrated in Figure 2-12. A typical electron track

is also shown along with the corresponding drift-distances for each signal plane: dj, d2 , d3 , and

d4 .

When decoding the drift-distance information there is an ambiguity as to the possible

orientation of the drift-distances for each plane, whether it should point to the right or left

of the signal wire. Since the angle 4f is less than 38* the orientation of one drift-distance in

each plane can be determined unambiguously. Constructing a line between these two points

allows the other two drift-distance orientations to be determined. Hence, all four drift-distance

orientations can be determined exactly. From the drift-distances and the distances the particle

traverses between the signal planes the angle 4 and the y-coordinate at the VDC, YVDC7 can
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Figure 2-13: An HDC drift-time histogram.

be constructed. Since the distances the particle traverses between the signal planes depends on

the angle Of, this must be done after the VDC processing. Using both chambers the angular

resolution in of was better than 1 mr. The resolution in XVDC was a 150 Jim.

A small relative twist of HDC1 and HDC2 was discovered and corrected for in the HDC

analysis software. This was identified by examining a two-dimensional plot of xvDc versus

When the chambers are twisted, the centroid of of will appear to be correlated with xvy,.

2.4.4.1 Drift-distance Lookup Table Calibration

The drift-distance lookup table was constructed using the integral-drift-time method [9]. This

calibration differs from the VDC calibration (see Section 2.4.3) in two important ways. First,

since the particle tracks are inclined roughly perpendicular to the HDC drift-cells there is no

need to make a distinction between the drift-distance and vertical-distance as in the case for

the VDC . Secondly, since the of acceptance is small there is no need for an angle dependent

drift-distance correction as was necessary for the VDC.
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Shown in Figure 2-13 is a typical drift-time spectrum for one of the HDC delay lines.

Equation 2.10 expresses the relationship between the number of counts per channel and the

drift velocity: dN dN dy dN
--- - - - - Vd, (2.35)

dtd dy dtd - dy

where dN/dy is the number of counts per unit drift-distance. For the HDC, dN/dy is a constant

over the length of a drift-cell. Therefore, we can construct the following relation for the drift-

distance, y.
1 tddN

y(td) = dN/dl dt . (2.36)

Using the maximum length for the drift-distance, the length of the drift-cell (L = 15.24 mm),

dN/dy can be calibrated as follows:

L =Ntot , (2.37)
dN/dy

where Net~ is the total number of counts in the drift-time spectrum. The drift-distance lookup

table is then given by Equation 2.36. A program called DRT [11] was used to perform the

calibration, and a typical drift-distance spectrum is shown in Figure 2-14.

2.4.4.2 Drift-distance Sum Cuts

For each chamber which had adjacent wire hits, the following drift sum was computed:

Sd1rft = Y1 + Y2 , (2.38)

where yi and y2 are the drift-distances corresponding to each signal plane. Since the focal plane

angle of is small (~ 10 mr) this sum should be roughly equal to half the signal wire spacing

(15.24 mm) based on the HDC geometry. Shown in Figure 2-15 is a typical drift-distance

sum histogram. The sharp peak in the histogram corresponds to half the signal wire spacing.

Any very short or very large drift-distance sums correspond to focal plane angles which are

not in the acceptance. As shown in the figure only small anomalous drift-sums exist in the

spectrum. These are believed to be caused by pre-empted stops in the HDC drift-cells from

Moller scattering inside the chamber (see Section 2.4.3). In order to eliminate these events,

a cut was placed on the drift-distance sum histogram for each chamber. The dashed lines in
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Figure 2-14: An HDC drift-distance histogram.

Figure 2-15 is the cut that was used. The lost events were included in the HDC inefficiency
correction. This was of the order of 3% for each chamber.

These pre-empted stops also affect the drift-time spectrum by increasing the number of

shorter drift-times. This effect is illustrated in Figure 2-16 where the dashed histogram includes

the drift-distance sum cut and the solid histogram does not. When generating the drift-distance
lookup table the dashed histogram was used since it reflects the true drift-time spectrum.

2.4.5 Gas Cherenkov Detector

Shown in Figure 2-4 is the gas Cherenkov detector that was in this experiment. The operating

gas was isobutane at atmospheric pressure and room temperature. The index of refraction,

n, of isobutane is 1.00127 [12]. Therefore, the threshold charged particle velocity, #thresh, for

producing Cherenkov radiation is [13]

1
thresh > 1 = 0.99873, (2.39)

n

E
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Figure 2-15: The drift-distance sum histogram for an HDC chamber. The dashed lines is the
cut that was used to define acceptable values for the sum.
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Figure 2-16: The difference between the HDC drift-timie histograms when the drift-distance
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and the corresponding momentum threshold is given by the expression

Pthresh = m Nthresh (2.40)
1 - #thresh

The angle of the emitted radiation with respect to the charge particle direction is given by the
expression:

Cher = cos-- (2.41)
On

Since the index of refraction is almost unity the radiation is emitted in the forward direction

with an angle less than 3*. At the bottom of the gas Cherenkov detector were 3 paraboloidal
mirrors which focused the radiation on three five-inch photomultipliers.

The momentum thresholds for electrons, muons, and pions are 10 MeV/c, 2.0 GeV/c,
2.8 GeV/c respectively. Since pions at the focal plane had momenta less than 500 MeV/c,
this allowed us to separate cleanly the electron events from pion events. However, a small
fraction of cosmic ray muons will have sufficiently large momenta to trigger the detector. These

were eliminated with lead-glass Cherenkov detectors (see below). The overall efficiency of this
detector was determined to be better than 99.5% (see Section 5.3.4).

2.4.6 Lead-Glass Cherenkov Detector

The lead-glass Cherenkov detector consisted of a segmented array of 14 individual lead-glass
blocks that were placed underneath the gas Cherenkov detector. This array is shown in Figure 2-

4 in relation with the other detectors. The lead-glass blocks were divided into a top and bottom
layer of seven blocks each and were staggered to get complete coverage. The dimension of each
block was 10 x 10 cm2 at the face and 25 cm long. At the end of each block a photomultiplier
tube (PMT) was attached. The lead glass had a density of 5.18 g/cm3, index of refraction 1.804,
and a unit radiation length of 1.68 cm. The minimum ionizing energy loss, dE/dx, for a charged

particle passing through the lead glass is roughly 1.5 MeV/g/cm 2. The two layers illustrated
in Figure 2-4 represent a total thickness of about 12 radiation lengths. The scattered electrons
passing through them generate an electromagnetic shower and the two layers were adequate for

containing 98% of the longitudinal development.

The purpose of these detectors was to reduce the amount of beam-independent related
background due to cosmic rays. Specifically, the highly energetic cosmic muons that could
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trigger the gas Cherenkov detector (P, > 2 GeV/c) and hence appear as a good electron event.
These detectors were only efficient at separating the cosmic muons from the electrons at the
highest beam energies. This is explained below.

The lead-glass detectors measure the amount of Cherenkov light produced by a passing
charged particle. The measured signal, S, is then proportional to the total amount of Cherenkov
light which is proportional to the total radiator length, Ltot [14].

SPbG oc Ltot . (2.42)

Using the index of refraction, n = 1.802, we obtain the following momentum thresholds for
generating Cherenkov light in lead glass: electrons 0.34 MeV/c and muons 70 MeV/c. When
an electron passes through the lead-glass detector it generates a large electromagnetic shower
and loses almost all of its energy inside the detector. The shower is composed primarily of
electrons, positrons, and photons. In this case the lead-glass signal is going to be proportional
to the total radiator lengths of all the charged particles generated in the shower. This total
length is given by conservation of energy assuming that all the energy eventually appears as
ionization loss [15]:

Se.- oc Ltot ~Ee 9 (2.43)

where E is the minimum ionization energy loss expressed per unit radiation length and for lead
glass is 13 MeV/r.l. . Since the lead-glass signal for electrons scales with the energy it is useful
to create a normalized signal which factors out this dependence. The normalized signal is then
given as follows:

S
SN0orm - (2.44)

and is independent of energy for electrons. However, since muons are inefficient at generating an

electromagnetic shower their signal in the lead-glass Cherenkov detectors is simply proportional

to their total path length. For muons with enough energy to pass completely through the

detector this is the total length of the detector, 12 radiation lengths. Therefore, the normalized

lead-glass signal for the cosmic muons shifts to lower values as 1/Ee. This effect is illustrated in

Figure 2-17. The solid histogram is the normalized electron signal and is arbitrarily centered at

channel 100. The two dashed histograms are the normalized cosmic ray signals for E, equal to

255 MeV and 450 MeV. These are the scattered electron energies corresponding to the lowest.

and highest beam energies used in this experiment, 347 MeV and 913 MeV respectively. As can

be seen in the figure the cosmic ray muon separation was only efficient at the highest energies in

this experiment. However, the elimination of the cosmic ray background was important only at

A
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Figure 2-17: The lead-glass normalized response to electrons and cosmic ray muons. The solid
histogram is the electron spectrum. The dashed histograms are the cosmic ray muon spectra
evaluated at two different normalization energies.

the highest energies where the electrodisintegration cross sections were very small. This system
proved to be very effective in reducing the beam-unrelated background to negligible levels and
is shown explicitly for the 913 MeV raw data in Figure 2-18. The top histogram was made
with a cut on the lead-glass normalized spectrum to define good electron events. The bottom
histogram did not include this cut. The effectiveness of the lead glass blocks can be seen by
the elimination of the counts in the "superelastic" region where the deuterium elastic peak is
located at 0 MeV of excitation.

2.5 Data Acquisition

The raw signals from each of the detectors illustrated in Figure 2-4 were processed by the elec-
tronics in the experimental counting-bay room. This involved the following: The raw delay line
signals from each of the drift chambers were amplitude discriminated and sent to time-to-digital
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converters (TDCs). The raw signals from the scintillators, gas Cherenkov, and lead-glass blocks

went to analog-to-digital converters (ADCs) and were also amplitude discriminated. The ex-

perimental trigger consisted of the following coincidence: A good scintillator signal with a good

Cherenkov signal and/or a good lead-glass signal. For each trigger that occurred, the infor-

mation from all the detectors was written to magnetic tape for an off-line analysis. A portion

of these events was also analyzed on-line so that problems could be identified and corrected

during the experiment. The Los Alamos Q system was used for both the data acquisition and

analysis of the data [16] [17].



Chapter 3

Elastic Line Shape

When an electron traverses matter it undergoes multiple interactions with the atoms of the

medium. These interactions cause the incident electron to lose energy. Two of the major

energy loss processes are collision losses (Moller scattering) and the radiating of real photons

(bremsstrahlung). These energy loss processes will affect the spectrum of scattered electrons

observed in an electron scattering experiment. Specifically, they will tend to shift and broaden

the scattering peaks to some characteristic line shape with a large tail toward lower momenta.

When analyzing electron scattering data this line shape needs to be known in order to calculate

accurate cross sections. In this chapter, the method described by Bergstrom [18] will be used

to obtain this line shape for the elastic peak. However, there are significant differences in the

present development. For the radiative correction factor, Bergstrom used the result derived for

potential scattering [19]. This does not include radiative corrections from the nuclear current

nor does it include the effect of kinematic recoil. For the light targets (deqsterium and hydrogen)

that were used in this experiment these effects cannot be ignored, especially idnematic recoil.

Tsai [20] derived the radiative correction factor for elastic scattering from hydrogen including

these effects, and it is this formula which we used to obtain the liie shape.

This chapter is divided into four main sections. The first section deals with the two major

energy loss processes affecting the line shape. The second treats the convolution of these

processes. The third section develops approximate formulas for the line shape near the elastic

peak. And finally, the fourth section relates this convolution method to the equivalent radiator

method as described in Mo and Tsai [21].
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3.1 Energy Loss Processes

3.1.1 Collision and Ionization Losses

When a charged particle traverses matter, it undergoes many collisions with the atomic elec-
trons in the medium. -These collisions lead to ionization and excitation of the atoms in the
medium. Following Landau [22), we seek the distribution DI(E, A, x) where DI(E, A, x)dA
is the probability that an incident particle of energy E, after traveling a distance x, will have
energy loss in the range [A, A + dA) due to these collisions.

A refinement of the Landau development was to include the Sternheimer density effect
correction [23] which takes account of the polarizability of the medium. Therefore, we used the
following formula for the mean ionization loss for a maximum energy transfer Em (24]:

dE _ 2(rne4  2mec2/2Enx\ _2 - , (3.1)
dx <Em. - mec2 2  2(1 - p2) )30]

where

n is the electron density of the target medium,

me is the mass of the electron,

e is the charge of the electron,

I is the mean ionization potential for the electrons of the medium,

6 is the density effect correction parameter, and

# is the ratio of the particle velocity to the speed of light, v/c.

The only difference between this formula and the one used by Landau is the inclusion of the
density effect correction. The parameterization used for the density effect correction is presented
in detail in Appendix D.

The Landau result for DI(E, A, x) including this correction is expressed in terms of a
universal function O(A) shown in Figure 3-1 and defined by the following formulas:

DI(EIA, x)= -O(A) ,(3.2)
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00(A) = j e~ ' r'- ' sin rr dr , (3.3)

X 27rne4 (3.4)

((=-in +1i- C , (3.5)

Ine= -In 2mc2p2 + p2+, (3.6)

C = 0.5772... (Euler's constant). (3.7)

The energy dependence of this distribution is expressed in terms of the variable # which is

given by:
v/2 - M2

e =(3.8)
E

For relativistic electrons (E > me) we have 3 - 1. In this case the energy dependence of the

distribution, neglecting the density effect correction, is dominated by the ln(1/(1 - p2)] term

which can be re-expressed as ln[E2/m2] . This energy dependence rises logarithmically with

energy and is therefore weak. Including the density effect correction parameter, 6, actually

cancels this rise above some energy eliminating the logarithmic increase.

Another universal function used by Landau is O(A), the integral probability of observing

A' > A. It is defined as follows and also shown in Figure 3-1:

O(A) = O(A') dA'. (3.9)

which can be re-expressed using Equation 3.3 to give the following integral

/osin 7rr
$(A) =I0 e-'-''dtT(.0

II
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Figure 3-1: The Landau 4 and ip distributions.

From the peak of the Landau 0 distribution,

can be obtained. Landau's result is:

a formula for the most probable energy loss

Amp =[n + 1 - C + Apea] (3.11)

where Ap,.k corresponds to the maximum of 4(A): Aped - -0.225 {25].

The overall normalization of DI is given by

EI A(E)DI(E, A, x) dA = A)(A') dA'.
A(o)

(3.12)

Since O(A) vanishes rapidly for large lambda, we can replace the upper limit in the integral with

infinity with negligible error. Then our normalization can be written in terms of the Landau $

distribution evaluated at A(0).

/E D1(E, A, x) dA ; O(A()).
0

(3.13)

0.15

0.10

0.05

0.00
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From the plot of O(A) shown in Figure 3-1, the value of A(O) must be less -2.5 since an energy

loss of zero must lie to the left of the peak. Using Table C.1 we find that for A < -2.5, '(A) e 1.
Therefore, we obtain the following normalization for DI:

/EjEDI(E, A, x,) dA -. ?b(/(O)) ;z 1. (3.14)

For the method used in finding the line shape the Laplace transform of DI is needed. From

Landau [22], including the density effect correction, the Laplace transform is given by:

d(E, s, x) 1[DI(E, A, x)] = dAe-' D(E, A, x)

Set[1-C-In(e')] (3.15)

where a small d is used to denote the Laplace transform of the distribution and the other quan-

tities are as defined previously. From the Laplace transform it is easy to show that DI(E, A, x)

has the correct limit as x -+ 0. When x = 0 we also have = 0 (see Equation 3.4). Therefore

di(E, s,0) = 1 , (3.16)

and since C[b(A)] = 1, we must have

D(E, A, 0) = 6(A). (
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~wX 11w1X

Figure 3-2: The first order Feynman diagrams for external bremsstrahlung processes in matter.

3.1.2 Bremsstrahlung Losses

In addition to the ionization energy loss, a charged particle also loses energy by radiating real

photons while passing through matter. This radiation is called bremsstrahlung radiation and

occurs as the passing particle is accelerated in the coulomb field of a nearby atom. Most of these

collisions result in small angle deflections of the incident particle. The radiation associated with

this is called "external" bremsstrahlung. The radiation coming from the collision that results in

the main large angle scattering event that one is observing is called "internal" bremsstrahlung.

3.1.2.1 External Bremsstrahlung

In Figure 3-2 the first order Feynman diagrams associated with external bremsstrahlung are

shown. We seek the distribution DB.X(E, A, x) where DB.,,(E, A, x)dA is the probability that

an incident electron of energy E, after traversing a thickness x, will have energy loss in the

range [A, A + dA] due to external bremsstrahlung. From Tsai [26] [271 we have the formula,

1 (A)bti- A 3 A2DB..t,(E, A, x) - 1 - - -- ,
EFI(bt ) E E 4 E

A < 0.8E,

t < 0.05 r. 1.

where t is the thickness in radiation lengths, x/Xrad, and Xrad is the unit radiation length (r. 1.)

of the material. The parameter b is a function of the atomic number, Z, of the target medium

(3.18)

------4
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and is given by the following formula [27].

4 ( 1 Z2+ Z
b = - + ) (3.19)3 12 Z2Lrad+ ZL'

Lrad = ln(184.15Z-1/3) Z > 5,

= 5.31 Z= 1,

L' = ln(1194Z-2/3) Z > 5,

= 6.144 Z= 1.

The normalization is expressed as follows:

DB..,(EA, x)dA 1. (3.20)
0E

Near the elastic peak, A/E < 1, we can simplify Our expression for DB.,,(E, A, x) and
only keep the leading term in the expansion. From Equation 3.18 we obtain the distribution
for external bremsstrahlung near the elastic peak (abbreviated nep).

D '((E,A,z)= Er(bt) EA/E<)1b (3.21)

t < 0.05 r. 1.

This expression has the same form as that used by Bergstrom in his analysis [181. The only
difference is the value chosen for the parameter b. Since Bergstrom used the distribution given
by Heitler [28] for external bremsstrahlung, his value for b was 1/ In 2 . Our value is expressed
by Equation 3.19 and is only weakly dependent on Z. For Z = 13 Equation 3.19 gives 1.358 for
b. The difference between the two values is ~ 6%. The energy dependence of this distribution
can be explored by considering D evaluated at E + 5E.

D e(E + bE, A, x) D )1 - u-b. (3.22)

When bt < 1, the factor on the right hand side is ~ 1. For this case DBe., is weakly dependent

on the incident energy E.



The Laplace transform of this distribution is,

B (E, s, x) = [D e,(E, A, x)] = dA e'a D e(E, A, x)

1
1 ((3.23)

(E.9)" '

where a small d is used to denote the Laplace transform of this distribution and the other quanti-

ties are as defined previously. From the Laplace transform it is easy to show that D (E, A, )

has the correct limit as x -+ 0. When x = 0 (t = 0) we have

d (E,, 0)= 1, (3.24)

and since C[6(A)] = 1, we must have

DeP (E, A, 0) = 6(A). (3.25)

3.1.2.2 Internal Bremsstrahlung

In Figure 3-3 the first order Feynman diagrams associated with internal bremsstrahlung are

shown. We seek the distribution DBin, (E, A, 6) where D i.,(E, A, 6)dA is the probability that

an incident particle of energy E, after scattering with angle 0, will have energy loss in the range

[A, A + dA] due to internal bremsstrahlung. In order to obtain this distribution we will use

the radiative correction factor derived by Tsai [21] [26] for electron-proton scattering: 6Tai(A).

Included in this correction are the inelastic diagrams of Figure 3-3 and also corrections to

lowest order elastic scattering shown in Figure 3-4. The inelastic diagrams are responsible for

the energy loss during the scattering process and therefore directly affect the line shape. The

higher order elastic diagrams do not affect the line shape since there is no energy loss. Instead

they only affect the overall measured cross section. As far as the line shape is concerned these

A independent terms are not important. But we must keep them in order to get the correct

radiation correction factor. We also will use the correction factor derived for electron-proton

scattering for electron-deuteron scattering, although this is not exactly correct. The nuclear

differences between the proton and deuteron will affect the amplitudes for the nuclear radiation

diagrams. Unfortunately there appear to be no calculations for radiative corrections to electron

scattering from the deuteron.

Chapter 3. Elastic Line ShapeT O
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a)

b)

Figure 3-3: The first order Feynman diagrams for internal bremsstrahlung processes in matter:
a) Radiation from the electron current. b) Radiation from the nuclear current.

Pe- Pt/s

a)

c)

t~]
Hj

b)

V4
d)

Figure 3-4: Corrections to elastic scattering to order a4. a) Pure elastic scattering (17 exchange

diagram.) b) 27 exchange diagrams. c) Vacuum polarization diagram. d) Vertex correction

diagrams.
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/I \

E/r E

Figure 3-5: Elastic peak with no straggling. A is the experimental energy cutoff used when
computing the cross section.

We have the following relationship between the pure one-photon exchange cross section and

the experimentally measured cross section:

da da
dJl ~ d) 1 ,y X 1+ 6Tsai(A)} , (3.26)

where A is the soft photon cutoff limit and is illustrated in Figure 3-5. This cutoff is the

experimental energy cutoff that is used when extracting the measured cross section since it is

not feasible to measure the whole tail. The factor {1+ 6Ta(A)} corrects for the fraction that

will be lost due to energy losses greater than A. The expression for 6bTi(A) is given by the

following formula (-Q2 > m' and E, E' > me):

hsa(A)= -c {(2A + Z2B)ln +Ei) + , for A(1 + 2EIMt) < E', (3.27)
r \YA)
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where

Z = +1 (electron-target scattering),

A = In - 1+2ZIn 71,
me

B = In [1 ]-2 ,1 -i i
-28 13 -Q2!

-In -9 6 m.

-QE'- E PEl )

+ t in
1-Ot

3A In 7 + (2A + Z2B)1n 71

+ Z2Bln(A7)

1/2)1Et+ Mt
2Mt

+Z[ t(-(Mt - E'))

2E'Et-2A
E(M - 2E'

' -4D((E El)

n2EE- ME
EI( Mt - 2E

E M )

(2E E

111n Mt)
k2E)} I

-Z [,@ -(IM - E)) _.O -EE E

+ 2E- M

+Z[ (M - El)) (M tE

+n M m
2E' - A 2E

(E' - Mt

+ .2(M - E)

+ (2(Mt El)

I
Z 2 [ E -
+ -It(E + M ,)

and 4 is the Spence function defined by the integral:

( ) - In 11 - y I dy .
J0 1y

(3.32)

(3.28)

(3.29)

(3.30)

(3.31)

-Z

2E'(Mt - E'))
2E' - MtE

+2E(Et - E')
2E Et - Mt El

E ( E'

A
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The other quantities are given by the kinematics for elastic electron-target scattering. From

4-momentum conservation we have (see Figure 3-4a)

PI + PtI = Pf + P01 ,(3.33)

where

Pell

Ptl

Pel
Ptjl

=(Ep),

= (M, 0),

=(E',P),

= (EtP).

Assuming the electrons are relativistic we obtain the following expressions:

Q2 (pp _ )2  -4EE'sin 2 (0/2),
E

= 1+ 2E sin 2 (0/2) (recoil factor),

Et= E + Mt - E' ,

V' VEt: - Mt2

t C Et'

This correction as

{1 + 6Ta(A)}, becomes

To remedy this we shall

it stands has one major flaw; as A --+ 0 the correction factor,

negative. This is unphysical since cross sections are positive numbers.

use Schwinger's prescription [29] of exponentiating the correction.

{1 + 6ai(A)}=S" .A

This exponentiated form now has the correct physical limit as A -+ 0, the correction also goes

to zero. Which says that pure elastic scattering does not exist in the real world due to the

higher order radiative processes.

M

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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The relationship between the measured

comes:

do,

df meas.

and one-photon exchange cross sections then be-

d) e6Trai(A)

dfl 1,
d . e 62

dil1- (E
) 6

(3.39)

where

61= + (2A+ Z2B),

62=- .

(3.40)

(3.41)

Taking the derivative of this expression with respect to A gives us the doubly differential cross
section, d2a/dfl/dA, which is the spectrum of scattered electrons shown in Figure 3-5.

d 2da) 

.
dildA)mas

Sdo) e62 2 ()61 (3.42)

From this the distribution Dag., can be obtained since DB1 ., oc d2a/dQ/dA. Requiring the
following normalization,

DB1., (E, A, 0) dA = 1,

we find

with

Dag., (E, A, 0) = b E

a -7Q2 1 1 #
1=+-2 in -_ 1 + 4Zln q + Z2 -In -2 .

x m2# 1-#1

(3.43)

(3.44)

(3.45)

We can interpret the various pieces of b1 as it contributes to DBe., in the following way (see

Figure 3-3). The Z independent term is the contribution from the electron radiation diagrams.

The term proportional to Z is the interference between the electron and target radiation dia-
grams. The Z 2 term is just the contribution from the target radiation diagrams. Notice that

even though the Z2 contribution may be small, the interference term can be quite significant

and cannot be neglected.

3.1. Energy Loss Processes T 5



76 Chapter 3. Elastic Line Shape

The energy dependence of this distribution can be explored by considering Ds., evaluated

at E + 6E.

DBit,(E + 6E, A, 6) = DB1 t,(E, A,) [1 - . (3.46)

When 61 < 1, the factor on the right hand side is ~ 1. For this case DBi., is weakly dependent

on the incident energy E.

Rewriting our doubly differential cross section in terms of Dai., we obtain the following

expression.
d2oe _ddf a s= d- e 62 DBin(E,A,9). (3.47)d~dA as.. dil 1 *

Where the factor e6 2 adjusts the overall magnitude of the one-photon exchange cross section

due to the higher order scattering processes.

The Laplace transform of this distribution is given by the following expression,

dBit(E, s,O) = [DB.,(E, A,6)] = 0 dAe' DBit(E, A,6)

= , (3.48)

where a small d is used to denote the Laplace transform of this distribution and the other

quantities are as defined previously. From the Laplace transform we can check to see if Di

has the correct limit as 6 -+ 0 (-Q 2 -+ 0). We should have dBi.,(E, A, 0) = 1 which implies that

Dei,(E, A,0) = 6(A). This requires 61 -+ 0. From Equation 3.45 only one term fails to go to

zero as 6 -+ 0. This is the Z independent term which diverges logarithmically as Q2 . This term

comes from the electron radiation diagram and was derived in the extreme relativistic region

where -Q 2 > m2. From Schwinger (Equation 2.102 [29]), we find that the general expression

indeed vanishes as 6 -+ 0 ensuring that DB1 ., (E, A, 0) would be a 6(A) if the extreme relativistic

limit were not used.

3.2 The Convolution

In the previous section we presented the distributions that govern the energy loss of an electron

as it passes through matter. What we seek to find is the energy loss distribution for electrons
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traversing the target cell and the line shape which describes the shape of the spectrum of

scattered electrons observed. The energy loss distribution is used to calculate the fraction of

electrons that will lose enough energy to fal outside of the experimental acceptance. This

represents part of the radiative correction, and the elastic line shape is used to subtract the

contribution of the elastic tail from the inelastic electron spectrum.

The target cell consists of either liquid deuterium or hydrogen in an aluminum casing.

Finding the energy loss distribution requires convoluting the various energy loss distributions

for each segment of the target cell. This energy loss distribution is a probability distribution.

The elastic line shape is also given by such a convolution except that the cross section for

scattering needs to be included in the convolution.

3.2.1 Scattering Geometry and Definitions

In Figure 3-6 the target cell geometry is shown along with a representative scattered electron

path. We divide this total path into four pieces. The electron first passes through an aluminum

entrance window of thickness xe. Then before it undergoes the main scattering event it passes

through some amount of incident liquid of thickness xi. After the scattering, it then passes

through some amount of outward liquid of thickness x,. Finally upon leaving the target cell it

Em

77. . TeCnvlto
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passes through some amount of the aluminum exit window of thickness x,. Throughout this

traversal the electron loses energy as it passes through x,, xi, ,, and x, due to ionization and

external bremsstrahlung and also at the scattering vertex due to internal bremsstrahlung. For

convenience we shall define the following energy loss distribution FIBx (E, A, x):

FIB.X, (E, A, x) = j DI(E, E, x) DBet,(E, A - E, x) de . (3.49)

This distribution is a convolution of the fundamental energy loss distributions DI and DBxt,,
and FIB.xt(E, A, x)dA is the probability that an incident particle of energy E, after traveling

a distance x, will have energy loss in the range [A, A + dA] due to ionization and external

bremsstrahlung.

Shown in Figure 3-7a is a schematic diagram representing the various energy losses that

occur as the electron traverses the target cell. A., A;, Ao, and A, are the energy losses that

occur as the electron traverses te, t;, to, and tx respectively. The t's are the thicknesses expressed

in terms of their radiation lengths,

te = Xe (3.50)
rad

ti = X , (3.51)
Xrad

to = * ,0 (3.52)
Xrad

tX = xx (3.53)

where the Xrad's are their associated unit radiation lengths. These energy losses are governed by

the distribution FIB.x (E, A, x). A, is the energy loss that occurs due to internal bremsstrahlung

at the scattering vertex and is governed by DB1 ., (E. A. ). Also shown are the electron energies

Ee, Ej, E,, Eo, and E. as it passes through the target cell. Shown in Figure 3-7b is an energy

diagram indicating the various pieces of the energy losses that occur as the electron traverses
the target cell. From this figure we have the following relationships for the electron energy as
it passes through the cell. If E is the incident energy we have:

Ee = E-Ae, (3.54)

Ej = Ee - Ai , (3.55)

ER = q (elastic scattering), (3.56)
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E, = ER - A, , (3.57)

Eo = E, - Ao , (3.58)

E, = Eo - A, , (3.59)

where 2E-
r(E ) = 1 + - ' sin2( /2), (3.60)

M

with Mt being the target mass and 0 the scattering angle. Eliminating the intermediate energies
and solving for E, as a function of the energy losses, A, and the incident energy, E, gives the
following expression:

EL-Ae -Ai
E, = -LA ) - AO - A,. (3.61),q(E - Ae - Ai)

From this figure we also define a new energy loss variable w as follows,

E
7 = Ex , (3.62)

where E/7(E) is the pure recoil scattered energy with no energy losses and E, is the exiting

electron energy; hence w is the energy loss not due to recoil and has the range [0, E/77(E)].
Substituting Equation 3.61 for E, gives w as a function of the energy losses, A, and the incident

energy, E:
L E-A -A-

W = - (L +A,+AO+AA,. (3.63)
77(E) 77(E - A, - Aj)

The energy loss variable, w, is related to the excitation energy, Ea,c, by the following equation,

E - Eexc - E2,/2e EE, = c/(2M) - , (3.64)
(E) 7(L)

which gives the following equality:

E 2
Eexc + *** =ex (3.65)

2Mt

For small values of Eexc/Mt the quadratic term can be neglected to yield:

Eexc -71w.
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For small values of energy loss before, Abef, and after, Aft, scattering (see Equation 3.61) w

can be expressed as follows:

Aaft+ b 2 . (3.67)

3.2.2 Elastic Line Shape

3.2.2.1 Full Line Shape

We seek the distribution D(E, w, X) where D(E, w, X)dW is the probability that an electron

of energy E, after traversing the target cell following a path described by the coordinates

X :(e, x;, xi , xz, 6), will have energy loss in the range [w, w + dwl due to ionization, external

bremsstrahlung, and internal bremsstrahlung. This distribution is given by convoluting the

various energy loss distributions for each segment of the target cell and is expressed as follows:

D(Ew,X) = 1 dAe dA, j ,

Oa&X(wA.,AiA')
X] dAo FIB.,, (E, A., x.)

X Flsi,(E, Ah ap) Ds,(E;, A,, ) Ftfs ,,(E

-Iex xF,,(Eo , Ama"(,, A,,I Ai , A,, IAO), 7) .

The elastic line shape is then given by the following expression,

dA, (3.68)

,, A0 , X0 )

= dAe dA1xdR 0

x f dAll FIR,

f Am1ax (W44) dA,

,( E, Ae, xe)

X FI ,(Ee, A;, ;) ') e 2 DBit (E;, As,,)

xFIs.x,(E.,,Ao, zo) Free,,,( Eo, Ama(W, Ae, A,_A,,dO), X.) ,

where the dependence of the cross section at the time of scattering on the electron energy has

been included (see Equation 3.47). The effect of this dependence is to increase the size of the

elastic tail at large energy losses. This is due to the increase of the cross section at low incident

scattering energies, Ei. Ignoring this dependence, the cross section can be brought outside of

? 9 Thw.~i OnnvnInhnfl

d~ldw},..
(3.69)



the multiple convolution and the elastic line shape can be expressed in terms of the energy loss

distribution, D(E, w, X).

2= - e_ 62D(E,w, X). (3.70)
dildw meas. d1I J.y

The validity of this relation is justified near the elastic peak where the energy loss are small

and the change in the scattering cross section is small (see Appendix E). For the rest of this

chapter this equality is used.

The Am"'s present in the multiple convolution can be obtained from Equation 3.63 using

conservation of energy. To get Am" we set A;, A,, AO, and A,, equal to zero. This gives us

the equation for Ama:
E E - Ama

7(E) -i(E - Ama)

Solving for Am" yields,

q2W

1 + ( - 1)w/E (3.72)

where 2
7 =7(E) = 1 + - sin2(/2) . (3.73)

Carrying out the same operations for AV" but keeping A. in the expression and setting the

rest of the energy losses A,, A0 , and A., equal to zero gives:

ATX= AT" Ae. (3.74)

Similarly for the remaining losses we obtain:

A(e + A;) (3.75)
a72 E~l ~ i

A = A ax - As, (3.76)

Amax= Ama - A, - A 0 . (3.77)

One simplification that can be made to the above convolution is to eliminate the A de-

pendence for the incident energies in Equations 3.54 through 3.58. This gives the following

Chapter 3. Elastic Line Shape82



!~ 9 Th~ C!cmnvnlntinn

relations:

Ee

E

Es

Eo

(3.78)

(3.79)

(3.80)

(3.81)

The validity of this step rests on the assumption that either the distributions are weakly de-

pendent on the incident energy or the energy losses are small compared to the incident energy.

3.2.2.2 Normalization

The normalization of D(E, w, X) is expressed as follows:

dw D(E, w, X) =
E/ndf A dAn" dAf dA.

f0 0 fa0

X j dAo FIB*,t (E, Ae, xe) FIB.x,(E, Ai, xi)

x DBh(EtA.,9)

X Fr., (E/1, A, Xo) FzE.1,(E/17, Am" - A, - A0 , C) ,

where the approximations, Equations 3.78 through 3.81, were used for the distributions incident

energies.

To evaluate this multiple integral we make the following change of variable:

Y2

4 As

Y4 Ao,7

= Amax - A O-0

The normalization then becomes:

JE0

(3.82)

A,. 9 Tornnfnn9 83

,;z E ,I

;:t E/l,

R E/li.
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J0E/ndwD(EwX) = Jdy1 Jdy2 Jdy, Jdy4 Jdys

x J *A'A,,A.A0,W

x FIB.x,(E, y1i, Xe) FIB.,,(E, Y2, xi) DBj.,(E, y3, 6)

x FIB.., (E/i7, y4, xo) FIB.,,(E/n, ys, x.) ,

where 'AAAA1

\ 11 3, y14, 115 )/
is the Jacobian of the transformation. The new limits of integration over the five-dimensional

space (y, y2,1 3,1 4, s) can be obtained by considering conservation of energy. The result is as

follows:

0E/7
IwE (E w, X) = 

E- yi d E/ -(y +y2)/ 0 0 0

X 
y4E/,n-ys -(yl+y2)/n y9 E/t7-y3

0 0

dy3

-yv -(y1+y2)/t1

(3.84)

and the region of integration is over a corner of a five-dimensional box. Outside of this region

the distributions are vanishingly small. Therefore, we can expand the limits of integration over

the entire box with negligible error. This leads to five separable one-dimensional integrals for

the normalization,

IE dy FIBe,(E, y1, e) dY2 FIBe.t(E7 Y2, Xi)

x dys Dag., (E, y3, O)

(3.85)

dy5 FIB.,,(E/, y5, x.) ,

and each separate integral is itself a normalization condition for the individual distributions.

DBA, has unit normalization as shown by Equation 3.43. FIBe., is a convolution of DI and DBext

(see Equation 3.49). Using the same technique, it can also be shown that its normalization can

(3.83)
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dy5

X FIsx,(E, y1, e) FIB,,,(Ey2, xi)

X Dain,(E, y39,0) FIB,,,(E/gq, y4, xo) FIB,,,(E/77, Y5, XX) ,

f/ dl &o D(E, w, X)

E/r
dy4 FIB., ,(E/77, Y4, Xo) 1
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be expressed as a product of the normalizations for DI and DB..,. Since both of these have unit
normalization (see Equations 3.14 and 3.20), the overall normalization of D(E, w, X) is unity.

j E/77d D(E, w, X) k (Individual Normalizations ) = 1 . (3.86)

3.2.2.3 Near Elastic Peak

If we are only interested in the knowing line shape near the elastic peak, the following simpli-
fications can be made to Equation 3.68 for the full line shape. In Equation 3.72 for Am"a we
make the following small energy loss approximation:

Am a a t 2 w for (,q-1) <1. (3.87)
E/i9

We can express this condition on w in terms of the individual energy losses: Ae, Ai, A,, A0,
and A,. Rewriting Equation 3.63 in the following form,

-1)-=(-1)1- 1+ 1- + A+AO+A ,(3.88)
E/77 E 77 E E/77

we then must also have for (q - 1)w/E/7 < 1:

e+ < , (3.89)
E

and
A+ AO +AX <1. (3.90)

E/lq

Using this small energy loss approximation in Equation 3.75 for ATm gives the following:

(Ae + Ai)
e ~o fo e le . (3.91)

The convolution for the line shape near the elastic peak (abbreviated nep) then becomes:
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D"6P(E, w, X) = I2W 2W-A. W-(Ae+Ai)/.
2 dA.0 J0 0

d A ,'O ~ (E, A., x.)

X F 'I'B.t (E, Ai, xi) D,., (E, As,,) Faj;(E/7, Ao, xo)

x FI.t(E/7, w - A, - A" - (Ae + A,)/ 2, X,,) ,

Fjn 1 (E, A,) = D1(E, e, x) Dn, ,(E, A - E, X) de. (3.93)

The limits of integration can be understood from the following argument. For elastic scattering

we have the relationship E' = E/77(E). If one considers differential changes in the energies we

obtain 6E' = 6E/772(E). Therefore, before scattering we can lose a multiplicative factor of q2

more energy than after scattering and still fall into the scattered energy bin w.

The Laplace transform of this convolution is given by the following expression:

dne(E,s,X) = [Dn*P(E,w,X) = o &ve~" D"lP(E, w, X) (3.94)

dA, 10 dA,= d dAe0 0
W-A-(A;a)/,n2

x dA. e~-" Fje (E, A6, Xe)

x (E/i(E, -A )D, A,, 6)+ Ai(/ 2 ,xo)

x Fixt (E / 7, w - A, - Ao - (Ae ;/2 ,

where a small d is used to denote the Laplace transform of this distribution. To evaluate this

we make the following change of variable:

Y1 = A,

Y2 =

Y3 As A,

Y4 (

Y5 A, - AO _ (Ae + A,)/772

(3.92)

where
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The multiple integral then becomes:

d"eP(E, s, X)

where

1 jdy j dy 2 j dy3 j dy4 dy
0 0 0 0 0

\ 7 y ilAy, , A0,w

x Y14+24+(44

is the Jacobian of the transformation. This multiple integral can now be expressed as five
separate one-dimensional integrals:

edyI1/ 9 *E 21(E, y, ,)

x db e~ DB,. (E, y, 9)

x f dy4 e -' 4 (E,y 4 , O)

(3.96)

x dyr, e-01 PFl*, (E, yr, xx)I

where each integral is itself a Laplace transform of a distribution: r or D ,. Similarly,

for the Laplace transform of . (see Equation 3.93) we find:

/ 00E 00
dy e-'y Fjn (,yz= y

0 t(EYX= 0 dy (3.97)

Therefore our expression for dneP becomes a simple product of the individual Laplace transforms:

(3.95)
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d"*P(E, 8, X)

00
e-'yl DI(E, y1, x) dy2 e-,y2'D O( yj x) .

0 et
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deeP(E, 8, X) = di(E, s/272, xe) dB*.,(E, 8/727, xe) (3.98)

xdj(E, s/rq2, Xi) d"* ,(E, q2,, )

X da,(E I ,7 )

x di(E/77, s, x,,) d; , (E/lq, s, XO)

X di(E/77, 8, x) d'Be.* (E/77, S, X.) ,

where these are given by Equations 3.15, 3.23, and 3.48. Substituting the formulas for the

individual Laplace transforms we obtain the following:

d"eP(E, s, X) = exp[-es/i72(1 - C - en('s/1 2))] (Es/1 2)- 6 t  (3.99)

x exp[-_&8/ 2(l - C - ln(Cs/7 2))] (Es/27
2)-blt

x (61 + 1)(Es/27)61

x exp[-os(1 - C - n(t',s))] (Es/77)~b0t*

x exp[-fs(1 - C - ln(c's))] (E8 /2 )~bxt*z

where all quantities are as previously defined. From this expression we can check to see if

DneP(E,w,X) has the correct limit as X -+ 0, i.e. as xe, x;, xo, x,, and 9 -- 0. We should

have dnP(E, A, 0) = 1 which implies that DneP(E,w,0) = 6(w). The only problem with this

is associated with Equation 3.48 for dBi.,. This has already been mentioned in the section for

this distribution and arises because the radiative correction used to derive it is valid only in

the extreme relativistic limit (-Q2 > m. and E, E'> m,). If the -Q 2 < m, limit were used,

we would have the correct limit.

In Table 3.1 are shown the values of the parameter b (see Equation 3.19) for the target cell
wall, be and b,, and target liquid, bi and bo. Since b differs less than 1% between the two, an

average value denoted by b is used for simplicity in what follows. Rewriting the expression for
neP we obtain the following:

d"P(E, s, X) = r(61 + 1) ()G 7 7btbefexp[ Fs - (T - Gs)ln(Gs)] , (3.100)

where

F = (1-C)G- In(' - In( ) -oln( )- ln( ,() , (3.101)
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be b1  bo b, average b
Al LH 2 or LD 2  LH 2 or LD 2  Al

Z=13 Z=1 Z=1 Z=13
1.3584 1.3514 1.3514 1.3584 1.3549

Table 3.1: The external bremsstrahlung parameter b.

G = &e/92 + i/7 2 + o + , ,

T = bttot + 61 ,

(3.102)

(3.103)

and ttot is the total number of radiation lengths traversed

ttot = te + ti + to + tX , (3.104)

and tbef is the number of radiation lengths traversed before scattering

tbef = te + ti . (3.105)

We can obtain the desired distribution, Dn*P(E, w, X), by performing the inverse Laplace
transform of dne(E, s, X). This is given by the following integral [30]:

D"nP(E, w, X) l[dneP(E, 8, X)] = - da ewsd"e*(E, s, X)2Hri c...(OO

H c'Ods e[(w-F)s-(T-Gs) In(Gs)]
27ri Jc-io.

H = I'(61 + 1)btbf(,G

Making the change of variable,
u = Gs ,

where

(3.106)

(3.107)



Im(u)

C Re(u)

E-*O
R ->oo

Figure 3-8: Contour used in evaluating the inverse Laplace transform integral.

our expression becomes

D"*e(E wX) = H4(AT),9 (3.108)

with

(A, T) = ] JciOOdu e[Au(Tu u, (3.109)

and
A w-F (3.110)

G

The integral for t(A, T) can be evaluated by using the contour shown in Figure 3-8 [30]. The

result is:

t(A, T) = - [, eAr+(T+r) nr] sin r(r + T) dr T < 1 . (3.111)
ir io

Notice that when T = 0, 4(A, T) becomes the Landau O(A) distribution (see Equation 3.3):

t(A, 0) = 4(A) . (3.112)

Therefore, the effect of bremsstrahlung radiation on the line shape is expressed solely through

the variable T. Shown in Figure 3-9 is 4(A, T) plotted for T = 0 and T = 0.1. From this figure

it can be seen that the overall effect of bremsstrahlung radiation is to increase the strength of

the tail, whereas the position of the peak of the distribution, Apeak, is less influenced by it.
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0 5 10
X

15 20 2

Figure 3-9: Comparing b(A. T) for T = 0 and T = 0.1.
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LH 2 : E = 900 MeV 0 = 160*
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Figure 3-10: The line shape for elastic scattering from liquid hydrogen evaluated for E = 900
MeV, 6 = 1600, and scattering from the center of the target cell, Xcenter.
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LD 2 : E =900 MeV 6 = 160*

- 3 Z =0-
-0.6 (T = 0.128)

-- Z=+1
(T = 0.135)

0.4

S 0.2

0.0
0 1 2 3 4 5

ci [MeV]

Figure 3-11: The line shape for elastic scattering from liquid deuterium evaluated for E = 900
MeV, 0 = 160*, and scattering from the center of the target cell, Xcenter.

The line shapes, DnP(E, w, X), for elastic scattering from liquid hydrogen (LH2) and liquid
deuterium (LD 2) are shown in Figures 3-10 and 3-11. These are evaluated for E = 900 MeV,
0 = 1600, and scattering from the center of the target cell, Xcenter, where xe = 0.1, xi = 5.0,

x, = 3.0, and x, = 0.2 in centimeters. The solid curves (Z = 0) are the line shapes not

including radiation from the nuclear current. The dashed curves (Z = +1) have this included.

From the figures it can be seen that including the nuclear radiation terms puts more strength

into the tail region. At the kinematics shown it is roughly a 9% effect for LH 2 and 5% for LD2.

3.2.2.4 Most Probable Energy Loss

From Equation 3.110 we obtain the following formula for the most probable energy loss, Wmp,
which is a function of the parameter T:

Wmp(T) = F + GApea(T) , (3.113)

where Apea(T) corresponds to the maximum of the function 4(A, T). In Table 3.2, Apea is given

for various values of T. For the case of pure Landau straggling, T = 0, we have Apeak(0) ~
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T
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Apeak
-0.225
-0.105
+0.025
+0.165
+0.315
+0.485
+0.665
+0.875
+1.105

Table 3.2: Values for Apeak corresponding to the maximum of the function I(A, T).

-0.225 since this corresponds to the peak of the Landau 4 distribution (see Section 3.1.1).
For T # 0, the change in Apeak represents the effect of bremsstrahlung radiation on the most
probable energy loss. To evaluate the importance of this effect, consider the following equation
relating the pure Landau straggling most probable energy loss with the most probable energy
loss for a finite value of T:

wmp(T) - wmp(0) = G [Apeak(T) - Apeak(0)] , (3.114)

where G is given by Equation 3.102 and has units of energy. The magnitude of this shift is

governed by the value of the variable G. Evaluating G for the conditions used in generating

Figure 3-11 we find G e 0.1 MeV and T = 0.135. Therefore, the shift from pure Landau
straggling is given by:

wmp(T) - wmp(0) ; 0.1 [0.35] MeV ; 0.035 MeV .

The small value of this shift indicates that to a good approximation the most probable energy

loss is still given by Landau straggling alone.
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Figure 3-12: The target cell and collimating slits illustrating the target averaging that occurs.

3.2.3 Target-Averaged Elastic Line Shape

In the previous section, the elastic line shape for scattering at a particular point inside the target

cell was derived. In this experiment the ELSSY spectrometer that was used to momentum

analyze the scattered electrons was not able to reconstruct accurately the scattering point (see

Section 4.3.2). Therefore, the experimentally observed elastic line shape represents an average

over the target cell weighted with the solid angle acceptance and the incident electron beam

spot size. Illustrated in Figure 3-12 is the geometry of the target cell and the collimating slits

with three representative scattered electrons. The effect of this target averaging is to broaden

the elastic line shape. This broadening is primarily due to the differences in path lengths which

yields differences in the most probable energy losses for each of the individual distributions.

At each scattering point the solid angle acceptance, Q(x, y, z), is determined not only by

the ELSSY slit openings but also the location of the collimating slits. The electron beam spot

size, ninc(x, y), describes the vertical and horizontal extent of the beam. The experimentally
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observed elastic line shape is given by the following integral (see Section 5.3):

DTA (E fff nin(x, y) f(x, y, z) DneP(E, w, x, y, z,9) dxdydz (3115)
fff ninc(0, Y) f(x, y, z) dxdydz

where in DI*P the entrance and exit thicknesses, X, are now expressed as functions of the
scattering coordinate (x, y, z). This target-averaged line shape also has unit normalization
since the line shapes, DnP, are normalized to unity.

E/d. DTA(E, w) = 1 . (3.116)

The multiple integral for the target-averaged line shape cannot be evaluated analytically as was
done for D"*P. Instead, this was evaluated with a Monte Carlo calculation (see Section 4.3.3).

3.3 Approximate Formulas for the Line Shape Near the Elas-

tic Peak

In the previous section we derived the following formula for the line shape near the elastic peak

(Equation 3.108)

DneP(E,w, X)= - 4(A, TG

where 4(A, T) is given by the inverse Laplace transform integral

I(A, T) = du e[u-(T-u)Iul,

which can be evaluated to give the following real integral

4(A, T) = 1 e-[,r+(T+-)nrI sin r(r + T) dr T < 1.
7r 0

In this section approximate formulas for the function 4(A, T) are developed for large values of A,
both positive and negative, and small values of T. The goal is to be able to calculate accurately

the line shape using these approximations eliminating the need for a numerical evaluation which

is more time consuming. For the large positive A expansion an improvement is made in the
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present development that gives accurate results for even moderate values of A (A ~ 5) as well

as the tail region where the accuracy is even better.

3.3.1 Large Negative A Expansion

For large negative values of A the method describe by Landau [22] will be used to obtain an

approximate expression for 4(A, T). Rewriting A as -IAI we then have the following expression
for t(A, T) (see Equation 3.109):

t(AT)= 1 j duef(u),
2(i ) -iAu

f (u). = (u - T) ln u - JA~u .
where

(3.117)

(3.118)

The saddle point method [31] will be used to evaluate this integral. Expanding the function
f(u) in a Taylor series about its extremum, u0, we obtain:

f(u) = f(UO) + f'(UO) (U - UO)+ f"(UO) (U - uO) 2 + - --,

where f'(uo) = 0 gives us the following equation for uO

T = uo [1 -JAI+ In uo] I,

and
f"(uo) = (T + u,)/u2.

Choosing the line of integration to be along this extremum,
sion:

Iuo-t-oo

U,O-ioo
du exp[f(u0 )+ f

(3.121)

u0 , we obtain the following expres-

"(uO) (U - UO) 2] . (3.122)

Making the change of variable

the integral then becomes

iw = U - Uo ,

4(A, T) , - dw exp[f(uo) - -f"(UO) W(3
2r f-, 2

(3.119)

(3.120)

97

4(A,7 T) 0- 1
2ri

(3.123)



which can be evaluated to give the following expression

O(A, T) 1 ef(uo) A < 0. (3.124)
2. v /f"( V-U-)

This equation can be rewritten in the following form

(A, T) ~ e-[uo-T(Inu , A < 0 , (3.125)
27r(T+ u0 )

where uO is a function of A and given by Equation 3.120. For T = 0 we reproduce the Landau [22]

result for the large negative A approximation of 4(A).

From Equation 3.120 we can conclude the following about the value of uo: uo > el- since

T > 0. Therefore, using Equation 3.125 we have the result that t(A, T) vanishes rapidly as

e-el 1 for A < 0.

3.3.2 Small T Expansion

For T < 1, Bergstrom [18] expanded t(A, T) in a power series of T:

4(A, T) = t(A, 0) + V'(A, 0) T + "(A, 0) T2/2 +- . (3.126)

Using Equation 3.111 for t(A, T) the coefficients can be evaluated and expressed in terms of

the Landau 4 and ?k distributions (see Section 3.1.1). The results are as follows:

t(A, 0) = O(A), (3.127)

'(A,0) = (A+1)0(A). (3.128)

V(A, ) = -1+(A+ 1) 2 (A)+4'(A). (3.129)

This gives us the following expansion through second order for t(A, T):

t(A, T) P 4(A) [1 + T(1 + A)] + [-1 + (A + 1)2 O(A) + V)(A)] T2/2. (3.130)

Since each coefficient brings in a power of A, the accuracy of this is limited to values of T and

A such that AT < 1.
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3.3.3 Large Positive A Expansion

We seek a large positive A (A > 0) expansion for the function t(A, T) which is given by
Equation 3.111 and reproduced below:

t(A, T) = -j0 e-[A+(T+r)Inr] sin r(r + T) dr, T < 1 .
7r 0

Bergstrom [18] derived such an expansion for 4(A, T) by following the method Landau [22] used
to obtain a large A expansion for his straggling function O(A). In the present development, a
modification is made to this technique that yields more accurate results for smaller values of
A (A ~ 5). This modification is to not expand the sin r(r + T) term in a Taylor series about
r = 0 as was done previously*.

Defining the function T(A, T) as follows:

T(A, T) = e-Ar+(T+r)Inr1 eif(r+T) dr, (3.131)

we have the equality
4(A, T) = Im[T(A, T)] =(T - T*)/2i, (3.132)

where Im (T) is the imaginary part of T. Making the following transformationt

A + A, (3.133)

where A is a parameter to be chosen later, we obtain the following expression:

T(A, T) = 1 er 0 r-T e-(m-iw)r e-r(n+A) dr . (3.134)

Assuming the parameter A is not too large, for A > 0 we then also have , > 0. In this case, the
integrand vanishes quickly as e-r which confines the streagth of the integral near the origin.

*B6rsch-Supan [32] derived a large A expansion formula for the Landau function 0 where he kept sin yr in
the first order A expansion term but then expanded it in the second order term.

tLandau actually suggested the transformation A = K+ln x +A. However using this transformation with this
new approximation scheme, A contained the term - In x. Therefore it cancels out in the calculation of A and is
omitted.
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Since the exponent, -r(ln r + A), of the second exponential term is small near the origin, it is

useful to expand this term in the following power series:

e-r(inr+A) [-r(ln r + A)]n (3.135)
n=O

= 1-r(Inr+A)+..,

where an accurate value for the integral can be obtained by using only a few terms in the

expansion. Defining the function Tn as follows

1 (~T00 [-r(ln r + A)]Th

Tn(A, T) = J r~T e-(.-ir)r n dr , (3.136)

we then have
00

T = Tn = To + T, + T2 + , (3.137)
n=O

and

4(A, T) = Im (To) + Im (T1 ) + Im (T 2) +-. (3.138)

The parameter A is chosen to make the second term, Im (T1 ), vanish in the expansion leading

to a more accurate first order term, Im (To).

Im (Ti) = 0 defines A. (3.139)

Evaluating T0 we obtain [33]:

To = 1eiT 00 r-T e-(-i)-)r dr , (3.140)

= 1 I ( 1 - T ) e T ( - i - .

The complex number, r - iir, can be rewritten in the more convenient form

z = r - ir = Izle (3.141)

= VK 2 + r2 eic
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Im(z)

tIc
-71~ -

Re(z)

Figure 3-13: The angle, C, used in the large positive A expansion.

where the angle, (, is defined in Figure 3-13 and given by

sin (=.

The expression for To then becomes:

To = 1(1 - T) (K 2 + 7r2)(T-1)/2 i(1T+C(T-1).

Evaluating Ti we obtain [33]:

Ti = i 00 r 7 ' e-('-)' [-r(In r + A)] dr

- (2 - T)e21!T ( - i)T-2[4 (2 - T) - In(n

where O(x) is the Digamma function defined by

d
0(x) = -- In (x),

dx

(3.142)

(3.143)

(3.144)

(3.145)

101
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Figure 3-14: Plots of the equation relating A and r for T = 0, T = 0.2, and T = 0.4.

not the Landau O(A) function.
complex number, n - iir.

This can be rewritten using Equation 3.141 to express the

T1 = - 1(2 - T) (K2 + .2)(T-2)/2 exT+C-2)] [,(2 - T) - In V/i2 + r2+ A - i(]

Setting Im(Tj) = 0, we obtain the formula for the parameter A:

A = C cot[rT + C(T - 2)]+ -ln( 2 + 2) - 0(2 - T).

Therefore, the function 4(A, T) is approximated by the first order term Im (To):

4(A, T)

. (3.146)

(3.147)

(3.148)Im (To)

-(1 - T) (r 2 + 7 r2)(T-1)/2 sin[rT + C(T - 1)],

T = 0.4 -
T = 0.2 -
T =0 _

T1 I--

'
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where r. is given by the following equation

A = +cot[7rT + ((T - 2)]+ 1ln(K2 + r 2 ) - i(2 - T), (3.149)

and ( is given by

_ =+7r 2in .(3.150)

In Figure 3-14 the equation relating A and n (Equation 3.149) is plotted for positive values of

A and K and three values of T. From the figure it can be seen that there exists a lower limit

for A below which no solution to the equation can be found for positive values of K and above

which two positive K solutions exist. For the later case, the larger value is always chosen for

the expansion since the starting assumption was for A > 0 we also have K > 0 and A is not

too large. This gives us A ~ K.

In Table 3.3 the accuracy of this new expansion for D(A, T) is compared with the Landau

result [22] for T = 0 where the exact values are found by numerical integration. From the table

it can be seen that this new expansion is more accurate over a wider range of A compared with

the Landau expansion. Even for finite values of T this expansion remains accurate to within

one percent for A > 5.

3.3.4 Comparison with Numerical Evaluation

Shown in Figure 3-15 is a plot of the function 4(A, T) for T = 0.2 and for A > -3. The solid

curve is the result of the numerical evaluation of Equation 3.111 for 4(A, T). The squares are the

values from the approximate formulas derived in the preceeding sections. For -3 < A < 5 the

small T expansion was used to evaluate 4(A, T) and for A > 5 the large positive A expansion was

used. The change at A = 5 was chosen to give t he best representation of the function 4(A, T)

since extending either expansion beyond this point would lose the desired accuracy. In the small

T expansion the values for the Landau # and v distributions came from a lookup table and

is presented in Appendix C. For A < -3 the function 4(A, T) becomes vanishingly small and

therefore ignored. The overall accuracy of calculating the function 4(A, T) for T = 0.2 using

these two approximations is better than one percent except for A ~ -3 and near the change

over, A ~ 5, where the accuracy is a few percent. For values of T < 0.2 the overall accuracy is

even better.
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4b(A, T) for T = 0
New Landau

A Expansion Accuracy Expansion Accuracy Exact
4.0 5.463 x 10-2 2.5% 7.257 x 10-2 36.% 5.327 x 10-2
5.0 3.915 x 10-2 -. 04% 4.935 x 10-2 26.% 3.916 x 10-2
6.0 2.933 x 10-2 -. 77% 3.531 x 10-2 19.% 2.956 x 10-2
7.0 2.265 x 10-2 -. 95% 2.631 x 10-2 15.% 2.287 x 10-2
8.0 1.791 x 10-2 -. 99% 2.025 x 10-2 12.% 1.809 x 10-2
9.0 1.446 x 10-2 -. 93% 1.601 x 10-2 9.7% 1.459 x 10-2
10.0 1.188 x 10-2 -. 84% 1.294 x 10-2 8.0% 1.198 x 10-2

15.0 5.375 x 10-3 -. 48% 5.604 x 10-3 3.8% 5.401 x 10-3
20.0 2.996 x 10-3 -. 30% 3.069 x 10-3 2.1% 3.005 x 10-3

25.0 1.892 x 10-3 -. 19% 1.922 x 10-3 1.4% 1.896 x 10-3
30.0 1.297 x 10-3 -. 14% 1.311 x 10-3 .95% 1.299 x 10-1
40.0 7.139 x 10-4 -. 08% 7.182 x 10-4 .54% 7.144 x 10-4

50.0 4.494 x 10-4 -. 05% 4.512 x 10-4 .34% 4.496 x 10-4

Table 3.3: Comparison of large positive A expansions with the exact result for the function

<b(A, T) when T = 0.
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0.20

0.15

0.10

0.05

0.00

<b(X,T) for T = 0.2

Exact -

Approximate

0 5 10 15-5 20

Figure 3-15: Comparison of the numerical evaluation of 9(A,T) with the approximate expansion
formulas. For -3 < A < 5 the small T expansion was used and for A > 5 the large positive A
expansion was used. The arrow indicates were the change occurs.
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3.4 Equivalent Radiator Method

In this section we derive an equivalent radiator method [21] for the line shape derived in

Section 3.2.2. The method of equivalent radiators is to account for the effect of internal

bremsstrahlung by placing additional radiators (equivalent radiators) before and after scat-

tering in the external bremsstrahlung distributions. This then eliminates the need for including

the internal bremsstrahlung distribution directly. We derive an expression for the appropriate

equivalent radiator by working backwards.

From Equation 3.99 we have the following formula for the Laplace transform of the line

shape, DneP(E,w, X):

d"nP(E, s, X) = exp[-&es/r2 (1 - C - ln(e's/7 2 ))] (Es/92)-t (3.151)

x exp[- js/, 2 (1 - C - ln(es/r)2 ))] (Es/Ir 2)-ti

x r(61 +1)(Es/r)-

x exp[-fos(1 - C - ln('os))] (EsI7)-o*

x exp[-(,s(1 - C - ln(c' s))] (Es/q)bt,

where be, b;, bo, and b, have been replaced with the average value, b, shown in Table 3.1. Com-

bining the internal bremsstrahlung term, r(61 + 1) (Es/?)-6', with the external bremsstrahlung

term, (Es/q)-blo, we obtain the followingt:

dflP(E, s, X) = exp[- .s/1 2 (1 - C - ln(e's/772 ))] (Es/92)-bt. (3.152)

x exp[-is/77 2 (1 - C - ln(E s/ 2 ))] (Es/,2)-bti

x exp[- os(1 - C - ln(E's))] r(61 + 1) (EsI)-b[o+6 1b]

x exp[-f.s(1 - C - ln(c's))] (Es/7)-bT .

To be more suggestive we re-express this formula in terms of the individual Laplace transforms:

+This is arbitrary. The internal bremsstrahlung term could have been grouped elsewhere or divided arbitrarily

by any amount before and after scattering.
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E EEEII-HII
Figure 3-16: Schematic diagram indicating the placement of the equivalent radiator, tq, used
to account for internal bremsstrahlung.

"eP(E, s, X) = (6 + 1)

x di(E, s/7 2 , e) d"*p (E, a/ 72, te)

x dj(E, s/8, x) d~eP ,(E, 8,/2 t)

x di(E / 7, s, x o) d; , (E /, 77S, to + teq)

x di(E/,q, s, x.,) dn;* (E/q, s, t.),

(3.153)

where teq is defined to be the equivalent radiator and given by

teq = b~1b1 . (3.154)

In the above expression the effect of internal bremsstrahlung has been absorbed into an external

bremsstrahlung term except for a multiplicative factor, F(61 +1) which for 61 < 1, J?(61 +1) ~ 1.

The convolution which corresponds to this is given by the following expression:

A

3.4. Equivalent Radiator Method
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D"*p(E,w,X) = r(61 + 1) 1 de J d; J( dAo

X F"nePx (EIAegte) fj t(E , Ai,ti)

X j DI(E/7, C, o) D",*(E/p , A0 - E, to + teq) de

X Frjne(E/17,w - Ao - (Ae + A,)/72,t) ,

where Figure 3-16 shows a schematic diagram indicating the energy losses and the placement of

the equivalent radiator, teq. This new expression for DneP(E, w, X) is not obviously equivalent

to the one presented in Section 3.2.2 (Equation 3.92). However since their Laplace transforms

are the same they are necessarily equal. Therefore, the effect of internal bremsstrahlung has

been accounted for by adding an equivalent radiator teq after scattering as shown in Figure 3-16

and multiplying by the renormalizing factor F(61 + 1).

(3.155)
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Chapter 4

Monte Carlo Model

With the advent of fast computers, Monte Carlo techniques have become a powerful tool for

analyzing and solving problems that would otherwise be very difficult to solve analytically. The

basis of these techniques involves first modeling of some problem with a computer code and

then "throwing darts" to evaluate it with randomly chosen parameters. The problem could be

a complicated integral that needs to be evaluated or a distribution that needs to be simulated.

The randomly evaluated functions are summed and histogrammed to obtain the desired result.

Since this technique is statistical in nature, many darts will need to be thrown in order to

obtain accurate results. For this experiment a Monte Carlo model was written primarily for

two reasons: First, to compute the target-averaged elastic line shape presented in Section 3.2.3

and secondly for spectrometer modeling and generating the reverse matrix elements.

This chapter is divided into three section. The first section describes the computer code

that was written to simulate the experiment. The second section deals with generating the

reverse matrix elements for the ELSSY spectrometer that were used in this experiment. And

finally, section three presents some of the Monte Carlo results.

4.1 Event Modeling

This section describes the methodology used in simulating the experiment. This simulation can

be decomposed into many independent stages, and each electron event which is modeled passes
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through each of these stages. In Appendix G the main program of the Monte Carlo code is

presented.

1. Event Generation

Illustrated in Figure 2-2 is the geometry of the target cell, collimating slits, and ELSSY's solid

angle defining slits. This geometry was programed into the Monte Carlo code. Electrons are

chosen randomly within a square beam spot size, x and y, to start the simulation. The incident

electron energy is given by the following expression,

Einc = EBeam + 1 EBeam (4.1)
100 (Xlb)Beam

where EBeam is the beam energy and (Xl6)Beam is the dispersion on target. When the system

is fully dispersioned matched this is given by the following expression for elastic scattering [5],

1 (XI 6 )ELssY_ 6 70
(X I)Beam = - E = [cm/%] , (4.2)

77 (XIX)ELSSY 71

where the ELSSY matrix elements are tabulated in Appendix F and 77 is the recoil factor:

7 = 1 + 2EBeam sin'(/2) (4.3)
- Mt

with Mt being the target mass and # the spectrometer angle; For this experiment 3 = 160*.

The scattering point inside of the target, z, is also chosen.

The polar scattering angle, 0, and azimuthal angle, 4, are chosen randomly within the

limits [Omin, Omax] and [kmin, Omax] respectively where these limits are chosen to be larger than

the physical acceptance. This defines a solid angle wedge used in the simulation, AQ, given by

the formula

=Q = sin 0 dd = AO (cos 0,,, - COS Omax). (4.4)

2. Multiple Scattering

The multiple scattering that occurs in the target is calculated from the entrance and exit thick-

nesses that the electron passes through. The deviations in the projected scattering angles, O,
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and 4,, were calculated randomly from a gaussian distribution describing the multiple scatter-
ing. This was accomplished using the following method [34]. Given a distribution function,
P(z), which is normalized to unity, the variable y defined by the integral,

R = J P(z)dz , (4.5)

where R is a random number between (0,1), will be distributed randomly according to the
distribution P(z). For multiple scattering the distribution to use is for the polar multiple
scattering angle, 0, and is given by the following approximate formula [12] [35]:

20 92 O(46P(O)dO = 2 exp )dO. (4.6)

The root-mean-square polar angle, Orm, [radians], is given by the formula [12],

O P = 19.94 Zincv[ 1+ 1og1o t] , (4.7)
Pinc~inc

where

Pinc is the incident momentum [MeV/c],

#inc is the ratio v/c for the incident particle,

Zinc is the charge number of the incident particle and

t, is the thickness in radiation lengths.

Evaluating the integral,

R = P(9)d0, (4.8)

we obtain the result that 0 will be distributed according to the distribution P(O) when given

by the expression,

0 Orms ln R (4.9)

and R is a random number generated between (0,1). The projected multiple scattering angles

are given by the following relations [36] [37]:

OMS = Osin a, (4.10)

Ms = Ocosa (4.11)

4.1. Event Modeling ill
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where a = 27rR' and R' is a new random number. These angles are added to the projected

scattering angles to include the effect of multiple scattering in the target. Since the rms mul-

tiple scattering angles are of the order of a milliradian and the target depth is less than ten

centimeters, the lateral displacement of the incident electron due to multiple scattering is less

than one millimeter. This small displacement is ignored in this simulation.

3. Acceptance of the ELSSY Spectrometer

The resultant electron is then checked to make sure that it will enter the ELSSY spectrometer.

This involves checking to make sure that it is not obstructed by the collimating slits and passes

through the ELSSY solid angle defining slits. If this is true the event continues, otherwise it is

discarded and a new event is started.

4. Picking an Energy Loss

We need to assign the electron a final energy, Ef. When simulating the elastic line shape

this is obtained from the energy loss distribution, Dn*P(Eine, w, X), presented in Chapter 3.

Equation 3.62 gives us the final energy expressed as a function of the energy loss variable, w:

Ef - w -c . (4.12)
77

The energy loss, w, is then chosen randomly according to the energy loss distribution

Dnep( Einc, iW, X):

R = DneP(w')d/', (4.13)
0

where R is a random number between (0,1). This integral is evaluated numerically to obtain a

solution for the energy loss, w.

When simulating a white spectrun (assumed uniform), Ef is picked randomly within some

chosen limits.
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5. Forward Transport Through ELSSY

A magnetic field, B, for the spectrometer is chosen from an experimental data run that we

are simulating. The scattered electron is then transported to the focal plane using the matrix

elements presented in Appendix F. Before this can be done the electron coordinates at the

target need to be converted into the prime coordinate system illustrated in Figure 2-2 and the

final momentum, Pf, converted into 6:

6 = 100 .-Pcent (4.14)
Pcent

The spectrometer central momentum, Pcent, is given by the expression (see Section 2.4.1),

Pcent [MeV] = 66.85 B, (4.15)

where B is expressed in kilogauss. Shown in Figure 2-4 is the focal plane coordinate system

(Xf,Yf,Zf) used to describe the electron in the rear of the spectrometer. The electron is then

checked to see if it passes through the active areas of each of the detectors. This is to ensure

that this simulated electron would make a real experimental trigger. If this is true the event

continues, otherwise it is discarded and a new event is started. The focal plane coordinates, Xf,
Of, yf, and of are then converted into the coordinates, XVDC, OVDC, YVDC, and OVDC which

are located at the VDC (see Figure 4-1). These are the coordinates that experimentally are

measured. The transformation is given by the following formulas:

XVDC = Xof CO ] , (4.16)
1cos(Of + 450)]

VDC = f (4.17)
sin 1.5* tan of cosO1 (4.18)YVDC Yf + Xf cos Of + 15*) ,(.8

OVDC Of (4.19)

where the VDC is inclined at a nominal angle of 4.5*. These coordinates are then smeared

using the intrinsic detector resolutions for the VDC and HDC's (see Section 2.4.2). The focal

plane angles are also smeared due to multiple scattering which occurs while the electron passes

through the focal plane detection system.
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Xf

xVDC

or 45

Is

Yf PYVDC

/zf

xf

Figure 4-1: The focal plane coordinate system for the forward matrix elements and the VDC
coordinate system which is inclined at a nominal angle of 45*
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6. Analyzing The Simulated Event

The final electron is then analyzed and histogrammed as a real data event would be in the data

analysis replay software. The target variables, 6O, Yt, 4O, and 6 are reconstructed from XVDC,

Of, YVDC, and 4 f using the reverse matrix elements presented in Appendix F. The true polar
scattering angle, 6, is computed from the target angles as follows:

tan q sin / + cos (cos e = (.0
1+ tan2 Ot + tan2 t(

where 3 is the ELSSY spectrometer angle and is 160* for this experiment. The final electron

energy, Ef, is given by the following formula:

Ef ~ Pf = Pcent(1 + 6) . (4.21)

The excitation energy, Ee,,, for the scattered electron is calculated from the expression:

Ef = Eic - EeXC - Ee2c/(2Mt) , (4.22)
77

2Ei-2
t = 1 + 2 * sin2 (6/2), (4.23)

where Mt is the target mass and 6 is the calculated polar scattering angle. At this point a new

electron event is chosen and the process repeated for many simulated events.

4.2 Reverse Matrix Elements

The reverse matrix elements that were used in this Monte Carlo and in the experimental analysis

were generated from a ray fitting procedure. This involved having the Monte Carlo write out

many electron rays to a file where each ray contained the information of the target and VDC

coordinates (see Figure 4-1 and Equations 4.16- 4.19).

An individual Ray: (xt, Ot, Yt,,6, XVDC, , ivODc, kfi)

1 M



A program called RAY [11] used this file and found the best fit coefficients for a polynomial

expression of the target variables and 6 in terms of the VDC coordinates. Using median-plane

symmetry the general polynomial expression can be written as follows [4]:

x = Z (XlXijyY') 4vDCO'fYVDC f (4.24)

where

X = 6, Ot k + l = even, (4.25)

= ytc t k + l = odd . (4.26)

These best fit coefficients become the inverse matrix elements which are presented in Ap-

pendix F.

4.3 Results

In the following subsections some of the Monte Carlo results are presented. Before interpreting

such results one must be aware of possible sources of error in the calculations [34]. Specifically,

these calculations depend on random numbers, and computer algorithms for generating random

numbers are not perfect. For example, a computer generated random sequence will eventually

repeat itself. However, good random number generators will have long periods greater than 108

random numbers. All of the Monte Carlo calculations presented in this thesis used less than

107 random numbers.

This is not the only problem associated with computer generated random numbers. In fact

it is probably of lesser importance. Correlations between computer generated random numbers

do exist and can have a large affect on the results. For example, if one plots pairs of computer

generated random numbers, these points would tend to lie along a finite number of lines and

not fill the space uniformly. Therefore, a calculation that uses two random numbers at a time

would not sample the entire region uniformly. As one increases the number of random numbers

used at a time in a calculation the problem gets even worse.

The errors associated with such non-randomness was checked for one Monte Carlo calcu-

lation: the integrated solid angle. This was evaluated numerically and the result compared
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with the Monte Carlo calculation. Both calculations agreed with each other to within one per-
cent (see below). Therefore, any systematic error in the Monte Carlo calculations due to such
non-randomicity is expected to be negligible.

4.3.1 Integrated Solid Angle

The integrated solid angle is given by Equation 5.6 and reproduced below,

(nz) = fff ninc(x, y) 1(x, y, z) dxdydz (4.27)
ff ninc(x, y) dxdy

where nij,(x, y) describes the vertical and horizontal extent of the beam spot size and 1(x, y, z)
is the solid angle acceptance at each point in the target cell. This is evaluated in the Monte
Carlo using the relation,

fff ninc(x, y) (x, y, z) dxdydz All (4.28)
ff nin (Z, y) d2dy

where Nj is the number of electrons that were accepted into the ELSSY spectrometer, N is
the total number of trials, Af is the value of solid angle used in the Monte Carlo (given by
Equation 4.4), and 6(N1 /Ni) is the statistical error in the calculation. The number of electrons
that were not accepted into the ELSSY spectrometer, Nf, is given simply by N; - N1 . When
calculating the statistical error, 6(N1 /N;), one must be careful since N1 and N are correlated
variables (Ni = Nf + Nf). The two uncorrelated variables are Nj and Nj. Therefore, the
statistical error is calculated for Nj/(Nj + Nf) and re-expressed in terms of Ni and N1 . The
result is as follows:

N N -
(4.29)

For this experiment the ELSSY horizontal and vertical slit opening were set at 1.7 and
13.0 inches respectively. These settings did not change over the course of the experiment. The
target collimating slit positions also were not changed. Performing the Monte Carlo calculation
with these parameters, the integrated solid angle was determined statistically to better than
one percent:

(4.30)
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Figure 4-2: The solid angle acceptance function, 1(z).

Uncertainties in this calculation due to collimating slit misalignment was estimated to be less

than one percent. This result was also checked against a numerical evaluation of the integral,

f 0(0, 0, z) dz. Shown in Figure 4-2 is a plot of the solid angle acceptance function , fl(0, 0, z).

Since the extent of the target along the beam line is the most important part of the integral,

this should be approximately equal to the full calculation. This evaluation was found to agree

with the Monte Carlo result to better than one percent. The effective target length, zeff, is

given by the following relation:

Zeff f fl(0, 0, z) dz 369 [cm].
1(0,0,0) -

(4.31)

4.3.2 Scattering Vertex Reconstruction

An important property for any spectrometer is its ability to reconstruct the scattering vertex

accurately. This involves not only determining the kinematics at the scattering point, the polar

scattering angle 0 and the scattered energy E', but also the scattering position inside the target,

Yt (see Figure 2-2 , yt y ). The reverse matrix elements presented in Appendix F give us this

- fQ(0,0,z)dz = 13.530

- -f
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reconstruction with the following resolutions: aq, ~ 1 mr, ay, ~ 0.04 cm, o, ~ 0.1 mr, and a6

0.01 %. These resolutions represent the ultimate limit with perfect focal plane measurements

of x 1 , Of, yf, and of. This is not a realistic case since detectors have finite resolutions. Also

multiple scattering occurs as the electron traverses the focal plane detection system and affects

the measurements.

The reconstruction of 6 and 4O depends primarily on the focal plane positions, xj and

yf respectively. Their resolutions are limited mostly by the accuracy of the the focal plane

position measurements. However, the reconstruction of yt and Ot depends primarily on the

focal plane angles, Of and of respectively, and they are limited mostly by the accuracy of

the focal plane angle measurements. Since the ELSSY spectrometer was designed for high

resolution work with thin targets, the kinematic reconstruction can still be done accurately

from the focal plane coordinate measurements. However, the extended target position, yt, is

poorly determined, mostly due to the multiple scattering at the focal plane which affects the

measurement of 4.

Shown in Figure 4-3 is a Monte Carlo result for reconstructing the target angles, 6O and Ot.

The solid histograms are the actual distribution of target angles chosen in the simulation and the

dashed histograms are the reconstructed angles. The resolution obtained in reconstructing Ot

was of the order of 20 milliradians (FWHM) whereas 't was better than 2 milliradians (FWHM).

The poor resolution in Ot was mainly due to the VDC's intrinsic Of resolution. In Figure 4-4

is shown the Monte Carlo result for the target position, yt. In this case, the poor resolution

was primarily due to focal plane multiple scattering which was evaluated with an electron

energy of 300 MeV at the focal plane. For energies larger than this the resolution improves

proportionally, but even at our highest scattered energy (450 MeV) it was still inadequate for

determining target position, yt. The resolution obtained for 6 was of the order of 0.01 %.

4.3.3 Target-Averaged Line Shape, DTA(E,w)

The expression for the target-averaged elastic line shape, DTA(E,w), is given by (see Equa-

tion 3.115)

DTA(E, w) = fff ninc(x, y) Q(x, y, z) DneP(E, L, x, y, z, 6) dxdydz (4.32)
fff nic(x, y) n(x, y, z) dxdydz

and was evaluated in the Monte Carlo. Shown in Figure 4-5 is a histogram of the result for LD 2

with an incident electron energy of 900 MeV and scattering angle of 160*. The dashed curve in
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Figure 4-3: The ELSSY target angle reconstructions. The solid histograms are the actual
distributions and the dashed histograms are the reconstructions.
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Figure 4-4: The ELSSY target position reconstruction. The
distribution and the dashed histogram is the reconstruction.

solid histogram is the actual

the figure represents the elastic line shape for scattering at the center of the target cell. Both

spectra were centered to place the elastic peak at zero excitation. Notice that the width of the

target-averaged line shape is much broader than the individual line shape. This is due to the

differences in the most probable energy losses when averaging over the target length. If the

ELSSY spectrometer were able to reconstruct the scattering position these differences could

be removed and our elastic line shape would be given very closely by the dashed curve in the

figure.

4.3.4 Inelastic Radiative Correction Factor, Rinei

As derived in Section 5.3, the inelastic radiative correction factor is given by the following

formula,

Rinel(Ac) = DTA(E, A) dw , (4.33)
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Figure 4-5: Monte Carlo calculation of the target-averaged line shape for elastic scattering from
liquid deuterium evaluated for E = 900 MeV, 6 = 1600. The dashed curve is the line shape,
De"p, for scattering at the center of the target cell, Xcenter-
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and is a function of the experimental cutoff energy, A,. This correction is evaluated in the

Monte Carlo using the following relation,

R;nel(Ac) = ' DTA(E, ) dA = N(Ac) 6( N(c), (4.34)

where Nt,, is the total number of electrons that were accepted into the ELSSY spectrometer and

N(Ac) is the total number of electrons up to the cutoff energy; N(Ac) 5 Ntot. The statistical

error in the calculation, 6(Ntot/N(Ac)), is given by the following formula:

Not _NtotN(Ac) - NtotN2 (A0) ( )
N(Ac) N2(

For the case illustrated in Figure 4-5 the result was evaluated statistically to better than

one percent,
Rined(Ac = 5 MeV) = 1.97 0.02 ,

where Ntot = 12741 and N(Ac = 5 MeV) = 6467.
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Chapter 5

Data Analysis

5.1 Overview

The analysis of the data consisted of 3 separate stages. The first stage involved calculating

the raw data spectra for scattered electrons from the wire chamber information and particle

identification cuts. This is discussed in Chapter 2. The second stage involved writing a Monte

Carlo code to simulate the experiment. This was used for modeling spectrometer acceptances

and obtaining the elastic line shape and is discussed in Chapter 4. A detailed comparison

between the Monte Carlo spectra and the raw experimental data spectra was also made and

some of the results are presented in this chapter. The final stage of the analysis consisted of

converting the raw data to absolute cross section measurements so that they could be compared

with theoretical predictions. This part of the analysiis presented in this chapter.
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5.2 Monte Carlo Comparisons

Shown in Figure 5-1 are two plots of Otarget versus xVDC. The plot at the top of the page was

generated from a quasi-elastic deuterium run with 12 inch ( 76 mr) vertical slits. The other

plot was generated from a Monte Carlo simulation of this run. In each case the overall Otarget

acceptance is consistent with vertical angle acceptance, 76 mr, smeared with the Of angular

resolution of the VDC. As also can be seen in the figure both plots show a reduction in angular

acceptance at the ends of the VDC. This reduction implies that the focal plane acceptance in

not uniform at the ends the VDC. This reduction can be understood from the geometry of the

focal plane detection system (see Figure 2-4). For example, at the low momentum end it is

possible that some values of Of could geometrically miss the lead-glass array while triggering the

scintillators and gas Cherenkov. In this case the trigger would not constitute a valid electron

event. This seemed to be the case for the low momentum end. The reduction at the high

momentum end is also due to a similar scenario but involved electron tracks that geometrically

missed the scintillators. Since the positions of the focal plane detectors were put into the Monte

Carlo code the angular acceptance displayed in the data is also reproduced. The good agreement

between the two plots indicates the the trget angular acceptance was well understood.

One of the primary calculations of the Monte Carlo was the elastic line shape. The calcula-

tion is discussed in Section 4.3.3. In Figures 5-2 and 5-3 the Monte Carlo results for the elastic

line shapes are compared with data. In both figures the histograms are the experimental data

and the solid circles are the results of the Monte Carlo calculation. In Figure 5-2 the comparison

is made with the spectrum of 347 MeV electrons scattered from deuterium at 1600. The elastic

line shapes agree well. Since the data spectrum contains inelastic strength along with the elastic

peak a direct comparison of the tail shapes is not possible for deuterium. In Figure 5-3 the

comparison is made with the spectrum of 913 MeV electrons scattered from hydrogen at 160*.

Both the elastic peak and tail agree well. Therefore, the Monte Carlo determined elastic line

shapes can be subtracted with confidence from the data to yield the threshold inelastic spectra.

5.3 Experimental Cross Sections

Illustrated in Figure 5-4 is our extended target geometry along with an electron scattering

within the small volume element, dx dy dz. The number of scattering events per unit volume
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Figure 5-1: The plot 9 target versus xVDC for a quasi-elastic data run with 12 inch vertical slits

and a similar Monte Carlo run.
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Figure 5-2: Spectrum of 347 MeV scattered electrons from deuterium at 1600. The histogram
is the experimental data and the solid circles are the Monte Carlo calculation for the elastic
line shape.
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Figure 5-3: Spectrum of 913 MeV scattered electrons from hydrogen at 1600. The histogram is

the experimental data and the solid circles are the Monte Carlo calculation for the elastic line

shape.
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Figure 5-4: Scattering within a small volume element of the extended target.

of the target and per unit scattered energy, dn,cat/dW, is given by the well-known formula,

where

dnacat dwdxdydz = d2d .dw Q(x, y,
dw dQdu m.

w = E/t- E',

Q(x, y, z) is the solid angle acceptance at x, y, z,

ninc(x, y) is the number of incident particles per

ntar is the number of scattering centers per unit

For elastic scattering the doubly differential measured

by Equation 3.70 and reproduced here.

d2 e
d~dw J es

(5.1)z) [nin,(X, y)dxdy] [nt,.dz] ,

unit area and

target volume.

cross section, d2a/d/dw, is expressed

(5.2)-d e62 Dne(E,w,x,y,z,8).
dQ ) p

I I i .r

5.3. Experimental Cross Sections
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In order to compare with theoretical calculations the one-photon exchange cross section,

dajy/d, needs to be extracted from the measurement.

Experimentally what is measured is the total number of elastic counts, Ncat, integrated

up to some cutoff energy, w,. Mathematically this is expressed as the following,

Nscat(wc) = Id dxdy dlnscat (5.3)

= ntar fW dx fdy dz ninc(x, y) O(x, y, z) ,

where we also have also integrated over the volume of the target. Performing some algebraic

manipulations, this equation can be rewritten in a more suitable form:

Ncat(wc) = e62 ntar (5.4)

dw fff nn (X, 7Y) Q(X, y, YZ) DneP(E, w, x, y, z,0) dxdydz
x fff nin (x iY) Q(x, y, z) dxdydz

fff ninc(x, y) Q(x, y, z) dxdydz
ff ninc(X, y) dxdy

x 1 ni(x, y) dxdy ,

where Equation 5.2 has been used. In the second line of this equation the ratio,

fff ninc(x,y) O(xy,z) DneP(E,w,x,y,z,6) dxdydz (5.5)
fff ninc(x, y) fl(x, y, z) dxdydz '

is the target-averaged line shape (see Section 3.2.3). This is the line shape that is observed

experimentally and is denoted by DTA(E,w). The third line contains the expression for the

integrated solid angle,

(Qz) = fff ninc(x, y) Q(-r. y.:_) dxdydz (5.6)
ff ni.:(x. y) drdy

and represents a product between the effective solid angle and the effective target thickness.

The last line of the equation is simply total number of incident electrons, Ni,,.
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The one-photon exchange cross section can then be extracted from the measurement by

inverting the above formula:

d-Nacat(Wc) _____________-a = xea(C Xe-62 1(5.7)
dfl I- ntar (az) Nine fowc DTA(E, w) d '

The term inside of the bracket represents the radiative correction to the measured data. This

correction can be separated into two pieces: an elastic radiative correction and an inelastic

radiative correction. The elastic radiative correction is given by

Rej = e-62 (5.8)

and is only a function of the kinematics. This term corrects for the change in the overall

magnitude of the measured cross section due to higher order elastic processes (see Figure 3-4).

The inelastic radiative correction is given by,

Rinel(WC) = [j DTA (E, w) dw] (5.9)

and is a function of the experimental energy cutoff, wc. This factor corrects the measurement

of Ncat(Wc) for the fraction of events which fell outside of the experimental cutoff energy due

to the radiative tail. The product, Nscat(Wc) Rinel(wc), is the total number of counts under the

elastic peak and must be independent of the energy cutoff.

The equation used to extract the elastic cross section measurements can then be written

as follows,

=a N-cat(w) eR(w) (5.10)
dil 1, Ninc nt,,, (Qz) E

where

IZ(wc) = Rel Rinel(wc) , (5.11)

and the efficiency for detecting electrons, e, has also been included.

For the threshold inelastic data we would like to compute the cross section averaged over

some range in Enp. Since previous measurements have averaged the cross sections over 0 to

3 MeV and 0 to 10 MeV in Enp the same is done here so that a direct comparison can be

made. Two separate methods have been used to accomplish this averaging. The first method

is explained below where it is shown explicitly for the 0 to 3 MeV average. The second method
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computes this average directly from the radiatively unfolded threshold spectrum. The radiative

unfolding procedure is presented in Section 5.4. Both methods used the elastic line shape as

the resolution function for the inelastic region. Since the threshold region is close to the elastic

peak this is a reasonable approximation. The results from both methods were found to be

consistent within statistical errors.

Mathematically, the averaged threshold cross section differential in Ep can be written as

follows:
d2o f d2/dQ/dE dE ( (5.12)

dQdEnp / -3 f dEn, f dEn,

where for brevity the threshold cross section is written simply as a(Enp). Rewriting the above

expression we obtain the following,

( d f6 o(En)dEnp X f_ m ( a Env) dEn, (5.13)
df dEn, /0-3 f3 ormeas(En,) dEn, f dE,

where ae'" is the experimentally measured threshold spectrum. This expression can be inter-

preted as follows: The first term is the radiative correction factor for the 0 to 3 MeV average

and the second factor is the average measured cross section. Using Equation 5.10 this can be

written as follows:

/ d2a f Nscat(En,) dEn, 1 O-3
\ dn2dEnp / 0-3 f dEn, Nnc ntar (Oz) (5.14)

where

XO-3 f a(En,) dEn, (5.15)
f2_0 omea(En,) dEn,

To convert this into an average threshold cross section differential in the scattered electron

energy E', the following equation was used:

d2 , dEn, d2a d2o, (5.16)
d dE' 0-3 dE' dfdEn / 0-3 f0dEn )0-3

where 77 is the recoil factor.
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In the expression for the radiative correction factor the denominator is the total measured

strength up to 3 MeV in En,. This can be re-expressed using the relation:

J3 a(mea(En,) dEn, = J0 REj _ dEn , (5.17)
_00 fo Rel Rinel(3 - En,)

where Rinel(3 - En,) > 1 and given by Equation 5.9. Therefore, the formula for the radiative

correction factor, Z0- 3, can be written as follows:

gO-3 = Relg-3 = gL X(En,) dE..
fo' a(Enp)IZinel(3 - En,) dEn(

Unfortunately, this correction factor depends on the shape of the threshold spectrum which is

assumed unknown. However, since it appears in the numerator and denominator the dependence

is weak and can be tested by calculating the radiative correction factors for different threshold

shapes. The results of the radiative unfolding procedure can also be used to test for consistency

between the two methods.

5.3.1 Integrated Solid Angle

The integrated solid angle, (11z), was evaluated with a Monte Carlo calculation and discussed

in Section 4.3.1. The result of the calculation was (11z) = 13.5 msr-cm. The uncertainty in this

was estimated as 1%.

5.3.2 Incident Electron Flux

Two toroid current monitors measure the incident electron beam charge. This system has been

discussed in detail elsewhere [38] and is known to be accurate to better than 0.5%.

5.3.3 Target Density

The target temperature was monitored by two diode temperature sensors one mounted above

and the other below the target cell. These allowed accurate determination of the liquid temper-

ature during data acquisition. For each energy the average target temperatures were then used

5.3. Experimental Cross Sections
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detector
VDC
HDC1
HDC2

gas Cer.
Pb glass

E [%]
~-97
~ 96
~ ,96

> 99.5
> 99.9

Table 5.1: Detector efficiencies.

to obtain target densities. For each energy these differed by no than than 1%. For deuterium

the average density was 0.166 g/cm3 with an uncertainty of 1%. And for hydrogen the average

density was 0.073 g/cm3 with an uncertainty of 1%.

The effects of target boiling were also considered. However, since a dispersed beam was

used the power densities achieved at the target cell were never large. Therefore, the effect of

target boiling was estimated to be negligible.

5.3.4 Detection Efficiencies

The total detection efficiency for the focal plane detector array is given by a product of the

individual detection efficiencies.

6 = EVDC EHDC1 eHDC2 6Scint ECer EPbG - (5.19)

In the off-line analysis of the data each of these efficiencies can be determined except for the

scintillator since this was a required part of the trigger. However, this is known to better than

99% efficient. For the rest of the detectors the following method was used.

If we label the VDC as detector A, the HDC1 as B, the HDC2 as C, the gas Cherenkov

as D and the Pb glass as E, then the efficiency of the VDC can be expressed as the following

ratio,

EA = NA.B.C-D-E (5.20)
NB.C.D.E
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i.e E; 6 target
0.931 347 1600 2H
0.921 576 1600 2 H
0.916 754 1600 2H
0.914 817 1600 2 H
0.911 913 1600 2 H
0.900 913 1600 H

Table 5.2: lIZ radiative correction factors.

where NA-B-C-D-E is the number of events where the VDC and the rest of the detectors had a

good signal and NB.C.D.E is taken as the number of good events. Similar expressions hold for the

other detectors. Extra tests were used in order to guard against geometric misses contaminating

the above ratio. For example, when computing the VDC's efficiency only events which passed

through the central lead glass block were considered. Geometrically, any event which passed

through this block had to pass through the active area of the VDC (see Figure 2-4). Similarly,

when computing the lead-glass array efficiency only events which passed through the center

of the VDC were used. The rest of the detectors were were not as sensitive to these effects.

The efficiencies found for each of the detectors is tabulated in Table 5.1. The total detection

efficiency used in the cross section measurements was determined by this method to be 88%

with an uncertainty of 2%.

5.3.5 Radiative Correction Factor

For both the elastic and threshold cross section measurements the radiative correction factor

was written in the following form:

IZ= Rel Rinel - (5.21)

The first term is only a function of the kinematics and is the same for both measurements.

The values that were used in the cross sections are tabulated in Table 5.2. For the elastic cross

section measurements the second term is a function of the energy cutoff. This was calculated

from the Monte Carlo elastic line shapes, and the method is discussed in Section 4.3.4. For the

ij



threshold measurements the following integral was evaluated in the Monte Carlo:

_= _ f8 a(En,) dEn, f6 a(En,) dEnp (5.22)Jnel U** (Enp)/Zinei(3 - Enp) dEn, -3 ameas(En,) dEn,

The model dependence of this factor enters through the assumed shape for the threshold breakup

cross section. However, the dependence is weak since it appears both in the numerator and

in the denominator and can be explicitly evaluated. For cases where the radiative unfolding

procedure did not yield adequate information for the detailed shape of the threshold cross

section spectrum, model dependencies for reasonable shapes were estimated as 5%.

5.4 Radiative Unfolding

The observed spectrum of scattered electrons, ame", is related to the true threshold spectrum,

a, by the following convolution,

O.mea(Enp) = 'gel L 0o(E) R(En, - E) de , (5.23)

where iZel is the elastic radiative correction factor which adjusts the overall magnitude of

the measurement and R(E) is the experimental resolution function. For this experiment the

resolution was dominated by the energy loss processes in the target. Therefore, the experimental

resolution function is given by the elastic line shape DTA(E, A) (see Section 4.3.3).

R(E) = DTA(E, c) . (5.24)

Defining aR as the cross section folded with the resolution function we then have,

oR(En) 0 J (e) R(En, -E) dE , (5.25)

where meas = Re aR.

It is desirable to unfold the measured spectrum, oR, to obtain the true spectrum, o, allowing

a direct comparison with theoretical calculations. Mathematically, this can be done uniquely
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and is given by the following expression,

o = L-1 [.] 1 . (5.26)I [R]j

However, the spectrum aR is not known exactly but only statistically as presented in the data.

This also affects the uniqueness of the unfolded result. In the following paragraphs the iterative

method that was used to unfold the threshold data is described.

We seek to find the true spectrum a which generated the observed spectrum aR.

a R(En,) = 0(E) R(En, - E) de . (5.27)

We start with an initial guess for the true distribution and label it a'.

aR'(En,) = j c'(c) R(E,, - E) de . (5.28)

Manipulating the above equation we obtain the following expression:

a(En) = , oR(En,) a'(c) R(Ep - E) de . (5.29)=f-00 aR(En,)

Since R(En, - E) is peaked around En, ~ E we can make the following replacement introducing

a small error,

u(En,) ~ j j()) , '(E) R(En, -E) de . (5.30)

Therefore, our next guess for the true spectrum is given by the expression,

a1"(E) = F(E)a'(E), (5.31)

where the correction factor, F, is given by

F(E) = R() . (5.32)

This procedure is repeated until the folded spectrum, aR', becomes statistically equivalent to

the data spectrum, oR. When this is the case the result for the unfolded spectrum becomes a'.

'mi



One must now examine the question of the uniqueness of this result. Mathematically, un-

folding is a unique transformation. However, the spectrum we are unfolding is only statistically

known. Therefore, the question of uniqueness becomes the following statement: Any function

X which when added to the unfolded result a' and then folded with the resolution function

whose effect does not statistically change the result is also a statistically acceptable solution.

Stated another way, given any function X which when folded with the resolution is statistically

equivalent to zero, the function a' + K will also be a solution. Mathematically, this can be

expressed as follows:

L () R(Ep -E) dE "t 0, (5.33)

where we also have

000

Therefore, these functions also have the property of not affecting .the integrated result. A

class of functions which have these properties are periodic functions. For example, a square

wave whose period is smaller that the width of the resolution function could satisfy these

requirements. The space of these functions is related to the width of the resolution function. For

example, the broader the resolution width the larger the period for these functions can become.

The resolution widths in this experiment were of the order of 2 MeV FWHM. Therefore, when

unfolding the threshold spectrum with bin widths less than 2 MeV many statistically acceptable

solutions exist. However, the addition of these solutions make the unfolded result appear jittery.

Since we expect the threshold spectrum to be a smoothly varying function we can eliminate

such solutions on physical grounds.

In practice the iterative method as described above yields unfolded spectra with unrea-

sonably large amounts of jitter in the data points. This occurs because the statistical jitter

in the original data spectrum gets magnified every iteration when the next guess is calculated

(see Equation 5.31). Although these jittery spectra are solutions, on physical grounds we reject

them. The following additions [39] were then made to the iterative procedure to yield spectra

free from excessive jitter.

The correction factor F(Ei) was smoothed before is was used to obtain the next guess [40].

(The index i labels the channel number.) This is reasonable since we expect the ratio to be a

smoothly varying function. Then the smoothed correction factor Fa(Ci) was only applied to

the spectrum a'(Eq) if it was deemed statistically significant. Otherwise, Fm(Ei) was set equal to

one. The criterion used to determine if it were statistically significant comes from an application
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of Chauvenet's criterion [41]. For a given channel the number of standard deviations, z;, the

folded spectrum Ua'(Et) differed from the data spectrum aR(E,) was calculated.

z- - R(E) (5.35)
ba~' ER I -

Based on a normal distribution we expect to see [1 - erf(z,/-V)]N data points to be z or

more away where N is the total number of data points in the spectrum. If this amount is less

than one half the number actually observed then it is considered to be statistically significant.

Mathematically, this is expressed as

1N
[1 - erf(z;/V-h)]N < 2 L u(zj - z;) , (5.36)

j=1

where u(z) is the unit step function and u(O) = 1. Solving for zi we obtain the following criterion

for the difference between the folded spectrum and the data spectrum in the i'th channel to be

statistically significant.
1N

z1 > Vierf- 1 - 2N u(z - z;) . (5.37)
3=1

When this is true the smoothed correction factor is applied.

For the initial guess a flat distribution was chosen which started at the breakup threshold.

This ensured that the following iterative guesses would also start abruptly at the breakup

threshold (see Equation 5.31). This is reasonable since the true inelastic spectrum is expected

to start at the breakup threshold.

The iterative procedure converged when the number of channels that were deemed statis-

tically significant was either zero or did not change from the previous iteration. A reduced x 2

was also calculated:
1N / R(. _ R'(E) ) 2

Xr N 6OR(e) (5.38)

In all cases no more than 4 iterations were needed for convergence with reduced x2 of the order

of one.

In Figure 5-5 the affect of including smoothing and Chauvenet's criterion in the unfolding

procedure is shown explicitly for the 347 MeV deuterium threshold data. The first plot is the

-=



140 Catr5 aaAayi

d 2 /dQ/dEexc [bb/sr/MeV]*105

4

E... [MeV]

2.5

2.0

1.5

1.0

0.5

0.0
6 4

Eex0 [MeV]

Figure 5-5: Comparison of two methods used to unfolded
first plot was generated without using either smoothing or
plot included these additions and is the final result.

the 347 MeV threshold data. The
Chauvenet's criterion. The second

unfolded result without these additions. This was stopped after 3 iterations when x, dropped

below one. This appears unacceptably jittery. The second plot was generated with these

additions and is the final result.

5.5 Beam Energy

The electron beam energy was given by the Beck calibration formula, [42]

(5.39)E 9= ,
0.987 +Enom(5.6 xl04 )

where Enom is the beam switchyard nominal value. Based on a more recent energy calibration

[43] the accuracy of this formula was taken as 1%.
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Table 5.3: Estimated systematic errors.

5.6 Systematic Errors

The cross section formulas for the elastic and threshold measurements are given by Equa-

tions 5.10 and 5.14, respectively. The estimated systematic error in each of the cross section

measurements was determined from the individual systematic uncertainties in each of the fac-

tors that gives the cross section. For this experiment the largest source of systematic error was

due to the uncertainty in the elastic peak positions which was was caused by the poor knowledge

of the beam energy. This uncertainty affected the measured cross sections by introducing an

uncertainty into the cutoff energies associated with the radiative correction factors. For energies

where the statistics were poor and a well-defined elastic peak did not exist, this represented

a large error. However, at the highest energy elastic scattering data from hydrogen was also

measured, and this allowed an accurate calibration for the deuterium elastic peak position at

that energy. Another source of systematic error was our uncertainty in target thickness due to

target boiling effects. The estimated systematic errors associated with each measurement and

energy are tabulated in Table 5.3. These errors are smaller than the statistical errors involved

except at the lowest energy.

E [M eV] (do)a (__ _,)_-_ 1'
dfle /_E)03 _ddl i

347 4% 4%
576 9% 9%
754 14% 14% 4%
820 30% 30% 10%
913 4% 4% 1%

Ai
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Chapter 6

Results and Discussion

In this chapter the unfolded threshold spectra and cross sections average over 0 to 3 and 0 to 10

MeV are presented. Measurements of elastic electron-deuteron scattering and electron-proton

scattering (the latter at 913 MeV only) are also presented. The average threshold measurements

are plotted versus Q2 and compared with previous measurements as well as various theoret-

ical calculations. The unfolded spectra are also compared with theoretical predictions of the

threshold breakup spectrum.

6.1 Results

In Table 6.1 all the measured cross sections of this thesis work are presented. The table

contains the threshold cross sections averaged over 0 to 3 and 0 to 10 MeV as well as the

measurements of elastic scattering from deuterium and hydrogen. The quoted error bars are

statistical only. In Table 5.3 the estimated systematic errors for the elastic and threshold

measurements are given. Tables for the unfolded threshold differential cross sections are given

in Appendix H. The elastic measurements for deuterium and hydrogen were found to be in

agreement with existing data [44] [45] [46] [47] [48]. The averaged threshold cross sections also

agree well with the Saclay data (En, = (0 - 3)) [1] and the SLAC data (En, = (0 - 10)) [2] in

the region of overlap. These data are plotted along with the new measurements of this thesis

in the next section.

143



144 Chapter 6. Results and Discussion

22 o, dia d )E target Q' ( )e_ (d _1E')0-1
MeV fm- 2  ub/sr ob/sr/MeV ttb/sr/MeV
347 2H 8.75 1.71 0.03 x 10-1 1.14 0.02 x 10-5
576 2 H 20.6 2.02 0.18 x 10-7 4.27 0.75 x 10-8
754 2 H 31.7 1.53 0.26 x 10-8 4.52 1.34 x 10-9 5.09 0.61 x 10-9
820 2 H 36.1 3.78 1.26 x 10-9 2.07 0.83 x 10-1 2.65 0.43 x 10-9
913 2 H 42.6 2.00 1.16 x 10-" 2.30 1.06 x 10~9 2.05 0.46 x 10-_
913 'H 28.7 2.40 0.03 x 10~-4

Table 6.1: Experimental cross sections measured in the thesis.

6.2 Comparison with Existing Data

In Figure 6-1 the new measurements are plotted along with existing data as a function of Q2 .

The open squares are data from Saclay average over E, = 0 -3 MeV [1] and the open diamonds

from SLAC averaged over E, = 0 - 10 MeV [2]. We present our data also averaged over both

ranges for direct comparison. The open circles are the data averaged over E, = 0 - 3 MeV

and the crosses are the data averaged over E, = 0 - 10 MeV. As can be seen in the figure the

agreement between the three data sets is good. The two lowest Bates Q2 points averaged over

E, = 0 - 3 MeV Bates agree quite well with the Saclay measurement averaged over the same

interval. The three highest Bates Q2 points averaged over E, = 0 - 10 MeV also agree well

with the SLAC measurement averaged over this interval. The three highest Q2 points are also

plotted averaged over E, = 0 - 3 MeV. As can be seen in the figure there is little difference

between the results for the two averages. This indicates that the breakup threshold spectrum

must on the average remain relatively flat up to En, of 10 MeV at these three values of Q2 .

6.3 Comparison with Theory

In Figure 6-2 the data averages over E, = 0 - 3 MeV are plotted against nonrelativistic

Paris potential [49] calculations evaluated at E., = 1.5 MeV [50]. These calculations include

contributions to the cross section up to L = 4 in the final n-p scattering states. The open

squares represent data from Saclay [1] and the open circles represent the data presented in
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Figure 6-1: Comparison of the new threshold electrodisintegration cross section measurements

with existing data. The open squares represent data from Saclay that were averaged over

En= 0 - 3 MeV [1]. The open diamonds represent data from SLAC that were averaged

E = 0 - 10 MeV [2].
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this thesis. The dotted curve is the impulse approximation and the other four curves represent

MEC calculations. Since there is theoretical uncertainty (in a nonrelativistic framework) as to

the choice of the appropriate MEC form factor [51] [50] [52], the isovector Sachs GV or the

isovector Dirac Fr, both are plotted for comparison with two different electromagnetic nucleon

form factors: the dipole (D) and Gari-Kriimpelmann (GK) parameterization. This ambiguity

can be thought of as the systematic error in the theoretical calculations since a fully relativistic

theory is not yet available.

As can be seen in figure the impulse approximation disagrees with the trend of the data for

the range of Q2 shown. Including MEC brings the theoretical predictions in closer agreement

with the data. The most dramatic effect is the filling in of the deep minimum predicted by the

IA. At Higher Q 2 the MEC calculations qualitatively describe the trend of the data where the

best overall agreement in these calculations comes from using the isovector Dirac form factor

Fr for the MEC. This should not be interpreted too seriously since calculations with different

nucleon-nucleon potentials can reverse the situation [53]. The most interesting trend in the

data is the definite change in slope at Q 2 ~ 27 fm- 2. This was also seen in the SLAC data

although with poorer energy resolution (En, = (0 - 10) MeV).

In Figure 6-3 the SLAC data are included along with the present measurements and the

Saclay results. Where the present measurements overlapped with the SLAC data the cross

sections were averaged over E, = (0 - 10) MeV and represented by crosses in the figure.

The theoretical curves are nonrelativistic Argonne v 14 potential [54] calculations averaged over

En, to allow a direct comparison with experiment [55]. The break in the figure indicates the

differences between the two theoretical averages. Below 30 fm- 2 the curves were averaged over

E, = 0 - 3 MeV and above 30 fm- 2 Es,, = 0 - 10 MeV. The apparent discontinuities in

the curves reflect the differences between the two averaging. The SLAC data show the trend

of a change in slope as mentioned above for the threshold cross sections up to 72 fm- 2 . The

MEC calculations agree with the trend of the data up to the highest Q2 shown. Again in these

calculations using Fr instead of GV in the MEC gives a substantially better fit to the data.

For Q2 above 40 fm- 2 the spatial resolution of the virtual photon exchanged becomes of

the order of the size of a nucleon, ~ 1 fin. Therefore, the question of the validity of the meson-

exchange picture in this regime becomes important since the description of the nucleon-nucleon

interaction might give way to the more fundamental description in terms of quarks and gluons.

The point at which quark degrees of freedom become important is not yet known, and these

degrees of freedom are also suppressed by the nuclear hard core. This inhibits short range

interactions between the nucleons. However, hybrid quark-hadron model calculations have
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Figure 6-3: Threshold electrodisintegration cross sections compared with Argonne V14 potential

calculations [55]. For Q2 < 27 fM-2 both theory and experiment were averaged over E, = 0 - 3
MeV. For Q2 > 27 fM-2 both were averaged over E, = 0 - 3 MeV. The break in the curves

indicated the change in the averaging. The open squares represent data from Saclay [1], the

open circles and crosses data from this measurement and the open diamonds data from SLAC

[2]. The labels for the curves are the same given for Figure 6-2
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been performed for deuteron electrodisintegration to test these ideas. These models match the

long and medium range meson-exchange potentials with six-quark cluster potentials at short

distances. In Figure 6-4 two hybrid quark-hadron models for deuteron electrodisintegration are

plotted along with the data [56] [57]. Both calculations predict a weak second maximum in the

threshold cross which is not seen in the data. However, these models do predict the general

magnitude of the data about as well as the potential models.

In Figure 6-5 the radiatively unfolded doubly differential threshold cross sections are pre-

sented for the four lowest energies. The statistical accuracy of the data at the highest bom-

barding energy of 913 MeV was too poor to allow meaningful unfolding. These cross sections

are compared with Paris and Bonn potential MEC calculations for the threshold excitation

spectrum[58]. The solid curve is the Bonn potential calculation using GV for the MEC. The

dashed curve is the corresponding calculation with Ff. The dotted curve is for the Paris po-

tential using GV for the MEC. The dot-dashed curve is the corresponding calculation with FV.

At E = 347 MeV the four calculations describe the overall shape of the spectrum quite well.

All calculations predict the presence of a resonance cusp at threshold with an increasing cross

section at higher excitations. For the next highest energy, E = 576 MeV, the shape of the

resonance cusp becomes more model dependent. In particular, the Bonn potential using GE
does not doesn't predict the presence of a cusp at threshold. However, the data clearly indicate

the presence of resonance cusp at threshold. For the higher energies the trend of the various

calculations diverges even more widely and some of the calculations appear off the plotting

scale.

6.4 Conclusions

The threshold measurements presented in this thesis extend the range of data out to 42 fm-2

with good resolution. Comparisons of the data averaged over E, = 0 - 3 MeV with data from

Saclay show excellent agreement in the region of overlap. Good agreement is also obtained

when the data is averaged over E., = 0 - 10 MeV and compared with the lower resolution

SLAC data.

Comparisons of the data were also made with nonrelativistic meson-exchange potential

calculations. In the range 27 fm~ 2 < Q 2 < 42 fm- 2 there exists much model sensitivity to the

choice of the MEC potential and form factors. This reflects the delicate cancellation between

one-body and two-body amplitudes for Q 2 > 27 fM- 2 and in principle makes this an ideal place
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Figure 6-4: Threshold electrodisintegration cross sections averaged over E = 0 - 3 MeV

compared with hybrid quark-hadron models evaluated at E,,, = 1.5 MeV. The solid curve is

by Cheng and Kisslinger [57]. The dashed curve is by Yanauchi, Buchmann, and Faessler
[56]. The open squares represent data from Saclay [1] and the open circles represent the data

presented in this thesis.
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Figure 6-5: Radiative unfolded threshold spectra for E = 347, 576, 754 and 820 MeV at 9 = 1600

compared with Bonn and Paris potential calculations [58]. The solid curve is the Bonn potential

using GV for the MEC. The dashed curve is the corresponding calculation with Ft. The dotted

curve is the Paris potential using GE for the MEC. The dot-dashed curve is the corresponding

calculation with FV. The dipole parameterization was used for the nucleon EM form factor.



to test competing models. However, since a fully relativistic theory of interacting particles with

structure does not at present exist, one does not know the proper nonrelativistic reduction.

At the energy transfers achieved in this experiment relativistic effects are very likely to be

important. Hence, sharp conclusions cannot be drawn about the detailed structure of the MEC
until relativistic corrections have been incorporated. The fact that calculations using Dirac

isovector form factor, FV, or the Sachs isovector form factor, GV, for the MEC form factor

differ at high momentum transfer is a possible indication that relativistic effects are becoming

important.

For the calculations that the data are compared to it appears that, for the Paris, Bonn,

and Argonne v14 potentials, the Dirac isovector form factor fits the data better in our Q2 range.

However, it must be recognized that this is a highly model dependent conclusion since different

model dependent parameters could exist that would favor the Sachs form factor.

Comparisons of the data to hybrid quark-hadrons models were also presented. These models

describe the system as a six-quark cluster for distances less than an arbitrary chosen radius

and a two-nucleon system interacting through meson-exchanges outside of this radius. These

models predict a weak second maximum at Q2 ~ 25 fm- 2 which is not present in the data.

However, they do seem to predict the relative magnitude and trend of the data quite well. This

is a hopeful sign that a complete quark model calculation might predict the data quite well.

The future holds great promise for extending the current Q2 range to values greater than

100 fm- 2 at the CEBAF. At such high values of Q2 relativistic effects will indeed become more

important and a quantitative understanding of the data may only be possible within such a

relativistic framework. Also the effects of quark degrees of freedom may play a prominent role

at these Q2. These are difficult tasks to undertake for theorists but it must be done in order to

understand fully the nature of matter in the QCD confinement limit.
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Appendix A

The ELSSY Focal Surface

The shape of the ELSSY focal surface [4] can be obtained by considering separately the shape in

the dispersion plane and the shape perpendicular to the dispersion plane. The dispersion plane

is defined by taking a slice in the X-Z focal plane coordinate system illustrated in Figure A-1.

A slice in Y-Z gives us the transverse shape illustrated in Figure A-2. In this Appendix these

shapes are derived from the relevant matrix elements. The coordinate system and units used

are that of RAYTRACE [59]. All distances are in centimeters and angles in milliradians. We

start first by deriving the shape in the dispersion plane.

Shown in Figure A-1 is a cross sectional slice of the focal surface at yf = 0. The rays shown

all originate at the target with xt, yt, and kt equal to zero. The central ray, 6 = 0, defines the

Zf axis and has Ot equal to zero. Ray 1 and 2 have the same value of 6 but different Ot's. Their

intersection defines a point on the focal surface. Since there are no magnetic fields present at

the focal surface, the trajectories of the rays are straight lines. From Figure A-1, we construct

the following relations,

h
tang = - , (A.1)

fli

h = 1000 Xf2 - Xf, (A.2)
Of2

where small angles have been assumed in the latter equation. To first order in each of the target

variables, the focal plane coordinates for ray 1 and 2 can be expressed as follows,
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Figure A-1: Sketch of the focal surface curvature in the dispersion plane. The central ray is

shown along with two rays with the same b but different 6's at the target. Their intersection

defines a point on the focal surface.
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Ray 1 (xt, yt, Ot = 0):

Xfi = (x16)6 + (x196)916 , (A.3)

Ofi = (01e)et1 + (916)6 + (e|o6)Otl6 = 0; (A.4)

Ray 2 (xt, yt, kt = 0):

Xf2 = (x16)6 + (xIb)9t26 , (A.5)

Of2 = (9I) 0t2 + (16)6 + (0 I06 )0 t26 ; (A.6)

where the matrix elements are for a focal plane tilt angle of zero degrees and tabulated in

Appendix F. Using these relations, the equation for tan a can be rewritten solely as a function

of the variable 6:

tanak = - 10 00 Xf2 - Xf1 (A.7)
Xfl~f2

-1000 (x196) A.8)
(x|6)(91|) + [(x|6)(9|o6) - (16|)(x|6b)]6 (

Evaluating this at 6 = 0 gives us the tangent angle of the focal surface at the central ray:

tan 1 b6o = -1000 (x 6I (9) , (A.9)

i6=o 43.50,

which agrees with the quoted nominal value of 45* [4].

The equation for the height, h, can also be rewritten to obtain the following formula:

h = 1000 (x.6)6 (A.10)
(010) + (016)6

From Equations A.3 and A.4, 6 can be solved as a function of xf1 . The result is a quadratic

expression:
a62 + bb + c = 0, (A.11)

with

a = (xl6)(0106) - (016)(x196), (

MAI

(A. 12)
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Table A.1: The curvature of the ELSSY
flat focal surface at an angle of 43.50*.

focal surface in the dispersion plane compared with a

b = (x16)(6iO) - (010 6)xfi
C = -(OIO)xf,

_ -b- vb2 -4ac
2a

The sign choice comes from the constraint that b = 0 at xf1 = 0. In Table A.1 the results for

h(xi1) are tabulated along with h(43.5*) which assumes a flat focal surface at an angle of 43.5*

(from Equation A.9). Qualitatively these results are in agreement with the curvature sketch

in Figure A-1. Over the instrumented length of the focal plane detection system, lxfii < 25

centimeters, the focal surface curvature in the dispersion plane is not too severe. At lx i ~ 25,

the planar deviations are of the order of two centimeters.

To obtain the curvature of the focal surface perpendicular to the dispersion plane, the rays

illustrated in Figure A-2 are used. For simplicity we first derive this curvature for central rays,

6 = 0, and then latter discuss the curvature for noncentral rays, 6 $ 0. As shown in the figure,

ray 1 and 2 represent "off-axis" central rays. Ray 1 and 2 originate at the target with xt, yt,

and 6 = 0 but Oti = Ot2 = Ot 5 0. Their intersection defines a point on the focal surface. From

Xf [cm] h [cm] h(43.50) [cm]
-25 26.2 23.7
-20 20.5 19.0
-15 15.1 14.2
-10 9.9 9.5
-5 4.8 4.7
0 0 0
5 -4.7 -4.7
10 -9.2 -9.5
15 -13.5 -14.2
20 -17.8 -19.0
25 -21.9 -23.7

and

(A.13)

(A.14)

(A.15)
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Figure A-2 we construct the following relation for the height, h:

h = 1000 ,f2 - Xf, (A.16)
Of2

where small angles have been assumed. The focal plane coordinates for ray 1 and 2 can be

expressed in terms of their target variables. Keeping only the most significant terms we have,

Ray 1 (xt, yt, 6 = 0):

Xfi = (XI02)05 + (XIO02)6n,2, (A.17)

Of = (010)1= 0, (A.18)

Yfi = (Y1) (A.19)

Ray 2 (xt, yt, 6 = 0):

Xf2 = (xIt2)4 + (XIO9)Ot2 t, (A.20)

2= (ele)et2 , (A.21)

Yf2 = (Y10)4t; (A.22)

where the matrix elements are for a focal plane tilt angle of zero degrees and tabulated in

Appendix F. Using these relations the equation for the height, h, can be rewritten solely as

a function of the variable yf (notice that the matrix element (X160 2) is mostly responsible for

this curvature):

h = 1000 (X 6 2) 2 (A.23)
(010)(yP )2

This equation is parabolic in yf and describes only part of the transverse shape of the focal

surface. As shown in Figure A-2 the dashed curve, which represents the 6 = 0 slice, also has a

finite Xf component. This is illustrated by the dotted curve in the X-Y plane. This curvature

is described by the coordinate xfl. From Equation A.17 we obtain the following shape written

as a function of yf:

Xfl = , (A.24)

which is also parabolic in yf. Qualitatively these results are in agreement with the curvature

illustrated in Figure A-2. Using the matrix elements presented in Appendix F the expressions

for h(yf) and xfl(yf) can be evaluated to obtain the following:

h = 6.8 x 102 y), (A.25)
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The transverse length used by the ELSSY focal plane detection system extends from roughly

yf equal to -10 to +10 centimeters. The curvature in xfi is then very small and negligible,

but the curvature represented by the height, h, is significant. At lyf I = 10, the curvature is of

the order of seven centimeters and lies almost completely in the Y-Z focal plane.

It is also possible to derive this shape for noncentral rays, 6 # 0. When this is done the

entire focal surface will be described within the accuracy of our Raytrace expansions for the

focal plane coordinates: xf, Of, and yf. Keeping only the most significant terms we have,

Ray (xt, yt = 0):

Xf = (xI6)6 + (xI66)6t + (xI4)2)4 + (xt64 2 )64) + (A.27)

(xI426)426 + (xl63)63,

f= (1O)6t + (616)6 + (6166)66 , (A.28)

yf= (yI4)4t +(y46)46 , (A.29)

where for ray 1, 6O = Ot, and 6f1 = 0, and ray 2, Ot = 6t2. Using Equation A.16 and these

relations the equation for the height, h, can be written as follows:

(xI66)6 + (xI6424)
h = 1000 (010) + (6166)6 (A.30)

and from Equation A.29 we have

Ot = f (A.31)
(y4) + (y46)6(

This solution for h can be decomposed and rewritten in a more convenient form.

h(6, yf) = 1000 (xI66)b + (A.32)
(61) + (-|)~

1000 (10I 2  1+ ]6-1 [1+ (Y10 6] 2 y2.

The first term describes the curvature in the dispersion plane as was found earlier (see Equa-

tion A.10). The second term describes the transverse curvature as a function of 6 and for

6 = 0 this term reproduces the previous result. For 6 $ 0 the curvature is still parabolic with

the origin lying along the dashed curve sketched in Figure A-1, but the amount of curvature

'Ed
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changes due to the 6-dependent factors. Using the matrix elements from Appendix F these can
be evaluated to yield (note that the matrix element (y146) is mostly responsible for this effect):

[1 + 0.013 6] -1 [i+0.0506] .

The effect of these terms is then to flatten out the parabola, decreasing the curvature, for
increasing values of 6. Relative to the transverse curvature for the central ray given by Equa-
tion A.25 the size of this effect is +45% at 6 = -3% and -25% at 6 = +3%. The curvature
represented by Equation A.26 is also very small for noncentral rays. Therefore, these parabolas
lie almost completely in a plane perpendicular to the Xf axis which for ELSSY is a vertical
plane.



Appendix B

The Target Collimating Slits

The purpose of the target collimating slits is to prevent the electrons which scatter from the

aluminum entrance and exit windows of the target cell from entering the acceptance of the

spectrometer. This is accomplished by requiring these electrons to traverse some specified

collimator slit thickness. During this traversal the electrons lose their energy by ionization and

radiation. Since this is a statistical process not all electrons lose the same amount of energy.

Hence, there is a finite fraction of the initial electrons which will pass through the slits and be

accepted into the spectrometer. The challenge that had to be met was to design a system that
would reduce this background to a negligible level.

Shown in Figure 2-2 is a schematic diagram of the collimating slit geometry in relation to

the target cell. The slit thickness that needs to be determined is the electron traversal thickness,

1, and is the distance between the points labeled in the figure as a and b or c and d. This is

the distance an electron would have to traverse in the slit in order to be accepted into the

spectrometer.

The largest source of background at the kinematics of this experiment was determined to

be quasi-elastic scattering from the aluminum target cell. In Table B.1 the estimated cross

sections are presented for the range of energies used in this experiment. The counting rate

estimates per beam burst were then made for each reaction with the following assumptions:

Beam pulse duration = 10 ps ,

Peak current = 5 mA ,

Spectrometer solid angle = 3.5 msr ,
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Table B.1: Estimated cross sections for the deuterium threshold electrodisintegration and alu-

minum quasi-elastic reactions at the kinematics of this experiment.

Table B.2: Count rate estimates per beam burst for the deuterium threshold electrodisintegra-

tion and aluminum quasi-elastic reactions at the kinematics of this experiment.

Aluminum thickness = 0.1 cm,

LD 2 thickness = 4 cm .

and the results are in Table B.2.

The methodology used in determining the optimum slit traversal thickness is as follows.

For a given incident beam energy the scattered electron energy associated with the peak of

the quasi-elastic spectrum was calculated. The width of the quasi-elastic peak is given by the

expression

Energy Deuterium Threshold Aluminum QE
[MeV] [cm2 /sr/MeV] [cm 2/sr/MeV]

320 2.2 x 10-3s 1.18 x 10-33
532 1.5 x 10-37 1.04 x 10~34

762 1.9 x 10-39 1.07 x 10-35

823 1.3 x 10-39 6.29 x 10-36
942 6 x 10-40 2.37 x 10-36

Energy Deuterium Threshold Aluminum QE
[MeV] [counts/bb] [counts/bb]

320 3.5 x 10-2 9.0 x 10-2

532 3.4 x 10-4 1.05 x 10-2
762 5.4 x 10-6 1.28 x 10-3
823 3.8 x 10-6 7.5 x 10-4

942 1.9 x 10-6 3.0 x 10-4
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Figure B-1:.A flat quasi-elastic response.

where

q is the 3-momentum transfer,

Pf is the Fermi momentum = 200 MeV/c,

m is the mass of a nucleon.

The strength of the quasi-elastic peak was taken as

the peak has the form of a square box. This is plotted in

acceptance of ELSSY spectrometer.

uniform across this width. Therefore,

Figure B-1 along with the momentum

The intersection between the quasi-elastic peak and the ELSSY acceptance is the source

of background that needs to be reduced by the slits. Consider the region defined by the

energy range [E', E+], where E' is the lowest accepted energy of ELSSY minus 20 MeV (this is

arbitrary) and E+ is the highest energy in the flat quasi-elastic spectrum. In calculating what

the optimum slit thickness, 1, should be, the total counting rate from this region [E',E+] is

taken to occur at the highest energy E+. Then the criterion used in determining the thickness

of the slits is as follows:

H(E', E+, l) x (Al count rate from [E',E+]) (2H threshold count rate)/1000,
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Table B.3: The minimum electron slit traversal thicknesses needed
quasi-elastic aluminum background.

effectively to eliminate the

where I is the thickness in radiation lengths, and I(E',E+, 1) is the average number of electrons
at a depth t in a material with energy greater than E', given initially an incident electron with

energy E+ at I = 0 [15]. Therefore, the slit thickness, 1, is chosen such that the attenuation
factor II reduces the counting rate from the aluminum to be one thousandth of the deuteron
threshold counting rate. The results for the minimum slit thicknesses, expressed in radiation
lengths, at each energy are tabulated in Table B.3.

From the table it can be seen that the minimum slit thickness to adequately reduce the
aluminum background at all energies is 13.4 radiation lengths. Since the slits were made from

a machineable tungsten alloy (Hevi-Met) this corresponded to a physical thickness of roughly

5 centimeters (1 r.l. L .35 cm). For this experiment the collimating slits were made with a

traversal thickness of 7.4 centimeters (approximately 21 r.l.).

Energy Traversal Thickness
[MeV] [radiation lengths]
320 8.0
532 10.3
762 13.4
823 13.1
942 13.1
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Appendix C

Table of the Landau Functions O(A) and (A)

Both of the Landau functions, 4(A) and O(A), were evaluated numerically and the results are

presented in Table C.1. Bbrsch-Supan [32] gives a more extensive tabulation for the Landau

straggling function, O(A).
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-4.0
-3.9
-3.8
-3.7
-3.6
-3.5
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

3.390x10
2.181 x 10-8
1.170x10- 7

5.323x10-7
2.087x 10-6
7.152 x 10-8
2.169X 10-5
5.893x10-5
1.449x10-4
3.255 x10-4

6.737x10-4
1.295 x10-3

2.329x 10-3

3.943x10-3
6.319x 10-3
9.637x10-3
1.405 X10-2
1.968 x10-2
2.657x10-2
3.470 X10-2
4.399 x 10-2

5.426 X10-2
6.531 x 10-2

7.689X 10-2

8.873x10-2
1.006X 10-1
1.121 x10-1
1.231 x10- 1

1.335x10-1
1.429X 10-1
1.514x 10-1
1.588x10-1
1.651 x 10-1
1.703x10-1
1.743x 10-1
1.773X 10-1
1.793x10-1
1.804x10-1
1.806x10- 1

1.801x 10-1
1.788x10-1
1.770x10-1
1.747x10-1

1.719x 10-1
1.687x10'-
1.652x 10-1
1.615x10- 1

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.9998
0.9996
0.9993
0.9988
0.9980
0.9969
0.9952
0.9929
0.9898
0.9859
0.9810
0.9750
0.9679
0.9596
0.9502
0.9395
0.9278
0.9149
0.9011
0.8864
0.8709
0.8547
0.8379
0.8206
0.8031
0.7852
0.7672
0.7492
0.7311
0.7132
0.6954
0.6778
0.6604
0.6434
0.6267
0.6104

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3

Table C.1: Table of the Landau functions <(A) and *(A).

I
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4(A) 0 (A) A 4(A) 0(A) [ A 4(A) 4(A)

6

1.576x10-
1.536x 10-1
1.494x10-1
1.452x10-1
1.410x 10-1
1.367x10-1
1.325 x 10-1
1.283x10-1
1.242 x 10-1
1.202 x 10-1
1.162 x 10-1
1.124x10-1
1.086x10 1-
1.049x10-1
1.014x10-1
9.791 x 10-2

9,457x10-2
9.134X 10-2
8.822x10-2
8.522x10-2
8.232x10-2
7.953x10-2
7.684 X10-2
7.425 x 10-2
7.176x10-2
6.936X 10-2
6.706X 10-2
6.485 x 10-2
6.272x10-2
6.068X 10-2
5.871 x 10-2
5.682x10-2
5.501 x 10-2
5.327x10-2
5.159X 10-2
4.999x 10-2
4.844 x 10-2
4.695x10-2
4.552 x 10-2
4.415 x 10-2
4.283x10-2
4.156x10-2
4.034x10-2
3.916x 10-2
3.803x 10-2
3.694x 10-2
3.590x10-2

0.5944
0.5789
0.5637
0.5490
0.5347
0.5208
0.5073
0.4943
0.4817
0.4694
0.4576
0.4462
0.4351
0.4245
0.4142
0.4042
0.3946
0.3853
0.3763
0.3676
0.3593
0.3512
0.3433
0.3358
0.3285
0.3214
0.3146
0.3080
0.3016
0.2955
0.2895
0.2837
0.2781
0.2727
0.2675
0.2624
0.2575
0.2527
0.2481
0.2436
0.2393
0.2350
0.2309
0.2270
0.2231
0.2194
0.2157

5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10.0

3.489 x 10-2
3.391 x10- 2

3.298x10-2
3.207x10-2
3.121 X 10-2

3.037x10-2
2.956X 10-2
2.878X 10-2

2.803x10-2
2.730X 10-2

2.660 X10-2
2.592x 10-2
2.527x10-2
2.464x 10-2

2.403x 10-2

2.344 X10--2
2.287x10-2
2.232x 10-2
2.178x10-2
2.127x10-2
2.077x10-2
2.029X 10-2
1.982 X 10-2

1.937x 10-2
1.893x 10-2
1.850 x10-2

1.809X 10-2
1.769x10-2
1.730x10-2
1.693x10-2
1.656x 10-2
1.621 X 10-2

1.587x 10-2

1.553x10-2
1.521 x 10-2
1.490X 10-2
1.459X 10-2
1.430x10-2
1.401 x 10-2

1.373x10-2
1.346x 10-2
1.319x10-2
1.294x10-2
1.269x 10-2
1.244x10-2
1.221 x 10-2

1.198x 10-2

0.2122
0.2087
0.2054
0.2022
0.1990
0.1959
0.1929
0.1900
0.1872
0.1844
0.1817
0.1791
0.1765
0.1740
0.1716
0.1692
0.1669
0.1646
0.1624
0.1603
0.1582
0.1561
0.1541
0.1522
0.1502
0.1484
0.1465
0.1447
0.1430
0.1413
0.1396
0.1380
0.1364
0.1348
0.1333
0.1318
0.1303
0.1288
0.1274
0.1260
0.1247
0.1234
0.1220
0.1208
0.1195
0.1183
0.1171



Appendix D

Density Effect Correction

When a charged particle traverses matter, the amount of ionization loss given by the well known

Bethe-Bloch formula will be reduced due to the effect of the polarization of the medium. This

polarization, induced by the electric field of the charged particle, will reduce the field strength

at larger distances, hence buffering the effect of the passing particle. For this correction we

used the Sternheimer parameterization [23] [24] [60]. The correction, denoted by 6, is given by

6(X) = 6_102(X-Xo) , x < X0 ,

= 4.6052X + a(Xi - X)'" + C , Xo < X X1 , (D.1)

= 4.6052X +C , X > X1 ,

where

X log 1O(pc/mOc 2) = l ln(pc/mOc2) In(pc/mOc 2),

p is the momentum of the particle,

and mOc2 is its rest energy.

In Table D.1 the values that were used for the parameters X0 , X1, m, and b, are listed.
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168 Appendix D. Density Effect Cocrection

X0 X1 In 60
Al 0.1708 3.0127 3.6345 0.12

LH 2  0.4759 1.9215 5.6249 0
LD2  0.4759 1.9215 5.6249 0

Table D.1: The independent density effect correction parameters [60]. Values for LD 2 were
taken to be the same as LH 2 .

The parameter C is a function of the electron density of the traversed material. This was

evaluated using the formulas:

ne2
hvp, - , (D.2)

C = -21n(I/hvp) - 1, (D.3)

where

n is the electron density of the traversed material,

e is the charge of the electron,

me is the mass of the electron,

hvp is the plasma energy, and

I is the mean ionization potential of the electrons in the medium.

From the boundary condition at 6(Xo), a formula can be derived for a in terms of the other

parameters:

bo - C -4.6052Xo

(X1 - XO)m(

Appendix D. Density Effect Correction168
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I p C a
_ [eV] [g/cm3] I

Al 166.0 2.70 -4.2395 0.08024
LH 2  21.8 0.073 -3.0692 0.1104
LD 2 21.8 0.165 -2.9419 0.0944

Table D.2: Density effect correction parameters.

In Table D.2 are listed the values of the parameters used for aluminum. However, for liquid

hydrogen and deuterium the densities varied slightly during the course of the experiment. Shown

are the values for the parameters evaluated for a typical average density.
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Appendix E

Elastic Line Shape with Cross Section Dependence

In Section 3.2.2, Equation 3.69 gives us the elastic line shape for electrons traversing the target

cell. An approximation was then made that ignored the energy dependence of the scattering

cross section which allowed us to relate the elastic line shape with the energy loss distribution,

Equation 3.70. It was asserted that this would be valid near the elastic peak where the change

in the scattering cross section is expected to be small. In this Appendix the validity of this

assertion is explored directly by computing the elastic line shape near the elastic peak assuming

a linear change in the scattering cross section. We will not attempt to solve this problem using

the line shape of Section 3.2.2, but a simpler example which can be solved exactly will be

treated.

Consider the scattering process illustrated in Figure E-1. An incident electron passes

through some initial amount of target of thickness, x, before scattering, then scatters from

the target nucleus and passes through same amount of thickness, x, as it exits the target.

D1(A) is the distribution for an energy loss A due to ionization and external bremsstrahlung

(see Equation 3.49). The fact that the distances, x, before and after the scattering are the

same implies that their energy loss distributions are the same, D1(A). This assumption is

made to make the problem exactly solvable. Also, recoil will be ignored (q; = 1). D 2(A) is the

distribution for an energy loss A due to internal bremsstrahlung at the time of scattering (see

Equation 3.44). The equation for the elastic line shape is given by the following expression,

d2oe fAd fA-AdA doe(E - LA1 - LA2/2)
d 2a= dA i d2 D1\(Aj) D 2 (A2 ) D 1(A - A,- A2 ),

(E.1)
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where half of

scattering.

?1

DI(A) +

E
> x ->

D2(A

Figure E-1: Schematic diagram illustrating the scattering process.

the energy loss due to internal bremsstrahlung, A2 , is taken to occur before the

If we are only interested in the line shape near the elastic peak, the cross section can be

expanded in a power series. Only the first order terms need to be kept for sufficient accuracy:

da(E - A1 - A 2/2)
dfl

do(E) d2or

dil dndAb Ab=O
(A 1 + A 2/2) + -- -

where

o(E)[1 + (A1 + A 2 /2)]

d2 u do(E)
d~idAb. 6b=0 7 d(E'

(E.2)

(E.3)

and

Ab = Al + A2/2 .(E.4)

For a cross section which increases with lower scattering energies, ( > 0. Our expression for

the line shape near the elastic peak then becomes (Ab/E < 1):
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d'a= a(E) dA 1 i dA 2 D1 (A 1 ) D 2 (A 2 ) D 1 (A -A 1 - A 2 ) (E.5)
dil dA )meas f'o 10

+ &a(E) dAi dA 2 A 1D 1 (A 1) D 2 (A 2) D1(A-A 1 -A 2 )

+ -jdAi dA 2 D1 (A1) A 2 D 2 (A 2) Dl(A-Ai-A 2 )}.
2 0

The first convolution in the expression is the energy loss distribution function, D(A), which

gives the probability for an energy loss, A, due to the various energy loss processes. The second

and third convolution represent the effect of the energy dependence of the cross section to first

order and must be evaluated. To evaluate the second convolution term we consider its Laplace

transform:

4[2nd conv] = 4[AD 1 (A)] 4[D 2(A)] [D1 (A)], (E.6)

where the property that the Laplace transform of a convolution is the product of the individual

Laplace transforms has been used. We'can re-express the term, C[AD 1(A)], using the following

property:

p [xF(x)] = -d,[F] (E.7)

Our expression then can be rewritten as follows.

4[2nd term] = - d 2[D1],[D2] + .2[D1] d[D2. (E.8)

Doing the same for the third convolution we have the result:

4[3rd conv] = -1'2[D1] dC[D 2]. (E.9)

Adding the two terms together we have,

4[2nd conv] + [3rd conv] = -- C[D] (E.10)
2 da

where L[D] = L[D1 ] [D 2 ] L[D1]. Using the inverse relation of Equation E.7 this correction can

then be evaluated in terms of D(A). This yields the following expression for the elastic line

shape near the elastic peak (A/E < 1),

-4



dfdL men.= (E) 1+& D( A), (E.11)

which can be written as follows (see Equation E.2),

d2o L ' o(E - A/2) D(A) . (E.12)
dndA Imeas.

This result could have been guessed on intuitive grounds, since a(E - A/2) is the cross section

for scattering assuming that half of the energy loss occurs before scattering. Based on this

result we expect the change in the line shape presented in Section 3.2.2 also to be given by a

similar expression but modified by recoil in the following manner:

d2 a ' .~ a(E - 72W/2) Dnf(E, w, X) < 1 (E.13)
dfidw )meas. E

In Figure E-2 this line shape is plotted for scattering at the center of the target cell (Xcenter)

from LH 2 with an energy of 900 MeV and angle of 1600. The dipole fit [61] for the proton

electromagnetic form factors was used to obtain the hydrogen cross sections. Also shown is the

elastic line shape assuming a constant cross section evaluated at the most probable energy loss

before scattering, wmp. At w = 10 the effect of including the dependence of the cross section

increases the strength of the tail by roughly 20%. This simply reflects the percentage change of

the hydrogen cross section evaluated at w = 10 with respect to wmp. This error is not critical

for hydrogen since the detailed shape of the tail need not be known. But for the deuterium data

this is not the case. An underestimation of the elastic tail increases the measurement of the

threshold cross section since this tail is subtracted in order to obtain the inelastic spectrum. The

size of the systematic error introduced into the threshold measurements can be estimated. For

the threshold cross sections averaged from 0-3 MeV in Enp, the error is given by the percentage

change in the deuterium elastic cross section evaluated at Er, = 1.5 MeV:

Systematic Error (E) (E 7Eec/2) (E.14)
o(E)

where Equation 3.66 has been used to re-express w in terms of the excitation energy, Eexc, and

Eexc = 2.23 + 1.5 MeV. Using previous measurements for the deuterium elastic cross sections

[46] [48] [47] [45] and interpolating the results at different energies, a systematic error of the

order of -5% for the threshold data averaged from 0-3 MeV in En, was obtained for the energies

that were used in this experiment. For all the threshold measurements, except at the lowest
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LH 2 : E = 900 MeV 0= 1600

o-(E - 7/ 2C4.mp/2) Dnep
Q)

10-4 -- - c-(E - 77 2 C/2) Dnep

b 10-5

0 2 4 6 8 10

o [MeV]

Figure E-2: Elastic line shapes for scattering from 1H showing the effect of including the energy

dependence of the elastic cross section.

Q 2 point, this error is much smaller than the statistical errors involved. For the 0-10 MeV

averaged threshold data an error of the order of -10% was obtained. This systematic error is

comparable to or larger than the statistical errors except at the highest Q2 point.

-1
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Appendix F

The ELSSY Matrix Elements

In this Appendix the matrix elements that were used to describe the ELSSY spectrometer in

the Monte Carlo for this experiment are given. The forward matrix elements were obtained

from a Raytrace calculation [62], and the Raytrace file that was used to describe the ELSSY

spectrometer is also included for completeness. These forward matrix elements are for a focal

plane tilt angle of zero degrees. This is not the same as that given by Bertozzi et al. [4]. In

the latter the forward matrix elements were calculated along the focal plane angle of 450, hence

their (x I66) matrix element is identically zero. The reverse matrix elements were generated from

the Monte Carlo model and relates the target coordinates in terms of the VDC coordinates (see

Section 4.2). The VDC coordinate system is the focal plane coordinate system with a tilt angle

of 45*.
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178 Appendix F. The ELSSY Matrix Elements

ELSSY Raytrace file with R = 1 meter.

MIT - DD (45. - 45. ) MIT-128,135 F.F. COEFF.

46,201,0,0,0,46,0

300.,0.,1.,0.,1.

DIPOLE

1.0,2.0,1.0,2.0,2.,0.

152.57,18.0,9.0,100.0,1.

45.0,13.5,3.0

0.,0.,0.,0.

30. ,-20. ,-20. ,18.

0.1224 ,1.9724 ,-0.5005 ,0.8462 ,0.1174 ,-0.0524

0.1403 ,2.1325 ,-0.5835 ,0.7657 ,0.1148 ,-0.0521

0.,0.,0.,0.,0.,0.

-0.030675,0.014450,0.0,0.0

0.0,-0.80433,2.304,0.0,0.0,0.0,0.0

0.0,0.026550,-0.252,0.0,0.0,0.0,0.0

DIPOLE

1.0,2.0,1.0,2.0,2.,0.

18.0,200.0,9.0,100.0,1.

45.0,3.0,13.50

0.,0.,0.,0.

18. ,-20. ,-20. ,30.

0.1403 ,2.1325 ,-0.5835 ,0.7657 ,0.1148 ,-0.0521

0.1224 ,1.9724 ,-0.5005 ,0.8462 ,0.1174 ,-0.0524

0.,0. ,0.,0.,0.,0.

0.014450,-0.022026,0.0,0.0

0.0,-0.02655,-0.2520,0.0,0.0,0.0,0.0

0.0,0.379980,-0.0828,0.0,0.0,0.0,0.0

SENTINEL

0.0 ,0.0 ,0.034,90.,0.034,15.0,5.0

178 Appendix F. The ELSSY Matrix Elements
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Table F.1: The first order ELSSY forward matrix elements
of Raytrace: distances in [cm], angles in [mr], and 6 in %.

for R = 2.23 meters. Units are that

I x 10 y 14 16
(x -4.973 x 10- 3  x)

(x -9.783 x 10-4 1.473x 10-6 8)
(x 0 0 2.540 x10- 3  y)
(x 0 0 3.860 x 10-4 1.138 x 10-) 4)
(x 3.555 x 10-2 6.373 x 10-3 0 0 -0.1051 6)

(8 7.193 x 10-3 x)

(8 8.274 x 10-3 4.993 x 10-4 8)
(8 0 0 -9.642 x 10-3 y)
(8 0 0 -2.731 x 10- 3 2.999 x 10-3 4)
(8 5.511 x 10-2 -1.271 x 10-2 0 0 -0.2925 6)

(y 0 X)

(y 0 0 8)
(y 2.314 x 10-2 7.523 x 10-4 0 y)
(y 1.938 x 10- 3  2.964 x 10-4 0 0 4)
(y 0 0 2.213 x 10-2 3.075 x 10-2 0 6)

(4 0x)
(4 0 0 9)
(4 7.816 x 10-3 -6.036 x 10-4 0 y)
(4 -1.037 x 10-2 -4.187 x 19~" 0 0 4)
(4 0 0 8.027 x 10-2 0.100 0 6)

Table F.2: The second order ELSSY forward matrix elements for R = 2.23 meters. These are

for a focal plane tilt angle of 00. Units are that of Raytrace: distances in [cm], angles in [mr],

and 6 in %.

I x IX) 10) 1y) 14) 16)
(x -0.9947 0 0 0 6.669
(8 -3.484 -1.006 0 0 11.648

(y 0 0 -4.920 x 10- 0.6148 0
(4 0 0 -1.611 1.137 x 10-2 0
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Table F.3: Some important third and fourth order ELSSY forward matrix elements for R =
2.23 meters. These are for a focal plane tilt angle of 00. Uinits are that of raytrace: distances
in [cm], angles in [mr], and 6 in %.

matrix element value

(x | 93) -7.308 x 10-8

(x I 626) -5.151 x 10-6

(x 0 942) -2.585 x 10-

(x I 662) -2.670 x 10-4

(X I 426) -1.107 x 10-4

(x 6) 4.989 x 10~ 3

(6 63) 1.516 x 10~2

(y 924) -2.676 x 10- 5

(y 43) -6.422 x 10-5

(X 0 4) -8.269 x 10-"
(X 1 9242) -3.407 x 10-8

(X 44) -5.698 x 10-9
(X 42b2) 1.163 x 10-5

(X 64) -2.346 x 10-4

(6 64) -7.214 x 10-4

(y 034) 8.140 x 10-9
(y O 643) - ..79. 1X 10-7

Appendix F. The E LSSY Matrix Elements180
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Table F.4: The ELSSY reverse matrix elements generated from the Monte Carlo Model. These

express the target coordinates in terms of the VDC coordinates. Units are that of Raytrace:

distances in [cm], angles in [mr], and 6 in %.

matrix element value matrix element value

Theta target Phi target

(6 1 x) 1.229 (4 y) 1.621
(6 6) -0.9996 (4Xy) -9.474 x 10

(6 I x2 ) -3.756 x 10-3 (4 0 x4) 1.644 x 10-3

(6 I x6) 2.034 x 10~4 (4 I 6y) 7.270 x 10-4

(6 1 62) 5.360 x 10-4 (4 64) -9.554 x 10-4

(6 1 X3) 1.898 x 10~' (4 I x2 y) 1.371 x 10-4

(4 x6y) -2.350 x 10-4

Y target (462 y) 1.022 x 10-4

(y I y) 1.832 x 10-2 X3 y) -4.095 x 10-6
(y 4) -0.6191 (4 X 34) 1.313 x 10-6

(y j xy) 9.498 x 10-3 (0 x 2 6y) 4.910 x 10-6

(y x4) -1.029 x 10-3 (4 x 200) -1.792 x 10-6

(y 64) 2.037 x 10-4 (4 x62 y) -1.517 x 10-6

(y x2y) -1.152 x 10- 4  (4 x6 24) 5.625 x 10-7

(y x 24) 4.698 x 10-1
(y y 24) 2.112 x 10-4 Delta

(y x 26y) -2.774 x 10-6 (6 I X) 0.1075
(y I x62 y) 9.527 x iO- (6 1 6) -6.359 x 10~4

_ (6 ) 7.547 x 10_5
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Appendix G

Monte Carlo Code

The Monte Carlo code written for the.Deuteron Electrodisintegration Experiment (DEE) con-

sists of a main shell program, DEE-MC, and a main shell subroutine DEE-MC-MAIN. The

program DEE-MC simply executes the subroutine DEE-MC-MAIN as many times as there are

electron events to simulate. The subroutine DEE-MC-MAIN is where the real part of the simu-

lation occurs for each event and executes many more subroutines used in the simulation process.

For brevity, only the main program, DEE-MC, and the main subroutine, DEE-MC-MAIN, are

included in their entirety. The other user written subroutines are well documented within the

code and should be self explanatory as to their purpose. All of the computer code was written

in Fortran except for DEE-MC-MAIN. This was written in FLECS [63]. In this code the flow

of execution is given by the "task execution list" where each entry represents a subroutine call

which can be found at the bottom in a "TO" statement. This Monte Carlo also utilizes the Q
data acquisition system's histogramming, test, and dynamic parameter array packages [64] and

some MP-10 routines [11]. These subroutine programs are highlighted in the Monte Carlo code

by being typed in all capital letters whereas the user written subroutines in lower case.
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCcCCCCCCCCCCCCCcCCCCCC
C
PROGRAM DEE-MC
C
C This program is the Monte Carlo code for the Deuteron Electro-

C disintegration Experiment (DEE). This experiment ran at the

C Bates laboratory in the spring of 1990.

C
C FILE: DEE-KC.FOR
C LANG: fortran
C AUTHOR: W. M. Schmitt
C DATE: May 12, 1991
C
C My programming convention is that all Q subroutines are
C capitalized, whereas user written are not.

C CONMOIBLI,LINI,IOTES ....
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C----------------------- Local Variables -------------------------------

C----------------------- Global Variables ------------------------------

include prm.inc/list'

C------ First we must initialize and map the appropriate Q stuff! ------

call dee-mc-Qinit

C----------------- Do all the user initializations ---------------------

call target-init
call elssy-init
call phi-psi-init
call Eloss-init

if (WrtRayflg .eq. 123) then !. Initialize Ray writing
call WrtRay-init

endif

C----------------------------- Code ------------------------------------

do iicount = 1, Nelectron ! Total number of electrons

call dees-c-main ! Main code

enddo

if (WrtRayflg .eq. 123) then ! Close up shop

close(unit=Rayoutlun)
write(lunmes,*) '===> Rays written to IC.ray'
endif

stop 'DEE-C has completed successfully'
end
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
SUBROUTINE dee.mc-main
C
C This is the main code for the DEE Monte Carlo. All user create
C routines are called from this task. The logical flow of the
C Monte Carlo is given in the task execution list.
C
C My programming convention is that all Q subroutines are
C capitalized, whereas user written are not. (most of the time)
C
C FILE: DEE.MC.MAII.FLI
C LANG: flecs
C AUTHOR: W. M. Schmitt
C DATE: May 22, 1991
C CMN BLOCKS: /REGIOI/, /event/, /target/, /Eloss/, /Elssy/,
C /WrtRay/
C
C
C MODIFICATIONS:
C 1. Added the trigger check subroutine to be more realistic.
C 8-26-91 (WMS)
C 2. Added the option of doing a Quasi-Elastic Monte Carlo.
C 9-2-91 (VMS)
C 3. Adding theta rear, x rear, y rear smearing.
C 9-23-91 (VMS)
C 4. Changed MC to use 66.85 as the spectrometer constant!
C I had to change more things than I first thought.
C 11-21-91 (VMS)
C 5. Changed the way I was do the focal plane Mult Scat and
C Phi rear smearing.
C 12-1-91 (VMS)
C 6. Added Ray writing routines!
C 12-2-91 (VMS)
C 7. Added calculation of (true-multis)^2 if flag is set.
C 12-9-91 (VMS)
C 8. Made an overhall of my derivation of my line shape!
C 6-5-92 (VMS)
C Implimented the following corrections:
C 8.1 Change from using 1/ln(2) as the bremostralung exponent
C to b.ave. Where b.ave was determined to be 1.355.
C 8.2 Put in more GAMMA(1 + b.ave*t) factors. called this W.EL.
C 8.3 Added proton radiation terms to deltal. i.e. 2Zln(rf)...
C 8.4 Removed the extra GAIDA(1 + b.ave*t) factors because
C I went back to my old Bremas. dist. W.EL m 1
C (VMS) 6-23-92
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCaCCCCCCC

.IMPLICIT NONE ! flag undeclared variables as error

C--------------------- External functions ----------------------

EXTERNAL GAMMA ! IMSL special function
EXTERNAL GAUSSIAN ! My function for gaussian rud Ss

C---------------------- Global Variables ---------------------

.INCLUDE PRM. INC/LIST

.INCLUDE EVENT.INC/LIST
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.INCLUDE TARGET.INC/LIST

.INCLUDE ELOSS.INC/LIST

.INCLUDE ELSSY.INC/LIST

.INCLUDE WRTRAY.INC/LIST

C----------------------- Local Variables -----------------------------------

integer*2 ierr(2) ! error array for Q tasks
integer*2 icnt ! m iicount for write-out-ray

logical*2 tarchkflg ! .true. when scat. point inside target

logical*2 elschkflgi ' .true. when e) makes it into ELSSY's
! solid angle acceptance
logical*2 elschkflg2 ! .true. when e) makes it into ELSSY's
! momentum acceptance

real*4 GANNA
real*4 gaussian
real*4 tmpi,tmp2,tap3
real*4 tmp4
real*4 tmp7,tmp8
real*4 tmp9,tmplO
real*4 tup11,tmp12,tmp13,tup14
real*4 tmp20
real*4 Rndnu
real*4 HS-rms-Ang.tmpt
real*4 NS.Space-Ang..tmpl
real*4 MS.the.tmpl
real*4 KS-phi-tmpl

C-------------<>------------- Code -------------------- <>-------------------
C--------------------- Task execution list ---------------------------------

C--- Are we writing rays?

WHEN (WrtRayflg .EQ. 123) ! write out rays.
initialize-all-quantities
generate-RAY-event-at-target
transport-scattered-electron-thra-ELSSY
rotate-from-rear-transport-to-focal-plane-coords
convert-into-detector-rear-coords
write-out-ray

FIN WHEN
ELSE ! do DEE NONTE CARLO
initialize-all-quantities
generate-incident-electron
pick-a-scattering-point
check-if-inside-target-cell
IF (tarchkflg) ! only if inside target cell
calculate-entrance-thicknesses
IF (IFLAG(1) .EQ. 123) calculate-entrance-mult-scat
calculate-incident-electron-angle
pick-a-scattering-angle
calculate-exit-thicknesses
IF (IFLAG(2) .EQ. 123) calculate-exit-mult-scat
check-if-it-is-going-to-make-it-into-ELSSY
IF (elschkflgl) ! only if made it into ELSSY Sol Ang
pick-an-energy-loss
IF (elschkflg2) ! only if made it into ELSSY Nom Acc



187

convert-into-ray-for-transport ing-thru-ELSSY
calculate-perfect-spectrometer-quantities
transport-scattered-electron-tru-ELSSY
check-if-it-is-going-to-make-a-trigger
rotate-from-rear-transport-to-focal-plane-coords
IF (IFLAG(3) .EQ. 123) calculate-focal-plane-mult-scat
convert -into-detector-rear-coords
IF (IFLAG(4) .EQ. 123) smear-x-rear
IF (IFLAG(5) .EQ. 123) smear-theta-rear
IF (IFLAG(6) .EQ. 123) smear-y-rear
IF (IFLAG(7) .EQ. 123) smear-phi-rear
do-first-NULTIS-calculations
do-calkin-calculations
IF (IFLAG(8) .EQ. 123) compute-variance-in-ELSSY-calc

FIN ! IF for elschkflg2
FIN ! IF for elschkflgl

FIN ! IF for tarchkflg
int egerize-everything
execute-all-tests
do-histograming

FIN !ELSE

RETURN

C------------0------------ Subroutine calls -------------- -
C==UM>
TO initialize-all-quantities

call VALSET( idw(1), 400, 0 ) I set idw(*) 0 0
call VALSET( rdw(1), 800, 0 ) I same except a trick!
call TSCLFA(ierr) ! Zero out all test flag results
IF ( ierr(1) .ne. 1 )

write(lunmes,11)ierr
11 format(lx,

k 'dee.mc.main -- F-- TSCLFA: Error Zeroing test flags ',217)

stop 'ABORTING'
FIN ! IF

FIN ! TO
C=MUu>
TO generate-RY-event-at-target

xt-ray = 0.0 !when dispersion matched, not relavent
thet.ray = thetRalo + ran(iiseed)*(thetRahi - thetRla)
yt.ray - ytRalo + ran(iiseed)*(ytRahi - ytRalo)
phit.ray = phitRalo + ran(iiseed)*(phitRahi - phitRalo)

Delta = deltRalo + ran(iiseed)*(deltRahi - deltRalo)

FIN ! TO
C====>
TO generate-incident-electron

call beam

FIN ! TO
C====>
TO pick-a-scattering-point

z.tar = zlimlo + ran(iiseed)*(zlimhi - zlimlo)

-1
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FIN ! TO

TO check-if-inside-target-cell

call tar.cell.eqn( tarchkflg )

FIN ! TO

TO calculate-entrance-thicknesses

C first calculate the line vector components u.inc,v-inc,
C w.inc for the incident electron. See my "The Beam" write up on this.

u.inc = tan(beam.the/1000.) ! x component
v.inc = tan(beamphi/1000.) ! y component
w.inc a 1. ! e is traveling along pos. z direction

call calc.intercepts(uinc,v.inc,L.inc,
& zintent,yint.ent,zint.ent)

call calc.thick(xintent,yint.ent,zint.ent,
& Al.thkent,tar.thk.ent,Rad.bef)

FIN ! TO

TO calculate-entrance-mult-scat

call ult.Scat( Einc, Rad.bef, NS.rms.Ang.ent,
& NS.Space.Ang..ent, S.the.ent, S.phi.ent)

FIN ! TO
CUM..>
TO calculate-incident-electron-angle

CCC See this write up!!!
the.tar = NS.the.ent
phi-tar a NS.phi.ent

FIN ! TO
Cu...>
TO pick-a-scattering-angle

scat.ang w scatlimlo + ran(iiseed)*(scatlihi-scatlimlo)
azim.scat.ang = azimlimlo + ran(iiseed)*(azialimhi-aziuliulo)

C Now Compute the recoil factor and the energy, Erec, for elastic
C scattering including only recoil losses.
C Assume we are doing Elastic unless flag is set for Inelastic.

Excit = 0.0 ! Elastic [ReV]
IF ( Rxnflg .eq. 321 ) ! Pick Inelastic randomly

C Pick random number (0,1]
Rndnum = ran(iiseed)
WHEN ( Rndnum .le. Rconst )
tmp20 = 1.0 + 2.0*Rml*Rndnum/(Rb1*Rbl*Rnorm)
Excit = (Rbi/Rm1)*( -1.0 + SQRT(tmp20) )
FIN !WHEN
ELSE
Excit = (Rndnum - Rconst)/(Rnorm*Rb2) + Enp.1
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FIN !ELSE

Excit = Excit + dee.thr ! need to add 2.23 ReV
FIN ! IF

rf a 1. + (2.*Einc/N-t)*(sind(scat.ang/2.))**2.
Erec = (Einc - Excit)/rf ! Neglect 2nd order term

C Compute the scat. vector components (in the rotated frame)

Szp = -1. ! Back Scattering
Sxp a Szp*tand(scat.ang)*cond(aziu-scat-ang)
Syp = Szp*tand(scat.ang)*sind(azim..scat.ang)

C Now compute the scat. vector components. in the pivot point coords
C First get the rotation angles!!!!

tmp2 = phi-tar/1000. ! Rotation Angles in radians
tmpl = (the.tar/1000.)*cos(tmp2) ! Rotation Angles in radians

call inv.rotate(Sxp,Syp,Szp,tmpi,tmp2,Sx,Sy,Sz)

FIN ! TO
Cuui=>
TO calculate-exit-thicknesses

C first calculate the line vector components u.scat,v.scat,
C w.scat for the scattered electron. Notice I reverse the
C direction!!!! I have to do this to get the correct signs
C for the exit intercept coordinates.

u.scat = -Sx ! x component
v.scat - -Sy ! y component
w.scat = -Sz ! z component

call calc.intercepts(uscat,v.scat,w.scat,
A xint.ext,yint.extzintext)

call calc.thick(xint.ext,yint.ext,zint.ext,
& A1.thk.ext ,tar.thk.ext ,Rad.aft)

FIN ! TO
CSU=U>

TO calculate-exit-malt-scat

call Mult.Scat( Erec, Rad.aft, NS.rms.Ang.ext,
& NS.Space.Ang.ext, KS.the.ext, MS.phi.ext)

FIN I TO
C====>

TO check-if-it-is-going-to-make-it-into-ELSY

C The first thing I have to do is compute the components
C of the multiple scattered out going electron in the
C pivot point coordinate system.

Smsxp = tan(NS.the.ext/1000.)
Smsyp = tan(RS.phi-ext/1000.)
Smszp = 1.
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C Now compute the rotation angles

tmp3 a atan(Sy/Sz)
tmp2 = tmp3 - pi ! Rotation Angles in radians
tmpt - atan( (-Sx/Sz)*cos(tmp3) ) ! Rotation Angles in radians

call inv.rotate(Smasxp,SzsypSmszp,tmpl,tmp2,Smsx,Sisy,Smsz)

call slit.checks( elschkflgl )

FIN ! TO
Cum==>
TO pick-an-energy-loss

C Are we doing an Elastic or Quasi-Elastic run?

WHEN ( Rxnflg eq. 123 ) ! => QE
call QE.energy.loss( elschkflg2 )

FIN WHEN
ELSE n -> Elastic or Inelastic

C First, calculate all the quantities needed to define

C the energy loss distribution.

C Compute the "effective" thickness T

Q2 n -4.*Einc*Erec*sind(scat.ang/2.)**2

C Include terms that deal with the radiation from the
C struck target nucleus. Erec.tar is the total energy of the

C recoiling nucleus. be.tar is the beta of that nucleus.

Erec.tar = Einc + L-t - Erec
be.tar = sqrt(Erec.tar*Erectar - M-t*N-t)/Erectar
tmp20 - log( (1.+be.tar)/(1.-betar) )

deltal - (2.*alp/pi)*( log(-Q2/(me*me)) - 1.0
A + 2.0*float(Z.Tsai)*log(rf)
& + float(Z.Tsai*Z.Tsai)*(tmp20/(2.0*be-tar) - 1.0) )

T.EL - ( (Al.thk.ent + Al.thk.ext)*rho.Al/Rad.Al +
k (tarthk.ent + tar.thk.ext)*rho.t/Rad-t )*b.ave + deltal

C Compute inicident and final beta**2

bei2 = 1. - (me*me)/(Einc*Einc)
bef2 = 1. - (me*me)/(Erec*Erec)

C Compute other quantities

AEL = (A1.thk.ent/(rf*rf))*(const/bei2)*(rho.Al*Z.Al/NWAl)
B.EL = (tar.thk.ent/(rf*rf))*(const/bei2)*(rho-t*Z-t/NV-t)
C.EL = (tar-thk.ext)*(const/bef2)*(rho-t*Z-t/N-t)
D.EL = (Al.thk.ext)*(const/bef2)*(rho-Al*Z-Al/N.Al)
G.EL = A.EL + BEL + C.EL + D.EL

C Compute density effect corrections

ppendix G. Monte Carlo Code

call Dens-eff.corr
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C low compute more quantities

e - (I.Al*I.Al*1.e-12/(2.0*me*bei2))*
& ((me/Einc)**2)*exp(bei2+defe)

ei = (I.t*I.t*.e-2/(2.0*me*bei2))*
& ((me/Einc)**2)*exp(bei2+defi)

o= (I.t*I-t*1.e-12/(2.0*me*bef2))*
& ((me/Erec)**2)*exp(bef2+defo)

ex = (I.Al*I.A1*1.e-12/(2.0*me*bef2))*
& ((me/Erec)**2)*exp(bef2+defx)

W.EL - 1.0

CC decided that this was not correct!!!!!
CC
CC W.EL - GAMA(1. + b.ave*Al.thk.ent*rho.il/Rad.Al)*
CC & GANhA(1. + b.ave*tar.thk.ent*rho.t/Rad.t)*
CC & GAMNA(1. + b.ave*tar.tbk.ext*rho.t/Rad.t)*
CC & GANNA(1. + b.ave*A1.thk.ext*rho.Al/Rad-l)
CC

H.EL = W.EL*GANNA(deltal + 1.)*((Erec)**(-TEL))*rf**
k ((Al.thk.ent*rho.A/Rad.A+tarthk-ent*rho-t/Rad-t)*b-ave)

C I've calculated every thing I need !!!

call E.energy.loss( elschkflg2 )

FIN ! ELSE

FIN ! TO
C==MM>
TO convert-into-ray-for-transporting-thru-ELSSY

C First, we need to convert the scattered electron into a Rotated

C coordinate system at the pivot point suitable for transport.

xint.ext.R - xint.ext(2)
yint.ext.R a yint.ext(2)*cosd(ELSSY-ang)

& + zint.ext(2)*sind(ELSSY-ang)
zint.ext.R = -yint.ext(2)*sind(ELSSY-ang)

& + zint.ext(2)*cosd(ELSSY.ang)

Smsz.R = Sanx
Smsy.R = Smsy*cosd(ELSSY.ang) + Smsz*sind(ELSSY.ang)
Smsz-R = -Smsy*sind(ELSSY.ang) + Smsz*cosd(ELSSYang)

C Now we can compute the transport ray at the target!!!!

xt.ray = xint-ext.R - Smsx.R*zint-ext-R/fsz.R
thet.ray = 1000.*atan(Smsx-R/SmszR)
yt.ray = yint-ext.R - Smsy.R*zint-extR/Smsz-R
phit-ray = 1000.*atan(Smsy-R/Smsz.R)

FIN ! TO
C====>
TO calculate-perfect-spectrometer-qaantities

C calcualate the "fake" scat angle due to Mult. Scat.
C There is no way of knowing what the actual scattering was.

-1
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C All we know is the angle between the exiting electron and
C the incident beam direction.

scat.ang.NS = atand(sqrt(Smsx*Smsx+Susy*SmSy)/Smsz)+180.

C Compute NK coming out of target, if ELSSY was a perfect Spectr.
C tmp4 is the first order missing mass calculation [NeVJ

tmp4 * (1. + (2.*Einc/M-t)*sind(scatangNS/2.)**2)*Eloss
& - (1. + (2.*Einc/NLt)*sind(scat.ang.IS/2.)**2)*Einc/rf
S + Einc

Nm-tar = -I-t + N-t*sqrt( 1. + 2.*tmp4/M.t )

FIN ! TO
CUU==>
TO transport-scattered-electron-thru-ELSSY

call transfer

FIN ! TO
Cum==>
TO check-if-it-is-going-to-make-a-trigger

call trig.checks

FIN ! TO
C====>
TO rotate-from-rear-transport-to-focal-plane-coords

call rot.to.focal

FIN ! TO
Cum==>
TO calculate-focal-plane-mult-scat

C Note, I am using the number of radiation lengths traversed up
C to the focal plane which should be the VDC's center, RadL.rear(1).

call Nult.Scat( Efin, RadL.rear(1), NS.rms.Ang.foc,
k NS.Space.Ang.foc, NS.the.foc, NS.phi-foc)

phif.ray = phif.ray + NS.phi-foc
thef.ray = thef.ray + NS.the.foc

FIN ! TO
C====>
TO convert-into-detector-rear-coords

C Notice: The 66.85 central momentum ray defines the origin of our
C rear coordinate system. No longer the scribe mark!

x-rear = xf-ray
the-rear = thef -ray
y-rear = yf-ray
phi-rear = phif-ray

FIN ! TO
C====>
TO write-out-ray

I
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icnt = iicount

write(Rayoutlunivar) icnt ,xt. ray,thet-ray,yt-ray,phit.ray,
& x.rear,the.rear,y.rear,phi-rear,Delta

FIN ! TO
C===>

TO smear-x-rear

C Due to the finite resolution of the VDC I need to smear x.rear
C by the appropriate sigma for the VDC, sigma.x.

x.rear = x.rear + gaussian( sigma.x )

FIN ! TO
C=u..>

TO smear-theta-rear

C Due to the finite resolution of the VDC I need to smear the.rear
C by the appropriate sigma for the VDC, sigma-the.

the.rear = the.rear + gaussian( sigma.the )

FIN ! TO
C:...>
TO smear-y-rear

C Due to the finite resolution of the TA I need to smear y.rear
C by the appropriate sigma for the TA, sigma.y.

y.rear - y.rear + gaussian( sigma.y )

FIN ! TO
Cum==>
TO smear-phi-rear

C This smearing is mainly due to ult. Scat. First, we have to add
C the Mult. Scat. that occurs before TA plane 1, i.e. RadL.rear(2).

call Mult-Scat( Efin, RadL.rear(2), NS.rms.Ang.tmp1,
k MS-Space.Ang.tmpi, MS.the.tmpl, NS.phi.tmpl)

phi-rear = phi-rear + NS.phi~tmp1

C Now we need to calculate the Mult. Scat. contribution inside
C the chambers themselves. This is crucial! Since the TA's measure

C phi thru displacements I need the rms lateral displacement divided
C by the length. This is simply: ras.plane-ang/sqrt(3) !

sigma.phi.NS = (14.1/Efin)*sqrt(RadL~rear(3))*
& (1.0 + loglO(RadL.rear(3))/9.0)*1000.0/1.7320508

C Sum in quadrature with sigma.phi, TA resolution w/o MS
sigma-phi-TA = sqrt(sigma.phi**2 + sigma.phiIS**2)

phi-rear = phi.rear + gaussian( sigma.phi.TA )

FIN ! TO
C====>

-A
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TO do-first-MULTIS-calculations

C Using rear coordinates, calculate target quantities and Delta

C for this event. This is the calculation my experimental

C analyzer does to calculate these quantities. Hopefully, they

C won't be much different from the actual values otherwise POL.dat

C isn't that good.

call NULTIS( rdw(1), rdw(1), ierr )

FIN ! TO
Cam==>
TO do-calkin-calculations

C I'm not including the experimental analyzer code for calkin.

C It's klugey so I'm just going to use my own formulas.

C First, calculate what the polar scattering angle would be from

C thet.pol and phit.pol.

tmp7 - 1. + tan(thet.pol/1000.)**2 + tan(phit.pol/1000.)**2
tmp8 a tan(phit.pol/1000.)*sind(ELSSY.ang) + cosd(ELSSY.ang)

scat.ang.calkin = acosd( tmp8/sqrt(tmp7) )

C low calculate Missing Mass.
C tmp9 is the recoil factor
C tmp10 is the first order missing mass [NeVJ

tmp9 * 1.+(2.*beam.enrgy/L-t)*sind(scat.ang-calkin/2.)**2
tmp10 - beam.energy - tmp9*P.cent*(1. + .01*Deltapol)

MNRcalkin = -M-t + l-t*sqrt( 1. + 2.*tmplO/NLt )

FIN ! TO
Can==>
TO compute-variance-in-ELSSY-calc

CCC These will be histogramued.

Var.tht - 10.0*(thet.ray - thet.pol)**2
Var-yt a 1000.0*(yt.ray - yt.pol)**2
Var.pht a 100.0*(phit.ray - phit.pol)**2

tmp11 - 1. + (2.*beam..nergy/I-t)*(sind(scat-ang/2.))**2.
tmp12 - beam.energy/tmpil
tmp13 = tmp12 - Eloss
tmp14 = 100.*(tmpl3 - Pcent)/P-cent

Var-del = 1000.0*(tmpl4 - Delta-pol)**2
VarSA = 1000.0*(scat-angNS - scat.ang.calkin)**2
Var-MM = 100.0*(HMKtar - N!Lcalkin)**2

FIN ! TO
C====>
TO integerize-everything

CCC First calculate auxiliary stuff for histogramuing purposes

hist-scat-ang = (scat-ang - 160.)
hist-azim-scat-ang = (azim-scat-ang - 270.)*.1

Appendix G. Monte Carlo Code
1 A4
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hist.scatang.S = (scat.ang.AS - 160.)
hist.scat.angcalkin - (scat ang-calkin - 160.)*10.

CCC low Iluge/Unkluge variables so they come out right
CCC when histogramming and executing tests.

x.tar = 10.*x.tar
y.tar = 10.*y.tar
NS.rms.angent = 10.*NS.rms.ang.ent
NS.rms.angext a 10.*NS.rms.ang-ext
call INTGZ( rdw(1), idw(1), 27, 10., 0. )
x-tar a .1*x.tar
y.tar = .1*y.tar
MS.rms.angent = .*eS.rms.ang.ent
NS.rms.ang.ext - .1*MS.rms.ang.ext

A1.thk.ent - 10.*Al.thk.ent
Rad.bef = 10.*Rad.bef
Al.thk.ext = 10.*kl.thk.ext
Rad.aft * 10.*Rad.alt
Ni-tar I .1*MK.tar

Excit - .1*Excit
thet.ray = .01*thet.ray
phit.ray = .1*phit.ray
call IITGZ( rdw(30), idw(30), 150, 100., 0. )
Al.thk.ent - .1*Al.thk.ent

Rad.bef .1*Rad.bef
Al.thk.ext = .1*Al.thk.ext

Rad.aft .1*Rad.aft
MR-tar u 10.*MjDtar
Excit U 10.*Excit
thet.ray - 100.*thet.ray
phit.ray = 10.*phit.ray

therf.ray .l*therf.ray
thef.ray .1*thef.ray
the.rear .1*the.rear
thet.pol .1*thet.pol

yt.pol - 10.*yt.pol
Deltapol = 10.*Deltapol
call IITGZ( rdw(180), idw(180), 100, 10., 0. )
therf.ray = 10.*therf..ray
thef.ray = 10.*thef.ray
the.rear = 10.*the.rear
thet.pol a 10.*thet.pol
yt.pol = .1*yt.pol
Delta.pol = .1*Deltapol

FIN ! TO
C====>
TO execute-all-tests

call TSTEXE( 1, idw(1), ierr ) ! Execute First Block of Tests
IF ( ierr(1) .ne. 1 )

write(lunmes,21)ierr
21 format(lx,

& 'dee-mc.main -- F-- TSTEIE: Error In Exec. First Block',2i7)

stop 'ABORTING'
FIN ! IF
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FIN ! TO
Cu=..>
TO do-histograiming

call HSTBLI( 1, id., 1, 1, ierr )
IF ( ierr(i) .e. 1 )

write(lunes,201)ierr
201 format(1x,

& 'doejuc.aain -- F-- HSTBLI: Error Making Histograms ',217)
stop 'ABORTING'

FIN ! IF

FIN ! TO

END



Appendix H

Threshold Cross Sections

In this appendix the results for the unfolded threshold spectra are given in tabulated form for
the energies 347, 576, 754 and 820 MeV.
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AQR Apni .TrsodCosScin

E = 347 MeV 0 = 1600
Eexc dd

[MeV] [b/sr/MeV]
2.50 1.583 i 0.127 x 10~3
3.00 1.309 i 0.086 x 10~5
3.50 1.148 0.071 x 10-5
4.00 1.074 0.067 x 10-5
4.50 0.974 0.058 x 10-5
5.00 0.903 0.055 x 10~5
5.50 0.737 0.046 x 10-5
6.00 0.873 0.054 x 10-5
6.50 0.879 0.052 x 10-5
7.00 0.882 0.052 x 10-5
7.50 0.922 0.053 x 10-5

8.00 0.985 0.060 x 10-5
8.50 0.928 0.052 x 10-5

9.00 0.976 0.057 x 10-5
9.50 0.837 0.046 x 10~5

10.00 0.973 0.056 x 10-5

10.50 0.835 0.044 x 10-5
11.00 0.973 0.056 x 10-5
11.50 0.972 0.054 x 10-5
12.00 1.021 0.057 x 10-5

12.50 0.969 i 0.053 x 10-5

13.00 0.989 + 0.053 x 10-5

13.50 0.972 + 0.050 x 10-5

14.00 1.112 0.062 x 10~5
14.50 1 1.093 0.059 x 10-5

Table H.1: Unfolded threshold cross sections.

Appendix H. Threshold Cross Sections198
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Table H.2: Unfolded threshold cross sections.

Table H.3: Unfolded threshold cross sections.

E = 576 MeV 0 = 160*
Eexc doldE

[MeV, [pb/sr/MeV]
2.75 0.868 0.275 x 10-
3.75 0.451 0.110 x 10-7
4.75 0.275 0.064 x 10-7
5.75 0.335 0.084 x 10-7
6.75 0.366 0.091 x 10~7
7.75 0.366 0.081 x 10-7

8.75 0.493 0.099 x 10~7
9.75 0.852 0.180 x 10-7

10.75 0.765 0.131 x 10-7
11.75 0.985 0.174 x 10-7

E = 754 MeV 0 = 160*
-do 2

ECXCdfldE'

[MeV] [pb/sr/MeV]
3.25 0.571 0.228 x 10-8

5.25 0.322 0.092 x 10-8
7.25 0.569 0.153 x 10-8

9.25 0.576 0.140 x 10-8
11.25 0.571 0.136 x 10-8

13.25 0.864 0.202 x 10-8

-1
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Table H.4: Unfolded threshold cross sections.

E = 820 MeV 0 = 160*
dcr

2

Eexc dildEl

[MeV] [pb/sr/MeV]
3.75 0.194 0.072 x 10-8
6.75 0.412 0.105 x 10-8
9.75 0.283 0.065 x 10-8
12.75 0.411 0.094 x 10-8
15.75 0.533 0.113 x 10-8
18.75 0.592 0.121 x 10-8

Appendix H. Threshold Cross Sections200
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