
Aggregation for Modular Robots in the Pivoting Cube

Model
M od elMASSA H M f SNTITUTE

by
OFTECHNOLOGY-.

Sebastian Claici SEP 28 2016

B.S., University of Southampton (2014) LIBRARIES

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

Massachusetts Institute of Technology 2016. All rights reserved.

Author. .
Signature redacted

Department of Electrical Engineering and Computer Science
August 30, 2016

Certified by ... Signature redacted
Daniela Rus

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by Signature redacted .ejs...
/ K- UJ Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

MITLibraries

77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
,best quality available.

2

Aggregation for Modular Robots in the Pivoting Cube Model

by

Sebastian Claici

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we present algorithms for self-aggregation and self-reconfiguration

of modular robots in the pivoting cube model.
First, we provide generic algorithms for aggregation of robots following inte-

grator dynamics in arbitrary dimensional configuration spaces. We describe solu-

tions to the problem under different assumptions on the capabilities of the robots,

and the configuration space in which they travel. We also detail control strategies

in cases where the robots are restricted to move on lower dimensional subspaces

of the configuration space (such as being restricted to move on a 2D lattice).

Second, we consider the problem of finding a distributed strategy for the ag-

gregation of multiple modular robots into one connected structure. Our algorithm

is designed for the pivoting cube model, a generalized model of motion for mod-

ular robots that has been effectively realized in hardware in the 3D M-Blocks. We

use the intensity from a stimulus source as a input to a decentralized control algo-

rithm that uses gradient information to drive the robots together. We give provable

guarantees on convergence, and discuss experiments carried out in simulation and

with a hardware platform of six 3D M-Blocks modules.

Thesis Supervisor: Daniela Rus
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I gratefully acknowledge the contributions of my advisor, Daniela Rus, and lab-

mates in the Distributed Robotics Lab. In particular, John Romanishin has been

incredibly helpful in this project, as his mastery of mechanical engineering gave

birth to the M-Blocks without which this project would not have existed. I also ap-

preciate the thoughtful discussions on reconfiguration shared with Cynthia Sung

and Jingjin Yu.

5

6

Contents

I INTRODUCTION

1.1 Challenges

1.2 Our Approach

1.2.1 Outline of Technical Approach

1.3 Thesis Contributions

1.4 Thesis Outline

2 RELATED WORK

2.1 Lattice Modular Robotic Systems

2.2 Coverage Control

3 BACKGROUND

3.1 Pivoting Cube Model

3.2 Aggregation

3.3 Reconfiguration

3.4 Hardware

4 DECENTRALIZED AGGREGATION WITH

4.1 Problem Statement and Assumptions .

4.2 Decentralized Aggregation Control ...

4.3 Stochastic Control

SENSORY

13

14

15

17

17

18

19

19

21

23

24

24

25

26

29

29

31

34

STIMULI

5 AGGREGATION OF MODULAR ROBOTS IN THE PIVOTING CUBE

MODEL 39

7

.-....-

.

.

.

.

5.1 Theoretical Results

5.1.1 Driving Modules Towards the

Stim ulus

5.1.2 Driving Modules Together . . .

5.1.3 Stimulus Tracking in R2

5.2 Results and Experimental Data

5.2.1 Simulation Results

5.2.2 Hardware Results.

6 CONCLUSIONS

6.1 Lessons Learned

6.2 Future W ork

8

Maximum Direction of the

39

41

43

45

49

50

52

57

58

58

List of Figures

1-1 Self reconfigurable system: 3D M-Blocks.

1-2 3D M-Blocks pivoting moves.

15

16

Admissible pivoting moves......................... 24

3D M-Block hardware and electronics. 27

Torque vs RPM of flywheel. 28

Aggregation in convex regions. 31

Control laws for aggregation. 37

Aggregation with non-convex stimulus. 38

Pivoting moves. 40

Coordinates at defining strong and weak admissibility. 43

Modules moving on fixed scaffolding.45

Geometric interpretation of eq. 5.4. 47

Geometric interpretation of eq. 5.5. 48

Simulation results. 50

Simulating aggregation in free space. 51

Expected number of moves until convergence. 52

Experimental setup for aggregation algorithm. 53

5-10 Control in free space using two modules. 55

9

3-1

3-2

3-3

4-1

4-2

4-3

5-1.

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

10

List of Tables

3.1 List of Symbols from Chapters 3-5 . 23

5.1 Reliability of motion primitives. 53

11

12

Chapter 1

INTRODUCTION

The complexity of biological structures across scales from the molecular to the

macroscopic is the result of self-organization processes. Central to these processes

is the aggregation and reconfiguration of matter into a variety of morphologies.

Self-assembly confers on biological cells the ability to produce an almost unlim-

ited variety of structures [39, 40]. It is no surprise that the flexibility, reliability

and speed of self-assembly has attracted interest from an engineering perspec-

tive [41, 43].

One clear advantage self-assembling systems have over purpose built robots

is their tolerance of failure. Faulty modules can be swapped out on the fly and

replaced by healthy modules. This almost infinite adaptability allows not only for

a great number of morphologies, but also ensures the robustness of the system as

a whole.

If such modular robots are programmable, can communicate, and are capable

of detaching formed connections, they can be exploited to form almost any multi-

module configuration. Such abilities would greatly facilitate fabrication techniques

such as material printing, would allow for targeted complex anti-viral systems to

be deployed seamlessly, and would yield heterogeneous tool sets thus facilitating

ease of use. Nature's molecular self-assembly systems do not have the same free-

dom, but are able to exploit conformational dynamics to switch between states

and can thus achieve hierarchical sequencing of assembly steps. It is a challenge to

13

reproduce the staggering complexity of natural self-assembly systems in modular

robotic systems with only single state modules.

The problem we address in this thesis is aggregation. Aggregation is the pro-

cess by which a group of scattered robots gathers in a single location to be able

to share information or overcome larger obstacles. The aggregation process can

be performed relying on long range communication between robots, but as mod-

ular robots are meant to be deployed in remote and unknown scenarios, relying

on communication is untenable. Instead, we develop the problem assuming all

robots are capable of sensing a environmental stimulus. For example, in planetary

exploration applications, the robots may have a light sensor to detect the position

of the sun, or a compass to detect changes in the magnetic field. Such sensors are

usually small, lightweight, and fault tolerant. The robots may even be endowed

with several redundant sensors to further increase robustness.

In this thesis, we develop the theory of self-assembly by providing algorithms

for the aggregation of modular robots under mild conditions. To the best of our

knowledge, these algorithms are the first of their kind to be developed for the

specific task of aggregation. We build on our previous work that introduced the

M-Block [26] and 3D M-Block [25] hardware modules (Fig. 1-1), in addition to theo-

retical work describing reconfiguration algorithms in the pivoting cube model [36].

1.1 Challenges

In an attempt to build a self-sufficient modular robotics system there are many

challenges that need to be addressed.

From an algorithms perspective, aggregation must be performed in a fully

decentralized manner without assumptions about terrain topology, inter-module

communication, or reliability. The algorithms must be agnostic to the underlying

hardware. As the number of modules in a self-assembly system can grow to the

millions, our algorithms must also scale. In particular, we cannot rely on global

information to make local decisions as limited communication capabilities make

14

Figure 1-1: The 3D M-Blocks form a self-reconfigurable system of modules that are
capable of individual movement through the use of an inertial actuator, and can
bond to neighbors through connectors built from permanent magnets.

this infeasible. Once large scales are reached, defective modules also become an

issue. The algorithms must be able to deal with unresponsive modules in a clean

way. Furthermore, the algorithms must be both space and compute efficient due

to hardware constraints.

Hardware limitations must also be taken into consideration. The limited pro-

cessing power and memory storage available on the hardware is a limiting fac-

tor when designing algorithms for aggregation and reconfiguration. The modules

cannot rely on external tools to function. Each module must have adaptable con-

trol to allow them to function in a wide range of environments.

This thesis provides a resolution for the problem of aggregation of the 3D M-

Blocks.

1.2 Our Approach

Our approach improves upon existing hardware and algorithms. We provide the-

oretical guarantees for the general problem of aggregating a group of n robots in

15

R" assuming only integrator dynamics. We prove convergence to a single aggre-

gate assuming only knowledge of a single sensory function over the environment.

We discuss a related problem of aggregation when the modules can only move

along a low dimensional subspace of configuration space. Such problems appear

when, for instance, turning the robot to a new orientation is expensive, requiring a

significant time or power investment.

We provide provably correct algorithms for modular robot aggregation based

on simple sensory information. For the discrete case in which modules are con-

strained to move along a lattice, we give a move and time optimal algorithm for

the case in which the stimulus is a convex function over the environment. As an

example, consider robots capable of sensing light intensity gradients spread in a

closed convex environment. The light intensity values define a convex function

over the domain, and the end goal is for the robots to converge to a position as

close as possible to the light source. For the continuous case, we give a probabilis-

tically complete algorithm that performs very well empirically.

We have developed the 3D M-Blocks to test our algorithms on a physical plat-

form. The 3D M-Blocks as their name suggests are capable of locomotion across all

three axes of a cube. The motion primitive in the 3D M-Blocks consists of a pivot

by r or 7r/2 about an edge shared with a neighboring module or the ground plane

(Figure 1-2). While pivoting, a module will sweep out a volume that is greater

than the union of the volumes of the starting and final positions.

(a) (b)

Figure 1-2: 3D M-Blocks pivoting moves.

We take inspiration from gradient descent algorithms. Our algorithm is a de-

centralized optimization with a cost function that tracks a signal in the environ-

ment that can be sensed by all robots. Leveraging information on directional signal

strength, we show how our algorithm can provably achieve aggregation.

16

1.2.1 Outline of Technical Approach

Our algorithms are based on gradient methods. We assume the existence of a sen-

sory stimulus that can be sensed by the robot. Specifically, we assume the robot can

determine the gradient of the stimulus function either directly, or by estimating it

in a neighborhood around its current position.

We present decentralized provably correct algorithms for aggregation under

the following assumptions. First, we assume that the stimulus function is convex,

and provide convergence guarantees by reducing to gradient descent. Second,

we assume that the robots are capable of communicating with one another, and

provide a control law and convergence guarantees by leveraging Lyapunov theory.

We further extend this model to allow for situations in which the robot has a

restricted move set, and provide similar convergence guarantees in this case.

We apply these algorithms to the pivoting cube model. Leveraging the more

structured environments on which lattice based systems operate, we can improve

the convergence rates to linear if we assume the robots are restricted to move on a

lattice. Finally, we show how we can efficiently perform aggregation when chang-

ing the direction of the robot is expensive.

1.3 Thesis Contributions

This thesis makes the following contributions:

1. A discussion of aggregation for robots following integrator dynamics. We

provide optimal or nearly optimal control laws that drive modules together.

2. A provably correct decentralized algorithm for aggregating modules follow-

ing the pivoting cube model, where the robot modules can move indepen-

dently on a lattice of modules or on the ground. To the best of our knowl-

edge, this is the first work that discusses general strategies for aggregation of

modular robots.

17

3. Extensive simulation experiments for aggregation of randomly scattered mod-

ules following global environmental gradients using a decentralized algo-

rithm.

4. Experiments demonstrating a hardware implementation of several different

distributed aggregation algorithms using the 3D M-Blocks where light is the

global external stimulus.

1.4 Thesis Outline

The remainder of this document is organized as follows. In Chapter 2, we sur-

vey related work, and discuss limitations with respect to the problem we address.

In Chapter 3, we present the pivoting cube model of self-assembly, and provide

background on the aggregation problem. We discuss the sister problem of recon-

figuration for completeness. Finally, we give a detailed discussion of our current

hardware implementation of the 3D M-Blocks hardware, including limitations.

Chapter 4 provides detailed theoretical results for the general aggregation prob-

lem in arbitrary dimensional configuration spaces. We give fast convergence guar-

antees under different assumptions (e.g. convex stimulus function, or unbounded

communication radius), and discuss extensions of the theory to situations where

the modules are restricted to move only along a subspace of the configuration

space.

Chapter 5 applies the theoretical work of Chapter 4 to the pivoting cube model.

We discuss how to overcome the limitations of the pivoting cube model to achieve

the same fast convergence rates. In this Chapter, we also provide experimental

data (both simulation and hardware) to back our theoretical claims).

Finally, Chapter 6 discusses the lessons we have learned while developing the

theory and system, and provides suggestions for avenues of future research.

18

Chapter 2

RELATED WORK

Modular robotics (or programmable matter) define any system where the individ-

ual modules are capable of interacting with one another in non-trivial ways to form

increasingly complex systems. Systems that we would describe as modular today

have been around for decades. Perhaps the first such system was developed by

Penrose in 1957 and 1959 [21, 22].

Primarily, the term modular robotics has come to imply two themes: (1) sys-

tems consist of several robots designed to function together, and (2) the systems

address shape formation as the main problem to solve.

Our work builds upon the vast modular robotics literature, from the Penrose

tiles, to the ground-breaking work of Fukuda et al [12, 13, 14], to the present day

work on various self-reconfigurable models and platforms.

2.1 Lattice Modular Robotic Systems

We situate our work in the context of lattice-based modular robotic systems. Sev-

eral models have emerged for self-reconfigurable cubic modular systems [1, 9, 15,

18, 25, 26, 28, 29]. The most prevalent of these is the sliding cube model (SCM)

for which efficient and universal algorithms exist for reconfiguration. The SCM

allows modules to slide along their neighbors to achieve motion. In particular, a

common feature of the SCM is a nove that slides a cube about two faces of one of

19

its neighbors to achieve a corner turn. This move proves difficult to implement in

practice.

There are however, many attractive theoretical results in the SCM. When strong

connectivity (face connectivity) is enforced., there exist O(12) algorithms for re-

configuring arbitrary 2D shapes [3, 7]. For 3D configurations, algorithms have

been developed that achieve reconfiguration if the start and goal configurations

do not have topological holes [231. This requirement is imposed as [23] assume

that modules that have reached their position in the target configuration will no

longer move. If we relax this constraint, we can achieve O(ni) reconfiguration

centralized, and O(iP) distributed reconfiguration in 3D shapes [11]. In spite of

this attractive body of work, we are not aware of any systems that implement the

sliding cube model in 3D. Systems implementing a 2D version of the sliding cube

model have been given by [2, 16, 37].

Because the sliding cube model is difficult to implement in practice, prompting

a move to pivoting cube models of reconfiguration [25, 26]. In the pivoting cube

model, modules pivot about one of their edges. Since the volume swept during

pivoting is greater than the union of the start and end positions, we must be careful

with translating SCM algorithms to this new model.

An 0(ui2) algorithm for reconfiguration was given by [5] assuming edge con-

nectivity constraints. In [19], the authors considered pivoting hexagons in 2D and

gave a 0(115/2) algorithm for reconfiguration of a restricted set of configurations.

An algorithm for reconfiguring pivoting cubes in both 2D and 3D under a strong

connectivity assumption was given in [36], however the space of configurations

that can be reconfigured is limited.

The pivoting cube model has had successful physical implementations in [26]

for modules capable of motion in 2D, and refined in [25] for 3D motion.

While most modular robotic systems have focused on reconfiguration, the 3D

M-Blocks are capable of motion in unstructured environments and while unteth-

ered. This allows us to talk of aggregation as the problem of localizing and con-

necting multiple untethered robots to a single connected aggregate. Recent work

20

in swarm robotics has demonstrated aggregation and reconfiguration in swarms

of up to thousands of robots [27]. However, this work has been restricted to 2D

structures, and it is unclear how to develop the model further to allow for 3D

motion. An example of aggregation in 3D environments is given in [17], but the

modules are not capable of self-locomotion and rely on wheeled robots to perform

the aggregation. Approaches to aggregation that do not rely on external systems

exist [42], but rely on on-board cameras which are still impractically large to be

integrated with most modular robots.

2.2 Coverage Control

A problem that bears significant relevance to our work is that of coverage control.

Briefly, coverage control represents broadly a set of algorithms for optimizing the

location of multiple robots to maximize coverage with respect to a function de-

fined over the environment. For example, we might wish to communicate through

ad-hoc wireless networks, in which case we would want to maximize the signal

strength obtained through the network. Such work is situated at the intersection

of multi-robot path planning [4, 6] and locational optimization [10, 38].

Distributed coverage control has efficient solutions when the distribution of

the stimulus over the environment is assumed to be known a priori by all robots [8,

24, 301. This assumption was relaxed first in [31], and improved upon in future

work [32, 33].

Problems in distributed coverage control share many similarities with aggrega-

tion: the algorithms must be distributed, and very frequently the robots have only

limited sensing and localization capabilities. We point specifically to [31, 32] as

examples of distributed coverage control algorithms that share features with our

aggregation algorithms.

The problem we solve is fundamentally different, however. We wish to control

the final shape of the robots and their relation to one another. Specifically, we

aim to minimize the distance between robots (thus form an aggregate), without

21

considering the fitness of the robots' position with respect to a sensory function as

is the case with coverage control algorithms.

22

Chapter 3

BACKGROUND

Table 3.1: List of Symbols from Chapters 3-5

Symbol Definition

n Number of robots.

P; Position of the ith robot.

p; Velocity of the ith robot.

PL Position of the stimulus source.
Ili Control input of ith robot.

.'V(i) Neighbors (in communication radius) of ith robot.

W Configuration space of the robots.
Sensory function.

J Global cost function.

i Intensity value on the jth face of a robot.

nj Outward facing normal of the jth face of a robot.

CL Circle centered at projection of stimulus source.

Cx Circle centered at point x.

We begin by describing the underlying assumptions in this thesis in more de-

tail. Specifically, we describe the pivoting cube model: the motion model that

our hardware implementation is based on. We describe the problems of aggrega-

tion and reconfiguration to provide intuition into the theoretical contributions that

follow. Finally, we conclude this chapter with a description of the 3D M-Blocks

hardware and its limitations.

23

(a) (b)

Figure 3-1: Admissible pivoting moves.

3.1 Pivoting Cube Model

As its name suggests, the pivoting cube model comprises cubic modules that are

move by pivoting about their edges. In the sliding cube model a move is possible

if the start and end positions are adjacent, and the end position is unoccupied.

By contrast, in the pivoting cube model, the volume swept by a module during a

move must also be unoccupied since a cube is longer along a diagonal. This greatly

restricts the set of moves allowed.

In our model, a cube pivots the maximum possible before it comes into face

contact with another module. Two modules are connected if they share a face.

The pivoting cube model is attractive because it implements a realistic move

set that can easily be translated into a hardware implementation. For example, the

corner step move shown in Figure 3-1b is a pivot by r radians, while in the sliding

cube model, a similar move is unrealistic.

We define the ground plane y = 0 and restrict ourselves to configurations C E

R.O

3.2 Aggregation

Aggregation is the task of connecting modules that are initially scattered in an

environment into one single connected whole. This task is easy when the modules

are capable of relative localization through sensory input (e.g. message passing),

but significantly more difficult when such information is not readily available.

In the 3D M-Blocks (see Figure 3-2 and also 3.4), communication is only guar-

anteed in point-to-point contact. Therefore, instead of relying on communication,

24

we formulate the problem as an optimization over a sensory stimulus and use gra-

dient ascent strategies to perform aggregation. Each face of a 3D M-Block has an

ambient light sensor that outputs a scalar value in a bounded range. These read-

ings can be used to obtain a direction of steepest increase and to steer the module

towards the aggregate.

We generalize this setting as follows. Let VV be a bounded two dimensional

region, and let IT : -> R be a sensory function that returns the intensity of the

stimulus at each point in V. For aggregation of n robots into a single connected

component, we require that 0 be convex. Let pi : [0, inf) -+ IT be the position

function of each module i for 1 < i < i.

We distinguish between two problems:

Lattice Aggregation. The modules are restricted to lie on a lattice embedded in

W. The modules are capable of motion along the x and y axes of the lattice.

Free Space Aggregation. To better model the actual behaviour of the 3D M-

Blocks, we endow each module with a direction vector ui (t). Modules can move

along the direction vector ui(t), or they can attempt plane changes which reori-

ent the module along a different direction vector ui'(t) while also adding random

noise to its position vector pi'(t) = Pi(t) + where (is drawn from a distribution

over IT. For probabilistic completeness, we require that j have non-zero density

almost everywhere in W.

3.3 Reconfiguration

Once aggregation has been achieved and the modules are in a single connected

component, we turn our attention to the problem of reconfiguration.

A configuration C is a set of unit cube modules on a cubic lattice. Let ICI be

the number of modules in configuration ICI. We will identify a module with an

index i into this set. We can assign a coordinate system such that each module i is

at integer coordinates (xi, yi' 7).

Two modules i and j are connected if they share a face. We can create a con-

25

figuration graph G = (V, E) with vertices V {ili isa module in C} and edges

E { (i,j) ji,j are connected in C}. The configuration C is connected if the un-

derlying graph G is connected. As a surface in R3, C has a boundary aC, and a

complement R3 \ C.

The problem of reconfiguration can be formulated as follows. Given configura-

tions C, and Cf where IC, I = ICf , find a set of feasible configurations (CS, C1, . . ,CT)

such that the following conditions hold:

" Termination: CT = C1 .

" Validity: For each t, Ct can be obtained from Ct-1 by pivoting a set of modules

in Ct-1.

" Collision Avoidance: For each set of moves, the volumes swept by the modules

during execution must not overlap.

* Connectivity: For each t, the configuration graph of Ct is connected.

In addition, we can distinguish between solutions by counting the number of

moves required to achieve reconfiguration. Formally, a move is any single pivot by

a single module. For instance, if several modules are required to move to achieve

reconfiguration, we count one move for each. A solution that requires fewer moves

overall is better than one that requires more moves. For practical purposes, we

would also want to distinguish between moves based on their empirical difficulty.

This can be achieved by assigning non-uniform weight to each move and prefer-

ring moves with smaller cost.

3.4 Hardware

The 3D M-Blocks are modular self-reconfigurable robots which use inertial actu-

ation to reconfigure by pivoting about the edges of the modules (Figure 3-2). 3D

M-Blocks move by applying a torque generated by an internal flywheel. To reach

26

Figure 3-2: Photo showing a 3D M-Block with current hardware and electronics.

very high torque impulses, we employ a mechanical braking system that can gen-

erate torques in excess of 2.5Nm in a 10ms window (Figure 3-3).

An internal mechanism allows the flywheel to realign to a set of orthogonal

axes X, Y, Z. Each face has eight face magnets and four edge magnets. All faces are

rotationally symmetric making the 3D M-Blocks symmetric about three orthogonal

planes.

While designed to work best on a structured lattice formed of other modules,

the internal actuation mechanism allows the modules to move freely both individ-

ually and as assemblies.

Each face of the 3D M-Blocks contains a microprocessor that manages an am-

bient light sensor, two RGB LEDs and IR communication electronics. One face

contains an accelerometer to allow the module to determine its orientation with re-

spect to the central actuator. The modules are capable of communication through

an infrared light system. Each face can transmit and receive IR messages on a

range of up to 200cm.

When transmitting messages between adjacent modules, the IR light will re-

fract through the received face and reflect on the interior of the body, messages

27

3-

14000 RPM

2.5 9000 RPM
5000 RPM

2-

1.5-
E
z

0 .

0-

0

-0.5-

-1I
5 10 15 20 25 30 35

Time (ms)

Figure 3-3: Torque generated by applying the mechanical brake. Plot shows torque
(in Nm) against RPM of the flywheel when the brake is applied. Several experi-
ment runs (shown in faint colors) are averaged and the mean is displayed in solid
colors.

need to be signed with an initial pattern that can only be detected by sampling the

ambient light sensor of the adjacent face.

28

Chapter 4

DECENTRALIZED AGGREGATION

WITH SENSORY STIMULI

In this chapter, we establish theoretical guarantees on convergence under a gen-

eral framework. Specifically, we assume our robots have integrator dynamics, and

can sense the gradient of a sensory function 0. We show that for convex (or for

unbounded communication radii, aggregation is always achieved, and the conver-

gence rates are bounded. We also explore a constrained version of the problem

where robots are restricted to move along low dimensional subspaces of the con-

figuration space, and provide convergence guarantees for such situations as well.

4.1 Problem Statement and Assumptions

We study the problem of aggregating ii robots in a bounded set. Let V be a closed

bounded subset of RN, and let pi denote the position of the ith robot in W.

Assume the ith robot is capable of communication within a ball of radius r;

denoted by S (p;, ri). Define the sensory function W :AW -- R, where 0 (q) is the

value of the sensor at position q.

29

In what follows we assume the robots follow integrator dynamics

pi = Ili.

where iti is the control vector of the ith robot, and pi is the usual velocity vector.

This assumption is common in the coverage control literature[8, 24, 31, 32]. We

further assume that each robot has knowledge of the gradient of the sensory func-

tion Vp at each point q C W.

Unlike in coverage control, we do not require that each robot be able to compute

its Voronoi cell, nor does each robot have to have any knowledge of surrounding

robots.

Under this setting, the goal of each robot is to minimize its distance to every

other robot:
1

i(p i) E P - pA (4.1)
jii

where p-_i = (pl,.. I Pi-1' Pi+1, ..- , p,,). The global cost of the system (pI,, p1)

can be written

f (P , .- -,11)P, - Pjl12. (4.2)
i=1 j=1

Equations (4.1) and (4.2) cannot be optimized directly without knowledge of

the position of every robot.

Since 2 - is a metric, we can write using the triangle inequality

11p - p|112 < 1(Ilpi - q 112-+ 1p - q 21)

J z4i i7 i

for any point q E W. Finding a control law that drives all robots to the same

position q will also minimize equation (4.1) for all robots.

We assume that Vcp is Lipschitz, that is, it satisfies IIVO(x) - Vq(y))1 < Cflx -

y I for some constant C and all x,y E W. The Lipschitz condition can be under-

stood intuitively as a bound on the rate of change in a small time frame. We require

this condition for several reasons. First, from a practical standpoint there will al-

30

ways be errors in the position estimation and control law of the robot. If were

to vary unboundedly, small errors can compound rapidly. Second, as we shall see

soon, there is a strong correlation between aggregation of robots, and the gradient

descent algorithm for finding local minima of functions. To guarantee convergence

of the gradient descent procedure, we require 0 Lipschitz continuous.

4.2 Decentralized Aggregation Control

We want to derive a control law that will drive the robots together in a reasonable

manner. By reasonable we mean here the following:

1. If q is strictly convex, the control law will drive the robots to the same posi-

tion. While this may seem like a stringent requirement, note that most point

source stimuli (e.g. light or sound) satisfy convexity

2. If for each robot W/V C B(p, ri), then the control law will drive the robots to

the same position. Effectively, this condition states that the communication

radius of the robot includes the entire configuration space. All robots must

be able to communicate with all other robots.

Figure 4-1: Aggregation of
information.

robots distributed in a convex region using sensory

This motivates the following control law:

li = -2 7 p(pi)

31

(4.3)

ill

where a is a line search parameter.

Control law 4.3 is a gradient descent method and is guaranteed to converge

to a local minima if 0 is differentiable, VO is Lipschitz, and a is chosen to satisfy

the Wolfe conditions [20]. The intuition here is that we want the robot to move

towards a direction that has the largest drop in intensity of p, thus moving towards

the minimum of 0. If 5 is globally convex, 4.3 converges to the global minimum

for each robot. That is to say, we chose q to satisfy

min p (x).

We call 0 strongly convex if it is twice differentiable and satisfies V2p >- dl

for some constant d where I is the identity matrix, and V 2 p is the Hessian ma-

trix (4 .. for i, j E {1,... , nz }. If p is strongly convex, then control law (4.3)

converges at exponential rate.

However, we also require that the robots are able to aggregate if they can com-

municate over the entire environment (the second requirement). Equation (4.3)

does not achieve this for functions that are not globally convex.

To motivate the second control law, consider again the cost function (4.2). The

derivative of j with respect to pi is given by

- (ni - E)p, p

This suggests the following control law to force robots together:

Ui = --pi + P. (4.4)
jcm(i)

where V(i) is the set of robots that robot i can directly communicate with; that is,

those robots j for which pj C S(pi, ri).

32

Note that in the case of VV C F(pi, ri), equation (4.4) reduces to

1

We recall that a fixed point of a dynamical system is a point where all first

derivatives vanish. It is clear that pi = --) ZcgE(i) pj is a fixed point of the

system. We also recall that a fixed point is asymptotically stable if, as time goes to

infinity, the system approaches the fixed point. Formally, we can write:

Definition 4.2.1. A fixed point x, of a system t = f (x(t)) zwith x(O) = xo is asymptot-

ically stable if it is Lyapinov stable and there exists a 3 such that if j1xo - Xell < 3 then

limt.c j|x(t) - x01| = 0.

Here we used the definition of Lyapunov stability. We will not repeat it, but

note that intuitively Lyapunov stability is a bound on how far away a system can

get from the fixed point if it starts within some distance 6 from the fixed point.

We will use Lyapunov functions to verify the asymptotic stability of our control

law [34]. We propose the following Lyapunov function:

Vi = T, |1pi - p;|| (4.5)
i=1 jE/(i)

We need to check the two Lyapunov requirements for asymptotic stability:

" V(x) > 0.

SVi (x) < 0 for some neighborhood around the mean position.

The first condition is immediate from the definition of Vi.

33

For the second condition, we have

V;(p-) = Vi(pl) - Ili

= (N~)|-1)i E P; -Pi + P;
j -i'(i) jENr(i)

2

Since vi (x) < 0 for x #)1 N Eg(i) Pj. By LaSalle's invariance principle, the

system is asymptotically stable to the mean position of the neighborhood.

4.3 Stochastic Control

We consider now the problem of finding a control law for robots that have re-

stricted dynamics. Consider the following model:

Definition 4.3.1. A robot is said to have partialliy stochastic dynamics if at any time it can

select between two actions:

" Move according to the control law (P I|V) (u I V)for some V C W with dim V <

dim W. That is to sal, the motion of the robot is restricted to a subset of free space:

for exatiple, a robot moving in two dimensions can be restricted to move only along

a straight line.

" Uniformly sample a subset V' C W to move in. Note that since the position of each

robot is a continuous function of time, the current position pi must be included in

the subset V'.

This definition is prompted by the M-Blocks, and expanded further in chap-

ter 5.

The conditions on V are that it be connected and closed, convex for the control

law to make sense, and that p restricted to V remain continuous. Moreover, if

34

v,. .. , v,, torm a basis of V, we require that the partial derivatives a exist for all

i. If el,. . . , e,, are the basis vectors of R"', the last condition is equivalent to the fact

that the linear map g is an isomorphism.

We consider again the problem of driving the modules together. We wish to

minimize the global cost (4.2) under this new setting. We first note that if p is

convex over W, then it is convex when restricted over V. Since V is convex, Ax +

(1 -- A)y E V for all x, y E V, and convexity of p V follows from convexity of f

over IN.

We will use the notation V' ~ bl(x, W42) to denote a uniform sampling from IT of

subsets that contain the point x. For a concrete example, consider sampling the set

of all lines passing through a point x in two dimensions. This can be accomplished

by sampling uniformly a direction vector y and taking the line x + y.

Therefore, we can adapt the control law (4.3) to

- PVV)(pi), if V(0IV)(pi) # 0,
ui = (4.6)

V ~ U (p i, W), otherwise.

The sampling step is only performed after the robot has reached a minimum of

V (P1 V). The procedure is detailed in Algorithm 1.

Algorithm 1 Stochastic control

1: repeat
2: if there is a direction of decrease in the stimulus then
3: set Ui -1V(PV)(pi)
4: else
5: sample new subspace in which to move

6: until good enough solution is reached

Note that Algorithm 1 is not guaranteed to converge. However, under certain

assumptions on the sampling procedure, we can provide convergence guarantees

of (4.6) to the true global minimum of the function. By convergence, we mean that

there exists some time T such that for all t > T, we have ui = 0. Examples include

moving only along different coordinate axes (a variant of coordinate descent [20]).

35

Let us restrict ourselves to the case where V is sampled uniformly over all m-

dimensional hyperplanes where in < n (also called rn-dimensional flats). To sam-

ple an r-dimensional flat that contains p;, we can sample in points x1 ,.. .., xr from

W, and define the flat as intersection between the linear span of { pi, x1 ,..., I x}

and W.

We will prove the following:

Theorem 4.3.1. If V is sampled unifornly over the set of n-dimensional flats, and P is

convex over W, then control lazw (4.6) converges.

We will make use of the monotone convergence theorem which we restate here

in a simple form (see [35]):

Theorem 4.3.2. (Monotone convergence) If (an) is a monotone sequence of real numbers,

then this sequence has a finite limit if and only if the sequence is bounded.

We are now ready to prove Theorem 4.3.1.

Proof. Let the pl,..., p7 be the sequence of points for which Vp(p)= 0. By the

convexity of 0, we have O(pj) > p(p2) > ... > p(p7). This series is monotone

and bounded since p is bounded. Applying the monotone convergence theorem,

we can conclude that control law (4.6) converges. D

We conclude this chapter with a simulation result. For the simulation, we as-

sumed there n = 10 robots placed according to a normal distribution in R2 . We

use a Gaussian function

as the sensory stimulus with p = 0 and E equal to the identity plus a small off-

diagonal term.

We use control laws (4.3) and (4.4) in two simulation experiments. For control

law (4.3), we fix a = 1 as the step size, and perform gradient ascent. Simulation

runs are shown in Fig. 4-2. Both control laws converge to a single point, thus

achieving aggregation. We note here that convergence rate depends on the choice

36

/I

(a) (b)

Figure 4-2: Simulation of aggregation control laws. (a) Control law (4.3); the robots'
initial positions are shown as circles and the trajectories shown as red lines; we
draw the contour lines of the sensory function. (b) Control law (4.4); the robots'
initial positions are shown as circles with the trajectories shown as red lines.

of parameters and control law. If the robots can communicate with all other robots,

then moving towards a shared center can be significantly faster.

Of course, it is always possible that the sensory function has multiple local

minima, and after aggregation the robots are split into distant clusters (such an

example is shown in Fig. 4-3). However, in such cases it is impossible to achieve

a single aggregate without assuming prior knowledge about the structure of the

environment, sensory function, or knowledge of the number of robots in the sys-

tem. Such assumptions are untenable in our physical implementation using the

M-Blocks, and generally untenable for modular robotics systems.

In this chapter, we have looked at the problem of aggregation in a generic fash-

ion, assuming integrator dynamics on the robots. In the chapters that follow, we

explore a specific example of aggregation in the case of the 3D M-Blocks.

37

0)

Figure 4-3: A single aggregate is impossible in this scenario. The robots are dis-
tributed in an environment with two local maxima and have very limited com-
munication capabilities. As can be observed, two aggregates are formed. Without
prior knowledge of the number of modules, such scenarios cannot be resolved into
a single aggregate.

38

Chapter 5

AGGREGATION OF MODULAR

ROBOTS IN THE PIVOTING CUBE

MODEL

Following Chapter 4, we implement the algorithms described in the pivoting cube

model. The restrictions presented by the pivoting cube model are dealt with new

theoretical results. We showcase an example arising from our hardware imple-

mentation where the stochastic control described in the previous chapter is impor-

tant. We conclude this section with experimental results including simulations and

hardware experiments of aggregation.

5.1 Theoretical Results

Let W be a bounded two dimensional region into which we embed a lattice struc-

ture C, for example a 2D grid over R 2. Assume there are n modules, and let

p1(t),..., pu(t) E N -- + C denote the positions of the modules at time t. All

modules have the same mass and the laws of gravity hold. Each module can pivot

about its edges to reach new positions on the lattice. The modules move indepen-

dently of one another and require only information about edge connected neigh-

bors to determine whether pivot moves are valid. We assume it takes unit time for

39

(a) (b)

Figure 5-1: Pivoting moves.

a cube to execute a move from one lattice position to another.

Since our focus is on aggregation and not path planning, we assume there are

no obstacles in the environment. To achieve aggregation, each module will inde-

pendently follow the maximum direction of a stimulus located at position PL. We

say that the process has converged if there are no viable moves that would move

any module in the environment closer to the stimulus source. We assume the mod-

ules are initially scattered throughout the environment, which allows us to restrict

our attention to the two-dimensional plane.

The 3D M-Blocks have sensors embedded on each of the six faces that output

a number from 0 to 1024 representing the intensity of the sensor readings on that

particular face. Let I1,..., 16 be the intensity readings on each of the 6 faces.

If the algorithrm converges at time tj, we try to minimize the maximum distance

between any module and the stimulus source at tf:

minmax I|pi(tf) - pMI|. (5.1)

where PL is the position of the stimulus source and i E {1,. . ., n}.

Since PL is difficult to estimate, each module will attempt to maximize a fitness

function that uses the stimulus intensity readings:

1 I: 1 (5.2)
{Ijl; I O}l 1i O

Equation 5.2 is an average over faces that have non-zero stimulus intensity

readings. As we only count non-zero intensities, the maximum is achieved when

a module is directly below the source, as then Equation 5.2 reduces to maxi Ii.

40

5.1.1 Driving Modules Towards the Maximum Direction of the

Stimulus

We will use the notation In to denote the stimulus intensity reading on the face

with surface normal ni.

To drive towards a stimulus source, each module must first estimate the direc-

tion of the source. This is the purpose of Algorithm 2. This direction is used as a

gradient in Algorithm 3 to drive the module towards the stimulus. Algorithm 3

can be interpreted as greedily selecting the move that moves the robot closest to

the stimulus source and repeating until convergence.

Any move is a translation that can be written as a sum of at most two face nor-

mals (e.g. the move that takes a module from (0, 0,0) to (1, 1, 0) can be written as a

sum of (1, 0, 0) and (0, 1, 0)). A move is possible if the volume swept by the module

during rotation does not collide with any other module or the environment. We

say a move is weakly admissible if the intensity reading on at least one of the faces

corresponding to the normals is greater than 0. We call a move strongly admissible

if the intensity reading on all of the faces corresponding to the normals is greater

than 0 (see also Fig. 5-2).

We can use this information to provide a estimated direction towards the stim-

ulus source. Using the notation described above of nj for the normal of a face, we

can estimate the direction of the stimulus source as

jcfaces

Algorithm 2 implements the stimulus direction estimation strategy discussed

above.

Algorithm 3 acts as a controller for each module. Note the following: we choose

the move whose direction is closest to the direction of the stimulus source esti-

mated using Algorithm 2. Also, note that we only iterate over feasible moves in

line 4.

41

Algorithm 2 Estimate direction of stimulus source

1: function ESTIMATESTIMULUSD IRECTION(Cube i)
2: for each face j do
3: I <- STIMULUSINTENSITY(j)
4: ni surface normal to face j

5: return Efaces ,1nn

Algorithm 3 Drive cube towards estimated direction

1: function STEP(Cube i)
2: d - ESTIMATEDSTIMULUSDIRECTION(Cube i)
3: sort moves by distance to d
4: for each move M do
5: let n1,...,nk s.t. ini = M

6: if j C 1,...,k s.t. hn. > 0 then
7: return M
8: return NIL
9:

10: function DRIVE(Cube i)
11: M +- STEP(Cube i)

12: while M 7 NIL do
13: apply move M
14: M +- STEP(Cube i)

We wish to prove the following:

Theorem 5.1.1. For a cube with initial position pi(0) that only performs weakly admis-

sible moves there is only a finite set of coordinates at which it can later reside. This set is

the sphere in the 11 norm with radiuis

IPL - Pi(O) II

and center PL.

Proof. For our hardware platform, the stimulus is a light intensity reading. In this

case we can use Lambert's law

I., O: nj - dj. (5.3)

to ensure that intensity readings on faces that are oriented away from the stimulus

42

source read 0. In cases where this does not hold (e.g. sound intensity), we can use

just the largest two values and all proofs follow.

As we assume weak adhissibility, the module cannot take a move that would

place it farther away in the 11 norm from the stimulus source than pi(O), for such

a move would have a component oriented away from the stimulus source, and

would thus not be chosen by Algorithm 3. E

For the 2D case, Figure 5-2 shows the set of coordinates at which the blue cube

can reside. In yellow are shown the points satisfying weak admissibility, while in

green are shown those satisfying strong admissibility.

Figure 5-2: Coordinates at which the blue module can reside. In green are positions
that are stronglyl admissible, while weakly admissible positions are in yellow. The
circle represents the projection of the stimulus source onto the plane.

Strong admissibility guarantees convergence as the module can only move closer

to the stimulus source. To ensure convergence with weak admissibility, we require

an extra 0(1) memory per cube to detect two step cycles.

5.1.2 Driving Modules Together

We now show that Algorithm 3 converges to the global maximum of Equation 5.2

for one module.

We can prove the following:

43

Theorem 5.1.2. Algorithm 3 converges to a single aggregate. Moreover, the following two

properties will be satisfied:

1. There will be a module in the final configuration that is at the closest lattice point to

the projection of the stimulus soirce on the plane.

2. The final configuration has no holes.

To give an example of Property 1, consider several 3D M-Blocks under a light

source. Property 1 states that there will always be an M-Block on the lattice point

closest to the light source.

Proof. We first prove Property 1. Assume there is no such module. For a module to

be unable to move closer to the stimulus source, there must be other modules one

step closer across both directions in the Manhattan norm. This chain of modules

is finite and terminates either with a module located closest to the projection of

the stimulus source, or with a module that is able to take a move closer to the

stimulus source. But we can take this move and repeat the argument. Since the set

of possible moves is finite, this process will eventually terminate when there is a

module that is located at the closest lattice point to the projection of the stimulus

source.

Assume now that the algorithm converges but there are multiple aggregates.

Let CL be the module in Property 1. Find the closest module to CL that is not part of

the same aggregate as CL. If this module cannot move closer to the stimulus source,

there are modules blocking it, but these modules are then closer to the stimulus

source, and thus closer to CL while still part of a different assembly contradicting

our assumption that we chose the closest module.

Property 2 follows by an analogous argument to the above.

To determine whether a move is possible only requires local information (knowl-

edge of modules connected on each face) about a cube's neighbors in the plane.

Each module requires 0(1) time to make a decision about which move to take.

44

Algorithm 3 thus scales to arbitrarily many modules and converges in time pro-

portional to the maximum 11 distance between any module and the projection of

the stimulus source on the plane.

5.1.3 Stimulus Tracking in R2

The algorithms developed above guarantee convergence when the modules are

restricted to move along a lattice structure. For example, if there is a base of "scaf-

fold" modules that are not capable of actuating, but provide support for modules

that can actuate, the algorithms above apply. One example is in automatic manu-

facture of buildings: a few modules can be active at a time, and reside on a base

of inactive modules. Selectively aggregating just a few modules at a time, simple

shapes such as cuboids and prisms can be constructed (Fig. 5-3).

j0

Figure 5-3: Modules moving on fixed scaffolding. Green modules above are mo-

bile, while the orange modules forming the bottom layer are not capable of motion,

but form a lattice on which the former move. In this scenario, algorithms (5.1)(5.2)
can be used as the scaffolding acts as a lattice.

However, if there is no lattice base, the M-Blocks develop a very high torque

when performing a plane change. The forces generated during this maneuver will

cause the M-Block to shake violently and lose its initial orientation. Thus, we can-

not rely on the lattice assumption and must develop algorithms to deal with the

45

We relax our requirement of deterministic convergence and give a probabilisti-

cally complete algorithm that at every step with high probability will drive the 3D

M-Block closer to the stimulus source.

We assume the M-Block can be modeled as a point x endowed with a direction

vector u. The stimulus source is a circle centred at XL with radius RL (write CL for

this circle). The M-Block has reached the goal if x XL 2 < R1_. In continuous

space, the control strategy is:

1. Move along u or --u to closest position to light source. This effectively

projects XL onto the line passing through x that has direction u.

x' = X + uT(xL - x)u

2. If the goal is not reached, sample uniformly from a circle centred at x' with

radius R, (write C, for this circle), and sample a new direction vector u uni-

formly at random (equivalent to sampling the slope of the line that passes

through the new point).

Intuitively, steps 1 and 2 describe a situation where the module moves as much

as possible towards the stimulus source along the line it is currently oriented to-

wards, and when it cannot improve its position further, the module performs a

reorientation maneuver. Recall from Section 4.3 that this procedure is guaranteed

to converge eventually. In what follows, we provide stronger guarantees and em-

pirical results for the particular case of the M-Blocks.

We call one complete execution of 1 and 2 (moving along line and sampling

new position) a single step. For the very first jump we assume the first step has

been performed.

We care about the expected number of steps needed for the M-Block to reach

the goal. The probability that the goal can be reached in one step is given by:

|C1 nCCJ| CL OC C I arcsin |Ixs XILI|2
Pr[one step] = R2 + (1- fT 'J 2 dS (5.4)

-T /R2 jJdS 7T
S S

46

where S = C, \ CL.

CA

CL

Figure 5-4: Geometric interpretation of eq. 5.4. Either the new position is in the
grey intersection, or averaged over all other positions, the new direction vector is
within the blue angles.

The geometric interpretation of eq. 5.4 is that the goal is reached if either the

new random position is within CL (the first term in eq. 5.4), or the new direction

vector will move the cube into CL. This only happens if the direction vector (or its

inverse) is within the two tangents from the new point to the circle.

A new position x' is better than x if Ix' - XL 2 c lix - XL I2. Notice that this

is the same as the problem of reaching the goal in one step with RL replaced by

x-XL 112. We are trying to move into the circle centred at XL with radius ||x - X112

(the old distance). Call this circle C1 and its radius R 1. The probability of improving

the position is then given by

Pr [improve] = Pr [one step] + (1 - Pr[one step]).

IIxS-xIJ-(5)C nC| |C1 n Cx| 2 arcsin - 2 (5.5)
7-R2 -T2 f dS /-T

S S

This is much larger than Pr [one step] as the function is increasing with distance

when

Cx nCL -O.

47

XI

C

CL

Figure 5-5: Geometric interpretation of eq. 5.5.

Since the surface integral in both equations is difficult to evaluate, we lower

bound the probabilities by assuming all points within the regions being intergrated

over are distance

11x - XL112 + Rx

away from the stimulus source.

We now establish the following results.

Proposition 5.1.1. Pr[one step] > 0 if the space is convex and bounded.

If we show that Proposition 5.1.1 is true, then we have effectively shown prob-

abilistic convergence of our algorithm, as everywhere on the set, the probability

that we will converge to the optimum solution is non-zero.

We now proceed with the proof:

Proof. If CL and C, intersect, then the first term is strictly positive. Otherwise 1x -

XL 112 > R L and the integral term will be strictly positive.

We note here that the algorithm also extends for bounded sets that are not nec-

essarily convex in R2 but on which the stimulus function p is concave. The mod-

ification necessary is to replace the walk along u or -u with a walk along the

gradient V0.

48

If (p is not concave, we can only guarantee convergence to local maxima of

the stiniulus function. As the modules are initially randomly distributed in the

environment, a single aggregate is no longer a feasible end result.

Proposition 5.1.1 establishes the following:

Corollary 5.1.1. The algorithm is probabilistically com plete on bounded sets assiming a

concave stimulus function 0.

A simple example is a point light source (concave function) in the middle of a

room (bounded set).

Proposition 5.1.2. Pr [improve] is strictly increasing wit/i lix -- XLI|2 when C, n CL = 0.

Proof. This can be proved formally using the area formula for the intersection of

two circles, but a simple argument is to consider the intersection area as the dis-

tance between the stimulus source and the current position grows.

The larger I x - XL 1 2, the more the intersection resembles a semicircle. The first

term in Pr[improve] thus increases with distance. The second term will always be

strictly smaller than
Ic, n- cX

rc R2C~C

which completes the proof.

Intuitively, what Proposition 5.1.2 implies is that the farther away from the

stimulus source the module is, the more likely it is that it will be able to improve

its position. On the other hand, if the module is close to the stimulus source, it is

less likely to be able to improve its position. But since the probability of improve-

ment only becomes negligible when very close to the stimulus, aggregation is still

achievable.

5.2 Results and Experimental Data

To verify the correctness of our algorithms, we implemented them in simulation

and on our hardware platform, the 3D M-Blocks. As a stimulus, we used the light

49

intensity from a point light source located above the modules.

(a) (b)

(c)

Figure 5-6: One simulation run with 10 modules. (a) Starting configuration with
modules scattered randomly. (b) Halfway through execution. (c) After aggrega-
tion.

5.2.1 Simulation Results

We have written a simulation using C++ and OpenGL. To compute the light in-

tensity on a face, we used a flat shading model and assumed that light intensity

is proportional to the inverse square of the distance from the light source to the

surface.

Figure 5-6 shows a typical simulation run with 10 modules using Algorithm 3.

The initial configuration is shown in Figure 5-6a. The final aggregate is shown

in Figure 5-6c. We ran 1000 such simulations using up to 100 modules. When

running a simulation with 100 modules the main bottleneck is in rendering, as

the algorithm requires only 0(1) operations per module to find the next move.

All simulation runs converged to the optimum configuration described by Equa-

tion 5.2 where no module can move closer to the projection of the light source on

the plane.

50

To test aggregation in free space, we implemented a Monte Carlo simulation of

the algorithm. We averaged 50 simulation runs and plotted the expected number

of moves until convergence on a 10 x 110 grid with R 7-= 1, and R. = 1 (Fig. 5-

7). Recall that RL is the radius of a circle around the stimulus source at which we

consider the modules to have converged. We can define RL with respect to the size

of the modules, but we must have RL > 0 as otherwise the convergence set has

measure 0.

10

5

0

P[One SteDl

-10
-10 -5 0 5 10

#Moves (Sim)
10

5

0

-5

-10
-10 -5 0 5 10

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

1.0 m
Pf Imnroval

-10 1-- nmm nu m -MR112 -1
-10 -5 0 5 10

10 E[# Moves I

5

0

-10
-10 -5 0 5 10

Figure 5-7: Simulating aggregation in free space. The top plots represent equations
5.4 and 5.5. Notice how Pr[improve] is increasing with distance. The bottom left
plot is the result of the Monte Carlo simulation, while the right is the expected
number of moves until convergence obtained by considering a geometric distribu-
tion with p = Pr [one step] at each point.

We can obtain a coarse upper bound on the expected number of moves by as-

surning a module is fixed in place until it samples a direction vector that is aligned

with the stimulus source (the fact that Pr[improve] > 0.5 guarantees this will be a

lower bound). This generates a geometric distribution at each point in R2 , and we

can obtain the expected number of tries until success which establishes an upper

51

0.98
0.96
0. 9 4

0.92

10.90
0.88

0.86
0.84

10.5

7.5

6.0

4.5

1.5

#Moves (Sim)

72

6.4

4.8

40

32A

1.6
100 anmdssnn

-100 -50 0 50 100

Figure 5-8: Expected number of moves until convergence in a 100 x 100 grid aver-
aged over 100 runs.

bound.

However, empirically this upper bound is very rough. In Fig. 5-8, we can see

that the expected number of moves until convergence grows roughly as the square

root of |Ix - xd2, while the lower bound we establish grows linearly with j|x -

XL h.

5.2.2 Hardware Results

To implement the algorithms on the 3D M-Blocks, each module had to be capa-

ble of performing two motion primitives: a traverse move that would move the

module forward or backward along its plane of orientation, and a plane changing

operation to realign the flywheel with a different orientation. To verify the feasi-

bility of the experiments, we first tested these two primitives. We measured both

reliability and the time between the module receiving the command and execution.

The results are shown in Table 5.1. Plane changing is reliable as it retries until the

desired plane is reached; on average, it takes 3.2 attempts, and each attempt takes

52

approximately lOs. The inertial actuation move has low variance (<0.s), but plane

changing has high variance: over 50 runs, the most attempts one module required

was 13, but the mean number of retries was 3.

Table 5.1: Reliability and time required to execute the two motion primitives.

Primi Live

Traverse
Change Plane

Reliability

79/80
50/50

Mean Time

3.36s
31.5s

We verified the algorithm would track a moving light source by using two light

sources orthogonal to one another, and switching between them. We performed

this test 10 times on a 5x5 regular lattice (see Figure 5-6). This involved 80 traversal

moves, and 10 plane changing operations. During the test, only two traversals

failed due to a hardware issue that caused the IMU readings to lag, and caused the

module to have an incorrect notion of which direction was forward. As computing

the next move requires 0(1) time and memory, this shows our algorithm is both

efficient and practical.

(a) (b)

Figure 5-9: Experimental setup to verify that Algorithm 3 works on our hardware
platform. Simulated lattice aggregation can be seen in Fig. 5-6. (a) Initial con-
figuration and expected direction of motion. (b) Intermediate configuration with
expected direction of motion; here the module needs to perform a plane change.

Finally, to test aggregation, we arranged six modules in free space and five on a

lattice and ran Algorithm 3. Due to the magnetic forces acting on a module when

53

it is connected to another module, once a two module configuration is formed it

cannot be broken by simple traversal moves. For this reason, we only run function

STEP in Algorithm 3 a finite number of times and report the number of aggregates,

the size of the largest aggregate formed, and the number of modules that were not

part of a larger aggregate.

Throughout ten experiments in free space running 5 steps of Algorithm 3, the

modules formed an average of two aggregates, though there were two runs where

only one was formed. The largest size of any single aggregate was three modules

(half of the initial six). The maximum number of individual cubes observed was

four. We discovered that a simple method of controlling two connected modules

in free space is to use one as steering module by orienting its flywheel parallel to

the ground plane and the other as a driving module. The steering module can then

be used to slide the configuration across the ground, while the other module can

perform two traverse moves to ensure that no change plane operations need to be

performed (see Figure 5-10). This allows almost perfect control over the aggregate.

This aggregate can then be used to "pick up" single modules.

Throughout five experiments on the lattice, the modules formed into either one

or two aggregates. In three of the five runs, the modules formed a single aggregate

located under the light source. While the algorithm guarantees that every module

will be part of an aggregate, the large number of plane changing operations re-

quired greatly increase the time required for the algorithm to converge. Moreover,

a two module aggregate on a lattice only allows motion along one axis as opposed

the equivalent in free space.

54

Figure 5-10: Control in free space using two modules. The right module can ro-
tate the two cube configuration about its center by accelerating and braking the
flywheel. The left module can move forward and backward: performing any two
such moves will maintain the configuration.

55

56

Chapter 6

CONCLUSIONS

Our results in this thesis are twofold.

First, we have shown to our knowledge the first discussion of aggregation of

multiple robots under the action of stimuli. We have provided convergence guar-

antees and showcased algorithms for restricted versions of the general problem.

The algorithms, based on gradient descent, converge rapidly to a locally opti-

mal solution. Under certain assumptions, we have shown that convergence to

the global optimal is not only possible, but guaranteed.

Second, we have presented a decentralized control algorithm for the aggrega-

tion of modular robots following the pivoting cube model. We derived an algo-

rithm that tracks a sensory stimulus (in our case a light source) and gave provable

guarantees for its correctness and convergence. The control scheme was demon-

strated in simulation. We also implemented the scheme on the 3D M-Blocks, our

hardware platform for the pivoting cube model, which demonstrates the practical-

ity of the scheme. To our knowledge, this is the first time aggregation, a necessary

first step in many of the common use cases of modular robotics, has been discussed

at length.

A similar approach can be used to extend this work to other application do-

mains. We highlight the possibility of using the 3D M-Blocks to perform coverage

control, or in the creation of sensor networks. This would require a significantly

more robust and efficient communication scheme between modules.

57

6.1 Lessons Learned

We considered aggregation under very strict assumptions, and proved that good

solutions can be obtained even with very primitive communication and sensing

capabilities. Unfortunately, there are situations in which a single aggregate is im-

possible to obtain. For instance, if the robots can only communicate with each

other when very close, the stimulus function has two maxima well separated, and

the robots are initially distributed uniformly in free space, then a single aggregate

cannot be obtained. Our approaches rely on either the convexity of the stimulus

function, or long range communication capabilities.

If neither are present, it is possible that exploration/exploitation strategies will

perform better than what we outlined in this thesis. There is an added cost to

performing exploration/exploitation. We lose theoretical convergence guarantees

unless we assume that the robots know a priori how many other robots are present

in the environment. As modular robots need to be robust against individual fail-

ures, this requirement may be untenable. Second, convergence will be significantly

slower due to the time spent in exploration stages.

On the practical side, future work is required for the system and algorithms

to become practical for real world use. One issue is that of scale. The current 3D

M-Blocks are impractically large for many of the applications modular robots are

desired for. Second, the algorithms must be tested in real world scenarios with

significantly more noisy stimuli than in closed controlled lab scenarios.

6.2 Future Work

There are several interesting avenues for future research. A sister problem of ag-

gregation is reconfiguration. That is, once modules have been aggregated into a

single connected component, what moves should the modules perform to change

from one static configuration to another. Previous work [36] has addressed this

issue in the pivoting cube model, but several questions remain.

58

We mention the following:

" Is there a tighter lower bound on the number of modules to be added for any

configuration to be reconfigurable into a line? In particular, can we establish

an 0(1) lower bound.

* Is there a polynomial time algorithm to determine whether two configura-

tions are equivalent under the equivalence relation described previously?

" Is there an extended moveset that would yield universal reconfiguration.

These are all potential future directions for our work, and the variety of open

problems show the incredible richness of the field of modular robotics.

59

60

Bibliography

[1] Greg Aloupis, S bastien Collette, Mirela Damian, Erik D Demaine, Robin Flat-

land, Stefan Langerman, Joseph O'Rourke, Suneeta Ramaswami, Vera Sac-

ristdn, and Stefanie Wuhrer. Linear reconfiguration of cube-style modular

robots. Computational geometry, 42(6):652-663, 2009.

[2] Byoung Kwon An. Em-cube: cube-shaped, self-reconfigurable robots sliding

on structure surfaces. In Robotics and Automation, 2008. Proceedings. 2008 IEEE

International Conference on, pages 3149-3155, 2008.

[3] Nora Ayanian, Paul J White, Adam Hdldsz, Mark Yim, and Vijay Kumar.

Stochastic control for self-assembly of XBots. In ASME 2008 international De-

sign Engineering Technical Conferences and Coipu ters and Information in Engi-

uneering Conference, pages 1169-1176. American Society of Mechanical Engi-

neers, 2008.

[4] Tucker Balch and Ronald C Arkin. Behavior-based formation control for mul-

tirobot teams. IEEE transactions on robotics and automation, 14(6):926-939, 1998.

[5] Nadia M Benbernou. Geometric algorithms for reconfigurable structures. PhD

thesis, Massachusetts Institute of Technology, 2011.

[6] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Optimizing

schedules for prioritized path planning of multi-robot systems. In. Robotics

and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conferetnce on,

volume 1, pages 271-276. IEEE, 2001.

61

[7] Chih-Jung Chiang and Gregory S Chirikjian. Modular robot motion planning

using similarity metrics. Au tonomois Robots, 10(1):91-106, 2001.

[81 Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Cover-

age control for mobile sensing networks. In Robotics and Automation, 2002.

Proceedings. ICRA'02. IEEE International Conference on, volume 2, pages 1327-

1332. IEEE, 2002.

[9] Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-reconfigurable robots-

design of the smores system. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 4464-4469. IEEE, 2012.

[10] Zvi Drezner. Dynamic facility location: The progressive p-median problem.

Location Science, 3(1):1-7, 1995.

[11] Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for

heterogeneous self-reconfiguring robots. In Intelligent Robots and Systems,

2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ international Conference on, vol-

ume 3, pages 2460-2467. IEEE, 2003.

[12] Toshio Fukuda and Yoshio Kawauchi. Cellular robotic system (cebot) as

one of the realization of self-organizing intelligent universal manipulator. In

Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference

on, pages 662-667. IEEE, 1990.

[13] Toshio Fukuda and Seiya Nakagawa. Dynamically reconfigurable robotic sys-

tem. In Robotics and Automation, 1988. Proceedings., 1988 IEEE International

Conference on, pages 1581-1586. IEEE, 1988.

[14] Toshio Fukuda, Seiya Nakagawa, Yoshio Kawauchi, and Martin Buss. Struc-

ture decision method for self organising robots based on cell structures-cebot.

In Robotics and Automation, 1989. Proceedings., 1989 IEEE International Confer-

ence on, pages 695-700. IEEE, 1989.

62

[15] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter

modules for programmable matter through self-disassembly. In Robotics and

Automation (ICRA), 2010 IEEE International Conference on, pages 2485-2492.

IEEE, 2010.

[16] Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hayato Kaetsu, Hajime

Asama, Yoji Kuroda, and Isao Endo. Self-organizing collective robots with

morphogenesis in a vertical plane. In Robotics aid Automation, 1998. Proceed-

ings. 1998 IEEE International Conference on, volume 4, pages 2858-2863. IEEE,

1998.

[171 Paul Levi, Eugen Meister, and Florian Schlachter. Reconfigurable swarm

robots produce self-assembling and self-repairing organisms. Robotics and Au-

tonomous Systems, 62(10):1371-1376, 2014.

[18] Yan Meng, Yuyang Zhang, Abhay Sampath, Yaochu Jin, and Bernhard Send-

hoff. Cross-ball: a new morphogenetic self-reconfigurable modular robot. In

Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages

267-272. IEEE, 2011.

[19] An Nguyen, Leonidas J Guibas, and Mark Yim. Controlled module density

helps reconfiguration planning. In Proc. of 4tl1 International Workshop on Algo-

rithlmic Foundations of Robotics, pages 23-36, 2000.

[20] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science

& Business Media, 2006.

[21] Lionel S Penrose. Self-reproducing machines. Scientific American, 200(6):105-

114, 1959.

[22] LS Penrose and Roger Penrose. A self-reproducing analogue. Nature,

179:1183-1183, 1957.

[23] Daniel Pickem, Magnus Egerstedt, and Jeff S Shamma. Complete heteroge-

neous self-reconfiguration: deadlock avoidance using hole-free assemblies. In

63

Estimation and Control of Networked Systems, volume 4, pages 404-410. Citeseer,

2013.

[24] Luciano CA Pimenta, Vijay Kumar, Renato C Mesquita, and Guilherme AS

Pereira. Sensing and coverage for a network of heterogeneous robots. In

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 3947-

3952. IEEE, 2008.

[25] John W Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 3D M-

Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three

dimensions. In Robotics and Automation (ICRA), 2015 IEEE International Con-

ference on, pages 1925-1932. IEEE, 2015.

[261 John W Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-

driven, magnetic modular robots. In Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on, pages 4288-4295. IEEE, 2013.

[27] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable

self-assembly in a thousand-robot swarm. Science, 345(6198):795-799, 2014.

[28] Daniela Rus and Marsette Vona. Self-reconfiguration planning with com-

pressible unit modules. In Robotics and Automation, 1999. Proceedings. 1999

IEEE International Conference on, volume 4, pages 2513-2520. IEEE, 1999.

[29] Daniela Rus and Marsette Vona. Crystalline robots: Self-reconfiguration with

compressible unit modules. Autonomous Robots, 10(l):107-124, 2001.

[30] S Salapaka, A Khalak, and MA Dahleh. Constraints on locational optimiza-

tion problems. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference

on, volume 2, pages 1741-1746. IEEE, 2003.

[31] Mac Schwager, James McLurkin, and Daniela Rus. Distributed coverage con-

trol with sensory feedback for networked robots. In robotics: science and sys-

tems, 2006.

64

[321 Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized, adap-

tive coverage control for networked robots. The International Journal of Robotics

Research, 28(3):357-375, 2009.

[33] Mac Schwager, Jean-Jacques Slotine, and Daniela Rus. Consensus learning

for distributed coverage control. In Robotics and Automation, 2008. ICRA 2008.

IEEE International Con ference on, pages 1042-1048. IEEE, 2008.

[34] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control. prentice-

Hall Englewood Cliffs, NJ, 1991.

[35] Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration,

and Hilbert spaces. Princeton University Press, 2009.

[36] Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfigura-

tion planning for pivoting cube modular robots. In Robotics and Automation

(ICRA), 2015 IEEE International Conference on, Seattle, WA, May 2015. IEEE.

[37] Yosuke Suzuki, Norio Inou, Hitoshi Kimura, and Michihiko Koseki. Re-

configurable group robots adaptively transforming a mechanical structure-

numerical expression of criteria for structural transformation and automatic

motion planning method. In Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, pages 2361-2367. IEEE, 2007.

[38] Alfred Weber and Carl Joachim Friedrich. Theory of the Location of Industries.

University of Chicago, 1929.

[39] George M Whitesides and Mila Boncheva. Beyond molecules: Self-assembly

of mesoscopic and macroscopic components. Proceedings of the National

Academy of Sciences, 99(8):4769-4774, 2002.

[40] George M Whitesides and Bartosz Grzybowski. Self-assembly at all scales.

Science, 295(5564):2418-2421, 2002.

65

[411 Mark Yirn, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod

Lipson, Eric Klavins, and Gregory S Chirikjian. Modular self-reconfigurable

robot systems [grand challenges of robotics]. Robotics & Automation Magazine,

IEEE, 14(l):43-52, 2007.

[42] Mark Yim, Babak Shirmohammadi, Jimmy Sastra, Michael Park, Michael

Dugan, and Camillo J Taylor. Towards robotic self-reassembly after explo-

sion. Departmental Papers (MEAM), page 147, 2007.

[431 Mark Yim, Paul White, Michael Park, and Jimmy Sastra. Modular self-

reconfigurable robots. Encyclopedia of complexity and systems science, pages

5618-5631, 2009.

66

