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Abstract
This thesis focuses on the analysis of robustness in large interconnected networks.

Many real life systems in transportation, economics, finance and social sciences can
be represented as networks. The individual constituents, or nodes, of the network

may represent vehicles in the case of vehicular platoons, production sectors in the

case of economic networks, banks in the case of financial sector, or people in the

case of social networks. Due to interconnections between constituents in these net-
works, a disturbance to any one of the constituents of the network may propagate

to other nodes of the network.

In any stable network, an incident noise, or disturbance, to any node of the network

eventually fades away. However, in most real life situations, the object of interest

is a finite time analysis of individual node behavior in response to input shocks, or

noise, i.e., how the effect of an incident disturbance fades away with time. Such

transient behavior depends heavily on the interconnections between the nodes of

the network.

In this thesis we build a framework to assess the transient behavior of large inter-

connected networks. Based on this formulation, we categorize each network into

one of two broad classes - resilient or fragile. Intuitively, a network is resilient if the

transient trajectory of every node of the network remains sufficiently close to the

equilibrium, even as the network dimension grows. This is different from standard

notion of stability wherein the trajectory excursion may grow arbitrarily with the

network size. In order to quantify these transient excursions, we introduce a new

notion of resilience that explicitly captures the effect of network interconnections on
the resilience properties of the network. We further show that the framework pre-

sented here generalizes notions of robustness studied in many other applications,
e.g., economic input-output production networks, vehicular platoons and consensus
networks. The main contribution of this thesis is that it builds a general framework
to study resilience in arbitrary networks, thus aiding in more robust network de-
sign.

Thesis Supervisor: Munther A. Dahleh
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Chapter 1

Introduction

Large interconnected networks arise commonly in economics, power systems, trans-

portation systems and biology. Due to their ubiquity and high dimensionality, it is

essential to study their robustness properties and further, analyze how the measures

of robustness scale with the size of the networks.

In control systems theory, the robustness of systems with complex dynamics in re-

sponse to external disturbances is well understood. Meanwhile, there exists a rich

literature in algebraic graph theory that studies notions of criticality, centrality and

robustness in graphs. Real life networks are characterized by their associated topol-

ogy along with their complex interconnections and system dynamics. A simultane-

ous consideration of control and graph theoretic tools is therefore necessary for the

design of robust networks. The complexity of network interconnections and its in-

terplay with the dynamical behavior is responsible for interesting output sensitivity

to input disturbances. An important question that arises in this regard is of pre-

dicting when small input disturbances can cause large deviations in the final system

output.

1.1 Motivation
When does an input shock to a network have no effect? A network is a collection

of individual entities, or nodes, with interconnection, or edges, between them. Each

node has an associated state and the state dynamics depends on the set of inter-

11



connections of the node, and the external environment. Assume, now, that node i

experiences some significant variation in the environment, then due to the intercon-

nections in the network these variations experienced by node i can spread to other

parts of the network, for e.g. that are not directly connected to node i. In fact, de-

pending on the state dynamics of each node, there may be a positive feedback loop

generated between i and rest of the network.

In this thesis, we focus on the resilience assessment of a large network with complex

interconnections. Intuitively, a network is resilient to input shocks if there is no

positive feedback loop between any two exclusive parts of the network. We specifi-

cally attempt to study how the complexity of interconnections affect the resiliency

properties of a network. To better illustrate our motivation, we present an exam-

ple that shows how variations in interconnections of a network result in substantial

changes in its resilience properties.

1.1.1 An Interconnected Example

In this example we will present three networks - a completely disconnected network,

a chain network and a chain network with self loops. Each node, i, has the follow-

ing dynamics

xi(k + 1) = aij xj (k) + wj (k) (1.1)
j=1

where aij 0 0 if and only if there exists a link from j to i and k is the time index.

The aij values for each network are shown in Fig. (1.1). The dynamics proposed in

Eqn. (1.1) reduces to the matrix formulation in Eqn. (1.2)

x(k + 1) = Ax(k) + w(k) (1.2)

Here, w is some noise. If w(.) is an input noise, then we are interested in the time

evolution of the vector x(.). Such cases have been partly studied in [51 from a purely

computational perspective. However, in a real network, the dynamics of x(.) may

have physical ramifications that need to be understood. For example, in social net-

works, Eqn. (1.2) denotes a consensus system (See [161, [18]). In such a case it is

important to understand:

12



Disconnected

1 2--- --------- Chain

2 -- ------ Chain with Self loops

(0A

Figure 1.1: Different Network Topologies

* Does the network converge to a unique point ?

" If it converges, what is the speed of convergence ?

* How does a link i -+ j, between nodes i and j,

affect the speed of convergence ?

Now, if A < 1 then the three networks in Fig. (1.1) are stable. From standard

control theory, [111, we know that for each k > 0 and unit energy w(.), Ilx(k)Il <

C(n)llx(0)lI. Here f1all = a , and C(-) is some function that depends on the

number of nodes in the network. This implies that the trajectory of all the states

of a stable network is bounded by some function of network dimension. In later

chapters, we will show that this function is closely related to the effect of intercon-

nections on the so-called resilience of the network. For now we will state, without

proof, some properties of the C(-) for each of the networks shown in Fig. (1.1).

" For the disconnected graph, C(n) = a, for some constant a > 0. This happens

because of the lack of links between the nodes, as a result any disturbance of

nodal state values remains local to that node.

" For the chain network, C(n) = bn, for some constant b > 0. One might be

tempted to attribute this to the addition of n - 1 links, however as we shall

see in the case of chain network with self loops that it is, in general, not the

case.

* C(n) = exp (cn) for some constant c > 0 for the chain network with self loops.

13



We will prove this rigorously in a later chapter.

When n is large, for e.g. n > 1000, we see that there will exist a time point, k,

when some node, j,in the network observes a prohibitively large state value, i.e.,

x. (k) > exp (clOOO). If each state variable corresponded to the requirement of phys-

ical resources, this would imply an acute nodal shortage. As a result, it becomes

important to understand why such deviations occur in real networks and how they

can be prevented.

1.1.2 Applications

In this section, we present three well studied problems spread across economics,

transportation and social sciences that analyze resilience of networks occurring in

that field. We find that the notions of fragility, or lack of resilience, in these areas

are tied to poor dimensional scaling of some network property. The identification

and study of these network properties will be a subject of interest in the chapters

to follow.

Deviations from normal behavior in economic networks

GDP variations to input shocks in different network topologies have been studied in

[21, [3] and [4]. In 121, it is shown how microeconomic shocks can lead to aggregate

volatility (measured by the standard deviation of GDP), i.e., the volatility of GDP

does not diminish to zero as the network size increases, if some sectors are much

larger than others.

In [41, it is shown that the interplay of idiosyncratic microeconomic shocks and sec-

toral heterogeneity results in significant departures of the distribution of economic

downturns from the normal distribution. The factors behind "tail comovement" is

also discussed there, whereby large recessions occur in a cascading fashion across a

wide range of industries in the network. Further, in [4], domar weights in the econ-

omy, defined as sectoral sales divided by GDP, are shown to be the sufficient statis-

tics of large economic downturns. The US GDP growth rate distribution QQ plot is

shown in Fig. (1.2) (taken from [11).

14



Ntoe The hcc.-ontl amIs shows quantiles of the standard iormal drIi bution. the vertical axis
shows quatihs of the saiiple dtal

Figure 1.2: TI QQ plots of postwar US GDP growthi rat (1917 Q1 to 2013 Q3) vs

standard 11ormal. distribu-tion (dashcd d line)

Vehicular Platoons

Platoons offer a promising solution to antoniated lIgxwayv transport. In i3, a spe-

cial form of string instability, disturbance amplification as ar ilpult shock propa-

gates through the platoon, called harmolic instability is studied. Th colditiolls

under which an asynmetric control leads to an exponential, in the length of the

platoon, magnification of input (listirbance are studied there. Ii Fig. (.3)., T-s- s)

denotes the transfer function of the network. where the output. , is the distatee.

from the leader, of the last vehicle.

Ti'

1 . ... .. .--- --- - -- -----

Le id. pisittit

Figure 1.3: Dyaiii-mical modl of a, controlled hiclar platoon network

Consensus Systens

Consensus systems have beeii studiecd in 161, [16, [1.71. Specifically, [161 builds a

theor(tical framework for the aiialysis of coisensus algorithm1s for multi-agent net-

worked systenis aid the dependence of consensus convergence ties on network

topology. Network dimIelsion dependent bounds for convergence times in consen-

sus networks are given il [6, 17. for a certain class of network topologies. Further.

ill [17, sufficient conditious for polvnolial growth in convergence time, with re-

15



spect to network dimension, are studied.

In this thesis, we build a unifying framework to analyze the dependence of robust-

ness or resiliency properties of a network on its topology. We introduce new mea-

sures of resiliency that are consistent with existing analyses of robustness in eco-

nomic, transportation or social networks, and provide greater explanatory power.

1.2 Outline
In chapter 2, we formulate the model and introduce a new measure that captures

the dependence of network topology and dimension on its resilience, or robustness.

Based on this measure we create a hierarchy of resilience. Through examples, we

will demonstrate how this hierarchy is consistent with existing literature on topol-

ogy dependent robustness. In chapter 3, we show how this new notion of resilience

is affected by the interconnections in the network and the network topology. In

chapter 4, we return to the applications mentioned in this chapter. We show how

the ideas introduced in chapter 2 can be used to study robustness in these, appar-

ently unrelated, examples. In fact, our general framework gives us a broader set of

tools for design and control of such networks. Finally, in chapter 5, we summarize

our findings and provide possible future research directions.

16



Chapter 2

Resilience in Large Networks

In chapter 1, we motivated the need to study resilience of a network as a function

of its dimension and topology. We will formulate the model and lay groundwork for

results to follow in the following sections.

2.1 Network Model
Definition 1. - A network is a graphical representation g = (V, &g), where V =

{v 1 , V2... , vn} represents the set of nodes such that each node, vi, has an associated

dynamical behavior and Eg 9 V x V represents the set of edges or communication

links. An edge or link from node i to node j is denoted by e[i,.j] = (vi,vj) eg

Further, the dynamics of each node i is given by

xi(k + 1) = fj(x(k),xi,1(k), ... , Xm(k), wi(k)) (2.1)

Here {(l, i), (l + 1, i), . .. , (m, i)} g Eg and wi(-) is the input at node i.

Definition 2. - A linear network is a network with the following dynamics

xi(k + 1) = Z asixj(k) + wi(k) (2.2)
jEMr

Here {(j, i)Ij e Mi} g g and we call Mi the incoming neighborhood of node i. In

fact, Eqn. (2.2) can be compactly represented as Eqn. (1.2).

Linear networks can be completely represented by A, from Eqn. (1.2), which we call

the state transition matrix. Next, we show the different types of graphical networks

that we encounter in our analysis.
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" Directed Networks: Linear Networks where a # aj for at least one (i, j) e

V x V as in Fig. (2.1)

2
a2l a3 2

1 0

n

Figure 2.1: Directed Network

" Undirected Networks: Linear Networks where ai = a= a V i, j e V as

in Fig. (2.2). Note that for an undirected network, it is not just sufficient to

have -a symmetric adjacency matrix.

2
a b

1 Q
C

Figure 2.2: Undirected Network

In majority of this work we deal with linear networks. One might ask then,

Why do we work with linear networks ?

Linear models can appropriately model many real life scenarios as presented in

chapter 1. Second, we are interested only in interactional effects on the robustness

of a network, therefore assuming a nonlinear model for state dynamics obfuscates

the effects solely due to links between the nodes of a network.

We impose the following (loose) assumptions on the state transition matrix, also

called the network matrix,

18



Assumption 1. - Any state transition matrix, A, is stable unless stated other-

wise, i. e., p(A) < 1 where p(.) is the spectral radius function of matrix.

The assumption of stability on the state transition matrix is reasonable, otherwise

such a network would not be of any practical interest. There would always exist an

input that would cause the system to misbehave.

Assumption 2. - For any sequence of network matrices, {A }* 1 , where the

(i, j)th entry of the matrix Ak is a9, we have that lim supn, maxIal7| < cc.

Assumption (2) states that individual link weights should not grow with network

dimension. This is reasonable because most real life networks are distributed, and

individual nodes requirements are finite, and do not grow much with the scale of

the network.

We would like to point out that we are interested in the resilience, or the lack thereof,

of large networks, formally represented as a sequence of networks where the net-

work dimension grows, i.e., lVi -- oo. This representation is similar to the one stud-

ied in [4]. The key is to identify a limit of networks, that have similar structure as

dimension grows.

What do we mean by a limiting sequence of networks?

A formal notion of a "limit" of a network sequence is necessary because we are in-

terested in networks that are growing in dimension but have the same topology, for

e.g., we are interested in analyzing the behavior of a star network, so our network

sequence comprises of a star of size = 1, a star of size = 2, ... , a star of size = n

and so on. This notion is formally characterized in Definition (3), and extended in

Definition (14) in chapter 4, where we will need it to prove some equivalence re-

sults.

Definition 3. - For each network matrix, A., in the network sequence, {Ak}OO 1 ,

denote by rn(j) the jth row of the network matrix, A,. Next, we define F = {f

N --+ RI I1fl1, < oo}. For each n, define S, = {1, ... , n}, r (j) = [r,(j, 11), ... rn(j lm)]

and fA = [f(11),... f(l m )], where A = {l,... ,lm} ; Sn and f e F. Then, we say

that the network sequence has a limit if supAs I r (j) - fI1 = o(1) for each

19



j e Sn, and for some fj (-) e F.

Assume that for every network matrix, An, in a sequence of networks we have the

following dynamics

xn(k + 1) = An xn(k) + wn 6(0, k), k e {0, 1, 2, .. .} (2.3)

Here xn(k) is the n x 1 vector of state variables. An is the n x n state transition ma-

trix. 6(0, k) is the Kronecker delta function, with 6(0, 0) = 1 and 6(0, k) = 0 V k # 0

and Wn is an n x 1 input disturbance exogenous to the system.

What happens in Eqn. (2.3) is the following - at time t = 0, the system is given an

input shock signal, w, i.e., the state variable corresponding to each node, i, is per-

turbed. We are then interested in tracking the time evolution of the state variables

of the network, to answer the following question -

How can we measure the effects of an impulse input to a network?

Wnl Wn4
Xn1 X'4

wn5

n3

Wn3 k0

Figure 2.3: Network with noise on every node, k = 0

Definition 4. - Given the network dynamics as in Eqn. (2.3), for each network

matrix, A., in the sequence, {AO}j 1 , and a deterministic input disturbance se-

quence, {wk}'k, to the system, the max norm, Mn, for every An, is given by:

M = sup x T (k)Xn(k) (2.4)
IIWn|2=1 k=0

Definition 5. - A sequence of vectors, {WkIk, is a white noise sequence when

E[WnW ] = Inxn and E[wn] = 0 for each n.

Definition 6. - Given the network dynamics as in Eqn. (2.3), for each network

matrix, An, in the sequence, {Ak'& 1 , and a white noise sequence, {Wk I 1 , the av-

20



erage norm, 4, for each An, is defined as the following:

En = E0w XT(k)xn(k) (2.5)
k=O

Proposition 1. - The max norm, M., is o-me(Pn), and the average norm, E4, is

tr(P,), where

APAl+ In = P (2.6)

Here omax(P) is the largest singular value of P, and tr(Pn) is the trace of Pn.

Proof. Proof is in Appendix B.1. I

Definition 7. - Given a sequence of networks with network matrices {Ak}kUl, the

sequence is asymptotically robust, or resilient, if we have:

" Network matrix, Ak, is stable for each k

* En = O(p(n))

Here p(-) e Pd for some d e N, and En is the average norm of the matrix An in the

sequence. Fragility is the lack of resilience in the sense of super-polynomial or expo-

nential scaling of the average norm, n, of the network matrix sequence {An}|_ 1 .

Remark 1. - Since Mn < S, < nMn, we note that a network sequence is

resilient in En-norm, if and only if it is resilient in Mn-norm. However, the in-

put (stochastic) to the system when evaluating the En-norm is different from the

input (deterministic) while evaluating the Mn-norm. Therefore, the equivalence of

the norms additionally tells us that the resilience property does not depend on the

stochasticity of the input. It should be noted that the average norm of an LTI sys-

tem is the same as the (2 -norm when the input to the system is a white noise pro-

cess as observed in [141.

Definition (7) is general in the sense that resilience is a property of the sequence

{Pk}' 1, and hence {Ak}' 1 , and not specific to the L, norm that we use. This fol-

lows from the following fact about vector norms, for p > r > 0:

HxI <, I|xIj, < nl/r-1/PIIxIIp (2.7)

Specifically, Eqn. (2.7) implies that if an induced norm of P. is polynomial in di-

mension then so are all other induced norms of Pn. There is another intuition for
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the demarcation between resilient and fragile network sequences that we will present

in chapter 4.

Further, fixing an L, norm gives us a hierarchy of resilience, in that norm, which

we formally define below

Definition 8. - For a given polynomial, p(n), we call a network sequence, {Ak}1,

Lq - p(n) order if IIP|I|Iq = 8(p(n)) where P, is generated as in Eqn. (2.6).

It follows that, Mn = IIPnI1 2 , i.e., it is a measure of resilience in the L2 norm. In

Table 2.1, we present the examples of resilience order that we will commonly visit

in this work.

Resilient Fragile

Mn = E(1), L2 constant order M, = Superpolynomial(n)

Mn = E(n), L2 linear order Mn = Q(exp (an))

M, = Higher order polynomials in n M, = Higher order exponentials in n

Table 2.1: Hierarchy of Resilience under 2 norm

Proposition 2. - Every undirected network sequence, {Ak%. 1 , is resilient. In

fact, for each n, we have:

Pn = (I -A2)- 1  (2.8)

If further limsupn,.p(An) < 1, then Mn = 0(1).

Proof. Proof is in Appendix B.2. l

Figure 2.4: Disconnected Network

Remark 2. - We see that, in general, the average norm is affected both by the

proximity of the spectral radius to unity and interconnection effects. In fact, the
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proximity of the spectral radius to unity is itself a result of interconnections in the

network matrix. This is clearly visible when the network matrix is symmetric (as

shown in the proof of Proposition 2), and holds true for general network matrices.

In general, it is possible to have fragile behavior even when the spectral radii of the

network matrices are uniformly bounded away from unity (we will show examples of

such networks in chapter 4). Definition (7), therefore, attempts to encapsulate the

dual effects of spectral radius proximity to unity and the influence of interconnec-

tions.

Remark 3. - Suppose we had a disconnected network sequence, {Ak} 1, i.e.,

where each network matrix, An, looked of the form in Fig. (2.4), then it is easy

to check that M, = 1. By Propostion (2), we see that for undirected network se-

quences, where each network matrix, An, is of the form in Fig. (2.2), we have that

Mn= 0(1). These observations imply that in any network the best, in terms of

resilience, we can hope for is a symmetric flow of information.

2.2 Resilience in arbitrary graphs

Are symmetric network matrices the only types of network that are resilient ?

We are interested in understanding and characterizing network properties that in-

fluence fragility in general networks. The following proposition gives us a sufficiency

condition for asymptotic robustness, or resilience, of a general network sequence.

Proposition 3. - A network matrix sequence, {An} _1 , is asymptotically robust,

or resilient, if there exist k, d e N and a function g(-) such that

limsuplIAil1f") < 1 (2.9)
n-00o

where g(-) e Pd, and I|| -|I is some L, induced norm.

Proof. Proof is in Appendix B.3

Remark 4. - An obvious implication of Proposition 2 is that all network se-

quences of contraction mappings are resilient. Proposition 2 further allows cases

where IIA.I 2 > 1 but the sequence is still asymptotically robust. Also, if we are

23



given an orthogonal projection, H, and a symmetric network matrix sequence {Ak%k&1

then the sequence {If lAnI}? 1 is also resilient. This shows us that asymmetry intro-

duced in specific ways does not necessarily break resilience.

2.2.1 Resilience in consensus graphs

So far we have dealt with stable networks only, however, in a large class of appli-

cations, for e.g., consensus networks deal with network matrices that are strongly

connected but have spectral radius at unity. As a result, we need a systematic way

of extending our notion of resilience to such networks. We start by imposing As-

sumption (3) on the stochastic matrices that we study. This assumption ascer-

tains that the network graph is strongly connected, for an analysis on consensus

in graphs that are not strongly connected see [71.

Assumption 3. - If A is a stochastic matrix, then we assume it is aperiodic and

irreducible.

Definition 9. - A sequence of network matrix sequence, {Ak}'. 1 , is a consensus

network sequence when for every n, A,. is a stochastic matrix and for every network

matrix, A., each node of the network has the dynamics given by Eqn. (2.10). Here

5(.,-) is the Kronecker delta function and w, is a n x 1 input vector.

xfl(k + 1) = Anx(k) + WnT(0, k) (2.10)

Proposition 4. - For the consensus dynamics in Eqn. (2.10) we have that

lim xn(k) = c[1, 1,... ,1] (2.11)
k-+*oo

Proof. Using Perron Frobenius as in [151. l

Next, we define the projection matrix, H., that is perpendicular to the vector [1,...,1]T

for every length n vector:

flr n= I. - 1, 1T/n (2.12)

Here, I, is the n x n identity matrix, and 1, is the n x 1 vector of all ones.

Proposition (4) states that all the nodes approach the same state value eventu-

ally. As a result, we expect that in well behaved systems the trajectory in an or-

thogonal subspace be "well bounded". In light of this, we will study the fl, projec-
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tion of the state vector xn(k) at each time point k for every network, An, in the

network sequence. Here xn(k) is generated as in Eqn. (2.10). Formally, we have

Xnn(k) = fln xn.(k), and the measures for the consensus network sequence are

Mr =sup nr(k)x.,r(k)
IILI;.11=1 ( k=O

I1nh2 (~x T -1 n~(k))
Ecn [(E Zx,H(k)xnn(k)

This approach is similar to the one studied in [141, 1181.

Proposition 5. - We have the following relations for every An in the consensus

network sequence, {Ak}& l:

EF = tr(Pn,n)

Mr = ogmax(Pn,H) (2.13)

Here Pn,n = A P1,nAn + lun. Further, Pnr can be represented by

PnJ, = (A )k fn Ak + 1l

k=1

(2.14)

Proof. Proof is in Appendix B.4. l

With the preceding framework we are now ready to define the resilience hierarchy

for consensus network sequences as we did before

Definition 10. - Given a sequence of consensus network matrices, {Ak}" 1 , we

call the sequence asymptotically robust, or resilient, if:

* p2 (An) < 1 for each n

* = O(p (n))

Here p2 (An) is the second largest eigenvalue (in absolute value) of the matrix An

and p(-) e Pd for some d e N.

2.3 Examples
We conclude this chapter by presenting some network topologies that are commonly

observed in real life, and computing their resilience using the tools defined previ-

ously. We further note that the reversed star and star network shown in Fig. (2.5)

are behaviorally (in terms of resilience measures) same, as a result in Figs. (2.6), (2.7)
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we refer them as simply a star network. The quantities E norm and M norm in

Fig. (2.6) are E, and Mn respectively.

2
Sa

3

a

(a) Ring Network

2

a

1n 3
a a

2
a a

1 3

(b) Chain Network

2

a
1 n 3

a u a

(c) Star Network (d) Reverse Star Network

Figure 2.5: Different directed networks

Directed Graph type M En
Ring, (a < 1) Mn = 0(1) E, = e(n)

Chain, (a < 1) Mn = 0(1) E, = E(n)
Chain, (a = 1) Mn = 8(n) E, = 0(n2 )
Star, (a < 1) Mn = 8(n) S, = 8(n)

Table 2.2: Resilience of different network topologies

From Table 2.2, we observe that when a < 1, then E, = O(n) and indeed we will

formalize this in chapter 4.

The key takeaway here is that the resilience of a network sequence, {An}n __j, can

be completely determined by the grammian sequence, {Pn} 1 , given by Eqn. (2.6)

for each A. In the following chapters, we will show how measures of robustness

across different disciplines are merely norms of the grammian sequence, and robust

networks are equivalent to resilient networks in this framework.

The metric, P, or gramian, is the accumulated effect of a disturbance, at time t =

0, on a linear network. In fact, when any disturbance is input to the network, it

spreads through to each node over time. Therefore, in a manner similar to [14], the
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Figure '2.6: Resilience of different networks (a < 1)

singular values of the quantity P - lj(T)A1, measure the effect of an input

(listurbance at time, t = . on every lode of the network. In Fig. (2.8), we plot

the energy evolution heat map for the chain network in Fig. (2.5) With a = 1. The

diagonal elements are the singular values of PK where t = k.
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Chapter 3

Edge link effects on resilience

measures

In Chapters 1 and 2, we presented why quantifying resilience as a function of net-

work dimension is important. We showed how different network topologies behave

under an input shock. Specifically, we used the tools we developed in chapter 2 to

analyze the resilience in these topologies. In this chapter we will demonstrate how

individual edge links affect the resilience properties of a network topology.

3.1 Edge link sensitivity
The primary focus of this section is to determine if in a fragile network sequence,

does their exist a set of bottleneck links, i.e., those links that give substantial im-

provement when modified. Trivially, this set includes removing all the links of the

network, however, the challenge is to find a nontrivial set, and formalize this notion

of "substantial improvement".

When is an edge link fragile?

Definition 11. - A link between nodes i, j in a network, A., in the network se-

quence, {Ak} . 1 is fragile if

atr(P.,j

a = Q(SP(n))
a0zIj

29



Here a'j = [A4,]ij, P, is defined in Eqn. (2.6) and SP(-) is some superpolynomial

function in n.

If a network sequence is fragile, one might expect that there exists a critical link, or

a set of critical links, in every network of the network sequence. Definition (11) at-

tempts to capture this notion of criticality. Then, this leads to the question whether

this definition of edge link fragility is consistent with the definition of network re-

silience, i.e.,

Do we find fragile links only when the network is part of a fragile sequence?

Lemma 1. - For each network, An, in the network sequence, {Ak}1 0, with a >

0 we have:
aatr(P) > 2[PnA4I]i (3.1)

Here a!' = [An]ij, P, is defined in Eqn. (2.6).

Proof. Proof is in Appendix B.7

Theorem 1. - There exists a fragile link in each network, A,, of the network se-

quence, {Ak}'j if and only if the network sequence is fragile.

Proof. Proof is in Appendix B.8. 11

As an example for Theorem (1), we show in Figs. (3.1), (3.2) the fragile links in the

directed chain with self loops. In the extreme case when the link weight of all edges

from i - i + 1 are 0, this reduces to the disconnected network. However, such a

reduction is in no way unique, since if we removed all the self loops we would ob-

tain a simple chain network, that we already know is resilient. In the Fig. (3.2), the

Otr(P,)
Link fragility is measured as Oa"

3.2 Nodal Degree sensitivity
For the purpose of analyzing the effect of nodal degrees on the resilience of a net-

work in this section, we will consider network sequences, {Ak}k 1 where each net-

work, A., is of the form

An = -yD- 1A, (3.2)

30



S 0.9 2Chain 2

0.1 0.1 0.1

1 2 -------- n Chain 1

0.1 0.1 0.1

1 2 0.9 31 . . 3 ..--.---------- n Chain 3

0.1 0.1 0.1 0.1

Figure 3.1: Different chain networks with resilience shown in Fig. (3.2)

Here D7, is nodal degree matrix of A,, A, is the incidence matrix corresponding to

the network topology of A, and y < 1 for stability of the network A,,.

Definition 12. - Network sequences, {Ak}g i, where each network, A., has the

form given by Eqn. (3.2) are called degree network sequences. Further, we call net-

works with network matrix given by Eqn. (3.2) as degree networks.

As an example, the regular degree network sequence, and the star degree network

sequence in Fig. (3.3), have network matrices as given below

0 1/(n - 1) 1/(n - 1) ... 1/(n - 1)

1/(n -1) 0 1/(n - 1) ... 1/(n - 1)

Angi 1/(n -1) 1/(n -1) .. 1/n - )

1/(n- 1) 1/(n- 1) 1/(n - 1) ... 0

0 0 0 ... 1

0 0 0 ... 1

Anr"=y 0 0 0 ... 1

1/( -1) /( -1) 1/(n - 1) ... 0
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- -Chain 1 to Char 2
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I
/

I
I

I
/

* Chain 1 to Chain 3

Figure 3.2: Substantial changes when a fragile link is changed

t 2 2

3 n 4 3

(a) Regular (b) Star

Figure 3.3: Network topologies as defined by Eqn. (3.2)

XVe observe that there is a strong relation between increasing network entropy, as

discussed in 1(-)] and reducing network fragility. As a future research direction, we

would like to establish links between network entropy and network resilience. Fr

the purpose of the following discussion, we restrict our attention to degrec network

sequelices.

As an example, we start with a. star network network sequence as shown in Fig. (3.3).

It is known that , 6(n) for the network sequence. Next, we build a network

sequence, called improved star, as shown in Fig. (3.).

As expected, we get substantial improvement in the resilience as shown in Fig. (3.5)
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Degre' Networks ;"" ,
Star "'il = 0(.1l) = ( )

Regular MA, =(1) S = 0(()

Table 3.1: Pesilience of degree network topologies

o 2

0 
(1

3.

(a) Star

1 2

(b) Improved Star

1igure 3.4: Improving the star topology

- - Improved Star
Star

- - Improved Star
Star

Figure 3.5: Resilience for improved star
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Chapter 4

Applications in real life networks

We briefly discussed three problems in chapter 1 where robustness, or resilience, as

a function of network dimension has been studied. In this chapter, we will revisit

the three problems in greater detail and show that the robustness analysis there is

essentially a form of resilience analysis under our unified framework. Further, our

framework is not bound by the limitations imposed there, and as a result gives us

more flexibility in analyses.

4.1 Deviations from normal distribution in economic

networks
We study the model discussed in [2], [31, [4]. Consider a static economy consisting

of n competitive sectors denoted by {1, 2, ... , n}, each producing a distinct prod-

uct. Each sector corresponds to a node in the network graph. Firms in each sector

employ Cobb-Douglas production technologies with constant returns to scale. For-

mally, for each sector, i, we have

n
= 1- ya| (4.1)

(j=1)
xi is the output of sector i, E is Hicks-neutral productivity shock, 1i is labor input

to sector i, yij is amount of output of sector j used for the production of output of

sector i, and qj > 0 is some normalization constant. As 12] notes, a larger aij means

that sector j is more important in the production of output of sector i. Constant
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returns to scale implies E' aij = 1 for all i, where aij > 0. From now, A = [aij]

will be referred as the economy's input-output matrix.

Definition 13. - Each sector has input microeconomic shocks ei given by

Ei = log (E)

Assumption 4. - Microeconomic shocks, ej, are i.i.d. across sectors, and sym-

metrically distributed around the origin with full support over R.

The economy has a representative household that supplies a unit of labor inelasti-

cally, and has the following preference function over each sector

u(ci,. .. , cn) = i 0og (ci) (4.2)
i=1

where ci is amount of output of sector i consumed, given by
n

xi = y", + ci
j=1

and 13i > 0 is i's share in the household's utility function, and En = 1. In

[2], it is noted that there are two forms of heterogeneity - primitive and network.

Intuitively, primitive heterogeneity stems from the difference in preferences, i.e., /3,

across different sectors, meanwhile the network heterogeneity is due to the inter-

linkages of the input-output matrix. Since, in this work we are concerned with the

edge link dependencies only, we will impose the additional assumption.

Assumption 5. - The utility function has no sectoral preferences, i.e., 3i = 1/n.

Assumption 6. - The economy has a competitive equilibrium as in [41:

" Representative household maximizes its utility.

* Representative firm in each sector maximizes its profit, while prices and wages

are known.

" All markets clear.

Proposition 6 (See [41). - The aggregate output is of the economy is given by
n

y = log (GDP) = ZviEi
i=1

where

pixi 1 *
GDP n .1
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i3 is (j, i) element of the economy's Leontief inverse L = (I - pA)-', and pi is the

price of output of sector i.

Proof. Proof can be found as Proposition 1 of [4].

In this section, we will frequently deal with a sequence of economies, as mentioned

in chapter 2, to model the effect of interconnections on the resilience of a network.

Now we define what it means to be a limiting sequence of networks,

Definition 14. - Consider the measurable space M = (N, B), and for each

k e {1,2,... , N} define a probability vector PN(j I k) Vj e {1, 2,... , N} such that

z iPN(j k) = 1. Further, assume that PN( I k) strongly converges to fk('), a

probability measure on M, as N -- o. Then, a sequence of stochastic network se-

quences, {Wk}' is a limiting sequence of networks if for every i = 1, 2,.. ., we

have that Wn[i] converges strongly to fi(-), where W,[i] is the ith row of Wn. In

other words, W must converge strongly to a markov kernel, K(-,-) : N x B --- >R+.

Assumption 7. - All sequences of networks are a limiting sequence.

For the purpose of this section, we impose Assumption (7) on the network sequences

considered here.

Proposition 7. - For any network matrix sequence, {Wk}&1 , with the property

that IIWnIl < 1 for each n, and p = {1,coo} then we have that

E, = 0(n)

Proof. Proof is in Appendix B.10.

When a < 1, each network in Table 2.2 has Wn, < 1 and as a result of Proposi-

tion (7) we have that S, = 0(n). A subset of such networks are studied in [4].

4.1.1 Tail Risks

In [41, conditions when idiosyncratic, microeconomic shocks lead to the emergence

of large output deviations, or "macroeconomic tail risks", are studied. Ideally, when

a network is hit by a microeconomic shock, the aggregate output, as given in Propo-

sition (6), distribution should not deviate "too far" from the normal distribution for

a resilient network. We have that,
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Definition 15. - For aggregate output, y,, we have

log (P(yr, < -- rUo)

log (<b(-7-))

where 4)(-) is the CDF of standard normal distribution, -, = standard deviation(yn)

and Tr > 0. Aggregate output, yn, exhibits tail risks (relative to the normal distribu-

tion) if limnin Rn(Vjn) = 0

Definition 16. - A random variable, Z, has exponential tails if for some A > 0

we have

P(Z > z) < exp (-Az)

Theorem 2. - Suppose that microeconomic shocks have exponential tails, then a

sequence of economies does not exhibit macroeconomic tail risks if and only if the

sequence is L1-constant order resilient.

Proof. Proof is in Appendix B.9.

2
a

aTa 
3

a

n

(a) Exhibits Macroeconomic risk (b) No Macroeconomic risk

Figure 4.1: Networks with and without macroeconomic risks

As we had shown in Proposition (7), the sequences of economies with constant or

diminishing returns to scale can have a worst case E, = 6(n) = M: = 0(n) for

all such sequences. This is an important limitation in the analysis presented in 121,

[3], [4]. On the contrary, our framework provides tools to analyze sequences that

have increasing returns to scale, at the same time it is consistent with the analysis

presented in past literature.

4.2 Vehicular Platoons
Asymmetric control has been well studied in the context of vehicular platoons (See

[131, [191 and references therein). Specifically, in [131 a severe limitation of asym-

metric control, harmonic instability, is analyzed.

38

E]



Definition 17. - In the Fig. (1.3), -yr is the output of the platoon, and Ta(s) is

the transfer function from 1 -* n. Then let -y, = suPw + IT,(jw)1, where j = V-1.

The platoon is harmonically stable if it is asymptotically stable, and limr sup.,, yI/n <

1, else it harmonically unstable.

The dynamical model, as studied in 1191, is given by

xi(k + 1) = Axi(k) + Bjui(k)

yi(k) = Cixi(k) (4.3)

where ui(.) is the external control input for the ith vehicle in the platoon.

Assumption 8. - All vehicles in the platoon have identical behavior, i.e., (Ai, Bi,Cc) =

(A, B, C) Vi .

Now, from [131 and Eqn. (4.3), we have the following system dynamics,

x(k + 1) = [In 0 A - (In 0 BC) (L 0 IN)]x(k) + (In 0 B)r(k)

y(k + 1) = (I 9 C)x(k + 1) (4.4)

where n is the number of vehicles, N is the number of state variables per vehicle,

and L is the graph laplacian of the form

0 0 0 0 ... 0

-- P2 P2(1 + C2) -Y26 2  0 ... 0

L 0 -P3 / 3(1 + C3) -p 3 C3 ... 0

0 0 .. 0 -Pn An-

Further, r is the external noise.

1A1 'E

Q 1o 2 -------- n

+i (1A) 12 (1+62) An (1+En)

Figure 4.2: Laplacian of the platoon

Proposition 8. - If the leader following network sequence in Fig. (1.3), corre-

sponding to the system dynamics in Eqn. (4.4), is resilient then the network se-
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quence is harmonically stable.

Proof. Proof is in Appendix B.11.

There are a few key points to be noted here. First, Eqn. (2.6) changes to

Pn = A T Pn An,V + CTVyCn,y

where An,V = In 0 A - (I 0 BC)(L 0 IN) and Gn,v = I, 0 .

The model assumed in 1131 is different from the disturbance model studied in this

work.

* Noise incidence - In [131, the disturbance is assumed to be incident only on

the leader vehicle, and the effect of the noise propagation is measured at the

last vehicle. In general, a combination, possibly all, of nodes maybe incident

by noise.

e The structure considered is strictly one dimensional, or string-like. However,

our framework provides tools for "harmonic stability" of drones and higher

dimensional vehicular formations.

The special case of Eqn. (4.3) when each vehicle contributes only one state variable,

the problem reduces to finding the gramian matrix as in the familiar Eqn. (2.6).

x(k + 1) = [aInyn - bc L]x(k) + br(k)

y(k + 1) = cx(k + 1) (4.5)

where a, b, c are real numbers, with the laplacian shown in Fig. (4.3). The {Aj, pi >

1, e},"__ 1 or in this case a, b, c are chosen so that the network is stable. Then,

A'

1 - - - - - - - - n Platoon control

A2 An

Figure 4.3: Platoon control network

Proposition 9. - The predecessor following algorithm (e, = 0, Vi) is fragile, and

the bidirectional symmetric control (e = 1, Vi) is resilient.
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Proof. Proof is in Appendix B.12. F

In [131, it is shown that for maxi ei < 1 and mini ci > 0, then the network is

harmonically unstable, i.e., fragile. As an example, we pick Ai = 0.04 Vi, Ai =

0.8 Vi, and Ei = 0.3 Vi, and show the E,, MA, norm variation with network size in

Fig. (4.4),

200

150

100

50

ioO 1 200 250 300
Network size

- - Platoon M norm

100 -

_50I
100 1 200 250 300

Network size

350 400 450 500

350 400 450 500

Figure 4.4: Norm variation in asymmetric platoon network

The network matrix, AT1, corresponding to Fig. (4.3) looks like

A-

A1

-jIo

0

A2

-p0 1

0

-A262

0

0

A,,

4.3 Consensus Systems
A large body of work has been devoted to understanding convergence times of dis-

tributed consensus networks (See [6], [16], [17], [18]). In this section, we will show

some fundamental connections between the convergence time and our metric of

resilience. We will show that our measure is consistent with existing literature on

convergence analysis for stochastic network sequences. For the purpose of analysis

in this section, we will observe the assumptions in subsection 2.2.1, i.e., assump-

tions of aperiodicity and irreducible.
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In general, a stochastic network may only converge to the limiting distribution

asymptotically. As a result, we need to define a time metric to study the time evo-

lution of the closeness of a stochastic network to its limiting distribution. Further,

assume A = limka.o Ak = 1 T

Definition 18. - Given any e > 0, E-convergence time to A, t(e), for a stochas-

tic matrix, A, is defined as

t(e, A) = inf{t e NiIIA' - AltI, < E}

Definition 19. - The sequence of stochastic, network matrices, {An} 1 con-

verges in polynomial time if

tAnA(1/4) = O(p(n))

Here tA.,A(.) is the 1/4-convergence time for the network matrix An to the limiting

matrix A and p(n) e Pd for some d e N.

As before, to analyze the resilience of stochastic matrix networks we define A(t) =

fAt as the projection of A on the subspace H = 11T /n and A(t) = (I - fl)At = QAt

as the projection in the subspace perpendicular to 11T/n.

Proposition 10. - For any stochastic matrix that is aperiodic and irreducible,

|| A' - 17 || I10 < || JA - -17 || IOo

Proof. Remember that Al = 1, therefore we have At - lr T = A(At-l - lf T). Thus,

IAt - 1iFI < I|AIoo||At- 1 - 1W7T = IA t-1 - At _1T||

Proposition 11. -

|A (2t) - 17T|I I I ||A t  - 1rT|12
||A ~ 1 0|0<|A |

Proof. We have that A2 t = QA 2t = QAt(HAt + QAt). Since At is stochastic we have

that Ati = H, then QAtIIAt = QHAt = 0. This gives QA 2t = QAtQAt, and hence

we have our inequality. The proof of the other part is similar.

Next, we find a necessary and sufficient condition relating the convergence time of

the consensus network and the norm decay of the probability transition matrix.

Proposition 12. - A sequence of markov networks, {AL} Kl, converges in poly-
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nomlial time if and only if tAs,A(1 - 1/(O(g(n)))) = O(p(n)), where g(-), p(-) e Pd

for some d e N.

Proof. For any fixed e < 1, we have that

,E= (1 - 1/0(g(n)))"

log (E) = m log (1 - 1/O(g(n)))

We will show that m is at most some polynomial function in n. Assuming O(g(n)) >

1,

log (C) < -m
O(g(n))

m

O(g(n))

m 0 -(g (n)) log (E)

Therefore, choosing m = -O(g(n)) log (E) does the trick. Now, for any markov

matrix we have the property in Proposition (10). Then it follows that if tA.,A(1 -

1/(O(g(n)))) = O(p(n)), then so is tAsA(f) < O(p(n)) -log (e)O(g(n)). The converse

follows trivially from Proposition (10). L

Based on Proposition (12), we have shown the L,, needs to fall below 1 in polyno-

mial time for polynomial time convergence.

Lemma 2. - For a stochastic matrix sequence, {A,},1 if A(' has c-convergence

time to 0 equal to p(n), then A(t) has convergence polynomial time to l17T equal to

O(p(n)).

Proof. Then, at time t > p(n), we have the following, where W_,n is in the orthogo-

nal subspace to 11T/n

At = 16T + EW1,

Atr = Ar1T + cA W1 , 1  (4.6)

Now, we will show that 6 and 7r does not vary to much in norm. From Eq. (4.6) we

43



see that

lim A"+' = 16T + ebrTW1 ,T
T-0

1 = 16T + 61.TW1 ,T

117 - 16T lr e (4.7

Thus, At has e-convergence time to 17rT equal to O(p(n)).

The Lemma (2) paves way for the following equivalence result -

Theorem 3. - A sequence of markov matrices, {An}, I is resilient if and only if

the sequence has polynomial convergence times. Further, if the c-convergence time

for An is p(n), then the L, resilience order for the stochastic network sequence is

O(p(n)).

Proof. First from Lemma (2) observe that, if A(') is at most f = 1/4 away after

p(n) time, tlen At is at most 2e = 1/2 away from 1wT. By Proposition (10), we

have that in 2p(n) time At will be at most 4E2 = 1/4 away from 17rT. Thus, the

convergence time is O(p(n)). For the converse, let IIA' - 17rT1I, < 1/4 after time

p(n), then IiA' -17rT1 < 1/16 after 2p(n) time and IQ(A -17rT)1I0 _ IIQlleIIA -
17rT I" < 1/8 after 2p(n) time, thus the tIPn,nIKo = e(p(n)), where Pjn is defined

in Proposition (5).

A consequence of the results in [17} is that undirected flocking networks, i.e., graphs

that have network matrices of the form Eqn. (3.2) with symmetric adjacency matri-

ces, have polynomial convergence times. Here we will provide an alternate proof

for the same. Further, our setup allows for the convergence time analysis of any

aperiodic and irreducible stochastic matrix, as opposed to [6], 1171, where such an

analysis is limited to flocking matrices.

Proposition 13. - Any undirected, aperiodic and irreducible flocking network

sequence, {Ak}'L 1, is resilient.

Proof. An undirected flocking matrix, as in [17], has a symmetric adjacency matrix.

Then, we know that An = Dn An can be symmetrized to Sn = DI1/2A=
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Dr 2 AnDn71 2. Now, using the same notation as in Proposition (5), we have that,

Pn,,, = A P Tr A '+ l
n n Hn

Pn,11. = An~ D D~/PI,rn D /An + H,

D - 2 P1n D1/2 = STD 1/2P , ,1Dj/ 2 S'r + D- 1/2HD1/2

Pn = S p~n~ U

Here flD is orthogonal to D 1/ 2 [11 ... ,]T, which is the eigenvector of Sn7 corre-

sponding to the eigenvalue 1. Since Sn is symmetric, the second greatest eigenvalue

(in magnitude) will be in an orthogonal subspace, i.e., in u.

Since S, is symmetric the singular values of Sn are the eigenvalues of S.,' (albeit

some permutation). From [61, we know that for a flocking matrix, X2(S,) < 1 -

1/n, where A 2 (A) is the second largest eigenvalue (in magnitude) of A. Then, we

get that o-1 (Pn,HD) = O(n2 ), further Dn/2 P ,n D/ 2 
= O (Pnn,)

O(n3 ). l
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Chapter 5

Conclusions

5.1 Summary of results
In this thesis, we studied the dependence of transient dynamics of networks on their

topology. Motivated by applications in economics, transportation systems and so-

cial networks, we provided a framework to assess resilience in each of these do-

mains. We showed how existing analyses of resilience, or robustness as a function

of network dimension are special cases of the unified framework we develop in this

thesis. Based on this, we categorized networks that behaved poorly as their dimen-

sion grew, while keeping the topology constant, as fragile. We found that a network

was fragile if and only if it had fragile links, which showed that the notion of re-

silience developed here consistently captures the effects of interconnections on the

transient behavior of a networked system. We also provide foundations for analysis

of networks that are marginally stable, specifically those where a notion of conver-

gence exists. Additionally, it is shown here that resilience is equivalent to conver-

gence times in such consensus systems.

5.2 Future Work
Although we show that our measures of resilience capture the effect of interconnec-

tions in a network, finding the critical links in a general network is a future direc-

tion of research. An important unexplored area is when the dynamics of the net-

work are linear but time varying.
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Appendix A

Notation

f(n) = E(g(n)) c1g(n) < f (n) < c2 g(n) for some fixed constants c, : c2 > 0 and all n > no

f(n) = O(g(n)) f(n) < cg(n) for some fixed constant c > 0 and all n > no

f(n) = o(g(n)) limco If(n)/g(n)I = 0

f(n) = Q(g(n)) g(n) = O(f(n))

-p(A) Maxlii<n jl(A)j

IIAflk SUP11VIIk<1 IAvIik denotes the Lk norm of the matrix A

A Denotes A, a matrix of size n x n

Vn Denotes v, a vector of size n x 1

'Pd Family of polynomials with maximum degree d e N
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Appendix B

Additional Proofs

B.1 Proof of Proposition 1
Proof.

X = xT(k)x(k)

k=O
00

= Z wT(AT)kAkw
k=O

= wT ( ( AT)k Ak w
k=O

If A is stable, thcn P = kI(AT)A is given by P = ATPA + I (this follows

from 111]). Thus, we have X = wTPW, now if w is a deterministic signal with finite

norm then we have

X* = sup wTPW = o1 (P)
IIWI2,<l

Next if w is white noise, then we have

Xf = tr(Ew[wT PWI)

= Ew[tr(wTPW)]

= tr(Ew[PwwT ])

= tr(P)

El
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B.2 Proof of Proposition 2
Proof. Since An is symmetric, i.e., A, = A , it follows that p(A1) (A =

ai(A,). Further from [11} we have that as An is stable, the solution, P, to the ma-

trix equation (2.6), with A = An, exists and is unique for all n e N.

Due to the stability of An for each n, we have from [111 that

An PA + I = P

P= I+ (An) An
k=1

P=I+ A 2 (B.1)
k=1

P =(I - A2)-l (B.2)

Equation (B.1) follows from the symmetric nature of An and Equation (B.2) follows

from the fact that a,(A) (o, (An)) 2 < 1. From Equation (B.1) we have that

iPI12 < II + A2kII
k=1

01 (P) 1 + Zl( A2
k=1

1+ o(An )2k

k=1

1 1

0'2- o (An) 1 -p(An)

The claim E, = O(n) follows from the fact that tr(P) < nau(P) and that tr(P) >

n F1
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B.3 Proof of Proposition 3
Proof. For the sake of this proof, we can assume p = 2 wlog. If equation (2.9)

holds, then IIA k1 2 = 1 - 1/O(g(n)). Under Assumption (2), we have J1An 12 = O(n).

Next define c(n) = Z_1 n2j, then we have from [111, due to the stability of An for

every n, that

P=I+Z (A"mA~P =I + Y An" An
m= 1

k

a1 (P) 1 + 0O(n21)
L=1

+ 0( - 1/0(g(n)))21 Y (2p)
1=1 P=1

= 1+ 0(c(n))O(g(n))

= O(c(n)g(n))

Since c(.), g(-) e Pt for t = max {d, 2k}, the sequence of network matrices is asymp-

totically robust.
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B.4 Proof of Proposition 5
Proof. We first show that the sum in equation (2.14) is well defined. Since A is

aperiodic and irreducible. We have IIAk - vwTI I Cak for some a e (0, 1) as shown

in [15] in Theorem 4.9 (the convergence is elementwise). Therefore there exists ko

such that one can write for all k > ko

Ak - wT <C akjT

where denotes element wise inequality and v, w are left and right eigenvectors

with eigenvalue 1 respectively. Notice, fv = 0 as H is orthogonal to v = y[l, 1, ... , 1]T.

lim I IHAk 1/k = lim |Cflak B + lIvwTII1/k
k --+*oc k-oco

kkc

= a lim I|lBI Il/k

Sa < 1

where B 11

Using the fact that IP = H for all p e N and 1 1T = H, we have that infinite sum in

equation (2.14) converges from [111.

For the next part, we have x(k) = AkW then xr(k) = HA k. Then XT(k)xr(k) =

wT(AT)kllAkw and we have
00

M = sup Zx (k)xn(k)
liwli= k=O

.00

= sup ZWT (AT)k12 Akw
lilWl=1 k-O

= sup w Z(AT )k JAkw
l1Uiwil k=O

= omax(Pn)

The other claim follows similarly.
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B.5 Another Measure for Gramian
Generally, the gramian does not have a closed form that -is suitable for theoretical

analysis. Here we will define a "resilience" proxy for the gramian matrix that will

aid us in capturing many properties of the gramian matrix.

Lemma 3. - A network sequence, {Ak}kLi, with a' > 0 for each A, and (i,j)

pair, is resilient if and only if II(Ix, - A,)-1 = O(p(n))

Proof. Since, p(An) < 1, a series expansion exists. Note that (assuming IIAI1 2 > 1,

otherwise the proof is trivial),

(A T)kA k 1 2 < ||A%| k 1 n|A k 11

I(A T)kA k1 > ||A k 12

Now, assume II(Inx, - A,)Il1 = O(p(n)), then (Inx, - A,) 11 = O(p2 (n))

(1 + IIAII1+ 2 + IIA 211  .. .)2 > (1 + |A k112)
k=1

== O(p2 (n)) > (1 + Z A 112)

k=1

==> O(p2 (n)) = 1 + Y II(A T) A k 2

k=1

=- O(P2(n)) = III + Y(A ) A k2
k=1

The proof of the converse now follows similarly.
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B.6 Eigenvalue Perturbations
Our definition of resilience hinges on the fact that the network sequence is stable,

i.e., the spectral radius is less than one. Since the perturbation of an edge link may
oP

cause the network to become unstable, therefore to show that ea, xists we need

to show that we can always perturb the edges of a gramian matrix without making

the state transition matrix unstable.

Lemma 4. - If a network sequence, {Akj}}|l, is resilient, then we can perturb

some element, a'|, of a network, An, in the sequence, by E = 1/Q(n2p(n)) for some

p(-) e Pd and for some d e N, without the network losing stability.

Proof. From [12], we have that

IA - Al III - AnI (I - An)-Ilc

Now, we will show that if An is resilient, then 1(I - A.)-11 = 0(p(n)) for some

p(-) e Pd and for some d e N. Then we have that IA - Al = 0(1/n) and hence our

claim follows. El
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B.7 Proof of Lemma 1

Proof. From Lemma (4) we have that exists.
Odii

We know that P = I + ATPA. Define P = I + (A + A)TPJ(A + A), where Aj =J

and 0 otherwise. Then we have

P =I+AT PA+ AT PA

+ ATPA + AT PjA

P6 -P=ATPA +AT (P-P)A

+ ATP,5A + AT P6 A

tr(P5 - P) = tr((P3 - P)(AAT))+

tr(PjAAT + PAAT + P6AAT)

tr((Pj - P)) tr(PjAA P6AAT + P6 AAT)

lim tr Pj-P 2[PA]j

and the claim follows. The second last inequality follows from the fact that tr((P6 -

P)AAT) > 0, and from the fact that

. tr(PSAA T)

where P6 -+ P as 5 -- 0, due to continuity of Lyapunov equation. l
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B.8 Proof of Theorem 1
Proof. Let us assume that no fragile link exist, however the network sequence is

fragile. Then there must exist some [PA]ij such that [PA]ij = Q(Superpolynomial(n)) >

0. If it did not then it would mean that P = ATPA + I < I,O(Polynomial(n))

which would lead to a contradiction because P is fragile ==> Psi = Q(Superpolynomial(n))

for some i. But by Lemma (1) we have that then a fragile link exists, which contra-

dicts our hypothesis. For the converse, we use the Lemma (3), if the network se-

quence is resilient then tr((I - A)- 1 ) = O(p(n)), where p(.) is some polynomial.

We then need to see what happens to (I - A)- 1 when we perturb an edge. Since

the edge perturbation is a rank 1 addition to the existing matrix we use Sherman-

Morrison formula

-A
1 (I - A)-luvT(I -A-

(I - A + uvT)1 = (I -A)- - VT(I -
I + VT(I - A)-lu

Define AP = (I-A+uvT)-1 -(I-A)- 1 , and a link perturbation can be represented

as uvT, where u = [0, 0,.. ., u = 1,0, ... , O]T, and v = [0,0, ... ,vj = C,0, ..., 0]T.

Then,

(AP/) tr(vT (I - A)- 2 )lim tr(P) < im
+e-+O f(1 + vT(I - A)-lu)

SO(P2(n))

where p(-) is a polynomial function, and we see that a link perturbation does not

cause tr((I - A + uvT)-1) to be exponential, and hence no link is fragile. 1
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B.9 Proof of Theorem 2
Proof. For a stochastic matrix, W, we have that [WTW~i = E" 1 WkiWki. Then,

WTW W where r ~
rT w = 1 Wk' WiWkj = rw is the J' column sum of A. Now, as-

sume (I -yW,)- = c, then

|I + Z 2k(W)kWkI|1 = 1 + 72kII(WI k W 1

k=1 k=1
00

= 1 Z I2 k|WI11
k=1
co
+ kIIWkIIj1+ ) l ,9

k=1

= 1(I - IVWT)- ||1

Now, for the converse, we first note that I|(I-7'2 Wn)- 1II1 = 1+,E k 2kI I (WT)kVVak ll=

nWI II = 0(1). Now, due to the sequence {VVk}'L being a limiting sequence, we

have that lim,_, Wn = I, where K is a markov kernel. Then p]K = f, where

0< p<1.

Next, define the 11 space and call it X, with the associated norm being II-Ii1. X is a

Banach space, which is the space of sequence that are absolutely convergent. Next,

define the linear operator f : X - X, and' with the property that I|fIi1, If||2 <

00, 1If II < 1. Call I as the identity operator on the space I : X -+ X, then

(I - f) X -> X is a bounded, in 11, linear operator. Second, p(f) I If IIo < 1,

as a result (I - f)- 1 exists, and by bounded inverse theorem (I - f)- 1 is bounded.

Now, notice that the sequence {\fW,}_ 1 is a special case of the operators defined

above, and as a result will be uniformly bounded. l
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B.10 Proof of Proposition 7

Proof ||WI||a < 1 ==> |WkI < 1 for all k. Further note that tr(WW T ) =

tr(WT W), then [V < VY1| W,| lW k I < 1 = tr((W7k) TWl) = tr((Wi)(WV) T) =

O(n). Thus we have that, SUPkO tr((Wn)(W)T) = O(n), and by definition of P,

we have that tr(Ps) = O(n). l
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B.11 Proof of Proposition 8
Proof. The disturbance here is incident only on the leader vehicle. Define |Tvp (jw)jj K

as the 7t(, norm of the vehicular platoon, IIT(jw)IKo as the W., norm when distur-

bance can be incident on all the vehicles, then clearly we have

ITvp(jw)co < IIT(iw)I

From [9], for a LTI system we know that

-o, < P(n)J2

where p(n) e Pd for some d e N. Then our claim follows since the trace of the

gramian is the W2 norm of a DT LTI system.
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B.12 Proof of Proposition 9
Proof. We assume that the network matrix is A, corresponding to Fig. (4.3). Note

that 7,, norm is max,, o-((e(iw)I - A)-1) > max, o-((I - A,)- 1 ). Notice that A,

is a tridiagonal matrix, then Idet(A.) < p", where p < 1. Then in [8] it has been

shown that I[T-1 ]1 ,nI = Q(exp (cn)) if Pi > 1, and as a result the network sequence

is fragile. For the bidirectional case, the network looks like the following

A1 -/tpi 0 .. 0

-P1 A2  -p2C2 .-- 0
A.,=

0 0 ... -, A,,
Now, A. is symmetric when E = 1, and by Proposition 2, it is resilient. l
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