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Abstract

Quantum entanglement has evolved from being "spooky action at a distance" to being a
fundamental information-theoretic resource, extending the frontiers of what is possible in
communications, computation, and cryptography. It gives rise to non-local correlations
that can be harnessed to perform tasks such as certified randomness generation and clas-
sical verification of quantum computation. However, these same non-local correlations
also pose a challenge when analyzing complexity-theoretic or cryptographic protocols in a
quantum world: the soundness or security of the protocol may no longer hold in the pres-
ence of entangled adversaries. This thesis presents several results involving games and
protocols with entangled parties; in each result, we introduce new techniques and meth-
ods to analyze soundness against adversaries that can manipulate quantum entanglement.

First, we present a protocol wherein a classical verifer interacts with eight non-commu-
nicating quantum devices, and for all integer N the verifier can statistically certify that the
devices have produced N bits of randomness that is E-close to uniform, while only using
O(log3 }) bits of seed randomness. We call this an infinite randomness expansion protocol,
because the amount N of certified output randomness is independent of the verifier's seed
length. Entanglement is both a blessing and a curse for this protocol: on one hand, the
devices need entanglement in order to successfully generate randomness to pass the pro-
tocol. But on the other hand, the devices may try to use entanglement to cheat and pass
the protocol without producing additional randomness. We show that the monogamous
nature of entanglement prevents this from happening.

Next, this thesis studies the parallel repetition of games with entangled players. Raz's
classical parallel repetition theorem (SICOMP 1998) is an influential result in complexity
theory showing that the maximum success probability of unentangled players in a two-
player game must decrease exponentially when the game is repeated in parallel. Its proof is
highly non-trivial, and a major open question is whether it extends to the case of entangled
players.

We make progress on this question in several ways. First, we present an efficient trans-
formation on games called "anchoring" that converts any k-player game G into a k-player
game G1 such that the entangled value of its n-fold parallel repetition, G", is exponen-
tially small in n (provided that the entangled value of G is less than 1). Furthermore, the
transformation is completeness preserving, in that if the entangled value of G is 1, then the
entangled value of G" is also 1. This yields the first gap amplification procedure for general
entangled games that achieves exponential decay.

We also show that parallel repetition of a game causes the entangled value to decrease
at a polynomial rate with the number of repetitions. In particular, this gives the first proof
that the entangled value of a parallel repeated game converges to 0 for all games who
entangled value is less than 1.

3



The third result of this thesis on entangled parallel repetition is an improved analysis
of the parallel repetition of free games with entangled players. Free games are those where
the players' questions are independent of each other. We show how to use the fact that the
DISJOINTNESS problem of size N can be solved with O(v/N) qubits of quantum commu-
nication in order to speed up the rate of decay for the parallel repetition: given a free game
G with entangled value 1 - e, its n-fold parallel repetition G" has entangled value at most

(1 -- 3/2)0(n/s), where s is the length of the players' answers in G. In contrast, the best
parallel repetition theorem for free games with unentangled players, due to Barak, et al.
(RANDOM 2009), shows that for a free game G with entangled value 1 - 3, the classical
value of G" is at most (1 - E2 )0 (n/s), which is a slower rate of decay. This suggests a sep-
aration between the behavior of entangled games and unentangled games under parallel
repetition.

In the final part of this thesis, we examine message authentication in a quantum world.
Message authentication is a fundamental task in cryptography that ensures data integrity
when communicating over an insecure channel. We consider two settings. One is classi-
cal authentication against quantum attacks. The other is total quantum authentication of
quantum data.

We give a new class of security definitions for both modes of message authentica-
tion. Our definitions capture and strengthen several existing definitions, including that
of Boneh-Zhandry (EUROCRYPT 2013), which pertains to superposition attacks on classi-
cal authentication schemes, as well as the definition of Barnum, et al. (FOCS 2002), which
addresses total authentication of quantum data. Our definitions give strong characteri-
zations for what a quantum adversary is able to do in a message authentication protocol,
even when the adversary has quantum side information that is entangled with the message
state. We argue that, in the "one time" setting, our definitions are the strongest possible.

We prove that our security definition for total quantum authentication has some sur-
prising implications, such as the ability to reuse the key whenever verification is successful,
and a conceptually simple quantum key distribution protocol. We then give several con-
structions of protocols that satisfy our security definitions: (1) we show that the classical
Wegman-Carter scheme with 3-universal hashing is secure against quantum adversaries
with quantum-side information; (2) we present a protocol based on unitary designs that
achieves total quantum authentication, and (3) we show that using the classical Wegman-
Carter scheme to authenticate in complementary bases yields a form of total quantum
authentication, with bounded key leakage.

Thesis Supervisor: Dana Moshkovitz
Title: Assistant Professor
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Chapter 1

Introduction

The story of quantum entanglement begins as a troubling conundrum about the interpreta-
tion of quantum mechanics. The famous 1935 paper of Einstein, Podolsky and Rosen [40]
(known as EPR) considered a thought experiment involving quantumly entangled par-
ticles separated by interstellar distances, leading to what EPR considered an untenable
description of reality. How could the act of measuring one particle instantaneously affect
the state of another particle lightyears away? It must be because the quantum mechani-
cal picture of reality, EPR concluded, was incomplete. For nearly thirty years afterwards,
however, most physicists were content with ignoring thorny issues of interpretation, so
long as quantum physics continued to produce its fantastically accurate predictions.

When John Bell published his monumental 1964 paper "On the Einstein-Podolsky-
Rosen paradox" however, quantum entanglement was suddenly elevated from harmless
philosophical nuisance to empirical, falsifiable science [14]. In it, he showed that the pre-
dictions of quantum theory were inconsistent with "hidden variable" models of physics,
which are theories based on the classical principles advocated by EPR. He presented a
simple experiment - involving entangled particles - where if the outcomes were consis-
tent with quantum theory, then local hidden variable theories would be ruled out. In one
move, Bell's theorem (as his result is known) made the foggy problem of interpretation
suddenly very concrete and very real - it was testable.

We can distill his experiment into a simple form, in terms of a game. The game consists
of three parties: Alice, Bob, and a referee. Before the start of the game, Alice and Bob
can perform any amount of collusion. Once the game begins, however, Alice and Bob
are not allowed to communicate, and the referee does the following: it picks two bits x,y
uniformly and independently at random, and sends x to Alice and y to Bob. The instant
that Alice and Bob receive their respective bits, they must perform some physical process
as fast as they can in order to produce bits of their own: Alice generates a, Bob generates
b, and both bits are sent to the referee. Their strategy for generating answer bits must be
quick so they don't have time to signal to each other. The referee then compares whether
the parity of their answers (i.e., a @ b) is equal to the logical AND of their questions (i.e.,
x A y). If so, then Alice and Bob win the game - otherwise they lose. This game is known
as the CHSH game, named after its inventors Clauser, Horne, Shimony, and Holt [28].

What is the maximum winning probability of Alice and Bob? In a world governed by
the classical principles posited by EPR, the answers of Alice and Bob would be generated
by hidden variables (called "elements of reality" by EPR). In this model, we can imagine
that Alice and Bob's strategy to play this game is as follows: in the collusion phase, Alice
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and Bob flip a series of coins and each copy down the outcomes. During the game, Alice
generates her answer a solely as a deterministic function of the random coin flips from the
collusion phase and her question x. Bob does the same thing. It is an easy exercise to see
that with such a strategy, the maximum winning probability of Alice and Bob is 75%. Even
if Alice and Bob used common randomness (by flipping coins before the game, and using
the outcomes of the coins during the game to coordinate their answers), their maximum
success probability is still bounded by 75%.1

However, quantum mechanical Alice and Bob can do significantly better. Before the

game, Alice and Bob generate two entangled particles in the state 1') = 100) +1"), fittingly

known as an EPR pair. Alice takes one particle for herself and Bob takes the other. During
the game, Alice and Bob perform measurements on their share of the EPR pair, and they
report the measurement outcomes as their answers. By choosing the measurements care-
fully, Alice and Bob can win this game with probability approximately 85.36%! This also
gives another way to formulate Bell's theorem: using quantum resources, Alice and Bob
can win the CHSH game more often than if they were governed by hidden variables.

This immediately suggests an experiment: play the CHSH game many times, and
check how many times Alice and Bob win. Any success rate noticeably greater than 75%
would imply that the behavior of Alice and Bob - and hence the laws of physics - is non-
classical. Here, "Alice", "Bob", and the "referee" are personifications of measurement
apparatuses and a random number generator that a skilled experimenter could set up in
a laboratory. Assuming that (a) all the laboratory equipment is ideal, (b) the components
corresponding to Alice and Bob are separated far enough to prevent communication, and
(c) the experiment is repeatable, then the empirically observed win rate will give a reliable
criterion to reject the hidden variable model of physics.

Since 1964, countless implementations of Bell tests (as his experiments and variations
of it are called) have been conducted, each time reaffirming the quantum nature of reality.
While ideal experimental conditions cannot be achieved exactly, each experiment has come
closer in closing all the so-called Bell test "loopholes". These are caveats that prevent one
from incontrovertibly concluding that nature is behaving non-classically: Alice and Bob
could be too close to each other, and thus in principle they could signal to each other
during the game; measurement devices could be imperfect, and thus the nms of the game
in which the devices did work could artificially inflate the success percentage of Alice and
Bob. However, the long history of performing Bell tests recently culminated in a historic
milestone: in 2015, the Hanson group of the Netherlands reported the first loophole-free Bell
test [54]. Eighty years after the EPR paper, we can finally put the classical vision of nature
to rest.

1.1 Beyond Bell

Since EPR and Bell, quantum entanglement has grown from a philosophical peculiarity to
a fundamental physical phenomenon. We now know that entanglement manifests itself in
exotic materials [99], black hole physics [4], and even plant photosynthesis [92]. As quan-
tum information processing - and one day, quantum computing - becomes widespread,
we will need precise and exquisite control of complex quantum systems, including the
manipulation of entanglement.

1This is by averaging: for any strategy involving shared randomness, one can obtain a deterministic strat-
egy that achieves the same success probability by simply fixing the best randomness used by the players.
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Quantum entanglement can be regarded as a resource, just like time, energy, and space.
We've seen how entanglement is useful for games like the CHSH game: it allows Alice
and Bob to win the game with higher probability than if they didn't have entanglement.
In quantum protocols such as device-independent quantum key distribution, or delegated
quantum computation, the use of entanglement is necessary in order for the protocols to
work at all. However, entanglement is not always "good"; it can also be a harmful resource
used by an adversary to break the security of a cryptographic protocol or the soundness of
a proof system.

This thesis focuses on constraining quantum entanglement in games and protocols.
Specifically, I will focus on the behavior of quantum entanglement in infinite randomness
expansion protocols the parallel repetition of games, and classical and quantum message authen-
tication in the presence of entangled adversaries. In each of these topics, the central problem
is that of characterizing the power of an entangled adversary who is trying to disrupt the
desired functionality of the game or protocol. The main contribution of this thesis are
techniques for characterizing and mitigating such adversarial entanglement.

1.2 Infinite randomness expansion with untrusted quantum de-
vices

The first part of this thesis studies how quantum entanglement enables classical testing of
quantum randomness generation.

The fact that Bell's theorem gives an operational method to distinguish between (local)
hidden variable models of reality and quantum theory is only the beginning. One of the
most startling implications of Bell's theorem, discovered only ten years ago, is that it also
gives an operational method for testing quantum randomness generation.

Recall the CHSH game. Suppose that Alice and Bob employ a deterministic strategy to
play the game. That is, Alice's answer a is a deterministic function of her question x, and
Bob's answer b is another deterministic function of his question y. Since this is a hidden
variable theory, Alice and Bob's maximum winning probability is 75%, over the choice of
questions chosen by the referee. If we take this in the contrapositive, then if we we observe
that Alice and Bob were employing a strategy that allowed them to win more than 75% of
the time, we must conclude that their outputs a and b must contain some entropy!

It is imperative to emphasize that, while randomness generation is necessary to win the
CHSH game with better than 75% probability, it is not a sufficient condition: as mentioned
earlier, if Alice and Bob only employed shared randomness in their strategies, they would
not be able to beat the 75% bound. Thus, one should think of the CHSH game as a test for
non-classicality, which implies randomness generation.

This simple but powerful observation initiated the study of device-independent random-
ness expansion. Here, we can test that an untrusted device (consisting of multiple compo-
nents that cannot communicate with each other) produces randomness by having it play
multiple rounds of the CHSH game. Astoundingly, the amount of initial seed randomness
required to run such tests can be much less than the amount of output randomness - hence
we have expanded the amount of randomness that we started with. Note that, while ran-
domness expansion protocols sound similar to pseudorandom generators, there is nothing
"pseudo" about the output: a randomness expansion protocol guarantees that, so long as
the device passes the protocol with some minimum probability, the output will contain
much more information-theoretic entropy than was contained in the seed!
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Without this simple non-communication assumption on the devices, it is easy to see
that such black-box randomness testing is impossible. The term "device-independence"
means that, other than this, we make no additional assumption on the internal structure
of the device. In particular, it could've been manufactured by an adversary.

The first randomness expansion protocol was demonstrated by Roger Colbeck in his
Ph.D. thesis in 2006 [31], which expanded in bits of seed randomness to cii bits of close-to-
uniform randomness, for some constant c > 1. This was followed up by quadratic random-
ness expansion: m bits expanded to E(i 22) bits [84]. Then, two works (one by Vazirani and
Vidick [96], and the other by Fehr, et al. [42]) simultaneously demonstrated protocols at-
taining exponential randomness expansion: successfully passing the protocols certifies that
the outputs have 20(m) bits of entropy, while only starting with in initial seed bits.

The obvious open question is, "Can we do better?" Are there any fundamental lim-
its to how much randomness expansion one could achieve? In joint work with Matthew
Coudron and Thomas Vidick, we showed that a natural class of non-adaptive random-
ness expansion protocols could not achieve unbounded expansion [32]; in fact, doubly-

exponential expansion (m -> 2(20(")) is the limit. Here, "non-adaptive" means that the
inputs given to the devices only depend on the initial seed, and not on their outputs.
This limitation applied to nearly every randomness expansion protocol in the literature
at the time. Still, the tantalizing question remainded: could we circumvent this doubly-
exponential barrier by designing adaptive randomness expansion protocols?

In joint work with Matthew Coudron, we demonstrated the existence of an adaptive
protocol that involves eight non-communicating devices, and starting with ni bits of seed
randomness, produces a string of length N that is guaranteed to be exp(-poly(m))-close
to uniform in statistical distance [33]. Here, N can be arbitrarily large - to produce a larger
random string, you simply run the protocol for more iterations. This settled the "infinite
randomness expansion" conjecture.

At the heart of the analysis of our infinite randomness expansion protocol is the con-
struction of a non-adaptive randomness expansion protocol with an especially strong se-
curity guarantee about its output: if the protocol succeeds, then the output randomness
is unentangled (and hence private) from any external adversary, even if the adversary was
originally entangled with the devices used in the protocol, and also generated the seed
used by the classical user of the protocol! Given a randomness expansion protocol with
such guarantees, then one can safely combine two instances of these protocols in order to
adaptively generate an unbounded amount of private and secure randomness, by treating
each instance as the supplier of ever-growing amounts of seed randomness for the other
instance.

1.3 Parallel repetition of games in the presence of entanglement

The second part of the thesis studies the parallel repetition of games involving entangled
players.

Classical parallel repetition. The parallel repetition theorem is an important tool in clas-
sical complexity theory and cryptography for amplifying the hardness of two-player games.
We have already seen one example of a two-player game, the CHSH game. More gener-
ally, a two-player game G is played as follows: a referee samples a pair of questions (x, y)
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from some distribution It, sends x to the first player (who we call Alice) and y to the sec-
ond player (who we call Bob). Alice and Bob cannot communicate during the game. Alice
responds with an answer a, Bob responds with an answer b, and the referee checks if
V(x, y, a, b) = 1 for some predicate V. If so, then the players win G.

When the players are classical (that is, their answers are a deterministic function of
their questions), we call the maximum success probability of the players in the game G as
the classical value of G, denoted by val(G). One of the most important results in classical
complexity theory is Raz's parallel repetition theorem [881, which states the following:

Theorem 1 (Raz's parallel repetition theorem). Let G be a two-player game with classical value
val(G) = 1 - e. Then

val(G") < (1 - e3)0n)

where the constant in the fl(-) depends on the game G.

Here, G" denotes a two-player game called the n-fold parallel repetition of G, denoted
by G". In this game, the referee plays n independent instances of G in parallel with two
players: the referee samples n independent question pairs (xi, yi), . .. , (xn, Yn) from 11, and
sends (xi,..., xn) to Alice, and (y1,. . . ,yn) to Bob. Alice responds with (a,, ... , an), and
Bob with (bl,..., bn). They win the game G" only if V(xi,yi, ai, bi) = 1 for all i = 1,..., n.
Theorem 1 shows that if val(G) < 1, then the players' success probability in the repeated
game G" is exponentially small in n. Though the statement is intuitive, the proof of Theo-
rem 1 is nontrivial, and requires clever information-theoretic arguments.

The main application of Raz's parallel repetition theorem is to the areas of hardness of
approximation and probabilistically checkable proofs. The famous PCP Theorem [6] can be for-
mulated in terms of two-player games: it is N P-hard to approximate the (classical) value
of a game G within an additive error of, say, 0.001. The parallel repetition theorem gives
a blackbox method to amplify this inapproximability: we can then conclude that for any
- > 0 it is N P-hard to approximate the classical value of a game G within an additive error
1 - e. Since the value of a game is a number between 0 and 1, this implies strong inap-
proximability for games. From this, optimal inapproximability results for various natural
optimization problems can be obtained [52,38].

Games with entangled players. We are primarily interested in the setting of games with
entangled players: to produce their answers, Alice and Bob make measurements on an
entangled state. When Alice and Bob are allowed to use entangled strategies, we call their
maximum success probability the entangled value, denoted by val* (G). There are games for
which the entangled value is strictly larger than the classical value; the CHSH game is one
example.

The general study of one-round games with entangled players was initiated by Cleve,
Hoyer, Toner, and Watrous [29]. This study was motivated by the important role that two-
player games have in classical complexity theory, as well as the fact that Bell's theorem
and Bell inequalities are naturally formulated in the language of entangled games. Since
then, the field of entangled games (also called non-local games by [29]) has blossomed into
a rich area that touches upon quantum complexity theory, Hamiltonian complexity, opti-
mization, and more.

Quantum parallel repetition. Here we are interested in whether there is a quantum ana-
logue of Raz's parallel repetition theorem. A natural open question, which we call the
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Quantum Parallel Repetition Conjecture, is whether an analogue of Raz's parallel repeti-
tion theorem holds when the players are allowed to use shared quantum entanglement as
part of their strategy.

We've seen quantum entanglement can be a powerful information theoretic resource
(as dramatically demonstrated with the Infinite Randomness Expansion result!). But can
it be so powerful as to defeat parallel repetition? In other words, is it possible that there is
a game G such that val* (G) < 1, but for all n,val*(G") is lower bounded by some constant
independent of n? This ludicrous possibility has not been ruled out, prior to the results in
this thesis.

The parallel repetition of entangled games has been studied extensively in recent years.
A quantum analogue of Raz's parallel repetition theorem has been established for many
special classes of games: including free games [24, 61, 27], projection games [39], XOR
games [30], and unique games [64], but the general case has resisted attack. This thesis
presents three results concerning the Quantum Parallel Repetition Conjecture, in order of
increasing generality and scope:

1. Improved parallel repetition theorems for free entangled games

2. Hardness amplification for general entangled games via anchoring

3. A parallel repetition theorem for all entangled games

In Chapter 4, I will give an in-depth survey of the subject of quantum parallel repeti-
tion, as well as summaries of the three results above.

1.4 Message authentication in a quantum world

Message authentication is a fundamental task in cryptography. While encryption hides
the contents of a message from an eavesdropper, authentication protects a message from a
tamperer. With message authentication, Alice can send a message to Bob, and he can verify
the integrity of his received message to check whether it was manipulated by an active
adversary. It is well known that encryption and authentication are orthogonal tasks2

A simple message authentication scheme is the following: Alice and Bob share a ran-
dom secret key k, and also agree on a family of hash functions {hk }. To authenticate a
message In, Alice sends m along with the hash hk(m), called the tag. When Bob receives
a message/tag pair (ni', t), he checks whether t = h (III'). If so, then he accepts and con-
cludes that ni' is the original message m, otherwise he rejects and concludes that some
tampering must have happened. This is the classical Wegman-Carter message authentica-
tion scheme [101]. The idea is that, if an adversary does not know the secret key k and the
hash family is 2-universal, then the adversary has a small chance of successfully changing
(m, hk (11)) into another valid message/tag pair.

The last part of this thesis is on message authentication in a quantum world. The main
contributions of this work include security definitions for authentication against quantum
adversaries that subsume previous ones, as well as authentication schemes instantiating
our new definitions. We consider both classical authentication with quantum adversaries, and
fully quantum authentication with quantum adversaries.

2The famous one-time pad, while achieving perfect encryption, offers no authentication capabilities what-
soever: an adversary can flip any number of bits of the ciphertext without being detected, and the receiver
would consequently decipher a message that may have little to do with the original message. On the other
hand, many message authentication schemes do not even attempt to hide the message.
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Classical authentication in a quantum world. First, we consider what happens if ad-
versaries try to perform quantum attacks on classical authentication schemes. This is part
of the broader subject of post-quantum cryptography, where one of the central questions
is: which classical cryptographic primitives survive in a world where the adversaries are
equipped with quantum computers and are able to mount quantum attacks [15]?

In this setting, we can imagine that message authentication is performed by some
physical device, such a smart card. It is ostensibly non-quantum, performing classical
authentication on classical inputs, and returning classical outputs. However, an adver-
sary could in principle operate on this device in a quantum manner, by cooling it down
to very low temperatures, shielding it from noise and radiation, and access the device in
superposition: for example, if the device used the Wegman-Carter authentication scheme,
then the adversary could submit a superposition of messages E,,, a,, Im), and the device
would return E,,, am Im, hk(m)). Furthermore, the adversary could submit a superposition
of messages that is entangled with some quantum side information: Em a, im)I P,,m), where
{ I p,) } are arbitrary quantum states held by the adversary. After authentication, the state
is En 111 um, hk(n1)) IPm).

We focus on the one-time setting. That is, the adversary is only able to use the smart
card once. Still, could the adversary take advantage of superposition attacks and quantum
side information to produce aforgery, i.e., two distinct message/tag pairs (m 1 , hk(M)) and
(M2, hk (M 2 ))? Could the adversary extract the secret key k in this way?

In [18], Boneh and Zhandry gave the first security definition for classical authentica-
tion against superposition attacks: at minimum, if the adversary is only able to quantumly
access the authentication oracle (in this case, the smart card) q times, then it should not
be able to produce q + 1 valid message/tag pairs with non-negligible probability. When
the adversary only performs classical attacks, this coincides with the classical definition of
security for message authentication. They prove that the Wegman-Carter scheme, when
instantiated with a q-wise independent hash family, satisfies this stronger quantum secu-
rity definition.

However, the Boneh-Zhandry security definition does not constrain the relationship
between q message/tag pairs that the adversary could produce, and the q queries made
to the authentication oracle. For example, consider the case where the adversary sub-
mits one superposition of messages that all start with bobogmail. com. Suppose the adver-
sary were able to manipulate the authenticated superposition (which may be entangled
with quantum side information) to produce an authentication of a message that started
with charlie@hotmail. com instead. This is clearly an undesirable outcome, although the
Boneh-Zhandry definition does not rule such an attack out.

Our first contribution is a significantly strengthened security definition for one-time
classical authentication schemes. It characterizes, in a strong way, the (effective) actions of
a quantum adversary, who may share arbitrary quantum entanglement with the messages
being authenticated. At a high level, the security definition says that "all the adversary
can do" is, given an authenticated state, measure the message/tag pair, and based on the
outcome of its measurement, apply an arbitrary quantum operation on its quantum side
information. Since a real adversary can certainly do this in an undetectable way, this means
that our security definition is the strongest possible.

From this security definition we are able to easily deduce properties such as unforge-
ability (and hence recover the Boneh-Zhandry security definition for one-time message
authentication), as well as ruling out attacks like the one given above. Then, we show how
the Wegman-Carter authentication scheme satisfies this strengthened security definition.
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Quantum authentication of quantum data. Next, we consider total quantum autlientica-
tion. If we think of authentication as a general cryptographic primitive to detect tampering
of a message, then in the quantum setting we should expect that if a receiver accepts an
authenticated quantum state, the state should be indistinguishable from the original au-
thenticated message state. A classical authentication scheme like Wegman-Carter cannot
provide such functionality; for example, given the authenticated state E,, a 1 rln, hk ()), the
adversary could simply measure the state in the computational basis, producing a mixed
state; yet this would go undetected by the receiver.

In [91, Barnum et al. investigate the possibility of authenticating quantum data using
a quantum protocol. They present a definition of quantum authentication where, condi-
tioned on the protocol succeeding, the sender has effectively teleported a quantum state
to the receiver. They then give a scheme which attains this definition. Interestingly, they
show that quantum state authentication necessarily implies quantum state encryption.

However, the security definition given by Barnum et al. for quantum authentication
does not take entanglement into account; the adversary may have access to quantum
side information about the state being authenticated, which could potentially give it more
power. Follow up works [531 showed that the Barnum et al. protocol actually has universal
comnposable security, which implies that it remains secure in the presence of side informa-
tion. However, no general definition for authentication with quantum side information
was given.

Our second contribution is a strengthened security definition for total quantum au-
thentication that handles quantum side information. Again, our security definition gives
a strong characterization of the adversary's actions on the authenticated message state:
essentially "all the adversary can do" conditioned on the receiver accepting is to perform
an arbitrary quantum operation on its quantum side information, independently of the
message state. Since a real adversary could do this without detection, this is the strongest
possible security definition.

This security definition subsumes the definition given by Barnum, et al. It also implies
surprising consequences: a quantum authentication scheme can be easily turned into a
quantum key distribution protocol, in which two parties Alice and Bob can generate shared
private keys that are secure against an active quantum eavesdropper. Furthermore, our
security definition implies a key reuse property: whenever the receiver accepts, not only is
the message state certified to be untouched by the adversary, the key is also guaranteed to
be independent of the adversary.3

Finally, we present two schemes that perform total quantum authentication: the first
one, based on unitary designs, satisfies the security definition outright. The second one is
based on applying the Wegman-Carter classical authentication scheme in complementary
bases. The caveat with the second scheme is that it potentially leaks certain bits of the key,
although we have control over which bits of the key are insecure. It makes up for this
caveat by being conceptually very simple.

3 Hayden, et al. [53] also show that the specific protocol of Barnum, et al. implies quantum key distribution
and (partial) key reuse.
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Chapter 2

Preliminaries

2.1 Notation

2.1.1 Sets and indices

For an integer n, we let [n] = {1,..., n}. For an alphabet X, we let X" denote the n-fold
Cartesian product of X. We denote elements of X" by x" = (x 1,..., x,). For a subset
C = {ill... , it} [n], we let xC denote the ordered tuple (xil,..., x;,).

We write R to denote the field of real numbers, C to denote the field of complex num-
bers, Z to denote the ring of integers, and N to denote the set of natural numbers {1, 2,. .. .

2.1.2 Linear algebra

We use I to denote the identity matrix. For Hermitian matrices A, B we write A -< B to
indicate that A - B is positive semidefinite. For a linear operator X acting on a complex
vector space, we let adx [-] to denote the map that takes linear operators p '-4 XpXI.

2.1.3 Probability distributions, random variables, and expectations

We let capital letters denote random variables and lower case letters denote specific sam-
ples. We will use superscripts to denote tuples, e.g., X" := (X 1,..., X,), x" = (x1 ,..., xt).
For a subset C c [n] we write Xc to denote the sub-tuple of X" indexed by C. We use
Px to denote the probability distribution of random variable X, and Px(x) to denote the
probability that X = x for some value x. For multiple random variables, e.g., X, Y, Z,
Pxyz (x, y, z) denotes their joint distribution with respect to some probability space under-
stood from context.

We use PyIX=x(y) to denote the conditional distribution Pyx(y, x) /Px(x), which is de-
fined when Px(x) > 0. When conditioning on many variables, we usually use the short-
hand Pxly,z to denote the distribution Pxly=y,z=z. For example, we write Py,,, to de-
note Pvln_,= _,,X,=x,,y,=y,. For an event W we let Pxyw denote the distribution conditioned
on W. We use the notation Ex f(x) and Epx f(x) to denote the expectation Ex Px(x)f(x).

Let Px be a distribution of X, and for every x in the support of Px0, let Pylx,= be a
conditional distribution defined over Y. We define the distribution Px0 Pylx, over X x Y
as

(Pxo Pyix1)(x, y) := PxJ~x) - Py X=(y).
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Additionally, we write Pxoz PyIX, to denote the distribution (PxzPyx, )(x, z,y) := Px( z (x,z)-

Pyix1=(y).
For two random variables X0 and X1 over the same set X, Pxo me PxI indicates that the

total variation distance between Pxq and Px,,

1
Pxo - Px,| := & Px(x) - Px'(x),

is at most e.
The following simple lemma will be used repeatedly.

Lemma 2. Let QF and SF be two probability distributions of some random variable F, and let RGIF
be a conditional probability distribution for some random variable G, conditioned on F. Then

I QFRGIF - SFRGIFII IIQF - SFH.-

Proof. Note that IIQF RGIF - SF RGIF I Is equal to

-1 Q (f) R(glf) - S(f)R(glf) I EQ (f) -S(f)| - I R(glf)
fg f (

1
2 1:Q(f) - S(f)1

f

IQF - SFII

2.2 Quantum states and measurements

For comprehensive references on quantum information we refer the reader to [82, 102].
We use '- to denote a finite dimensional Hilbert space. A d-dimensional quantum pure

state is a unit-length vector |q) C Cd. A matrix p C Cdxd is a d-dimensional density matrix
if it is positive semidefinite and has trace 1. A positive operator valued measurement (POVM)
with outcome set A is a set of positive semidefinite matrices { Ea} labeled by a E A that
sum to the identity. Given a density matrix p E Cdxd and a POVM {Ea} where each Ea acts
on Cdxd, each outcome a c A occurs with probability Tr(pEa), and for each outcome the
state p is transformed into the post-measurement state

Tr(pEa)

where Ea denotes the matrix square root of Ea. The reader may be aware that the post-
measurement states of a POVM have a unitary freedom, but in this thesis we shall restrict
ourselves to the canonical post-measurement states just defined.

We will use the convention that, when Ip) is a pure state, 4' refers to the rank-1 density
matrix I )(pI. We use superscripts to denote system labels; so pAB will denote the density
matrix on the systems A and B. A classical-quantum state pXE is classical on X and quantum
on E if it can be written as pXE = p(x)!x)(x X pE for some probability measure p(-).
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The state pf is by definition the E part of the state PXE, conditioned on the classical register
X = x. We write pXE to denote the state Ix)(xlX D pE.

We will generally decorate states (both pure states and density matrices) with super-
scripts to indicate the spaces and registers they reside in.

2.3 Norms and distance measures

For a vector 114), we use 111p) Ito denote its Euclidean length. For a matrix A, we will use
A I1i to denote its trace norm Tr( AAt). A density matrix is a positive semidefinite matrix

with trace 1. The fidelity between two density matrices p and o- is defined as F(p, o)

VI VVOII 1. The Fuchs-van de Graaf inequalities relate fidelity and trace norm as

1 - F(p,o-) < p - 0-|1 1 - F(p, T) 2. (2.1)

2.3.1 Hellinger distance

The fidelity distance measure is not a metric on the space of positive semidefinite opera-
tors. For one, it does not satisfy a triangle inequality. However, one can convert fidelity
into other measures that are metrics. One such measure is the Hellinger distance, defined
as h(p, a) := V/1 - F(p, -). In this paper, we will use the squared Hellinger metric, denoted
by h2 (p,. -) := 1 - F (p, o-), as the primary distance measure between quantum states. It
satisfies many pleasant properties, including the following:

Fact 3 (Triangle inequality). Let n > 2 and let p,.. ., pn,+i be density matrices. Then

h2 (pl, Pn+1) < h2 (pi, Pi+1) -

Proof. We adapt the proof from [24]. For i E [n] let ai = arccos(F(pi,pj+1 )). Let a
arccos(F(pi, pn,+1)). Then, since arccos(F(-, -)) is a distance measure for quantum states,
we have a < Ei xi. Then we have

h2 (pl, pn+1) = 1 - cos(a) 5 n2(1 - cos(a /n)) < n ((1 - cos (ai)) = n h2 (p, p,+1).
i i=1

Fact 4 (Contractivity under quantum operations). Let E be a quantum operation, and let p and
o- be density matrices. Then h (S (p), (o.)) h2 (p, o).

Fact 5 (Unitary invariance). Let U be unitary, and let p and r be density matrices.Then h2 (Up Ut, UOTUt )
h2 (p, ,).

Fact 6 (Convexity). Let {A } and { B } be finite collections of positive semidefinite operators, and
let {pj} be a probability distribution. Then h2 (E p1Ai & pBi ) L pi h2 (Ai, Bk).

Fact 7. Let { Ai } and { Bi } be finite collections of positive semidefinite operators, and let { pi } be a

probability distribution. Then h2 (L pIi)(i| 1 AI, i piIi)(iI 0 Bi) = Ej pi h2 (Ai, Bi).

Fact 8 ([58]). Let p and cr be density matrices. Then S(pIIo-) > h2 (p, CT).
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2.4 Quantum information theory

For two positive semidefinite operators p, o, the relative entropy S(pi|u) is defined to be
Tr(p(log p - log cr)). The relative min-entropy S,(pl|or) is defined as min{A : p - 2A Cr}.

Let PAB be a bipartite state. The mutual information I(A : B), is defined as S(pAB p^. A

pB). For a classical-quantum state PXAB that is classical on X and quantum on AB, we write
I(A; BIx). to indicate I(A; B) p.

We define quantum min-entropy. Let PAR be a bipartite density matrix. The min-
entropy of A conditioned on B is defined as

Hmin(AIB)p := max{A E R : ]CTB E D(RB) s.t. PAB -< 2A1A O UB}

where D(IB) denotes the set of density matrices on register B. Let e > 0. Then E-smoothed
min-entropy of A conditioned on B is defined as

H ni,( A|B )p:= max Hmin(AIB)p,
PABEB(PAB,e)

where B (PAR, E) is the set of sub-normalized density matrices within trace distance e of

PAR. For a detailed reference on quantum min-entropy, we refer the reader to [911.
The following propositions and facts will be useful throughout this thesis.

Proposition 9 (Pinsker's inequality). For all density matrices p, o-, 1 lip - 0-11, < S(p||g).

Fact 10 ([61], Fact 11.8). Let p = Pz(z)Iz)(z 0 pz, and p' Ez Pz'(z)Iz)Kz 0 p'. Then
S(p'l|p) = S(Pz'l|Pz ) + Ez' [S(p' I|p2 )]. In particular, S(p'l|p) > E z' [S(p'z|ip-)].

Fact 11 ([58]). Let I be a probability distribution on X. Let p E lx I |x)(0 p^. Then I (X
A) = Exj [S(pxlIp)].

Fact 12 ([611, Fact 11.11). Let pX and oX be quantum states. Then S(pXY IIoXY) S (px Io-X ).

Fact 13. Let p and -X = o- 0 CY be quantum states. Then S(pXYI 1 TXY) > S(pX||o-X) +
S(pyi|or).

Fact 14 ([61], Lemma 11.13). Let p = ppo + (1 - p)pi. Then S,(po lp) < log i/p.

Fact 15. Let p AB and (.AB be density matrices. Then S(pAB IO-AB) > So(pA IB) _

Fact 16. Let p, cr, and T be density matrices such that Sx (pj|cr) < A 1 and S,(c-||T ) < A 2 . Then
So(plIT) < A1 + A2.

Fact 17. Let p, o-, and T be density matrices such that S(pIo-) < A 1 and S" (o-||T ) < A2 . Then
Sc,(pIIIT) < A 1 + A2.

Proof. S,( -T) = A2 implies that 2 -A, - T. Then,

S(pI|T) Tr(p(log p - log T))

Tr(p(log p - log 2-A2c-))

" Tr(p(logp - (-A 2 )1[ - log 0-))

" A2 + Tr(p(log p - log cr))

A1 + A 2 .

El
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2.4.1 Quantum Raz's Lemma

We prove a quantum analogue of Raz's Lemma, which is the central tool behind many
information-theoretic proofs of parallel repetition theorems [88, 55, 8]:

Lemma 18 (Quantum Raz's Lemma). Let p and cr be two CQ states with PXA = Px1 ,...XA
and o- =TXA - o=x1 0 0x2 D ... 0 ax,, 0 c'A with X = X1 X2 ... X, classical in both states. Then

$ I(Xi : A)p < S(PXA I'XA). (2.2)
i=1

Proof. By the chain rule (Fact 10) we have

S(pxA I1XA) = S(pXox 1  lB SI pXI cXi- xX)+. - - - E S(pA|X=x10OA), (2.3)

where x1 +- pxl means sampling x1 according to the classical distribution px1, and simi-
larly for x <- px1 ... x. Consider any of the first n terms in (2.3). We have

E S(px |I-II ax ) > E S(pxi1X<|IIpxi) = I(X1 ... Xi_1 : Xi P,
x<i<-px1x 2 --xi-1 x<i+-px 1x2 -- zxi-1

where pxIx<, stands for px x =,. Now consider the last term in (2.3):

E S(pA XxIIO A) > E S(pAx=xIIpA) =S(pXAlpX®DPA)x+-px x+-px

=I(X : A)p = I(Xi : A IX1X2 ... Xi_1)p.
i=1

Summing up the last two equations and using I(Xi : AX 1 ... Xi) = I(Xi : X1 ... Xi- 1 ) +
I(Xi : AIX1 ... Xi_ 1) implies

S(pxAIIOxA) LI(Xi : AX,...Xj_ 1 )p > I(Xi : A)p,
i=1 i=1

where the last inequality follows from strong subadditivity, i.e., I(Xi : X1 ... X_ 1 IA)p >
0.
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Chapter 3

Infinite Randomness Expansion

The work presented in this chapter was conducted with Matthew Coudron, and published
in the proceedings of Symposium on Theory of Computing in 2014 under the title of "Infi-
nite Randomness Expansion with a Constant Number of Devices" [33].

3.1 Introduction

Bell's Theorem states that the outcomes of local measurements on spatially separated sys-
tems cannot be predetermined, due to the phenomenon of quantum entanglement [141.
This is one of the most important "no-go" results in physics because it rules out the pos-
sibility of a local hidden variable theory that reproduces the predictions of quantum me-
chanics. However, Bell's Theorem has also found application in quantum information as
a positive result, in that it gives a way to certify the generation of genuine randomness: if
measurement outcomes of separated systems exhibit non-local correlations (e.g., correla-
tions that violate so-called Bell Inequalities), then the outcomes cannot be deterministic.

While Bell's Theorem does give a method to certify randomness, there is a caveat. The
measurement settings used on the separated systems have to be chosen at random! Never-
theless, it is possible to choose the measurement settings in a randomness-efficient manner
such that the measurement outcomes certifiably contain more randomness (as measured by,
say, min-entropy) than the amount of randomness used as input. This is the idea behind
randomness expansion protocols, in which a classical experimenter, starting with m-bits of
uniform randomness, can interact with physically isolated devices to certifiably generate
g(m) bits of (information theoretic) randomness (ideally with g(m) > m). Furthermore,
these protocols are device-independent: the only assumption made on the devices is that
they cannot communicate, and obey the laws of quantum mechanics. In particular, there
is no a priori assumption on the internal structure or dynamics of the devices. Indeed, the
devices may even have been manufactured by an adversary!

First proposed by Colbeck [31] in 2006, device-independent randomness expansion
has flourished into an active area of research [84, 97, 93, 76]. Its study involves a diverse
array of concepts from quantum information theory, theoretical computer science, and
quantum cryptography, including the monogamy of entanglement [41], randomness ex-
tractors [91, 69, 36], and quantum key distribution [10, 97, 76]. Randomness expansion
has even been experimentally realized by [84], who reported the generation of 42 bits of
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certified randomness1

The fundamental problem in analyzing a randomness expansion protocol is in demon-
strating a lower bound on the amount of certified randomness, usually measured by min-
entropy. There have been a couple of different approaches. A line of works, starting
with [84], gives bounds on the min-entropy by analytically relating the extent to which
a Bell inequality is violated to the "guessing probability" of the protocol's output. Another
approach, developed in [96], is to utilize the operational definition of min-entropy in a
"guessing game", which establishes that a low min-entropy output implies that the non-
signaling devices must have communicated during the protocol (a contradiction). This
latter approach yields a protocol (which we will refer to as the Vazirani-Vidick protocol in
this paper) that not only achieves the state-of-the-art expansion factor g(m) = exp (I m 1 / 3 ),
but is also quantum secure: that is, the output contains high min-entropy even from the
perspective of a malicious eavesdropper that may be entangled with the protocol devices.
Recently, a work by [76] not only achieves quantum security, but randomness expansion
that tolerates a constant level of noise in the devices.

The original protocol of [31] obtained g(n) = 0(m), or linear expansion. This was im-
proved by Pironio et al. [84] to achieve quadratic expansion g(m) = 0(m 2 ). The protocols
of [96, 42, 761 achieve exponential expansion. Perhaps the most tantalizing open question
in randomness expansion is: how large an expansion factor g(m) can we achieve? For ex-
ample, is there a protocol with expansion factor g(m) that is doubly-exponential in m? Is
there any upper bound on randomness expansion in general?

The only known upper bounds on randomness expansion apply to non-adaptive proto-
cols with two devices (i.e., where the referee's inputs to the devices do not depend on their
previous outputs) [32]. There the authors showed that noise robust, non-adaptive protocols
must have a finite bound on their expansion factor 2. With the exception of [42], random-
ness expansion protocols prior to our work were non-adaptive, and hence the results of [32]
suggest those protocols have a bounded expansion factor. Thus, going beyond the the fi-
nite expansion barrier appears to require adaptivity - but it could, a priori, be the case that
even adaptive protocols are inherently limited to finite randomness expansion.

We present an adaptive protocol that achieves infinite certifiable randomness expan-
sion, using a constant number of non-signaling quantum devices. The output length of our
protocol depends only on the number of rounds performed in the protocol (which can be
arbitrarily large), and not on the size of the initial random seed! This shows that there is no
finite upper bound on the expansion factor of adaptive protocols. Our protocol involves a
constant number - eight, specifically - of non-communicating black-box quantum devices,
and guarantees that the output of the protocol is close to uniformly random, even from
the point of view of a quantum eavesdropper (where the closeness to uniformity is deter-
mined by the initial seed length). Our protocol works even in the presence of arbitrary
entanglement between the devices and an eavesdropper.

The key technical component of the analysis of the InfiniteExpansion protocol is to show
that a sub-protocol, which we call ClusterExpansion, is Input Secure: it generates uniform
randomness secure against a quantum adversary, even if that adversary generated the seed
randomness earlier in the protocol! Since the ClusterExpansion sub-protocol is Input Secure,
composing ClusterExpansion with itself in sequence (i.e., using the outputs of one instance
of the protocol as the inputs of another instance) yields another randomness expansion

1It took over a month to collect these many bits - but they were quantumly certified!
2They showed that g(m) < exp(exp(mn)), or a doubly-exponential upper bound.
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protocol, this time with much larger expansion factor. Our InfiniteExpansion protocol is the
infinite composition of the ClusterExpansion sub-protocol.

In Section 6.1.3, we discuss two relevant and enlightening results about randomness
expansion [26, 76], which were announced after the original posting of this work (though
these results were discovered independently and, unbeknownst to the authors, developed
in parallel with this work).

We note here that any exponential randomness expansion protocol with security against
a quantum eavesdropper (such as the Vazirani-Vidick protocol, for example) readily yields
a protocol using 2N devices, which has a randomness expansion given by an exponential

,N

tower function of N (i.e. 222 ): after running such a quantum-secure expansion protocol
on one pair of devices, the devices are discarded, and their outputs are fed into a fresh
pair of devices (that did not communicate with any previous devices used in the protocol).
This "exponential tower" protocol terminates when all 2N devices have been used. This
was first observed by [104], and in [76] it is noted that the robust exponential expansion
protocol given therein can be used to obtain an analogous "tower" randomness expansion
protocol, which is also robust.

For all practical intents and purposes, a "tower" expansion protocol can certify much,

much (... muchmmmuch- ) more randomness than would ever be needed in practice, so one
might consider it effectively an "infinite" randomness expansion protocol. However, such
a protocol avoids the need to reuse devices, and hence sidesteps the need for Input Security
- but secure device reuse is the key conceptual issue that we find interesting.

3.1.1 Barriers to infinite randomness expansion

Here we identify the inherent technical challenges in analyzing any adaptive randomness
expansion protocol. In Section 3.2 we discuss how to overcome these challenges. Some of
the technical issues discussed here have been identified in previous work (e.g., [42]) and
in randomness expansion folklore.

The Extractor Seed and Input Security Problems. In any adaptive randomness expan-
sion scheme there is a stage when intermediate outputs of the protocol are used to generate
"derived" inputs for some devices in future stages of the protocol. This creates an inher-
ent difficulty in analyzing adaptive protocols, because the devices involved in the protocol
may adversarially take advantage of memory and shared entanglement to attempt to cre-
ate harmful correlations between intermediate outputs and the the internal state of the
devices that receive the "derived" inputs. To prove the correctness of an adaptive ran-
domness expansion protocol, one must show that the devices receiving these "derived"
inputs cannot distinguish them from inputs generated by a truly private random seed. Be-
cause of this fundamental challenge, there are very few analyses of adaptive randomness
expansion protocols (or key distribution protocols for that matter) in the existing literature.
Prior to our work, [42] gave the only analysis of an adaptive randomness expansion pro-
tocol. However, their analysis requires the assumption that entanglement is only shared
between certain pairs of devices, but otherwise that the devices are unentangled.

In the general case where devices can share arbitrary entanglement and may be entan-
gled with an eavesdropper, we face the issue of the quantum security of the intermediate
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outputs against devices that will receive the derived inputs3 . This issue manifests itself in
two different forms: the Input Security Problem and the Extractor Seed Problem.

Generally, a randomness expansion protocol is comprised of two components: an ex-
pansion component and an extractor component. The expansion component will generate
an output string that, while not necessarily close to uniformly random, will be guaranteed
to have high min-entropy. The extractor component will then take this high min-entropy
source, as well as a small polylogarithmic-sized uniformly random seed (taken, for ex-
ample, from the initial seed of the randomness expansion protocol), and convert the high
min-entropy source into a string that is close to uniform.

The Input Security Problem. In an adaptive protocol, we require that the output of the
expansion component contains high min-entropy relative to a quantum eavesdropper (i.e.,
high conditional min-entropy) - where we treat the other devices in the protocol, collec-
tively, as the eavesdropper. However, the Vazirani-Vidick protocol - an quantum-secure
exponential randomness expansion protocol that produces an output with high condi-
tional min-entropy 4 - uses, in its analysis, an assumption that the initial seed to the pro-
tocol is secure against the eavesdropper [96]. This is a condition that cannot be satisfied
in an adaptive protocol. Suppose in an adaptive protocol some device D produced an in-
termediate output X, which we use as the derived input to some other device D' as input
randomness. Note that X is not secure against D. Hence, we cannot use the analysis of [96]
as is and treat D as an eavesdropper, and argue that D' produces an output Y that is secure
against D. We refer to this issue as the Input Security Problem.

The Extractor Seed Problem. Even supposing that we had an expansion component that
was immune to the Input Security Problem (i.e., produces output that contains high con-
ditional min-entropy despite the input being known to the eavesdropper), we would still
suffer from a similar problem with the extractor component. Here, we need to use a small
polylogarithmic-sized uniform extractor seed to convert a source of high conditional min-
entropy into a string that is nearly uniform, relative to a quantum adversary.

First, note that we cannot always take the extractor seed from the original random seed
to the protocol, because this would limit us to exponential randomness expansion. Thus
to achieve super-exponential expansion, the extractor seed must eventually be generated
by intermediate outputs of the protocol.

Secondly, the existing quantum-secure extractors in the literature (e.g., see [36, 69])
require that the extractor seed be secure against the quantum eavesdropper. As pointed
out by [42], provably satisfying this requirement in an adaptive randomness expansion
protocol involves overcoming a technical difficulty similar to that of the Input Security
Problem. We refer to this technical barrier as the Extractor Seed Problem.

To summarize, in order to obtain quantum security of the output against an eavesdrop-
per E, current quantum-secure expansion protocols and extraction procedures require the
strong assumption that the joint state of the seed, the devices, and the eavesdropper PSDE
is such that PSDE U1S I PDE, where U, denotes the uniform distribution on ISI bits,

3We say that a string X is quantum secure, or simply secure, against an eavesdropper E if the joint state of
the string and eavesdropper pXE is approximately equal to ULIx ( PE, where U.. denotes the uniform distri-
bution on I X I bits.

4Recent work by [76] gives another such protocol with quantum security. See Section 6.1.3 for more infor-
mation.
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and PDE denotes the internal state of the devices and adversary. In order to solve the Input
Security and Extractor Seed Problems, we require randomness expansion protocols and
extraction schemes that work with the weaker assumption that PSD US 2, -- with
no mention of the eavesdropper! - while still obtaining the same quantum-security guar-
antees. We call this property Input Security, and say that protocols with this property are
Input Secure.

It is interesting to note that extractors, by themselves, cannot satisfy a property like
Input Security (i.e. we cannot guarantee that an extractor will produce private randomness
when the seed is prepared by the adversary)5 .

3.2 Results

We present a protocol that attains infinite randomness expansion. Our protocol, which we
denote the InfiniteExpansion protocol, involves a constant number of non-signaling devices
(eight, specifically) that, with in bits of seed randomness, can produce an arbitrarily large
amount of certified randomness. In particular, starting with in bits of random seed, if
InfiniteExpansion is run for k iterations, the output of the k iterations is a random string that
is exp(-O(ml/ 3 ))-close to uniform, and has length

2 (m /3)

22

k

i.e., a k-height tower of exponentials in in. The initial seed length in controls soundness
parameters of the protocol, but has no bearing on the amount of certified output randomness!

Our protocol uses as subroutines the exponential expansion protocol of [96] (which
we denote VV) 6, and the sequential CHSH game protocol of Reichardt, et al. [90] (which
we denote RUV). See Section 3.4 for more detail on these sub-protocols. We describe the
protocol below, both algorithmically and schematically (see Figure 3-1).

The main result of this paper is the following theorem, stated informally here (for the
formal version see Theorems 29 and 28):

Theorem 19 (Infinite randomness expansion, informal). Let D = D1 , . .. , Ds} denote eight
non-signaling quantum devices. Let E be an arbitrary quantum system that may be entangled
with the Di's, but cannot communicate with them. Suppose that a classical referee executes the
InfiniteExpansion protocol with the {Di} devices, using an m-bit random seed S that is secure
against the devices {Di}. Then, for all k E N, if Pr(Protocol has not aborted by round k) =
exp(-0i(m1 1 3 )), then the output Tk of the protocol, conditioned on not aborting after k rounds,
is exp(-(m1/ 3 ))-secure against E, and has length 0(g(k) (in)), where g(k) denotes the k-fold
composition of the function g : N -+ N, defined as g(m) = exp ((m1/))-

Furthermore, there exists a quantum strategy for the devices such that, with high probability,
they do not abort the protocol at any round.

5 Here's a counter-example: let D be an n-bit source that is uniformly random. Let S be a O(log nz)-bit seed
that is uniform and independent of D. Let E denote the string (S, first bit of Ext(D, S)). The min-entropy of D
with respect to E is at least n - 1, and S is uniform and independent of D. However, the output of the extractor
is not secure against E.

6 We implicitly include the extraction procedure as part of the VV protocol, where the extractor seed is taken
from the input seed of the VV protocol.
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S

VV VV

RUV RUV

X Y

Ti Ti+1

Figure 3-1: The InfiniteExpansion protocol. All arrows indicate classical operations per-
formed by the referee. S denotes the initial seed to the protocol, and Ti denotes the output
of the protocol at the ith iteration. Each of the VV and RUV boxes involve two devices, for
a total of eight devices used in the protocol.

The analysis of the InfiniteExpansion protocol overcomes the challenges described in the
previous section. We now give an overview of how we solve them.

3.2.1 Our proof strategy

Solving the Extractor Seed and Input Security Problems. The key technique for solving
both the Extractor Seed and Input Security Problems is a powerful result of Reichardt,
Unger, and Vazirani [90], which is based on the phenomenon of CHSH game rigidity. Recall
that, in the CHSH game, classical referee chooses two input bits x and y uniformly at
random, and sends x to Alice and y to Bob. Alice and Bob produce binary outputs a and b,
and they win the game if a D b = x A y. The classical value of the CHSH game is 75%, and
the quantum value is cos2(7/8) 85%. The CHSH game is frequently used in the study
of quantum entanglement and non-locality. More relevantly, it also serves as the basis for
many randomness expansion protocols in the literature: protocols will often test for Bell
inequality violations by measuring how often devices win the CHSH game.

The famous Tsirelson's Theorem states that cos 2 (7T/8) is the optimal winning probabil-
ity using quantum strategies. Even more remarkable is that the CHSH game is rigid: there
is essentially a unique quantum strategy that achieves this optimum. That is, any quantum
strategy that achieves cos2 (7r/8) winning probability must be, in a specific sense, isomor-
phic to the "canonical" CHSH strategy which involves Alice and Bob making specific mea-
surements on separate halves of an EPR pair Ip) = (100) + 11)). We call this the ideal
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Non-signaling devices: D 1,. .. , D8 .
Initial seed randomness: S ~ Um.

1. Let X1 -- S.

2. For i = 1, 2,3,...

(a) Yi < VV (DI, D2 , Xi).

(b) Zi - R UV(D 3, D4 , Y).

(C) Wi <-VV(D5, D6, Zi).-

(d) Xi+1 <- RUV(D 7, Ds, Wi).

Figure 3-2: The algorithmic specification of the InfiniteExpansion protocol. VV(A, B, X)
(resp. RUV(A, B, X)) denotes executing the VV (resp. RUV) sub-protocol with devices
A and B using seed randomness X (for more details about these sub-protocols see Sec-
tion 3.4). The X2, Yi, Zi, and Wi registers are all classical, and managed by the referee.

CHSH strategy. Furthermore, CHSH game rigidity is robust: any strategy that achieves
cos2 (T r/8) - e winning probability must be isomorphic to a strategy that is 0 (V/E)-close to
the ideal CHSH strategy. A form of CHSH game rigidity was first proved by Mayers and
Yao in the exact case [73] and later made robust by [74, 75].

Reichardt et al. proved a far-reaching generalization of CHSH game rigidity to the sit-
uation where Alice and Bob play N independent CHSH games in sequence. This can be
viewed as a larger game CH SH ON, where Alice and Bob win C H SHON if they win approxi-
mately cos2 (T / 8) N games. Reichardt et al. prove the following theorem, stated informally
here (for the precise version see [90] Theorem 5.38, or Theorem 2.8 in this paper), which
they call sequential CHSH game rigidity:

Theorem 20 (Sequential CHSH game rigidity, informal version). Suppose Alice and Bob play
N instances of the CHSH game, where the inputs to Alice and Bob in each instance are uniform and
independent of each other. Divide the N instances into Nit blocks of t games each, where t = NIII
for some universal constant t > 1. If Alice and Bob use a strategy that, with high probability, wins
approximately cos2 (7r/8)N instances, then in most blocks, Alice and Bob's strategy is approxi-
mately isomorphic to the ideal sequential strategy, in which the ideal CHSH strategy is applied t
times in sequence to t EPR pairs that are in tensor product with each other.

Sequential CHSH game rigidity is a powerful tool that allows one to characterize the
behavior of separated quantum devices, simply from observing the correlations between
their (classical) inputs and outputs. Reichardt et al. use sequential CHSH games as a prim-
itive in a more general protocol that allows a classical computer to command non-signaling
quantum devices to perform arbitrary quantum computation - and verify that this compu-
tation has been performed correctly! Here, in contrast, our goal is much more modest: we
simply want to command non-signaling quantum devices to generate uniformly random
bits.

The CHSHON game already yields a protocol that produces certified randomness. In
particular, we have two non-signaling devices play N games of CHSH. The referee will
check whether the devices won approximately cos 2( r/8)N games. If so, the referee will
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select a block of t games at random, and use the output of one of the devices in that block
of t games be the protocol's output - call this the RUV protocol.

We know from Theorem 20 that, with high probability, the outputs of the RUV proto-
col were generated by a strategy approximating the ideal sequential strategy. The ideal
sequential strategy is the ideal CHSH measurement repeatedly applied to a tensor prod-
uct of EPR pairs, so the measurement outcomes are necessarily in tensor product with an
eavesdropper. Thus the outputs of RUV are approximately secure against a quantum ad-
versary. The problem, of course, is that the amount of randomness needed by the referee
to run this RUV protocol is much greater than the amount of certified randomness in the
output (O(N) versus NU'1 ). So we can't use RUV by itself as a randomness expansion
scheme.

However, sequential CHSH game rigidity offers more than just the guarantee of secure
uniform randomness; observe that it does not need to assume that the inputs to the N CHSH
games were secure against an eavesdropper - only that it was secure against the devices playing
the CHSH games! This is precisely the Input Security property.

Thus, we can use the RUV protocol as a "scrambling" procedure that transforms an
input that may not be secure against an eavesdropper into a shorter string that is secure
against an eavesdropper. Recall that, because of the Input Security and Extractor Seed
Problems, the output of the VV sub-protocol in the InfiniteExpansion protocol may not be
secure against other devices (namely, the devices that produced the input to the VV sub-
protocol). However, if we invoke the RUV protocol on the outputs of VV, we obtain secure
outputs that can be used as input randomness for another VV instance.

Furthermore, observe that we still have achieved randomness expansion: the VV pro-
tocol attains exponential expansion, and the RUV protocol will only shrink that by a poly-
nomial amount.

3.2.2 Comment on the relation between our work and the works of Chung-Shi-
Wu and Miller-Shi

Here we mention work that was developed in parallel and independently of our results. In
the following description we will occasionally use the terminology of this paper to restate
results of these other works, though those papers used different terminology in the original
statements.

First, Chung, Shi and Wu [26] studied physical randomness extractors, which are device-
independent protocols that take in a weak source of randomness as seed (i.e. the seed
only has some amount of min-entropy, but is not guaranteed to be uniform), and certifi-
ably produce uniform sources of randomness. This is the device-independent analogue of
randomness extractors discussed above. The work of [26] required an Input Secure ran-
domness expansion protocol to use as a building block for their amplification protocol.
They prove a powerful result called the Equivalence Lemma, which may be informally
summarized as follows (see [26] for a formal statement):

Consider a device-independent randomness expansion protocol P that starts with a
seed S, which is uniform and unentangled with the devices D involved in the protocol as
well as a quantum adversary E. Suppose that the protocol P produces an output string X
that is certifiably close to uniform and in tensor product with E and S (conditioned on the
protocol succeeding). The Equivalence Lemma states that any such protocol P also certifies
output randomness X with the same security guarantees, without requiring that S is in tensor
product with E - in other words, any such protocol P is also Input Secure. In particular, this
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proves that the Vazirani-Vidick protocol (when implemented in composition with a strong
quantum extractor) is, in fact, Input Secure, and can be composed with itself to perform
unbounded randomness expansion in the same manner as we do here, without requiring
the use of the RUV protocol.

It is interesting to note that extractors (which have a similar input-output structure to
randomness expansion protocols) cannot possess an analogous Input Security. Thus, there
is no natural analogue of the Equivalence Lemma which will work for extractors. In this
sense, the Equivalence Lemma represents an interesting phenomenon or property which
is possessed by device independent (quantum) protocols, but not by (classical) protocols
such as extractors.

Secondly, another independent work of Miller and Shi [76 gives the first provably ro-
bust protocol for randomness expansion (and, in fact, gives robust exponential expansion).
Combining the main result of [76] with Equivalence Lemma of [26], allows one to obtain
a provably robust infinite expansion protocol requiring only four non-communicating de-
vices. Thus the combination of [26] and [76] supersedes our results, and represents (at the
current time of writing) the state-of-the-art in randomness expansion.

3.2.3 The minimum seed length required to "jumpstart" infinite randomness
expansion

In [50], Gross and Aaronson analyze the minimum amount of randomness necessary to
"jumpstart" an infinite randomness expansion protocol. They analyzed the randomness
expansion protocol of Miller and Shi [76], combined with the quantum-secure extractor
of De, et al [36]. As mentioned before, composing an Input Secure randomness expan-
sion protocol such as Miller Shi with itself, by the Equivalence Lemma, will yield infinite
randomness expansion.

The minimum seed size has a dependence on an error parameter E, which indicates
how close to uniform the final output is (conditioned on the protocol succeeding). They
showed that an upper bound on the minimum seed length needed to guarantee that the
output is within E = 10-6, the minimum seed length is at most 715, 000 bits of uniform ran-
domness needed. When E = 10-1, the minimum seed length needs to be at most 225,000.
Thus, one can fancifully say that, as long as there are 225,000 bits of uniform randomness
scattered somezwhere throughout the universe, in principle one can use these bits to certify
the production of an unbounded amount of additional randomness.

3.3 Preliminaries

3.3.1 Notation

Throughout this chapter, we will adopt the notation of using subscripts to denote the reg-
isters that a state resides in, e.g., the state PAB denotes a bipartite density matrix in registers
A and B.

Definition 21 (Secure cq-state). Let E be an arbitrary quantum system. Let pXE be a cq-state.
For state PXE, X is c-secure against E iff

JIPXE -- UX\)PEIl < C.
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3.3.2 Modelling protocols and input robustness

In this paper, we will consider several different randomness expansion procedures (e.g.,,
the Vazirani-Vidick protocol, or the RUV protocol); a crucial element of our analysis is that
these protocols are all input robust in the sense that slight deviations from uniformity in
their input seed only mildly affect the expansion guarantees that we get when assuming
the seed is perfectly uniform. To make this input robustness property formal, we introduce
the quantum operation description of randomness expansion protocols.

In general, a randomness expansion protocol is an interaction between a classical ref-
eree R and a quantum device D, that is entirely unconstrained, except that D consists of
two or more isolated, non-signaling sub-devices (but the sub-devices may be entangled).

The important Hilbert spaces we will consider are:

1. (Pass/No Pass Flag). WF denotes a two-dimensional Hilbert space that the referee
will use to indicate whether it accepts or rejects the interaction.

2. (Protocol seed). WS denotes the 2'-dimensional Hilbert space that corresponds to
the (private) m-bit seed randomness that the referee will use for its interaction with
the device D.

3. (Protocol output). 71X denotes the Hilbert space that corresponds to the output of
the device D 7.

4. (Device internal state). WD denotes the Hilbert space corresponding to the internal
state of the device D.

5. (Eavesdropper). 71E denotes the Hilbert space corresponding to a potential quantum
eavesdropper, which may be entangled with device D.

We can view a randomness expansion protocol as a quantum operation 9 acting on
states in the space 'F 0 RS 0 'X 0 WD. Of the Hilbert spaces listed above, device D only
has access to the Hilbert space WD; the other Hilbert spaces get updated by the referee's
interaction with D (except for WE which is controlled by the eavesdropper). For example,
the referee, by interacting with D, will write D's outputs to register X. The states in the
Hilbert spaces 'F, WS, and 'X will always be classical mixed states (i.e., diagonal in the
computational basis).

More precisely, let P be a randomness expansion protocol. We will model P as a quan-
tum operation E acting on an initial state p'SXD in the space 'F 0 RS 'HX 0 RD, where
p'D is the internal state of D before the protocol starts, and p'sx is prepared by the referee.
E will be some unitary map Vp applied to the joint state pFSXD. Now, define the quantum
operation F that takes a state PFSXD, and produces the post-measurement state of PFSXD
conditioned on measuring 11) in the F register, and then traces out the F and S registers,
leaving PXDIF=1- We define ES to be the composition of the two quantum operations E,
followed by F. Throughout this paper, we will decorate density matrices by superscripts i
and f to denote the states before and after the protocol, respectively. For example, we will
often let PfFSXD denote the state of the FSXD system after the execution of the protocol,
conditioned on the protocol succeeding (i.e., F = 1).

7Since D always consists of non-signaling subdevices, we will arbitrarily declare one of the sub-devices'
output to be the output of the overall device D.
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The completeness and soundness of protocol P are statements about the post-measurement
state FS 0llE(p SXDE) (where 1E is the identity on R-E), argued only with respect to an ideal
initial state PFSXDE such that P'FXD (0 U,, X pD, (or, depending on the

analysis, the stronger assumption that PFSXDE := 10)(0F 0 U110 )(OIX ( PDE). In other
words, the initial seed is assumed to be perfectly uniform and unentangled with the de-
vice D. However, we also have a form of input robustness: if the initial state were instead
L-close in trace distance to the ideal initial state defined above, then we would obtain the
same output parameters as P, up to an 3/A additive factor in trace distance, where A is
the probability that 11) is measured in the F register. We prove this formally in Lemma 22
below.

Lemma 22. Let D be a device, and E an arbitrary quantim system that may be entangled with
D. Let cFSX := 10)K1F D U\s\ 0 |0)(Oix. Let the quantum operations F, E, and ES be defined as
above. Suppose for all states V FSXDE such that FSXD =FsX CD o, there exists a state TXDE such
that TXE =IX\ 0 E and

II-S I E(U-FSXDE) - TXDE lITr < E.

Let 3,A > 0. Let PFSXDE be such that |IPiSXDE - OFSXDE 11 < 3for a state UFSXDE where
TFSXD =0)(OIF S|U 1 0 I0)(OJX C 0D- Suppose that the probability of measuring 1) in the

F register for the state S 0 1
E (PFSXDE) is at least A. Then, there exists a state !LXDE such that

pIXE UJXJ 0 pE and

DE pXDE 1i < E - J/A,

where pXDE IE(PFSXDE)*

The proof of Lemma 22 is deferred to Appendix 3.5.3.

3.3.3 The Vazirani-Vidick protocol and quantum-secure extractors

Vazirani and Vidick exhibit a protocol that involves two non-signaling quantum devices
and a classical referee, that achieves randomness expansion that is secure against a quan-
tum eavesdropper [96, Protocol B]. We record a formulation of their result as it will be used
by us here:

Theorem 23 (Vazirani-Vidick protocol [96]). There exists a protocol P with thefollowing prop-
erties. Let D1 and D2 be arbitrary non-signaling quantum devices. Let E be an arbitrary quantum
system, possibly entangled with D1 and D2, but cannot communicate with D1 and D2 once the
protocol begins. The protocol, executed with devices D1 and D2 , has the following properties:

1. (Output length). The output of the protocol has length n(m) = exp(Cmi/3), for some
constant C;

2. (Completeness). There exists a non-signaling quantum strategy for D1 and D2 to pass the
protocol with probability 1 - exp( -(m 2 /3 ));

3. (Soundness). If the initial joint state pi , DzE of the seed S, devices D1 , D2, and eavesdropper

E is such that pSDD.E =U, 0 P'D1D2 E' then if Pr(Protocol succeeds) > e, we have that

H,(X|E)9 f > h(m),
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where E = E(m), and PfE denotes the joint state of device Dl's output and E, conditioned
on the protocol succeeding.

where h(m) := exp(C'm /3 ) and e(m) := 1 /h(m),for a universal constant C'.

Another important primitive we will use is a quantum-secure extractor.

Definition 24 (Quantum-secure extractor). A fiuction Ext : {0, 1 }" x {0, 1}d -+ {,1 }
is a (h, E)-quantum-secure extractor iff for all cq-states PXE classical on n-bit strings X with
H, (X\El)p ;> h, and for uniform seed S secure against X and E (that is, the joint state PXES
is such that PXES =PXE 0 Ud), we have

IPExt(XS)ES - Ur PES E,

where PExt(X,S)ES denotes the joint cqc-state on the extractor output, quantum side information E,
and the seed S.

Theorem 25 ([36]). For all positive integers n, r, there exists a function QExt : {0, In}" x

{0,1} -> {o,1}r that is a (r + O(log r) + O(log 1 /E), e)-quantum-secure extractor where d
O(log 2 (n /E) log r).

3.3.4 Sequential CHSH game rigidity

We can view a sequence of N CHSH games, played by non-signaling quantum devices
D1 , D2, as a protocol CHSH N, where the referee uses a private random seed S to generate
inputs Ai, Bi E {0, 1} to the devices D1 and D2, and obtains their respective outputs Xi, Yi E
{0, 1} for each round i E [N]. The protocol succeeds if W, the number of rounds i such that

Xi D Yi = Ai A Bi, is at least (cos 2 (7r/8) - 0(ION))N.

Divide the N rounds of the CHSH N protocol into blocks of t consecutive games each,
where t = [N1 / IJ for some fixed constant a. Let X be the output register of device D1 . Let
Xi denote the t-qubit register of the ith block of X.

We paraphrase the sequential CHSH game rigidity theorem of [90] here. In the theo-
rem, we imagine that for each block of games, the devices D1 , D2 apply some local quan-
tum operation on their respective systems to produce outputs for the block. We call the
quantum operation applied in each block i their block strategy for i. We say that a block
strategy is c-ideal if there is a local isometry I under which their quantum operation E
and the state acted upon by E are together c-close to the ideal CHSH strategy (for a precise
definition of c-ideal strategies, see [90]). The main property of c-ideal strategy that we will
use is the following:

Lemma 26. Let D1, D2 be non-signaling quantum devices. Suppose that D1 and D2 participate
in the C H SH N protocol. Let E be an arbitrary quantum system that may be entangled with D1 ,
D2, but cannot communicate with them once the CHSHO N protocol begins. Let Ii be the indicator
random variable denoting whether D1 and D2 's block strategy for block i is -ideal. Let Xi be the
output of block i. Then,

|IPXiEIi=1 - U 0 PE|Ii=1 I <,

where PXiE l,=1 denotes the joint state of Xi and E, conditioned on the event Ii = 1.

Proof. This is straightforward given the definition of c-ideal strategy. See [90, Definitions

5.4, 5.5 and 5.37] for more detail.
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Theorem 27 (Sequential CHSH game rigidity; Theorem 5.38 of [90]). Let D 1, D2 be non-
signaling quantum devices. Suppose that D1 and D2 participate in the CHSHQ.,N protocol. Let E
be an arbitrary quantum systen that may be entangled with D1 , D2, but cannot communicate with
them once the CHSH N protocol begins. Let W be the total nunber of CHSH games that D1 and
D2 win in the protocol. Let X be the output of D1. Fix E > 0, and let G < N / t be the total number
of blocks i such that the strategyi employed by D, and D 2 in block i is ,t--K. -ideal, where x, > 1 is
a universal constant. Then,

Pr(W > cos 2 (rc/8)N - V N log N and G < (1 -v)N /t) ,

where i = (12/ v/2) /log Nt / N 4 , and t > 85.

Proof. This is Theorem 5.38 of [90], instantiated with the parameter settings used in Theo-
rem 5.39.

3.4 The Protocol

In this section we formally define the protocol for infinite certifiable randomness expan-
sion, which we call the InfiniteExpansion protocol. The protocol uses eight non-signaling
devices, which may all share entanglement, but cannot communicate with each other. The
devices are partitioned into two Expansion Clusters Co and C1 with four devices each. In
each iteration, the InfiniteExpansion protocol alternates between clusters Co and C1, per-
forming a sub-protocol called ClusterExpansion. The output of one cluster is used as seed
randomness for the next invocation of the ClusterExpansion sub-protocol with the other
cluster. Only the first iteration requires some seed randomness, to "jumpstart" the ran-
domness expansion process.

InfiniteExpansion Protocol

Non-signaling Clusters: Co, C 1.
Initial seed randomness: S - U,.

1. Let X, +- S.

2. For i = 1, 2,3, ..

(a) X i+ +- ClusterExpansion(Ci, Xi).

(b) If ClusterExpansion aborts, then abort the entire protocol, otherwise con-
tinue.

Figure 3-3: The InfiniteExpansion protocol. The classical registers Xi are maintained by the
referee, and Ci denotes cluster C mod 2. Xi+1 +- ClusterExpansion(Ci, Xi) denotes execut-
ing the ClusterExpansion sub-protocol with the devices in cluster Ci, using Xi as the seed
randomness, and storing the sub-protocol output in register Xi+1 .

We now specify the sub-protocol ClusterExpansion(C, S) for a 4-device cluster C and
seed randomness S. As discussed earlier, two devices of a cluster C will be used to perform
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the Vazirani-Vidick near-exponential randomness expansion protocol, and the other two
will be used to perform a variant of the CHSH ON protocol, which we call the RUV protocol.

ClusterExpansion(C, S) Sub-Protocol

Input Non-signaling Devices: C {D1, D2, E1, E2}.
Input seed randomness: S

1. Y -VV(D 1 , D2 , S)-

2. Z - R UV(E 1, E2, Y)

3. If either of the above instances of VV or RUV aborts, then abort
ClusterExpansion. Otherwise continue.

4. Output Z.

It is important that no subset of these devices can communicate with (signal to) any
other subset of the devices throughout the course of the subroutine. We now give precise
definitions of the VV and RUV sub-protocols.

3.4.1 The VV sub-protocol

The VV sub-protocol consists of performing Protocol B from [96], and then applying a ran-
domness extractor to the output of Protocol B. For any s, Protocol B takes in a uniformly
random s-bit seed, and conditioned on the protocol succeeding, produces a string of length
n(s) = exp(f(s 1/ 3 )) with h(s) = exp(0(s 1 /3 )) bits of (smoothed) min-entropy (see Theo-
rem 23). We give a detailed account of the particular parameter settings we use for Protocol
B in Appendix 3.6.

We use the Q Ext randomness extractor given by Theorem 25. More formally, by Q Ext,r,E
we denote the (r + O(log r) + O(log 1/e), E)-quantum-secure extractor mapping {0, 11" x
{0,j}d to {0,}r, where d = d(n, r, e) = O(log 2 (n /e) log r).

For all s, the VV sub-protocol takes in a s-bit seed S, and outputs v(s) bits, where v(s)
exp(O(s1/3)) (for more detail, see Appendix 3.6).

3.4.2 The RUV sub-protocol

The RUV sub-protocol, using a random seed S, has two devices (call them A and B) play a
number N of sequential CHSH games, where N is a function of IS1, and the inputs to the
devices in each of the CHSH games are determined by half of S. The RUV sub-protocol
aborts if they do not win nearly ~ cos2 (rc/8) fraction of games. Then, the other half of S is
used to select a random sub-block of A's outputs in the N CHSH games, and the sub-block
is produced as the output of RUV.

More precisely, let X E {0, 1 }N denote A's outputs. Divide X into blocks of t consec-
utive bits, and further subdivide each block into v/t sub-blocks of \/t bits each. We set
t = LN 11 ], where a := [16K2 1 and K,, is the constant from [90, Theorem 5.7].

For all s, the RUV sub-protocol takes in a s-bit seed S, and outputs r(s) bits, where
r(s) := [(s/4) 1/(2,)
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VV(A, B, S) Sub-Protocol

Input Non-signaling Devices: A, B

Input Seed: S

1. Let S, be the first [s/2] bits of S, and S2 be the last Ls/2 bits of S, where
s := ISI.

2. Perform Protocol B of [96] with devices A and B, using S1 as seed random-
ness, and store Protocol B's output in register Y.

3. If Protocol B aborts, then abort VV. Otherwise, continue.

4. Output QExt,r,,(Y, S2), where n = n( [s/2]), r = v(s), and e = 1/h( [s/2]).

Figure 3-4: The VV sub-protocol. The functions n(s) and h(s) denote the output length and
min-entropy lower bound of Protocol B in Theorem 23 on s bits of seed.

3.5 Analysis of the InfiniteExpansion Protocol

We now analyze the InfiniteExpansion protocol. As discussed in the Preliminaries (Sec-
tion 5.2), we will use the notation pi and pf (or some variant thereof) to denote the state
of the registers, devices, eavesdroppers, etc., before and after the execution of a protocol,
respectively. We will use the following functions throughout this section: v(s) and r(s) to
denote the output lengths of the VV and RUV sub-protocols on inputs of length s, respec-
tively (defined in Section 3.4). The output length of the ClusterExpansion sub-protocol on
an s-bit seed is g(s) := r(v(s)). We will use g(k) (s) to denote the k-fold composition of g(s)
(i.e., g(l) (s) = g(s), g(2 ) (s) - g(g(s)), etc.).

Theorem 28 establishes that there exists a quantum strategy by which the devices, with
high probability, do not abort the InfiniteExpansion protocol. Theorem 29 establishes the
soundness of the InfiniteExpansion protocol.

Theorem 28 (Completeness of the InfiniteExpansion protocol). There exists a non-signalling
quantum strategy for devices D1 ,..., D8, such that the probability that the referee aborts in any
round i in the execution of the InfiniteExpansion(C1, C2 , S) protocol is at most exp(-On(m1 1 3 )),
where C1 = {D 1,..., D4 } and C2 = { D5,..., Ds}, and S is a uniformly random in-bit seed that
is secure against D1,.. ., D8.

Proof. We group the devices into pairs {D1, D2}, {D 3 , D4 }, {D5, D6 }, and {D 7, D 8 }, where
pairs { D1, D2} and { D 5, D 6 } will instantiate the ideal devices for the VV protocol (see [96]
for more details), and the pairs { D 3, D4 } and { D7, D8 } will instantiate the ideal devices
for the RUV protocol (i.e., use the ideal CHSH strategy in every round). Fix a round i and
assume, without loss of generality, that the referee interacts with the pairs { D 1, D2} (used
for the VV protocol) and {D 3, D4 } (used for the RUV protocol) in round i. The probability

that {D 1, D2 } abort the VV protocol is at most exp(-0(m 3 )), and the probability that

{D 3, D4 } abort the RUV protocol is at most exp(-f1(m 3 )), where mi = g)(m). Thus, by
the union bound, the probability of aborting any round i is at most exp(-O(m 11/3))_ EI
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RUV(A, B, S) Sub-Protocol

Input Non-signaling Devices: A, B
Input Seed: S

1. Let S, be the first [s1/2] bits of S, and S2 be the last [s/2 bits of S, where
s := |SI.

2. Let a, b E {0, 1} [s'/4 be the first and last halves of S1, respectively.

3. For i = L,. .. , N, where N := [s/4j:

(a) Input ai, bi to devices A and B respectively, and collect outputs xi, yi E
{0, 1} from A and B respectively.

4. Let W be the number of indices i such that x D yi = ai A bi. If

1
W < cos2 (7r/8)N - 1 /N logN,

2 v'2-

then abort RUV. Otherwise, continue.

5. Output Z, the v/-bit string that is the jth sub-block of the ith block of X,
where X is the register that holds the outputs (xi), and i and j are selected
uniformly from [N/t], [v'i], respectively, using the seed S 2.

Theorem 29 (Soundness of the InfiniteExpansion protocol). Let Co and C1 be non-signaling
Expansion Clusters. Suppose that a classical referee executes the InfiniteExpansion(Co, C1, S) pro-
tocol, where S denotes the referee's classical register that holds an m-bit seed. Let WINi to be
the event that the referee did not abort the InfiniteExpansion protocol in the ith round, and let
WIN<i = WIN1 A ... A WINi. Let E be an arbitrary quantum system that may be entangled
with Co and C1, but cannot communicate with Co and C1 once the protocol has started. Let p 0co
denote the initial joint state of the seed and the clusters. If pscoc1 = Um 0 Pcc1 , then we have for
all k e N that if Pr(WIN<k) > A > exp(-C'mn1 3) for some universal constant C', then

1iIk~E g(k)9() 0PE 1, < 4 exp(-C"m / 3 2

where

* C" is the universal constant from Theorem 30, and

* PkE denotes the joint state of the referee's Xk register and E after k rounds of the InfiniteExpansion(Co, C1 )
Protocol, conditioned on the event WIN<k.

Before presenting the proof of Theorem 29, we wish to direct the reader's attention to
the Input Security of the InfiniteExpansion protocol: the assumption on the initial seed is that
it is in tensor product with the cluster devices only, and not the eavesdropper E - however,
the output at each iteration is close to being in tensor product with the eavesdropper E.

The proof of Theorem 29 assumes the correctness of the ClusterExpansion sub-protocol
(Theorem 30), and shows that the InfiniteExpansion protocol maintains the property that
at each iteration i, the output of X of cluster Ci (where Ci denotes Expansion Cluster
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Figure 3-5: The RUV sub-protocol. All arrows indicate classical operations performed by
the referee.

Ci mod 2) is approximately secure against the other cluster CI+1. Thus, the the execution
of the ClusterExpansion sub-protocol with Ci+1 , conditioned on not aborting, will continue
to produce a nearly uniform output. Furthermore, the errors accumulate linearly with each
iteration.

Proof Define C1 := Cj mod 2. Divide the overall probability of success, Pr(WINsk), into
conditional probabilities: let p = Pr(WINsk) and let pi = Pr(WNi WIN<i_ 1). Observe
that we have p = H pi > A. We prove the claim by induction.

The inductive hypothesis: Recursively define b(i) := EEC (-(), pi) p(-
where S(1) := EEc(171, p1) and EEC(-) is the error bound given by Theorem 30. For all

1,... , k - 1, there exists a state y i such that pItCiE g(i(m) C and

IIPXiCiCi+1E - yXiCiCi+1 E II1 J(0)

where p'CiCi,1E is the joint state of the Xi register, both clusters Ci and C+ 1, and E after the
ith round, conditioned on WIN<i.

Let k = 1. Then, by invoking Theorem 30 with C = C1, and treating the quantum
eavesdropper as C2 and E together, we obtain that there exists a state XC uch that

1X1C2E -g() C -,E, and

IPX CC 2E- C CCEI1 E EC (11, Pl)

This establishes the base case.

Now, suppose that we have run k - 1 rounds of the InfiniteExpansion protocol for some
k > .1. Using our inductive assumption for i = k - 1, we invoke Theorem 30 along with
Lemma 22 to conclude that there exists a state yikCIE such that IkC E Ugk) (111) C
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I'CktE and

||PkCkCk,, E - iiXkCkCk+ll EEC(g(k )(m),PO +J(k- 1) pk -(k).

This completes the induction argument. We now bound 6(k):

5(k) = Ek + - Ek-1 + 1(ek-2
Pk Pk-1

S(ek+Ek-1 + +El)

<2E,
A A'

where we write Ei eEC(g (m), pi), and use the facts that f- pi A and each -i is expo-
nentially smaller than ei_1.

Finally, for every k, we have that

IXI E E g(k)() pE PXkE - XkEII1 + XkE - Ug(k) E I
5(k) + IIUg(,()(n) yE - Ugpk)1() OPEA

= 6(k) +||Y - pI|
<25(k).

Next, we argue that the ClusterExpansion sub-protocol is an Input Secure randomness
expansion scheme. The correctness of the ClusterExpansion sub-protocol assumes the cor-
rectness of VV and RUV protocols (Lemmas 31 and 32, respectively).

Theorem 30. Let C be an Expansion Cluster. Suppose that a classical referee executes the ClusterExpa nsion(C, S)
protocol, where S denotes the referee's classical register that holds an m-bit seed. Let E be an
arbitrary quantum system that may be entangled with C, but cannot communicate with C once
the protocol has started. If psc = U,, D p', and Pr(ClusterExpansion(C, S) succeeds) > A >
exp(-C'm1 1 3 ) for some universal constant C', then there exists a state TXCE such that TXE =

Ug(rn) 0 TE and

IP fCE - TXCE 11 I E Ec( , A),

where eEC(m, A) := exp(-C"m11 3 ) A for some universal constant C", and PXCE is the joint state
of the protocol's output X, the cluster C, and E conditioned on the protocol ClusterExpansion (C, S)
succeeding.

Proof. Let A 1 denote the probability that Step 1 of ClusterExpansion (C, S) succeeds, and
let A 2 denote the probability that Step 2 of ClusterExpansion (C, S) succeeds, conditioned
on Step 1 succeeding, so that A1 A2 > A. Let C consist of devices D = { D1, D2} and
G = {G1, G2 }, where the Di's are used for execution of the VV protocol, and the Gj's are
used for the execution of the RUV protocol. Let Y be the output of VV(D1, D2, S) (which
is Step 1 of ClusterExpansion(C,S)). By definition of the VV protocol, IY = v(m). By
Lemma 31 and our assumption on S (in particular, that PSDG - U1n 0 P'DG), there exists a
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state T.yDGE such that TYG - Uz(m> C v5 and

IPYDGE -DGE IIi EVV(m), (3-1)

where p" denotes the state of the system after running the VV protocol (and conditioned on
it succeeding) but before executing the R UV protocol, and EVV (-) is the error bound given
by Lemma 31. Let X be the output of R UV(G 1, G2, Y) (which is Step 2 of CIuster Expansion (C, S)).
By definition of the RUV protocol, |X|= r(IY|) = r(v(m)).

Imagine that we executed the RUV protocol on the "ideal" input T.DGE. By Lemma 32,

f
we would get that there existed a state TXDGE such that Hi - Ug) ,an

|pXfDGE TDGE Ii CRUV (v(mi), A2),

where E RUV(-,*) is the error bound given by Lemma 32. However, we only have the ap-
proximate guarantee on Y given by (3.1). So, by Lemma 22, we instead get that there exists

ff fa state TiG such that TXE = Uggn) & T , and

f f E VV (i)
|IPXDGE TXDGEI1 ERUV(v(ml),A2) + A2

Plugging in the expressions for ERUV and EVV, we get that this is at most

( 192(v(m) / 4 )l/(8a) + V3exp(-C'm 1 / 3 )) < exp( -C"m11 /3 ) /A,

for some universal constant C". E

3.5.1 Analysis of the VV protocol

In the next two sections, we analyze that the VV and the RUV components of the ClusterExpansion
sub-protocol. As discussed in the introduction, the VV protocol in a cluster C will provide
near-exponential randomness expansion, although the analysis of [96] does not allow us
to conclude that the output is secure against the other cluster C' (i.e., the Input Security
Problem) 8. The RUV protocol in C will be used to transform the output of VV to be secure
against C'. Observe that, qualitatively, the RUV protocol solves the Input Security Problem
because in Lemma 32, the random seed is not required to be secure against an eavesdrop-
per, yet the output is guaranteed to be! On the other hand, Lemma 31 below requires the
assumption that the seed to the VV protocol is secure against the protocol's devices and
the eavesdropper simultaneously.

Lemma 31. Let D1 , D2 be non-signaling quantum devices. Suppose that a classical referee exe-
cutes the VV(D 1, D2 , S) protocol, where S denotes the referee's classical register that holds an n-bit
seed. Let E be an arbitrary quantum system that may be entangled with D1 and D 2, but cannot
communicate with them once the protocol begins. If the initial joint state of S, D1, D2 , and E is

PD1DIE =U1 0 PD1D2E, and if Pr(VV(D1 , D2 , S) succeeds) > exp(-C'm1 3 ) for some univer-

sal constant C', then there exists a state TXDE where TXE ()0

|IPXDE TXDE IIi E cvv(m),
8See 6.1.3 for more about this issue.
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where PXDE is the joint state of E, the devices D = {D1 , D2 }, and the output X of the proto-
col conditioned on the VV(D 1, D2, S) protocol succeeding, Evv(rn) = 3exp( -C'm1 / 3 ), and
v(m) = exp(C'm1/ 3 ) /2.

Proof. The VV protocol consists of two parts, executing Protocol B of [961 using half of the
seed S (which we denote by S1) to produce an output Y of length exp(2(ni'1/3)) which
contains high min-entropy (conditioned on Protocol B not aborting), and then applying a
randomness extractor using Y as the source, and the other half of S (which we denote by
S2 ) as the extractor seed, to produce an output X that is close to uniform.

Let pvE denote the joint state of the output of Protocol B (Step 2 of the VV protocol) and
the eavesdropper E, conditioned on Protocol B not aborting. Then, by our assumption on
S and by Theorem 23, we get that HO(YIE),,, > h(m), where h(m) = exp(C'm1 / 3 ) and
E = e(m) = 1/ h(in) for a universal constant C'.

The VV protocol then applies a quantum-secure randomness extractor to the source Y,
with seed S2. The protocol uses the Q Ext : {0,1}1 x {0, 1}d(..) _. {0, 1}h(m)/2 randomness
extractor promised by Theorem 25, where d(m) = 0(i). Let PYE be a cq-state that is E-

close to p"4 in trace distance, and is such that H, (Y IE)p > h(in) 9. Then, since Q Ext is a
(h(in), e)-quantum-secure extractor, we have that

IIPXE - Uz,(mn) 0PE Iii , (3.2)

where PXE is the joint state of the output X of the extractor QExt and E, with Py as the
source. View the application of QExt to the Y and S2 register as a trace-preserving quantum

operation E, which takes states p"S2 and outputs states PEx(Y,2). Then, by the triangle
inequality, we have

|1O @IE(PvYS2 E) - U,( 1 ) pfEII I1 (D[E PySE) -eO'IE(pYS 2E)J1+

11E & E PYS2E) - Uz(, 0 PE 1I1+

ILIV(m) 0 PE - Liv(in) E Pfl

Since F is trace-preserving, we can bound the first term by E. The second term is bounded
by E via equation (3.2). The third term is bounded by E because the trace distance is non-
increasing with respect to the partial trace. Thus,

11P' - UZ(1) E lI OIE(PVSr) - Uz(m1 ) OPftlli < 3E.

We then apply Lemma 35 to obtain that there exists a state TXDE such that TXE = U(P)rf
and

XDE ~ TXDE 11 V'3-

which proves the claim.

3.5.2 Analysis of the RUV protocol

In this section, we analyze the RUV protocol. Before stating Lemma 32, it will be necessary
to give formal and precise definitions of several (classical) random variables, and how they

9Although the definition of smoothed min-entropy quantifies over all density states in the e-ball around
PYE, there exists a cq-state with high min-entropy in the E-ball - see, e.g., [911.
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interact with the relevant quantum states.
Let S be an mn-bit seed used in the RUV protocol, performed with non-signaling devices

D1 and D2 . Half of S, call it S1, is used for N CHSH games, where N = m/4. Recall
that we divide the N CHSH games into blocks of t = N/ consecutive games. Define the
following random variables:

1. Let F denote the indicator variable that is 1 iff the RUV protocol doesn't abort in Step
4 (i.e., the devices win a cos2 (7r/8)N CHSH games). Note that F is a deterministic
function of the devices' outputs and S1.

2. For all i E [Nit], let Ii denote the indicator variable that is 1 iff the devices D1 and
D2 used a c-ideal strategy to produce their outputs in the ith block of CHSH games,
where := K, t- (see Section 5.2 and [90] for more details about ideal strategies).

3. Let H denote the indicator variable that is 1 iff G > (1 - v)N/t, where G := E Ii and
1 := (12/v'2)/log Nt/N1/ 4 < t-a/ 8 .

In our proof of Claim 32, we will consider states such as PFIXDE, where X denotes the
output of device D1 after N CHSH games, D denotes the devices D1 and D2 together, E
denotes an arbitrary quantum system, F will contain the classical bit indicating whether
the devices aborted the RUV protocol or not, and It will contain a classical bit denoting
whether the devices used a (-ideal strategy for block i. Because F and Ii are classical

variables, PFIiXDE is a cccqq-state, and thus there is an ensemble {pbE } that represents the
states of the D and E systems conditioned on the classical events F f, Ii = q, and X = x,
where

PFIiXDE := [ Pr(F =f, 1i = q, X = x)If)(fIF G q)(ii, 0 Ix)(xlx qpdE
fq,x

Thus, we can meaningfully condition the state PFIXDE on various values of F and Ii.
For example, when we refer to the state PXEF=1, we mean the state that is, up to a normal-
ization factor,

EPr(F = 1,Ii = q, X = x)|x)(x|x 0pD
q

In particular, we will make use of the fact that PXEIF=1 = Pr(i= 0= F = 1)pXEJIi=o,F=1 +
Pr(Ii = 1IF = 1)pXEJIi=1,F=1, where PXEIIi=q,F=1 is defined similarly to PXEIF=1a

Lemma 32. Let D1 , D 2 be non-signaling quantuni devices. Suppose that a classical referee executes
the RUV(D1 , D 2, S) protocol, where S denotes the referee's classical register that holds an n-bit
seed. Let E be an arbitrary quantum system that may be entangled with D1 and D2 , but cannot
communicate with them once the protocol begins. If the initial joint state of S, D1 , and D2 is

PS DiD2 = U pnD1 D0, and Pr(RUV(D1, D2, S) succeeds) > A, then, we have that there exists a
state TZDE where TZE = Ur(m) 0 TE, and

11kDEIF=1 ~ TZDE l1i ERUV(fl, A),

where eRuV(m,A) < 192(mn/4)- 1/( 8a)/A, and where faDEF=l is the joint state of E, the de-

vices D = { D1 , D2}, and the out put Z of the protocol, conditioned on F = 1 (i.e., the RUV(D1 , D2 , S)
protocol does not abort).
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Proof. Let PiDFE be the joint state of the X, D, F, and E registers before the N CHSH games
are played (so X and F are initialized to the all 0 state). For this proof, we will assume that
E is such that p'DFE is a pure state. This is without loss of generality, because we can take a
non-pure state pXDFE and augment it with some extension E' D E such that pXDFE' is pure

(e.g., via a purification of the state pXDFE). Observe that fpE'IF r(,) 'EF=1

implies IPjEIF=1 - Ur(z) ®PEIF=1 II 5 e, because the trace distance is non-increasing under

discarding the augmented system E'\E.
For notational clarity, we shall omit the superscripts i and f, because we focus on the

state PFSXDE of the system after the N CHSH games (i.e., the X register holds the output
of device D1 ), but before conditioning on F = 1 and before using the seed S2 to select a
sub-block. The i"' block of X will be denoted Xi, and the P' sub-block of the it' block will
be denoted Xiq.

There are two main components to this proof.

1. We argue that, for the state PXEIF=1, there is a 1 - J fraction of sub-blocks Xij such
that

IPXijEIF=1 - Uy E PEjF=111 y,
where we set q and J later in the proof. We say that such sub-blocks are q-good with
respect to E.

2. We argue that the string S2 (substring of the seed S used to select the sub-block that
R UV(D 1, D2 , S) will output) is in tensor product with a string describing the locations
of the r-good sub-blocks of the state PXEIF=1-

In particular, let Z := Xs2 denote the sub-block selected by string S2. From the above
two components, it follows that, for the state PXEIF=1, the the random variable Z is (/ + 5)-
good with respect to E, i.e.,,

IIPZEIF=1 - Urt PEIF=1 Ill < q + L-

We then invoke Lemma 35 to argue that there exists a state TZDE such that TZE = Uj

PEIF=1 and

iPZDEIF=1 -TZDEI1 < 1 ) O,
and we are done. We now proceed to proving the first two components.

There are many good sub-blocks. By the definition of Ii and Lemma 26,

IIPXiE|Ii=l - Ut 0 PEIIi=1 I < -

It follows by Proposition 33 that, for at least a 1 - t-1 / 4 fraction of sub-blocks j of block i
we have that

IIPXijEF|Ii= - U Q P EF|Ii=1 I, <

where I := 2(/ + t-1/ 8). If we then condition on the event F = 1 it follows that

IIPXijEI;=1,F=1 - U PE , 0 IIii Ill ( = ) < (3.3)
tJ1 UiiPr(F = 1) -A

We wish to establish the above statement for the state PXjEjF=1 rather than the state

PXiiElI1 =1,F=1. The key to making this transition is to establish that, for many values of i,
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the event F = 1 is approximately a sub-event of the event Ii = 1. To do so, it is helpful to
consider the event H = 1.

Let M := N/t denote the number of blocks of CHSH games. It follows from the defi-
nition of H that Ei[M &[Ii = OIH = 1] < vM. Thus, by Markov's inequality we have that

at most a VT fraction of blocks i E [M] are such that Pr( Ii = L H = 1) > f. Thus, at least
a 1 - Vi1 fraction of blocks i E [M] have Pr(li = 01H = 1) < VP.

Consider such a block i. Note that by Theorem 27, Pr(H = 0, F = 1) < t-. Thus

Pr(I; = 0, F = 1) = Pr(Ii = OIH = 1, F = 1) Pr(H = 1, F = 1) + Pr(i = OtH = 0, F = 1) Pr(H 0,F 1)

SPr(Ii =OH=1,F =1) +Pr(I= OH =0,F=1)t-2

<Pr(Ii = OIH = 1) + F-2
Pr(F = 1)

-A

Since Ii = 1 is a classical event, we have PXEjF=1 = (1 - T)pXEII;=l,F=1 + TPXEIi=,F=1,
where T:= Pr(I = 1IF = 1). Thus,

IIPX;EIF=1 - PXiEjIi=1,F=1 Ill I(-T)pXiEII=1,F=1 + TPXjE1Ii=O,F=1 Ill
< T (IPXiEjI=1,F=l1i + IIPXiEIIj=O,F=1II1)

< 2-r.

By definition, T = Pr(I = 0, F = 1) / Pr(F = 1). Thus,

IIPXiEIij=i,F=1 - PXiE F=1 Ill < 2 A2

By tracing over all except the j"' sub-block we get

5t~+ At- 2 (4
lPXijEIIj=1,F= - PXijEIF= 1E11 < 2 A2

By tracing over the entire Xi register we get

OPE|Ii=,r=1 - PEjF=1I11 < 2 A2 (3.5)

Thus, at least a (1 - t-1/4)(1 - /) of all the sub-blocks Xij have the property that equa-
tions (3.3), (3.5), and (3.4) all hold. It follows by the triangle inequality that

SIPXijEIF=1 - UjI 0 PEF=1 I 5 PXiJE1F=l - PX, EI,1=1,F=1 Ill + IIPXijE1ij=1,F=l - U 0 0 PEII 1 ,F=1 Ill

+ 11 Ul 0 PEIi=1,F=1 - Ut 0 PEjF=1 1

< + Xt- 2 + -EIF=1 Ill
,2 + IP EIIi=1,F=1 -Pl F 10

< 4 5+A/t-

96
< -- 1/ 8 . (3.6)

A
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Define / := 96t 11 8 /A. Thus, we have that at least a 1 - 6 fraction of the sub-blocks
Xij are q-good with respect to E, where J := t~1/ 4 + v5 < 2t-1/ 4 . It is easy to see that

1i + 9 < 2y = 192(m/4)-l/(sa) /A.
S2 is secure against the location of good sub-blocks. Although we have established

that most of the sub-blocks of X are i-good, we need to show that the seed S2 used to
select the sub-block for the output of the RUV protocol is independent of the locations of
the good sub-blocks (i.e. the indices i, j such that Xij is q-good with respect to E). A priori,
since S2 is entangled with the eavesdropper E (because S2 was the output of a different
expansion cluster), it could be that S 2 was somehow adversarially generated to select a
bad sub-block. Here, we show that this cannot happen, because the locations of the good
sub-blocks can be locally computed by the devices D = D1, D2 }. Since P'SD = U1 0 P'D
(where p:= PDD2), S2 is independent of the good sub-block locations.

Consider the following thought experiment: the system D = {D 1, D2 } is augmented
with a classical description A of the state PxFD, and a register A that will store the lo-
cally computed location of the good sub-blocks, so that we have a new system D' =
{D 1, D2, A, A}. Throughout the RUV protocol, the D' system cannot communicate with
the eavesdropper system E. At the beginning of the RUV protocol, we have that PsD' =
UIsi 0 PD'. Imagine that we have measured the Si register (but the S2 register remains un-
measured), so that it is now a deterministic value sl. Let Es, denote the quantum operation
that acts on the systems D1 , D2 , F that represents the strategy employed by devices D1 and
D2 , on the inputs determined by s1 , for the N CHSH games (Step 3 of the RUV protocol).

That is, tXFD := 4s1(PXFD)
As part of this thought experiment, we imagine that, after the N CHSH games, the A

system performs a quantum operation Sj1 on the A, and A systems (but not D1 and D 2 !)
to classically simulate the strategy used by the devices D 1, D2 on input si in the N CHSH
games, and compute the location of the good sub-blocks. The A will then contain a classical

description of the state PIXFD. Note that at this point, S2 is still secure against D'; that is, we
have

SS, (IS, (P' 2 XFDAA)) U 2  s (s, (P'FDAA

We elaborate on the classical simulation S. Given the classical description A of p'KFD'

the location of the good sub-blocks can be computed by using A in the following way:

1. Compute the classical description of a purification TXFDE' of the state P'XFD. Note that
in general, aTiFDE' is different from the "real" state P'XFDE , because the A system has
no knowledge of the external system E.

2. Classically simulate the devices' strategy S on the state OXiFDE" ie.,,

LTXFDE' = r Es1 FDE'

Note that '(FD X D.

3. Compute the indices i, j, such that

IrIXE'IF= - Lf 0 E F-1 Il ' <F=

and store those indices in a register A.
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We now argue that A will contain an accurate description of the locations of the 1i-good
ff - f f ?

sub-blocks in the "real" state pKFDE. From this, since p-A = pi, it follows that S2 is
independent of the good sub-block locations.

Here we will use the assumption, stated at the beginning of this proof, that piFDE is
a pure state. Let pXFDE : P)('p, and let oT FDE' := 10)(P1. There exists a unitary V that

takes the E system to the E' system and acts as the identity on all other systems, such
that I p) = V14). Since V and S,1 act on different systems, they commute, and hence

Q{FDE' VP FDE Vt. Furthermore, V commutes with the projector HF=1 that projects onto
the F = 1 subspace, and thus

f -Vp{-Ef Vt.
XDE'"F=1 DE\F=

Thus,

I;E'IF=1 - E'lF=1 f Wij),D(XDE|F=1Vt) - Ul G TrXD(VpXfDEF= )
11f11- IV Tr (D(fXDEF1 U0rDpDFF) t~' XijVIF=1 VvTrt '3",D'XDE|F=r rXD DEF=1W)~

- IITr#(i),D(pjDEF=1) - U I 0 TrXD(pXDEF1

= IIP 1EFF=1 EF=i1 ) 0

where Tr, (,j),D indicates tracing out over all sub-blocks except for the jth one in the ith
block, and the system D. The second equality follows from the fact that V and the partial
trace commute. The third equality follows because the trace norm is unitarily invariant.

Thus, the indices i,j where Io{E'1F1 ' U F1 i 17 are exactly those sub-

blocks that are i7-good in the state P FDE'

Proposition 33. Let i C [N /t] be the index of a block. If

IPXiEIi=1 - Ut 0 PE|I =1 11 <

then for at least a 1 - t-1 1 4 fraction of sub-blocks j of block i we have that

IIPXijEF|I;=1 - Ur (9 PEFJIiII < 2(=g1 t-11 8).

Proof. By Lemma 35, there exists a state C7XiFE such that OX;E U Ut OPEJI=1, and |IPXiFEI1 =1 -

QXiFE 11 \ Let R := v/I denote the number of sub-blocks in a block. We now prove
the Proposition by showing that, for the state CXFE, at least 1 - t 1 /4 fraction of sub-block
indices j E [R] satisfy I(Xij : FE), < 2t-11 4 . For such j, we obtain:

IIPXijFEIIi=1 - U/7 PFEi=I=1 < IIPX;FEJIi=1 OXijFEIII + JI'X; FE - U C)rFEI1

+ IUI-0FE -- UFt 0PFEI1i=1 1

< T + 4t ia- /4+

The bound on the second term in the second inequality is given via Pinsker's Inequality

51



(see Proposition 9), which states that |)TXj;FE - UI\) 0FE 111 5 2I(Xi, FE),. The bounds
on the first and third terms come from the fact that the trace distance is non-increasing
with respect to the partial trace.

Thus we focus on analyzing the state cXZFE for the remainder of this proof. We apply
the chain rule to obtain I(Xi : FE), = Ej I(Xij : FE Xi,<j),. This is equivalent to

ej[I(Xij : FEIXi,<j)1 ] = I(Xi : FE),

where Xi,<1 denotes all the Xik such that k < j. We will omit the subscript o- because the
underlying state is clear from context. We upper-bound the quantity I(Xi : FE) via the
following calculation:

I(Xi : FE) = I(Xi : E) + I(F: EIXj) (3.7)

= I(F: EjXi) (3.8)

< 2H(F) (3.9)

< 2. (3.10)

We used the fact that OXjE = X 0 oE, so therefore I(Xi : E) = 0. The last inequalities
follow from the fact that F is simply one qubit. We now lower bound the individual terms
of the expectation I(Xij : FEI Xi,<j).

I(Xij : FEIXi,<j) = H(XijlX ,<j) - H(XijIFEXi,<j) (3.11)

> H(Xij) - H(XijIFE) (3.12)

= I(Xij : FE). (3.13)

Equation (3.11) is the definition of conditional mutual information. Equation (3.12) follows
because o-X, = Ut (hence o-x,, is in tensor product with o-x1<,), and conditioning can only
reduce entropy. Finally, equation (3.13) is again the definition of mutual information.

Thus,
2

j[I (Xij : FE)] ,

and by Markov's inequality, we get that 1 - ji fraction of j's are such that I(Xij : FE) 5

Setting y = t-1 / completes the proof. l

3.5.3 Miscellaneous lemmas

Proof of Lemma 22. Define pXDE to be the state TXDE as given by the assumption in the
lemma on input FSXDE where OFSXD 

0 FSX 0 uD. By the triangle inequality, we have:

IIPXDE - tIXDE 11 1 11 TE 0 [E (PFSXDE) - TS 0E (EFSXDE) 1 1 (3.14)

+ ||TS' 0 IE (OFSXDE) - t'XDE 1-

We bound the first term on the right hand side:

IFE 0 I E (PS XDE) - T9 IE (FSXDE) 11 S <IE (PiSXDE) -0 E (TFSXDE) 1
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< -IIPSXDE - CFSXDE I1

< b5/A.

Let A' denote the probability that the F register of the state S 0 IE( FSXDE), when mea-
sured, has outcome 11). Note that max{A, A'} > A, so the first inequality follows from
Lemma 34. The second inequality follows because trace-preserving quantum operations
are contractive with respect to the trace distance. The final inequality comes from our
assumption on p'FSXDE

The second term on the right hand side of (3.14) is bounded by E from our assumption
on the quantum operation ES. 0

Lemma 34. Let PFQ, tFQ be cq-states on the same classical-quantum Hilbert space 'HF 0 7Q. Let
E be a set of oitcomes of the F register such that min{Pr9 (E), Pr, (E) } > 0, where Pr, 9(E), Pr, (E)
denote the probabilities of obtaining outcome E when measuring pF and crF in the computational
basis. Then,

IPFQIE - Ill_ IIPFQ - 0TFQ Il
FQ~~lE max{Pr,(E), Pr,(E)}'

where PFQ\ E and o FQ| E denote the pos t-mewasurement state of P FQ and o-FQ, respectively, conditioned
on E.

Proof. We use the operational interpretation of the trace norm of two quantum states,
namely, that flp - crIll = maxA Pr(A(p) = 1) - Pr(A(-) = 1), where p and Cr are arbi-
trary density matrices, and the maximization is over all possible 0/1-valued POVMs A.

Let A. and A, denote Pro (E) and Pr, (E) respectively. We consider two cases: A. > A,
and A. < A,. Take the first case.

Consider the following two-outcome experiment A that tries to distinguish between

PFQ and CTFQ. We first measure the F register in the computational basis. If the outcome
E does not occur, we output "0". Suppose outcome E does occur. Let B be the optimal
two-outcome POVM such that Pr(B(PFQJE) 1) - Pr(B(FQIE) = 1) = IOpFQ E - FQE 1-
We then make the measurement dictated by B on the post-measurement state (which is
either PFQIE or CrFQIE), and output "1" iff B outputs "1". Then, we have that

IIpFQ - JFQ 11 > Pr(A(PFQ) 1) - Pr(A(oFQ) 1)
= At Pr(B(pFQjE) - 1) - ATPr(B(CTFQIE) 1)

= Ap (IPFQIE - JFQE Ill + Pr(B(FQIE) 1)) - A, Pr(B(oFQjE) 1).

Solving for IPFQIE oFQ E Ii, we get that

SIPFQ - FQ1 - P(Ap - A, ) < IIPFQ - FQ1 < IIPFQ -TFQ I1
pFQtE - FQ|E Amax Al

where p := Pr(B(OFQI E) = 1). In the other case, we have that A. < A. We can then switch
the order of PFQ and cTFQ in the previous argument, and obtain that

1.FE- 1  IPFQ - JFQI < IIPFQ - O-FQI1
rpFQEAFQEI1 maxIAp, A
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Lemma 35. Let PAIA2 B E D(WA1 0 A 2 0 NB), and QArA 2 G EDoLA1 0 NA 2 ) be such that
PAIA2B is a cqq-state, CrAjA, is a cq-state, and IIPAA. - CA, 1A 2 Ill < . Then there exists a cqq-state

TA1A2 B C 'D(7A1 0 HA, 0 RB) such that TA 1A, = -AA, and IIPA1Az B - TA1A 2B Ill < vI-.

Proof. For notational brevity we will let A = {A1 , A 2} SOpAB := PAjA 2B and 0 A := (TAs,.
Let F(p, o-) denote the fidelity between two quantum states p and CT. By Uhlmann's The-
orem, there exists purifications pAQ :I 'I)(pl and LTAQ := 1)(p of PA and 0A, respec-
tively, such that F(PA, CA) = I(4pP)1 [1021. But by the Fuchs-van de Graaf inequalities,
we also have that F(PA,0'A) 1 - IIPA - uAII / 2 > 1 - e/2 [1021. Since IIPAQ - 'AQ II=

/1 - I(Pl1p)1 2, we have that

IIPAQ -- AQ Il < V.

Let PABR = I0)(8I be a purification of the state PAB. Since PABR and PAQ are both purifica-
tions of the state PA, there exists a unitary map V that takes the Q space to the BR space
such that PAR = VpAQVt. Define TABR := Vo-AQV t . Then, by the unitary invariance of
the trace norm, we have that

IIPABR - TABRI1 = |IVIPAQV' - VTAQVt l|
= IIV(jp0A - TAQ)V t ||

= IIPAQ - TAQ1

<vs
Since the trace norm cannot increase when discarding subsystems, we obtain IIPAB - TAB
F. TA' - TA 1A2 B is not guaranteed to be a cqq-state, but we can apply the trace-preserving

quantum map 5 that measures the A1 system in the computational basis and forgets the
measurement outcome. Let TAA 2B :- ' (TA1 A2B), and observe that this is a cqq-state. Since
PA1 A2B is already a cqq-state, PA1 A2B =(PAIAB). Because trace-preserving quantum maps
are contractive under the trace norm, we obtain IIPAAB - TAA 2B Bi <,/4, and we are
done.

3.6 Parameter settings for the VV sub-protocol

For the sake of concreteness, we specify the settings of parameters to be used in the instan-
tiation of Protocol B of [96] in our VV sub-protocol (see Section 3.4). We choose constants
a, -y > 0 such that -r < 1 / (10 + 8a). These constants are part of the definition of VV and
will remain unchanged for every instance of VV throughout the InfiniteExpansion protocol.

In [96, Theorem 2], the parameter h specifies the min-entropy lower bound of Protocol
B, which in turn governs the length of the seed to Protocol B and length of the output. By
definition Protocol B implemented with parameter h requires at most K 1 - 3 1og3 (h) bits
of seed for some fixed constant K1 (this constant may depend on a, but since a is a global
constant here, we ignore this). When Protocol B is invoked by VV(A, B, S), we will set

h = 2[s/2J ] , where s S1, and it follows that Protocol B, with these parameters,

will require no more than [s/2] bits of seed.
We will now discuss parameters relevant to the quantum extractor which will be used

in VV. Let us now define t := h , C := [100a] and c := The output of Protocol B is a
bit string of length n := [10 log2 (t)] _ [Ct log2 (t)1. By Theorem 25 there exists a function
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Q Ext : {,1}" x {0,,}d - {,1}$ that is a ( + O(log (L)) + O(log 1/e), E)-quantum-

secure extractor as long as d > 0 (log2(n/_) log () = 0 (log3(h)) = 0 (y3 [s/2] 1K.
That is, as long as d > K4T3 [s/2j - for some fixed constant K4.

Thus, in specifying the VV sub-protocol and throughout the paper, we will set the fol-
lowing functions, where s is the length of input to the VV sub-protocol:

" Min-entropy lower bound of Protocol B:

h=s :z 2-([s/2 )l /31
h (s) :

" Output length of Protocol B:

214/3n 1s) 2K, [ioc ((2K IW

" Seed length of the extractor:

d(s) := lg3 [s/2j

" Output length of the extractor/VV sub-protocol:

v(s) := [h(s) /2].
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Chapter 4

Parallel repetition of games with
entangled players: an overview

In this portion of the thesis, we investigate many aspects of parallel repetition for entangled
gaines.

A two-player one-round game is specified by finite question sets X, Y, finite answer sets
A, B, a probability distribution y over X x Y, and a verification predicate V : X x Y x
A x B -+ {0, 1} that determines the acceptable question and answer combinations. The
game is played as follows: a referee samples questions (x, y) E X x Y according to y and
sends x to the first player and y to the second. Each player replies with an answer, a E A
and b E B respectively. The referee accepts if and only if V(x, y, a, b) = 1, in which case
we say that the players win the game. The value of the game, denoted by val(G), is the
maximum winning probability over all strategies where each player's answer is a function
of their respective question. Mathematically, we define it as follows:

val(G) = sup E it(X, y) 1: V(x, Y, f (X), g(y))
f,g x,y a,b

where the supremum is over functions f : X -+ A and g : Y -* B. These functions
constitute the deterministic strategy of Alice and Bob.

A natural operation on a game is parallel repetition: given a game G, its n-fold paral-
lel repetition G" is a game where the referee samples (x1,yi),..., (x1 1, Y,,) independenly
according to G, sends (x1 ,..., x,) to the first player and (yi,...,y ) to the second player,
who in turn respond with answer tuples (a1,..., a,,) and (b, ... , b,,). The players win G"
if V(xi, yi, ai, bi) = 1 for all i. A fundamental question concerns the relationship between
val(G) and val(G"). Intuitively, if val(G) < 1, then one would expect that val(G") decays
exponentially in n. The starting point of this work is Raz's parallel repetition theorem [881,
which confirms this intuition:

Theorem 36 (Raz). Let G be a two-player game with val(G) 1 - e. Then

val(G") <; (1 - (4.1)

where s = log(|AI . BI) and c > 0 is a universal constant.

If the players treat each instance of G in the repeated game G" independently (i.e. use
a product strategy), then clearly their winning probability is at most val(G)". However,
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the players are not constrained to use product strategies, and can use correlated strate-
gies with which they can win G" with probability strictly greater than val(G)" (e.g., as
described in [45, 89]). Raz's theorem shows that even though such correlated strategies
can offer some advantage compared to product strategies, the players success probability
must decay exponentially with the number of repetitions.

The main application of Raz's parallel repetition theorem is to the areas of hardness
of approximation and probabilistically checkable proofs. The famous PCP Theorem [6] can be
formulated in terms of two-player games: there exists an EO > 0 (think of it as being very
tiny, such as smaller than 0.0001) such that it is N P-hard to approximate the (classical) value
of a game G within an additive error of Co. The parallel repetition theorem gives a blackbox
method to amplify this inapproximability: we can then conclude that for any C > 0 it is N P-
hard to approximate the classical value of a game G within an additive error 1 - E. Since
the value of a game is a number between 0 and 1, this implies strong inapproximability
for games. From this, optimal inapproximability results for various natural optimization
problems can be obtained [52, 38]. Furthermore, the information-theoretic techniques used
in the proof of the parallel repetition theorem have also been heavily used in direct sum and
direct product results in communication complexity [23, 591.

Entangled games. The study of games where the players share entanglement - which
we call entangled games - was initiated in a seminal paper of Cleve, et al [29]. This work
was motivated by both the importance of games in the context of Bell inequalities and
non-locality, as well as the central role of games in complexity theory, a seemingly entirely
unrelated field. The intermingling of computational complexity theory and non-locality
has proved to be a fascinating line of research (see, e.g., [100, 47, 62, 79]).

Now the important quantity associated with a two-player game is its entangled value,
denoted by val*(G). This is the maximum success probability that non-communicating
players can achieve when using an entangled strategy. More precisely, an entangled strat-
egy for Alice and Bob consists of an integer d > 0, a shared entangled state I p) E Cd x d, and
collections of measurement operations for Alice and Bob individually: Alice has POVMs
{Aa}aEA for every x E X, and Bob has {B b}be for every y E Y. Since these are POVMs,
we have Ea Aa = I and Eb Bb = I. Then we define the entangled value to be

val*(G) sup yp(x, y) (p l Aa 0 a 1,) - V(x, y, a, b)
d,hT)ECdxd xey a,b
{Ai},{B }

where the supremum is over a dimension d, a shared entangled state ip), and measure-
ments for Alice and Bob. From this point on we shall call val(G) the classical value of a
game G, to contrast it with the entangled value of G.

For all games G, the relationship val(G) <; val* (G) is always true: this is because for
every deterministic strategy f : X -+ A, g : Y -+ B of Alice and Bob, we obtain an "entan-
gled strategy" where the shared "state" is one-dimensional: jIp) = 1. The measurements
are defined to be A a = 1 iff f(x) = a and Bb = 1 iff g(y) = b. However, for there are games
G for which val(G) is strictly less than val* (G); the CHSH game is one famous example.

Parallel repetition of entangled games. Due to the outsized influence of Raz's parallel
repetition theorem on the field of classical complexity theory, it became natural to ask
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whether there is an analogue of his theorem for entangled games. That is, for a game G
where val* (G) < 1, does val* (G") decay exponentially with n? We call the assertion that
this is true the Quantum Parallel Repetition Conjecture.

The Quantum Parallel Repetition Conjecture has been studied extensively for many

special classes of games, and has been affirmatively established in each of these classes.
However, whether an exponential-decay bound holds for all two-player games G remains

open. In fact, until the work presented in this thesis, it was not known whether val* (G")
tends to 0 with growing n, if val* (G) < 1.

In this chapter, I will briefly survey the previous results on the parallel repetition of

entangled games. Then, I will give an overview of the parallel repetition results in this

thesis.

4.1 Previous work

XOR games. The parallel repetition of entangled games was first studied by Cleve, et
al [30], who proved that XOR games with entangled players satisfy perfect parallel repetition.
In an XOR game, Alice and Bob output single bits a, b as answers, and the verification pred-

icate depends only on their questions and the parity a D b. Though simple, XOR games
actually capture difficult problems in classical complexity theory: Hstad showed that ap-
proximating the value of an XOR game is NP-hard [52]. By perfect parallel repetition, we
mean that for all two-player XOR games G and for all n, we have val*(G") = val*(G) ".
Interestingly, this elegant "tensorization" property of the entangled value of XOR games
does not hold for the classical value. This tensorization property comes from the fact that
the entangled value of an XOR game can be exactly expressed as the value of a semidefinite
program (SDP), and the SDP has nice tensorization properties.

Unique games. Next, Kempe, Regev, and Toner studied the parallel repetition of entan-
gled unique games [64]. A unique game G is one where for every question pair (x, y) there
exists a bijection nx,y : A -+ B such that V(x, y, a, b) = 1 if and only if 7rx,y (a) = b. The
famous Unique Games Conjecture of Khot [66] asserts, roughly speaking, that for every E
and 3 it is NP-hard to determine whether a given unique game G is such that val(G) < E

or val(G) > 1 - 3, promised that one is the case. First, [64] showed that approximating the
entangled value of a unique game is polynomial-time computable, thus refuting a quantum
version of the Unique Games Conjecture (unless P = N P). This is again due to semidefinite
programming, although its use is more involved than in [30]. Regarding parallel repeti-
tion, [64] are able to leverage their SDP relaxation for the entangled value of unique games
to prove that val*(G") < (1 - E2/16) " if val* (G) = 1 - e for a unique game G.

The Dinur-Reingold transformation. Kempe and Vidick proved one of the first gen-
erally applicable parallel repetition results for entangled games [65]. However, is not a

parallel repetition theorem for general entangled games. Rather, they give a method that
transforms a game G with entangled value val* (G) = 1 - e < 1 into another game GDR(,,) -
called the n'th "Dinur-Reingold repetition" of G - whose entangled value is polynomially
small in n and E. Thus the transformation G F-4 GDR(,i) behaves analogously to G H-+ G";

the entangled value of the output game is much smaller than the entangled value of the
input game.
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This transformation, called the Dinur-Reingold transformation, is simple. First, we as-
sume that the game G is symmetric, meaning that the marginal distribution of each players'
questions are the same (so in particular, they both receive questions from the same ques-
tion set). We can view the Dinur-Reingold transformation as a two-step process: first a
game G is transformed into GDR, which behaves in the following way:

1. The referee randomly chooses whether to play a "game round", a "consistency round",
or a "confuse round", each with some probability.

2. In a game round, the referee will play the original game G; that is, it will choose
questions (x, y) - p and accept or reject using the verification predicate V.

3. In a confuse round, the referee chooses x and y independently from their respec-
tively marginals in y, and sends them to the players. The referee always accepts in a
confuse round.

4. In a consistency round, the referee samples a question x from one of the players'
marginals (which, by the symmetry assumption, is the same for both players), and
sends x to both players. The referee accepts only if the answers of both players match.

Finally, the final game GDR(n) is simply G" , the n'th parallel repetition of GDR. Clearly,
the transformation G '-+ GDR(n) is polynomial-time computable.

However, this transformation is not a general gap amplification technique. In par-
ticular, it isn't completeness preserving: if val* (G) = 1, it is not necessarily the case that
val*(GDR(n)) 1. This is because of the "consistency rounds": passing the consistency
rounds with probability 1 forces the players to have perfectly correlated answers when
asked the same question. At a high level, this induces a "global assignment" to all the
questions, and thus reduces the players' strategies to being more classical. Indeed, if
val(G) = 1, then certainly val* (GDR) = 1. However, there may be a entangled strategy
with value 1 that cannot be shoehorned to pass the consistency rounds with probability 1.

Nonetheless, for many games of interest, the Dinur-Reingold transformation is com-
pleteness preserving. For example, if the classical value val(G) is equal to 1, then val* (GDR(,,))
1. This is useful for multiprover proof systems where, in the "YES" case, the provers can
use some deterministic strategy (based on, say, a satisying assignment to a SAT formula)
to succeed in the protocol with probability 1, but in the "NO" case, we would like to guar-
antee soundness against cheating entangled provers.

The analysis of the Dinur-Reingold repetition of a game G in [651 is quite involved. It
actually proves something much stronger than just reduction of the entangled value: it
shows that any entangled strategy for GDR(n) that performs well must have a serial struc-
ture, that is, it plays many of the rounds of GD' in a sequential fashion. Of course, once the
strategy is identified as behaving sequentially, the decrease in game value follows nearly
immediately (intuitively speaking).

Kempe and Vidick also analyze the Feige-Kilian transformation, which is just like the
Dinur-Reingold transformation, except it only has "game rounds" and "confuse rounds".
It is easy to see that, unlike the Dinur-Reingold transformation, the Feige-Kilian trans-
formation is completeness preserving. However, Kempe and Vidick could only analyze
the Feige-Kilian transformation on projection games, which are games where for every an-
swer of Alice, there is at most one answer of Bob that would be accepted by the referee.
Projection games are the most important types of games considered in hardness of approx-
imation.
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The Feige-Kilian and Dinur-Reingold transformations originated in classical complex-
ity theory. The Dinur-Reingold transformation was used to obtain an alternative proof of
the PCP Theorem [37]. Before Raz's parallel repetition theorem, Feige and Kilian proved [44]
that one could apply the Feige-Kilian transformation to obtain a gap amplification method
that achieves polynomial decay: the decrease in game value as a function of the number of
repetitions n is inverse polynomial, whereas the optimal rate of decrease is inverse expo-
nential. An important conceptual contribution of 144] is that, to obtain gap amplification,
one need not stick with the vanilla parallel repetition technique. It was - and still remains
- a difficult procedure to analyze. Thus, one can try to shortcut the difficulties by changing
the game into a more amenable format first, before using parallel repetition. This foreshad-
ows the core motivation for "anchored games", one of the contributions of this thesis.

Free games. Up to this point, the prodfs of parallel repetition for entangled games have
bore little resemblance to the proof of Raz's parallel repetition theorem. The analysis
used in Raz's proof (and most subsequent proofs of parallel repetition [55, 87, 22]) is
information-theoretic, while the previous results used semidefinite programming (in the
case of [30, 641), or proved stronger structural results about the players' strategies (in the
case of [65]). However, the SDP techniques appear limited to special classes of games, and
the analytical techniques of [65] depend heavily on the extra consistency/confuse ques-
tions of the Feige-Kilian/Dinur-Reingold transformations. One would hope that the tools
of quantum information theory would be as efficacious in solving the general quantum
parallel repetition problem as classical information theory was for classical parallel repeti-
tion.

In 2014, the first information theory-based proofs of parallel repetition for entangled
games emerged. Chailloux and Scarpa [24], simultaneously with Jain, Pereszl6nyi, and
Yao [61] proved the Quantum Parallel Repetition Conjecture is true for free games. In a
free game, the questions to Alice and Bob are independent of each other. Specifically, they
prove:

Theorem 37 (Parallel repetition for free entangled games [24, 61]). Let G be a two-player game
with product question distribution p(x, y) = x (x) x py(y) and entangled value val* (G)
1 - e. The entangled value of the n-fold repetition is upper bounded by

val* (G") < (1 - ,c)O(n/s),

where s is the length of the players' answers in G, and c < 3 is some universal constant.

The proof of Jain, et al. [61] bears the strongest resemblance to the proof strategy of
Holenstein in [55]. In [24], Chailloux and Scarpa adopt an interesting communication-
complexity based approach. Ultimately, when viewed in the right way, both [61] and [24]
prove Theorem 37 in essentially the same way.

Projection games. An exponential-decay parallel repetition theorem for projection games
was proved by Dinur, Steurer, and Vidick [39]. This work is the quantum extension of
the work of Dinur and Steurer [38], who develop an analytical framework for proving an
improved parallel repetition theorem for projection games, leading to optimal inapprox-
imability for the SET COVER problem. The analytical framework of Dinur and Steurer is
very different from the information theoretic approach of Holenstein. They introduce the
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quantity val+ (G) of a game, which is a relaxation of the game value val(G), meaning that
val+(G) ;> val(G). The benefit of dealing with this relaxation is that it is multiplicative,
meaning that val+ (G 2 ) = val+ (G) 2 . The key insight is that val+(G) is a good approxi-
mation of val(G), and thus this implies that val(G") ~ val(G)", thus proving the parallel
repetition bound.

This framework lifts beautifully to the quantum setting: Dinur, Steurer and Vidick
define the quantum analogue of val+(G), denoted by val*(G), and show that this too
is a good approximation of val*(G) with better-behaved multiplicativity properties. An-
other key contribution of their proof is quantum correlated sampling technique. This is the
quantum analogue of classical correlated sampling, which is an integral part of Raz's and
Holenstein's proofs of parallel repetition.

It is an intriguing question for whether this framework can be used to analyze general
games, even in the unentangled setting. However, the analytical framework seems quite
tailored for projection games.

4.2 Parallel repetition of games without entanglement

Before delving into parallel repetition for games with entangled players, it is useful (and
perhaps necessary) to consider how parallel repetition for games with unentangled players
is proved.

The difficulty of proving that val(G") decreases with n for a game G such that val(G) <
1 is that sometimes val(G") does not decrease from val(G) at all! This phenomenon is
succinctly illustrated by the following example, called Feige's Counterexample (which is a
simplification of Fortnow's counterexample [48]). This is a two-player game G for which
val(G) - , but val(G 2 ) =. This immediately shows that the naive guess that val(G")
val(G)" is incorrect.

4.2.1 Feige's Counterexample

In this game, Alice and Bob get uniformly random bits x, y respectively. Alice outputs (i, a)
and Bob outputs (j, b). The outputs i and j indicate "Alice" or "Bob". In order to win, it
must be that i = j, and if i =j = "Alice", then a must be equal to b must be equal to
x. Otherwise, if i j = "Bob", then a must be equal to b must be equal to y. In other
words, in this game, the players have to agree on whose input they're talking about, and
both players must output a guess for that players' output. The value of this game is equal
to 2; this is because at least one player must be guessing the other person's input, and can

succeed with probability at most 1. On the other hand, the deterministic strategy where

both players output ("Alice", 0) suceeds with probability j.
In the repeated game G 2, Alice gets two inputs (x1, X2), and Bob gets (yi, y2). Now

consider the following strategy: For the first game, Alice outputs ("Bob", x2 ) and Bob
outputs ("Bob", yl), and for the second game, Alice outputs ("Alice", x2 ) and Bob outputs
("Alice", yi). The probability that Alice and Bob win the first game is 1, because we require
that x2 = y1. Conditioned on this event, however, Alice and Bob will win the second game
with certainty, and thus val(G 2) =

Observe that this strategy is a non-product strategy: to play the first game, Alice uses
her input from the second game, which ostensibly has no business with the first game
whatsoever! This non-product structure is necessary, however; any product strategy can
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succeed with probability at most val(G) 2 . The existence of these non-product strategies
for games is the confounding difficulty for parallel repetition, because they disrupt the
original independence between games.

4.2.2 How to prove parallel repetition

Let us delve more deeply into the difficulty presented by non-product strategies. Let G
be an arbitrary two-player game where val(G) < 1, and we have val(G") > val(G)" for
very large n. For now we will be somewhat informal and leave ">" and "very large"

unquantified.
Fix an optimal strategy for G". This is a pair of functions f : X" -+ A" and g["]

2" -+ A". We will work in the probability space induced by the choices of random choices
of questions (x1, yi), ... , (x,,, y,,), all drawn independently from the question distribution

Ii. Let Wi denote the event that, using the optimal strategy, the players win the i'th coordi-
nate. Then, via the chain rule:

val(G") = Pr(W1 A ... A W,,) = Pr(W1 ) -Pr(W2IW1) - Pr(WIMW,_ 1 A ... A W1). (4.2)

The probability Pr(W1 ) must be bounded above by val(G): if the players had a strategy for
G" where the first coordinate was won with probability strictly greater than val(G), then
the players could use the following strategy to play single-shot game G: given inputs (x, y),
Alice pretends x1  x, Bob pretends y, = y, and using public randomness, Alice and Bob
sample (x2,y2),. -,(xn,,yn) independently from p. Then, Alice computes (a,,...,a,) =

f[" (x1 ,..., x,,) and outputs a1 . Bob computes (bi,..., bnl) = g"] (y1,..., yn,) and outputs
b1 . It is not difficult to see that the probability Alice and Bob win is precisely equal to
Pr(W1). But this is a contradiction, since this implies that we have a strategy for G that
does better than val(G).

However, the fact that val(G") > val(G)" implies that, for an average i, the quantity
Pr(Wi I W<i) is significantly closer to 1 than it is to val(G), where W<i = Wi_ 1 A ... A W1 . We
cannot use the argument from the previous paragraph to obtain a contradiction, however.
In Feige's counterexample, say, we have that Pr(W2 IW1) = 1. Now we need to use that the
number n of repetitions is large. Essentially, we need to derive a contradiction from the
fact that Pr(WiIW<i) is large for many coordinates i.

To obtain a contradiction, we wish to construct a strategy for the single-shot game
G that "embeds" it into an average coordinate i in the repeated game G", conditioned on
the event W<i. By this, we mean that, on input (x, y), Alice and Bob first pretend that
(xi, yi) = (x, y). Using a combination of public and private randomness, they sample "fake
questions" (x-i, y-i) in such a way that the resulting distribution on (x1 , YO),..., (xn , yn),
is close to their distribution in the game G" conditioned on the event W<i. Clearly, if they
are able to do this, then using the strategy (f["'], g["]) on these fake questions and (xi, yi),
the probability they produce answers that win the ith round will be close to Pr(WiI W<i).

The main difficulty, now, is that conditioning on the event W<i introduces correlations
across coordinates. For example, even though yi was originally independent of y-i, in the
event W<i, they may no longer be independent. Thus, Alice and Bob cannot jointly sample

(x-i, y-i) conditioned on W<i, because otherwise Alice could "know" something about yi
through y-i, which would violate the non-communication property. That is, the event W<i
introduces some spurious dependencies between the players' questions, as well as across
coordinates.
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In the actual analysis, the event we will condition on will not be W<i in general, but
some event Wc - Ajec W for some subset C C [n]. The subset C will be chosen in a way
such that Pr(Wi|Wc) > val(G) (that is, it is much closer to 1 than it is to val(G)) for most
i e [n]\C.

Dependency-breaking variables. The solution by Holenstein is to use so-called dependency-
breaking variables [55] (though he did not use that name in his paper). Suppose the the play-
ers want to embed the game G into the ith coordinate of G", conditioned on an event Wc.
We shall use PXYUABU to denote the global probability distribution of the players' ques-
tions and answers in the game G", when they use the strategy (f["], g["l). A dependency-
breaking variable R is one such that we have the factorization

PXiYiAiBiRIWc =XiYiIWC X PRIXYiWc X PAilXiRWc X PBilYiRWc, (4.3)

where PXiYiAiBiRIWc represents the joint probability distribution of the players' questions
and answers in the i'th coordinate, as well as the dependency-breaking variable R (to be
defined later), conditioned on the event Wc.1 I call this factorization the Usefulness prop-
erty of the random variable R.

The first important lemma to use is that, for an average i, the distribution PXiyilWc
Pxyi, where by "~" we mean closeness in statistical distance. The intuition behind this is
this: since we are assume that val(G") is "too large", this implies that the probability of WC
is also "too large". The following, which we call Raz's Lemma, formalizes this: it states that
in a probability space where the random variables Ul, U2 ,..., U, are initially independent,
after conditioning on a "not-too-small" probability event E, the marginal distribution of a
typical UiI E is close in statistical distance to Ui:

Lemma 38 (Raz's Lemma, basic version [551). Let U1 ,. . ., Un be independent random variables
in a probability space. Let E be an event in the probability space. Then

1" 1 1
ElPUiE - PUi Il < -log P

n i_1 n PE

Thus in the factorization (4.3), PXiy,1W, can be replaced by Pxiyi with small error, but
notice that Pxiy, is simply the original game distribution p.

Now suppose that, upon receiving questions (x, y) - y, Alice and Bob were able to
jointly sample r from the distribution PRIXiYiWc. Then, the factorization (4.3) implies that
Alice and Bob would be able to sample from PAiBiAXi=x,Yi=y,R=r,WC - PAiXi=x,R=r,Wc X
PBiJYi=y,R=r,Wc' because Alice can sample Ai independently of Bob, and Bob can sample
Bi independently of Alice.

The joint distribution of their questions and answers is:

PXiYi X PRIXYiWc X PAilXiRWc X PBi]YiRWc PXiYiIWc X PRIXiYiWc X AiBilXiYiRWc

-XiYiRAiBiJWc

where in the first approximation we used Raz's Lemma and the factorization of (4.3). The
probability of the event Wi in the the latter distribution, however, is equal to Pr(WiIW) >
val(G). We have arrived at a contradiction, because we have just described a strategy

1The semantics of the P notation are covered in Chapter 2.
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(assuming that PR IXiY, is jointly sampleable by Alice and Bob) for the game G that wins
with probability greater than val(G).

The remaining question is how the dependency-breaking variable R is sampled. While
it will not be true that P RXiYV~C is exactly jointly sampleable, it will be approximately so. The
dependency-breaking variable will satisfy what I call the Sampleability property: using
the fact that Pr(Wc) is too large, we will get that P.RlXiYWc PRIXiWc PRIYiWc. That is,
the distribution of R conditioned on the event WC is independent of one player's question,
when conditioned on the other's question. This implies that the players are able to jointly
sample a consistent R that's approximately distributed according to PRIXy wc, due to the
correlated sampling lemma, mentioned earlier:

Lemma 39 (Correlated sampling [55]). Let P and Q be distributions over a universe 14 such
that P , Q. Then there exists a no-communication protocol where Alice and Bob, using public
randomness, output samples p and q respectively such that the marginal distribution of p is P, the
marginal distribution of q is Q, and the probability that p = q is at least 1 - O(e). Furthermore,
Alice's actions only depend on P, and Bob's actions only depend on Q.

Proof. Alice and Bob use an infinite amount of shared random bits, and interpret the ran-
domness as an infinite sequence of (a1 , ui), (a2, u2),..., where each (aj, uj) is uniformly
distributed in [0, 1] x U. Alice outputs the first sample uj such that aj < Prp (uj). Bob
similarly outputs the first uk such that ak < PrQ (uk). Clearly, Alice's output is distributed
according to P, and Bob's output is distributed according to Q. The probability that j < k
is if aj falls in the region where Prp (uj) > PrQ (uj); similarly, the probability that j > k is if
ak falls in the region where PrQ (Ilk) > Pr p (uk). This probability this happens is at most

E Pr(u) - Pr(u)I = 211P - Q11 < 2F.

w~El

The players can use the correlated sampling protocol from Lemma 39 to jointly sample
from PRIXiYiWc: Alice's output will be distributed according to PRaiXW, and with proba-
bility 1 - O(E), Bob's output will be the same as Alice's, where e = IIPRJXiWc - PRIYiWc I1
But PRiXIWC is close to PaRXYJWc, so therefore Alice and Bob's sample will be consistent and
approximately distributed correctly with high probability.

Thus, given a dependency-breaking variable R satisfying the Usefulness and Sam-
pleability properties, we would obtain a contradiction, therefore implying that Pr(Wc)
(and thus val(G")) cannot be too large. All that remains is to exhibit such a variable R.

In words, the variable R is defined as follows: it fixes the questions and answers for
Alice and Bob for the coordinates indexed by the subset C. Then, for every other coordinate
j E [n]\(C U {i}), R will fix either Xj or Yj with equal probability, and leaves the other
question unfixed.

Formally, we define R = (Xc, Yc, Ac, Bc, 0-i). The variables Xc, Yc, Ac, BC corre-
spond to the players' answers and questions in the C-coordinates. The variable 0-i con-
sists of a sequence of coordinate variables Oj for j E [n]\(C U {i}). Each Rf = (Dj, Mj),
where Dj is uniformly distributed in {Alice, Bob}, and

M-= Xi if Di = Alice
Yj if Dj = Bob.
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That is, the variable Mj is coupled to either XK or Yj, depending on the value of Dj.

Proposition 40. R satisfies the Usefulness and Sam pleability properties.

Proof. The proof of this can be found in, e.g., [551. We remark that this proof crucially relies
on the fact that (a) there are two players, and (b) the players' strategies are deterministic.

The idea of defining a dependency-breaking variable in this way (i.e., fixing at least one
out of two questions in every coordinate) originates from the seminal work of Bar-Yossef,
et al. [71 in their information-theoretic proof of the linear lower bound on the communi-
cation complexity of DIsJOINTNEss. Since then, this idea of using a dependency-breaking
variable has been used in all information-theoretic proofs of the parallel repetition theo-
rem [55, 87, 22].

Astute readers may notice something that I have swept under the rug: what is this
index i? All statements I have made above are true for an average i. When Alice and Bob
try to play this embedding strategy, they will first randomly choose an index i E [n\C,
and proceed from there.

4.3 Parallel repetition of games with entanglement

The preceding discussion on the proof of the (classical) parallel repetition theorem serves
as the starting point for the following treatment of parallel repetition of entangled games.
While we don't yet have a direct analogue of Raz's parallel repetition theorem for all en-
tangled games (at least, not with exponential decay), we will use key ingredients from the
classical proof in the results of this thesis.

We record some basic observations. First, we have the trivial inequality val* (G") >
val* (G)". Next, Feige's counterexample is still a counter-example even with entangled
strategies: val* (Geige) = val* (GFeige) = 1. Thus, use of non-product strategies in parallel
repeated games is still a source of difficulty in the entangled case.

We wish to prove a parallel repetition bound along the same lines: suppose that val* (G") >>
val* (G) ". Fix an optimal entangled strategy for G" (we call this the "repeated strategy"),
which consists of a shared entangled state I p) and measurements for Alice and Bob. There
exists a set of coordinates C C [n] that is not too large such that, for an average i, Pr(W I Wc) >
val* (G), under this optimal strategy. We wish to extract from the repeated strategy a strat-
egy for the single-shot game G where the players attempt to embed their question (x, y)
into the i'th coordinate of the game G", conditioned on WC, and thus win with probability
greater than val* (G), a contradiction.

The issue is this: when Alice and Bob receive x and y respectively, they will try to play
the optimal repeated strategy for G" conditioned on Xi = x, Yi = y, and the event WC
as before. However, to play this conditioned repeated strategy, it no longer suffices for
the players to sample fake inputs (x-i,y1 i). The probability space in the game G" now
involves the results of measurements made by the players on their shared entangled state
p), which in general is not a deterministic function of their questions. Thus, conditioning

the probability space on the event Wc corresponds to "conditioning" P) on the Wc - it is
not clear a priori what this means.

Ultimately, though, the players need to have access to some sort of shared entanglement

I<Dxy) that "simulates" the environment in G" corresponding to the event WC and Xi =
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x, Yi = y. We call the IIXy) dependency-breaking states. Each of [61, 24, 39, 27, 11, 1051
all explore different ways to define dependency-breaking states, and different methods to
analyze them. At a high level, though, they all argue for analogues of the Usefulness and
Sampleability properties:

1. Usefulness: Given ) which is shared between Alice and Bob, Alice can perform
a measurement depending on x on her part of the state, Bob performs a measurement
depending on y on his part of the state, and the joint distribution of their measure-
ment outcomes will be distributed close to PAiBLxYXiyYW.

2. Sampleability: There exists a shared entangled state |4>) and unitaries U,, VY, such
that Ux ( Vy I() is close in trace distance to )

The Sampleability property implies that, given question pair (x,y), Alice and Bob can
start with the shared state J() and apply local operations to generate an approximation
of J<Dxy), in analogy with the correlated sampling procedure in the classical case. Once
they have the approximation of I D,), the Usefulness property implies that Alice and Bob
are able to make measurements that produce answers for the i'th game conditioned on
Xi = x, Yi = y, and the event WC. Assuming val* (G") is too large, this will imply that
Alice and Bob can win G with probability better than val* (G), a contradiction.

Sampleability is generally the more difficult property to establish. The bulk of the
technical work in the chapters to follow will be focused on establishing the Sampleability
property for some family of dependency-breaking states.

4.4 Summary of results

4.4.1 Parallel repetition for free entangled games, improved

The first result on quantum parallel repetition that I will present is about "free games"
with entangled players. In a free game, the players' questions are chosen independently
of each other. In [27], Kai-Min Chung, Xiaodi Wu and I gave improved parallel repetition
theorems. We showed that for a free game G with quantum winning probability 1 - E, the
quantum winning probability of G" is at most (1 - E3/ 2 ) 0 (n).2 Interestingly, there is no
known classical analogue of this theorem: the best parallel repetition theorem we have for
classical free games is that the winning probability of G" is at most (1 - E2)O(n) [81. This
suggests that classical games and quantum games might behave differently under parallel
repetition.

We obtain our improvements by exploiting a novel connection between quantum com-
munication protocols and parallel repetition, first explored by [24]. In our analysis, we use
the fact that the communication problem of DIsJOINTNESS can be solved using quantum

communication with only O(vN) qubits of communication (while classically it requires
O(N) communication). The quadratic speedup in communication is what allows us to
improve e2 to E3/2 for our upper bound. More generally, our result unlocks a richer tool-
box for the field of hardness amplification, where one can use communication complexity
results in a black-box fashion to obtain better theorems.

2 For simplicity of exposition, I omit the alphabet dependence in the exponent.
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4.4.2 Gap amplification for general entangled games via anchoring

Next, this thesis will present work conducted with Mohammad Bavarian and Thomas
Vidick, in which we prove a quantum parallel repetition theorem for a new class of games
which we call anchored games [11]. The significance of this class of games is that they are
"universal" in that any game G can be easily transformed into an equivalent anchored game
G 1 , but now we can show that G"L, the n-fold parallel repetition of G 1 , satisfies a parallel
repetition theorem. More precisely, we prove the following:

Theorem 41. There exists a polynomial-time computable transformation, called anchoring, that
transforms any k-game G to a k-player game G1 with the following properties: if val* (G) = 1 -
then val* (G 1 ) = 1 - e/2. Furthermore,for all integer n > 1,

val*(G") < (1 -e)ckn/s

where Ck is a universal constant depending on k and s is the length of the players' answers in G.

The anchoring transformation is very simple to describe: the referee samples a question
tuple for the k players as he would in the game G; but then for each player i, he indepen-
dently chooses with some probability to erase the player i's question and replace it with
a dummy symbol " ". If at least one player receives a dummy question, then the referee
automatically accepts, regardless of the players' answers. Otherwise the referee accepts or
rejects based on the verification predicate of the original game G. This transformation
is a simplification of the Feige-Kilian/Dinur-Reingold transformation described above.
Furthermore, the transformation is completeness-preserving (unlike the Dinur-Reingold
transformation used in [65]).

The anchoring transformation, combined with parallel repetition, yields an efficient
gap amplification technique for entangled games with exponential decay, and in fact is the
first such result for arbitrary entangled games - recall that the parallel repetition result of
Kempe and Vidick, in addition to not preserving completeness, only obtains polynomial
decay.

Although the transformation G F-* G" is the canonical gap amplification procedure,
one of the contributions of the classical work of Feige and Kilian is the idea that, for hard-
ness of approximation purposes, the hardness result doesn't require that the output of a
gap amplification procedure be G" exactly. Our anchoring parallel repetition result carries
this idea over to the entangled games setting. While we still don't know that G -4 G' (i.e.,
standard parallel repetition) achieves exponential gap amplification (in the next section,
we see that it achieves polynomial gap amplification), as far as gap amplification is con-
cerned, it is no longer necessary to prove this: the transformation G - G1 '-+ G" does the
job.

We also prove a threshold version of our parallel repetition theorem:

Theorem 42. Let G be a k-player game with val* (G) = 1 - e, and let C1 be the anchored version
of G as in Theorem 41 with val* (G,) = 1 - e / 2. Then for all integer n > 1 the probability that in
the game G" the players can win more than (1 - E /2 + y)n games is at most

(1 - .~9/ 2 )cktl/Is

where ck is a universal constant depending on k and s is the length of the players' answers in G.
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Another feature of our anchoring repetition is that it allows us to analyze games with
more than two players. Even in the setting of classical games (i.e. the players are unen-
tangled), it is a major open problem for whether Raz's parallel repetition theorem can be
extended to more than two players. Here, the anchoring transformation sidesteps many
of the difficulties that occur when studying multiplayer games, and allow us to obtain a
universal gap amplification technique for them.

4.4.3 A parallel repetition theorem for general entangled games

While Theorem 41 gives a gap amplification result that works for all entangled games
and has exponential decay, the original Quantum Parallel Repetition Conjecture remains
as a fascinating scientific question about the limitations of quantum entanglement. As
mentioned before, one might have wondered whether there exists a game G such that
val* (G) < 1, but for all n the entangled value of G" is lower bounded by some constant 3
independent of n!

The last result of this thesis argues that this cannot happen. I show that for all nontrivial
entangled games G (i.e. val*(G) < 1), the entangled value of G" must converge to 0.
This resolves a weaker version of the Quantum Parallel Repetition Conjecture for general
games. Quantitatively, the result is the following:

Theorem 43. Let G be a two-player one-round game with val* (G) = 1 - e and n > 0 be an
integer. Then,

val*(G") ,< CGE

where CG is a constant that depends on the game G, and "<" denotes less than, ip to logarithmic
factors in n.

This shows that the entangled value of G" must decay at a polynomial rate with n. Im-
proving this result to achieve exponential decay, and thus the full quantum analogue of
Raz's Quantum parallel repetition theorem, is still open.

4.5 Application of quantum parallel repetition to the Quantum
PCP Conjecture

Just as the the classical parallel repetition theorem was useful for proving hardness of ap-
proximation results, one might expect that a quantum parallel repetition theorem would be
useful for proving quantum hardness of approximation results. However, we do not (yet)
have a Quantum PCP theorem; as of writing this is an active field of research. Further-
more, while the classical PCP theorem has three equivalent formulations - one in terms of
probabilistically checkable proofs, one in terms of hardness of approximation, and one in
terms of games - the corresponding formulations of the Quantum PCP Conjecture are not
known to be equivalent to one another. Thus parallel repetition may not play the same
role in the Quantum PCP setting as it does in classical setting.

The following is the most standard formulation of the Quantum PCP Conjecture:

Conjecture 44 (Quantum PCP Conjecture, constraint satisfaction formulation). Let k > 2
be an integer. There is a constant 'y > 0 for which the following problem is QMA-hard:
Given a, b E [0,1] such that a - b ;> T, and a k-local Hamiltonian H = H1 + - - + Hil
acting on n qudits of local dimension d, with each term Hi satisfying IHill < 1, decide
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whether the smallest eigenvalue of H is at least a or at most b, promised that one is the
case.

This problem is known as the k-LOCAL HAMILTONIAN problem with constant promise
gap, where by promise gap we mean the gap -y between the thresholds a and b.' When the
promise gap is only required to be inverse polynomial in n, then the problem is known
to be QMA-complete [67]. This problem is the quantum analogue of the k-CONSTRAINT
SATISFACTION problem, where given a collection of k-ary constraints over a set of vari-
ables, one has to decide whether the minimum fraction of unsatisfiable constraints is at
least some number a or at most some number b. Since the classical PCP theorem can be
formulated as establishing the N P-hardness of solving the k-CONSTRAINT SATISFACTION
problem with a constant promise gap, it is natural to call Conjecture 44 the Quantum PCP
Conjecture.

However one can consider a games version of the conjecture:

Conjecture 45 (Quantum PCP Conjecture, games formulation). There exists a constant
-r E (0,1) and integers s > 1,k > 2 for which the following problem is Q MA-hard: Given
a, b E [0,1] such that a - b> -y, and a k-player game G where each player answers with s
many bits, decide whether val* (G) a or val* (G) < b, promised that one is the case.

When val* (-) is replaced with val(.), the above conjecture is exactly equivalent to the
classical PCP theorem. It was proved by [100] that the problem of approximating the en-
tangled value of a game is at least N P-hard.

For the remainder of this chapter, we shall refer to Conjecture 44 as the "CSP qPCP
Conjecture" (or simply CSP qPCP), and Conjecture 45 as the "games qPCP Conjecture" (or
simply games qPCP).

It is not known whether CSP qPCP is equivalent to games qPCP, although partial
progress has been made to address this question. Fitzsimons and Vidick showed that the
k-LOCAL HAMILTONIAN problem with inverse polynomial gap can be polynomial-time
reduced to the problem of approximating the value of a game within an inverse polyno-
mial additive error [46]. The type of games they reduce to involve a quantum verifier
interacting with entangled players, with the verifier asking classical questions but receiv-
ing quantum answers. Later, Ji gave an efficient reduction to games where the verifier and
the communication is completely classical [62]. However, none of these reductions are gap
preserving; even if the starting local Hamiltonian instance had a constant promise gap, the
resulting game only has an inverse polynomial gap. Natarajan and Vidick recently gave
a gap preserving reduction from the LOCAL HAMILTONIAN problem to the problem of
estimating the value of a game [79]. This would show that constraint satisfaction version
of the Quantum PCP Conjecture implies games version, except that their reduction is not
efficient: the size of the game (as measured by the number of questions) is exponential in
the original local Hamiltonians instance size. However the pace of progress is rapid, and I
expect that researchers will discover an efficient gap-preserving reduction soon.

As for the other direction - whether the games qPCP implies CSP qPCP - very little
is known, aside from some restricted results of [49]. One of the barriers to proving this
direction is that there is no general upper bound on the amount of entanglement needed to
play any game optimally. For instance, it is not known in general whether there is any limit
on the size of the entanglement needed to optimally play any particular game G! In fact,

3We won't give a formal definition of what a local Hamiltonian is; we point the reader to [3] for more
details.
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there is evidence that there are games G that require an infinite amount of entanglement in
the optimal strategy [72]. Another significant barrier is that we do know if the entangled
value of games is (approximately) computable! A reduction (even a horribly inefficient
one) from computing the entangled value of a game to approximating the ground energy
of a local Hamiltonian would establish the first upper bound on the complexity of games.

Though neither Conjecture 44 nor Conjecture 45 looks anywhere close to being re-
solved, we can nonetheless explore the consequences if they were true. We end this chapter
by giving a simple application of our parallel repetition for anchored games: assuming the
truth of Conjecture 45, we can boost its hardness to any desired gap between completeness
and soundness:

Proposition 46. If Conjecture 45 is true, then for all J > 0 the following problem is QMA-hard:
given a description of a k-player game G with answer size that depends only on J, distinguish
between whether val* (G) > 1 - 6, or val* (G) < 6, promised that one is the case.

Proof. Let 0 < b < a < 1 be a promise gap satisfying the conditions in the proposition
statement. Define a' = (1 + 3a) /4, and b' = (1 + 3b) /4. Consider the following reduction:
given a description of a k-player game G, promised that either val* (G) < b or val* (G) > a,
outputs the description of the following threshold game G, : the referee plays G, the t-
fold repetition of G1, the anchored version of G, but instead accepts iff the players win at

least - := (a' - a- b )t games. We set parameters A = (a' - b')/4 and t = f - 2 - In
where s is the length of the players' outputs in G, and ck is the universal constant from
Theorem 42.

We get that if val* (G) > a, then val* (G) > a'. One strategy for G">T is for the players
to play each coordinately independently using the optimal strategy for G1 . By a Chernoff-
Hoeffding bound, the probability that they win at least T games is at least

val* (G 1 T) > 1 - exp(-tA 2 /2) > 1 - J.

Otherwise, val* (G) < b. Applying Theorem 42, we get that

val*(GT) < (1 - A9/ 2 ) Ck/ < 5.

Observe that this reduction is efficient: the size of the description of GtT is O( G ); since
Conjecture 45 is true, this means that a' - b' = 0 (a - b) = f (1), and thus since 6 and s are
constant, t is constant. The answer size of the new game is 0(1), still. Thus the reduction
runs in time polynomial in the input instance size, so if there were an algorithm that could
distinguish between val* (G T) > 1 - 6 or val* (G" ) < 6, then this would distinguish
between whether val* (G) > a or val*(G) < b, respectively. E

We point out that we used two features of the anchoring transformation: first, that it
allows us to analyze the repetition of arbitrary k-player games; second, it yields threshold
theorems for parallel repetition.

Finally, we refer the reader to [3] for a more in-depth survey on the Quantum PCP
Conjecture.
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Chapter 5

Improved parallel repetition for free
entangled games

This chapter presents work that was conducted jointly with Kai-Min Chung and Xiaodi
Wu, and appeared in the Conference on Computational Complexity in 2015 under the title
"Parallel repetition for entangled k-player games via fast quantum search" [27].

5.1 Introduction

The first information-theoretic proofs of parallel repetition for entangled games appeared
in the independent works of Chailloux and Scarpa, and Jain, et al. [24, 61], for the class of
free games. In a free game, the question distribution y is a product distribution. They prove
the following theorem:

Theorem 47 (Parallel repetition for free entangled games [24, 61]). Let G be a two-player free
game with entangled value val* (G) = 1 - E. The entangled value of the n-fold repetition is upper
bounded by

val*(G") < (1 - )Q(n/S),

where s is the length of the players' answers in G, and c < 3 is some universal constant.

In [24, 61], the constant c was proved to be at most 3. In [25], Chailloux and Scarpa gave
a tighter analysis and showed that c = 2, matching the best classical parallel repetition
theorem for free games by Barak, et al. [8].

We improve upon Theorem 47, and prove the following:

Theorem 48. Let G be a two-player free game with entangled value val* (G) = 1 - e. Then, for
n = 0(slog(1/e)/E3/ 2),

val*(G"1) < (1 - E3/2)O(n/s)

where s is the length of the players' answers in G.

The difference between Theorem 48 and Theorem 47 is that the rate of parallel repetition
for entangled free games is faster: the base of the bound on val* (G") is 1 - E3 2 which is
smaller than 1 - E2 . Thus the rate at which val* (G") goes to 0 is faster than what is known
for the case of classical players!
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The proof of Theorem 48 exploits a connection between parallel repetition and commu-
nication complexity that was developed in [24].1 Our analysis uses a quantum communi-
cation protocol that performs a version of distributed unstructured search (i.e. searching
for a 1 in a bitstring). The improvement of the base from 1 - E2 to 1 - E comes from the
fact that the unstructured search problem on N bits can be solved by a quantum algorithm
using only O( v'R) queries. We discuss this in more detail in the next section.

5.1.1 Parallel repetition and communication protocols

At a high level, most proofs of parallel repetition proceed via reduction. Let G be a two-
player free game with verification predicate V(x, y, a, b). If there were a strategy for the
repeated game G" that wins with too large probability, then one can transform this re-
peated strategy to a strategy for the single-shot game G with success probability larger
than val*(G), which would be a contradiction.

As discussed in Chapter 4, the proof strategy is to define an appropriate ensemble of
dependency-breaking states I xy) that are both Useful and Sampleable. Generally, the goal
is to create advice states that closely mimick the joint state of the players during an actual
execution of the repeated strategy, conditioned on the event of winning a sizable fraction
of coordinates.

Consider an optimal entangled strategy for G" that uses shared entanglement 117) and
measurement operators A", and By,, for every x", y", a", b" (question and answer tuples for
the n parallel coordinates). In both [61] and [24], the dependency-breaking states |<Dxy) are
defined as the result of an multi-step protocol. Alice and Bob first start with the state

[ , I ( xn",y )l X lx" ) X 0 |p)EAE B 0 ly ln) " "l 11
x",yl"

where Alice has registers X"X"EA, and Bob has registers EBY"Yn. This represents the
state of Alice and Bob before the start of the game G", where their questions are given
in superposition. Alice and Bob then apply the measurements from the optimal strategy,
recording their measurement outcomes coherently:

F[I p(x;,yn x x"k ) "O|xyao)EAEB nD ln Y"Y)" 0 |O) A"B" (.)xy,)y,,?lX 0 Iyab) a" (5.1)

where jPxnynanbn) = Aaj D Bl) is the (subnormalized) post-measurement state of

14').
In both [61] and [24], the dependency-breaking state I Dxy) is defined to be (5.1) condi-

tioned on the event WC of winning all the coordinates in a subset C c [n], and Xi = x, Yi =
y for some i.

However, [24] view this as the result of a communication protocol between Alice and Bob,
where Alice sends her questions and answers for the coordinates in C to Bob so that Bob
can compute the indicator for whether they succeeded in those games (i.e., they compute
the event Wc). They define the dependency-breaking state |<Dxy) to be the final state of
Alice and Bob after this communication protocol, conditioned on Bob's computation of the

1This connection was also presented in greater generality by Pamafes, Raz, and Wigderson in [83] for
classical parallel repetition.
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indicator for the event Wc, and Alice's i'th question is x, and Bob's i'th question is y.
If C is small, then the communication cost is small. Chailloux and Scarpa use this fact

to argue that the dependency-breaking states are Sampleable: since the communication
from Alice to Bob was small, and we're assuming that the probability of the event WC
is too large (because val(G") is too large), the amount of information that Bob has about
Alice's question in an average coordinate i is very small. Similarly, Alice's information
about Bob's i'th question is very small. We fix an i such that this is the case. This implies
the existence of unitaries Uk, V, and an initial state ID) such that Lx ( VD D) ~ 'Dxy,). The
error in the approximation, which affects the final parameters of the parallel repetition
theorem, is ultimately determined by the communication cost of this protocol.

Although the proof of [61] shows that this communication complexity perspective
is not necessary to achieve the parameters of Theorem 47, we take this communication
paradigm further to obtain a quantitative improvement: we show that if Alice and Bob en-
gage in a two-way communication protocol, they can approximately compute the indicator
for WC using less communication than the simple protocol given above. Conditioning the
final state of the protocol on this approximation of Wc yields dependency-breaking states

<,) that can be better approximated by U, & Vy I <D) for some unitaries U, and VZy - and
hence yield better parameters for the parallel repetition.

The idea for the communication protocol is simple: Alice and Bob run a distributed
version of Grover's search algorithm to search for an index j E C such that V(x;, yj, aj, b;) =
0. If any such index exists, then Alice and Bob conclude that WC did not occur. Otherwise,
they conclude that Wc did occur. Roughly speaking, the communication complexity of
this protocol is O(/ C I), whereas the communication complexity of the simple protocol
in [24] is O(ICI). This quadratic savings in communication is precisely what allows us to
improve the base of the repeated game value from 1 - e2 to 1 -,E3/2.

At the moment, we do not see a way to generalize the proof strategy of [61] to get this
quantitative improvement.

Our use of quantum search in the protocol to generate the advice states gives a generic
way to improve the reduction for arbitrary free games. However, one could also use this
technique to prove game-specific parallel repetition theorems. That is, one could try to lever-
age special properties of a particular game to design a succinct communication protocol
for generating advice states, and in turn, obtain a parallel repetition theorem with better
parameters. Indeed, one can see this idea in the result of [24] for free projection games: by
using the projection property of the game, their communication protocol avoids sending
whole input and output symbols. This allows them to prove a repeated game value of
(1 - 0)(") - note that this does not depend on the output alphabet!

Finally, we note that this connection between communication complexity and parallel
repetition was first explored by Pamafes, Raz and Wigderson in the context of classical par-
allel repetition [83]. They showed that for an arbitrary game G with verification predicate

V,
val(G") < val(G)0("/c(v))

where c(V) is the deterministic communication complexity of computing the function
V(x, y, a, b), where both Alice receives as input a, Bob receives b, and both parties know

(x, y). Thus, if communication complexity of checking whether the Alice and Bob have won
game G or not is small, then the rate of decay in the repeated game is faster.

Our results is similar in spirit, except we relate the communication complexity of search-
ing for a lost coordinate in a set of coordinates to the rate of decay. It would be interesting
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if one could establish a quantum analogue of the Parnafes-Raz-Wigderson result, even for
a restricted class of games such as free games.

5.2 Preliminaries

The following lemma is due to [8]:

Lemma 49 ([8], Lemma 3.3). Let P = (p, 1 - p) and Q = (q, 1 - q) be binary distributions. If
S(P||Q) < b, and p < b, then q < 45.

The following adapts Lemma 49 to use the distance measure K instead:

Lemma 50. Let P = (p, 1 - p) and Q = (q, 1 - q) be binary distributions. If h2 (P, Q) < 5, and
p < b, then q < 95.

Proof If q < p, then we are done. Assume otherwise. We have that b > h2 (P, Q) i -
F(P, Q) > (1 - F(P, Q)2)/2, because 0 < F(P, Q) < 1. F(P,Q)2 = (Vi+ (1- p)(I - q))2

pq+1- p - q+ pq+ 2Vpq(1 - p)(1 - q), and thus

2b > p+ q - 2pq - 2 pq(1 - p)(1 - q)

> p+q -2pq -2Npiq

= (Q - q) 2 - 2pq

>(V/ - F%)2 - 2J,

where in the last line we used the assumption that p <; 5. Then 2/, > I - Vflj. Either

q < p, in which case q < , or q > p, in which case j 20 + / < 3V-, so q <; 9b. LI

5.3 Quantum strategy rounding

Lemma 51 ([61]). Let p be a probability distribution on X. Let

I<P) := GX I|xx) ' 
X T AB xEX

for some set of states { I Tx)}. Let |px) := Ixx) XX( pX) A B. Then there exists unitary operators
{Ux}xE acting on XX'A such that

X t[ h2(<px, ad.,[(p] )] <5 I (X : B),.

Proof. We follow the proof in [61]. Let px := TrxxIA(px) and p := TrxxIA(p). By Facts 8
and 11, we get that

I(X : B) o= XE It[S(px||p)] >: XE,[ h2(xp

By Uhlmann's Theorem, for each x E X there exists Ux such that I ((x (L 0 1 B) I (P)
F(px,p). Furthermore, I (Px|(Ux 0 I3)IP)I is also equal to F(px, (Ux IB) B (41 0 f)). We
thus obtain the claim. 0
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Lemma 52. Let { j q ) } A be a finite collection of pure states. Let yi and T be probability distribu-
tions over A. Then

h2 ( E , pEqa) < S(pflT).

Proof Consider the states

Z ia~a)AA'(
jq,") = [ ldtalaa) IcPa)

1e A

and

I jT) = E prajaa) (Ia)-
aE A

Let pY = TrA' (Jp) and pf = TrAl (p). Then notice that Ea.p Pa TrAA' (plh) and Ea-T pa

TrAA' (pr), respectively. We then have that, considering the partial trace as a quantum

operation,
h2 ( iE Pa, iE Tpa) < h2 (piyp T)

By Uhlmann's Theorem, this is at most 1 - I(TPlP) I 1 - 'ap I-- = h2(p, T). By
Fact 8, this is at most S(.I IIT).

Lemma 53 (Quantum strategy rounding). Let p = px D py be a product probability distribi-
tion over X x Y. Let

p) :(x,y)xxyy)x ( Ipxy)EA EB

Then there exist unitary operators {UX},Ex acting on XX EA and {Vy} y acting on YY EB such
that

E h2 pxy, adu.ov,[(p]) < 2 [I(X : YYEB), + I(Y : XXEAq),,

where for all (x,y) C X x Y, Ipxy) xxyy) 0 1 px).

Proof. Follows the same proof as in [61], except instead of using trace distance, we use
the (squared) Hellinger distance. Let I px) and |cpy) denote I p) conditioned on X x and
Y = y, respectively. Then by Lemma 51, there exist unitaries Ux and Vy such that

E h2 ((px,adu[p]) < I(X : YYEB),
X piX

and

E h2 (Tpy,ady,[p]) < I(Y : XXEA)).

Then,

h2 E [Lxy)(xy)pKxyI], E [|xy)(xy I adux p yl]]
( 2X (x,'y)~ 1x])9a1y

< 2h 2 E [Ixy)(xyl 0, pxjj], E [jxy)(xyl G adL4CA[qpy]] +

2h 2 E [|xy)(xyj (3d, e~py] E [j x)xyl D aduv[p]
\tx~y~px ~ D adx,0)~[xi/
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< 2h2 E [|x)(xo px], E [|x)(x|0adI,1F[p]] +

2h2 ( E [xy)(xy C, py], E [Ixy)(xy 1o admffg ]]

=2 E h2 (qpx,aduLIxI[p])+2 E h2 (py,adovj,[p])

< 2(I(X: YYEB), + I(Y: XXEA)q,).

But notice that

h2 E [Ixy)(xy| 0 (pxy], E [|xy)(xyl 0 aduxrovyp] = 2 padrv[)

where we use the fact that y = lix 0 14y. This completes the proof.

5.4 Parallel repetition using fast quantum search

We make the following observation, which will be useful for us in our analysis: without
loss of generality, we can restrict our attention to free games whose input distribution is the
uniform distribution over some alphabet. Let G = (X x Y, A x B, y, V) be a two-player
free game. Write ji = pix x yy. Fix an -y > 0. There exists alphabets X' and Y' and maps

fx : X' -+ X, fy : Y' -+ Y such that

fxUA, rl y/2 Yx fY(Uy,) -r/2 pY

where fx (Ux,) and fy(Uy,) denote the outputs of fx and fy on the uniform distribu-
tion over X' and Y', respectively, and "-,/2" denotes 'Y/2-closeness in statistical dis-
tance. Thus the random variable (fx (Ux), fy (Uy,)) is at most -Y-far from p. Thus, we can
"simulate" the game G with another game G' = (X' x Y', A x B, Ux, x Uy', V'), where

V' : X' x Y' x A x 3 -+ {0,1} is the map (x', y', a, b) -+ V(fx(x'), fy (y'), a, b).

Claim 54. val* (G') = yal* (G) + -y.

Proof. Consider the optimal strategy for G. Then a strategy for G' is the following: Alice
and Bob receive (x',y') E (X', Y'). Alice computes x fx(x') and Bob computes y =
fy(y'). They now apply the optimal strategy for G using input pair (x,y). The input
distribution, from the point of view of the strategy for G, is at most 'y-far from the original

input distribution y. Thus the winning probability is at least val* (G) - -Y.
Now consider the optimal strategy for G'. The strategy for G is the following: Alice and

Bob receive (x, y) sampled from p. Alice and Bob compute uniformly random preimages
x' E fj (x) and y' E f7 (y), respectively, and they perform the strategy they would've
used in G'. The input distribution, from the point of view of the strategy for G', is at most
'y-far from the uniform distribution U. Thus the winning probability is at least val* (G') -

Furthermore, this simulation "commutes" with parallel repetition, in that val* ((G')") =

val* (G") -yn. We can make -y arbitrarily small, at the cost of (potentially) increasing the
input alphabet size, so that the behavior of the simulation G' is essentially the same as the
original game G. However, since our theorems do not depend on the input alphabet size,
we will treat -y as infinitesimally small, and hence neglect it.
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Theorem 55. Let G be a two-player free game. S uppose that val* (G) = - The for all initeger

val*(G") < (1 - e3 /2 )0(/s).

where s = log JA| -IB|.

Proof. Because of Claim 54, it is without loss of generality to assume that the input dis-
tribution 1i is the uniform distribution - the following analysis can be performed on a
simulation of G, which will still bound the repeated game value of G.

Let n be an integer. Consider an optimal entangled strategy for G", and let 2- denote
its winning probability. Suppose for contradiction that t < cE3"2n Is for some universal
constant c. Using this strategy, we will construct the following state

p 1)X"1"EA"1B"Y"1Y"1 L X"Y (x", ylZ) jx lx )EA"B n yY"

where Qxy, (x", y") is some probability distribution over X" x Y", and {lpxiYn)EA"B 1 is
some collection of pure states.

Probability distributions. Before continuing, we will establish some notation regarding
probability distributions. We will use Q to denote the joint distribution on classical random

variables associated with the state p)X"EAB"Y"Y For example, QXYABi(xi,y i ,ai,bi)

denotes the distribution of outcomes if the XiYiAiBi registers of Ip) are measured in the
standard basis, and QABi1Xi=xi,YF~yi (ai, bi) denotes the distribution of AiBi conditioned on
(Xi, Yi) = (xi, yi) in Jp). Intuitively, the state Ip) will represent the state of Alice and Bob
in the game G" conditioned on winning some set of coordinates, so the distribution Q
will be a "conditioned" distribution. We will also use P to denote the distribution of the
same variables without conditioning. For example, Pxy is exactly the question distribu-
tion y. The distribution Pxy, represents the question distribution of the i'th coordinate of
G", which again is exactly p. The distribution Pxinyn is exactly the product distribution

PXY1 x - x Pxy.

Continuing with the proof, we will show that exists a coordinate i E [n], and 6 < E/ 128
satisfying the following properties:

1. (Winning answers) Measuring the XiY AiBi registers of p yields a tuple (xi, yi, ai, bi)
satisfying V(xi, yi, ai, bi) = 1 with probability at least 1 - J;

2. (Unaffected Question Distribution) S(Qxyi 11 Pxy) < J.

3. (Small mutual information) I(Xi : Y"Y"EBB")r <5 and I(Yi : X"X"EAA"), 3.

For now, we assume the existence of such a state Ip); we will construct it in Lemma 56. We
use Lemma 53 on the state p to obtain unitaries {Ux}~xe and {Vy}cy acting on X"X"EA A"

and Y"Y"EBB" respectively such that

E [K (px,,yiaduvG V [ap] < 8(!(Xi : Y"Y" E B B" )p + I(Yi : X"XJ" EAA" )p) < 163,
(,xi,yi)~ x(52

(5.2)
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where recall that for an operator X, adx[.] = X(-)Xt, and the state px,,yi denotes p condi-
tioned on (Xi, Yi) = (xi, yj).

We now describe a protocol for game G. The players share the p entangled state, where
Alice has the registers X"X"E A' and Bob has the registers Y" Y"1 EB B".

Protocol A

Input: (x, y) ~ t
Preshared entanglement: p E D(X1 XiEA"B"Y" Y")

1. Alice applies Ux on X"'"EA A and Bob applies , on Yi"n EBB" registers
of p.

2. Alice measures the Ai register and outputs outcome a;, Bob measures the B;
register and outputs outcome bi.

Slightly overloading notation, for all (x, y) E X x Y we let VY,, denote the projec-
tor E(a,b)EAXB:V(x,y,a,b)=1 ab)(abI that acts on the A;Bi registers. Let K denote the winning
probability of Protocol A. This is equal to

K = E Viy 0 Vy 1p)
(x,y)~Pxy '

> E I V' Ux 0 Vy p) -4.
(x,y)~QXgY;

where we used the Unaffected Question Distribution Property and appealed to Lemma 49.
Let

T E vi, u & V|) 12.

For every i E [n], (x, y) c X x Y, define the quantum operation Sixy that, given a state p,

measures the AiBi registers using Vi,Y measurement, and outputs a classical binary random
variable F indicating the verification measurement outcome (outcome 1 corresponds to
"accept" and outcome 0 corresponds to "reject"). Let

Fo = E 6i Y (px,,y,) and F1 = 1E ,iyxy (adU,,v, [p])
(xi-Yi)~QxiYi " (xi,Yi)~QxiYi

The random variables Fo and F1 correspond to two different experiments:

Experiment 0. FO is a random variable corresponding to the experiment in which, upon
receiving questions (xi, yi) drawn from Qx,y,, the players are gifted with the advice state
pxy,, they measure the answer registers A;Bi, and the referee checks whether V(xi, yi, ai, bi) =
1.

Experiment 1. The random variable F1 corresponds to the experiment where the players
preshare p as entanglement, and upon receiving questions (xi,y;) drawn from Qx,y,, the
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players apply the local unitares U, and Vy respectively to their share of the entanglement.
Then they measure AjBi, and the referee checks whether V(xi, yi, a, bi) 1.

Since p satisfies the Winning Answers property, we have that Pr(F 1) > 1 - e/8.
Furthermore, Pr(F = 1) = T by definition. Then,

h2 (Fo, F1 ) < E h2  iXY (px ,Yi) , EiX, (adux, [p) (Fact 6)
(xi-Yi)~QxjY.

S E h2 (pvyiiadupv [p1) (Fact 4)

< 166.

where in the last line we used line (5.2). By our assumption on 3, this is at most h2 (Fo, F1) <
e/8. By Lemma 50, Pr(F = 1) > Pr(Fo = 1) - E/8 > 1 - E/8 - E/2. Thus K > 1 - 3e/4.
But notice that Protocol A is a valid strategy for the game G; thus we have produced a
strategy for game G that wins with probability strictly greater than 1 - e, a contradiction.
Thus, it must be at t = O(e3 / 2n /s), which establishes the theorem.

5.4.1 Construction of p

Lemma 56. There exists a state Ip), and a coordinate i E [n] satisfying the Winning Answers,
Unaffected Question Distribution, and Small Mutual Information properties.

Proof. Suppose there was a strategy to win the repeated game G" with probability 2-', in-

volving a shared state |p)EAEB and measurements f Aa} and {B } for the players, respec-

tively. Recall we assume that t < ce3/2n /s for some constant c, and that n > c"'e-3/2 log(128/E)s
for some constant c'".

We will build the state p in steps. Consider the initial state

|) =1 P x11 ® EA"B n(nD"

x",y"

where

pxnyn) EA"B" _ EAEB n 
j A"B" Oxzyl B1"I )a lab"

is a subnormalized state. For every set C C [n], and every fixing of the inputs (xc, yc) to
the coordinates indexed by C, define the state IopYc) to be p0) conditioned on (Xc, Yc)

(Xc, yc). The states |pc,yc) also depend on C, but for notational simplicity we shall omit
this dependence because it is clear from context.

Now consider the following two-player communication protocol: for every set C C [n]
and every (xc, yc) e XC O yC, the players share a copy of the entangled state IpIc'YC -
Then, using shared randomness, the players sample h independent and uniformly random
coordinates C =.{....,i,} c [n], and sample (xcyc) from Pxcye. We will determine
what h is later. For the remainder of the protocol, the players perform all their operations
on the shared state IpiC,,C).

In the next phase of the protocol, the players communicate qubits to each other to
determine whether they have won or lost the parallel repeated game G". In particular,
they run a protocol to search for a coordinate i E C such that V(xi, yi, ai, bi) = 0, if it exists
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- call such a coordinate a losing coordinate. The state IpO,,) becomes transformed to

Ipre CX"kX"E' A" B"ZY"Y R

= I pp(x", y"xc, yc) I X11 0 I I x1ylanlabo) E' D Inn)A"B" n 
0 y )Y"Yi"

x"1,y" aln,bl

0 (cxnyna1n1bF1 ACC) + #Cxnynanbn IREJ))R

where p"l(x", ynlxC,yC) is probability of (x", y") conditioned on xc,yc, and I p'xnynanzn)

'Pxlynalb'b) 0 Iwcx11ylaflbil) with IwCxnynanbi) denoting the workspace qubits that are used dur-
ing the protocol. The coefficients aCxnynalbn and cxlyfaybl denote the amplitude that the
search protocol places on the flags "No losing coordinates" and "Exists a losing coordi-
nate" respectively.

For now, we will abstract away from the particulars of this communication protocol
and defer the details of it until later. The only things we will use about this search protocol
is the following Lemma:

Lemma 57. The state |re ) is generated by a quantum communication protocol between Alice
and Bob, who preshare entanglement. The communication protocol is a search protocol satisfying
the following properties:

1. The search protocol is run conditioned on C, and the X"Y"A"B" registers;

2. At most T = O(v 1/' log(1/y)s) qubits in total are exchanged.

3. Foreveryfixing of (xn,y",a",b" ), if there are no coordinates i C [n] such that V(xi,yi,ai,bi) =
0, then the search procedure reports "No losing coordinates" with probability 1; and

4. If there are at least an e'n bad coordinates, then the search procedure reports "No losing coor-
dinates" with probability at most q (over the quantum randomness of the protocol, as well as
over the choice of C). In other words,for tuples (x"n, y", a ",b") such that Ei[V(xi,yi,ai,bi)] <
I -C',

(P(C) 11cx11yna1non 12 < 7,
C

where P(C) is the distribution that samples h independent and uniformly random coordinates
from [n].

We will defer the proof of this Lemma until later.
For all C, xc, yc define Ipxc,yc) to be

1
V -CXc(1[ J |ACC)ACC 1) pyc

where Ac,xc,yc is for normalization, and the projector IACC)(ACC I acts on the R register. In
the case that AxCyc = 0 (meaning that we were trying to normalize the 0 state), we leave

the state undefined.
Define the joint probability distribution

P(C, xc, yc)= P(C) - PXcYC(xcyc)
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and
1

Q(C, xc,yc) = P(C) - Pxyc(xc yc) Ac,xc,jycA

where A = Lcxclc Ac,xc,yc. The distribution P(C, xc, yc) denotes the marginal distribution
of C and (xc, yc) before conditioning, and Q(C, xc, yc) denotes the marginal distribution
after conditioning on R = ACC.

Define the global state

p = E IC)(CI o Ixcyc)Kxcycl PxcYC
(C,xcyc)~Q

Proposition 58. The probability that measuring CXCYc registers, choosing a random index i i C,
and measuring the XiYi Ai Bi register of pscyc yields a tuple (xi, yi, ai, bi) such that V (xi, yi, ai, bi)
o is at most 2 t'7 + e"ll-.

Proof. Let S denote the quantum operation that (1) measures the CXCYC registers, (2)
chooses a uniformly random i e C, (3) measures XiYi register to obtain outcome (xi,yi),
and (4) then performs the binary verification measurement Vi defined in the previous
section, setting an auxiliary register Q to JACC) if the measurement accepts, IREJ) if it re-
jects.

We wish to argue that the probability that a measurement of the Q register of &(p)
yields ACC with high probability. This probability is equivalent to the probability the
following process succeeds: first, measure the X"Y"A"B" registers of p to obtain a tuple

(x", y", a", b"). Then, measure the C register. Finally, select a random index i V C, and we
succeed if V(xi, yi, ai, bi) = 1. This is an equivalent process because the C, Xc, Yc registers
are disjoint from the XiYiAiBi registers.

Define E' = e /2048. In this alternative process, the probability that we measure (x", y", a", b")
such that Ei [,.,, V(xi, yi, ai, bi) < 1 - e' (call such (x", y", a", b") tuples "bad") is equal to

1 E Q(x",y",a",b") E P(C) I cxyllnalb" 1< q/A
A (x", il", a", V') bad C

where in the inequality we used Assumption 4 above. Since the players' strategy wins the
repeated game G" with probability 2-1, we have that A > 2-. Thus the probability of
measuring a bad (x", y", a", b") is at most 2'q.

Now suppose we measure (x", y", a", b") such that Ei, [n V(xi, yi, ai, bi) > 1 - E'. Then,
for any C, a random i C loses with probability at most

E fn/(n - jCj) < En/(n - h)

Thus, the probability that the E (p) yields REJ is at most 2'q + E'n /(n - I). L

Proposition 59. E(C,xc,yc)~Q Eiexc S (PO icPxly) < 1 log 1

Proof. Define
pre E IC)(CI & Ixcyc)KxcycI 0 pre

(C,xc,yc)~ P(C,xcYc)

This state corresponds to the joint state of C, Xc, Yc, and state of the players after the com-
munication protocol, but before conditioning.
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By Fact 14, since p -< 2/\ppre, we have

log1/A > S"(pippre)

> S(p|)ppre(
> E S (pxc,y, I I p c)r (5.3)

(C,xc,yc>'Q ~ccYc

2 E ,pY( )XC IY ) (5.4)
(C,xcyc.)~Q

> E (S(p c P c e(5.5)
(C,xc,yc )~Q 7 C, cY(5)

E I S(p CiP Xy)
( CIxcIYC)~Q itC

where we used Fact 10 to get (5.3), Fact 12 to get (5.4), and Fact 13 to get (5.5).

Proposition 60.

E E I(Xi : Y"Y"EBB")p,cy + I(Y: X"XnEA")Pxcyc < 2(log 1/A + 2T)/(n - h).
(C,xcryc)~Q itC

Proof. First we need the following Claim.

Claim 61. Fix C, xC, yc. There exists a state Y"E B" such that

S((pre ) X"Y"'Y"EBeB" pre x" Y" YE B"1
S" ((PxcIY T Zc EB (xcy) 0 <c/IIBBy l < 2T,

and a state TXX"" EA A such that

S p (( Pre )YX 11X"1 EA A" 1  yn r T X"E A) 

We defer the proof of this claim for later, and will assume it for now. We have that

E Wp" Y"Y" EgB" pre X V .YYEgBB

(C,xc,yc)~C xcyc

< E S (pX" YlEB1 B r X"Y"Y"EB"

(C,xcryc)~_Q C XY

+S((prec)X"Y"Y"EBB" 1(yec X" Y" Y'l EBB")

< log 1/A + 2T

where the first inequality uses Fact 17, and the second inequality comes from line (5.3) and
the bound from Claim 61. Using Quantum Raz's Lemma, we get

E E I(Xi Y""EBB" )PCYC < (log 1/A +2T)/n.
(C,xc,yc)~Q ic~n]cc

Similarly, we also have

E E I(Y: X""EA A")pcyc <; (log 1/A+ 2T)/n.
(C,xc,yc)~Q iE[n]
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Combining both statements, and multiplying both sides by n / (n - ) (recall that IC < Ii),
we obtain the Proposition.

Combining Propositions 58, 59, and 60, we get that

E E Tr(Ei(xcyc) |REJ)(REJ|) + S(pxi Pix
( C,xc,/c )~Q i'Z c!CIIPX

+ I(Xi : Y"-Y 1EB")PXcc + I(Yi : X"XK"EA" )
1XCYC

" 2 t+e n/2048 + 1 2 (logi1+2T)
2 - h + -h A ui -h A

" 2til + (E/2048)n + 3t + 4T

where Si corresponds to the quantum operation of measuring XiYiAiBi registers of the
input state, and then checking whether V(xi, yi, ai, bi) = 1. The projector IREJ)(REJI acts on
the Q register output by the operation Ei. In the last inequality, we used that A > 2 -1. Use
the following setting of parameters:

q = 2-tE/2048

/ z = c' log(1/ i) /e for some large enough constant C'

Recall we assume that t < cE3 /2n /s for some constant c, and that n > c'E3/ 2 log(2048/E)s
for some constant c'. By our choices of parameters, we have ensured that 2'y < e/ 1024,
and ((e /2048)n + 3t + 4T)/(n - h) < e /1024, and thus by averaging there exists a setting
of C, xc, yc, and i X C such that

1. Tr(Si(pxc 1c) IREJ)(REJI) e/128,

2. S (px YXi , e18

3. I(Xi : Y"Y"EBB" )pY + I(Yi : X"lk"lEAA" )pY < E/128

which correspond to the desired Winning Answers, Unaffected Question Distribution, and
Small Mutual Information properties.

5.4.2 The search protocol

Proof of Lemma 57. Next, we detail the search protocol used to construct |pPr). Let G
(X x Y, A x 1, y, V) be a two-player free game, where X and Y are Alice and Bob's input
alphabets, respectively, and A and B are their output alphabets. Consider the optimal

strategy for G", where there is a shared state 1p) EAE, where on input (x", y") E X" x Y",
Alice and Bob apply measurements {A: }a"EAl and {B b" E& respectively on their share

of |0)
At the start of the search protocol, a multiset C {il,.. , ,}, xC E Xc, and yc E YC

are publicly visible to Alice and Bob. They are also given access to the shared state

|0c0c~c X" X"Y"Y" E yn Et X1 R1 t"ixcy III X"kYY E 10RX 1 X"YV Y"EAEB
C~~xc~yXI ,1/lIX Y
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Alice has access to registers X"X" EA R, and Bob has access to registers EBY".
Then, Alice and Bob apply their measurements from the optimal strategy, controlled

on the X" and Y" registers, respectively, to obtain

ol X"1S"Y"1Y"EAEBA"B"R n n llnffX"S"Y"Y"
Cxc,Yc xYxcyc ' x X

0 E |CxlyVabfl)EAE n n AnB" 1R

b",b

where "xrlyllanb") = 9 BY4

Alice and Bob then run a distributed search protocol controlled on the X"Y"A"B" reg-
isters. Consider the (x", y", a", b") branch of the superposition in the X"Y"A"BN registers
of 101). Let e' = e/2048. The protocol proceeds as follows: Alice and Bob divide the
multiset C into groups D1,..., Dq, each of size m = [1/e'}. -Thus q = [h/mi. For each
S= 1,..., q, Alice and Bob perform a distributed version of the Aaronson-Ambainis 3-
dimensional search algorithm [1] to determine whether De contains a losing coordinate -
i.e., if there is a coordinate i E De such that V(xi, yi, ai, bi) = 0.

The search protocol for a group De works as follows. Whenever the Aaronson-Ambainis
algorithm is in the state E 7i, I|i, z), where I i) corresponds to an index in De C C, and Iz)
is a qubit indicating whether a marked item has been found, the joint state between Al-
ice and Bob will be Ei -y- Ii) 0 Iz) 0 Ii), where Alice holds the first Ii) and Iz), and Bob
holds the second 1i). Thus, Alice and Bob query locations are "synchronized". When
Aaronson-Ambainis algorithm has to perform a query controlled on 1i), Bob sends the
qubit containing Ibi). Alice, controlled on Ibi), performs Iz) F-+ Iz E V(xi,yi, ai, bi) o 1) -
note that Alice can perform this, because in addition to xi, ai, and bi, she also has access to
yi because yc is public. We perform an additional XOR with 1 because a "marked item" for
the search algorithm corresponds to a losing coordinate. Alice then sends back I bi) to Bob.
The other non-query transformations of the Aaronson-Ambainis algorithm are handled as
in the the protocol described in [1]. Each step of the algorithm incurs at most O(log 11)
qubits of communication, and there are O(VIx/) steps, resulting in O( /iH log I BI) qubits of
total communication. If De contains a losing coordinate, then this protocol will succeed in
finding one with probability at least 2/3.

If for at least one f, Alice and Bob find a losing coordinate in Ge, Alice sets the R register
to REJ; otherwise, Alice sets it to ACC. Thus the total amount of communication of this
protocol is T = O(q VRlog IB|) = O(/1/' log 1// log IB13). The final state of the protocol
looks like

2 XnXnyY1 " EA E BA1 B"R -X X"Y"Y"
IC,xc,YC X"Ynxy~ l '

S K Iy"y"a"b")EAEWAWB 0 a A"B" Cx0 (cxnynazb" ACC)R + ,
8 Cxy"a"b" IREJ)R)

al",b

where I ynatb") EAEBWA W EAEB ® CxyaUb") WAWB with wCxtly"a"b") denoting
the workspace qubits of the two players that arise from running the Aaronson-Ambainis
protocol.

Fix a setting of the registers X"Y"A"B" = (x", y", a", b"). Suppose there was no i c [n]
such that V(xi, yi, ai, bi) = 0. Then the search algorithm will never find a losing coordinate
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in any of the Ge's, so for all C, the we have ,CXIy;an 0.
On the other hand, suppose there were at least e'n losing coordinates in (x", y", a", b").

We analyze, for a fixed (x",y", a", b"), the error quantity Ec P(C) IaCxIIyIa4Ib)I 1 2 - this is the
probability that measuring the R register yields JACC), even though there many losing
coordinates. We can write P(C) = He P(De), because each index in C is chosen uni-
formly and independently at random. Furthermore, we can decompose laCx1,Fytanb1I2

He I'D x11yIzanb" 12, where (tDex"y"a"I" is the probability amplitude that the Aaronson-Ambainis

protocol does not find a losing coordinate in De. Thus the error quantity can be written as

P(C) IICx"I"ab' 1"2 = 1 P(De) 17 laDex"y11a'b" 2
C D1,...,Dq P f

= ( (P(Def)jIDexIyIlaIbI 2)
f \De,

P(D) IXIIa Yiqa"b" 12
D

Since C is chosen independently of X"Y"A"B", each De independently has at least 1 - (1 -
e')' > 1 - 1 /e probability of containing a losing coordinate. When Dt has a losing coordi-
nate, the Aaronson-Ambainis search protocol will succeed in finding it with probability at
least 2/3. Thus, for a fixed D, we have

IDxyI n1111al bit 2

Pr(D contains losing coordinate)- + Pr(D does not have losing coordinate) (1)

1 1

3 e

Thus (ED P(D) laDxylialb" 2)q (1/3 + le)q < 17.
Thus by letting pcy,) = ) we obtain the desired state promised by the Lemma

statement. l

Proof of Claim 61. Fix C, xc, yc. Take the start state p, defined above, and trace out the

X" register: define , = Trk"( ). Since G is a free game, this means that I" is a
product distribution across players and also across game coordinates, so we have that

~c~yc = lxc~xlxc C ~XC O| y CYC I Y"Y"EAEB

where (Dx-Xc is the maximally mixed state for the register Xc (that is, X" without the Xc
coordinates), and

Ic Y"Y" (yn)y yfln)Y"Y" E A)EB

Here, we used the simplifying assumption that y is the uniform distribution. The sequence
of quantum operations used to construct the state |pPre) - the game strategy and the search
protocol described in Lemma 57 - never touches the X" register. Thus, we can view the
protocol as between Alice and Bob, who preshare an entangled state p where EA be-
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longs to Alice, and the Y"Y" EB registers belong to Bob. Alice receives a uniformly random
input X" conditioned on Xc = xc. Then, as described above, Alice and Bob first apply the
optimal game strategy. Afterwards, they run the search protocol. The only communication

comes from the search protocol phase. The final state is (Ppy ) X"Y"E E8 A" B"R

We now wish to analyze the min-entropy of Bob's input register Y", conditioned on Al-
ice's registers (which are X" EA A"R), within the final state px.!,c* We appeal to the beautiful
result of Nayak and Salzman [81], whose theorem statement we reproduce here:

Theorem 62 ([81]). Consider a communication protocol, without prior entanglement, where Alice
receives a uniformly random n-bit input X, and interacts with Bob over a quantum communication
channel. Let 1pXB be the final joint state of Alice's input X and Bob's state in the protocol. Then,
for any measurement strategy { Mx} that Bob applies to his own state, the probability that Bob
guesses Alice's input X correct is at most 22 "^ /2", where mA is the number of qubits sent from
Alice to Bob over the course of the protocol.

We give a simplified proof of their theorem in Appendix A.
We now rephrase their theorem to use relative min-entropy instead of guessing prob-

abilities. Let a be the optimal guessing probability for Bob. Then, the quantum conditional
min-entropy Hmin(XIB), is defined to be - log tt. However, by SDP duality [68], we have
the alternative characterization that

Hmjn(X|B), inf S"(pXB X .BB

Let 0- be a state achieving this infimum. Then log a = S.(4 lXB 1 1 X&O-B) = S (pxB f1 1 X 0
O-B) - n. By the theorem of Nayak and Salzman, log a < 2mA - n, so

S" (XB IIIX 0 O.B) =S" . 4 4 XB I lpX 0.B) 2 mA,

where we used the fact that 1pX is the uniform distribution.
We now apply this theorem to our setting. At first it may seem that the Nayak-Salzman

theorem does not apply, because Alice and Bob preshare the entanglement I pcYc), whereas
the theorem statement requires that Alice and Bob do not share prior entanglement. How-

ever, observe that the Nayak-Salzman theorem does not depend on the number of qubits

sent from Bob to Alice! Thus, we can imagine that at the beginning of the protocol, instead

of sharing Ipcy) with Alice, Bob possesses all of |Ic )Y"Y"EAE, and then sends over the
EA part to Alice. From this point Alice and Bob proceed as usual - they play the optimal
repeated game strategy, followed by the search protocol. Alice exchanges at most T qubits
with Bob.

Thus the Nayak-Salzman theorem and our alternative characterization, we have that

there exists a state O-rYi"EBB" such that

S( ( pre )X"Y"Y"EB" 11(,pe rX ®0 .Y"EB-B"

Similarly, we can interchange the roles of Alice and Bob to conclude that there exists a state
,X"X'EA A"

TVCYC such that

Sx((ppe Y"X""'lEA A" (Pre r X "E A" 2
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Chapter 6

Parallel repetition for anchored games

This chapter presents work conducted with Mohammad Bavarian and Thomas Vidick, and
appears on the arXiv under the title "Anchoring games for parallel repetition" [11].

6.1 Introduction

We study the problem of parallel repetition in both the multiplayer classical and quantum
settings. We prove, by introducing and analyzing a simple variant of parallel repetition,
exponential-decay parallel repetition theorems that apply to arbitrary games with multiple
players or with entangled players. In particular, we obtain the first general gap amplifica-
tion technique for games in the multiplayer and quantum settings.

Our main results can be summarized as follows; see Theorems 68 and 74 for precise
statements.

Theorem 63 (Main theorem, informal). There exists a polynomial-time transformation (called
anchoring) that takes the description of an arbitrary k-player game G and returns a k-player game
G, with the following properties:

1. val(G1 ) = + val(G).

2. val*(Gi) = + val*(G).

3. If val(G) = 1 - -, then val(G") < exp(--O(e3 . 11)).

4. If val*(G) = 1 - 6, then val*(G") exp(-O( 8 _ )

where the implied constants in the 1 (.) only depend on the number of players and the cardinaliti
of the answer sets.

The idea of modifying the game to facilitate its analysis under parallel repetition orig-
inates from the work of Feige and Kilian [44] which predates Raz's parallel repetition the-
orem. Feige and Kilian introduce a transformation that converts an arbitrary game G to
a so-called miss-match game GFK. The transformation is value-preserving in the sense that
there is a precise affine relationship val(GFK) = (2+ val (G)) /3. Furthermore Feige and
Kilian show that the value of the n-fold repetition of GFK decays polynomially in n when-
ever val(G) < 1. This enables them to establish a general gap amplification result without
having to prove a parallel repetition theorem for arbitrary games. This is sufficient for

91



many applications, including to hardness of approximation, for which it is enough that
the gap amplification procedure be efficient and value-preserving.

Theorem 63 adopts a similar approach to that of Feige and Kilian by providing an
arguably even simpler transformation, anchoring, which preserves both the classical and en-
tangled value of a game and for which we are able to prove an exponential decay under
parallel repetition. In contrast, the transformation considered by Feige and Kilian does not
in general preserve the entangled value, as discussed in Chapter 4. We proceed to describe
our transformation and then discuss the role it plays in facilitating the proof of our parallel
repetition theorem.

6.1.1 The anchoring transformation

Our parallel repetition results apply to a class of games we call anchored. The anchoring
transformation of Theorem 63 produces games of this type; however, anchored games can
be more general. We give a full definition of anchored games in Section 6.2. First we
describe the anchoring transformation.

Definition 64 (Basic anchoring). Let G be a two player game with question distribution y on
X x Y, and verification predicate V. In the a-anchored game G1 the referee chooses a question pair
(x, y) c X x Y according to y, and independently and with probability a replaces each of x and y
with an auxiliary "anchor" symbol _ to obtain the pair (x', y') E (X U {}) x (Y U {1}) which
is sent to the players as their respective questions. If any of x', y' is _ the referee accepts regardless
of the players' answers; otherwise, the referee checks the players' answers according to the predicate
V.

For a choice of a = 1 - - it holds that both val(G ) = jval(G) + 1 and val*(G )

ival*(G) + . One can think of G1 as playing the original game G with probability 3/4, and
a trivial game with probability 1/4. The term "anchored" refers to the fact that question
pairs chosen according to y are all "anchored" by a common question ( ,_). Though the
existence of this anchor question makes the game G1 easier to play than the game G, it
facilitates showing that the repeated game G" is hard. At a high level, the anchor questions
provide a convenient way to handle the complicated correlations that may arise when the
players use non-product strategies in the repeated game, as we explain in the next section.

6.1.2 Proving parallel repetition by breaking correlations

In virtually all known (information theoretic) proofs of parallel repetition theorems, the
key step consists in arguing that the players' success probability in most instances of G in-
dividually cannot be substantially larger than the value of G itself, even when conditioned on
the players winning a significant fraction of the instances. Coupled with the possibility of us-
ing non-product strategies this conditioning introduces correlations between the player's
questions which make the task of bounding their success probability in the remaining in-
stances of G non-trivial.

In the proof of his parallel repetition theorem, Raz [88] introduced a technique, further
refined in subsequent work of Holenstein [56], to break such correlations. The idea con-
sists of introducing a dependency-breaking random variable 0 satisfying two properties: (1)
0 can be sampled jointly, using shared randomness, by all players, and (2) conditioned
on 0 and a pair of questions distributed according to y, the players are able to locally
generate questions and answers from the same distribution as they would in the repeated
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game, conditioned on winning a (not too large) subset of instances. These two requirements
are at odds with each other, and the main difficulty is to design an 0 that satisfies both
simultaneously.

Extending this approach to more players, or quantum strategies, remains a challenge.
Rather than solving the general problem directly, we sidestep it and instead analyze the
parallel repetition of anchored games, for which designing an appropriate dependency-
breaking variable (or, in the case of entangled players, a dependency-breaking quantum
state) is easier, though by no means trivial. Combined with the anchoring operation this
yields a simple and efficient method to achieve hardness amplification for arbitrary games
in the multiplayer and entangled-player settings. We give a more detailed explanation of
how this is achieved in Section 6.2 below.

6.1.3 Related work

The transformation from general games into anchored games that we introduce is inspired
by the work of Feige and Kilian [44]. This alternative approach to achieving gap amplifica-
tion is also used by Moshkovitz [78], who shows how projection games can be "fortified",
and gives a simple and elegant proof that the classical value of fortified games decays ex-
ponentially under parallel repetition (see also the follow-up work by Bhangle et al. [16]).
In a separate work, we prove a parallel repetition theorem for the entangled value of forti-
fied games [12], giving an alternative general gap amplification method for entangled and
multiplayer games.

6.2 Technical overview

We give a technical overview of anchored games and their parallel repetition. For concrete-
ness we focus on the case of two-,player games. For the full definition of k-player anchored
games, see Section 6.3.

Definition 65 (Two-player anchored games). Let G be a two-player game with question alpha-
bet X x Y and distribution p. For any 0 < a < 1 we say that G is a-anchored if there exists
subsets X, C X and Y_ C Y such that, denoting by p the respective inarginals of p on both
coordinates,

1. Both t(X1), p(Y1 ) > a,

2. Whenever x c X1 or y 3 it holds that 1i(x, y) 1i(x) - 1(y).

Informally, a game is anchored if each player independently has a significant probability
of receiving a question from the set of "anchor questions" X, and Y 1 . An alternative way
of thinking about the class of anchored games is to consider the case where p is uniform
over a set of edges in a bipartite graph on vertex set X x Y; then the condition is that the
induced subgraph on X1 x Y 1 is a complete bipartite graph that is connected to the rest of
X x y and has weight at least a. In other words, a game G is anchored if it contains a free
game that is connected to the entire game.

It is easy to see that the games G1 output by the anchoring transformation given in
Definition 64 are a-anchored. Free games are automatically 1-anchored (set X1 = X and
Y,_ = Y), but the class of anchored games is much broader; indeed assuming the Expo-
nential Time Hypothesis it is unlikely that there exists a similar (efficient) reduction from
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general games to free games [2]. Additionally, since free games are anchored games, our
parallel repetition theorems automatically reproduce the quantum and multiplayer paral-
lel repetition of free games results of [61, 24, 27], albeit with worse parameters.

Breaking correlations in repeated anchored games. Rather than providing a complete
extension of the framework of Raz and Holenstein to the multiplayer and quantum set-
tings, we interpolate between the case of free games and the general setting by showing
how the same framework of dependency-breaking variables and states can be extended to
anchored games - without using correlated sampling. We introduce dependency-breaking
variables 0 and states I Xy), and show that together they satisfy both Usefulness and
Sampleability (properties discussed in Chapter 4).

The analysis for anchored games is more intricate than for free games. Proofs of the
analogous statements for free games in [60, 24, 27] make crucial use of the fact that all
possible question tuples are possible. An anchored game can be far from having this prop-
erty. Instead, we use the anchors as a "home base" that is connected to all questions.
Intuitively, no matter what question tuple (x, y, z,...) we are considering, it is only a few
replacements away from the set of anchor questions. Thus the dependency of the variable
0 or state IPX,y) on the questions can be iteratively removed by "switching" each players'
question to an anchor as

PO|Xi=x,Yi=y,Z=zW P)|X=x,Yi=y,ZjEI,W PCOXL=x,YijE,ZijE,W ' PO|XjEI,Yj 1E,Zi 1E,W,

where "Xi E -" is shorthand for the event that Xi E X1 .

Dealing with quantum strategies adds another layer of complexity to the argument.
The local unitaries Ux and Vy such that UX Vy I ) ~ 14xy) are quite important in the
arguments of [61, 24, 27]. The difficulty in extending the argument for free games to the
case of general games is to show that these local unitaries each only depend on the input
to a single player. In fact with the definition of I}l,y) used in these works it appears likely
that this statement does not hold, thus a different approach must be found.

When the game is anchored, however, we are able to use the anchor question in order
to show the existence of requisite local unitaries Ux and V, that depend only on a sin-
gle player's question each. Achieving this requires us to introduce dependency-breaking
states I x,y) that are more complicated than those used in the free games case; in particu-
lar they include information about the classical dependency-breaking variables of Raz and
Holenstein.

To do this, we prove a sequence of approximate equalities: first we show that for most
x there exists L such that (Ux 0 1) 01 ,) ~Ox,), where I0 L,) denotes the dependency-
breaking state in the case that both Alice and Bob receive the anchor question "i", and

Inx) denotes the state when Alice receives x and Bob receives "i". Then we show that
for all y such that yp(yIx) > 0 there exists a unitary Vy such that (10 Vy) I x,) ~ IOx,y). Ac-
complishing this step requires ideas and techniques going beyond those in the free games
case. Interestingly, a crucial component of our proof is to argue the existence of a local
unitary Rx,y that depends on both inputs x and y. The unitary Rx,y is not implemented by
Alice or Bob in the simulation, but it is needed to show that VY maps I fx,) onto I 0,Y).
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6.3 Games, parallel repetition, and anchoring

We formally define k-player one-round games, their parallel repetition, and anchored games.

Multiplayer games. A k-player game G = (X, A, y, V) is specified by a question set
X = X x ... x Xk, answer set A = A' x A2 x ... x Ak, a probability measure yi

on X, and a verification predicate V : X x A -+ {0, 1}. Throughout this paper, we use
superscripts in order to denote which player an input/output symbol is associated with.
For example, we write x1 to denote the input to the first player, and at to denote the output
of the t-th player. Finally, to denote the tuple of questions/answers to all k players we
write x = (x',.. xk) and a = (al,...,a k ) respectively.

The classical value of a game G is denoted by val(G) and defined as

val(G) := sup E [V ((xil,.. .,xk), (f 1 (X 1 ), . k (Xk)
f/1 ..fk (Xi- .,X )" ji 

)

where the supremum is over all functions fi : Xi --+ Ai; these correspond to determin-
istic strategies used by the players. It is easy to see that the classical value of a game is
imchanged if we allow the strategies to take advantage of public or private randomness.

The entangled value of G is denoted by val* (G) and defined as

val*(G) sup IE (| ) M1 (x- a') Mk(Xk ,ak) Ip)
I)E (Cd)Ok (X '...lxk.)~ (a1. 

ak):
ml,...,Mk V( (x'.Xk),(a.ak))-1

where the supremum is over all integer d > 2, k-partite pure states lp) in (Cd)ok, and
M1,..., Mk for each player. Each Mt is a set of POVM measurements {M(x', a')} atgE
acting on Cd, one for each question x' E Xt.

Repeated games. Let G = (X, A, yi, V) be a k-player game, with X =X x ... x Xk

and A - A' x ... x Ak. Let p<" denote the product probability distribution over X*"1=

®&1 X,, where each Xi is a copy of X. Similarly let A®" =)"t Ai where each Ai is
a copy of A. 1 Let V-" : X ?" x A'?" - {0, 1} denote the verification predicate that is
1 on question tuple (x1,... ,x,,) E X"" and answer tuple (a,,. .. ,a,,) E Aon iff for all
i, V(xi, ai) = 1. We define the n-fold parallel repetition of G to be the k-player game
G" - (=I( A",p " 1,V").

When working with games with more than 2 players, we use subscripts to denote
which game round/coordinate a question/answer symbol is associated with. For exam-
ple, by x we mean the question to the t-th player in the i-th round. While this is over-
loading notation slightly (because superscripts are meant to indicate tuples), we use this
convention for the sake of readability. When x" refers to a tuple (xi,..., x,) and when xt

refers to the t-th player's question in the i-th coordinate should be clear from context.

Anchored games. We give the general definition of an anchored game.

1We will use the tensor product notation ("0") to denote product across coordinates in a repeated game,

and the traditional product notation (" x ") to denote product across players.
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Definition 66 (Multiplayer Anchored Games). A game G = (X, A, y, V) is called &-anchored
if there exists X' C X' for all t E [k] where

1. y(X__) > a for all t E [k ], and

2. for all x E X,

i(x) = i(xI) J7[ p(x') (6.1)
t EFx

where for all question tuples x = (x 1, x2  k ) E X, Fx C [n] denotes the set of coordinates of x
that lie in the anchor, i.e.

F= {t c [Ik] : x { E Xt}

and Fx denotes the complement, i.e., [n] - F.

Here for a set S C [n], p (xIs) denotes the marginal probability of the question tuple x
restricted to the coordinates in S, i.e.

p(xjs) - E p(x').
X'\s=xIs

When k = 2 this definition coincides with the definition of two-player anchored games
in Definition 65. Additionally, just like the two-player case, one can easily extend the
anchoring transformation given in Definition 64 to arbitrary k-player games:

Proposition 67. Let G = (X, A, p, V) be a k-player game. Let G1 be the k-player game where
the referee samples (x1 , x 2

1 ... I k ) according to y, replaces each xt with an auxiliary symbol _
independently with probability a, and checks the players' answers according to V if all x' 7 _, and
otherwise the referee accepts. Then G1 is an a-anchored game satisfying

val(G1 ) = 1 - (1 - a)k - (1 - val(G)), val*(G) = 1 - (1 - a)k _ (1 - val*(G)). (6.2)

Proof. We give the proof for the classical value; the same argument carries over to the
entangled value. First, it is clear that val(G1 ) > (1 - (1 - ak)) + (1 -- )k -val(G). For the
other direction, consider an optimal strategy for G1 . Under this strategy, we can express
the entangled value as

val(G1 ) = (1 - a)k - Pr(WIVt, x' $ _) + (1 - (1 _ ak)) - Pr(WI1 t s.t. x, = J)

where W is the event that the players win. The optimal strategy for G1 yields a strategy
for G that wins with probability Pr(WVt, x' 7 _), which can be at most val(G). Since
Pr(W 1] t s.t. x1 - _) = 1, we obtain the desired equality.

6.4 Classical multiplayer games

Perhaps the most well-known open problem about the classical parallel repetition of games
is whether an analogue of Raz's theorem holds for games with more than two players.
While the two-player case already presented a number of non-trivial difficulties, proving
a parallel repetition theorem for three or more players is believed to require substantially
new ideas.2

2This is mainly because the Raz/Holenstein framework, if extended to a multiplayer parallel repetition
theorem in full generality, would likely also yield new lower bound techniques for multiparty communi-
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In this section we make some progress on the multiplayer parallel repetition question:
we prove a parallel repetition theorem for anchored games involving any number of play-
ers.

Theorem 68. Let G = (X, A, y, V) be a k-player a-anchored game such that val(G) < 1 - c.

Then ( -____-_n

val(G") < exp -4 , (6.3)
- 384 -s -k2

where s = log IAl.

Combined with the anchoring operation described in Proposition 67, we obtain a gap

amplification transformation that can be applied to any k-player game, yielding a decay

of the value that matches, at least qualitatively, what one would expect from a general

parallel repetition theorem.
From a more quantitative point of view, even in the two-player setting the optimal ex-

ponent of E in (6.3) remains unknown. Perhaps more importantly, it is unclear whether the

exponential dependence in k, due to the term ak in the bound is necessary; known lower
bounds [43, 27] only show the need for a polynomial dependence on k in the exponent.

For the remainder of this section we fix a k-player a-anchored game G = (X, A, y, V),

an integer n, and a deterministic strategy for the k players in the repeated game G" that

achieves success probability val(G"). In Section 6.4.1 we introduce the notation, random

variables and basic lemmas for the proof. The proof of Theorem 68 itself is given in Sec-

tion 6.4.2.

6.4.1 Breaking classical multipartite correlations

We refer to Section 6.3 for basic notation related to multiplayer games.

Let C C [n] a fixed set of coordinates for the repeated game G" of size CI = n - in.
It will be convenient to fix C = {m + 1, 1n + 2,..., n}; the symmetry of the problem will

make it clear that this is without loss of generality. Let Z = Ac = (A', A2, ... , A ) denote

the players' answers associated with the coordinates indexed by C.

For t E [k] let Yt = (Xt \ X) U {}, and define a random variable

X, XtE X\X
Yt = E ,XL(6.4)

_L, Xt E X11

LetY Y' X x ... x Yk and Y = (Yl, Y 2 '. yk). For G" we write

Y " = (Y1, Y2, -- ,Yn ) = Yl I ,. IY1 , Y2- - ,2) 1 .. I -, Yfl .. I -Y10)

Note that each k-tuple Yi is a deterministic function of Xi. Furthermore, we will write Yit

to denote Yi with the t-th coordinate YJ omitted.

For i E [i] let Di be a subset of [k] of size k - 1 chosen uniformly at random, and

5i c [k] its complement in [k]. Let Mi y i denote the coordinates of Y associated to

cation complexity, an area that has long resisted progress (especially for the important multiparty direct
sum/product problems).
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indices in Di. Define the dependence-breaking random variable Oj as

i = Ai) .E (6.5)
tXi i E C

The importance of 0 is captured in the following lemma.

Lemma 69. (Local Sam pling) Let X, Z, 0 be as above. Then Px_ lx ~nz is a product distribution
across the players:

k

'X 1xjn-z = Pxt iit iztxt-
t=1

Proof. Conditioned on Mi = Yi I each Xi = ( ., ) is a product distribution,
hence Px_In_*x, is product. Since for t E [k] Z' is a deterministic function of Xt the same
holds of Px_.nzxi. 0

Lemma 69 crucially relies on the sets Dj being of size k -1: if two or more of the players'
questions are unconstrained in a coordinate it is no longer necessarily true that PX_ nizxi
is product across all players.

Let W = Wc = Aj=1 Wi denote the event that the players' answers Z to questions in
the coordinates indexed by C satisfy the predicate V. Let

ICI log |Al + log Pr(Wc)
M (6.6)

The following lemma and its corollary are direct consequences of analogous lemmas
used in the analysis of repeated two-player games, as stated in e.g. [56, Lem. 5] and [56,
Cor. 6]. They do not depend on the structure of the game, and only rely on W being an
event defined only on (Xc, Z).

Lemma 70. We have

(ii) E Pxiyizn_*w - Pxyi iw| /J.

(iii) E I|P1YzoIw - PyilyiPzoiwll < V
ie[m]

Proof. Item (i) follows directly from [56, Lem. 5] by taking Ui = XiYini. For (ii) apply [56,
Cor. 6] with Ui = Xi and T = (Y 1, Y2 ,... , Yin, Xc) to get

E IlPXiZY 1 X yxcIW -- Pxi Yi Prizy1 \w 0, (6.7)
iE [m]l

which is stronger than (ii); (ii) follows by marginalizing Yfi in each term. Finally, the same
corollary applied with Ui = Y and T = 0 shows (iii).

Corollary 71.
k

E ( PyPzoIwy, - PyjPzn_wyI 1 < 3k - v/.
iE [m] t=1
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Proof. We have Py jOPzojw = Py OPoDwPzO_ wO,. Applying Lemma 2 with QF PnilW,
SF = Pni, and RGIF Yio ,PZo wwe see that

E IPy 0 Pz0~w - P=;o7Pz_ wnl . llnoy- PEl V'If

where the last inequality follows from Lemma 70, item (i). Combining the above with item

(iii) of the same Lemma, we have

E |IPyIzOIw - PYinOPz!_ wO 1< 2v/. (6.8)

Noting that 0, is determined by Yi (the Di are completely independent of everything

else), (6.8) implies

-iE n] tE k] iE~o I M zI~w, ;oi w Y ~~ln

< 2/ .

Finally, notice that Lemmas 2 and 70 imply lEie[,,] 11 Pyzn__ w - PyPzo_lWYI =EiE[m] 1I -

Pygj WI < v/6; the desired result follows.

6.4.2 Proof of the parallel repetition theorem

This section is devoted to the proof of Theorem 68. The main ingredient of the proof is
given in the next proposition.

Proposition 72. Let C C [n] and X, Z, Fj be defined as in Section 6.4.1. Then

.E 11 PxjO-ziw - PXI PO_,ZIW,Y,=_Ikf (6ka-k + 1)v'b, (6.9)

where 3 is defined in (6.6).

Theorem 68 follows from this proposition in a relatively standard fashion; this is done
at the end of this section. Let us now prove Proposition 72 assuming a certain technical

statement, Lemma 73. This lemma is proved immediately after.

Proof of Proposition 72. First observe that

IPxinizw - PXi Po_,ZWy,=_Ik - xyn_,zIw - PxiyiPn_,ziwY,=Ik

as Yi is a deterministic function of Xi. Applying Lemma 70, item (ii) we get

Ii3PXiYi-1zIw - PXimPYiQ zlwI < \-

The latter distribution can be written as PyjwPxy,PO_,zjwY,. Applying Lemma 2 with

QF = PyIW and SF Py, we see that

1P~ypyPinzlw - PXiPO-zIWYJ w - PYA
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which is bounded by VJ on average over i by Lemma 70, item (i). Hence

E HPxn_,zIw - PXjPO_,ziWy,=YIkH < 2vW+ x IIPXyiPn zilwy - PXiyiPnziwy,=_k

=-v' + P *iwyi - PYPn_,ZIWy,=k,

where the equality follows from Lemma 2 applied with RGIF Px;[y,. Applying the trian-
gle inequality,

E II Pxi Pn_zwy, - Px PnzIW,y,=1kll

IE Iy.Pojizwy, - PYjPOjZw,y,=_LkIiErflhl
k

" E L 1PYPOiWYi?'=1t1,i,t ~- PM EnOiWV?'=,t,y,>t|j (6.10)

" 6k i-kF P, (6.11)

where (6.10) is proved by Lemma 73 below and (6.11) follows from Corollary 71. E

Lemma 73. Let S C [k] and t E S. Then

P PLiz WYS=s=,Y - PMPaiz\wy{t}1=1SUt1,Yf\4t)

< 2a-(Isl+j) - I PyiPzohwy. - Py1Pzra1wy,-t 0. (6.12)

Proof. In the proof for ease of notation we omit the subscript i and write Y instead of
Yi. After relabeling we may assume S ={1,2, . .,r - 1} and t = r where 1 < r < k.
Expanding the expectation over Y explicitly we can rewrite the left-hand side of (6.12) as

PY * (Po_,zjw,y!ry<r=1r-1 - Pjizw, 1y>r,ysr=ir) (6.13)

Next we use a symmetrization argument to bound the above expression. Consider a ran-
dom variable Y that is a copy of Y, and is coupled to Y in the following way: Y--r y-r
and conditioned on any setting of yr yr, yr and Yr are independent. Using the fact that
Pr[Yr = _] > a conditioned on any value of Y~-r -r y-r, we get that the expression
in (6.13) is at most

a-- Py-rPyrjy-rPp, y-r - (POzw,y>ryry<r=1r-1- Pnf_,zwy>rg,y<r=ir-1)

Using the triangle inequality and symmetry of Y and Y, this expression can be bounded
by

2a - IPy - (Pn-izjWy>ryry<r=_r- - Pn_,zIw,y>ry<r=_r-1 ,

which after noting that the quantity 11Pn_ZWy>ryry<r=rI - P0 _jZWy>r,y!r=1r is indepen-
dent of the variable y<r, can be rewritten as

2x-1 - Py-r - (Pnzlwy>r,yr,y<r,=r-1 - P0_ZIW,y>r'y<r=r)-
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Using that the event that Y<r -L-1 occurs with probability at least ar-I and Py-rjy<r__r,-l

Py>, by the anchor property, we can finally bound (6.13) by

2a" - I|PyPZo_,iwY - PYPz0 1wy-rI,

which is the desired result.

We prove Theorem 68 by iteratively applying Proposition 72 as follows.

Proof of Theorem 68. Let Co = 0 and 6o = 0. While (6ka-k + 1)N : E/2, by Proposition

72, we can choose i E C5 with Pxionziw - PXiPfiZIWy=_k < e/2. Set Cs+1 - Cs U

{i} and 6s+1 = (IC,+1I log JAI + logi/ Pr(Wc -)) /m. First we show that throughout this
process the bound

Pr[Wc] < (1 - E/ 2 )Csl (6.14)

holds. Since by the choice of i one has 11Pxo0_zjwC - PXj P0_jZIWCYI=_k < E/2, to establish
(6.14) it will suffice to show that

Pr(WiIWc) < val(G) + IPxiQ__zIwC - PXjP0_,ZjWCY=_Ik|j. (6.15)

The proof of (6.15) is based on a rounding argument. Consider the following strategy for G:
First, the players use shared randomness to obtain a common sample from PnZjwc,Yi=1 k'
After receiving her question x*, player t E [k] samples questions for the remaining coor-
dinates according to Pxt_ (t_ ztxt, forming the tuple Xt = (Xt , x*). She determines her

answer a e A' according to the strategy for G". The distribution over questions X imple-
mented by players following this strategy is

k

Pxj Pn_ZIwcYi=k H PXit t X
t=1

which by Lemma 69 is equal to

PXjP0_ ZjWcY=Ik PX- OZ-

On the other hand from the definition of 0-i we have

PXOZwc PXi0_;ZjWC X_ jiZWC =XiZ_iZWc PX_ij_,Z-

Applying Lemma 2 with R Pxgjn_ z it follows that

Pxz0_ilwC - PXiPOazjWcY,=_IkPX 11 - 1X4LztWc - PXP0_OzIWCYi=k11

Now by definition the winning probability of the extracted strategy for G is at most val(G),
and (6.15) follows.

Let now C be the final set of coordinates when the above-described process stops; at
this point we must have

Cj log A + log Pr(wc) a2k 2

n -|C 48.-k2
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AC log l+log( 1 ) ,k
If CI n /2 we are already done by (6.14). Suppose > 2k. If log(p ( ))

2k C

192'0 we are again done; hence, we can assume

CJ log Al _ 2

n 192 - k2

Now plugging the lower bound on the size of C in (6.14) we get

( 2k - 3 -
val(G") < Pr(WC) < exp -k. s J3844. 2-.S

where s = log IA L, which completes the proof.

Some remarks on multiplayer parallel repetition for general games. We conclude this
section with some remarks about Theorem 68 and the more general problem of multiplayer
parallel repetition. Our analysis of repeated anchored games follows the information-
theoretic approach of Raz and Holenstein. It is a natural question, predating this work
by many years, whether one can extend this framework to prove parallel repetition for
general multiplayer games?

At first sight the Raz/Holenstein framework may seem quite suitable for multiplayer
parallel repetition. For instance, it is folklore that classically the approach extends to the
case of free games with any number of players, and furthermore, many of the other techni-
cal components of the proof readily carry over in much generality. Despite these positive
signs, attempts to extend Raz's original argument to the general multiplayer setting have
so far failed for different and rather interesting technical reasons. Embarrassingly, to our
knowledge, it is not even known how to extend the information-theoretic approach to
prove that the value of a repeated k-player game decays at all!3

We give an example of one of the difficulties in proving a multiplayer parallel repetition
theorem for general games. Consider the problem of defining an appropriate dependency-
breaking variable f in the multiplayer setting. There are two competing demands on 1:
on one hand the breaking of dependencies between the players' respective questions seems
to require it to contain as many of the players' questions as possible for each coordinate
i C C. In fact, if the correlations between the players inputs' are generic, it seems hard to
avoid the need to keep at least k - 1 inputs in each Ri, as we do in Lemma 69. On the other
hand, for correlated sampling to be possible, it seems necessary for 0 to specify very few
of the questions per coordinate, or in fact in the generic case, at most 1; as soon as k > 3
both requirements are in direct contradiction.

An insight behind our result is that it is sometimes possible to decouple the above two
competing demands on ) (i.e. the dependency-breaking and the correlated sampling compo-
nents). More precisely, when the base game is anchored, we show how to define a useful
dependency-breaking variable (or quantum state, in the entangled players setting) that
can be sampled without correlated sampling. With correlated sampling out of the way,
the aforementioned conflict between correlated sampling and dependency-breaking dis-
appears, allowing us to proceed with the argument.

3One can modify a Ramsey-theoretic argument of Verbitsky to show that if val(G) < 1, then val(G") must
go to 0 eventually as n grows [981, but the bound on the rate of decay is extremely poor.
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6.5 Parallel repetition of anchored games with entangled players

This section is devoted to the analysis of the entangled value of repeated anchored games.
The main theorem we prove is the following:

Theorem 74. Let G be a k-player a-anchored game satisfying val*(G) = 1 - E. Then

val*(G") < exp (- (polyk r8 n)
poly(k) - s

where s is the total length of the answers output by the players.

Thus as in the classical multiplayer case, the anchoring operation described in Proposi-
tion 67 provides a general gap amplification transformation for the entangled value of any
multiplayer game.

For clarity we will focus on the k = 2 (two-player) case; we will describe how to ex-
tend the proof to arbitrary k at the end. We fix an a-anchored two-player game G
(X x Y, A x B, y, V) with entangled value val*(G) = 1 - - and anchor sets X. C X,
Y, C Y for Alice and Bob, respectively. We also fix an optimal strategy for G", consisting
of a shared entangled state ')E4 EB and POVMs {AX } and { B" } for Alice and Bob respec-

tively. Without loss of generality we assume that Ip) is invariant under permutation of the
two registers, i.e. there exist basis vectors {1vj) } such that Isp) =Ej A vj) vj).

6.5.1 Setup

We introduce the random variables, entangled states and operators that play an important
role in the proof of Theorem 74. The section is divided into three parts: first we define
the dependency-breaking variable f, with a slightly modified definition from the one in-
troduced for the classical multiplayer setting in Section 6.4. Then we state useful lemmas
about conditioned distributions. Finally we describe the states and operators used in the
proof.

Dependency-breaking variables. Let C C [n] a fixed set of coordinates for the repeated
game G". We will assume that C = {m + 1, 1n +2,. ., 11}1, where 7n= n - ICf, as this will
easily be seen to hold without loss of generality. Let (X", Y") be distributed according to
p" and (A", B") be defined from X" and Y" as follows:

PA1B11jX?'=x,Y"-=Yn1 (a", b") = ( DAI ( Byp I).

Let (Xc, Yc) and Z = (Ac, BC) denote the players' questions and answers respectively
associated with the coordinates indexed by C. For i E [n] let Wi denote the event that the
players win round i while playing G". Let Wc= Aicc Wi.

We use the same dependency-breaking variable 0 that is used in Holenstein's proof
of parallel repetition. In those works, for all i E [n], Oi fixes at least one of Xi or Yi (and
sometimes both, if i E C). Thus, conditioned on 0, X" and Y" are independent of each
other.

In more detail, let D 1,..., D,, be independent and uniformly distributed over {A, B}.
Let M1 ,. . ., M,,, be independent random variables defined in the following way. If Di = A,

then Mi is coupled to Xi (that is, takes the same value as Xi). Otherwise, if Di = B, then
Mi is coupled to Yi. Then 0i = (Di, M), and 0l (=01 ,...,Fln, Xc, Yc).
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Conditioned distributions. Define c =) + Cllog AllB|). For nota-
tional convenience we often use the shorthand Xi E _ and Yi E - to stand for Xi E X, and
Yi E 32k, respectively. The following lemma essentially follows from lemmas in [56] and
the arguments used in the proof of Lemma 73 in Section 6.4.

Lemma 75. The following statements hold on, average over i chosen uniformly in [mI:

1. E I |PDjMiXjYIWC - PDMjXjYI| <O( '5C)

2. Ei lPOzxiyilwc - PnzwcPxiylnI O( 5 C)

3. E llPxiyiPQjzoxjE_,YjE_,wc -- PxiYiPPz0 xJwl O(V/A 2 )

4. E; | Pxi zxiyiWc - pXiyiniwII 5 O(N/2)

Quantum states and operators. Recall that we have fixed an optimal strategy for Alice
and Bob in the game G". This specifies a shared entangled state lip), and measurement
operators {AX"} for Alice and {B: Y} for Bob.

Operators. Define, for all ac, bc, X", y"n:

ac := A BbC Bb;"
alJac b"|bc

where a" Iac (resp. b" lbc) indicates summing over all tuples a" consistent with the suffix
ac (resp. b" consistent with suffix bc). For all i, w-i, xi, and yj define:

A aE Aac Bc - E Bbc
X" = i X1 BU-iY Y"ll jLE, y;l

where recall that Exn . is shorthand for Ex0i. x,=X,. Intuitively, these operators
represent the "average" measurement that Alice and Bob apply, conditioned on 0-i =

w _-, and Xi = xi and Yi = Yi- Next, define

AtaL : E A ax' B :=,_ E Bl 2.
X" 0_i=w_iAX;EL yBnCi=l_iAYiEL

These operators represent the "average" measurement performed by Alice and Bob, con-
ditioned on f-i = w-i and Mi = -. Finally, for all xi E X and yi E Y, define

Aac : Aac + Aac Bbc : i + bc

Intuitively, these operators represent the "average" measurements conditioned on 0-i
o-i and when Xi is xi with probability 1/2 and _ with probability 1/2 (or when Yi = yi
with probability 1/2 and _ with probability 1/2).

For notational convenience we often suppress the dependence on (i, Wi, z = (ac, bc))
when it is clea from context. Thus, when we refer to an operator such as A11I, we really
mean the operator Aa .

States. For all x E X and y E Y, define the following (unnormalized) states:

<DX,Y) := - 0 r p) |<D~x,_) := VA & vfB l)

104



/, ) = x0 Bi p) )= A~ 0 B) (6.16)

VAL (-) B q'

together with the normalization factors

fl' I XY I'X- I ' J)I I

Note that these normalization factors are the square-roots of the probabilities that a certain
pair of answers z = (ac, bc) occurred, given the specified inputs and the dependency-
breaking variables. For example, revealing the depencies on -i and z, we have

XiY P z , ,x y (Z).

We denote the normalized states by <Z y) = IIXY) /7xy, lPX,1) = I<IxI) /7X',_1, ILIX,1) =

I 1 ,1_'J)/711 X,J 1 IDyx/v) =I1pjyX,y)/'yvx,,~ and CAI

6.5.2 Proof of the parallel repetition theorem

Lemma 76. Let G be an a-anchored two-player game. Let C c [In] be a set of coordinates. Then

E Pr(WiIWc) < val*(G) + O(j/8t 2 )

where the expectation is over a uniformly chosen i E [n] \C and c = (log 1 / Pr(Wc) + C I log AL|BI).

Proof. The proof is based on a similar rounding argument to the multiplayer case, but it
now involves entangled strategies. For every w-j, z = (ac, bc), xi E X, yi E Y, ai E A and
bi c B, define

Aai : (Aa )-11 2 Aa" ,i(Aa, )-1/2
a'l aiac

$P -= ( Bbc -1/2Bb V Bbc )~1/2
b"Ibi,bC

where a" Iaj, ac (resp. b" I bi, bc) denotes summing over tuples a" that are consistent with ac

and ai (resp. b" that are consistent with bc and bi). Note that the {A ' _,xiIai and {$B_ ,yi }b

are positive semidefinite operators that sum to identity, so form valid POVMs.
Consider the following strategy to play game G. Alice and Bob share classical public

randomness, and for every setting of i, WK), z, the bipartite state IDayz). Upon receiving

questions x E X and y E Y respectively they perform the following:

1. Alice and Bob use public randomness to sample (i, w-i, z) conditioned on Wc.

2. Alice applies Ua,_- ~xto her register of I ,z).

3. Bob applies Va-,z,y to his register of ICw z).
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4. Alice measures with POVM operators {A_,, } and returns the outcome as her an-
swer.

5. Bob measures with POVM operators {& },y} and returns the outcome as his answer.

Suppose that, upon receiving questions (x, y) and after jointly picking a uniformly random
i E [m], Alice and Bob could jointly sample wi, z from Pnzlwc and locally prepare the

state V4)w-,z). For a fixed (x,y), w-i and z, the distribution of outcomes (ai, bi) after mea-
x,y

suring { 0 $i,}ab will be identical to PA,,Zi ,,,gx,y (where we mean conditioning
on Xi = x and Yi = y). Averaging over (x, y) i , i, wji, and z, the above-defined strategy
will win game G with probability at least Ei Pr(W I WC).

Next we show that Alice and Bob are able to approximately prepare J<Dui,z) with high
xy

probability, and thus produce answers that are approximately distributed according to

PABilw1 _i,z,x,y, allowing them to win game G with probability greater than 1 - e - a contra-
diction.

For the remainder of the proof, we will fix C and implicitly carry it around. Let J =-

We use the following lemma:

Lemma 77. For every C, i, wi, z = (ac, bc), xi and yi there exists unitaries Uw-,z,, acting on
EA and V,, - acting on EB such that

12
- JE E ( ,zx OV a, z'yi) 4 w_i, ) _iz = (12
In , XiYi n-,Zl W II1,-L X,,yi

The proof of Lemma 77 is given in Section 6.5.2, and we assume it for now. Using the
fact that for two pure states p) and 1P), I11 - 111 < v21I |p) - I'p) 1, as well as Jensen's
inequality,

E E E (UIi,, X @ V [z 1_z - GwALz =o< ), (6.17)XY O_,Z1WC _L,1 x-y I It (

where the second expectation is over (x, y) drawn from p, and (U D V) [4] denotes (U 0
V) (U 0 V)t. Conditioned on a given pair of questions (x,y) and the players sampling
(i, wji, z) in Step 1., the state that the players prepare after Step 3. in the protocol is pre-
cisely (U,,,x 0 V_ ,z,y)[D_z]. Let &w,z denote the quantum-classical channel on den-

1,1 X,Y

sity matrices that performs the measurement ,, 0 $,,}ai,b,, and outputs a classical
register with the measurement outcome (ai, bi). Applying Swoz to the expression inside

x,y
the trace norm in (6.17), using that the trace norm is non-increasing under quantum oper-
ations,

EXY EF W AiBi|ai,v,x,y - PAiBiIw_,v,x,y < 0(91/8 a2)

where NAiBilaizxy (ai, bi) deontes the probability of outcome (ai, bi) in the above strategy,
conditioned on questions (x, y) and the players sampling (i, w-i, z) in Step 1. Thus

P, - POiZIWc P XY BA0i iiZXiYi 0(61/8/2) P1  .0 -zlWc P XY - AiBi0n_,zXY,

-O(JI/8/a2) PI -izXiYiIWc - PAiBilO-izXiYi
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where the XiYi in the conditionals is shorthand for Xi = x, Yi = y. The last approximate
equality follows from classical correlated sampling lemma (see Chapter 4). Marginalizing
0-IZ, we get

P1 - Pxy .AjBjjXY x~y, (t'/8/f2) Pr P xAIBIWC. (6.18)

Under the distribution PXjyIAjBjiWc, the probability that V(xi,yi,ai, bi) = 1 is precisely
Pr(Wi Wc). On the other hand, (6.18) implies that using the protocol described above
the players win G with probability at least Ej Pr(WiIWc) - Q(lS1/ya 2 ). This concludes the
proof of the lemma. L

Given Lemma 76, the proof of Theorem 74 (at least the two player case) follows from
the same outlint as that of Theorem 68 given in Section 6.4. Later, in Section 6.5.3, we
sketch the changes necessary to adapt the proof to handle an arbitrary number of players.

Proof of the main lemma

This section is devoted to the proof of Lemma 77. The proof is based on two lemmas. The
first defines the required unitaries.

Lemma 78. For all i, Wj, z, x E X and y c Y there exists unitaries Ux acting on E A and

Vw _,zy, Vw 1 ,z acting on EB such that

In XAIjW1 2

- E ' - U=/.

ILIE F I ij - 2sy = O(6114 /a2), (6.20)

- E IE x y 1-X, = o(6114 / 2a4). (6.21)
In _jzjw xY XAI '

where Ex, Ey, and Exy denote averaging over p (x), p(y), and p (x, y) respectively.

The proof of Lemma 78 is given in Section 6.5.2. The second lemma relates the nor-
malization factors rx,y, yx,L, 7-,y, 71/x,y, 71/,,, '_,, that appear in the definition of the

corresponding normalized states IP).

Lemma 79. There exists a set S of triples (i,wj,z) that has probability 1 - 6114 under P1 -
Pn_,zlw such that

E Pxy (x, y) -Po-iziw(w-i, v) 7,, -- O( 1 //a2,2, (6.22)
Xy xy 1,-

(i,CV-j,-)ES

where
1/2

(-[ Pxy (X, Y) -Po_ zl -,Z) -2 7,i'Z)

Furthermore, similar bounds as (6.22) hold where 'wo,z is replaced by any of}w_,z, 'yw _,z, 'ywi,z,
X'11 XI 1,1/ -I/x'Y

107



The proof of Lemma 79 uses the following claim.

Claim 80.

1
1 E Pxy(x,y) P Oazx =xY =Y( -iz) - P _-zjx.E ,yjE (W-i,z)

S,y,(wi,.)EW

Proof. First note that

- ZEPxy(x, y) IPr(WI Xi = x, Y; = y) - Pr(W)I = Pxiyin - Pxy
x y

(6.23)

where the second equality follows from Lemma 89. Using the triangle inequality and
Pr(Xi E -, Yi E ) > a2 we also get

1
-E1Pxy(x,y) IPr(WIXi = x, Y =y) - Pr(WIXi E -, Y 1)1 = O(V1/a 2 ) Pr(W).

(6.24)
Using (6.23) and letting Po_,zlx,y,w denote Pnzlx,=x,y,=y,w,

1
1X Pxy(x,y) E Pr(W) - P_,zlx,y,w(W-i,z) - P1__zlxy(c-iz)

i (wz)EW

-O(v')Pr(W) E E EPxyx,y) Pn-izAwxy(W-i, z) - P0_zlxy(w-i, z)
i XIy (e-,,z)EW

-0.

A similar derivation proves

1 E IPr(W) - P0 _.zixeiE,yei,w (w-i, z) - Pn_.zixie1,YiEw(v-i, z)I O(0) Pr(W).
S(co ,z)EVV

Combining the previous two bounds with the bound

Pr(W) 1Pxjy PnazlxiE1,yge1,w - PxyPO .zlxiyw < O(V/a2) Pr(W)

from Lemma 89 with the triangle inequality proves the claim.

Proof of Lemma 79. For any i, x, y an'd (w-i, z) E W write

1
Pxy(x,y) -Pozw(w-i, z) - ,Z =Pr(W) Pxy(Xy) Pp

=Pr(W)PX(XY

.z(W , z) - ,z
x'y

x,y
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where for the last equality we used P0O.xy = Po Fromthedefinition,'2Q,= PzIwaxy z),
xy

__ (W ) - z (6.25)

where PO_,z x (-i, Z) denotes P0 zix= xYiy(- z). Similarly, we have

2
Pxy(x,y) PO_zvw(w-i, z) - Pr(W) PXy(XY) Pz,.(z) , P0 .z1i, 1 (wO-iz).

(6.26)

By definition
2 1

7 2 PO_,z1w ((,--i, Z) - Pylw (z),

thus for any 'i > 0 applying Markov's inequality a fraction at least 1 - ql of (i, c0-i, z)
distributed according to P P0 P J_,zlw are such that Pzo_,(z) Y 2/i. Let S be the set of
such triples, and consider summing the difference

Pxy(x,y) - Pzl, 1 (z) ' Po_iztx,vy(t-i, z) - PO-_zl1 , 1 (W -i, z)

over all (x,y) and (i, w1 ,z) E S. By lines (6.25) and (6.26), and applying Claim 80 we
obtain

1 E Pxy (xY) ' PO-iz1w(CO-iz) - ?!s'z --?0( O )

(i'w _ifz ) S

Choosing t; = 61/4 proves the lemma.

Proof of Lemma 77. For every (i, Wvi, z), x (E X and y E Y let unitaries U x, Vaz, and
VUj,z be as in Lemma 78. For notational convenience we suppress the dependence on

XAY
(i, o-i, z) when it is clear from context. Call triples (i, w-j, z) that satisfy the conclusion of
Lemma 79 for 7w_,z, rw_,Z, ryw-,z, 'rc _,z, and 'wiz simutaneously good triples, and let S

Xy XI L1Y Ijx,y lx-

denote the set of good triples. Fix (i, t, z) E S. Using |a - b1 2 < a2  b2 | for a, b ; 0,

2 - '' 2

L Pxy(x, y) - Px,q) -- 'V- |<Dx,y) =E Pxy(x, y) - '
x~y x,y

2 2

2'1 W,Z

PXY~~~ ~ ~ (X )E XY)7,1O P xy'(X, y) - 2'

Sxxy y~Py~xy 2 2

a(nd s/4 /bX 2), (6.27)

and similar bounds hold for l,),<iy)and I D1,1) . Thus to prove the theorem it will be
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sufficient to establish that

Pxy(x,y)- Po,ziw(w-i,z) I(Ux 6 Vy)I(Di) - OxI )112 2

(i,a _i,Z )E S

(6.28)

Using the lower bound on the measure of S,

E Pxy(xty) -PO_.viw(w-i, v) - (Ux
xy

i,w-i,v

i Xy
(iCL -,)ES

&V) -

Pxy(,y) -PO_ivjw(w__iv) - 1(Uox 0

~ 
1 2

VY) , - 2x'y+ O(J /4)

For each good triple (i, w(i, z), by the triangle inequality

- 2x~ < 3 &D, - 7-1|<D,1) 2+ 3 > -'y -4 ,y)2

+ 3-2| 1(Ux 0 V/)|) 1 - jDx,y) |2
_ 3- 2 (U VI) CD1,1 ) - ,)xy)2 + (54 /2

Using (6.27), the bounds stated in Lemma 78 imply the following bounds on the un-
normalized vectors:

1

(6.29)

614 21

(i,w,Y-,)ES

- 1 ,y) 112

1

(i, y i,Z)ES

2

Pxy(x,y) -Pnoizjw(Wijz) VaWizjZI4WXI,) - qvLxly

(6.30)

0 ( a 2

(6.31)

We show how to combine these bounds to establish (6.28). We have

lUX 1 y) - DX' 1)| = 1l UXA1/2A-'/21D XY) - A'/2A - 2 
LD XY) II~xI~ty -LI Icxxy 11 U tiII

= UxA1/2 A-1/ 2 0 VxY\<DXY) - A / 2A- 2  -

Using the triangle inequality again,

3 (UxA1/2A -- /2 VxyktbDi/,y) - (Ux A'/2A y2) - Dl/x,I)
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1
-

Px(x) - Po_,zI w(w-i, z) - |IIIDx,) - U"_,2x <D)

(iA' _ ,z)E S

(6.32)

I(Ux (D VY) I e Li

0(14 72,



+3 (UXA/2A -/"j DL/',,_) - A'/ 2 A-' 2 C ,) (6.33)

+ -3 A1/ 2 A -,1 <D ) - A1/ 2 A j 2 C V/j <D/.,,) . (6.34)

Using |UxA1/ 2 A -1/ 2 11 < V2 the term (6.32) can be bounded as

UxA1/2A-/2 0Y VyDX,Y) -Yx,) 2 D 2 YII IX,) - Hix-)| 2.

The term (6.33) can be re-written as

UxA1l/2A7/2) <Dllx/,i) - A'/ 2 A-7j 2 l 1qXi) = IU Di) -DY, 1) 12.

Finally, using IIA/ 2Aj 211 < 2 the term (6.34) can be bounded as

A / 2 A ) - A1/ 2 A j 2  < Vr, |<D/xy) 2 cI,1) -Vy |<Dyxy)||2

Putting the three bounds together, from (6.34) we get

U D1,11) - |DXY) 2 < 3 1 -V l )_XY -- ID-/X ) 12 + 3 11 U, 1L< ) - I<DxL) 11 2 .2(6.35)

Using that Ux is unitary,

|)D - |Dxy)||2 2||Vy|D ) - | 1, )112 + 2 jUx|j 1 ,y) - |<x,y)|12

< 18 lDyI ixy) - 1iCyxI) 12 + 611Ux IlD,) - <x() 12

+ 2 11VY, 1 ) - I:D 1,y)1 2

where the last inequality is (6.35). Eqs. (6.29), (6.30) and (6.31) bound the three terms above
by 0(6 1/ 4 / Ct 4)7 2 on average over (x, y) weighted by Pxy, and (i, w,, z) E S, weighted by

P1 - Pn_,Zlw. This proves (6.28), and the theorem follows. El

Obtaining local unitaries

In this section we give the proof of Lemma 78, which states the existence of the local unitary
transformations needed for the proof of Theorem 74.

Proof of Lemma 78. Recall that we let the entangled state lp) and POVMs {Aaj } and {B }
constitute an optimal strategy for G". We refer the reader to Section 6.5.1 for the definitions
of operators Aa,, etc. We will let p denote the reduced density matrix of 'P) on either
system (this is well-defined because we've assumed IP) is symmetric).

We first prove (6.20), that is, the existence of the unitary V__jy,. Recall the notation

4 =p) (41 and X[p] = XpXt. Introduce the following states:

E-47GY"'EA EeZ BY(w, ( 0 () [] o acbc)(acbc ,
W,yIl,ac,bc

OY'"EAEBZ =OY..EAEBZIW (6.36)
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&-E^ , I = E |_j=w._j,yj=yj,cj=( A,-L )- (6-37)

The state E is defined so that tracing out the entanglement registers EA and EB the re-
sulting state ZnY"'ACBC is a classical state that is equivalent to the probability distribution

POY"'AcBc. In (6.36) the conditioning on W is well-defined since the event only involves
classical random variables in f and Z. In (6.37) only the reduced density on EA is consid-
ered, all other registers being traced out.

The following claim provides the main step of the proof by relating the reduced densi-
ties on Alice's registers of states (6.37) associated with different choices for yi.

Claim 81.

^&,A - i = O(EA,/o") (6.38)
M O_;ZlW Y I,Yi 1,1 1

Proof. First we observe that Pr(W) E, thus by definition S (6jE) < (4IIE) <log 1/ Pr(W)
Using the chain rule for the relative entropy (Fact 10),

E ~ W S ( E A II E - Y "11 E Ap j)<( 6 3 9
OV1W Pr(W)'

Next we note that for any w, using Ando's identity

( pIX 0 YI1p)=Tr(X Y ),

where 'P) = AI vj)Ivj), p = E AI vj)(v 1 , X, Y are any linear operators and the trans-

pose is taken with respect to the orthonormal basis { vj)}

Y...EAACBC [ Py ,(y'") lyi)(y"n 0 Z A Iacbc)(acbcl
y"',acbc

where the last equality uses Ebc Bbc= I. Fromn (6.40) and the definition of So it follows

yflc

thatS S(El,"EA y @Z 0S^) |C .-log |A lIBI. Applying Lemma 18,

1 1 Y11EY 1 1 1 E

-( IE I(Y;EAl,z) - F (,,E
S oz~w m oziw

< 1S( E 5(gY"Enl "l E "(YE E E0

S. log Pr() +l C0 -log A l lBl = I (6.41)

where in the last line the first term is bounded using (6.39) and the second using (6.40).
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Applying Lemma 89,

E PD MiW (A, O(v-) ) EPDM (A, I)

thus from (7.2) by conditioning on f; = (A, .) we deduce

1
I L E I(Yi; EA w,z) = O(/c ),II [)Z|0=(A,j),W

(6.42)

as long as a = fl(v/). Next we apply Pinsker's inequality (Lemma 9) and use that Yi is
classical in 4 to write

1 E E
m i Z n=(A,ij),W

JE :?.

}yilc,z '74<i < 1 E E E
1 m i 0Z\Qj=(A,1 ),WYjuwz

1
=-1 E E

I i QZj01 =(A,1),W

=OQ5/ca)

by (6.42). To conclude note that Lemma 89 and the classical correlated sampling lemma
imply

P 'POZYoji=(A,,),W PIO(v//2) P'O_iZW PYi.

F1

The proof of (6.19) essentially follows from Claim 81 and Uhlmann's theorem. We give

the details. First write EB and EA explicitly as

1,Yi1j

w oc (AI / /p (ACO /
Lyi

oc (A ) 0/ B A /

which makes it apparent that the states P iz
/L11

and Pw introduced in (6.16) purify

,_iz and ,AI,z respectively. Applying Uhlmann's Theorem, there exists a unitary V,_jzyj
Ing a,1

acting on EB such that

1 O 1
_jW Yi ,

> 1 - O(bl4/a),

IZ I , 

FF

(6.43)

where the first inequality follows from the Fuchs-van de Graaf inequality (2.1) and the
second uses Jensen's inequality and (6.38) from Claim 81. Expanding out the squared
Euclidean norm and making sure that V,,, is chosen so as to ensure that the inner

product (IZ V, i_,,y Iw Ijz) is positive real, (6.43) proves (6.20).
-- yi
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A nearly identical argument yields (6.19). It remains to show (6.21). Define

~EA 1 E 1A an ~EA I_ 1

2 - 2 0z22,_,1/~x;,y; I,yi x1-yi -Lxi,- - Xi,-L

For notational clarity, we will suppress mention of wi and z; it will be implicitly carried
around.

The density matrices EA and EA are purified by IcIi/x,,y,) and |>4ya1 ,j) respec-
tively. We will show that these two density matrices are close to together, on average, and
hence by Uhlmann's Theorem implies that there exists a unitary Vx,yi acting on EB that

moves IDuxy,) close to IL/xg). Consider:

IO-iZjw Xi{ IXj " 1 1 -ZjW Xii2 L 2 Xi, 4{L

<KE IE E [1 jlEA _ E l E &EA1l1_ I nL-ZW XXi [2 "Y +L, 2 xiA _ ~i11J

We obtained a bound on the first term in the calculations above. It remains to bound the
second term. Again Lemma 89 implies

PI - POZYlDi=A,W -OQ(j/2) PI . P0 iZIW 'XYi

where "h" indicates approximate equality, up to relabeling the random variable Mi with
X;, whose marginals are identical conditioned on Di = A. Thus using the same approach
as earlier in the proof, we can obtain the bound

E E E ^l . -i _j I O( /1a).
I O-;ZW XiYi ' ' 1

Thus there exists the desired unitary Vx, such that

'LIE 1Ej ~ - 'Vi x,y)2 < 0.(51/44) (6.44)
M QZW Xi Yi liL

proving (6.21). I

6.5.3 Extending the argument to more than two players

Here we extend the argument above to the case when k > 2; that is, when the game
involves more than two entangled players. For clarity, we won't redo the entire argument,
but instead describe the modifications to the two player proof. Furthermore, we will make
the following simplifications: we restrict ourselves to the k = 3 player case, and we will
analyze the repetition of G1 that is the result of applying the anchor transformation to the
game G; that is, the anchor questions are literally the "I". Extending the argument for
arbitrary k and arbitrary anchored games is straightforward.

We start with an arbitrary game G involving three players Alice, Bob and Charlie. The
players' questions are denoted by X, Y, Z, and their outputs are denoted as A, B, C. We
will let y(x, y, z) denote the question distribution of the game G. Let G1 be the anchoring
transformation applied to G (for some ct), and let p, (x, y, z) denote the question distribu-
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tion of G_. We will analyze the behavior of val*(G"). Consider an optimal strategy for G",
involving a tripartite state 4') E Cd q Cd 0 Cd, and measurement POVMs for each of the
players: {AX} for Alice, {B' } for Bob, and {C,} for Charlie. The entanglement |p) is
shared between registers EA, EB, and Ec.

The subset of coordinates that we condition on winning (formerly called C) will be
denoted by S. The answers to rounds in S that we condition on will be denoted together
as Q = (As, Bs, Cs) (formerly called Z = (Ac, Bc)).

The idea behind the multiplayer extension is that we will reduce to the two-player case
by "bundling" two of the three players and treating them as a single player.

Dependency-breaking variable. The dependency-breaking variable 0 is constructed so
that for each coordinate i ( S, (Qi will fix 2 out of 3 questions. That is, Di will choose
uniformly from {{A, B}, {A, C}, {B, C}}. The variable Di indicates which questions Mi is
coupled to. For example, if Di {A, B}, then Mi will be coupled to the pair'(Xi, Yi). The
dependency breaking variable satisfies the following properties:

1. For all (x,y,z) E (X U {f}) X (Y U{L}) x (Z U {1}), Pxiy z(xy,z) = yp(x,y,z).

2. For all w, for all i, PXiYiZi(=(x,y, z) = Px~io=L,(x) . Py a u(y) - Pziln-w(z).

Operators and states. We define the states and operators in nearly an identical way to the
two-player case. We also introduce operators corresponding to the third player, Charlie.
His operators Cc',, C S C etc. are defined in the analogous manner.

The states are also defined in a similar way:

D XZ )= VIAx & rB/E G V4zIV)

where x, y, and z can be "normal" questions from X, Y, or 3, or they can be i or a hybrid
such as 1/x.

The analogue of Lemma 77 in the three-player setting is the following. We use simpli-
fied notation to maximize clarity, so we will suppress mention of i, w-i, and q = (as, bs, cs),
and treat them as implicit. Furthermore, we will ignore issues of normalization.

Lemma 82. For all (x, y, z) E X x Y x Z, there exist unitaries U, Vy, and W acting on EA,
EB, and EC respectively such that

E (W(Ux (0), 0 W)11,1,1 ) - @xAX,z)j =(l/4/42k
XYZ

Lemma 82, like in the two-player case, is proved in two steps. The first step is to estab-
lish the existence of unitaries U, V/, and W. such that UXI|ILI) ~ |xi, ), V(I-,,,)~
<DIyI), and WI 1,1,1) ~ (,,), with the unitaries acting on the appropriate spaces.

To prove, say, the existence of U, we first treat Bob and Charlie as one player - call him
"SuperBob" - and use the analysis from the two-player case where the game G is a two
player game involving Alice and SuperBob.

Now, using the same reasoning as in the two-player case, we get that

E U 0 V 0 1) |1, ( ) -- |DXY,1 ) = o(61/4 /2k).
X)
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Now we just have to show that, on average over (x, y, z), (I IC) WD )I DXY,1 ) is close to
I<Ix,Y,z):

W I cxy,1) - I<DXIY'Z)
WzC 1 Cj/ 2 1<Dx,t,1/Z) - CZC-1/21<Dx,2 ,_ )

H x~~ 0 W3C1C; 2 |<b,, 1/z) - H x ®~ CzCk |D~,/
W ) - CzC-' V'2|1,1,1/Z )

0.

where H,,y,- is a unitary acting on EA EB jointly such that Hz,y, I DxYI/Z) Di,_,_/z). Such
a unitary is analogous to that in (6.21).

Once all the normalization factors are added back in to this calculation, we get Lemma 82,
and from there, the main multiplayer theorem. The details of normalization are tedious
and uninteresting, but essentially follow the same steps as in the two-player case.

6.5.4 A threshold theorem

We also observe that our proof nearly immediately yields a threshold version of our parallel
repetition theorem: we can give an exponentially small bound on the probability that the
players are able to win significantly more than a (1 - e)n coordinates in the repeated game
G", where val* (G 1 ) = 1 - -. In [87], Rao shows how a Lemma of the form 76 yields not
only a parallel repetition theorem, but also gives a concentration bound. Using essentially
the same argument, we get the following theorem:

Theorem 83. Let G be an c-anchored k-player game with val* (G) :; 1 - e. Then for all integer
n > 1 the probability that in the game G" the players can win more than (1 - E + -Y)n games is at
most

(1s n c n s e ft plyr /S

where c is a universal constant and s is the length of the players' answers.
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Chapter 7

Parallel repetition for all entangled

games

The work presented in this chapter was published in the proceedings of the International
Colloquium on Automata, Languages, and Programming (ICALP 2016) under the title of
"A parallel repetition theorem for all entangled games" [105].

7.1 Introduction

In this chapter we prove a weaker version of Quantum Parallel Repetition Conjecture. The
strongest form of the Quantum Parallel Repetition Conjecture states that for a game G such
that val* (G) < 1, val* (G*") decays exponentially with n, analogously to Raz's classical
parallel repetition theorem. All previous results have established special cases of this, and
the previous chapter shows that, as far as gap amplification is concerned, the Quantum
Parallel Repetition Conjecture is effectively solved.

However, the scientific question of how general entangled games behave under parallel
repetition still remains: not only did we not know of a quantum analogue of Raz's Parallel
Repetition Theorem, it hasn't even been shown that if val* (G) < 1, then val* (G ") goes
to 0 as n goes to infinity! Could quantum entanglement allow players to counteract the
value-decreasing effect of parallel repetition?

Here we prove that for all nontrivial entangled games G (i.e. val* (G) < 1), the en-
tangled value of G" must converge to 0. This resolves a weaker version of the Quantum
Parallel Repetition Conjecture for general games. Quantitatively, we will show:

Theorem 84 (Main Theorem). Let G be a game involving two entangled players with val* (G)
1 - e. Then for all integer n > 0,

val*(G") < c - SG log n

where c is a universal constant and SG is the bit-length of the players' answers in G.

This shows that the entangled value of G" must decay at a polynomial rate with 11.
The full Quantum Parallel Repetition Conjecture states that the rate of decay is in fact
exponential, and this remains an important open problem.
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7.1.1 Proof overview

7.1.2 Classical and quantum correlated sampling

Correlated sampling is a key component of Holenstein's proof of the classical parallel repe-
tition theorem.

Lemma 85 (Classical correlated sampling [56]). Let P and Q be two probability distributions
over a universe U such that liP - Q 1i E < 1. Then there exists a zero communication two-player
protocol using shared randomness where the first player outputs an element p E U distributed
according to P, the second player samples an element q c U distributed according to Q, and with
probability at least 1 - O(e), the two elements are identical (i.e. p = q).

We call the protocol in the Lemma above the classical correlated sampling procedure. The
next lemma is the quantum extension of the correlated sampling lemma, proved by [391
in order to obtain a parallel repetition theorem for entangled projection games, a class of
two-player games. Their lemma is a robust version of the quantum state embezzlement
procedure of [951.

Lemma 86 (Quantum correlated sampling [39]). Let d be an integer and a > 0. Then there
exists an integer d' depending on d and a, and a collection of unitaries Vq, W1 acting on Cdd' for
every state p) E Cd 0 Cd, such that the following holds: for any two states |<P), 0) E Cd & Cd,

Vp 0 WO I Edd') - kcp)lEdI)11 0(maxa1/2,| 11P) - 10) 111/61)

where I Ed) C 7i1 1j) |j) is the d-dimensional embezzlement state.

We shall call the protocol in the Lemma above the quantum correlated sampling procedure.

7.2 Proof of the Main Theorem

Let G be a two-player one-round game with question distribution y and referee predicate
V(x, y, a, b). Let A and B denote the alphabets of Alice's and Bob's answers, respectively.
Let val*(G) = 1 - E.

Consider an optimal entangled strategy for G", which consists of a shared entangled
state Jp)EAEB E Cd ® Cd and measurement POVMs for Alice and Bob, {A " } and {Bb' }
respectively. We will assume that Iip) is symmetric; i.e., 4') = ViXIlvi) Ivi) for some
orthonormal basis { I vi) }. This is without loss of generality, as we can always rotate (say)
Bob's basis vectors to match Alice's basis vectors, and fold the unitary rotation into Bob's
measurements. For i E [n], let Wi denote the event that the players win coordinate i using
this optimal strategy. Let W = W1 A ... A W,, denote the event that the players win all
coordinates. For a set C C [n], let WC = AiEcWi-

Proposition 87. Suppose that log 1/ Pr(W) En /16 - log 4/e. Then there exists a set C C [n]
of size at most t = (log 4 / + log 1 / Pr(W)) such that

Pr (Wi JWc) > 1 - e/2.
i(C

where i is chosen uniformly from [n] - C.
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Proof. Set J = e/8. Let Wyp4 denote the event that the players won more than (1 - 6)n
rounds. To show existence of such a set C, we will show that Ec Pr(-,W IWc) < E/2, where
C is a (multi)set of t independently chosen indices in [In]. This implies that there exists a
particular set C such that Pr(-, W I Wc) < E/2, which concludes the claim.

First we write, for a fixed C,

Pr(,Wtl Wc) = Pr(,Wil Wc, W>1-6) Pr(Wy j_6 IWc)+

Pr (,Wil Wc, ,W,-_5) Pr(,Wy1_b jWc) -

Observe that Pr(-,WiIWC A W>1-6) is the probability that, conditioned on winning all
rounds in C, the randomly selected coordinate i E [n] - C happens to be one of the (at
most) bn lost rounds. This is at most 6n /(n - t) < e /4, where we use our assumption on t
from the Proposition statement. Now observe that

E Pr(,Wy1-,51WC) < E rW -Wj6
C c Pr(Wc)

1
Pr(W)

e/4

where in the second line we used the fact that Pr(Wc) > Pr(W).

For the rest of the proof we will fix a set C given by Proposition 87.

7.2.1 Dependency-breaking variables

We introduce the random variables that play an important role in the proof of Theorem 84.
Let C C [n] be as given by Proposition 87. We fix C = {m + 1, in + 2,.. .,n}, where
i = n - IC1, as this will easily be seen to hold without loss of generality. Let (X[,,], Y[,,,) be
distributed according to y[,, and (A[,, B[,, ) be defined from X[,] and Yl,] as follows:

Let (Xc, Yc) and Z = (A c, BC) be random variables that denote the players' questions and
answers respectively associated with the coordinates indexed by C.

We use the random variables 0 and R that are crucially used in Holenstein's proof
of Raz's parallel repetition theorem. Let D 1,..., D,,, be independent and uniformly dis-
tributed in {Alice, Bob}. Let M1 , . .., M be independent random variables defined in the
following way: for each i E [In],

M = Xi if Di = Alice
' Yj if Di = Bob

Now for i E [i], we define 0i := (Di, Mi). We say that 0i fixes Alice's input if Di
Alice, and otherwise 01 fixes Bob's input. We write 0 to denote the random variable

(01,.. . , fl,n, Xc, Yc), where XcYc are Alice and Bob's questions in the coordinates indexed
by C. For i E [ni] we write 0 -i to denote the random variable 0 with Oi omitted.

Proposition 88. Conditioned on 0, X i and Y[, are independent.
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Finally, we will define a dependency-breaking variable R := (0, AC, Bc), where Ac and
Bc are the players' answers in the coordinates indexed by C. For i ( C, we let R-i :=

(0i, Ac, BC). R; will refer to ni. We will use lowercase letters to denote instantiations of
these random variables: e.g., r-i, xi, and yi refer to specific values of Ri, Xi, and Yi.

Throughout our proofs, all expectations are implicitly over the measure defined by P.
For example, the expectation Eo_ zlxi,y, indicates ELW ,ac,bC PO-iACBC xj,y, (w-i, ac, bc). Given
an event such as W (winning all the coordinates) or WC (winning all the coordinates in C),
P (W) and P (Wc) will mean the probability of these events with respect to the distribution
P.

The following Lemma expresses the idea that, because Wc is an event that occurs with
not-too-small probability, conditioning on it cannot skew the distribution of variables cor-
responding to an average coordinate by too much. This Lemma follows in a straightfor-
ward manner from the [561.

Lemma 89. The following statements hold on, average over i chosen uniformly in [ni]:

1. Ei IIPRiXiYIWc - PRjxjYi li O(V)

2. Ei ||PXiY R -iPWc - PRilxiwcl I O(vA)

3. Ei 11 PXjYrR Wc - Pxjy- PR-iYWjjn1 I O(06)

where 6 := I (log 1/P(Wc) + CI log JAI 1B).

7.2.2 Two key Lemmas, and proof of the Main Theorem

For every i E [n] - C, we will construct a collection of bipartite states { ITr,xjy) I C
Cd o Cd, which we call dependency-breaking states, that are indexed by the dependency-
breaking variable r-i defined above, and questions (xi, yi). The following lemmas state the
important properties of this collection of states:

Lemma 90 (Usefulness Lemma). For all rj,xi, yi, there exist POVMs {A' 1 x, } and {$ iy}

acting on Cd such that

PAjBj r_i,xi,yi (ai, bi) = Tr (®a @ $ r_i,y -

Lemma 91 (Sampleability Lemma). For every i, r-, xi, yi, there exist an integer d' > d and
local unitaries Ur _x, Vr-_,yi acting on Cd' such that

E E E <~~x 0_,iEi-|rixiy) |rix~| O((6114 / p(WC)) I/ 12)F Fiy [RF~ ,iW r-j~U x 0 Vr-Ty I Edl) - [11rr i,xi,yi) 0 1Ar j~x <j
i XiY, LR-jxi,y1 ,Wc

where IEd') 7j J j) j) is the d'-dimensional embezzlement state, and |Ar ,xiy1 ) is an arbi-

trary state.

Lemma 90 shows that the states IYrj,xeyj) are useftl to have; they allow Alice and
Bob to produce answers in the i'th coordinate whose statistics are consistent with the
dependency-breaking variable ri and their inputs (xi,yi). Lemma 91 shows that these
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states are locally generatable by Alice and Bob, when given joint access to preshared entan-
glement, the dependency-breaking variable r and their own inputs xi and yi respectively.

Using these two Lemmas we can prove the Main Theorem.

Proof of the Main Theorem. Consider the following strategy for the game G. Alice and Bob
share beforehand the embezzlement state IEddi) of dimension dd' given by Lemma 91, and
they also have access to shared randomness. Given inputs (x, y) distributed according to

RXy = It:

1. Alice and Bob jointly sample a uniformly random i E [n] - C. Alice sets xi = x and
Bob sets yi = y.

2. Alice and Bob jointly, approximately sample Ri from PR ,We using the classical
correlated sampling procedure.

3. Alice applies Ur-,x, to her side of IEdd')

4. Bob applies Vr,-,y, to his side of IEdd')

5. Alice measures her side of the entanglement using A } and outputs the outcome
ai

6. Bob measures his side of the entanglement using { y } and outputs the outcome

bi

We now analyze the success probability of this strategy. We will use P to denote the dis-
tribution of variables in the probability space associated with an execution of this strat-
egy. For example, we will write PR _X y to denote the distribution of R-i conditioned
on XiYi that is sampled in Step 2. From Lemma 89 we have that on average over i,
PXiYiR-ilWc PXiYi * PRiJXWc YWXiYi - R_iJY;Wc where "~z" means closeness in statisti-

cal distance. By invoking the classical correlated sampling procedure of Lemma 85, we
get

XY- RilXiYi - XYiR-ilWc < (V

After Step 4, Alice and Bob will possess a state I Ar-i,xi,yt) such that

E E IE ||Arixi,yi - Ayri,xiyi |1<
i X ~ [R- _i'iyW

where i = O((/ 11 4 /P(WC))1 / 12 ). Consider the measurement process in Steps 5 and 6. Let

PABir__i,x,y, denote the distribution of measurement outcomes in this strategy, conditioned
on their inputs and a sampled value of r_ . By Lemma 90 and the fact that the trace norm
is nonincreasing under quantum operations, we have that

X E R I|E yiWc IAi Bi lxi,yi,r _i -~ UAi Bi lxi,yi,r-i Ill r

or equivalently

IE X1PXYi R 1X7YiWc * Ai.BiJxi,yjr_i -- XjYi - R iX;YiWC . AiBiR. ilXiYiVVc IIi < Il
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By Lemma 89 we have EI 1 |Pxy 1W, - Pxiy,|| <V . By triangle inequality and that x~y,=
Pxy,, we have

E IIPXjyhRg AjBj - PXjYR ABiWc I1 < O(Wj).

Note that PXjYjR_,3,B, represents the probability distribution of all the variables present in
the strategy above. Let Wi denote the probability the players win the ith coordinate. Thus
we get

E IP(Wi) - P(WiIWc)I O(17). (7.1)

Assume that

P(W) > cs log n
-

(W 17n1/4

where c > 0 is a universal constant, and s is the bit-length of the players' answers. Since
P(Wc) > P(W), and using our bound on ICI (from Proposition 87) and our bound on
J (from Lemma 89), this implies that the right hand side of (7.1) is at most e/4 (for an
appropriate choice of c). This implies that

E P(Wi) > E P(WiIWc) - e/4
1 I

> 1 - e/2 - e/4

> val*(G)

where in the second line we used the bound from Proposition 87. However, this is a con-
tradiction, as Ei P(Wi) is the probability that this strategy wins the game G, which cannot

be larger than val* (G). Therefore P(W) < .
l

7.3 Proofs of the two Key Lemmas

Now we turn to proving the two key lemmas above, the Usefulness Lemma and the Sam-
pleability Lemma.

7.3.1 Quantum states and operators

In this subsection we define the states |Yrjxj,yj) and measurement operators {Art1 ,xj } and

{$r y }. Recall that the dependency-breaking variable R consists of the set of fixed ques-
tions 0 = (Xc, Yc, - .. ,) and fixed answers Z = (AC, BC) for the coordinates in
C.

Coarse-grained measurements. We first coarsen the measurement POVMs {A a', } and

{B } that constitute Alice and Bob's strategy in G" to construct a set of intermediate mea-
surements, which essentially produce answers for the games in set C, conditioned on a
setting of 0.

Fix i, w, ac, bc, xi, yi. Define

Aac = E E Aa[,' B bc E B'[]
l all,,ac X[n ,xi 1b[Ibc "Y
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where a[., lac (resp. b[,,Ilbc) indicates summing over all tuples a[,, consistent with the
suffix ac (resp. bl,1] consistent with suffix bc) and recall that Ex, ,, is shorthand for

PH ! X (x[,,]). We also define

Aac = E AacXA,? [] a
B = E BbC.

60 lar

Let p denote the reduced density matrix of lip) on Alice's side. Since we have assumed
that 1p) is symmetric, p is also the reduced density matrix on Bob's side. For all i, to,
xi, yi, ac, bc, let Uoi,ac, Uc,ac, Vw _i,yibC and VIbc be unitaries such that

Uw_.,xuac (Ac112 Cpj2

UCI,ac (Aa?12

are positive semidefinite. Such unitaries can be found via singular value decompositions.
For notational convenience, let

B~bC )1 /2T 1,_jbc = V b(B ) / 2

Tw,bc = Va,,bc ( BCL )1
Sw _jxj,a U i,x( ac (A 2

Swy'ac =Uwy,ac ( AU)1

Fine-grained measurements. Now we can define the fine-grained neasurements that Alice
and Bob can apply to obtain answers for the i'th game. Define

Aaj = -1 Aa7C,aj S-1r-i,xi Uji,xac A-i,xi w-i,x,ac

Aa - E Aap'
Ia(~ix |al ic,ai Xin] |W i,xi X[1

bi T- 1  Bbc,bi T-1
r-i,yi w_,yi,bC w-i,yi LYwy,bC

Bbcb E E B bn
CO iy b[] Igbc,bi Y111 IcL-i'y Y[1

and a[,] Jac, ai (resp. b[,,] lbc, bi) denotes summing over all a[,, consistent with ac and ai

(resp. all bn consistent with bc and bi). It is easy to verify that the sets {A x}1,aEA

and {i,Yi}bjCB form POVMs. Here, for a square matrix A, A- 1 denotes its generalized
inverse.

States. Now we are ready to define the states. Fix i, ri= (w=i, ac, bc), and xi, yi. Then let

r~,Xi,,Yi) S0 T,ac,xj w ,bc,yip)
r~i~xcyi - w~ac,xi & -i_,bc,yj

Observe that the normalization |So 0ac x 0 Tw_,bCy I P) 12 is equal to PACBCIW i,xi,y (ac, bc).

7.3.2 Proof of Usefulness Lemma (Lemma 90)

This Lemma follows from a simple calculation: for every xi, yi, ai, bi, r-i:

Tr (Aai 0 bfin 1Yr__jxoyj
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|SwI _acacax bcu~~bbi|

P 1 E b E Tr (A"('P Bb',']q)((

PACB Bcw-,xj,yi (ac, bC ) ain,]ac,ai b[111bC,bi X I?' Y fill _cti'xi'y' 11 ['

_ PAiBAcBcjw-jx,y (at, bi, ac, bc)

PAcBcjwz,xjyI (ac, bC)

= P A IBjjrj,xj,yi jbi)

In the second equality we used that conditioned on 0, X[,, and Y are independent, so
therefore Ex[ Ey[' 1 ,y, = Ex[]y[] ,,,x,,y. In the last equality we used that r.i. =

(w, ac, bc). This concludes the Usefulness Lemma.

7.3.3 Proof of the Sampleability Lemma (Lemma 91)

Overview. Here we give some intuition. We first analyze an ensemble of states { x,xc,ac) I
(for now we omit mention of the dependency-breaking variable R for simplicity). These
are indexed by Alice's questions in the i'th coordinate, her questions in the C coordinates,
as well as her answers in the C coordinates. The state | Fx,xcAc) roughly represents the state
of the players where only Alice has applied her measurements - Bob hasn't done anything
yet.

Fix a yi, xc, ac. For average xi, x' that are independently sampled from the marginal
distribution Pxyi=yi, we will show that

IIFx,xc,ac) Ix',xc,ac)i g.

To handle issues such as Alice "printing" her input onto the state |1) (as discussed in the
introduction), the definition of FIxxc,ac) requires local unitaries that "undo" such overt
actions of Alice and Bob - this is accomplished by the unitaries U and V defined in Sec-
tion 7.3.1.

Then, we consider what happens when we apply Bob's measurement to both states
rxI,xcac) and I -x1,xc,ac), and condition on obtaining answers bc for the C coordinates. His

measurement will depend on the questions y, and yc. The post-measurement states will be
precisely |Yxiyi,xc,yc,ac,bc) and IYxiyj,xC,yCaC,bC). The distance between these states will be,
roughly speaking, the distance between Ixxc,ac) and I 1Fxca) divided by the probability
of Bob obtaining outcome bc conditioned on Alice obtaining ac. If we average this distance
over all choices of xc, yc, ac, bc that imply the event WC, we get that the average distance
between [Yxj,yixc,ycac,bc) and I-Yx'iyLxc,ycAc,bc) is approximately nP(wc). If P(W) is much

greater than 1/ n, then this distance is small. We then invoke quantum correlated sampling
(Lemma 86), and that proves the Sampleability Lemma.

Proof. We introduce the following state:

OX[,,]EAEBAc PX: (, Xn] ) IWXn]KX:n] 0 AIp)(4' AE T@ ac)KacI-
W,xn[j,aC
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If we trace out the EA register, we have that

POOX[,1EBAc X P " (w, f11) jw x[n,] )(w X[n] I -jI( p0 Iac)(ac I

Co,x111,ac
d< Ej PoX~y (w, x[,1 ]) Lw x[,1J)(w x~,11 I 0 EAa, /~(I

= Pox (w, X[]) |W X[ 11 )(w X[| 0 p 0 I,
',xf

where p is the reduced density matrix of I') Ej Aj Ivj ) Iv) on EB, Aa1c denotes the

entry-wise complex conjugate of Ak, with respect to the basis { vj }, and the last equality

uses Eac Aac, = 1. From the definition of S, we have

ICI -log Al > Sco (oX 1]EAC OX[ 11 E Tr I)

s OXOX[,EAC X C9 'E T4Tr) (SHlb) II-)

> E S ( X EBIwac GX 0 EB) (Fact 10)

Now we apply Quantum Raz's Lemma:

E E I(Xi;EB1wac CI logIAA < (7.2)
),Ac i i

where recall that we defined = (IC I log I Al I B n)/. Applying the inequalities of Pinsker
and Jensen, we obtain

E E E ||IEB I w,ac - EBeuac I (7.3)
0,AC i Xii(A ,ac

These marginal density matrices have a nice description. Fix i, (, xi, ac. First we note that

the state EB 1,x,,I c does not depend on wi, because we are already conditioning on xi. Thus

we can write it as EBscvi,xiaC. Then

1
E, B0 -i AC,xi PX[, w !,x, ([1n)Vp acV,

A c ixi x[11

1 1' Nx(x)Aa

1
\lpAac

PAa_,,x (ac) )iXVi

Similarly,

1
~EB~~ac AcI~w(aC)
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For all cL,, xi, ac, define the following (unnormalized) states:

|T _i,xi,ac) = Sw-i,xi,ac 0 1 ) |cw,ac) = SW,ac ( I I)) (7.4)

where the S operators were defined in Section 7.3.1. Let -y7_,xi,ac = (PAc,, ,,x,(ac)) 1 /2

w_,,x,,ac)| and 7w,ac =(PAC I. (ac))1/ 2 - IliTr,ac)II denote their norms. We will write

I~w ,xi,ac ) i,xi,ac IFw-i,xi,ac) | 5,ac)c I w,ac )

to denote the normalized states.

For notational convenience we will suppress mention of w.i and z = (ac, bc), and im-
plicitly carry them around. Thus, for example, when we write IFx ) and 17,,), we implicitly
mean I F_,,x,,ac) and Iwo,ac), respectively.

Fix xi, and consider the following:

(( 1 SX - -2 Sw)t(,? Sx, - '-S) 0 111,)

Tr (y1 , - 'r2 Sc,)(-.Sx, - Swz)i (Ando's Identity)

Next we use the Powers-Stormer inequality [86], which states that for positive semidef-
inite operators A, B, we have IA - BII < A2 - B 2I|1. Since SxJ and So, are by
construction are positive semidefinite, the above is bounded by

< ||'r2SxipSt , - 7 (7.5)

We can write S=pS* = Ux,( Ax,)1/21(Ax,)1/2Ut = Vj5AxV~Jj and S pSt,, = AJAVl.
Next we observe that for any square matrix A, IA Iii IA I1, where A denotes the entry-
wise complex conjugate in some basis. By taking the complex conjugate with respect to
the basis that diagonalizes p, we have that (7.5) is equal to

II 2 -VFpz p A- . (7.6)

We see that (7.6), averaged over i, w, ac and xi is exactly the quantity bounded in (7.3).
Applying Jensen's inequality, we have

j114 > E E IIITw_,xt,ac) -|Iw,ac)I| (7.7)
i OACXi u,_ix~c ~oa)1

> E E IIF)(Frw_,,xi,ac - IF)(Flw,ac Ill (7.8)
i QAcX,

where we write F)(F li,x,,ac instead of

IrFo_,,x,,ac )(F_,i,x,ac I to save space.
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Define the cq-states

OXiE_ E3AC Z AcXi ,'w, aC, Xi) w xi)((ixi I )f ij,,ac C ac)KacI

and

QXjEA4 EBAC POACXj (w,ac, xi) IXi)(WXi G) I O("Iw,ac 2 aC)atC
wo,ac 'X1

so that the bound in (7.8) is equivalent to

i ~OXiEAEBAc - XEAEBAC c (7.9)

We define the quantum operation S acting on registers (EB as follows: for all o and den-
sity matrices T,

: ?W)(W I G) W 1)(WI0 E Tw,bCTTb, 01 bc)(bc1.
bc

In other words, the quantum operation S will, controlled on D, apply the measurement
corresponding to the Tw,bc operators (defined in Section 7.3.1) to the EB part of the state,
and save the measurement outcomes in an ancilla register.

The operation S is an isometry, so we have that

E S (0'XjEEBAC) - ($iOXEAEBAC) E E1/4. (7.10)

Let us examine what happens when we apply S to VDX:EAEBAC

E |w xi)(wx 0 T T,,Icfw _i,xi,ac)KfW 1-i,xi,aciTbc 0 acbc)Kacbcl
OAcXi bc

Ac|N~i ( a Xi NN X Tw,bc Irijjj,ac) Fa-ii,ac 1,,bc |C C)aCC= E LPACI,,x.(ac)lcwxi)(Kwxil I: E T0,b~ 1 acbc)(acbcl
OX 1 bc RAc1W ixi (C)

= E IWXi)(WXi 0 Tw,bc,-i,xi,ac)w-i,xi,ac >,bc 0Iacbc)(acbc
ac,bc

where in the second equality we used that the normalization of F)(FI is equal to PAcjCt) (ac),
and that PAC 1,x(ac) - PAcV,,x (ac). Similarly, we have that

s (si8XEAEBAC) = E J wxj)(wxjj 0 E Ta,,bcIw,ac)(FLL,acITbc 0 IaCbc)(acbcl-
ac,bc

Define A' -- 'F( and hhA' nccX;gA
DeieAXiEAEBA CBC (XEAE13AC) anAXEAEBACBC ($iOXjEEBF ) In both

these states, the event of WC is well defined: the registers XCYC (which are part of the

dependency-breaking variable f) and ACBC are classical. Furthermore, we claim that the

probability of the event WC in A' and A" are equal to the probability of WC in the actual
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repeated strategy. Let

1= Jxcycacbc)(xcycacbcf
xc,yc,ac,bc:

V(xc,yc,acbc)=l

be the projector onto the subspace corresponding to the event WC. Then for all i

Tr (HA')

= I Poxi (wxi)
w,xi

Pox (Wxi)

Wxi

XI
ac,bc:

V( xc,yc,ac,bcl)=

ac,bc:
V(xc,yc,ac,bc)=l

ac,bc:
V(xc,yc,ac,bc)=l

KTcwi,xi,ac I T,bc Tw,bc I Fwi,xi,ac)

( S i,xi,ac T c)t S i,xi,ac & Tw,bc) )

(' ( Aa_ 2 0 b)

-Aa

Bbc 't)

ac bc
Using the definitions of AU)-_,x, and B, we see that this quantity is identical to P(WC).
Similar reasoning shows that Tr (H Ai) = P(WC).

Let A'xEEABcw (HATI) /P(Wc) and A'7XEEABW (A )/P(Wc) de-
note A' and A' conditioned on the event WC. So we have

E A J X -i 5 1 / 4
E A XiEAEBACBCIWC fXEEBACBCWc1 < P(WC)

(7.11)

Let us bundle together the 2 and AcBc registers into R. For all r = (w, ac, bc) and xi,
define

-rxi) Sw-i,xi,ac 0 Twbc I

ISw-i,xi,ac 0 Tw,bc I

Then we see that

and

[Fr) Sw,ac 0 Tcobc

Swac 0 Twsc)

A'xEEW R WE rxi)(rxi 0 ['Yr,xj)(IYr,xi

AixiEA Ejlwc =E Ir)(r 0 E Ixi)(xiJ 0 [Yr)(TrI-
RIWc XiIw

We see that AE and AXEB :-W are both cq-states that are classical on RXi and
quantum on EAEB. The inequality in (7.11) implies that the trace distance between the
classical parts of A' and A is at most 5l/4/ P(WC). Thus we can change the classical
part of Ai to match the classical part of A" by at most doubling the error:

E E Irxi)(rxil 0 (Lyr,xi)(KYr,xil - I 1yr)(YrI) < 2 .1/4
RXiIWc 1 P(WC)
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which implies that

E E IIl'r,xi)(Yr,xi I - | r)(rI||1 < 2 /c

i RXiJWc P(WC)

By Lemma 89, Ei fjPo, Xi - PoiXi|I < v 3 . Applying that to the above, we get

|| |1fr,xY)~(r,xjI - ITr)(lrl 1|11 i5 2114 + \
i [X R_ij j,xiWc P(WC)

where the middle expectation over OiX is over the prior distribution (i.e. before condi-
tioning on the event WC). Now observe that in this prior distribution, Oi fixes Yi with
probability 1/2, so we in fact get

E [R Ei~L) |||r_iYxiW )(i,j)i x j,yji - |Yri,yi)(r_i,yiI |] + 2 v
i XiYi [R-i xi,yWPW)

where the states [Wr__,x,y,) were defined in Section 7.3.1, and ITr ,y1 ) is I'r) where r

(r-i, wi) and wi fixes Yi = yi. Applying the Fuchs-van der Graaf inequality, we obtain a
bound in terms of Euclidean distance:

X Y [i&. yi,Wc 11ri,xi,y ITryi)I 0 ((1/4/P(wc))1/2 (7.12)

Similar reasoning implies that

E E E V r ,x,y) - ITr j,x) < 0 ((j1/4/P(Wc))1/2) (7.13)
i XiYi [R- _xi,yW

where ITr_i,xi) is I1r) where r = (r-i, w ) and wi fixes Xi = xi. By triangle inequality, we
have

E E E i|1r_j,yj) - |Yr_,x) 0 ((j/4/P(Wc))1/2) (7.14)
i XiYi R.Ijxiyi,Wc

Let il := 0 ((6 1 14 /P(WC)) 1/ 2 ). Fix r-j, x,yi. Since r-i is public, Alice knows r-i, xi, and
thus knows a classical description of the state '<Dr-,xi). Similarly, Bob knows a classical
description of the state I<Dr-,yi). By the Quantum Correlated Sampling Lemma of [39] with
parameter a = ti, there exists a dimension d' that depends only on d and a, and unitaries

Ur__xi and Vr-,y, such that

IUrixi 0 Vr_,,y IlEdd') - Ifr.1 ,xi) Ed') 11 < O(max{x 1/ 12 I - I1rr 7,yr)111/61.

We can average this over i, xi, yi, and r-i to get that

E E IE IIUr_i,x, 0 Vr-,,y, IEdd) - ITr jxi) IEd') II
SXiYi [R-ixi,,W-

< E E E 0(maxftx1/12, 1Irjj ~-~i 1/6)
i XiYi 1R__ xj,y;,WC
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< 0(t1/12

= 0(111/12)

where in the second inequality we used the following fact: for a random variable X taking
values in [0,1] with mean I = E X, we can bound the expectation E max{ VI, X} < 2v/j.
Using the bound (7.13), we get

E E E ||Ur-i,xi 0 Vr-i,yiEdd') - <ri,xi,yi }E /12
i XY Rrex.,yj,WC

as desired.
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Chapter 8

Classical and quantum message
authentication in the presence of
entangled adversaries

The work presented in this chapter was jointly conducted with Sumegha Garg and Mark
Zhandry.

8.1 Introduction

Authenticating messages is one of the fundamental operations in classical cryptography.
A sender Alice and receiver Bob share a secret key k, and Alice wishes to send a mes-
sage in over an insecure channel to Bob, ensuring that the message was not tampered
with in transit. Alice will affix a "signature" cr to m using the key k and send the mes-
sage/signature pair (in, u) to Bob. Bob receives some potentially altered pair (ni', 0'), and
will then verify that o' is a valid signature on in'. If verification passes, Bob accepts nz', and
if verification fails, Bob ignores the message and discards it. The guarantee is that, even if
the adversary has arbitrarily tamper with the communication channel, as long as the ad-
versary does not know the secret key k, either Bob rejects, or the message he receives is mi.
Intuitively, this means the adversary cannot do anything but forward the message as is or
send a junk message that is always rejected. We generally require that security holds for
any ni, reflecting the possibility that the adversary may be able to affect the message being
sent. Such a (symmetric key) authentication protocol is usually referred to as a Message
Authentication Code (MAC). As long as k is only used to authenticate a single message,
information-theoretic security can be achieved: no computationally unbounded adversary
can modify the message. Put another way, information-theoretic classical one-time MACs
exist [101].

Just as authentication is fundamental to classical cryptography, it will continue to be an
important tool in the coming age of quantum computers. In this work, we investigate au-
thentication in the quantum setting. Namely, we explore both quantum attacks on classical

protocols, as well as full-fledged quantum protocols for authenticating quantum data.

Quantum Attacks on Classical Protocols. A recent series of works [17,34, 18, 19, 106, 63]
have studied quantum superposition attacks on classical cryptosystems. In the case of
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message authentication codes, an adversary in such an attack is able to trick the sender into
signing a superposition of messages. That is, the sender computes the map in) -+ Im, cr-,)
in superposition, where o-, is the signature on in. The adversary chooses some mes-
sage superposition Em I ni), and the sender then applies the map, giving the adversary
E1m am Ifl, O-m).

At this point, it is unclear what the security definition should actually be. Clearly, the
adversary can tamper with the signed state: he can, for example, measure the entire state
in the standard basis, obtaining the pair (in, c,) with probability la" 12. Then m, o-,, will
pass verification, but will be different from the signed state the adversary received. If the
adversary can change the message state, what sort of guarantees can we hope for?

Boneh and Zhandry [18] give the first definition of security for classical authentication
against superposition attacks. They argue that, at a minimum, the adversary given a single
signed superposition should only be able to produce a single signed message; he should
not be able to produce both valid signed messages m, o-,, and m', o-, for ni :A m'. In the
classical setting, this requirement is equivalent to the traditional MAC security definition:
an adversary who intercepts the signed message (m, o), and is able to maul the message
into (in', o-'), can also produce two signed messages: namely the original senders message

(in, o-) and the mauled message (m', c-').

However, the Boneh-Zhandry definition has some unsatisfying properties. For exam-
ple, consider the case where the sender only signs messages that start with the email
address of some intended recipient, say, bob@gmail. com. Suppose the adversary tricks
the sender into a signing a superposition of messages that all begin with bob@gmail. com,
but then manipulates the signed superposition into a different superposition that includes
valid signed messages that do not start with bob~gmail. com. Clearly, this is an undesirable
outcome. Unfortunately, the Boneh-Zhandry definition does not rule out such attacks -
it only rules out the possibility of an adversary producing q + 1 valid signed messages
when given q signed superpositions. The situation illustrated here, however, is that the
adversary is given one signed superposition, and now wants to produce one valid signed
message that was not part of the original superposition.

Along similar lines, suppose an adversary tricks the sender into signing a uniform
superposition on messages, and then produces a classical signed message (i, o-). From
the sender's perspective, each message has weight I[, where M is the message space.
The sender cannot prevent the adversary from measuring the message state to produce

(n, o-) for a random i. However, it would be reasonable to expect that the adversary
cannot bias the output of this measurement to obtain, say, (m*, o-,.) with probability much
higher than 1 . Again, Boneh and Zhandry's definition does not preclude such a biasing,
since the adversary only ever obtains a single signed message. Thus, the Boneh-Zhandry
definition does not capture natural non-malleability properties one would hope for from
an authentication scheme.

Boneh and Zhandry's definitions suffers from these weaknesses because it only consid-
ers what types of outputs the adversary can produce, ignoring the relationships between
the output and the original signed state. In the classical setting, the two approaches are
actually equivalent, but in the quantum setting this is not the case.

Quantum Authentication of Quantum Data. Barnum et al. [9] investigate the possibil-
ity of authenticating quantum data using a quantum protocol. They present a definition of
non-interacting quantum authentication where, conditioned on the protocol succeeding,
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the sender has effectively teleported a quantum state to the receiver (provided that the
probability of success is not too small). They then give a scheme which attains this defi-
nition. Interestingly, they show that quantum state authentication also implies quantum
state encryption. Roughly, they argue that authentication in one basis (say, the computa-
tional or Fourier basis) implies encryption in the complementary basis. Their definition
corresponds to authentication in all bases, which gives encryption in all bases.

However, their general definition of quantum authentication has some shortcomings:
first, it does not explicitly handle the case of when the adversary has some quantum side
information about the message. Second, the security definition averages over the secret
key shared between the sender and receiver. Suppose Alice sends Bob the authenticated
state Authk (p) using key k. Bob receives a (possibly tampered) state k., and proceeds to ver-
ify the authentication. Let Tk denote the Bob's state conditioned on successful verification.
Roughly speaking, the definition given by Barnum, et al. state that the average state Ek Tk

is close to the original state p. However, this does not immediately imply that -ck is close
to the original state p with high probability, which is a much more useful condition. When
there is no quantum side information, their definition does in fact imply a "with high prob-
ability" statement, but this implication no longer seems to hold when the adversary can
manipulate the side information.

The work of Hayden, Leung, and Mayers [531 later showed that the protocol given
by [9] actually has universal cornmposable security, which implies that it remains secure in
the presence of side information. However, no general definition for authentication with
quantum side information was given.

Furthermore, [53] show that the secret key used in the Barnum, et al. protocol can
be partially re-used in further applications without compromising their security. When
authenticating classical information, the key can even be re-used in its entirety [35]; as
long as verification never fails, an unbounded number of messages can be authenticated.
This is quite surprising, since in the classical setting such re-usability cannot be obtained
without computational assumptions.

Again, unfortunately, the key re-usability property does not follow from the general
security definition alone, but follows from an analysis of the particular [9] protocol. More-
over, it has been an open question of whether there is a quantum authentication scheme to
allow for full re-usability of the key upon successful verification.

8.1.1 This Work

In this work, we address the above limitations by giving new security notions for au-
thentication in the quantum setting. More generally, we present an abstract framework
of security for both classical and quantum authentication schemes that not only captures
existing security definitions (such as the Boneh-Zhandry definition for classical protocols
or the Barnum, et al. definition of quantum state authentication), but also is more pow-
erful in that it strongly characterizes the (effective) behavior of an adversary. In particular,
the adversary may have access to quantum side information with the message state that
is being authenticated. The characterization of the adversary's admissable actions is what
allows us to easily deduce many desirable security properties (such as unforgeability, key
reuse, and more). Furthermore, we will show that various natural authentication protocols
satisfy our security definitions.

Our abstract security framework is inspired by the simulation paradigm in classical
cryptography. In our framework, one first defines a class d of ideal adversaries. Intuitively,
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ideal adversaries are those that cannot be avoided in a real execution of an authentication
protocol, such as those that discard messages, or ones that carry out actions explicitly
allowed by the protocol. For example, in the case of classical protocols, one can define the
class of ideal adversaries to be ones that "behave classically" on the message state - that
is, they're restricted to measurements in the computational basis. In the case of quantum
authentication, an ideal adversary can only act on the side information, but otherwise acts
as the identity on the authenticated message.

An authentication protocol P satisfies our security definition with respect to the class
d if for any adversary (not necessarily ideal), its behavior in the protocol P can be ap-
proximately simulated by an ideal adversary in a. We take the most general notion of
simulation possible: the joint state of the secret key, the message state after the receiver's
verification procedure (after an arbitrary adversary's action), and the quantum side infor-
mation held by the adversary must be (up to some error) indistinguishable from the joint
state arising from the actions of some ideal adversary from the class a.

We now discuss how security for both classical authentication schemes and fully quan-
tum authentication protocols can be defined in this framework.

A new security definition for classical authentication. The Boneh-Zhandry definition
focuses on what classical signed messages an adversary can produce, treating the super-
position access to the sender as a tool to mount stronger attacks. Here, we instead think
of a classical protocol giving rise to a weak form of authentication of quantum messages,
where a superposition is authenticated by classically signing each message in the super-
position. That is, a state Em am I m) is authenticated as the state Em am m, o-n). The state is
similarly verified in superposition by running the classical verification algorithm in super-
position, and measuring the result of the computation.

More generally, we think of the protocol acting on messages states that may be en-
tangled with an adversary. For example, the sender could sign the M part of the state

E. ainI)" 0 1 o) Z, where the adversary has control of the quantum side information

I pm)z states. The signed state then would become E an, Im, U-)T 0 I (p) Z. Signing
mixed states can also be expressed in this way, simply by purifying the mixture. By think-
ing of the protocol in this way, we are able to give security definitions that actually con-
sider the relationship between the sender's signed state and the final state the adversary
produces.

Clearly, such a classical scheme cannot fully protect the quantum state. An adversary
could, for example measure m, a-, or any subset of bits of the state, and keep the result of
such a measurement in his own private space. Also, the adversary can choose to replace
the signed state with junk if the outcome of some measurement is 1, and forward the signed
state if the outcome of a measurement is 0. None of these actions would be detected by the
classical verification procedure.

Our security definition for classical protocols says that, roughly, an arbitrary adversary
can be simulated by an ideal adversary that can only do the following: perform some mea-
surement in the computational basis (perhaps perturbing his own private qubits based on
the result of the measurement), and then perhaps conditionally replacing the state with
junk. We also extend the definition to handle side information the adversary may have
about the message state; for example, the adversary may possess the purification of the
message state. Thus, our definition is essentially the best one could hope for, since is dis-
allows the adversary from doing anything other than operations that are trivially possible
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on any classical protocol.
Our definition readily implies the Boneh-Zhandry security definition for one-time MACs,

and does not suffer from the weakness of their definition'. Finally, we show that the classi-
cal Carter-Wegman MAC that uses three-universal hashing is sufficient for achieving this
strong security definition.

Definitions for Quantum Authentication. We next turn to quantum protocols for au-
thenticating quantum messages. For general quantum protocols, the adversary can always
do the following. He can always act non-trivially on his own private workspace - the veri-
fication procedure can never detect this. Otherwise, he can forward the authenticated state
as is, without recording any information about the state, or he can send junk to the receiver.
Our strongest definition of security - which we call total authentication - says that this is
essentially all an adversary can do in a secure quantum authentication protocol. In other
words, a real adversary in a total authentication protocol can be approximated by an ideal
adversary that behaves trivially on the authenticated state.

Our definition strengthens Barnum et al.'s definition, and due to the fact that we con-
sider side information about the plaintext state, we obtain security guarantees that are
similar to the universally composable variant of their definition [53]. However, our defi-
nition is actually strictly stronger, due to the fact that we consider the receiver's view to
include the authentication key as well as whatever information the adversary may learn
about the key. The ideal adversary must approximate the real adversary, even consider-
ing the entire key. In contrast, existing definitions trace out the key - either partially or
entirely - and therefore do not directly consider arbitrary information the adversary may
learn about the key. Our security definition of total authentication thus rules out the possi-
bility of the adversary learning anything about the key (because the ideal adversary does
not interact with the authenticated state at all).

This fact has interesting consequences. For example, our definition immediately im-
plies that, upon successful verification by the receiver, the key can actually be completely
recycled to authenticate a new message. This is because, upon successful verification, the
key is completely hidden from the adversary and can therefore be used again in the same
protocol. We note that key recycling from quantum authentication was studied before
by [53], but they were only able to demonstrate that part of the key in the Barnum, et al.
protocol is reusable. Furthermore, no prior definition for authentication of quantum data
directly implies key re-usability, and no prior protocol for quantum messages gets full key
re-usability upon successful verification.

Our definition also gives a conceptually simple QKD protocol. Alice prepares a max-
imally entangled state, chooses a random key k, and authenticates half the state with the
key. She then sends the authenticated half to Bob, keeping the unauthenticated half to her-
self. When Bob receives the state, he sends a a "received" message back to Alice, who then
sends the key k to Bob. Bob verifies the state using the key. Even though the adversary
eventually sees the authentication key k, he does not know the key when he intercepts the
quantum state, and must therefore interact with the state without the key. If Bob's verifica-
tion passes, it implies, roughly, that the adversary could not have tampered with the state
(by the security of total authentication); in particular, the adversary could not have learned

1One limitation of our definition is that we consider the signature registers as being initialized by the signer.
Boneh and Zhandry, in contrast, allow the registers to be initialized by the adversary, with the signature being
XORed into the registers
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any information about the maximally entangled state. Therefore, Alice and Bob measure
their halves of the maximally entangled state and obtain a shared key that is unknown
to the eavesdropper. If Bob's verification rejects, the two try again. Though this is not a
practical QKD scheme (because any tampering by the adversary would cause Alice and
Bob to abort), it is conceptually very simple and illustrates the power of our definitions.

Next, we exhibit a protocol meeting our strong security notion. We present an authenti-
cation scheme based on unitary designs, which are efficiently sampleable distributions over
unitary matrices that behave much like the uniform distribution over unitaries when only
considering low degree moments. The protocol is simple: to authenticate a quantum state

p, first the state p is padded with some number zero qubits, so that the state looks like
p D 10)(0 Is. Then, using the secret key k the sender selects a random unitary Uk from an
appropriate unitary design. The state Ukp 0 )(01I s U is then sent across the quantum
channel. To verify, the receiver applies the inverse unitary Ut and checks that the last s
qubits are all 0. Recall that in the classical setting, padding a message before applying a
non-malleable encryption gives authenticated encryption. Thus, our construction of au-
thentication from unitary designs generalizes this idea to the quantum setting.

This scheme is very similar to the non-malleable quantum encryption scheme based on
unitary 2-designs that was proposed by Ambainis, Bouda, and Winter [5]. However, their
scheme does not provide any authentication, and does not consider quantum side infor-
mation.

Finally, we also give a definition of total authentication with key leakage. This is a notion
of security where the real adversary can be simulated by an ideal trivial adversary that
only acts on its own private workspace, but in a manner that may depend on the key. This is
slightly weaker notion of security than total authentication, but it still implies simple QKD
and some amount of key reuse. We note that the work of [53] essentially show that the
Barnum et al. protocol satisfies total authentication with (minor) key leakage.

We give a simple authentication scheme that achieves this: first, one classically authen-
ticates, performs the quantum Fourier transform, and classically authenticates again using
a fresh key. We call this the "Auth-QFT-Auth" protocol, and show that it achieves total
authentication where the key used in the second authentication may leak. In exchange we
obtain secrecy for the quantum message as well as the key from the first authentication.
This illustrates the surprising versatility of classical authentication schemes: combined
with one quantum step (the Fourier transform), it can give full quantum authentication.
This also gives a conceptually simple alternative to the protocol of [9].

8.2 Preliminaries

We will use caligraphic letters to denote Hilbert spaces, such as N, M, T, C, and so on.
We write S(N) to denote the set of unit vectors in N. For two Hilbert spaces N and M, we
write L(N, M) to denote the set of matrices that map N to M. We abbreviate L(N, N) as
simply L(R). The following are important subsets of L(N) that we'll use throughout this
chapter.

" D(N) denotes the set of density matrices on N; that is, positive semidefinite operators
on N with unit trace.

" D< (N) denotes the set of subnormalized density matrices on N; that is, positive semidef-
inite operators on N with trace at most one.
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* U(N) denotes the set of unitary matrices acting on N. For an integer N, we will also
write U(N) to denote the set of all N x N complex unitary matrices.

Another important class of operators are isometries: these are like unitaries, except that can
append ancilla qubits. We say that a map V E L(N, M) is an isometry if for all vectors
Iq) C N, IIV IP)II = IIIp)II. Note that this requires dim(M) > dim(W). We will let
J(N, M) denote the set of isometries in L( , M).

For a Hilbert space N, we let IN I denote the dimension of N.
We will typically decorate states and unitaries with subscripts to denote which spaces

they act on. For example, let Y and Z be two Hilbert spaces. Let U E U(Y) and let
V E U(Y 0 Z). Then when we write the product UY)VYZ we mean the (U' & Iz)Vy-z;
we will often omit mention of the identity unitary when it is clear from context.

Superoperators. In this paper we will consider superoperators, which are linear maps that
act on a vector space of linear maps. For Hilbert spaces N and M, let T(N, M) denote the
set of all linear maps that take elements of L(N) to L(M). While superoperators can be
very general, we will focus on superoperators 0 E T(N, M) that are completely positive and
trace non-increasing, which have the following characterization: there exists an alphabet E
and set of matrices (not necessarily Hermitian) {Aa}aEF C L(N, M) such that

1. O(X) = EaEy AaXAt for all X G L(N), and

2. ae At Aa --- IN-

For the rest of this paper, when we speak of superoperators, we will always mean com-
pletely positive, trace non-increasing superoperators. Although the definition of superop-
erators is rather abstract, they capture general quantum operations on arbitrary quantum
states, including post-selection, as demonstrated by Stinespring's dilation theorem:

Theorem 92 (Stinespring's dilation theorem). A map 0 E T(N, M) is a completely positive,
trace non-increasing superoperator if and only if there exists auxiliary Hilbert spaces Z, Z', an
isometry V E J(N 0 Z, M 0 Z'), and a projector H acting on M 0 Z' such that for all density
matrices p E D(N), we have

O(p) = Trz'(HVpV tH-I).

8.3 Definitions

Spaces. We let K denote the key space, M denote the message space, and Y denote the

authenticated space.

Authentication scheme. An 3-authentication scheme is a pair of keyed superoperators
Auth, Ver where

* Authk for k E IC is a superoperator mapping D(M) to D(Y).

* Verk for k E C is a superoperator mapping D(Y) to D(M).
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satisfying the (approximate) correctness requirements that for any (potentially mixed) quan-
tum state p E D(M),

Ik)(k 0 Verk(Authk(P)) - E Ik)(k p < (8.1)

where I| Iii denotes the trace norm.
This definition of authentication scheme is more general than we need in this paper.

Throughout this work, we shall exclusively work with exact authentication schemes; that
is, authentication schemes where Verk(Authk (p)) = p for all k. Furthermore, we will as-
sume that Authk behaves as an isometry taking M to Y (i.e. it isn't probabilistic).

We will treat Verk as a filter that only accepts states that were properly authenticated.
More formally, we view Verk (T) as first projecting the input state T onto the subspace of
Y that is the image of M under Authk. Then, it applies the inverse isometry Authk on this
projection ("undoes the authentication"). Thus Verk(-) is not a trace-preserving quantum
operation.

Note that normally, the verification or decoding procedure of an authentication scheme
(e.g., as defined in [91) is a trace preserving operation that additionally generates an addi-
tional bit b indicating whether verification accepted or rejected. Then the correctness re-
quirement above would additionally require that b = 1 with probability (negligibly close
to) 1, for inputs obtained by running Authk on some state. However, we note that this
is equivalent to the formulation above. Indeed, starting from a verification operator Ver'
that additionally outputs b, we obtain an operator Verk that projects onto b = 1, and then
discards b. If b = 0 with non-negligible probability, then the trace of the result would be
smaller than that of p. Hence, the result could not be close in trace distance. Therefore, a
small trace distance implies that b = 1 with overwhelming probability. This view of the
verification procedure Verk as a filter will be more useful in our paper.

We will also use Auth and Ver to denote the operators

Auth(-) = L|k)(kl 0 Authk(-) Ver(.) = |k)(k O Verk(.)-
k k

Classical Authentication. In a classical authentication protocol, the authentication op-
erator Authk is specified by a classical function Authk : M F-+ Y acting on the computa-
tional basis, run in superposition on the input state. The verification operator behaves the
same as described above: Verk projects onto the subspace of Y spanned by classical strings
Authk(m) for all m E M, and then applies the inverse map Authk1 -

Oftentimes we will want to project onto the space of valid authenticated messages,
without undo-ing the authentication. We use the operator Check to denote this:

Checkk = 1Authk(m))(Authk(n)I
in

We will also let Check(.) = Ek Ik)(kl 0 Checkk(-).

Message authentication codes. A message authentication code (or MAC) is special type
of classical authentication scheme (Auth, Ver) where for a message m, Authk(m) = (m, o-(k, in)),

where we call o-(k, m) the message tag. We treat Verk as an operator that projects out mes-
sages that do not have valid tags, and for messages with valid tags, Verk will strip the tags
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away:
Verk = Im)(m, o-(k, m)I.

In

In the case of a MAC, the check operator looks like:

Checkk = ,o-(k, m) )(m, -(k, in).
in

Adversaries. The way we model adversaries is the most general - and the most conser-

vative - way possible: the adversary prepares the initial message state p)"Z, where we
can assume that the adversary possesses the purification of p". After the state is authen-
ticated with a secret key k, the adversary gets to attack the 2Z spaces with an arbitrary
completely positive trace non-increasing superoperator 0. After this attack, the state is
un-authenticated with the same key k.

We don't require the superoperator 0 to be trace preserving; this is to allow adversaries
to discard certain measurement outcomes (or, alternatively, post-select on measurement out-
comes, without renormalizing). While this may seem to give the adversary far too much
power, in our security definitions we take into account the probability of the event that
the adversary post-selects on. If this probability is too small, the security guarantees are
meaningless, which is necessary. Allowing for superoperators to be trace non-preserving
will help make our definitions clean to state.

8.4 Security Framework for Quantum Authentication

We now give a framework of security definition for authentication protocols in the quan-
tum setting, involving adversaries that may possess side information that is entangled
with the messages. Our security definitions generalizes some of the known classical and
quantum authentication definitions.

We present our security definitions using the real/ideal paradigm. Let (Auth, Ver) be
an authentication protocol, with key space IC, message space M, and authenticated space
Y. Let Z denote the space of auxiliary side information.

Definition 93. Let (Auth, Ver) be an authentication scheme. Let a C T(YZ, YZ) denote a
set of ideal adversaries. The scheme (Auth, Ver) is E-reduces to a-adversaries iff the following

holds: for all initial message states |p)MZ, for all adversaries 0 E T(YZ, YZ), there exists an
ideal adversary I c d such that the following (not necessarily normalized) states are e-close in
trace distance:

" (Real experiment) E k |k)(ki 0 [(Verk 0 i3) o 0 o (Authk 0 IF)] &MZ)

" (Ideal experiment) Ek I k)(k 0 [(Verk 0 IZ) o I o (Authk 0 IZ)] (PMZ)

Intuitively, our security definition states that for an authentication scheme (Auth, Ver)
that is a-secure, for all initial message states pMZ, an arbitrary adversary that acts on an
authenticated state Authk(pMZ) is reduced to an "ideal adversary" in a; behaving differ-
ently will cause the verification procedure to abort. In other words, "all the adversary can
do" is behave like some adversary in the class a.
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A comment about normalization. It is important that the states of the real experiment
and ideal experiment are not requiried to have unit trace. This is because their trace cor-
responds to the probability that the verification procedure accepts. If the probability of
acceptance is smaller than e, then the security guarantee is vacuous. Intuitively, this cor-
responds to situations such as the adversary successfully guessing the secret key k, so we
cannot expect any security guarantee in that setting. However, if the probability of accep-
tance is significantly larger than E, then we can condition on acceptance, and still obtain a
meaningful security guarantee: the distance between the (renormalized) real experiment
and ideal experiments is small.

We now specialize the above definition to some important classes of ideal adversaries
that we will consider in this paper. Note that for two classes of ideal adversaries d and

', if a C d', then an authentication scheme reducing to a-adversaries implies reducing
to d'-adversaries. Hence reducing to o-adversaries is a stronger security guarantee.

8.4.1 Basis-dependent authentication

We first define a notion of security of authentication schemes that reduce to a basis-respecting
adversary.

Definition 94 (Basis-respecting adversaries). Let B = {Ip)} denote an orthonormal basis for
Y. Then an adversary I E T(yZ, YZ) is B-respecting iff it can be written as

I(o-) = Trz'(HVo-V tH)

for all o- C D(yZ), where H is a projector acting on ZZ', and V E J(YZ, YZZ') is an isometry
that can be written as

V = 0 p{ | V

where for each q, V* E J(Z, ZZ') is some isometry.

Without the second condition on V, by Stinespring's Dilation Theorem every super-
operator can be written as 1(o) = Trz'(EVcrV t IH) for some choice of isometry V and
projector H. However, the second condition forces V to respect the basis B. Intuitively,
a basis-respecting adversary first measures the Y register in the B basis, and based on
the measurement outcome, performs some further isometry on the side information in
Z. When B is simply the computational basis, then the adversary treats the Y register as
classical.

Definition 95 (Security relative to a basis). Let B be a basis for Y. An authentication scheme
(Auth, Ver) E-authenticates relative to basis B iff it it c-reduces to the class of B-respecting
adversaries.

Intuitively, our new definition captures the "best possible" security definition for classi-
cal authentication protocols. With a classical protocol, the adversary can perform arbitrary
measurements on the authenticated space without detection by the verification algorithm.
Because measurements are now undetectable, the adversary can also perform c--dependent
operations to the auxiliary registers, where o is the classical authenticated message ob-
served in the authenticated registers. For example, he can copy o- into the auxiliary space.
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He can also now choose to abort or not depending on Cr. However, he should not be able
to turn o- into cr' 7 0-.

In Section 8.5, we establish two properties that follow from our basis-dependent secu-
rity definition. First, we show that from the point of view of an adversary, the state which
was authenticated in superposition is indistinguishable from having been measured in the
basis B. Showing this uses our definition crucially: we reduce all potential distinguishers
into adversaries that must behave in a basis-respecting manner, but then such an adversary
cannot tell whether the state was measured or not.

Next, we show that our definition implies unforgeability: the adversary cannot pro-
duce two valid signed messages with non-negligible probability, when given access to only
one superposition. Thus, our definition subsumes the Boneh-Zhandry security definition
for one-time MACs.

In Section 8.7 we show that the classical Carter-Wegman MAC where the message In is
appended with h (m), where h (.) is drawn from a three-wise independent hash family, is a
scheme that authenticates relative to the computational basis.

Theorem 96. The Carter-Wegman MAC with three-universal hashing is O( |MI / T )-authenticating
relative to the computational basis, where T is the range of the hash family.

8.4.2 Total authentication

Here, we will define the strongest possible notion of secure quantum authentication.

Definition 97 (Oblivious adversary). An adversariy I E T(YZ, YZ) is oblivious iff there
exists a superoperator 0 E T(Z, Z) such that

-T(0-) = (11 ox 0) (C-)

for all 0- E D(Y Z).

In other words, an oblivious adversary does not act at all on the authenticated message,
and only acts on the auxiliary side information that it possesses about the state.

Definition 98 (Total authentication). An authentication scheme (Auth, Ver) e-totally authen-
ticates iff it E-reduces to the class of oblivious adversaries.

This is a generalization of the Barnum et al. definition to handle arbitrary auxiliary
information about the input state. This is the strongest possible notion of security: for
any authentication scheme, an adversary can always mount the following trivial attacks.
First, he can arbitrarily modify the unauthenticated auxiliary state. Note that he cannot
necessarily modify the contents of the auxiliary state based on the authenticated state,
since this amounts to some measurement on the authenticated state, which verification
may detect. Second, he can choose to either forward the authenticated state as is, or abort
and forward nothing (equivalently, forward a junk state that is guaranteed to reject upon
verification). Moreover, he can choose whether to abort or forward based on the contents
of the auxiliary registers, and can even abort/forward in superposition. However, in an
authentication scheme that totally authenticates the adversary can only behave in such
trivial ways.

In Section 8.6 we establish a few properties of this definition. The first is that a totally
authenticating scheme yields encryption of the quantum state. Barnum, et al. showed that
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quantum state authentication implies quantum state encryption [9]. However, they did
not take into account quantum side information. We show that our definition very easily
implies encryption even when the adversary may be entangled with the message state.

Then, we show how our notion of total authentication gives rise to a conceptually sim-
ple version of quantum key distribution (QKD). [53] have already observed that the uni-
versal composability of the Barnum et al. protocol implies that it can be used to perform
QKD as well. Thus while our application of quantum authentication to QKD is not novel,
we use this as another opportunity to showcase the strength of our definition. We also
show how our definition easily implies full key reuse.

In Section 8.9 we present a scheme achieves total authentication, and hence is the
strongest possible authentication scheme in the quantum setting. To our knowledge, this
is the first authentication scheme that achieves this level of security. As described in the
introduction, this is based on applying an (approximate) unitary design on the input state
padded with some number s of 10) qubits.

Theorem 99. The unitary design scheme is 2-s 2-totally authenticating, where s is the number of
extra |0) qubits.

As a consequence, this yields an authentication scheme where the key can be recycled
fully, conditioned on successful verification by the receiver. In contrast, the protocol of
Barnum et al. is not known to possess this property; [53] showed that most of the key can
be securely recycled.

8.4.3 Total authentication with key leakage

Finally, we introduce a slight weakening of the definition of total authentication above:
we consider schemes that achieve total authentication of quantum data, but incur some
key leakage. We model this in the following way: let K = IC I (the size of the keyspace),
and let K' < K. Define a key leakage function e : AC F-4 {0, 1 }1ogK'. If K' is strictly less than
K, then f (k) must necessarily lose information about the key k E IC, but it will leak some
information about it.

In a total authentication scheme with key leakage, an arbitrary adversary is reduced to
an oblivious adversary (i.e., is forced to only act on the side information), but the manner
in which it acts on the side information may depend on f(k).

Definition 100 (Authentication with key leakage). Let (Auth, Ver) be an authentication scheme.
Let K' < I KI and let f : AC - {0 ,1 }logK' be a key leakage function. Let V C T(YZ, YZ) denote
a set of ideal adversaries. The scheme (Auth, Ver) E-reduces to a-adversaries with key leakage
f iff the following holds: for all initial message states Ip)M Z, for all adversaries 0 E T(YZ, YZ),
there exists a collection of ideal adversaries {I, } c a, indexed by h e {0, 1 11,g K', such that the
following (not necessarily normalized) states are E-close in trace distance:

* (Real experiment) Ek Ik)(k| 0 [(Verk Iz ) o 0 o (Authk 0 IZ)] (PMZ)

* (Ideal experiment) Ek Ik)(k| 0 [(Verk 0 IZ) 0 Tf(k) o (Authk 0 IZ)] ( 9 MZ).

Definition 101 (Total authentication with key leakage). Let K' < I IC I and let e : AC -
{0, 1} og K' be a key leakage function. An authentication scheme (Auth, Ver) e-totally authenti-
cates with key leakeage f iff it E-reduces to the class of oblivious adversaries with key leakeage
f.

142



This definition may seem somewhat strange: how is an ideal adversary able to learn
bits e(k) of the key k, if it doesn't act on the authenticated part of the state at all? Of course,
any adversary that learns something about the key must have acted on the authenticated
state, but the point is that, conditioned on successful verification, the adversary "effec-
tively" behaved like an oblivious adversary that had access to e(k).

In Section 8.8 we present a very simple scheme that achieves total authentication with
some key leakage: to authenticate an arbitrary quantum state p, first apply the classical
Carter-Wegman authentication scheme on it using key k. Then, apply H*" to all the qubits
in the authenticated state (i.e. apply the quantum Fourier transform over Z2 ). Finally,
apply the classical Carter-Wegman scheme again using a fresh key h. Thus, we are authen-
ticating the state p in complementary bases. We call this the "Auth-QFT-Auth" scheme.

We will show that this in fact achieves total authentication (and hence encryption of
the state), but at the cost of leaking the "outer key" h:

Theorem 102 (Security of the Auth-QFT-Auth scheme). The Auth-QFT-Auth scheme is 6-
totally authenticating with outer key leakage, where 6 = O( 15/2/ 21|YI).

While this scheme leaks some bits of the outer key, it preserves the secrecy of the state
p and the "inner key" k. Furthermore, it is much more "lightweight" than the full unitary
design scheme that achieves total authentication without key leakage. It also illustrates
that applying a simple classical authentication scheme in complementary bases is already
enough to reduce a full quantum adversary to performing only trivial attacks. Finally, the
analysis of this scheme crucially relies on the basis dependent security definition above.

We note that Hayden, Leung, and Mayers show that the authentication scheme of [9]
satisfies total authentication with key leakage [531, but it is unclear whether it satisfies the
strongest definition of total authentication without key leakage.

8.5 Properties of basis-dependent authentication

8.5.1 Indistinguishability from measured

Here, we show that any classical scheme that authenticates relative to the computational
basis implies that the authenticated state is indistinguishable from being measured in the
computational basis. For concreteness we will work with the computational basis; this is
without loss of generality.

Definition 103. If Auth is a classical scheme that is E-indistinguishable from measured in the
computational basis, then for any state p A4Z, the following two states are - close:

" Ek [Authk 0 i] (p.M Z) (the unmeasured authenticated state), and

" Ek [(Meas & I - ) o (Authk & IZ)] ()pM z) (the measured authenticated state), where Meas
denotes measuring in the computational basis.

Theorem 104. If (Auth, Ver) E-authenticates relative to the computational basis, then Auth is

7VE--indistinguishable from measured.

Proof. We prove this theorem by contradiction: assuming an adversary can distinguish
from measured, w'e will obtain a violation of the security of authentication. Analogous to
the proof that authentication implies encryption of Barnum et al. [9], our proof will pro-
ceed in two parts. First, we will reduce to the case where we assume the distinguishing
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adversary has very high success probability. Second, we will show that by iterating the
scheme, we boost a low success probability adversary into a high success probability ad-
versary. For this proof, we will not need the full security where the key k is considered -
instead, we will invoke the authentication security by tracing out and averaging over the
key as in prior works.

Let pMz be a quantum state. Let D be a distinguisher violating the indistinguishability
from measured property. Suppose D has very large distinguishing advantage 1 - 7. This
means that

" D(Ek [Authk IZ] ( 9 MZ)) outputs 1 with probability at least 1 - -y, and

" D(Ek [(Meas 0 Iz) o (Authk 0 IZ) ()] MZ)) outputs 1 with probability at most -Y

Now, we set up the state (I10)(0 1+ 11)(1) pMZ. We conditionally measure p" in
the computational basis based on the first bit: if 0, we measure, if 1 we leave intact. Next,
we discard the first bit by tracing it out. The resulting state is [ (Meas + IM) 0 1z[] (pMZ).

Now we authenticate. Since the scheme is classical, authentication commutes with
measurement in the computational basis. Therefore, the authenticated state is

((Meas + IY) o Authk) 0 IZ(MZ)

The adversary now applies D, copying the result into its auxiliary state. Because D has
high distinguishing advantage, applying D and conditioning on D giving the right answer
only negligibly affects the state. Therefore, it is straightforward to show the resulting state
is 4/2~y-close to:

I [IYz o (Authk 0 IZ 0z)011)(11 + E [(Meas 0 IZ) o (Authk 0 IZ MZ)010)(0

Now, this state will pass verification with probability 1, since the authentication scheme
is classical. Therefore, this state is approximated by an ideal adversary that is computa-
tional basis respecting. Note that such adversaries commute with the measurement in the
computational basis. Therefore, the final bit in the approximated superposition is either 0
or 1 or some mixture of the two, but the mixture is independent of whether the authenti-
cated space is measured or not.

Therefore, the state above has a distance of 1 from any ideal adversary, a contradiction.
Thus, we have that if the scheme 1 - 4/2 y-authenticates in the computational basis,

there is no distinguisher with advantage 1 - -.

Next, we show how to boost a low-advantage distinguisher for a scheme (Auth, Ver)
into a high-advantage distinguisher for the product scheme (Auth t ,Ver') which acts on
message space Mt by applying Auth to each message component with an independent
key.

A simple hybrid argument shows that, if (Auth, Ver) E-authenticates in the computa-
tional basis, then (Auth t , Vert) te-authenticates in the computational basis. Note that Bar-
num et al.'s proof of this required somewhat more effort; however, for us, due tot he fact
that we consider side information in our definition, in our case the security of the product
scheme comes essentially for free.
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Next, assume D distinguishes from measured for the state pA'z in the scheme (Auth, Ver)
with advantage 6. Then we can boost the success probability to a distinguisher D' for the

state (P9 ""Z )0' in scheme (Auth', Vert ) with advantage 1 - 2e- ' 1 2 . But from the above, this

means that the scheme (Autht , Vert) cannot 1 - 8e-, 1 4 -authenticate. Thus,
1

te > - 8e-
2

Choosing t = 1/3/c gives 6 < 7 .

8.5.2 Unforgeability

In this section we show that our security definition of authentication schemes relative to
a basis implies the classical security definition of authentication schemes - namely, that
the adversary, after having received the authenticated message state, cannot produce two
distinct authenticated message-tag pairs with non-negligible probability. This property is
called unforgeability. Thus this shows that our security definition recovers the Boneh-
Zhandry security definition for one-time MACs.

Our model for signature forgery is the following. Let (Auth, Ver) be a classical authenti-
cation scheme that is B-respecting for some basis. We will let B be the computational basis
without loss of generality. Furthermore, we will restrict our attention to MACs where for
a classical message n E Mv, Authk(m) (m, r(k, m)), although our arguments extend to
general classical authentication schemes.

Without loss of generality we can assume that the initial message state is a pure state

IE),= .in I M)M A CpZ where the I pm) are arbitary pure states held by the adver-

sary. After signing, we have

T"KYz = E Ik)(k 0 Authk(p-Z.
k

The adversary applies some superoperator S on YZ and outputs a system on YIY 2Z. The
spaces Y1 and Y2 are both isomorphic to Y. Let the tampered state be denoted as

V'jCyY2z = E |k)(k| o (Authk(p"MZ)).
k

We define the probability of forgery by E on input p to be the probability that, upon
measuring 1C, Y1, and Y 2 in the computational basis, we obtain a key k and two valid
signed messages (m, o-(k, in)) and (m', c-(k, mi')) with in : mi'.

The next theorem shows that quantum-secure authentication schemes possess the un-
forgeability property. The idea of the proof is as follows: suppose that there was an au-
thentication scheme (Auth, Ver), an adversary S and an initial message state pm such that
E on input p could forge an authenticated message with non-negligible probability. Us-
ing the fact that the authentication scheme is secure, we can in fact find a fixed message
i E M and another adversary e that, when given an authentication of message in, forges

a valid signed message (ni', o-(k, n')) where in' 3 in with non-negligible probability. The
definition of secure authentication scheme easily implies this is impossible.

Theorem 105. Let (Auth, Ver) be an authentication scheme that is E-authenticating relative to the
computational basis. Let S be a forger. Then for all initial message states pM z, the probability of
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forgery by S on input p is at most 3e.

Proof. Suppose for contradiction that the probability of forgery is at least 6 = 3E. Since the
scheme is E-authenticating relative to the computational basis, we can simulate the forger
by an ideal adversary I that respects the computational basis: on input T (the authen-
tication of p), it first measures the Y register to yield a valid signed message (in, o-(k, in)).
Then, conditioned on this result, it applies an arbitrary quantum operation on the Z reg-
ister. Since 9 is a forger, the ideal adversary I is also a forger: measuring ICYZ in the
computational basis will yield k, (in, o-(k, in)) and (n', c-(k, in')) where in 7 in' with proba-
bility at least 5 - - = 2E. Let Em denote the event that measuring Y yields a valid signature
of the message in. Let F,,, denote the event that measuring Z yields a valid signature of a
message that's distinct from in.

Thus

EPr[Em] - Pr[F,IEm,1 ] > 2E

where the probabilities are with respect to the ideal adversary I. Thus by averaging there
exists an in where Pr[F,, I Em ] > 2E. But notice that Pr[Em ] is independent of the key, and
simply I am 12, because the ideal adversary only measures the Y register of - in the compu-
tational basis. Thus, if we condition the state 1(r) on the event Em, we have the following
state:

I(-r Iyz Em =E I k)(kI0 in, c-(k, i) )(m, o-(k, in) I Y 0 'm,1(k,m) (pm)(Pr I mk

where Iin,,(k,m) denotes the attack that the ideal adversary performs on the side informa-
tion, conditioned on reading (in, o-(k, in)) in Y. However, Pr[F .. I Em I > 2E implies that mea-
suring Ek I k)(k 0 Ilm,(k,m) (I qm)(qml IZ) in the computational basis yields k and a forgery

(in', -(k, in')) where in' 7 in with probability at least 2e. However this is impossible, as
a real adversary could, given the authenticated message/tag pair (in, o-(k, in)), perform

1m,,(kj) on the side information I p) Z, and then swap the Y registers with some registers
in Z. Upon verification, measuring the Y registers of this tampered state has probability of
at least 2E of obtaining a valid (in', o-(k, in')), which contradicts the property that (Auth, Ver)
is E-authenticating relative to the computational basis.

8.6 Properties of total authentication

8.6.1 Encryption

Analogous to the Barnum et al.'s [9] result that authentication implies encryption, we show
that authentication when considering side information must encrypt the state, even to an
adversary that may be entangled with the state. This result is incompatible with Barnum
et al.'s: we start from a stronger property that considers side information, and end with a
stronger form of authentication that also considers side information.

Definition 106. If Auth is an E-secure encryption scheme with side information, then for any two
states pmz pj0 VZ such that pz and p1 are b-close, the following two distributions are 6 + e close:

. Ek [Authk ® IZ] (pmz) and
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9 Ek [Authk I ] (p1 ')

Theorem 107. If (Auth, Ver) E-aluthenticates, then Auth is an 14 fl-secure encryption scheme.

Proof. First, we observe that any scheme that gives E secure encryption in the case 3 = 0
gives 2e secure encryption in the general case. Indeed, by assumption, Ek IAuthk 0 I] (P0-1MZ)
is e-close to Ek Authk(10)(0I) 0 p', which is 3 close to Ek Authk(I0)(0I) 0 pj, which is e close
to Ek [AuthkilV] (iMZ)

Therefore, it suffices to prove that Auth is 7f/l secure for states with 3 = 0.

We prove this theorem by contradiction: assuming an adversary can distinguish from
measured, we will obtain a violation of the security of authentication. Our proof will very
similar to the proof of Theorem 104. First, we will reduce to the case where we assume
the distinguishing adversary has very high success probability. Second, we will show that
by iterating the scheme, we boost a low success probability adversary into a high success
probability adversary. For this proof, we will not need the full security where the key k
is considered - instead, we will invoke the authentication security by tracing out and
averaging over the key as in prior works.

Let p" '" 'zp be quantum states. Let D be a distinguisher that distinguishes between
the two with probability r. Suppose D has very large distinguishing advantage 1 - -Y. This
means that

* D(Ek [Authk 0 1Z] (pjl)) outputs 1 with probability at least 1 - -Y, and

" D(Ek [Authk 0 I] ( 9 ,4Z) outputs 1 with probability at most -r

Now, we set up the state 2I0)(01 0 p + 121)(11 0 p-vZ. Next, we discard the first
bit by tracing it out. The resulting state is 1 (p-4z + p-v'z). Then we authenticate. By the
linearity of quantum operations, we have that the state is

( Auth 0 1 Z] (MZ) + Authk 0 I (

The adversary now applies D, copying the result into its auxiliary state. Because D has
high distinguishing advantage, applying D and conditioning on D giving the right answer
only negligibly affects the state. Therefore, it is straightforward to show the resulting state
is 4V2~-close to:

E Authk 0 IZ] (pM) 0 10)(01 + 1E Auth 0 iZ

Now, this state will pass verification with probability 1, since each component is a valid
authenticated state and authentication is linear. Therefore, this state is approximated by
an ideal adversary that does nothing except forward the state as is or reject the state, and
modify its auxiliary registers independently of the authenticated state. Therefore, the final
bit in the approximated superposition is either 0 or 1 or some mixture of the two, and the
mixture may depend on p, but not p". But recall that by assumption pz = pj7, and so an
ideal adversary cannot distinguish the two cases. Therefore, the state above has a distance
of } from any ideal adversary, a contradiction.

Thus, we have that if the scheme! - 4 /2~}-authenticates in the computational basis,
there is no distinguisher with advantage 1 - -y.
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Next, we show how to boost a low-advantage distinguisher for a scheme (Auth, Ver)
into a high-advantage distinguisher for the product scheme (Auth t , Vert) which acts on
message space Mt by applying Auth to each message component with an independent
key.

A simple hybrid argument shows that, if (Auth, Ver) e-authenticates, then (Autht , Ver')
tE-authenticates in the computational basis.

Next, assume D distinguishes from measured for the state pMZ in the scheme (Auth, Ver)
with advantage 6. Then we can boost the success probability to a distinguisher Dt for the

state (pMz)Ot in scheme (Auth', Vert) with advantage 1 - 2e-t62 /2. But from the above, this

means that the scheme (Autht , Vert) cannot 1 - 8e- / 4-authenticate. Thus,

te > - 8e-t'2/
2

Choosing t = 1/3/E gives b < 7VE.

8.6.2 Quantum Key Distribution

Suppose we have a total authentication scheme. Then as argued in the Introduction, we
immediately get a simple method to perform quantum key distribution. However, the
QKD scheme sketched in the Introduction is rather fragile: any small amount of tampering
by the adversary will cause Alice and Bob to abort. Here we sketch a slightly more robust
way of carrying out QKD using a total authentication scheme.

Suppose Alice and Bob want to generate n bits of perfectly correlated key bits. We now
describe a protocol that takes 2 rounds and O(n log n) bits of communication, and tolerates
the adversary attacking at most O(n / log n) qubits of communication. If this is the case,
then Alice and Bob can distill at least 0 (n) bits of shared key. Let (Auth, Ver) be a scheme
that encodes single qubits as O(log n) qubits, and is E-totally authenticating for E n
The unitary design scheme is one such example.

The QKD protocol is as follows:

1. Alice prepares the maximally entangled state over 2n qubits i.e. Iq)) = Ex Bxx).

2. Alice will generate independent keys k1,.. . , k,, for n uses of the authentication scheme

(Auth, Ver). She authenticates each of the n qubits on the B-half of I<D)AB using an
independent key. She sends B to Bob.

3. Bob sends a bit to Alice acknowledging that he received some state through the quan-
tum channel (that may have been tampered by the adversary).

4. Alice sends the keys k1,.. . , kn over an authenticated, but non-private, classical chan-
nel.

5. On the quantum state he received, Bob performs the verification procedure Verk, G
... Verk,, on n parts of log n qubits each. He relays to Alice which parts successfully
passed verification. Let S c [n] denote the successfully unauthenticated qubits.

6. Alice and Bob measure the part of their respective states corresponding to S in the
computational basis, and use these bits as their shared key.
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Since (Auth, Ver) is totally authenticating, after Bob successfully unauthenticates the
qubits in S, the qubits shared between Alice and Bob in S will be e En-close to the max-
imally entangled state. Thus when they both measure, they will both share a keys (x, x')
that are en-close to uniform, perfectly correlated, and private from any other system (be-
cause the maximally entangled state is in tensor product with any other quantum system).
If we assume that the probability that Bob successfully verifies is not too small, then this
means that Alice and Bob have successfully performed quantum key distribution.

8.6.3 Key Reuse

Alice reuses the key once she gets back an acknowledgement from Bob that he accepted
the authenticated state. We have E-secure Total Authentication implying

IIEkIk)(kI 0 [(Verk 1') O(CrY)]- EkIk)(kI 0 [(Verk 01Z) 0 ( 0y S)(JYZ)lI 1 <E

where I = 10 0 S is the ideal adversary. As in the ideal case, adversary never touches
k and the authenticated state, final state after verification is completely unentangled with
the key k and distribution of k is uniform. Therefore, for a scheme satisfying total authen-
tication, when Bob accepts, the final state (including adversary's register) is close in trace
distance to an ideal state and we can reuse the key k again.

8.7 Quantum MACs from 3-universal hashing

In the classical setting, secure one-time MACs can be constructed via universal hashing.
Let {h}k be a strongly (2-)universal hash family. Then it is well known that the clas-
sical authenticiation protocol Authk(in) = (n1,hk(in)) is secure against classical adver-
saries [101]. Here, we show that the same authentication protocol is also quantum-secure,
provided that the hash family {hk}k satisfies the following: for all distinct i 1 , in2 , 13, the
distribution of (ilk (In 1 ), hk (112), hIk(m3)) for a randomly chosen k E K is uniform in T3.
Such a family is called a 3-universal hash family. We will overload notation and use k(.) to
denote the function hk (-)

We note that Boneh and Zhandry showed that, when authenticating classical messages
in the one-time setting, pairwise independence is sufficient to ensure that a quantum ad-
versary cannot forge a new signed message, as long as the length of the tag is longer than
the message! When the tag is shorter than the message, they showed that pairwise inde-
pendence is insecure, and 3-wise independence is necessary.

Our analysis of the 3-wise independent Carter-Wegman MAC requires that, in order to
obtain security against quantum side information, the message tag needs to be longer than
the message. Thus it is conceivable that pairwise independence is sufficient for the same
guarantee; we leave this as an open question.

Theorem 108. Let IC = {k} be a 3-universal hash family. Let Authk(in) = (m,k(m)) and
Verk be the corresponding verification function. Then the authentication scheme (Auth, Ver) is
O(/|M| / I TI)-authenticating relative to the computational basis.

Before beginning the proof we first state what the implications for key length are.
Suppose we wish to guarantee that the Carter-Wegman MAC is E-authenticating rela-
tive to the computational basis, then IM / TI < 0(E2 ), which implies that log TI >
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log IM + 2 log i + 0(1). To ensure three-wise independence, it is sufficient for the key to
have length 3 log |MI + 6log 1 + 0(1).

Proof. To prove this, we need to show that for all message states pmz and all adversaries
S E T(YZ, YZ), the result of the QMAC is to reduce the action of the adversary on the
authenticated message to an ideal, computational basis-respecting adversary.

We will concentrate on the case of signing pure state messages - this is because we can
always purify the initial message state, and give the purification to the adversary. In other
words, we will show that Carter-Wegman MAC is a quantum secure MAC when the initial

message state is a state jp)MZ = E 0 1 p,)Z. The register M corresponds to the
message, and the register Z is held by the adversary.

It will actually be more useful to work with the Schmidt decomposition of 1p), which
we write as

IP)MZ- A z
z (LIlm ))0 o)

where for z / z', we have (pz I pz) = 0, and the Az's are nonnegative numbers summing
to 1. Furthermore, the dimension of the span of { pz) }z is at most IMI.

After signing, the state becomes

0"Kyz = E |k)(k| 0 Authk(p)
k

where Y = MT. Now consider an attack S of the adversary. By Stinespring's Dilation
Theorem, the superoperator S can be implemented by applying a unitary V on registers
YZ, as well as some auxiliary register Z' held by the adversary, followed by a projective
measurement P on ZZ', followed by tracing out Z'.

First, we will assume that the auxiliary space Z' is part of the purification in lp)mz
Secondly, we will ignore the projector P for now, and handle it later.

We specify the action of V on YZ as

V : IM, t)M" Q |pz)z * Imtz )MT Z

where { ImI/)} are a collection of states in M TZ such that for all (m, t, z) 3 (m', t', z'),

411 tz Ilf 't'z') =0. Furthermore, write the states as follows:
ipmtz) = I a, b) 2D la')

ab I~Ifab
a,b

where the { I""lt)} are an arbitrary collection of unit vectors residing in the space Z, and
a, b) are vectors in Y MT. Therefore after the attack we have

DXYZ = E Ik)(k 0 V Authk(p) V.
k

Now we apply the verification procedure to this state to obtain T, where we've conditioned
on the procedure accepting:

TKYZ - Ver(KYz) =E k) k Verk (VAuthk(p) V')

Note that - does not have unit trace in general (because the verification procedure Verk
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may not pass with probability 1). For a fixed key k, we can write

|Tk) = Verk V AuthkIp) = Ia)M 0 1'k

where we abbreviate k(m) and k(a) by k,, and ka respectively. We can decompose the
vector I k) = ITk,ideal) + ITk,err) where

Tk-,ideal )M Vz = .-i Ji|m) 0111"" (8.2)

Tkerr)Mz A 1zmz "a)M 0 I f"n)Z (8.3)
z,m,a:wanm

Thus TK=YZ Tideal + Terr where

Tideal Ek)(kI G Irk,idea)(Tk,idea 1,
k

and let

Terr =E k)(kj 0 (Tk,ideal)(TkerrI + Tk,err)(Tk,ideal + ITk,err)XTk,err I)
k

The Tideal represents the part of T that looks like it underwent an ideal attack, while the term

Tideal represents the rest of T. We will bound this error term and show that its size is small
within T, and thus this will show that T is close to the result of an ideal attack.

To bound the size of Terr, we note that

IITerrIli < E [211 ITkideal(Tk,err Ill + 1 1Tk,err)(Tk,errl 11]

E [2 (Tk,err|Tkerr) - (Tk,idealTk,ideal) + (Tk,errITk,err)

k
k 3 OTkerrl k~err)

< 3 lE (Tk,err|Tk,err)
k

where in the equality we used that for two pure states Ip) and IP), I IIp)(pI Ii = /(pIp) .(p 1).
In the second-to-last inequality we used that (Tk,ideal Tk,ideal) < 1, and in the last inequality
we used the concavity of the square-root function. Now,

E(TkerrlTkerr) =AzA' - amzX'm' -"c".. ' ) (8.4)
k k ,lnI Pa,, aka a

a,m,m :a {nm'

AzA, -zmz'm' E'a 'kmnZ' .M'k,,z' kZ) 8.5)
- '%\k Paka -Paka7 (OPtka III "Ii) (85

a,m,m':a { m,m'}

Observe that, for every a, m, m' such that a m {, rn'}, ka is independent of kmn and kin'
(this is where we use 3-wise independence of k). Therefore, we can write

Mk pk. ni 'k, ,z' 117'k'z' i inkZ p z mkl' z . 'kmz' Eink n)

k ,ka aka \aka I 'aka k ahaah 71a aha

kk 
I i/a ab

151



where the expectation on the right hand side is over two independent hash families k and
h. We have equality because (kin, ki', ka) and (km, k, ha) are identically distributed.

This motivates us to define

A-z/xnk in' Z 14 (,n'k,,,Z' Inks).

' i z,zj'z',m n Pj, P11111  nun lit

'z,z',mi

We will momentarily show that 1 and (2 are small in magnitude. Assuming this, we add

j and 2 to (8.5) to get a nicer-looking sum:

(8.5) + j1+ 1 2 - 2= A-A . (F mk.,n'krn,z ink tz' 1 nknZ)E FAz Az' - aZmflZii E a,k"'' -aa ('a" " k'Paha
z,z

a,mn,nI

(8.6)

1-~ aziz'mi' - .~ ni"$'"z im'kn'Z' n k,,,z' ,nk,,zITK L ,A.~ at Pat, ('Pab .. Pat, )
,MMi' a,b

(8.7)

1 Az -

1

I-zi 1E2
ka,b a

To go from the second line to the third line we used the orthogonality conditions

(8.8)

(8.9)

ni't'z'~z Itt~ Ek-a ( I~tz I'f t ) =0
a,b

whenever (m,t,z) 3 (n',t',z').

Now we bound the magnitudes of j and 2. We use Cauchy-Schwarz repeatedly to
bound I 1:

L....ut'mnbr'rnb P('11, ib 1fnb
b

E z j I 'M I ,Mj2
,z ',im

Znik,,z-iik ,n, z
Pnb Pnb

b'

2

( 'P~ kmn I' Z)

(8.10)

(8.11)

aZ 1 1az i ' - 12 111 ,.in z 112 m'ki, Z' 2 . 112

NZ M nib m(8.nb ib )
(8.12)

#n?12 - 111Pnikz) 12 S n'k,,,,z' 2

i 'k'l'z' )112

(8.13)
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<1 E 1 CI 2 1z1m'12 -2 (8.14)
1T1k '

< V2_ (8.15)IT1

In the last line, we used the fact that the dimension of the span of the I p.)'s is at most
IM 1. A similar calculation will show that 1#21 < v/2M I /1TI as well. Putting everything
together, we get that

E (TkerrlTk,err) < (1 + 3V) I A4/IT1.
k

This implies that

IT'- Tideal 11 3 6/1T1.

Recall that we have ignored the final projector P that the real adversary S may have applied
after applying the unitary V. Since P acts on Z only, it commutes with the verification
operation, and thus we have that

IIPTPt - PTidealPtI1 3 6/ITI.

where PTP' = Ek k)(kl 0 Verk 0 S o Authk(pMZ), the true final state of the protocol.
Finally, we have to argue that PTideaJPt is actually equal to Ek Ik)(kl 0 Verk o o Authk(pA'Z)

for some computational basis-respecting adversary I. The ideal adversary behaves as fol-
lows when given the YZ registers of (rTIyz:

1. The adversary prepares auxiliary registers M'T'Z2 in the 0 -... 0) state. The Y'
M'T' registers are isomorphic to M T, and Z2 is a qubit register.

2. First the ideal adversary makes a copy of the MT registers in the computational
basis and coherently stores the copy in auxiliary registers M'T'.

3. The ideal adversary then applies the original adversary unitary V to registers M'T'Z.

4. The adversary checks whether the values of the MT and M'T' registers are the
same in the computational basis; if so, the Z 2 qubit is set to 10), and the M'T' reg-
isters are set to 10 ... 0). Otherwise, it is kept at 11). In other words, the basis vector

I m, t, M', t', 0 )MT M''2 2 is mapped to ni, t, 0 . - 0 )MTM'rT' 2 iff in = i' and t = t'.

5. The adversary measures the Z2 qubit register, and the Z register using the POVM
element {P, I - P}, and accepts only on outcome 10) for Z2 and P for Z.

Observe that this ideal attack I can be implemented as

I : Ocyz - Try'z2 ((P CO),lZ2)VidealOyzVideal(P I10)(0o1 2))

where Videal is an isometry mapping the space YZ to the space YY'ZZ2, P &0 )(0 22 is a
projector acting on ZZ2, and Try'z, (.) is the partial trace over system Y'Z2. Furthermore,

Videal is an isometry that leaves the MT registers unchanged, and hence is a computational
basis-respecting adversary. Since P7r2JZPt - Ver (I(cryz)), and this holds for every
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adversary and every input state, this implies that (Auth, Ver) is 0 ( /M/ T)-authenticating
relative to the computational basis.

El

Finally, we note that [531 claim that the Carter-Wegman MAC is quantum universally
composable. However, it appears to be lacking some formal details, and it isn't clear that it
correctly handles the case when the messages are authenticated in superposition, or when
the adversary has quantum side information.

8.8 Total authentication (with key leakage) from complementary
classical authentication

In the previous section, we saw how the classical Carter-Wegman message authentication
scheme is still secure even when used on a superposition of messages, and even if the
adversary has access to quantum side information about the messages. Here, we will
show that using the Carter-Wegman scheme as a primitive, we obtain total quantum state
authentication, which implies encryption of the quantum state.

The quantum state authentication scheme is simple: the sender authenticates the mes-
sage state using the Carter-Wegman MAC in the computational basis, and then authenti-
cates again in the Fourier basis (using a new key). To verification procedure is the reverse
of this: the receiver first checks the outer authentication, performs the inverse Fourier
transform, and then checks the inner authentication. We call this the "Auth-QFT-Auth"
scheme. This is pleasingly analogous to the quantum one-time pad (QOTP), which en-
crypts quantum data using the classical one-time pad in complementary bases. However,
the QOTP does not have authentication properties.

There is one slight caveat: we show that Auth-QFT-Auth achieves total authentication
with key leakage. That is, we argue that conditioned on the receiver verification succeeding,
the effect of an arbitrary adversary is to have ignored the authenticated state, and only act
on the adversary's side information, in a manner that may depend on the key used for
the second authentication (what we call the "outer key"). In other words, we sacrifice the
secrecy of the outer key, but in exchange we get complete quantum state encryption.

8.8.1 The Auth-QFT-Auth scheme

Let Ip)MZ E l a ImM I-0 1)z be the initial message state, where Z is held by the
adversary. Again, it will be advantageous to rewrite this state in terms of the Schmidt
decomposition:

Ip)MZ=L A( zmm)) ® Iqz)z

where for z = z', we have (pz I pzo) = 0, and the Ar's are nonnegative numbers summing
to 1. Furthermore, the dimension of the span of {| pz)}z is at most |M|.

The authentication scheme is the composed operation Auth 2 (HON(Authi (p))), where
Auth1 is the inner authentication scheme that uses key k, HON is the quantum Fourier
transform over Z2, and Auth2 is the outer authentication that uses key h. The keys k and h
are independent.
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The inner authentication scheme Auth1 maps M to Y1 = M'T1 . We define N = I1.
H is the single-qubit Hadamard unitary, and the Fourier transform H1 0N acts on Y1. The
outer authentication scheme Auth2 maps Y1 to Y2 = M'TIT. The keys k and h live in the
registers IC and 'W, respectively. The evolution of the initial message state is as follows:

1. Inner authentication. When the inner authentication key (henceforth called the inner
key) is k, the state becomes

: A- (ETzmImk(m ) 0Pz)z

2. Fourier transform over Z2: Let {Ix)} be a basis for Y 1. Then:

I /,xI (~ I: 1 ()( Im).X) Y1')0qz).
VN \mII,x/

3. Outer authentication. The outer key is denoted by h. The final authenticated state is
then

Ykh 2 1 i; (i)(mk(m)),x IX, fI X)") 0 72~

where T2 is the space of the tag h(x).

Let
E I kh)(kh 0 0k)khI YZ.
kh

The adversary is then given the Y1T2 registers of o-, and performs a general unitary attack
V that acts on YiT2'Z:

~~KJLi73 -VUV
t .

Let iKMz = Authi- 1 o Veri o QFT-1 o Auth2 1 o Ver2(J).
Let the inner authentication scheme be the 3-wise independent hashing QMAC with

tag length log T, and message length log M. Let the outer authentication scheme be a
QMAC that e-authenticates with respect to the computational basis.

The Auth-QFT-Auth scheme can potentially leak some bits of the outer key h, but we
will show that this is the only thing that is leaked; otherwise, it is performs total authenti-
cation (and hence encryption).

Theorem 109 (Security of the Auth-QFT-Auth scheme). The Auth-QFT-Auth scheme is 6-
totally authenticating with outer key leakage, where 6 = e + O( N/|M 3/2 /17 I).

Again before starting the proof we consider the key requirements. The outer authen-
tication scheme need not be a Carter-Wegman MAC, but let's assume that it is. In or-
der to achieve 6-total authentication, the inner MAC must be such that IM 3/2 / I<
0(62), or in other words, log1T-I >2 logIM + 2log + 0(1). The key needed for
the inner MAC must be at least 2 log I + 6 log + 0(1). The "message length" that
is given to the outer MAC is log IM I + log 1T11 > log MI + 2log j + 0(1), and thus
log IT2, > log IMI4 + 4 log j + 0(1). The key length for the outer MAC needs to be at
least 1 log MI + 12log j + 0(1), so the total key needed is 12log MI + 18 log 1 + 0(1).
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While the inner key can be recycled (upon successful verification), the outer key unfor-
tunately cannot be.

Proof. We will let M = M|, T = |'/-|, and N = M T = | 21. We will assume that M3 / 2 < T;
otherwise the theorem statement is vacuous.

Suppose the outer authentication scheme was e-secure. By definition, there exists an
ideal computational basis adversary I such that liVer2 (i) - Ver2 (I(-)) I1i < E, where Ver 2
denotes the verification procedure for the outer authentication scheme. There exists a com-
putational basis-respecting linear map A E L(22 Z) such that

I :r 1-4 AM-A.

Since A is computational basis-respecting, we have for all (x, s, z):

AIx, s)'" 0 1 pz) _ =Ix,s)Y" O xsz) Z.

for some collection of (not necessarily normalized) states { I Oz) }.
Therefore the effect of the adversary on the authenticated state (after verification) is to

be close to I(r) = Ek,h Ikh)(kh I D ITk(Tk|h where for fixed inner/outer keys k, h

) ( )(mk(m)) x IX) (

Thus, the final state that Bob has, after performing full (i.e. inner and outer) verification, is
e-close to

E |kh)(khl 0 |Ukh) kh I
k,h

where

I Ekh) ( -t )(m+m',k(m)+k(m'))x ) 0 I
z m\'' x,m'/

Then security of Auth-QFT-Auth is established if we show that for every h,

E |1|Ikh) - IV) 112
k

is small, where

-h xi: V/Az 1 I znii)110 Z y) Z 

with 117/hz Ex I k xhxz) Z. Assuming this, the next Lemma will show that there is an
ideal oblivious, but outer key-dependent, adversary whose actions lead to the global state
Ekh |kh)(khl 0 |vj,)(vi|.

Lemma 110 (Constructing the ideal oblivious adversary). For all h there exists an ideal obliv-
ious adversary I acting on Z only such that

Proof. We now construct an ideal adversary 11, derived from the computational basis
adversary I. By definition of I, there exists a computational basis-respecting isometry
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V E J(Y2 Z, Y22 ZYZ 2) where 2 is an auxiliary register isomorphic to 22, and Z 2 is an
auxiliary qubit register, such that

I: O-Y --> Try'z, (HVoYZ Vf H).

Here H = P 0 D0)(01 2 for some projector P acting on Z. Furthermore, V is computational
basis respecting:

HVIx,s) ) (pz) 3 = |X,S) 0 lPxsz)Z |0 - -0)

where the I(ps-)z were defined above.
Now we construct the ideal general adversary II as follows:

1. First, the adversary creates the entangled state q<Ds)AI = ' L, Ix, h(x))AI x, h(x))'
in new registers A 0 A', which are isomorphic to Y 2 0 Y2, and { x) } is a basis for Y1.

2. It then applies the unitary V to half of I<Dp)AA that resides in A, and the Z part of
the input state Ip).

3. The adversary measures AA'ZZ2 using the projective measurement {Q, I - Q},
where Q = ID,)(ID1,AA' & H. The adversary discards the outcome corresponding
to I - Q, and leaves the state unnormalized:

m)T " Ipxsz)Z I ) AA'| 0--- 0) Y,,,Z,

4. The adversary discards the AA'yZ2 2 registers:

A ~ Azizflil)M 0 |Pxsz)z

This is precisely the state |v,,), and the 1/ only interacts with Z and auxiliary registers in
the adversary's control, so it is an ideal general adversary.

We now turn to bounding Ek 11 1k1) - ,)112:

E IIkh) - Ivh) 12
k

E A-zA ' &z't'azm"(-1) (m+?n',k(m)+k(m')) x'(1) (in+m",k(rn)+k(n"))-x" (Oh,_

fllZZ X '1.Y ,lfll

- ~5Az Az'Kiz'm'az?" (-1(n+')x+(mn+1n") xy ((p$'z' lfi) ]E -_1) (k(m)+k(m'))-x' (_.1) (k(m)+k(in")) x

X,X ",' ,m"

We use the abbreviation Iix) = (pj-). In the second line, we divided x into two parts
(x1, X2), where x1 corresponds to M, and x2 corresponds to 'T1. We focus on the expectation
Xmm,,,;,",.g; = Ek(-1) (k(1)k( '))x )(k(m)+k(m") )-x . We consider two cases:
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Case 1: i' = i", M' # m. Then Xmn',m" = 0 if x1 x", otherwise xm,1,",x;,x" 1.

1

z,z',xf,x
ni,rn':min'

-1
N

2

2

A A, [ (-) in+rn') x'+x") (,ph, , )
mA7' x, ,x"

(Cauchy-Schwarz)

I x+ i"=

'A-Xv M 3 N2

(at most M z's)

Then , = 0 unless x' = x' = 0, in which

caseXin,wni",x x = 1. This uses the three-independence of k(-).

1

z,Z',xl,x"/
mn,m ',m" distinct

z,z ,xt,x 1
n,ni',I" dis

A z nil'zm' (-1)( Xm,()',n "p,x',x"

A zc( )(n+"t'Ex1+(?n+M"x I

tinct

2

Smin,m',n" distinct x1,x i

(Cauchy-Schwarz)
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N2

1

N2

1
N2

< N 
=12

T

Case 2: ni, in', ni" are all distinct.

1
<N2 E

N2

M 3/2

T

m~m' x',x",+x,+

VAzAz,-&z'Ml1avnl(-)(ni+ni')x +x1 (OX/Z, OX/z) Xtn,',x'l,x",

In +In') -(X, +Xfl) (Ohl't I OhIf -)X_ x x1 2-

,iz,) Ohjj I Ohl,x x x1 2-

E~ 'x
I~ I it

A A -A, M 2



where we used the fact that M 3/ 2 < T. Therefore, for every h we have

E I1kh) - ) 2 O(M3/ 2 /T)
k

as desired. Using Jensen's inequality, Ekh 11 IPkh)XPkh I - I O(/ M3 /2 / T).
Thus, the final state of Bob is E + O( /M 3 / 2 /T)-close to

E Ikh)(khl e Iv,)(vI = E jkh)(kh\ ei:Eh(Ip)(p|)
kh kh

where I, are the ideal adversaries given by Lemma 110.

8.9 Total authentication from approximate unitary designs

We now present a scheme that satisfies the strongest security definition, that of total au-
thentication (without any key leakage). In particular, this implies complete reuse of the
entire key. This property of complete reuse of the key was not known before; it is not
known whether the entire key can be reused in the authentication scheme of Barnum, et
al [9].

This scheme is based on unitary designs, which are in some sense the quantum analogue
of t-wise independent hash functions: a t-unitary design (also simply called a t-design) is
a distribution 9 over unitary matrices such that degree t polynomials cannot distinguish
between a unitary drawn from 9 and a fully random unitary. Furthermore, there are
constructions of efficient unitary designs [20].

8.9.1 The unitary design scheme

We call this scheme the unitary design scheme. Let s be a security parameter. The input state

is p)M , where the Z register is held by the adversary.

1. The sender Alice first appends s 10) qubits in an auxiliary 'F register.

2. Using her secret key k, Alice samples a random unitary Uk drawn from an (approxi-
mate) unitary t-design that acts jointly on M D T. We will set the parameter t = 4.

3. Alice applies Uk to the M 0 T register, and sends M 0 T across the quantum chan-
nel to Bob.

4. Bob receives some state, and applies the inverse unitary Uk to it. He measures the
last s qubits and accepts if they all measure to be 0. Otherwise he rejects.

Theorem 111. The unitary design scheme is efficiently computable, and is 2- 1 2 -totally authenti-
cating.

This is very similar to the non-malleable quantum encryption scheme proposed by Ambai-
nis, Bouda, and Winter [5]. A quantum encryption scheme is non-malleable if, in addition
to revealing no information about the state to an eavesdropper, the eavesdropper cannot
effect any controlled modifications to the encrypted state. Ambainis, Bouda and Winter
show that applying a random unitary drawn from a 2-design to a state will encrypt it,
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and reduces the adversary to one that either forwards the state, or replaces it with the
maximally mixed state. Clearly, such a scheme does not provide any authentication, but
our scheme, where one additionally appends some dummy zeroes before authenticating,
provides both encryption and authentication. Furthermore, their analysis does not handle
the case of quantum side information, and it only gives a security guarantee on average
over the key. Here, we will show that we obtain authentication and encryption with high
probability over the key.

The key requirements of this scheme are rather significant, as constructions of approx-
imate unitary 4-designs acting on n qubits involve choosing a random quantum circuit
of size O(n2 ), and thus the randomness required is at least O(n 2 ) [20]. Furthermore, this
scheme requires a full-fledged quantum computer running for at least D(n) sequential
time steps. However we feel that this scheme is conceptually simple ("To encrypt and
authenticate quantum data, apply a random quantum circuit for a while"), and it also con-
fers the benefit that the entire key can be reused (upon successful verification), something
that was not known before. We also believe that our analysis of this scheme may be of
independent interest.

Notation and useful lemmas. We set up some notation. We let M denote the message
space, T to denote the space of the dummy zero qubits. We let Y = M & T. We let
M = |MI, fT| = 2s, and N = MT = |Y.

Let S be an adversary acting on Y 0 Z. By the Stinespring representation theorem,
there exists a unitary V acting on a possibly larger space Y 0 Z 0 Z', followed by a pro-
jection P that acts on ZZ', followed by a partial trace over Z'. However without loss of
generality we shall simply treat this additional space Z' as part of Z, and ignore the par-
tial trace operation. Thus, the adversary's action is to perform some unitary V on Y 0 Z,
followed by a projection on P on Z.

To analyze the behavior of this scheme, we will first analyze the case when the ran-
domizing unitary U is drawn from the Haar measure over the unitary group U(Y), rather
from a t-design. We will show that this scheme is totally authenticating. Then, we will
show that actually using a 0(1)-unitary design will suffice.

The crucial hammer we will need is a version of Levy's Lemma:

Definition 112. A function f : U(d) --* R is r;-Lipschitz if

sup Iff(U 1) -f(U 2) 11.
U1,L2EU(d) f 1 - U2 11 2

Lemma 113 (Levy's Lemma [77]). Let f : U(d) - R be an r -Lipschitzfiunction on the unitary
group of dimension d with mean E f. Then

Pr (if -EfI ;> ) <4exp (U62

where C - 2/9r0 and the probability is over U drawn from the Haar measure on U(d).

Another useful lemma we will need is the following, giving two formulas for averaging
over the (Haar measure of the) unitary group. We use i; to denote the Dirac delta function
that is 1 if i = j and 0 otherwise.
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Lemma 114 (Appendix B.5 of [13]). For a function f : U(d) -a R, we let f) to denote

*f f(U) dU, where f .dU is integration over the Haar measure on U(d). Then

1
L(abUijU,*,IUf1  ) = d 2 _1(aadwi'jj + 6ail b'ia'l jb')

d (d 2 _ 1) (aasjb; 6i1 3 j6b + 3ai3bb' (ia"6jj')

8.9.2 Total authentication with Haar-random unitaries

We now prove that the unitary design scheme yields total authentication. Let Au
(01sUtVUIO)Os is be a map from A 0 Z to A & Z.

Lemma 115. Let N = dim(3y). For all 6 > ,for all initial message states p)"y have that

UPr(IIyp) - Aup > 2-s + 3) < exp(-C'N 2 )

where FV = Try(V) / dim(Y), C' is a universal constant, and U is a Haar-random unitary.

Proof. First, we write p)" y= Ex px Ix)0 1p,)Z where {Ix)} is a basis for M, and {qpx)}
are arbitrary unit vectors in Z.

Write U as the following:

U = 14|U,X)(u, xI
u,x

where Iu) E T, Ix) E M are standard basis vectors, and {Pu,x) } C T 0 A is a set of
orthonormal unit vectors. Then U 0) ® becomes a linear operator that accepts vectors in
M and outputs vectors in Y = T 0 M:

E 
YO IPosAxI X

We will simply write I'x) to denote I' 0,,x). We can write AU as

AU = : 1 X'XION ) I ( Vx I V|x).
X,x'

Let's compute the average operator

Au dU = Ix)x'I J{(PxIVIPx') dU (8.16)
x,X1

X)XX (ipx IV I x) dU + I lxx'| (px|IV IlPx,) dU (8.17)
x~x'

EIx)(xI 1 Try(V) (8.18)
X dim(Y)

IM 0 Fy (8.19)

The second term in (8.17) (the sum over off-diagonal elements) averages to 0, because for
x - x', the vectors I px) and |px) are random orthogonal unit vectors. Conditioned on a
fixing of 117x), for any vector p) that is orthogonal to I x), I4Jy) is equally likely to be Iqp)
or -Ip),so f (KI IV I x) dU =0.
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In the last step we used the fact that given an operator X mapping Y 0 Z to Y 0 Z,
if we average over the unit sphere, f({p 0 I&z)X(Ip)Y 0 1Z) dip is equal to the partial
trace Try(X)/ dim(Y). We'll let N denote dim(Y).

Thus, this tells us that on average, this operator should act as the identity on M and
some linear map (not necessarily unitary) Fv on Z. We now prove that Au behaves this
way on jp) with high probability. Define

f (u) = ||T v 1p) - AuL P) 11'.

Bounding the average of f. Expanding f and averaging, we get

f(U) dU J ((pIfit - (p|A ) (Fv 1p) - AuIp)) dU (8.20)

- p|rvt vlp) - (p|AutFv p) - (p|lt Aulp) + (p|At Aulp) dU (8.21)

-{p|rt Fvlp) + J (p|A'uAujp) dU (8.22)

where in the last line we used our calculation of f Au dU above. We bound this last term.
We have that

Aulp) = p |x ) (px|V(I4px,) 0 |p;x ))
x,x,

Thus

(p|AtuAuIp) dU = p 1p,'((px,| 0 {pxn|}Vt|px){ x|V(|Px,) 0 <px,)) dU (8.23)

=EPxI12 0 0 ))yx}x|V(|px,) px)) dU (8.24)
xi

=L|pXI2 J II('x|V(|iPX) 0 1|PX))|| dU (8.25)
x1 X

= E |pz,|2 J I(4Px|V(|PX1) 0 |px,)) j1 dU+ (8.26)

pxI2 11{px|V(Iipx) 0 Ipx))|| dU. (8.27)
X

Let { z)} be a basis for Z. Now notice that

{PxV(i}) 0 |p,)) - E Iz)(zz ( I|V(li x) 0 1P'X)) 112  (8.28)

= El(({px| 0 (zI)V(I9,1) 0 |1(x,))1 2. (8.29)
z

Write Iq)p') = Ez Px'Iz) . Then we have

2

1I((TpX 10 (Z 1)V(Iq'X) 0 1IPX')) 1 2 _ TP,-(X 0 (zI)V(T4y 0 lz')) (8.30)
'I
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2

P fx'/'( U*Ujz (8.31)

ii
~ Ox'z'01 'z" ,z (z') i 'j, )~ x j' 1x x'

(8.32)

where the rows and columns of V are indexed by (i, z) and (j, z'), respectively. Again, we

identify I'x) as the x'th column of U, and Uix denotes the i'th entry of |q'x).

We now go back to bound the sum over x : x' in (8.27). Fix x, x' such that x 7 x'.
Substituting (8.32) in and using Lemma 114, we get:

J x'pV(IpX) C qTX,)) d U (8.33)

.,UexUj,'U,* Uj I dU (8.34)
z~z',z"iji'fI

1]

x_ N " N2 1 V(i,),(jI) V(*i)jz)~ - N(N 2  _1) Z (iz),i,z') V(*i')/ ")
Ijz ii'z

(8.35)

N2 -1 N(N2 -1) , x(V

2
N 1X u-'' )(.7

N2-1 N(N2 -1) (8.37)
N -

< N (8.38)
- N

2 
- 1

where we used the fact that V is unitary and that -, I pxz 12 1. Summing (8.38) over all

x k x', we get

2 N N(M-1)
IPx ( {X|V (|7x')| N 2 -1- N2-1

x x7x' x x4x'

Now fix an x; we bound the second term of (8.27). Using Lemma 114 again, we have

I(4xL(IPx) 0 Iqx)) 11 dU (8.39)

12 1L2 -xz'P1" J 2_ 1, x')/ ,z'I )U,x U' U) dU (8.40)

[ 2
= [ N~ tX,,7, [Ei-) Lii + i~ fN ] (8.41)

2

=,, N~,.) ( N + + N (8.42)
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Putting everything together, we can bound (8.27) by

<N(M - 1)
N2 -1

NM -1 1
q2-1j+NN+1

N(N V(+1 'iz,) + N]

2

V

We have to compare this to (pirTt, vip) = Iry Ip)| 1. We expand Fy Ip):

FvIp) = 1Try(V ) p)

N

1 \Z

N z)Z(izIVli)

NEpxlx'z)'z

E x IX

(zXX)xM ®

ZI xz' V(i,z),(i,')

So therefore
2

(piFTvp) = 12 x V( ),(

This shows that our desired average of f is small:

f(U) dU< NM .

Bounding the Lipschitz constant of f. We compute the Lipschitz continuity of f in parts.
Let g(U) = (p 11t Au1p), where lp) = Ex pxIx) 0 1px). Expanding, we get

g(U) =(1@ ' y l) E |x){x' 1 (px,)p (8.49)
x,x,

=p*px(('xI 0 (<px|1)FtV (Ip4) 0 |pPx')) (8.50)
xx,

v tVV px 0Ip x) )

=(0IFt,VIO)

(8.51)

(8.52)

where we used that 17y is an operator that acts on Z only, and we define 10) = Ex px I IPx) 0
px). Thus for two unitaries U, iU, we have

g(U) - g(0)1 = 1(01FtyVI) - (At V ̂)I
- Tr (vt v(jo)(o - 16)(01))l

(8.53)

(8.54)
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(8.43)

(8.44)

Iz)z )

)

(8.45)

(8.46)

(8.47)

(8.48)

(p|A-uAujp) dU



< V -|01)( - |$ )($| 1 (8.55)

where in the inequality we used Hblder's inequality for matrices: Tr(AB) < |IA IBI|1.
Now, the operator norm is submultiplicative, so IIFtVll,, < lIFit,, - |Vflc < IFt1|o;, be-

cause V is a unitary and hence its operator norm is 1. But then I IFIt I = kI EY (yI VIy) I I

E I, (yI VIy) Ik, because the operator norm satisfies the triangle inequality. Here, Iy) is a
basis element of Y, and (yIVIy) is an operator that maps Z to Z. For each y, we can bound

11K yVly)II, < 1. This implies that Ig(U) - g(O)I < 1110)(1 - I)(I1 I.
Thus the Lipschitz constant of g can be bounded by

17g < sup 21110)- I .)I2
-U,CI ||U -CII12

Since the columns of U, 0 are IqPu,x) and IiPx), the denominator IIU - C112 can be writ-

ten as , | IPU,x) - Iq ix) 1| . Notice that the numerator only depends on the column

vectors 11o,,x) = Ipx) and Io,,x) = lI x), so the denominator can be minimized to to be

I I IPx) - x)I I., without affecting the numerator. The numerator can be bounded as

|| Px(|Px) 0 Iqpx) - Ix) 0 |px))12 IpxI - |Px) & Ipx) - IAx ) 0 IPx) 112 (8.56)
x x

p1X 12 ||p ) -|x ||(8.57)

IJI X) -- I X)112 (8.58)

where in the first line we used the triangle inequality, and in the second line we used
Cauchy-Schwarz. Thus the Lipschitz constant of g is at most 2.

Now we bound the Lipschitz continuity of h(U) = (pI A Au lp). We have that

h(U) = E px'p1"( { | | | ) ) (8.59)

- :(KOIV* T)pxIVIO) (8.60)
x

= Tr ( i x)(TPxV10)(0IVt (8.61)

where 10) is the same as above. Let Hu = Ex Ipx)(Px 1. Therefore

lh(U) - h(C)1 =Tr (HuVlo)(OVt - H aVlo)(OIVt) (8.62)

= Tr (HuV (10)(01 - I0)(01) Vl + (Hu - HD)VIO)(OlVt) (8.63)

< t|0)(01 - l$)(X011 + (V0 (Hu - H)VIO) (8.64)

< IH1)(0I - lO)(0lI 1 + |HUL - HlGo (8.65)

where in the first inequality we use that Hu = .L Fu is a projector, and that Tr(HX) <

165



IX II, for all operators X and -I <H I. The second term can be bounded by

IIHLU - HIg|, =sup II(Hu - Ha)Iv) 1 2  (8.66)
Iv)

sup (IPX) - 4Ix))((PXIV) - (*1v)) (8.67)
Iv) x 2

< sup EIII|IX) - *x)2. MX IV) - (*1v)) (8.68)
Iv) x

< sup (I PxIv)I + I(IVx v) ) -Px) - 4) 112 (8.69)
Iv) x

< sup ) 1(12pxv)2 _. E I) IV+ 12LE(11x v)|2 Ii4X)
IV) x xV xx

(8.70)

< 2 ) - 2) . (8.71)

Therefore the Lipschitz constant 1, of h is at most 4, so the Lipschitz constant Y of f is at
most 8.

Now we invoke Levy's Lemma once more, and we obtain

Pr (IIrvIp) - Aulp)i11 > 6) < 4exp CN 2  (8.72)

< 4exp (-C'M2 /N) (8.73)

where 6 = 2M/N and C' is some universal constant.

8.9.3 Constructing the ideal oblivious adversary

Now we demonstrate that the map jp)" -+ Tvp)MZ can be implemented by an ideal
oblivious adversary.

Consider the following ideal adversary, which given a state ic)YZ performs the follow-
ing:

1. First, the adversary creates a maximally entangled state I,) ' = Ey I yy) Y'Y" in

new registers Y' O Y".

2. It then applies the unitary V to half of I<D)YY" that resides in Y', and the Z part of
o-) YZ The state currently looks like:

1 L (Y 0 VZY') 1r)YZ 0 yY'Y" (8.74)

1/ N yz

CX V Y 7" & I zy y y'y" (8.75)
E(IY C O ' VY') y yz y y" 8.75)

-1~(Y ( ,1IY VZY_ )'IrY yyY (8.76)

vNy,
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3. The adversary projects Y'Y" using the projector ID)(< I'" (and leaves the state un-
normalized):

Dl c(iO M y F"VZ}" I)) I ()J Y 2 (P) YY

4. The adversary discards the Y'Y" register:

NZOLY ®s Ky1,, 3' VZ l~y)y,)ICr)Y3
Y

This is precisely the state Fv r and the adversary described above never touches the

Y register, so it is ideal.

8.9.4 Derandomizing the analysis using approximate unitary designs

The analysis of this scheme is nearly complete; however, the main missing component
is that the analysis above assumes that the authentication scheme uses a truly random
unitary U to scramble the message state and the tag. Unfortunately, sampling a truly
random unitary on n qubits and applying it is infeasible: only a vanishing fraction of
unitaries are succinctly describable or are efficiently computable.

The authentication scheme instead samples a unitary from a unitary design, discussed
earlier. These are efficiently sampleable, efficiently computable ensembles of unitaries that
are pseudorandom: they fool polynomials of low degree.

It won't be necessary to present formal definitions of a unitary design; we will use them
in a black box manner. We will appeal to a general derandomization result of Low who
proved that, if one establishes a measure of concentration result for a low degree polyno-
mial f that's evaluated on a Haar-random unitary, then it still satisfies (nearly) the same
measure of concentration when f is evaluated on a unitary drawn from an approximate
t-design. More formally:

Theorem 116 ([71]). Let f : U(N) -+ R be a polynomial of degree K. Let f (U) = Mi aiMi(U)
where Mi (U) are monomials and let x (f ) = Ei | il. Suppose that f has probability concentration

Pr (If - pi > J) < Cexp(-aj 2 )
ULl Haar

and let I be an --approximate unitary t-design. Then

Pr (If - p| I >) < (C +E(t pn)1)

for integer in with 2mK < t.

Furthermore, there exist efficient constructions of approximate t-unitary designs, for
any t.

Theorem 117 ([20]). For every ,, t, and n, there exists a finite set of unitaries D,,n C U (N) for
N = 2", and a probability distribution yei,n over De,t,n, such that

1. p is an e-approximate t-unitary design.

2. pec,t,n can be sampled from in poly(n, t, log 1/e) time
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3. Each unitary U c D,t,1, can be implemented by a quantum circuit acting on n qubits of size
at most O(n log(4t) 2 t9 (2nt + log(1/e))).

We combine these two theorems to prove our final result:

Theorem 118 (Restatement of Theorem 111). The unitary design scheme is efficiently com-
putable, and is 2-~/ 2-totally authenticating.

Proof. Note that f(U) is a polynomial of degree 4 in the entries of U. We compute a (f) by
computing a (fo), a (g), and a (h) where fo = (p It v Ip) is a constant, g(U) = (pIIFt Aulp),
and h(U) = (pIAt AuIp). Clearly, a (f) a (fo) +2a(g) + cx(h).

Since fo is a constant function, a (fo) is at most IfoI 5 1. We turn to g. Let {Ix)} be
a basis for M. Then for x, x', define the operator Txx' = (TxI FtV I px,) to be the linear
operator that maps Y to Y (recall that Ip) = Ex pxIx) 0 1px)). Then,

g(U) E P.*px, (4'x I Txx'j |x,) (8.77)
x,x,

= E *P*pxy' U, (8.78)
x,x',y,y'

For every x, xy, y', we have a distinct monomial U *,UI X/, and the corresponding coeffi-

cient is p*px, Tx ,', which has absolute value at most 1. Therefore a (g) < M2N 2.

Now we turn to h(U). Recall that

h(U) = E p*tpxl(((px,| , a|qpu)) (8.79)
xt"XI x

E p px"ui-EUjx" ((i 0 G (0x )v*)x)(9x|V(lj) |<x )) (8.80)
i,j,x',x" x

where Ipx) = i UI i), I'Px,) = E U Ii) and IiPx,) = Ej Ujxa Jj). Define ITix) = Vii) 0

1 T) and ITix") = VIj) I kpx,). Then we have

h(U) = E U ,U 'Ui xUj(p*,pX' T ix'|I' Tix") (8.81)
E, .,~ r , j ,,') Tj

i,j,i',j' Xx',x"

= ( U> u1~~1 u1'~ .,jx(r )* (8.82)
i,j,i',j' x,x',x"

where we alternatively write Ii'') = Ez r',7 i', z) and I Tx") - E , If, z). For every
choice of i, j, i', j', x, x', x", we have a distinct monomial, and the associated coefficient has
norm at most

p~epx"{(T)* E 
2 2i. "

Thus a(h) is at most M 3 N4 . This implies that a(f) < 0(N 7)
Now we are ready to leverage Theorems 116 and 117. in Lemma 115 we proved that

function f(U) = |Irv p) - Fulp) 11 has probability concentration

Pr (If - yj ;> ) < 4 exp(-CNW2 )
U~ VHa,
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where C is a universal constant. Thus our parameters are:

1. (Average off) i = MIN

2. (Error in probability concentration) = 'M/ N

3. (Degree of f) K = 4

4. (Probability concentration exponent) a = CN

5. (Norm of f) a(f) = 0(N 7 )

We will set i = 1, E = N~ 17, and t = 8.
By Theorem 117, there exists a distribution , over unitaries acting on ni qubits that

forms an efficiently computable e-approximate t-unitary design. Then, plugging every-
thing into Theorem 116, we have that

Pr (f >M/N+ ,/M/N) < 0(1/M) (8.83)

Note that M/N = 2-. 0
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Appendix A

Communication with non-local boxes,
and a simple proof of the
Nayak-Salzman Theorem

The work presented in this Appendix was conducted with Xiaodi Wu.

A.1 Introduction

The most fundamental question in information theory is: "How much information can be
conveyed from one party to another, given some finite comnuinication resource?". The central re-
source considered by classical information theory is the one-way communication channel,
with which Alice can transmit (potentially noisy) bits to Bob. Quantum information the-
ory addresses this fundamental question when Alice and Bob are allowed to use quantum
resources to communicate, such as the ability to send qubits, or use shared quantum entan-
glement. At first, one might hope that quantum resources might confer significant savings
in communication costs over classical resources. Indeed, in the interactive communication
setting (where both Alice and Bob can speak), there are cases when quantum protocols can
solve a communication task much more efficiently than any classical protocol.

However, when the communication task is simply for Alice to transmit a classical
message (say a uniformly random n-bit string) to Bob, quantum resources do not help.
Holevo's famous theorem [57] implies that, in the one-way communication scenario (with-
out preshared entanglement), for Bob for correctly decode Alice's input string with prob-
ability greater than p, Alice must send at least pn - h(p) qubits, where h(.) is the binary
entropy function. Nayak and Salzman significantly strengthen this bound [81] and show
that if Alice and Bob engage in a two-way communication protocol (possibly with pre-
shared entanglement), Alice is required to send at least (n- log 1/p) qubits for Bob to
recover Alice's input string with probability p - the amount of communication from Bob
to Alice is completely irrelevant! Their proof uses a characterization of two-way quantum
communication protocols by Kremer and Yao [70, 103], and separately handles the case
when there is preshared entanglement versus when there is none.

In this note, we give a simple proof of their bound by showing that it is a consequence
of the fact the Non-signaling Principle, which states that non-local correlations between
space-like separated parties cannot be used to transmit messages faster than the speed
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of light. Non-local correlations that arise from quantum theory are non-signaling, but the
converse is not true: there are non-local correlations (such as those maximally violating
the CHSH bound) that are not explainable via quantum theory [14]. Recently, physicists
and computer scientists have been studying the consequences of the Non-signaling Prin-
ciple without appealing to a specific physical theory such as quantum mechanics (see,
e.g., [85, 94]). Although the Non-signaling Principle is a weaker assumption on Nature,
it turns out that many non-trivial information processing tasks are still possible, such as
certified randomness expansion and delegated computation.

Here, we further this agenda by defining a general model of communication between
two parties who are allowed to take advantage of non-local resources (such as Popescu-
Rohrlich boxes). As long as these non-local resources are governed by the Non-signaling
Principle, we show that they cannot be used to reliably transmit an n-bit message with less
than n bits of communication.

Other related work. The idea of using super-quantum non-local correlations in a com-
munication protocol can be traced back to van Dam's result showing that Popescu-Rohrlich
(PR) boxes make communication complexity trivial: armed with PR boxes, Alice and Bob
can compute any boolean function f(x, y) (where x and y are inputs to Alice and Bob, re-
spectively) with only one bit of communication [94]! Brassard, et al. showed that with
"noisy" PR boxes (i.e. boxes that can work with probability a 90.8%), this result still
holds [21]. Recently, Navascues, et al. studied a set of super-quantum multipartite correla-
tions called Q, and showed that one-way communication complexity of the Inner Product
function on n bits is 0(n), even if Alice and Bob are allowed to take advantage of cor-
relations from Q [80]. To prove this, they reduce to such an Inner Product protocol to a
one-way protocol using non-signaling correlations where Bob guesses Alice's input string
x E {0, 1}n, and show that since the latter requires n bits of communication, and the for-
mer also requires 0(n) bits of communication. Their proof of the latter fact is essentially
the same as our Theorem 120.

Independently, [51] proves a special case of the result of [81] when the Alice and Bob
are restricted to using classical communication (but can use any amount of shared entan-
glement).

A.2 Preliminaries and Model

A.2.1 Communication with non-local boxes

We formally define our model of communication with non-local boxes. A non-signaling device
D = (A, B) is a bipartite device, where A takes input u and outputs a B takes input y
and outputs b, and there is a non-signaling probability distribution PABIUV(a, bIu, v) that

1describes the input/output behavior of the devices .
In this model, Alice and Bob communicate in rounds. In each round i > 1, Alice and

Bob use a non-signaling device Di = (Ai, Bi), where Alice operates Ai and Bob operates

1A bipartite conditional probability distribution PABIUV(a, blu, v) is non-signaling if and only if for all a, b
in the support of u, v,

PAIU,V(aju,v) = PAIu(aii) and PBU,V(bju,v) = P sjv(blv).
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Bi. Ai takes two inputs: ai and mn, and outputs a pair (ai+i, m/n 1 ). Similarly, Bi takes

two inputs: bi and nit, and outputs a pair (bi+j,imi+1). One should think of ai and bi

as "states" of Alice and Bob, respectively, and ii and i0 as messages from Alice and
Bob, respectively. In round i, Alice will execute Ai on input (ai, mr), where ai is output
by Ai_ 1, and n4 is output by Bi- 1 (if i = 1, then ai can be Alice's external input, and niB
can be empty). Ai outputs (ai+1, mn 1 ). Then Bob will execute Bi on input (bi, mn 4

1 ), and

produces output (bi+1, inib). This concludes the ith round. If the communication protocol

has r rounds, then we declare the pair (nli, mi) as the output of the protocol.

For brevity, we will sometimes call this model non-local conununication. This next the-
orem shows that our model of non-local communication is general enough to simulate
any two-way quantum communication protocol. We consider the most general model of
(noiseless) two-way quantum communication: Alice and Bob are allowed to share an ar-
bitrary entangled state at the beginning of the communication protocol, and during the
protocol they exchange qubits over a (noiseless) quantum channel. At the end of the pro-
tocol, Alice and Bob make a local measurement on their quatum state (which includes their
portion of the shared entanglement, as well as the qubits they received over the commu-
nication channel), and they output their measurement outcomes a and b, respectively. If
Alice and Bob take external inputs x and y, respectively, then there is some conditional
probability distribution PABIXY (a, b Ix, y) - which we call the input/output distribution of
the protocol - describing the behavior of the protocol.

We say a communication protocol P simulates another protocol Q (which may use a
different model of communication than P's) if their input/output distributions are identi-
cal.

Theorem 119. Two-way quantum communication protocols can be simulated by comnication
with non-local boxes, with a factor 2 increase in communication comn plexity.

Proof Let Q be a two-way quantum communication protocol with prior shared entan-
glement. We first convert this to a quantum protocol Q' where all the communication is
classical. This can be done using quantum teleportation, which uses twice as many bits
of communication as qubits transmitted in Q. We perform a round-by-round simulation
of Q' with a non-local communication protocol P, where in round i Alice and Bob use a
non-local device Di = (A;, Bi) with the following behavior: Alice's box Ai will take input
(ai, mi), where inm is Bob's message from the previous round (empty if i = 1), and ai is
the Alice's view of the communication transcript of Q' up to round i, as well as her ex-
ternal input. Bob's box Bi has the symmetric input format. Together, as and bi uniquely
determine the quantum state that is shared by both Alice and Bob (which includes their
communication qubits, workspace qubits, as well as their prior shared entanglement). The
messages (mni, Mib) that are output by Ai and Bi respectively will be distributed accord-
ing to Alice's and Bob's messages in round i in protocol Q', conditioned on the transcript
being consistent with ai and bi. It is easy to see that Di is a non-signaling device. Thus P is a
communication protocol with non-local boxes, and the input/output distribution of P will
be identical to that of Q', which is identical to that of Q. The communication complexity
of P is equal to that of Q'.
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A.3 One way communication

Theorem 120. Suppose that Alice receives a random n-bit string X, and engages in a one-way
communication protocol using non-local boxes with Bob. Let nA denote the number of bits sent
from Alice to Bob. The maximum probability that Bob can guess X is at most Q(2"A, X), where
Q(e, X) is the probability mass of the t most likely strings of X.

Proof. We can model the protocol as follows: Alice and Bob have non-signaling boxes A
and , whose joint input/output behavior is described by a non-signaling distribution
A BI UV (i.e., A is the random variable denoting the output of A on input U, and B is the
random variable denoting the output of B on input V). In the protocol, Alice gets input
X = x, runs A(x), and obtains a sample a. Alice sends a to Bob, who then runs B(a), and
obtains sample b, which we can assume without loss of generality is an n-bit string. In this
protocol, the final distribution of x, a, and b is Px(x )PAu(aI x) PB u,V,A (bIx,a,a).

Consider the following thought experiment: instead of Alice sending a to Bob, Bob
generates a uniformly random input v, and runs B(v) instead. The joint distribution of
x, a, v, b is PX(X)PV(V)PA,BIU,V(a, blx, v). In this thought experiment, the probability that
Bob's output is equal to x is at most Q(1, X) (i.e. the probability of the most likely string of
X):

P(B = X) = Px(x) Pv(v)PBJu,v(XlX,V)
x V

E Px(x)PB(x)

<;Q(1,X).

If we post-select on v = a, then the distribution of x, a, b will be exactly as in the original
protocol. Then,

1
P(B = XIV =A) PV A PX(x)PAlu(ax)Pv(a)PBlu,v,A(xlx,a,a)

1 A Px(x) LPv(a)PA,BIU,V(axlx,a)
P(V=A) x a

For every x,
I 1

P(V = A) Pvta)P A,BIU,V(a,xx,a (V A)'

Noting that 1/P(V = A) 2"A, we have P(B = XIV = A) < Q(211A, X). El

A.4 Two-way communication

We extend this post-selection technique to the two-way case.

Theorem 121. Suppose that Alice receives a random n-bit string X, and engages in a two-way
communication protocol P using non-local boxes with Bob. Let nA denote the total number of bits
sent from Alice to Bob, over all rounds of communication. The maximum probability that Bob can
guess X is at most Q(2nA, X), where Q(f, X) is the probability mass of the f most likely strings of
X.
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Proof. Consider the following modification to the protocol: whenever Alice sends a mes-
sage m<i to Bob in round i, Bob will instead ignore the message and instead replace it with
a uniformly random string vi of the same length. Thus, this becomes a one-sided commu-
nication protocol, where only Bob is sending messages to Alice. Call this modified protocol
P'. Observe that the original protocol P is recovered when we post-select on Bob correctly
guessing Alice's messages in every round. We now analyze the ability of Bob to guess
Alice's input X at the end of the protocol, in protocol P'. We will reduce this analysis to
the one-way case, by arguing via induction that, after round i, the output Bi+1 of box Bi
is independent of Alice's input X. The case of i = 1 (the first round) is handled by the
one-way argument above. Assume as our inductive hypothesis that Bi is independent of
X. Then, for any fixed x, bi+ 1,

PB x (bi+lIx ) =3 P B~x (biIx ) .Pv (vi)PBi+llBix ,X(bi+1 bi,vi, x)
bi 17i

- z PBjx(bi Ix) )7 Pv, (vi)PAjXBj (ai Ix, bi) PBi\Ai,Bi,Vi (bi+ ai, bi, vi)
1I fiZi

where Ai is the input to the box Ai (we're omitting MB for notational brevity), and we
used that Bi+1's dependency on X goes through A1 . Continuing,

L P x (bjlx) 1: Pv (vi)PBj+1 vBji(bi+1 bi, vi) 1: P AiXB, (ajx, bi)
bi Vi ai

= PB IX bi v1 (Vi) PBi+|lIB,v (bi+1 bi,vi)

= : PB, (bi) P I Bi (bi+ Ibi)

=P]3is, (bi+1)

where we used our inductive hypothesis, and the fact that (Ai, Bi) is a non-signaling de-
vice. This completes the induction.

Bob's output in protocol P' can be reduced to the following one-way communication
setup: Alice has box Ar and Bob has box Br, where r is the number of rounds in P (and
P'). Alice receives inputs A 1,..., Ar, and M MB,. Mf; and Bob receives B1,..., Br, and

V1,..., Vr. Alice's and Bob's inputs are correlated random variables, but crucially Bob's
input is independent of the random variable X (as we've argued).

Alice executes Ar(Ar, MB), and Bob executes Br(Br, Vr) to produce protocol output B.
Since B is independent of Alice's input, and Bob's input is independent of X, this implies
that P(B = X) <; Q(1, X), as in the one-way case. But then we can condition on Vi = MA

for all i = 1, . . ., r, and conditioned on this event, Bob's output B is distributed exactly in
protocol P. Then, Bob's probability of guessing Alice's input X is at most Q(2"lA, X).

0
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