Influence M aximization Over a Network: Static and

Dynamic Policies AESTEASEFS ETTOTE]
OF TECHNOLOGY
by
Zied Ben Chaouch SEP 28 2016
Jdnt B.S. in Mathematics and Physics LIBRARIES
McGill Univasity, Canada (2014) ARCHIVES

Submitted to the Department of Electrica Engneering and Computer Sdence
in partial fuifillment of the requirements for the degree of

Maste of Saence
at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
Septerrber 2016
© Massachusetts Ingtitute of Techndogy 2016, Al rights reserved.

Signature redacted

Department of Electrica Eng neering and Computer Sdence
August 31, 2016

Sighature redacted

John N. Tsitsiklis
Professor of Electricd ngn&rmg and Computer Sdence
Thesis Supervisor

Signature redacted

0 dleslie A. Kolodzigiski
Professor of Electrical Engnesring and Computer Sdence
Chair, Department Committee on Graduate Students

Accepted byl

A
—— 77 Massachusetts Avenue
Cambridge, MA 02139

M "Libraries http://libraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to

provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

Influence Maximization Over a Network: Static and Dynamic Policies
by
Zied Ben Chaouch

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2016, in partial fulfillment of the
requircments for the degree of
Master of Science

The problem of maximizing the spread of an opinion inside a social network has been inves-
tigated extensively during the past decade. The importance of this problem in applications
such as marketing has been amplified by the major expansion of online social networks.
In this thesis, we study opinion control policies, first under a broad class of deterministic
dynamics governing the interactions inside a network, and then under the classical “Voter
Model”. In the former case, we design a policy that a controller can follow in order to spread
an opinion inside a network with the smallest possible cost. In the latter case, we consider
networks whose underlying graph is the d—dimensional integer torus ZZ, and we design
policies that minimize the expected time until the network reaches a consensus. We also
show that, in dimension d > 2, dynamic policies do not perform significantly better than
static policies, while, in dimension d = 1, optimal dynamic policies perform much better
than optimal static policies.

Thesis Supervisor: John N. Tsitsiklis
Title: Professor of Electrical Enginecring and Computer Science

Acknowledgments

I would like to first thank my advisor, Professor John Tsitsiklis, for his guidance and support
at MIT. It has been a true privilege to meet weekly with Professor Tsitsiklis and to be a
Teaching Assistant for his class. His unique style in teaching and in research have been a
constant source of inspiration over the last two years... evyaptoTw!

I would also like to thanks all my friends at MIT for making my graduate life very
enjoyable, especially when trying out some great Bostonian restaurants (I know two out-
standing foodies who will probably rccognize themselves here!), going to the theatre (Igor
and Mario?) or attending a concert at the BSO. I also thank them for all the interesting
conversations we often have about math, engineering, life, fiction,...

Finally, I want to thank my family for their constant love and support. First of all,
my parents Sonia and Sami: thank you for always being here for me, for being a source
of inspiration and encouragement, and for bringing so much joy in my life. I also want
to thank my grandparents Ferida, Maherzia and Boubaker, whom I hope to see soon in
Boston!

This research was carried out at the Laboratory for Information and Decision Systems,

and was mainly supported by an MIT Jacobs Presidential Fellowship.

Festinare nocet, nocet et cunctatio saepe;
tempore quaeque suo qui facit, ille sapit.

— QOvid

Contents

1 Introduction

1.1
1.2
1.3

Main Questions L. L. e e
Special Notation e
Outline of the Thesis

I A Deterministic Model

2 Introduction

2.1
2.2
2.3

Scope and Related Work
Contributions L
Outlineof Part I e e e e

3 Model Description

3.1
3.2
3.3

4 The
4.1

4.2

5 The
5.1

5.2
5.3

5.4
5.5

Model Description o Lo
The Unique Influencer Assumption
Formalism L e

Static Deterministic Model (SDM)

Analysis for a Line Network
4.1.1 Properties of the Graph Representation
4.1.2 The Descendant Algortithm
4.1.3 More About the Optimal Cost vs. Time Horizon Plot
Analysis for a General Network 0 oL
4.2.1 Propertics of the Graph Representation
4.2.2 Applications of The Descendant Algortithm

Dynamic Deterministic Model (DDM)

The Ancestral Path, the Ancestral Network, and the Ancestral Algorithm .
5.1.1 The Ancestral Algorithm
Application of the Ancestral Algorithm to the Static Deterministic System
Application of the Ancestral Algorithm to the Case n €(0,1)
5.3.1 A Dynamic Programming Solution to the 0 <p<lcase.
Tllustrative Example
Summary of the Results oo

13
13
14
15

17

19
19
21
22

23
23
25
26

31
32
33
41
46
54
54
62

II Static versus Dynamic Policies for the Voter Model

6 Introduction
6.1 Scope and Main Objectives
6.2 Related Work and Contributions
6.3 Outlineof Part II

7 Background on the Voter Model
7.1 The Voter Process forour Model
7.2 TheDual Process o o i i i i i i e it e e

8 Convergence Time to Consensus for a Static Policy
8.1 Model Description e
8.2 MainResults e
8.3 Symmetric Random Walks on a Lattice of Dimensiond
8.4 A General Lower Bound for Hitting Times on a Lattice
8.5 Effect of Placing all Resources on the Boundary
85.1 Linear Budget
8.5.2 Stubborn Boundary Budget, ...
853 Constant Budget
854 General Budget o
8.6 Effect of Spreading all Resources Uniformly Inside the Lattice
86.1 Linear Budget,
8.6.2 Stubborn Boundary Budget,
86.3 Constant Budget
8.6.4 General Budget Evenly Spread over the Lattice
8.7 Optimal Placement of Stubbornnodes
8.8 Another Attempt at Computing the Hitting Time toa Point

9 Convergence Time to Consensus for a Dynamic Policy
9.1 TheModel e
9.2 The Large Budget Case:
9.3 The Small Budget Case:
9.4 The General Budget Case:
9.5 Is There an Advantage to being Dynamic ?

10 Conclusion and Future Prospects

84

85
85
86
87

89
89
90

93

93

94

96

98
100
100
101
103
103
106
106
107
110
110
110
112

119
120
121
122
123
126

129

List of Figures

3-1

3-2

3-3

4-1

4-2
4-3

4-4

4-5
4-6

4-9

In this example, we sce a network of 5 nodes. An arrow going from a node
to another node means that the former node influcnces the latter node. The
external controller can influence the nodes directly but will incur a certain
cost (hereacost ¢; fornoded). Lo L L.

In this example, we see a network of 3 nodes that evolves in time. Node 2
influences itself at all times and Node 3 influences itself at all times. However,
node 1 is influenced by node 2 at even times, and is influenced by node 3 at
odd times. e e e e

Control sequence of thesystem.

Directed path of n nodes: node 1 is the self-influential node, and node n is
the endpoint. L e e
Types of connected components encountered in the simplified graph.
Mixed chain of three nodes evolving in time: red nodes are nodes in the +1
state while blue nodes are in the 0 state. Notice that the number of nodes
in the +1 state oscillates with time: there is one node in the +1 state at odd
times, and there are two nodes in the +1 state at even times.
Linear chain of n nodes: node 1 is the self-influencing node, and node n is
the endpoint. L e e
How things can go wrong when T’< T* and O << 1.
Example of an Optimal Cost vs. Time Horizon Plot: this example shows
that the function does not need to beconvex.
Example of an Optimal Cost vs. Time Horizon Plot for 10° nodes with node
costs drawn uniformly at random in {1,...,10}. We observe that the optimal
cost decreases sharply as T grows until 7" = 50; then the optimal cost scems
to decrease linearly as T grows.

200 Optimal Cost vs. Time Horizon Plot with node costs drawn uniformly

at random in {1,...,10}. A pattern seems to emerge: the function decreases
very fast at the beginning and then goes linearly to the cost of the self-
influencing node.t e

Example of an Optimal Cost vs. Time Horizon Plot for 10? nodes with node
costs drawn uniformly at random in {1,...,10}. We conjecture that, for
values of T greater than log(n), and as the number of nodes goes to infinity,
the optimal cost function tends to the linen —(T+1)..

4-10 Types of connected components encountered in the simplified graph of a

general metwork. L L

24

25
29

32
33

39

42
45

47

48

48

49

5-5

82

8-3

8-4

Network used in Ex. 5.1.5: we are here describing an SDM, and we assume
T =8 o e e e e e e e e e e e e
Ancestral Network of Fig. 5-1: this is constructed using the Ancestral Paths
calculated in Ex. 5.1.5. The first index at each node of the Ancestral Network
indicates time, while the second index indicates the corresponding node in
the original network. o L.
We consider here a Linear Chain of 4 nodes. We plot the Ancestral Network
of the Linear Chain for different time horizons.
A 4-cycle network (T = 5) with its Ancestral Network: note that the Ances-
tral Network consists of four disjoint paths as expected from the periodicity
of the original network. We labeled by node 1 the cheapest node of the 4-
cycle. The red nodes in the Ancestral Network correspond to the ones picked
by the Ancestral Algorithm. e e e
A 4-cycle network (T = 3) with its Ancestral Network: note that the Ances-
tral Network consists of four disjoint paths as expected from the periodicity
of the original network. We labeled by node 1 the cheapest node of the
d-cycle. . oL e e e e e e e e e
This network is assumed to be the same for times ¢t = 1,2, 3 (this corresponds
to a Simple Deterministic System). We assume T' = 3, and the costs C of
each node are given in thered boxes.
Ancestral Network for Fig. 5-6 and its evolution through the Ancestral Al-
gorithm: nodes are represented by the couple (t;,4).
Ancestral Network for Fig. 5-6: the original cost of each node is reported in
the pink boxes. e e e e e e e e e e e

3—dimensional cube of size [in Z3 over which we will run a random walk
initialized at center (red node). We prove in Lemma 8.3.1 that the expected
time for the random walk to hit the boundary of the cube is of order ©(I2).
Three different placements of roughly N/2 stubborn nodes over the lattice.
In (a) a random walk hits the set of stubborn nodes in constant time (i.e.,
the hitting time is independent of N). In (b) the hitting time is of order
G(N'zg‘;_l). In (c) the hitting time is of order ©(1).
We illustrate an easy way to decompose the lattice if only one face (in green)
is covered by stubbornmnodes. L L o Lo
We illustrate a way to place the stubborn nodes for a budget of B = Q(IV 4‘2*1)

nodes. In this case, 7 = © ((%)2)

In (a), we consider a random walk over a periodic lattice of side L which
halts as soon as it hits the cube of side I. In (b), we approximate this random
walk by a symmetric random walk over a lattice of side L’ = L/l halting
when the walk hits the unit cube. oL oL

Our large-budget dynamic policy applied to a 2—dimensional lattice of N
nodes. Consensus is expected to be reached in time 7* = O(N/B).
Our small-budget dynamic policy applied to a 2—dimensional lattice of N
nodes. Consensus is expected to be reached in time 7% = O(N/B).

10

68

68

72

73

73

79

80

81

96

102

103

104

105

121

122

List of Tables

3.1 Classification of different possible deterministic models, in order of increasing
complexity.

11

12

Chapter 1

Introduction

One of the core problems in the Opinion Dynamics literature is to maximizc the spread
of an opinion through a network. In this thesis, we study opinion control policies in two
different scenarios. In the first part of the thesis, we consider a broad class of deterministic
dynamics governing the interactions inside a network, and we design a policy that a con-
troller can follow in order to sprcad an opinion inside a network with the smallest possible
cost. In the second part of the thesis, we focus on the classical “Voter Model” (over networks
whose underlying graph is the d—dimensional integer torus Z¢), and we design policies that

minimize the expected time until the network reaches a consensus.

1.1 Main Questions

In the networks we consider, cach node has an opinion which can be either 0 or +1. A
controller is interested in driving the state of the network to a 1—consensus (i.e., all nodes
should have the +1 opinion by the end of the experiment).

In the first part of the thésis, we consider networks with deterministic dynamics, under
which the opinion of a node is determined by the opinion of a single given neighbor at the
previous time (unless there is an intervention from the controller). The controller can either
do nothing, or influcnce directly some nodes in the network at a certain cost. The goal of
the controller is to drive the network to a 1—consensus by some time T' (T' can be infinite) at

the smallest possible cost. We also generalize the problem: in this case, the controller wants

13

to have a fraction n € (0, 1] nodes with the +1 opinion by some time T. To answer these
questioné, we develop what we call the Descendant Algorithm and the Ancestral Algorithm.

In the second part of the thesis, we focus on the Voter Model over networks whose
underlying graph is the d—dimensional integer torus Z¢. We control the network by placing
B “stubborn nodes” (i.e., nodes whose opinion is fixed at +1) over the torus. We first
consider the case where we place the stubborn nodes at the start of the experiment and let
the system evolve spontaneously from there (this is the “static case”), and then we consider
the case where we are allowed to change the position of our stubborn nodes over the torus
during the run of the experiment (this is the “dynamic case”). Our goal here is to determine,
for both the static and the dynamic cases, the expected time it takes the network to reach
a 1—consensus when the network is initialized with all nodes in the 0 state, for optimal
policies. We conclude this part of the thesis by showing that, in dimension d > 2, dynamic
policies do not perform significantly better than static policies. However, in dimension

d = 1, optimal dynamic policies perform much better than optimal static policies.

1.2 Special Notation

Throughout the thesis, we will often use notation describing the limiting behavior of a
function when the argument tends to infinity. We clarify this notation in this section.

Consider non-negative functions f and g of some argument n:

1. We write f(n) = O (g(n)) when there exists some positive constant k such that

f(n) < kg(n) for all large enough n.

2. We write f(n) = Q (g(n)) when there exists some positive constant k such that f(n) >

kg(n) for all large enough n.

3. We write f(n) = o (g(n)) when limqsupjg(% = (.

4. We write f(n) = © (g(n)) when there exists some positive constants k; and k2 such

that k1g(n) < f(n) < kag(n) for all large enough n.

Furthermore, given the non-negative functions f, g; and g2, we will use the shorthand

notation g1(n) < f(n) < g2(n) to mean that f(n) = Q (g1(n)) and f(n) = O (g2(n)).

14

In this thesis, the functions f we will use often depend on multiple arguments: in that
case, we will always consider the limiting behavior of f with respect to the number of
nodes (n in Part I, and N in Part II of the thesis) in the network, while keeping all other
paramecters constant.

Finally, given two rcal numbers a and b, we will sometimes use the shorthand notation

a V b for max(a,b).

1.3 Outline of the Thesis

The thesis is divided into two parts:

The first part of the thesis, introduced in Chapter 2, is organized as follows. In Chapter
3 we introduce the formalism used in this first part of the thesis, and define the general
time-dependent model we will be using to describe the network (the Dynamic Deterministic
System — or DDS). Then, in Chapter 4 we restrict our analysis to a time-invariant model
(the Static Deterministic System — or SDS), and we develop what we call the Descendant
Algorithm for finite and infinite time-horizon problems by analyzing the structure of the
underlying graph of the SDS. Finally, in Chapter 5, we study the DDS and develop what
we call the Ancestral Algorithm. A brief comparison between the Descendant and the
Ancestral Algorithm will conclude that chapter. For both the SDS and the DDS, we will
consider both finite and infinite time-horizon problems. Although most of the algorithms
are developed for the casc where we want to influence all the nodes in the network, we
will provide a dynamic program which solves the case in which we only need to influence a
fraction of the nodes in the network.

The second part of the thesis, introduced in Chapter 6, is organized as follows. In
Chapter 7 we provide some background on the Voter Model, and introduce the “dual Voter
Model” approach, a classical tool often used to compute consensus times. Then, in Chapter
8 we restrict our analysis to the Voter Model over a d—dimensional integer torus, and we
construct a static placement of stubborn nodes that minimizes the expected time needed
to set all nodes in the state 1. Finally, in Chapter 9, we study the same model but allow

ourselves to move our set of stubborn nodes during the experiment. In this last chapter, we

15

want to understand whether there exist dynamic policies providing strictly smaller consensus
times than optimal static policies: we will actually show that dynamic policies do not

perform significantly better than static policies when d > 2.

16

Part 1

A Deterministic Model

17

18

Chapter 2

Introduction

The problem of maximizing the spread of an opinion inside a social network has been inves-
tigated extensively during the past decade. The importance of this problem in applications
such as marketing has been amplified by the major expansion of online social networks.
The first part of this thesis focuses on opinion control policies, under a broad class
of deterministic dynamics governing the interactions inside a network. We start with a
network in which each node has an opinion (which we denote 0 or 1 for simplicity). These
nodes can influence each other according to some dynamics. An external controller wants
to influence the nodes in order to get a desired fraction of 0 and 1 opinions among the
population, at the end of the experiment. Each time the controller decides to influence a
node, it will incur a certain cost. Our goal is to design a policy that the external controller

can follow in order to attain its goal with the smallest possible cost.

2.1 Scope and Related Work

The problem studied in the first part of the thesis has been inspired by various works in
the Opinion Dynamics literature. For example, Domingos and Richardson [5] suggested to
take advantage of the internal dynamics of the network to propagate an opinion through a
network. In their model, the external controller incurs no cost when nodes spontaneously
influence each other. It is thercfore crucial to exploit the structure of the network cfficiently

and look at the impact of cach node on the whole network. By modeling the social network as

19

a Markov random field, they proposed an approximate procedure to determine which nodes
should be influenced. In a subsequent paper [13] they simplified their model of interactions
between nodes and focused on a question of the form “how much should I market to this
node?”.

Inspired by [5,13], Kempe, Kleinberg and Tardos [9] provided more efficient approximate
algorithms (as the exact solution is NP-hard to compute) to the problem of finding the most
influential nodes in a network under the Linear Threshold (nodes take the weighted average
opinion of their neighbors and compare it to a threshold) or the Independent Cascade (nodes
can influence their neighbors only once) models of diffusion. In a subsequent paper [10],
the authors considered a Decreasing Cascade model of diffusion and provided a greedy
approximate algorithm for selecting a set of £ nodes which maximizes the expected spread
of the diffusion.

From a different perspective, Bharathi, Kempe and Salek [2] introduced a game in which
each of multiple competitors selects a set of nodes to maximize the expected spread of their
own opinion over the network. Although the diffusion model used is probabilistic, once a
node adopts an opinion, it keeps it indefinitely.

The works mentioned above focus only on choosing a good initial set of nodes to influence
to maximize the spread at the end of the experiment. This corresponds to a static policy.
Our goal is to also develop dynamic policies: we are able to influence nodes at each time
step, therefore we want to decide who should we influence and at what time, in order to
reach a desired proportion of 0 and 1 opinions in the network at the end of the experiment,
at minimal cost. The policies we will provide will be of the form “at this time ¢, influence
the following set of nodes”.

Another major difference with earlier work lies in the diffusion model used to describe
the interaction between the nodes. While the papers mentioned above consider stochastic
dynamics such as the Linear Threshold or the Independent Cascade models of diffusion,
in this part of the thesis we will only consider deterministic dynamics. Furthermore, we
assign possibly different costs to each node the controller can influence directly. Thus, the
policy will be node-specific and the algorithm will depend heavily on the structure of the

network. Finally, in our model, we allow a node to change its opinion while the experiment

20

is running, whereas in most previous studies, once a node adopts an opinion it will keep
it. Kempe, Kleinberg and Tardos [9] showed in their Theorem 5.1 how to overcome such a
limitation, for the model they consider, by creating as many copies of the network as there

are time steps in the experiment.

2.2 Contributions

The main contributions of this part of the thesis are as follows. We focus on networks
whose graph can evolve with time in a deterministic fashion, and we assume that the
opinion dynamics over this network follow some specific deterministic rules. In particular,
we focus only on networks composed of nodes of in-degree equal to one (each node can be
influenced by exactly one node at each time, also allowing for self-influences). We formulate
our problem as a mathematical program in order to find dynamic policies the controller can
follow to influence the network at the least possible cost.

For the case where the graph of the network does not change with time, we will produce
an algorithm which determines an optimal set of nodes to influence at each time step. We
will call it the Descendant Algorithm. We will also focus on the case where the network is a
line: when the costs of the nodes are initialized randomly from some discrete distribution,
we will analyze the behavior of the optimal cost required to influence the whole network
as a function of the time-horizon T of the experiment. We will show that, for small values
of T, the optimal cost decreases sharply as a function of T, and that for large values of T
the optimal cost decreases linearly as a function of 7. We show that this lincar behavior
tends to occur for times T greater than O(log(n)) when n is large, where n is the number
of nodes. Conversely, this tells us that, for large values of n, if we are willing to pay a cost
of O(n) we will be able to influence the whole line in time O(log(n)), while if we wish to
incur a cost of o(n) we will only be able to influence the whole line in time O(n).

Our last contribution concerns time-evolving networks:. In this case, we allow the un-
derlying graph to change with time, i.e., we allow the influencer of a node to change with
time. As long as this evolution is deterministic and is known to the controller at the start

of the experiment, the algorithm we provide will determine an optimal set of nodes to in-

21

fluence at each time step. We will call it the Ancestral Algorithm. A small variation of this
algorithm will also allow us to solve cases for which we do not aim to influence all nodes in
the network, but aim instead to arrive at a given fraction of 0 and 1 opinions.

The algorithms we provide run in polynomial time. For example, if the goal is to drive
the network to a consensus of +1 opinions, the Descendant Algorithm will run in time O(n)
on a path of n nodes, and the Ancestral Algorithm will run in time O(nT') on a path of n

nodes for a time-horizon 7.

2.3 Outline of Part I

The rest of this part of the thesis is organized as follows. In Chapter 3 we introduce
the formalism used in this first part of the thesis, and define the general time-dependent
model we will be using to describe the network (the Dynamic Deterministic System — or
DDS). Then, in Chapter 4 we restrict our analysis to a time-invariant model (the Static
Deterministic System — or SDS), and we develop what we call the Descendant Algorithm
for finite and infinite time-horizon problems by analyzing the structure of the underlying
graph of the SDS. Finally, in Chapter 5, we study the DDS and develop what we call
the Ancestral Algorithm. A brief comparison between the Descendant and the Ancestral
Algorithm will conclude that chapter. For both the SDS and the DDS, we will consider both
finite and'inﬁnite time-horizon problems. Although most of the algorithms are developed
for the case where we want to influence all the nodes in the network, we will provide a
dynamic program which solves the case in which we only need to influence a fraction of the

nodes in the network.

22

Chapter 3

Model Description

In this chapter, we present the model, notation, and terminology for the first part of the

thesis. We also discuss the validity of a key assumption of our model.

3.1 Model Description

We model our network as a directed graph G = (A4, &), in which .4 is the sct of nodes in
the network and & corresponds to the set of directed edges. We can also allow our network
to change with time: in that case, we define a scquence of graphs G(t) = (4, &(t)) (for
t € N) in which the sct of edges can evolve in time.

Each of the nodes can be in state 0 or 1 — this is the opinion of the node. Formally, we
denote the state (or opinion) of node ¢ at time ¢ by the variable X;(t), which takes values 0
or 1. We will assume that a controller external to the network wants to drive the network
to a final state in which the fraction of 1 opinions is higher than some given parameter
7. To achieve his goal, the controller can either wait for the network to update opinions
spontaneously (according to the network’s intrinsic dynamics which we will define shortly),
or can influence a node dircctly while incurring a cost. Figure 3-1 provides an example of
such a network.

The following threc definitions introduce some terminology we will use throughout this

first part of the thesis. A more detailed formal discussion will be presented in Section 3.3.

Definition 3.1.1. We say that the controller influences a node i at time t if the controller

23

+1
controller

Figurc 3-1: In this example, we sce a network of 5 nodes. An arrow going from a node to
another node means that the former node influences the latter node. The external controller
can influence the nodes directly but will incur a certain cost (here a cost ¢; for node 2).

performs an action at time ¢ to set the state of node i to state 1. The state of node i is

then updated at time ¢t + 1. Formally, the controller will set X, (¢t + 1) to 1.

Definition 3.1.2. We say that a node j influences a node ¢ at time t if node j can change
the state of node ¢ to his own state at time ¢: unless the controller influences node ¢ at time
t, node j will influence node @ at time . Formally, X, (¢ + 1) will be sct to X;(¢), unless the
controller also influences node i at time t. Graphically, if node j influences node i at time

t, we draw an arrow from node j to node i at time t.

Definition 3.1.3. We say that a nctwork is fully influenced at time t if all nodes in the

ncetwork are in state 1.

Suppose that only node j can influence node @ at time ¢: if the controller decides not
to influence node ¢ at time ¢, then node ¢ will be influenced by node j at time ¢; if the
controller decides to influence node ¢ at time ¢, then node ¢ will ignore node j at time ¢ and
the state X;(t + 1) of node ¢ at time ¢ + 1 will be set to 1. We will formalize these rules in

Seetion 3.3.

3.2 The Unique Influencer Assumption

Throughout this first part of the thesis, we will always assume that cach node has a unique
influencer at any given time. Graphically, this means that the nodes in the network are
constrained to have an in-degree equal to one. Furthermore, we allow the influencer of a
node to change with time. Howcever this is done in a deterministic fashion: the controller
of the network is assumed to know &(t) for all t € N at the start of the experiment. For
cxample, we can think of a network of three nodes {1, 2, 3} such that node 2 influences itsclf
at all times, node 3 influences itself at all times, and node 1 is influenced by node 2 at even

times, and is influenced by node 3 at odd times (Figure 3-2).

Figure 3-2: In this example, we see a network of 3 nodes that cvolves in time. Node 2
influences itself at all times and Node 3 influences itsclf at all times. However, node 1 is
influenced by node 2 at even times, and is influenced by node 3 at odd times.

Why do we restrict ourselves to networks with nodes of in-degree equal to one ? From
a computational point of view, we will sce in the following chapters that the optimization
problem over such a network is solvable in polynomial time. If nodes arc allowed to have
in-degree higher than one, we need to use more complicated rules for the opinion dynamics:
an example would be to consider the Lincar Threshold model, which takes the average of
the opinions of a node’s neighbor and compares it to a fixed threshold. However, hopes to
solve the optimization problem for a Linear Threshold model in polynomial time are very
thin as Lincar Threshold models usually lead to NP-hard optimization problems [9]. Our
main goal is to get insight from problems that are tractable.

From the point of view of practical applications, considering only in-degree one nodes

may scem restrictive. We partly address this issue by allowing the influencer to change

25

The state of a node at time ¢ + 1 Example:
depends on the state of:
- a fixed influencing node at time ¢ - Static Deterministic Model

- exactly one node at time ¢ (the influencer - Dynamic Deterministic Model
may change in a deterministic way)
- multiple fixed nodes in the network at time ¢ || - Linear Threshold Model

- multiple nodes at time ¢ (the influencers - Dynamic Linear Threshold Model
may change in a deterministic way)

Table 3.1: Classification of different possible deterministic models, in order of increasing
complexity.

over time in a deterministic fashion. In-degree one nodes can be viewed as nodes that are
influenced only by their most influential neighbor at a given time. Therefore if we are given
an arbitrary directed graph with edges weighted by the intensity of the influence a node
exerts on his neighbors, we can reduce the in-degree of each node to one by keeping only

an incoming edge with a highest weight.

In Table 3.1, we outline a classification of different deterministic models we can work
with, in order of increasing complexity. In the simplest case, nodes have in-degree one
and the influencer does not change with time: this corresponds to the Static Deterministic
Model. If we allow the influencer to change with time we obtain the Dynamic Deterministic
Model. Finally, by removing the in-degree one condition, we can obtain respectively a
Linear Threshold Model, or a Dynamic Linear Threshold Model. We will always assume

here that the influencer(s) are known to the controller at the start of the experiment.

3.3 Formalism

We introduce here the formalism used in the following chapters, and define the general time-
dependent model we will be using to describe the network (the Dynamic Deterministic Sys-
tem — or DDS). Suppose that the system is initially in a state X(1) = (X1(1),...,Xn(1)) €
{0,1}" at t = 1. For the moment, it is casier to assume that we start in a state X (1) =
(0,...,0). We will later show how to adapt our results to an arbitrary initial state. Since
the nodes in our network have a unique influencer, they have in-degree equal to one. We

define the following.

26

Definition 3.3.1. The Influencer I(t,%) (or I;(2)) of node ¢ at time ¢ is the unique node
that influences node ¢ at time t. Graphically, we draw a directed edge from I(¢,%) to i in the
network at time ¢, and so &(t) = {(j,7) : It(¢) = 7} for all ¢ € N (this is well defined because,
for all i € A and ¢ € N, (i) is unique). Furthermore, I(i) = (I1(i), I2(), .. ., Ip(4)) is
the chronologically ordered sct of nodes that influences node i at times t = 1,2,...,T
respectively. The matrix I = [I(¢,¢)] for t =1,2,...,T, and ¢ = 1,2,...,n, contains all the

information about the dynamics of the system during the whole experiment.

In this deterministic model, we assume that the controller already knows the time hori-
zon T and the entire matrix I at the start of the experiment, and can plan accordingly. At
cach time, a node i will adopt the state of its influencer I;(i) unless the controller intervenes.

In the presence of the controller, and in case the controller decides to influence a node,
we assume that the node will adopt the state of the controller and will ignore his influencer.

When the controller influences a node, it incurs a cost.

Definition 3.3.2. We define c(¢,7) (or ¢;(t)), for t = 1,2,...,T, to be the cost (or price)
the controller must pay at time ¢ to influence node i. We only require ¢(t,i) > 0. The
costs of every node at time ¢ are given by the vector c(t) = (Cl(t),CQ(t), .. .,c,,,(t)), for
t=1,2,...,T. The matrix C = [¢(t,i)], for t = 1,2,...,T, and ¢ = 1,2,...,n, contains all

the information about the cost of influence that the controller may incur.

In this deterministic model, we assume the controller already knows the entire matrix
C at the start of the experiment and can plan accordingly. If both matrices I and C
are constant in time, we obtain the Static Deterministic Model: in this case, the matrix
I can be replaced by the vector I = (I(l,l),I(l,?),...,I(l,n)) and C by the vector
C = (e(1,1),¢(1,2),,e(L,m)). |

We see that the Dynamic Deterministic Model is specified using only two matrices:
I = [I(t,4)] which summarizes the dynamics of the network, and C' = [c(¢,%)] which contains
the costs to the controller if he decides to influence a given node. Hence, from the controller’s

point of view, we are led to the following definitions.

Definition 3.3.3. Let «;(t) (with t € {1,...,T — 1}) represent the decision the controller

takes about influencing node ¢ at time #:

27

) 1, if the controller influences node 7 at time ¢,
(074 =
0, if the controller does not influence node 7 at time ¢.

We can now formally define the evolution of the state of the nodes:

Definition 3.3.4. The state of a node 7 at time ¢ + 1 is given by:

Xy (t), if as(t) = O (with cost = 0) ,

Xi(t + 1) =
1, if a;(t) = 1 (with cost = ¢;(¢)) -
In a more compact form :
Xi(t+1) = ai(t) + (1 - ai(®)) X1 (®)- (3.1)
Our goal is to reach a state X(T) = (1,...,1) at minimal cost, given an initial state

X(1) of the system. In summary, we choose control parameters a;(t) at each time ¢, based
on the knowledge of I, C, and X (1). We formulate this problem as a mathematical program

in Equation 3.2.

T =n
minimize (over) Z Z ci(t)a(t)

til =1
subject to Z Xi(Ty=n
i=1

(3.2)
ai(t) € {0,1}, Vi=1,...,n,Vt=1,...,T

X;(1) € {0,1} is given,Vi = 1,...,n

Xi(t) evolves according to Equation 3.1.

n ;
When T = oo, the controller wants Z X;(t) = n for all t large enough.
i=1

It is also possible to generalize the problem in the following way. Fix some parameter
n € [0,1]. The controller may want to drive the network to a final state in which the fraction
of 1 opinions is higher than the given parameter 7. In that case, the mathematical program

becomes:

28

X(t) @ X(t#1)

|

I . Hime

t oD t+1

controd

Figure 3-3: Control sequence of the system.

M...‘
bl

L
R
B
—_

~
S

minimize (over «)

oo~
I Il
R

So

Il

s

=) _Xi(T)=n

subject to

-

‘ i=1

aglt) €40, 11 Vi = Lisesi i VE = L ooy T
Xi(1) € {0,1} is given,Vi=1,...,n
X,(t) evolves according to Equation 3.1.

n

When T = oo, the controller wants Z X;(t) = nn for all t large enough. In this case, we
1=1

only require the fraction of nodes in the 1 state to be higher than 5. Therefore the network

must reach, at some finite time, what we will call a recurrent state:

Definition 3.3.5. Fix some finite time ty. The state X(ty) of the system at time &y is
called recurrent if the network will reach a state X (¢) = X (o) at some finite time & > g

without any intervention from the controller.

30

Chapter 4

The Static Deterministic Model
(SDM)

The Static Deterministic Model is based on two time-invariant vectors: I = (I, I3,...,I,) =
(I(l,1),I(1,2),..,,I(1,n)) which summarizes the dynamics of the network, and C' =
(c1,62y - 5Cpn) = (c(l, 1),c(1,2),...,c(1,n)) which contains the costs the controller in-
curs if he decides to influence a given node. The state of a node i at time ¢ + 1 is given

by:

Xr(t), if oy(t) =0 (with cost = 0) ,
e =) K0, i@ =0)

1, if o;(t) = 1 (with cost = ¢;) .
We assume that we start at a known state X (1) = (Xl(l), cee Xn(l)). In more compact

form:

Xi(t+1) = ai(t) + (1 — () X5, (8) (4.1)

In this chapter, we explore properties of time-invariant directed graphs with nodes of in-
degree one, and use them to solve our optimization problem by developing the Descendant
Algorithm. Unless specified otherwise, we always assume the nodes in our networks to have
in-degree one.

In Section 4.1, we assume that the network forms a line: we start by analyzing the

31

structure of such networks and develop the Descendant Algorithm over paths. We finish
that scction by studyving the behavior of the optimal cost as we vary the time horizon T.
In Scction 4.2, we analyze more general in-degree one graphs and apply the Descendant

Algorithm over such networks.

4.1 Analysis for a Line Network

We will start our analysis by assuming our network is a line, according to the following

definition.

Definition 4.1.1. A dirccted graph is called a line network if the following holds: when
we ignore the directions of the edges and remove duplicate edges and self edges, we are left

with an undirected line graph.

For example, all graphs in Figure 4-1 and Figure 4-2 arc line networks. We also define

the notion of a (directed) path in a dirccted network:

Definition 4.1.2. A (directed) path is a linc graph in which all edges (excluding sclf-

pointing edges) point in the same direction.

A directed path is a special case of a line graph. We have drawn in Figure 4-1 the typical

dirccted path network.

Figure 4-1: Directed path of n nodes: node 1 is the self-influential node, and node n is the
endpoint.

In this chapter, we will use the structurce of the network to derive the Descendant
Algorithm. We will consider both finite and infinite time-horizon problems. We will first
assume that the controller wants to influence every node by time 7. We will then consider
a morc general objective by assuming that the controller only wants to influence a fraction

n (with 0 < 7 < 1) of the nodes by time 7.

32

(a) 2-Cycle 2-C'(1,2). (b) Linear Chain with 4 nodes LC(2).

(¢) Mixed Chain with 4 nodes M (2, 3).

Figure 4-2: Types of connected components encountered in the simplified graph.

[4.1.1 Properties of the Graph Representationl

We start by analyzing the structure of line networks under the following condition: we

assume that all nodes have in-degree equal to one. We first define:

Definition 4.1.3. A 2-Cycle is a pair of distinct nodes (4, j) in which each node only influ-
cnees the other one (Fig.4-2a). We will refer to it as the 2-cyele 2-C'(4,). For convenience,

we assume node ¢ to have a smaller cost than node j (¢; < ¢;).

Definition 4.1.4. A Linear Chain is a connected set of nodes on the line with no cycles
present, but with exactly one sclf-influencing node 4 (Fig.4-2b). We will refer to it as the

linear chain LC(i).

Definition 4.1.5. A Mixed Chain is a connected set of nodes on the line with exactly one
2-cycle (i,7) (Fig.4-2¢). We will refer to it as the mixed chain M (4, 7). For convenicnee,

we assume node ¢ to have a smaller cost than node j (¢; < ¢;).

Remark. Note that a 2-cycle is a special case of a mixed chain.

Given a network, we say that a subsct of nodes 47 (with .47 C .47) forms a connected

component if, after ignoring the directions of the edges and removing duplicate edges and
self edges, we are left with an undirected connected graph which contains no edges between
A7 and A7\ 4. We now show that any line network is a disjoint collection of lincar chains

and of mixed chains.

Theorem 4.1.6. In a line network, a connected component must be either:

33

1. a linear chain LC(3), or

2. a mized chain MC(i,j) (which could be a a 2-cycle 2-C(3,7))

To prove this theorem, it is useful to note the following properties of the network:
Lemma 4.1.7. The number of edges equals the number of nodes.

Proof. Suppose that there are n nodes. Since nodes have in-degrec one, we must have one

incoming edge per node, hence n edges in total. O
Fact. If a line network contains a cycle, it is a 2-cycle.

Lemma 4.1.8. In a line network, a connected set of k nodes either has a single 2-cycle or

a single node influencing itself.

Proof. Suppose that the network is not a 2-cycle: then by the previous fact, the network is
not a cycle. By Lemma 4.1.7, we must have exactly k edges connecting these k nodes. To
connect k nodes on a line, we need only k£ — 1 edges. However, if we only have k — 1 edges
for k nodes, there must be a node i with in-degree zero. The additional edge can either be
added from node i to itself, or from a neighbor of node i to node i. In the former case, we
get the unique self-influencing node i. In the latter case, node ¢ and his neighbor will form

a 2-cycle. O
We can now return to the proof of Theorem. 4.1.6:

Proof. (Theorem. 4.1.6) From the previous lemmata, we have shown that a connected set
of k nodes must have either a unique 2-cycle, or a unique self-influencing node. If this
connected set of nodes has a unique self-influencing node, the graph is a linear chain. If

this connected set of nodes has a unique 2-cycle, the graph is a mixed chain. O

The following property will be very useful to construct an optimal policy to our control

problem.

Proposition 4.1.9. (The Cascade Property) If we remove the self-influencing node

(resp. 2-cycle) of a linear chain (resp. mized chain), we obtain two chains (one of which

34

may be empty). In each chain, all arrows point in the same direction. In other words, edges

go away from a self-influencing node, or a 2-cycle.

Proof. If we remove a self-influencing node from a linear chain, we remove 3 edges if the
self-influencing node has two neighbors, and 2 edges if the sclf-influencing node has only
one ncighbor. In the sccond case, we get a unique chain: the neighbor of the removed node
now has in-degree zero, and all edges in the chain must have the same orientation as the
edge between the sclf-influencing node (otherwise some node will have in-degree 2). In the
first case, we get two chains: the argument is similar to the one-chain argument.
Alternate proof. If an edge is going towards a self-influencing node, then this node
has in-degrec two which is forbidden. If an edge goes towards a 2-cycle, then one node of

the 2-cycle has in-degree two which is forbidden. O

We now have a complete characterization of the types of connected components we can
encounter in the line network. This will immediately provide an optimal policy for our

control problem over line networks, when T' = oo and n = 1.

Infinite Time Horizon Case (T = o0) with = 1:

We start with the case of an infinite time horizon (I' = oco) where n = 1 (we want
to influence all nodes). This means that the controller’s objective is to reach the steady
state X (to) = (1,...,1) at a finite (but arbitrarily large) time t9. We also assume that
X(1) = (X1(1),.., Xa(1)).

Proposition 4.1.10. If T = o0 andn = 1:

1. Suppose the controller wants to fully influence a 2-cycle 2-C(3,j) (with ¢; < cj).
An optimal policy is to influence node i at timest = 1 and t = 2 (i.e., choose
a;i(1) = (1-X;(1)), ai(1) = (1 - X;(1)) and set all other components of a(t) to zero).
The total cost of influence for this connected component will be: c; (2——X¢(1)—X j(l)).

The whole component will be entirely in the +1 state at t = 3.

2. Suppose the controller wants to fully influence a linear chain LC(i). An optimal policy

is to influence node i at time t = 1 (i.e., choose a;(1) = 1 — X;(1) and set all other

35

components of a(t) to zero). The total cost of influence for this connected component
will be: ¢;. The whole component will be entirely in the +1 state att = k + 1, where

k is the number of nodes in the longest path starting at .

3. Suppose the controller wants to fully influence a mized chain MC(i, j) (with c; < ¢;).
An optimal policy is to influence node i at timest = 1 and t = 2 (i.e., choose
ai(1) = (1 - X;(1)), ai(2) = (1 — X;(1)) and set all other components of a(t) to zero).
The total cost of influence for this connected component will be: ¢; (2 -X;(1)—-X j(l)) .
The whole component will be entirely in the +1 state at time t = k+ 1, where k is the

number of nodes in the longest path or cycle starting at 7.

In general, the optimal cost for fully influencing the whole line network is given by:

> a(l-xm)+ ¥ a(2-x-X;0), (42)

LC(3) MC(i,j)
where we sum the costs over all Linear Chains and all Mized Chains in the network. The

time to influence the whole network is equal to:

3, if in a 2-cycle 2-C(3,7),
* | . . . ap e . . .
"= o Dax 1+number of nodes in the longest path starting at i, if in a linear chain LC (i),
components 1+number of nodes in the lon,
gest path or cycle .p o
starting at the node to influence (i or j) if in a mized chain AIC(’L,]).

(4.3)

Proof. For simplicity, assume that X (1) = (0,...,0).

1. Suppose the controller wants to fully influence a 2-cycle 2—C(i,). We are considering
an infinite time-horizon problem, therefore the controller wants to reach the steady
state X (tp) = (1,...,1) at a finite (but arbitrarily large) time to. Notice that if the
controller only influences one node in the cycle, only one node will be in the +1 state
at cach time. Therefore the controller can influence cither both nodes simultaneously,

or one node at two consccutive times. Clearly, influencing the cheapest node twice

36

will be an optimal solution. It is casy to check that an optimal policy the controller
can apply is to influence node i at times t = 1 and ¢ = 2 (i.e., choose (1) = ;(2) = 1

and set all other components of a(t) to zcro).

2. Suppose the controller wants to fully influence a linear chain LC(i). We are con-
sidefing an infinite time-horizon problem, thercfore the controller wants to reach the
steady state X(tp) = (1,...,1) at a finite (but arbitrarily large) time ¢y. For node 3
to reach a +1 state, the controller will need to influence node i at some finite time,
because node ¢ is only influenced by itself. Once the controller does that, node i will
remain indefinitely in the +1 sate. Therefore the optimal cost of the control problem
is at least equal to c;. By the Cascade Property (Proposition. 4.1.9), we see that
node % will spontaneously influence both sides of the lincar chain in a finite amount of
steps. This cascade effect does not require any action from the controller. Therefore
this policy has a cost equal to ¢;, and our policy must be optimal.

3. Suppose the controller wants to fully influence a mixed chain MC(z,j). We are con-
’sidering an infinite time-horizon problem, therefore the controller wants to reach the
steady state X(tg) = (1,...,1) at a finite (but arbitrarily large) time ¢o. First, we
view the cycle (,) as a unique sclf-influencing node. By part (2), we see that the
controller must influence the cycle directly in order to reach the desired steady state.
Once the cycle is in the (1,1) state, the whole mixed chain will be in the +1 state
by the Cascade Property (Proposition. 4.1.9). We now use part (1) to influence the

cycle at an optimal cost.

For an arbitrary initial statc X(0), we nced to change our policy only if the self-
influencing node, or a node of the 2-cycle is already in the +1 state at time ¢ = 0. The
policies described in the statement of the proposition are clearly optimal.

a

We can now use the previous proposition to solve the infinite time-horizon control prob-

lem when 0 <7 < 1.

37

Infinite Time Horizon Case (T =o00) With 0 <9< 1:

Suppose that, in our infinite time-horizon problem, the controller only wants to influence
a given fraction 7 of the nodes from the network (where 0 < n < 1). This means that the
controller wants Y ;v Xi(t) > nn at all times ¢ large enough. We still need to reach a
recurrent state in a finite (but arbitrarily large) amount of time. The line network is a
disjoint collection of linear chains and mixed chains. Since the controller does not need to
get all nodes in the +1 state, we simply need to influence the cheapest connected components
of the network in order to get at least #m nodes: this is clearly a knapsack problem. For

simplicity, assume that X (1) = (O, ... ,O).

Proposition 4.1.11. For simplicity, assume that X(1) = (0,...,0). If T = oo and

O<n<li:

1. Suppose we have a 2-cycle 2-C(i,j) (with ¢; < ¢;):

To have only one node in the +1 state, an optimal policy will be to influence node i
once at timet =1 (i.e., a;(1) = 1 and set all other components of a(t) to zero)., This

is done at a cost ¢; by time t = 2.

To have both nodes in the +1 state, an optimal policy will be to influence node i at
timest =1 and t = 2 (i.e., a;(1) = 0;(2) = 1). This is done at a cost 2¢;, by time
t=3.

2. Suppose we have a linear chain LC(i):

Since T = oo, the controller can influence the node i at time t = 1 (i.e., a;(1) =1
and set all other components of a(t) to zero). Note that this procedure will eventually
influence all nodes in the linear chain. This is done at a cost c;. The whole linear
chain will be entirely in the +1 state by timet = k+ 1, where k is the number of nodes

in the longest path starting at node 1.

_Pfoof. This proposition clearly follows from Proposition 4.1.10. O

When we have a Mixed Chain MC(i,j) (with ¢; < ¢;), the problem of influencing a

fraction 5 of nodes in the network should be formulated differently. Indeed, when we reach

38

t=2

t=3

Figure 4-3: Mixed chain of three nodes evolving in time: red nodes are nodes in the 1
state while blue nodes arc in the 0 state. Notice that the number of nodes in the +1 state
oscillates with time: there is one node in the +1 state at odd times, and there are two nodes
in the +1 state at even times.

a recurrent state and then let the network evolve spontancously from there, the number of
nodes in the +1 state may not remain constant. For example, in Figure 4-3, the network
oscillates between a state in which two nodes arc in state +1 (this happens at even times),
and a state in which only onc node is in state +1 (this happens at odd times).

For Mixed Chains, when we influence one node of the cyele, we eventually reach a
recurrent state. We show below that a recurrent state can cither have | %] nodes in the +1
state, or |'£_,—'] nodes in the +1 state. Actually, when the system is in one of these recurrent
states at time ¢, it will be in the other recurrent state at time ¢ + 1. Thercefore, if we take
a time-average of the number of nodes in the +1 state after reaching a recurrent state, we

_—

will have “on average” 4 nodes in the +1 state.

Proposition 4.1.12. Suppose we have a mized chain MC(i,j) (with ¢; < ¢;j):

1. To influence “on average”™ half of the nodes, we can influence only node i at t = 1
with a value a;(1) = 1, at a cost ¢;, by time t = k+ 1 (where k is the number of nodes

in the longest path starting at node i).

39

2. To influence all nodes, we can influence node i att = 1 and t = 2, with a value
;(0) = (1) = 1, at cost 2¢;, by time t = k+ 1 (where k is the number of nodes in

the longest path starting at node 7).

Proof. 1. By influencing only one node in the Mixed Chain’s 2-cycle, we eventually
reach a recurrent state. Observe that such recurrent states must be of the form
X = (X1,X2,...,X,) where X3 =0or 1,and X; =1— X;_; forall i € {1,...,n}
(ie, X = (1,0,1,0,...,X,) or X = (0,1,0,1,...,X,,) in such a recurrent state).
Once such a recurrent state is reached, the system will alternate between these two
states at each iteration. When X; = 0, the recurrent state has | 3| nodes in the +1
state, and when X = 1, the recurrent state has [5] nodes in the +1 state. Therefore,
if we take a time-average of the number of nodes in the +1 state after reaching a

recurrent state, we will have “on average” % nodes in the +1 state.

2. This proposition clearly follows from Proposition 4.1.10.

O

Proposition 4.1.13. We are given a network consisting of a collection of Linear Chains
and Mized Chains. To eventually reach a fraction n of nodes in the +1 state, we can
follow the procedure outlined in Proposition 4.1.11 and Proposition 4.1.12, and choose the
connected components to influence by solving the following knapsack problem.

1, if we influence node i at time t,

Let o;(t) =
0, if we don’t influence node i at time t.

We solve:

minimize Z a;(1)e + Z (ai(1)+ai(2))c,~

LC() MC(i,j) MOl

subject to nn < Z a;(1)|LCE)| + Z | (l,J)l(
LC(@) MC(,5)

oi(t) € {0,1}, Vi=1...n, V¥t =1,2

(1) + ai(2)), (4'4)

where the sums run over aell Linear Chains and all Mixed Chains in the network.

Proof. This proposition clearly follows from Proposition 4.1.11 and Proposition 4.1.12. O

40

Equation (4.4) involves complicated notation, but the idea behind it is simple: we
want to select the cheapest connceted components and decide how many nodes we need to

influence in cach case. This basically boils down to a knapsack problem.

[4.1.2 The Descendant Algortithm

We will now consider finite time-horizon problems, first assuming that n = 1, and then for
a general n € (0,1). In the former case, we will solve the control problem by developing
the Descendant Algorithm (DA). We will also show that the DA can be extended to the
infinite time-horizon problem. Throughout this section, we will assume for simplicity that

X(1) =(0,...,0).

Finite Time-Horizon Case (T < co) With = 1:

Note that when T is finite, Proposition 4.1.10 still holds if T' > T™ (where T™ is defined
in Equation (4.3)). T™* is interpreted as the smallest time to reach the targeted state under
an optimal policy. If T < T™*, the influencing process must be accelerated by influencing
more nodes, so that the entire network will be in the +1 state at time 7. The following

proposition provides an optimal policy:
Proposition 4.1.14. Suppose that T < oo and n = 1.

1. Suppose that the controller wants to fully influence a 2-cycle 2 — C(i,j). In this case,
T* = 3. Hence if T' > 3, we just need to apply the optimal policy given for the infinite
time-horizon case. If T = 2, then the controller must influence both nodes at t = 1

(i.e. a;(1) = a;(1) =1) at a cost of ¢; +c;.

2. Suppose that the controller wants to fully influence a linear chain LC(3). In this case,
an optimal policy is provided by applying the “Descendant Algorithm on a Path” (see
below) on each path of LC(i) from node i to an end of the chain (i.e., a node l with
out-degree equal to zero). Note that Linear Chains can have either one or two such

paths (or none: in that case the Linear Chain LC(3) consists only of node i).

41

3. Suppose that the controller wants to fully influence a mived chain MC(i,j). If T = 2,
then an optimal policy consists of influencing every node in the mized chain at t = 1.
If T > 3, an optimal policy is reached by influencing the cheapest node in the cycle
(here node i) at times t = 1 and t = 2; we then apply the “Descendant Algorithm on
a Path” (see below) on each path from node i to an end of the chain (i.e., a node |
with out-degree equal to zero). In other words, once we influence node i at t = 1 and

t = 2, we can ignore the influence node 7 has on node i (remove this edge) and treat

the problem as a Linear Chain.

Figure 4-4: Lincar chain of n nodes: node 1 is the sclf-influencing node, and node n is the
cndpoint.

DESCENDANT ALGORITHM ON A PATH:

Without loss of generality, call this path (1,2,3,...,n) where 1 is the self-influencing
node, and ¢ influences i + 1 for all i < n — 1 (see Fig.d-1). We want to influence the
whole chain by time T and at minimal cost.

Detailed Algorithm:

1. Let jp = 1 and influence node jy at time ¢ = 1. This will spontancously influence
nodes {jo,jo+1,....min(T—1+jo—1,n)} = {1,2,...,min(T — 1,n)} until time

T, at a cost ¢;, = .

IfT - 1=T1+ jy— 1>mn, then STOP. Otherwise, go to the next step.

2. Let j; be the node with cheapest cost ¢; among the set of nodes {jo + 1,jo +
2,...,min(jo+T,n)} (if there is a tic, pick one of the cheapest nodes arbitrarily).
Let jo be the cheapest node in the set {T'— 1+ jo, T —1+jo+1,..., min(T — 1+

j1—1,n)}.

If 7y is cheaper than jo, influence node j; min(j; —jo,n—1+1—jp+1) consccutive

42

times starting at ¢ = 1. This will spontancously influence nodes {T — 1 + jo, T —

l+jo+1,...,min(T— 147 —1,n)}, at a cost ¢j, min(j, —jo,n—T +1—jo+1).

If jo is strictly cheaper than ji, influence node j; (j2 — jo — T + 1) consecutive
times starting at ¢ = 1. This will spontancously influence nodes {T' — 1 + jo, T —

1+jo+1,...,5o— 1}, at a cost ¢j, (jo —jo — T + 1).

If T — 1+ j1 — 1> n, then STOP. Otherwise, go to the next step.

3. At step k: Let ji be the node with cheapest cost ¢; among the set of nodes {jx—1+
1, jk—1+2,...,min(jr—1+T—1,n)} (if there is a tie, pick any of the cheapest node).

Let jry1 be the cheapest node in the set {T'— 1+ jg_1,...,min(T—1+jx —1,n)}.
If jj is cheaper than jjy1, influence node jiy min(jx — jr—1,m — T + 1 — jp + 1)
consecutive times starting at ¢ = 1. This will spontaneously influence nodes
{T-14jk-1,T—1+jg1+1,...,min(T — 1+ jr — 1,n)}, at a cost ¢;, min(jz —
Je—1,n =T+ 1= jr1+1).

If ji1 is strictly cheaper than ji, influence node ji (jx4+1 —jx — T+ 1) consecutive
times starting at ¢ = 1. This will spontaneously influence nodes {T — 1+ jx—1,T —
1+ jk—1+1,...,5k+1 — 1}, at a cost ¢, (41 — Jk—1 — T+ 1).

If T — 1+ jp — 1> n, then STOP. Otherwise, go to the next step.

If the algorithm terminates at £ = k* then the total cost to influence the whole chain
k*—1

is equal to: ¢j, + Z Cji, *Min(jg — jo—1, Jh+1 —Jk—1—T+1)+(n—T+1—jp=_1+1)cj,.-
k=1

This algorithm obviously terminates since the ji form a strictly increasing sequence of
integers which is bounded above by n, hence 1 < jp« <n—T+1 when T < n, and jg- =1

for T > n. Hence the run-time of the algorithm is at worst of order O(nT).

Proof. If we influence the sclf-influencing node, then we will have influenced the first 7' — 1
nodes in the path by time 7. We now need to influence the remaining n — 7 + 1 nodes
by influencing any non-self-influencing node of the path: this means that wc must choose

n — T + 1 nodes to influencc among the remaining n — 1 non-sclf-influencing nodes at

43

convenient times (the nodes chosen do not need to be distinct).

We observe that each node can influence at most 7' — 1 nodes (including himself) by
time T'. Therefore, in an optimal policy, the cheapest node j; in {2,...,7T} should be
used to influence the whole set {T,...,T — 1 + j; — 1}. Actually, if some node jo €
{T,..., T — 1+ j1 — 1} has a strictly cheaper cost than j;, then j; will influence only the
set {T,...,j2 — 1} (because j, influences the rest at a strictly cheaper cost). We are now
guaranteed to have influenced all nodes in {T,...,j2 — 1} at an optimal cost. If it was not
optimal, then some other node j € {2,...,j2 — 1} would be strictly cheaper than j;. This
is impossible because, by definition, j; is the cheapest node of that set.

We continue analogously by looking choosing jo among the nodes {j1 +1,..., 7 —1+

j1 — 1}, etc. The same idea applies.

The algorithm above is presented in much detail in order to understand better the

machinery behind it. We now present a simplified version of the Descendant Algorithm.

Simplified Algorithm:
We first select the nodes we will influence directly. This will be a collection J =

{dos 31, -k} of nodes in {1,...,n}.
1. Let jo = 1.
2. Let ji be the cheapest node in {jx—1 +1,...,min(jx—1 + T — 1,n)} for all k > 1.
3. Stop when k = k*, where k* is defined by jg+_1 >n—~T + 1.

We now calculate the number Ny, of consecutive times we want to influence node jy:

Ny = min(jg — jr—1,k+1 = Je—1 — T +1), VI < k< K.

If the algorithm terminates at & = k* then the total cost to influence the whole

44

chain was cqual to:

k-1
ey + 3 efyminffy = fe-tpd601 = -1 = T+ 1) + 3—T + L— firca + L.
k=1

The intuition behind the Descendant algorithm is that we pick a node and sce how
many times we should influence it directly to reach the largest number of descendants of

that node by the time-horizon.

Finite Time-Horizon Case (T < o) With 0 <5 < 1:

If T is finite and 0 < 1 < 1, the solution is much trickicer. Since we don’t need to influ-
ence the entire network, and the time-horizon is finite, then we may not want to influence
systematically the self-influencing nodes or nodes in 2-cycles. For example, consider the

following lincar chain LC(2) of four nodes:

Figure 4-5: How things can go wrong when T' < T and 0 <7 < 1.

Example 4.1.15. Consider the LC(2) lincar chain in Figure 4-5 (the costs per unit
influence are written in red next to the decisions a). Assume that X (1) = (0,...0).
Clearly, if T = oo and i = 1, then we must influence only node 2 (i.c., set ag(1) = 1),
and the optimal cost to influence the linear chain is equal to 1000. Note that 7" = 3:
if T > 3, the previous policy remains optimal as we need to influence all nodes, so we

must influence node 2 dircetly at some point. If T < 2, then we will have to influence

more nodes: for example, if T = 1, we need to influence all nodes in the network (the
optimal cost will be equal to 1003). If T' = 2, an optimal policy would be to influence
node 2 at t = 1, and then influence node 4 at t = 2 (the optimal cost is equal to 1001);
another optimal policy would be to influence nodes 2 and 3 at t = 1 (the optimal cost
is equal to 1001).

If T = co and 0 < 57 < 1, the optimal policy will also be to influence node 2 at ¢t =1
at a cost of 1000. Indeed, because T = co, we cannot influence any smaller number of
nodes. For example take n = 50%: then the controller wants to have at least 2 nodes
in the +1 state at T = oo. If we don’t influence node 2, we will have to influence other
nodes (say only node 3) at infinitely many times: this leads to an infinite cost.

The case is much trickier when T is finite and 0 < 7 < 1. Let n = 0.5: in this
example, an optimal policy will be to influence nodes 3 and 4 at time T (or influence
node 3 at times T'— 1 and T'). The optimal cost is therefore equal to 2 (which is much
cheaper than if we would influence node 2). However this solution is “unstable” as all
nodes will go back to the 0 state at time 7'+ 2: this may not be an issue if the problem
we are interested in does not care about the ev.olution of the system after time T (for
example, during elections, T" would be the time at which the voting sites close: a party
wants to have enough voters in its favor at that time, but the opinion of the voters after

that time does not matter much ... until the next elections perhaps !).

From the previous example, we see that optimal policies for finite 7 and 0 < p < 1
would consist of influencing “cheap” nodes at times “close” to T'. It is possible to find a
similar approach as that of the Descendant Algorithm, however the Ancestral Algorithm

we will develop later on will provide a much simpler way of tackling this case.

4.1.3 More About the Optimal Cost vs. Time Horizon Plotl

Throughout this section, we assume that 7 =1 and X (1) = (0,...,0). The plots presented
here are obtained by running the “Descendant Algorithm on a Path”. Notice that the first

point (at T'=1) has an optimal cost equal to the sum of all the costs of the nodes in the path,

46

and the last point (when 7' is equal to the number of nodes in the path) has an optimal
cost equal to the cost of the first node (the sclf-influencing node).

In Fig. 4-6, we consider a path of 10 nodes {1,2,...,10} with associated costs C' =
(8,1,3,1,1,9,7,4,10,1). We then plot the value of the optimal cost as a function of the time-
horizon 7. We immediately see from this example that such a function is not necessarily
convex. However, it is casy to sec that such a function will always be non-increasing, as
increasing the time-horizon cannot increase the optimal cost.

*1
vias

asm
4

\

e ——— ——— —
== Cowt of sach node: Cm 14,1 ,1,074.10,1]]
a0l J
ask- i
30 N -
H
o
g:s = -
Y N
o .
204
Ry
\‘.
15 N]
10 S |
gl o o L L S P | 1 | i
1 2 3 4 7 8 3 Bl
Time Horizon T

Figurc 4-6: Example of an Optimal Cost vs. Time Horizon Plot: this example shows that
the function does not need to be convex.

In Figures 4-7 to 4-9, we consider a path of n nodes {1, 2,...,n} for large values of n. We
gencrate costs ¢, . . ., ¢, independently from a discrete uniform distribution over {1,...,10}.
We then plot the value of the optimal cost as a function of the time-horizon 7. In Fig.
4-7, we consider a path of 1000 nodes in which the cost of cach node is generated from a
disercte uniform distribution over {1,...,10}; we then plot the corresponding optimal-cost
vs. time-horizon graph. In Fig. 4-8, we generate 200 paths of 1000 nodes and plot their
corresponding optimal-cost vs. time-horizon plot. Finally, in Fig. 4-9 we consider a path
of 10* nodes; we then plot the corresponding optimal-cost vs. time-horizon graph.

We notice the following trend for long paths: the optimal cost tends to decay sharply
for smaller values of T', and lincarly for values of T' closer to T*. Indeed, for smaller valucs

of T, we need to influence fewer nodes as we increase the value of T' and therefore we stop

47

Line with 10° nodes, and Cost ~ U{1,10)

5000
4000 [
-
S
‘é 3000
i |
© H
i
y
1000 -
) 1 1 I I | L 1 B T e, m S
[100 200 300 200 500 600 700 800 900 1000

Time Horizon T

Figure 4-7: Example of an Optimal Cost vs. Time Horizon Plot for 10% nodes with node
costs drawn uniformly at random in {1,...,10}. We observe that the optimal cost decreases
sharply as T' grows until T' & 50; then the optimal cost seems to decrease lincarly as T grows.

200 paths of 1000 nodes each, Cost~){1,10)

3000 -

Optimal Cost

1 1 L] | 1 1 1 T e N
100 200 300 400 800 T80 800 800 1000

500
Time Horizon T

Figure 4-8: 200 Optimal Cost vs. Time Horizon Plot with node costs drawn uniformly at
random in {1,...,10}. A pattern scems to emerge: the function decreases very fast at the
beginning and then goes lincarly to the cost of the sclf-influencing node.

influencing some expensive nodes. Depending on the distribution of the costs along the
path, we are left mainly with cheaper nodes after some time (we will define properly this
cutoff time as T, in the next proposition). This implies that the optimal cost will decrease

slower for larger values of 7.

We can now try to be more quantitative about the optimal cost vs. time horizon curves

48

g Line with 10* nodes, and Cost ~ U{1,10}

Ln
5k
o
S
I
b4
5
2
1
—— e X804
2 1 i 1 1 1 | 1 e, 4T
0 1000 2000 3000 4000 5000 5000 7000 5000 9000 10000

Time Horlzon T

Figure 4-9: Example of an Optimal Cost vs. Time Horizon Plot for 10* nodes with node
costs drawn uniformly at random in {1,...,10}. We conjecture that, for values of T' greater
than log(n), and as the number of nodes goes to infinity, the optimal cost function tends to
the line n — (T + 1).

(c.g., sce Fig.4-8):

We generate a path of n nodes by randomly choosing the costs C; of the nodes according
to some Probability Mass Function (PMF) Pg(e) defined for positive values of the cost c.
For simplicity, we can assume that the cost C; (C; ~ Pg, i =1,...,n arc independent and
identically distributed) satisfy Pg(e) = 0 for all ¢ < 1, and Pg(1) > 0. Define C(T) as the

optimal cost at time T'.

Approximate Calculation 4.1.16. Under such a construction:

E[C(T = 1)] = nE[C] = ni cPe(c)
c=1

o0
E[C(T =n+1)] =E[C] = Z cPc(c) (which is the expected cost of the self-influencing

c=1
node)

enough (with respect to 1/Pg(1)), so that we can make the approximation that ¢o = 1. Call
T. the carliest time at which the optimal policy influences only nodes with cost ¢ (except
possibly for the self-influencing node of the path). T, corresponds to the time at which the

behavior of the curves becomes approximately lincar. Then we can approximate E[T¢] by:

49

E[T]~n— i ——(Q‘i-—P"’“(l -p) Zn:(l - (1 -p)")"™, (4.5)

g1 1= (1 =p)" t=1
" n11—(1-p(1-p)t)"

where p = Pc(co)

n
Justification. First, E[C(T =1)] = E[Z C;] = nE|C] because when T’ = 1 we must influence
i=1
all nodes on the path, so the optimal cost is just the sum of the costs of all nodes. Also,
E[C(T = n)] = E[C,] because when T > n we only need to influence the first node of the

path, as its influence has enough time to propagate through the entire path.

Assume that the path is long enough, so that we have cg = 1. Fori =1,...,n, let ¥;

be the following indicator random variable:

Yfi _ 1, if Ci = Cyp,

0, if C; > ¢p.

Hence Y; are IID Bernoulli random variables with parameter p = Pg(cg). Then, T, corre-
sponds to the largest interval between two successes (including the index of the first success).
The lengths of such intervals are random variables which approximately follow a geometric
distribution (ignoring end-horizon effects) with parameter p = Pg(cg). We define these
random variables as: W; = length of the 4t interval. If Ny is the number of nodes with
cost ¢y, then given Ny: T, = j_xﬁaa’cNoW We make the approximation that the W; are
independent of Ny and are independent of each other. In that case, for 1 <t < n:

No 1) 1¢)
B(Z. < t|No) = P(_max_ W; <1) = HP(W <t)~[[D p—p)*? —pN"(Z(l—

j=1 j=1k=1
p)F1Me
1—(1—p)t
So: P(Te < t|No) ~ (___(I_;_p‘)_> =[1-(@1-p)
Therefore:

E{TINol ~ S (L~ P(T <) =n— 3 (1 - (1 p))No
t=1

t=1

50

Finally, using the Tower Property E[T,.] = E[E[T;|No]], and using the fact that Ny ~
Bin(n, p) truncated at zero (we assumed that there was at least one node with cost ¢g), we

conclude that:

mn (n) " n n . '
E[T]~n—) 1—_—(1@_——);;1’ o(L—p)" "y (1 (L—p)H)™
no=1 p t=1

This double sum is hard to evaluate. We will now derive a shorter formula by first calculating

the cumulative distribution function of T:

i n (n)pno(l _ p)n—no
P(T. < t)= > P(T. < t|Np =no)P(Ng =no) = »_ [1— (1 —p)|*o-2 :
no=1 no=1]' - (]‘ - p)n

SO

(r (11__”();))_n(l_” " it <,
P(T,<t)~ » (4.7)

1, ift > n.

and

n—1 (1 - P(l “'p)t)n - (1 - p)n il (1 B p(l B p)t)n

Remark. Recall, from the Descendant Algorithm, that if 71,...,jg= are the nodes in the
path we have to influcnce, then the number Ny of consecutive times we need to influence a
node ji:

Ni = min(jx — jr—1,Jk+1 — Je-1 — T+ 1), VI < k < k™.

Therefore if the costs of the nodes are generated independently from a PMF Pg(c), the
Ny, can be approximated by the random variables W), in the proof above, and will thus

approximately have a gcometric distribution with mean 1/Pc(cp).

We can also approximate the expression obtained in the Approximate Calculation 4.1.16,
n

for large values of n. Indecd, we have shown that E[T.|Ny] = n — Z(l —(1-pHM. In
t=1
the limit where n is large, the strong law of large number tells us that Ny/n converges to p

almost surely. Hence we can approximate Ny by np for large values of n. Thus, for large

51

values of n:

N
Ay I1-(1-(1- p)H)yVp (4.8)
t=1

Example 4.1.17. We apply the previous proposition to Figured-7: here, n = 1000,
C ~U{1,10}, therefore E[C] = 5.5 and p = 0.1. So:
E[C(T = 1)] = nE[C] = 5500

E[C(T = n)] =E[C1] =55

n=11— (1 -p(1- P)t)n
]E[Tc]“'; 1-(1—p)
100011—(1—01(1—01))

E[T]~), T 0.0 ~ 48.6919

t=1
E(T:] Z[—a-a-)W*P]
iﬁo

E[T.] =~ [1 —(1- 0.1)t)1000><°'1} ~ 48.7345

000

Note that for n =10 (Flgure 4-6) we get: E[T;] =~ 6.3732 which agrees with the

sample path shown (the linear behavior starts at T = 5 in Figure 4-6).

The formula derived in Equation (4.8) is not very practical for approximating E[T,]
when n gets large. We want to understand how fast this function grows with n. In the

following, we show that E[T,] grows as O(logn).

1
For simplicity, let ¢ = 1—p: then n—E[T] ~ Z(l —q)"P Ifq << (sot > — og(np))’
t=1 log(q)
then, for to > — og(np) (and assuming np > 1), we obtain
log(q)

to

n to n
DA—ghy?P =) (1-¢")"+ Z A-g?=> 1-g"?+ > (1-npg).
t=1 t=1 t=to+1 t=1 t=t0+1

Thus,
to n

E[T]~n-Y (1—-¢)" - Z (1 —npg') = Z(l P +to+np Y, ¢

=1 t=tg+1 t=to+1

52

Hence,
to ni—tp

" 1—
E[T.] = —-Z(]_ _ qt)np + npqt0+l—q— + to.
t=1 1-¢q
Now,
to to tg
(=g <y (=g <Y (1 —g),
t=1 t=1 t=1
so that
to
toenplog(l—q) ~ to(l . q)np < Z(l _ qt)'np < to(l _ qto)np ~ toe—np
t=1
is negligible when n is large. Hence,
1— n—tg 1
E[T,] ~ npg't' ——— 1 to = npglo—I— — npg™! —— 1 tg = npg®—— + to,
l—gq 1—-q 1—g¢ 1—-g¢g

which gives

l—p 1-p log(np)
E[T.] ~ npg'® +to = O(1 — .
(T] - 0= 0(1) o Togl—p)

Therefore E[T] scales as log(n) for large values of n. This means that, for large values
of n, if we are willing to pay a cost of O(n) we will be able to-influence the whole line in
time O(log(n)), while if we wish to incur a cost of o(n) we will be able to influence the

whole line in time O(n).

53

4.2 Analysis for a General Network

In this section, we generalize the results obtained for Line Networks to general networks.
We will usc the structure of general in-degree one networks to show that the Descendant
Algorithm can still be applied to obtain an optimal policy to our optimization problem. We
will consider both finite and infinite time-horizon problems. We will first assume that the
controller wants to influence every node in the network by time 7', and then we will relax
this condition by assuming the controller only wants to influence a fraction € (0,1) of the
nodes by time T'. Unless otherwise specified, all networks are assumed to be in-degree one

networks throughout this section.

l4.2.1 Properties of the Graph Representation]

We start by analyzing the structure of general in-degree one networks. We will show that

such networks are composed of only two possible types of connected components. We first

define:

Definition 4.2.1. A k-Cycle is a cycle of k nodes (i1, . . ., i) in which each node influences
cxactly one of his neighbors, and all edges are oriented in the same direction (Figure 4-10a).
We will refer to it as the k-cycle k-C(i1,...,14). For convenience, we assume node i; to

have the least cost (c;; < ¢;; for all j € {2,...,k}).

Definition 4.2.2. A Tree Chain is a connected set of nodes that contains no cycles, but
which contains exactly one self-influencing node ¢ (Figure 4-10c). We will refer to it as the

Tree Chain T'C(3).

Definition 4.2.3. A Mixed Chain is a connected set of nodes that contains a unique
cycle of some finite length k: k-C(21,...,1x) (Figure 4-10d). We will refer to it as the mixed
chain MC(t1,...,4). For convenience, we assume node 7; to have the least cost along the

cycle (¢;; < ¢ forall j € {2,...,k}).

Remark. Note that a k-cycle is a special case of a mixed chain.

Theorem 4.2.4. For a general in-degree one network, a connected component is either:

54

(a) 6-Cycle 6-C(1,2,3,1,5,6). (b) Tree Chain with 8 nodes T'C(5).

o (d) Mixed Chain with 11 nodes and a 4-
cycle MC(5,6,7,8). The cycle could also
(¢) Another Tree Chain with 8 nodes be found inside the network (e.g., we can

TC(1). replace node 1 in (¢) by a cycle).

Figurc 4-10: Types of connected components encountered in the simplified graph of a general
networlk.

[y}
(o]

1. a tree chain TC(i), or
2. a mized chain MC(iy,. .., i) (which could be a k-cycle k-C(is, ..., ixk)).
To prove this theorem, we note the following property of the network:

Lemma 4.2.5. If all nodes of a network have in-degree one, then there must be as many

edges as there are nodes.

Proof. Suppose there are n nodes in the network. Since nodes have in-degree one, we must

have one incoming edge per node, hence n edges in total. O

Lemma 4.2.6. A connected set of k nodes either has a unique cycle (of some finite length

k) or a unique node influencing itself.

Proof. By Lemma 4.2.5, we must have exactly k edges connecting these k nodes. To connect
k nodes, we need only k — 1 edges. However, if we only have k — 1 edges for k nodes, there
must be a node ¢ with in-degree zero. The additional edge can either be added from this
node i to itself, or from some node j to this node i. In the former case, we get the unique
self-influencing node i. In the latter case, we claim that nodes ¢ and j will be part of a
k-cycle:

Because the network with k& — 1 edges is already connected, and node 7 is the only node
with in-degree zero, we get a tree with root ¢. This implies that all edges flow away from 7 in
the same direction (see Prop. 4.2.7 below). Therefore there must exist a path (i1, 2, ..., %)
from node i to node j where 41 = i, i = j. By adding the edge from node j to node i, we

create a k-cycle. O
We can now return to the proof of Theorem 4.2.4:

Proof. (Theorem 4.2.4) From the previous lemmata, we have shown that a connected set of
k nodes must have either a unique cycle, or a unique self-influencing node. If this connected
set of nodes has a unique self-influencing node, the graph is a Tree Chain. If this connected

set of nodes has a unique cycle, the graph is a Mixed Chain. O

We can now generalize the Cascade Property to general in-degree one networks. This

property will be very useful in constructing an optimal policy.

56

Proposition 4.2.7. (The Cascade Property) If we remove the self-influencing node
(resp. k-cycle) of a Tree Chain (resp. Mized Chain), we obtain a collection of disjoint
chains. In each chain, all arrows point in the same direction. In other words, edges either

go away from a self-influencing node or from a k-cycle.

Proof. 1f an edge is going towards a sclf-influcncing node, then this node has in-degree two
which is forbidden. If an edge goes towards a k-cycle, then one node of the k-cycle has

in-degree two which is forbidden. O

We now have a complete characterization of the connected components we can encounter
in general in-degree-onc networks. This will immediately provide an optimal policy for our

control problem over such networks, when T' = oo and 7 = 1.

Infinite Time Horizon Case (T = oo) With n = 1: We start with the case of an
infinite time horizon (T = oo) where 7 = 1 (i.e., we want to fully influence the network).
This means that the controller’s objective is to reach the steady state X(to) = (1,...,1) at
a finite (but arbitrarily large) time ¢9. We assume that X (1) = (0,...,0). The policy when
X(1) = (X1(1),...,X,(1)) follows from the theorem below and is described in the remark

below.
Proposition 4.2.8. If T =00 and = 1:

1. Suppose the controller wants to fully influence a k-cycle k-C(i1, .. .,1x) (with cheapest
node i1). An optimal policy is to influence node iy at timest = 1,2,...,k (i.e., choose
a;, (1) = ... = oy, (k) = 1, and set all other components of a(t) to zero). The total
cost of influence for this connected component will be: kc;. The whole component

will be entirely in the +1 state at time t =k + 1.

2. Suppose the controller wants to fully influence a tree chain TC(i). An optimal policy
is to influence node i at time t = 1 (i.e., choose ai(1) = 1 and set all other components

of a(t) to zero). The total cost of influence for this connected component will be: c;.

57

The whole component will be entirely in the +1 state at time t = ¢+ 1, where q is the

number of nodes in the longest path starting at node i.

3. Suppose the controller wants to fully influence a mized chain MC/(i1,..., 1) (with
cheapest node i1 in the cycle). An optimal policy is to influence the node i1 at times
t=1,2,...,k (ie, choose a;, (1) = ... = a;, (k) = 1, and set all other components of
a(t) to zero). The total cost of influence for this connected component will be: kc;, .
The whole component will be entirely in the +1 state at time t = q + 1, where q is the

number of nodes in the longest path (or cycle) starting at node iy.
In general, the optimal cost for fully influencing the whole network is given by:

Sea+ Y ke (4.9)

TC(3) MC(iy,...\ix)

and the time needed to influence the whole network is equal to:

k+1, if in a k-cycle k-C(i1, ..., ik),
* = 1+ ber of nodes in the longest
T o pax e ath s"m,';m;sat rode i 0, if in @ Tree Chain LC(i),
components 1 be in the |
p";?,:‘ o g;,;’,@’;‘;ﬁf;;g Zten:d’:ffft? if in a Mized Chain MC/(iy,...,ix).
(4.10)
Proof. For simplicity, we assume that X (1) = (0,...,0).
1. Suppose the controller wants to fully influence a k-cycle k-C(i1,. . .,ix). We are con-

sidering an infinite time-horizon problem, therefore the controller wants to reach the
steady state X(to) = (1,...,1) at a finite (but arbitrarily large) time to. Notice
that if the controller only influences one node in the cycle, only one node will be
in the +1 state at each time. Therefore the controller must perform % influences in
total. Clearly, influencing the cheapest node k times will be an optimal solution.
Thus, an optimal policy is to influence node i; at times t = 1,...,k (i.c., choose

o, (1) = ... = a4, (k) = 1 and set all other components of a(t) to zero).

2. Suppose the controller wants to fully influence a tree chain T'C(7). We are considering

58

an infinite time-horizon problem, therefore the controller wants to reach the steady
state X (tp) = (1,...,1) at a finite (but arbitrarily large) time ty. For node i to reach
a +1 state, the controller will need to influence node 7 at some finite time, because
node ¢ is only influenced by itsclf. Once the controller does that, node ¢ will remain
indefinitely in the +1 sate. Therefore the optimal cost of the control problem is at
least equal to ¢;. By the Cascade Property (Proposition. 4.2.7), we see that node ¢
will spontancously influence every path starting at node ¢ in a finite amount of steps.
This cascade effect does not require any action from the controller. Therefore this

policy has a cost cqual to ¢;, and our policy must be an optimal policy.

. Suppose the controller wants to fully influence a mixed chain MC(iq,...,i;) . We are
considering an infinite time-horizon problem, therefore the controller wants to reach
the steady state X (to) = (1,...,1) at a finite (but arbitrarily large) time ty. First, we
view the cycle (21,...,1k) as a unique self-influencing node. By part (2), we sce that
the controller must influence the cycle directly in order to reach the desired steady
state. Observe that the whole mixed chain will be in the +1 state if and only if the
full cycle is in the +1 state (by the Cascade Property, Prop. 4.2.7). We now use part

(1) to influence the cycle at an optimal cost.
O

For an arbitrary initial state X(1), we need to change our policy only if the self-

influencing node, or nodes of the k-cycle arc already in the +1 state at time ¢t = 1. The

policics described in the following remark arc clearly optimal.

Remark. For an arbitrary initial state X (1) = (X3(1),...,X,(1)), we can obtain optimal

policies in a similar way. For a k-cycle k-C(i1, ..., i) that starts with K nodes in the +1

state, we influence node i; (k — K) times when node 4, is in a 0 state: this policy reaches

the optimal cost (k— K)c;,. Similarly, for a Mixed Chain M C(4,, ..., i) whose cycle starts

with K nodes in the +1 state, we influence node #; (k — K) times when node 4; isin a 0

state: this policy reaches the optimal cost (k — K)c¢;,. For a Tree Chain T'C(i), if node i

starts in the +1 state, do nothing; if node 7 starts in the 0 state, influence node ¢z at £t =1

at a cost c¢;.

59

We can now use the previous proposition to solve the infinite time-horizon control prob-

lem when 0 < 7 < 1.

Infinite Time Horizon Case (T = c0) With 0 < < 1:

Suppose that, in our infinite time-horizon problem, the controller only wants to influence
a fraction of the nodes from the network (i.e., 0 < n < 1). We still need to reach a recurrent
state in a finite {but arbitrarily large) amount of time. The network is a disjoint collection
of tree chains and mixed chains. Since the controller does not need to get all nodés in the
+1 state, we simply need to influence the cheapest connected components of the network

in order to get at least nm nodes: this is clearly a knapsack problem. For simplicity, assume

that X(1) = (0,...,0).

Proposition 4.2.9. For simplicity, assume that X(1) = (0,...,0), IfT =00 and 0 <

n<1l:

1. Suppose we have a k-cycle k-C(i1, . ..,i) (with i1 being the cheapest node): to have
m nodes in the +1 state, an optimal policy will be to influence node i1 m consecutive
times (i.e., o (1) = ... = a;,(m) = 1 and set all other components of a(t) to zero).

This is done at a cost mc;, by timet =m + 1.

2. Suppose we have a tree chain TC(i):

Since T = oo, the controller must influence the node i at time t = 1 (i.e., a;(1) =1
and set all other components of a(t) to zero). Note that this procedure will influence
all nodes in the tree chain by the Cascade Property (Proposition 4.2.7). This is done
at a cost c;. The whole tree chain will be entirely in the +1 state by timet = q+ 1,

where q is the number of nodes in the largest path starting at node i.

Proof. This proposition clearly follows from Proposition 4.2.8. (]

For Mixed Chains of n nodes, when we directly influence m nodes of the cycle, we
eventually reach a recurrent state. If the cycle of the Mixed Chain has k nodes, then there

will be k recurrent states occurring periodically. We show below that, if we take a time-

60

average of the number of nodes in the +1 state after reaching a recurrent state, we will have

“on average” nZ! nodes in the +1 state in the Mixed Chain.

Proposition 4.2.10. Suppose we have a mized chain MC(i1,...,i) of n nodes (with

ciy L ¢ forall j € {2,...,k}).

1. To influence “on average” n/r nodes (for some s € {1,...,n}), we can influence node
iy at m = |k/r| consecutive times with a value o; (1) = ... = ay,(m) = 1, at a cost
mc;,, by time t = q+1 (where q is the highest number of nodes on either side of node

i).

2. To influence all nodes, we can influence node iy at k consecutive times, at cost kc;,,

by time t = g+ 1 (where q is the number of nodes in the longest path starting at node
i).

Proof. 1. Suppose the Mixed Chain has n nodes, and that we directly influence m nodes
in the cycle of length k. Now consider a “branch” of the Mixed Chain: we define
a branch as a path of the Mixed Chain that starts from a node of the cycle, and
rcaches an out-degree zero node of the network without passing by a node of the

cycle. Consider a branch of b nodes.

Now draw a configuration of the cycle with m nodes in the +1 state, and £k —m nodes
in the 0 state. Start from node %; in the cycle and count the number of nodes in the
+1 state among the set {i1,...,%}. Go to node iz and count the number of nodes
in the +1 state among the set {éz,...,%4+1}. Continuc in that way until you reach
node ix in the cycle, and count the number of nodes in the +1 state among the set
{ik,...,ip—1}. These scts of b nodes correspond to all the configurations of the branch

we can observe in k successive time steps.

Thus in k time steps, we will have counted mb nodes in the +1 state. Thercfore, on
average, a branch of length b will have mb/k nodes in the +1 state. So we conclude

that, on average, the network will have mn/k nodes in the +1 state.

Therefore, for any configuration of the cycle with m nodes (out of k) in the +1 state,

we have, on average, mn/k nodes in the +1 state in the network. This means that

61

by influencing m nodes in the cycle, we get, on average, mn/k nodes in the +1 state.
The cheapest way to influence m nodes in the cycle is to influence the cheapest node

of the cycle m times. Hence the policy proposed here is optimal.

2. This proposition clearly follows from Proposition 4.2.8.

O

Proposition 4.2.11. We are given a network consisting of a collection of Tree Chains and
Mized Chains. To eventually reach a fraction n of nodes in the +1 state, we can follow the
procedure outlined in Proposition 4.2.9 and Proposition 4.2.10, and choose the connected
componenté to influence by solving the following knapsack problem.

1, if we influence node ¢ at time t,

Let oi(t) = ’
0, if we don’t influence node i at time t.

We solve:

minimize Z ai(l)e + Z (a,-l(l) +... +04i1(lc))ci1
TC(’L) MC(il,‘..,'ik)

MCliy,... ik
subject to mn< 3 a;(VITCHI+ S MO, ...,)l (e () + - + 0, (Lk/7)))
TC(3) MCl(ir,siz) T

ai(t) € {0,1},Vi=1...n,¥t=1,...,k

(4.11)
where the sums run over all Tree Chains and all Mixed Chains in the network.
Note that the last estimate of the number of nodes in the mized chains is approximate

(it gives the average number of nodes that will be in the +1 state for this mized chain).

Proof. This proposition clearly follows from Proposition 4.2.9 and Proposition 4.2.10. O

Equation (4.11) involves complicated notation, but the idea behind it is simple: we
want to select the cheapest connected components and decide how many nodes we need to

influence in each case. This basically boils down to a knapsack problem.

r4.2.2 Applications of The Descendant Algortithm

We will now consider finite time-horizon problems, first assuming that = 1, and then for

a general € (0,1). In the former case, we will solve the control problem by applying the

62

Descendant Algorithm (DA). We will also show that the DA can be extended to infinite
time-horizon problems. For simplicity, we will assume X (1) = (0,...,0) in the entire sec-

tion.

Finite Time Horizon (T < o0) and n=1

Note that if T is finite, the proposition still holds when T* < T' (where T* is defined in
Equation (4.10) as the smallest time to reach the targeted state under an optimal policy).
If 7% > T, then the process must be accelerated by influencing more nodes. This way, the
entire network will be in the +1 state at time T. The following proposition provides an

optimal policy:
Proposition 4.2.12. If T < o0 andn = 1:

1. Suppose the controller wants to fully influence a k-cycle k-C(iy,...,i) (where i1 is
the cheapest node of the cycle). In this case, T* = k+ 1. Hence, if T > k+1, we just
need to apply the optimal policy provided for the infinite time-horizon case. If T <k,
then the controller can influence node i, at timest = 1,...,T — 1, delete the arrow
from iy to i1 and apply the Descendant Algorithm on the path (i1,...,ix), viewing i

as the self-influencing node.

2. Suppose the controller wants to fully influence a tree chain TC(3). The controller will
apply the Descendant Algorithm to all the paths of TC(i) going from node i to an
end of the tree chain (i.e., a node j with out-degree equal to zero). If a node belongs
to different paths, the algorithm will tell us how many times we should influence this
node for each path considered: we must therefore take the mazimum of these values

to get the number of times we need to influence this node.

3. Suppose the controller wants to fully influence a mized chain MC(i1,...,4) (where
i1 is the cheapest node of the cycle). In this case, T* =k + 1. Hence, if T > k+1,
we just need to apply the optimal policy described in the infinite time-horizon case. If

T < k, then the controller can influence node iy at timest =1,...,T — 1, delete the

63

arrow from iy, to 11 and apply the Descendant Algorithm on all paths going from i1 to
an end of the mized chain (i.e., a node j with out-degree equal to zero) viewing i, as
the self-influencing node. If a node belongs to different paths, the algorithm will tell
us how many times we should influence the node for each path considered: we must
therefore take the mazimum of these values to get the number of times we need to

influence this node.
Proof. This proposition follows from the proof of the Descendant Algorithm on a Path. [

Remark. We observe that the Descendant Algorithm can also be applied to this control

problem when 7" = oo.

Finite Time Horizon Case (T' < o0) With 0 <n < 1:

If T is finite and 0 < 7 < 1, the solution is much trickier. Since we do not need
to influence the entire network, and the time-horizon is finite, then we may not want to
influence directly the self-influencing nodes or nodes in cycles. Things can go very wrong
as shown in the case of the line LC(2) in Example 4.1.15. Optimal policies for finite T" and
0 < 1 < 1 would consist of influencing “cheap” nodes at times “close” to T. The formalism
we will develop in the next chapter for the Ancestral Algorithm will allow us to solve this

problem in a much simpler way. We thus defer the analysis of this case to the next chapter.

64

Chapter 5

The Dynamic Deterministic Model
(DDM)

In this chapter, we will solve our optimization problem for the case of the Dynamic Deter-
ministic Model (DDM). Our approach here will differ from the one we used earlier for the
Static Deterministic Problem (SDP). Previously, we were looking at a node and checking
which nodes it can influence and at what price: we referred to this method as the “descen-
dant method”. This approach is intuitive and easy to implement, however it is much harder
to generalize to the DD problem. Furthermore, the Descendant Method requires more work

when some nodes in the system are already influenced at time zero.

Recall that the Dynamic Deterministic Problem (DDP) is based on the following time-
dependent matrices: the matrix of Influencers I = [I(t,7)] (for ¢t € {1,...,T} and @ €
{1,...,n}) summarizing the dynamics of the network, and the matrix of Costs C = [c(t, i)]
(fort € {1,...,T}and i € {1,...,n}), corresponding to the cost the controller would incur
if it decides to influence a particular node at a given time. The control vector a(t) =
(a1 ®),... ,ai(t)) € {0,1}" has a positive i component when the controller decides to

influence node 7 at time t. Finally, the state of a node 7 at time ¢ is given by:

Xran®), if ai(t) = 0 (with cost = 0) ,
ity =] Kol e =0)
1, if a;(t) = 1 (with cost = ¢;(t)) .

65

To solve the DD optimization problem, we work backwards in time: we will look at a
node and check its genealogy, i.e., his influencer one time-step earlier, the influencer of his
influencer two time-steps earlier, . .. Once we create this ancestral path, we will check which
node is the cheapest possible influencer and decide if it is convenient to influence it directly.
We will refer to this method as the “ancestral method”. Building the ancestral path may
appear less intuitive at first as it reqﬁires us t6 think about time and space simultanecously
(i.e., who is the influencing node ¢ time-steps earlier), and we must look backwards in time.
However, once we have it, we can solve the SDP as easily as the DDP. Furthermore, we
will show that the ancestral method is easily applied to the case in which some nodes are

already influenced at time zero.

However, we will note that the ancestral method requires, at time ¢ = 1, the full knowl-
edge of the evolution of the systein. The descendant method approach would be better
suited for heuristic policies when there are uncertainties in the future state of the nodes
(for example, we could think of a model in which the edges in the network can be switched

on and off with probability 1/2).

We will mostly consider finite time-horizon problems and will show that any such prob-
lem can be solved using the Ancestral Algorithm. In the case of an infinite time-horizon,
we will be able to solve any problem in which the graph dynamics reach a recurrent state at
some finite time Tp. Infinite time-horizon problem are not very useful if they do not behave

in a tractable way: it would be more suited to work with stochastic models in that case.

To simplify the presentation, we will assume that the last time at which the controller
is allowed to act is time ¢t = T (not ¢ = T — 1), i.e., that the controller wants to reach its

target state by time t =T + 1.

In this chapter, we begin in Section 5.1 by presenting the formalism used to set up the
Ancestral Algorithm and we describe the algorithm. In Section 5.2, we apply the Ancestral
Algorithm to the Static Deterministic System. In Section 5.3, we apply the Ancestral
Algorithm to the Dynamic Deterministic System when we want to have at least 1 nodes
(with 0 < < 1) in state +1 by time 7. Finally, in Section 5.4, we illustrate through an

example the theory developed throughout the chapter.

66

5.1 The Ancestral Path, the Ancestral Network, and the An-

cestral Algorithm

Our goal will be, given an initial statc X (1) of the system, to obtain a state X (T) =
(1,...,1) at minimal cost. This will be accomplished by the Ancestral Algorithm. To
develop this algorithm, we first construct the Ancestral Network. We will start by defining

the Ancestral Path. Recall that I{t,%) is the unique node that will influence node 4 at time ¢.

Definition 5.1.1. We define the a* ancestor I%(t,i) of a node i at time ¢ as the node
whose state at time ¢ — a affects the state of node ¢ at time t. Formally:

I8t 1) = I(t —a+1,I(t—a,I(t—a— 1,I(...I(t,z’)))))

or recursively:

I°(t,i) = I(t — a + 1,1%7(t,)), where I%(¢,i) = i and I'(¢,7) = I(t,7)

Example 5.1.2. We sce that:
IY(t,4) = I(t — 1+ 1, 1'7Y(t,4)) = I(t,9),
I2(t,4) = I(t — 2+ 1, I27Y(¢,4)) = I(t — 1, I(t,1))
IB(t,3) = I(t — 3+ 1,137Y(t,0)) = I(t — 2,1%(t,3)) = I(t — 2, I(t — 1,1(t,1)))

The notation may seem involved, but the intuition is very simple: if I influence node
I%(t,3) at time ¢ — a, then I know that node ¢ will be influenced at time ¢ without any other

intervention.

Definition 5.1.3. The Ancestral Path of a node ¢ with respect to time t consists

of the sequence of ancestors: A(t,i) = (i, I(t,3), I%(t,4),..., I (¢, 1)).

Since we want to get our nodes influenced by time T, we will mostly focus on the

sequence A(T,1).
¢
Definition 5.1.4. The Ancestral Path of a node i consists of the sequence of ancestors:

A(i) := A(T,3) = (4, 1(T,4), I*(T,3),..., IT"Y(T,3)).

The Ancestral Path of a node is well defined because nodes have in-degrees cqual to

one.

67

Figure 5-1: Network used in Ex. 5.1.5: we arce here describing an SDM, and we assume
T'=5
Example 5.1.5. Consider the following SDP: supposce that our network dynamics are
constant in time, and consider a path (1,2, 3,4) with T' = 5 (sce Fig. 5-1). We assume node
1 to be the self-influencing node. Then:

A(ly=(1,1,1,1,1)

A(2y=(2,1,1,1,1)

A(3)=(3,2,1,1,1)

A4y =(4,3,2,1,1)

We will later represent these Ancestral Paths in the Ancestral Network., The Ancestral

Network of Fig. 5-1 is shown in Fig. 5-2.

Mode 1

Mode 2

Mode 3

HNode 4

Figurc 5-2: Ancestral Network of Fig. 5-1: this is constructed using the Ancestral Paths
calculated in Ex. 5.1.5. The first index at cach node of the Ancestral Network indicates
time, while the sccond index indicates the corresponding node in the original network.

We can now define the Ancestral Network:

Definition 5.1.6. The Ancestral Network is a dirccted graph with the following prop-

erties:

1. Each node in the Ancestral Network represents a pair (¢,7) corresponding to node i at
time ¢ in the original network. We only include pairs (¢, 1) that appear in the ancestral

path of at least onc node of the original network.

68

2. We include a directed edge from a pair (t,%) to another (¢ + 1,j) if and only if node

j’s direct ancestor at time ¢ + 1 is node 3.

The Ancestral Network displays the “genealogy” of the nodes in the network. It also in-
dicates nodes that share common ancestors. Some basic properties of the Ancestral Network

are derived below.

Proposition 5.1.7. We have:

1. A node of the Ancestral Network has in-degree equal to one.
2. The Ancestral Network has no cycles.

3. All paths starting at any node (t,i) of the Ancestral Network will have the same length;
furthermore, if we start at a node with t = 1, any path of the Ancestral Network will

have length equal to T .

In particular, the Ancestral Network is a forest of directed trees.
Proof. .

1. A node i of the original network has a unique ancestor I(t,4) at any time ¢. Therefore

node (¢,4) of the Ancestral Network will have a unique incoming edge.

2. Edges of the Ancestral Network always point towards a node of the form (t,%) to a
node of the form (¢t + 1,7) (for some node ¢ and j of the original network). Hence,
edges of the Ancestral Network point “forward in time”. A cycle would require edges

going backward in time, which is not possible.

3. Edges of the Ancestral Network point “forward in time”, so a node (¢,¢) will have
exactly (T —t + 1) descendants along each possible path starting at (¢,7). Therefore,
cach of these paths will have length (T'—t + 1). In particular, paths starting at nodes
of the form (1, ¢) have length T.

69

Notice that when trees in the Ancestral Network are disjoint, their nodes do not share
any common ancestors. So, for disjoint trecs, we can solve the optimization problem on

each ancestral tree independently.

5.1.1 The Ancestral Algorithm}

Assume that n = 1 in this subsection; the case 0 < n < 1 will be treated later. We are
given the I matrix and the C' matrix. From the I matrix, we construct the Ancestral Paths
A(%) of each node 7 of the network (total run-time = O(nT')). We construct the Ancestral
Network based on the A matrix, and associate with each node (t,4) its cost ¢(i,t). In
general, the Ancestral Network consists of a forest of disjoint directed trees with nodes of
in-degree one (except for‘the root of the tree). In the Ancestral Network, each tree of the
forest is composed of one or multiple paths of length T sourced at a node S = (t = 1,ig)
(where g is a node of the original network).

We can formulate our optimization problem in terms of the Ancestral Network. We want
all nodes of the original network to be in the +1 state at time 7". These nodes correspond
to the leaves (nodes of out-degree zero) of the Ancestral Network. To influence any one
of these nodes (T, z), we must influence at least one node along the path going from S to
(T, 7). Therefore we must choose a subset of nodes from the Ancestral Network (a “cover”)
such that every leaf has at least one ancestor chosen. In this case, we say that the chosen
ancestors constitute a subset that covers all leaves of the Ancestral Network. The cost of
such a cover is equal to the sum of the costs of the nodes in the cover. We want to cover
all n leaves of the Ancestral Network by using the cheapest covering subset. This is a set
covering problem, but because of the special structure, it admits an efficient solution.

This covering problem is solved by the following dynamic program, which we call the

Ancestral Algorithm:

ANCESTRAL ALGORITHM:

Assume 1 = 1, and suppose we are already given the Ancestral Network. The

following algorithm tells us which nodes of the Ancestral Network we should influence

70

at the optimal cost.

For all nodes (t,7) of the Ancestral Network, define Z(t,) as the set of descendants
of node (¢,4): this is the set of nodes (¢',4’) such that there is a path from (¢,1) to (', i’).
In particular, the set {(t + 1,i') € 2(t,i)} corresponds to the immediate descendants
of node (t,¢) in the Ancestral Network. We also define the value of a node (¢,i) of

the Ancestral Network as :

V(T,i) := e(T, 1) (5.1)
V(t,i) == min {c(t, i), > V(t+1, i’)}, (5.2)
(t+1,#)€2(t,3)

Then the value V(t,7) of node (¢,i) is defined as the smallest cost neceded to have
all its final descendants in the +1 state (i.e., at time T). We already know that
V(T,i) = ¢(T,i), V(T,i) € .#. Then starting from the leaves of the Ancestral Net-
work, it is possible to calculate V (¢,4) for all nodes (¢, %) of the Ancestral Network using
the recursion in (5.2).

The total run-time of the algorithm is of order O(nT').

5.2 Application of the Ancestral Algorithm to the Static De-

terministic System

For Linear Chains LC(1) in the Static Deterministic System (for an example, see Fig. 5-
3a), then, in the Ancestral Network, there always exist a trce with a path of the form
((1,1),(2,1),...,(T,1)). Note that S = (1,1) will be the source of this directed tree of the
Ancestral Network. Since we consider the static case, the original network does not evolve
with time, therefore ¢(¢,7) = ¢; is constant in t. Note that V(¢,1) = min{c;, V(¢ +1,1) +
V(t+1,2)} and V(T,1) = c;. This implies that V(¢,1) = ¢; for all ¢ > 1, therefore it is
optimal to influence node 1 at time t = 1. When T < n (for an example, see Fig. 5-3b),

the Ancestral Network will also contain disjoint paths which are also disjoint from the tree

71

o Hode 1

Hode 1
Node 2 HNode 2
Node 3 Hode 3
Node 4 Hode 4

(a) Ancestral Network when T'=4. (b) Ancestral Network when 7" = 3.

Figure 5-3: We consider here a Lincar Chain of 4 nodes. We plot the Ancestral Network of
the Linear Chain for different time horizons.

of source 5. Over these paths, the Ancestral Algorithm simply picks the cheapest node.
For k-cycles (for an example, sce Fig. 5-4), the costs are constant, so we pick the

cheapest one (call it node ¢ = 1) and use it as the source S = (1,1). Assume that T >

k. The Ancestral Network of a k-cyele will look like this: ((1,1),(2,2),...,(k. k), (k +

L1y, oo, (2k,K), (2k + 1,1),...,(T,.)) for the an ancestral tree (not necessarily the onc

corresponding tonodel); ((1,2),(2,8), . .o (K1), (BF12) 5w oo (2ky 1) (281, 1) ooy (Ty))
for another ancestral tree, ... until a k-th ancestral tree. Hence the cheapest nodes will

always be (1, 1) in the first tree, (k, 1) in the sccond tree, (A — 1,1) in the third tree, ... and
(2,1) in the k-th tree. These arc exactly the nodes to influence at the given times, i.c.., we
must influence node i =1 at times ¢t =1,2,..., k.

For k-cycles, if T < k (for an example, sce Fig. 5-5), we cannot always access the
cheapest node of the cycle, so we must pick the cheapest accessible node. All accessible

nodes are shown in the Ancestral Network.

Casc of infinite time-horizon T" = oc: in the Static Deterministic System, we eventually

reach a recurrent state, so truncate the time-horizon to T = n. Note that for our general
deterministic system, if the system reaches a recurrent state at some time Ty, we can
truncate our time-horizon to T = Ty + n. Actually we can truncate the time even more hy

taking

T = (Ty + number of nodes in the longest path from source in Ancestral Network).

72

Figure 5-4: A 4-cycle network (T' = 5) with its Ancestral Network: note that the Ancestral
Network comnsists of four disjoint paths as expected from the periodicity of the original
network. We labeled by node 1 the cheapest node of the 4-cycle. The red nodes in the
Ancestral Network correspond to the ones picked by the Ancestral Algorithm.

: ;3 Node 1

12}) Node 2

} | Node 3

Figure 5-5: A 4-cycle network (T' = 3) with its Ancestral Network: note that the Ancestral
Network consists of four disjoint paths as cxpected from the periodicity of the original
network. We labeled by node 1 the cheapest node of the 4-cycle.

The Ancestral Algorithm applied to the Static Deterministic System can be written out

as follows:

ANCESTRAL ALGORITHM ON A PATH FOR THE STATIC DETERMINISTIC
MODEL FOR 5 = 1:

Without loss of generality, call this path (1,2,3,...,n) where 1 is the self-influencing
node, and ¢ influences i+ 1 for all 1 <i <n —1 (see Fig.4-4). We want to influence the

whole chain within a time T (T can be infinite) and at minimal cost.

1. If for node i we have T+ 1 < 7 < n, then construct the line containing nodes
(tj,5): {(1,i =T +1),(2,i — T +2),...,(T,i)} with their corresponding costs
c(tj,j) = c¢j. Take the node with cheapest cost (and take the one with smallest

time in case of ties).

2. If for node i we have 1 < i < T, then construct the line containing nodes (t;, 7):
{1,1),(2,1),...,(T -2+ 1,1),(T—¢+2,2),...,(T,i)}. We pick node (1,1) to

influence directly.

This algorithm is extended to any Static Deterministic graphs (not only paths) as

follows. Take any node i in the original network:

a. if none of the previous T nodes are self-influencing nodes, apply rule 1 above.

b. otherwise, if there is a self-influencing node (say node k) among the previous T'

nodes, apply rule 2 above with & as the reference node (i.e., take k as “17).

We now see the power of our Ancestral Algorithm: even if the formalism is more compli-
cated than the one of the Descendant Algorithm, we see that this algorithm can be applied

directly to all problems with n = 1.

74

5.3 Application of the Ancestral Algorithm to the Case 7 €

(0,1)

Our Ancestral Network is also very powerful because it can also be used for any problem

with n € (0,1). However, in this case, our solution will involve solving an integer program.

Consider now the Ancestral Network with the costs C associated with it. Let .4 be
the set of all nodes (¢,7) present in the Ancestral Network. Furthermore, let A(i) be the
ancestral path of node (T, 1) (including node (T, %) according to our carlier definition). We

also define «(%,¢) to be the following control variable

) 1, if we influence node ¢ at time ¢,
alt,i) =
0, otherwise.

The solution is given by solving the following optimization problem:

minimize Z a(t,i)e(t, i)
(tii)es

subject to Z Y(T,i) > nn
(Ti)e.s (5.3)

V(T e N :0<Y(T,0)< > at,i)
(t' i) EA()

Y(t,i) € A : aft,i) € {0,1}, and Y(T,i) € {0,1}

The integer program given in Equation (5.3) will solve our optimization problem, as the
objective is to minimize the cost incurred by influencing nodes from the Ancestral Network.
The last constraint follows from the definition of «(t,i). The first constraint will guarantee
that at least mn nodes of the original network will be in the +1 state at time 7": indeed,
Y (T, i) tells us exactly how many leaves of the Ancestral Network will be in the +1 state at
time 7. The only tricky part is to make sure we are not counting the same node multiple
times. The second constraint discards this case: if all the a(t’,') = 0 for (¢',¢') € A(3),
then no nodes arc in the +1 state along the ancestral path, so the leaf (T',%) cannot be in
the +1 state at time 7'. If at least one a(t',#') = 1 for some (t',7') € A(¢), then the second

constraint gives us the freedom to choose Y (T, %) to be 0 or 1: the objective function and

75

the first constraint will make us choose 1.
The optimization problem in Equation (5.3) provides a general solution to any General
Deterministic problem (for any 7 € (0,1]). It also holds when 1 = 1 as we will show below.
For infinite time-horizon problems, if the system reaches a recurrent state at some time Tp,
we can truncate our time-horizon to T' = (Tp+n) where n is the number of nodes in the origi-
nal network (it is actually enough to set T = (To+length of largest path from source in Ancestral Network))
and apply Equation (5.3).
In the case 7 = 1, the Ancestral Algorithm works because we take the cheapest nodes
that can influence the most nodes. We can obtain the same solution as the one given by

the Ancestral Algorithm by solving:

minimize Z a(t,)c(t,)
(ta)en ‘

subject to Z Y(T,i)=n
(Th)en (5.4)

V(T €N :0<Y(T,)< > at,i)
(¢ i) EA(D)

V(t,i) € A : a(t,i) € {0,1}, and Y (T,%) € {0,1}
Equation (5.4) holds only when the Ancestral Network is composed by a single tree. If
the Ancestral Network is a forest of disjoint trees, we need to use a knapsack-type integer
program.
An cquivalent formulation of the problem in 5.3 is given below (note that the first

constraint is quadratic):

minimize Z a(t,i)c(t, i)

(ti)et
subject to 3 a2t - X @) zen 69
(ti)eN (") eD(t5)

a(t,i) € {0,1},V(¢,1) € A
We can simplify the optimization by applying the three following rules: for a node (t,1),
set a(t, i) = 0 if
1. c(t,%) is equal to or higher than the sum of the costs of his direct descendants.

76

2. ¢(t, i) is equal to or higher than the sum of the costs of nn of his descendants at time

T.

3. c(t,%) is equal to or higher than the cost of one of his ancestor whose o has not yet

been set to zero using the first two rules.

As we will show through an example in Section 5.4, these rules can sometimes reduce the
complexity of the optimization problem. As can be scen from the double-sum in Equation
(5.5), we can simplify the problem considerably when we can set a = 0 for nodes with small

values of t.

lg.3.1 A Dynamic Programming Solution to the 0 < < 1 case

Assume 0 < 7 < 1, and suppose we are alrcady given the Ancestral Network. Our goal is
to derive an‘ algorithm that will tell us which nodes of the Ancestral Network we should
influence at the optimal cost. In this section, we will use a Dynamic Programming approach
of polynomial complexity.

For all nodes (t,7) of the Ancestral Network, define 2(t,1) as the set of descendants of
node (t,-ij: this is the set of nodes (#,i’) such that there is a path from (t,7) to (¢,7'). In
particular, the set {(¢t + 1,i') € 2(t,4)} corresponds to the immediate descendants of node
(t,7) in the Ancestral Network. We also define the k-value V (¢, k;) of a node (t,i) of

the Ancestral Network as :

V(T,i ki) := ki x ¢(T,1), where k; € {0,1} (5.6)

V(t,i, k;) ;== min{ c(t,1), min V(E+ 1,7, ky 5.7
(i) { 9 Ko st (HLODED(), () i,‘f-;‘g(t N (t)) } (5.7)
and V(¢ + 1,1, k;r) exists, ’ '

Yoo ke 2k

(t+1,i")ED(t,3)
(5.8)

When k; = 1, the value V(¢,i,k;) of node (¢,:) represents the smallest cost nceded to

have all its final descendants in the +1 state. When k; = 0, then V (¢, 4, k;) = 0 as we decide

77

not to have any of the final descendants of node (¢,%) in the +1 state. We also impose the
following condition on V'(t,i,k;): if V(t,i,k) = V(¢,4,k’) for some k¥’ > k, then delete the

value V'(t,1,k) and keep only V(t,4,k’). This is what we mean by “V'(¢,1, k;) exists”.

Then starting from the leaves of the Ancestral Network, it is possible to calculate
V(t,i,k) for all nodes (t,i) of the Ancestral Network for each feasible value of k. Then
the optimal cost is:

Vopt = min V{1,149, k
opt k>nn, and (» 40,)’
V(1,ip,k) exists

where (1,4g) is the root of the tree considered. Once we know the optimal cost, we find an

optimal policy just by keeping track of our minimizing selections at each DP iteration.

Note that the inner minimization

> V(t+1,z",ki'))

min :
ky st (t+1,0)€D(L0), (t+1,7)e D (t0)

and V(t+ 1,7, k;r) exists,
> kexk
(t+1,2)€2(t3)

can be solved in polynomial time using the following dynamic program:

For all i € {1,...,n}, let W; (k") be the minimal cost the controller incurs if he aims to

influence a total of ¥’ nodes among the set {i,...,n} at time ¢ + 1. Then:

Wi o(K') : V(t+1,n,k) (5.9)

Il

Wire(K) = min [Wi,t(k’ —k)+V(t+1,i-1, k)]. (5.10)

It is convenient to let V(¢ + 1,n,k’) be infinite if k" is higher than the possible number of
nodes (t + 1,n) can influence.

When the Ancestral Network consists of a single trec, we use the recursion in (5.10)

which can be implemented in O(n%) time.

If the Ancestral Network is a forest of trees with roots i1, 42, ..., ig. Then the optimal

cost for the forest is given by the following knapsack problem:

78

q
Vopt = o O > " V(1,45, kj). (5.11)
dyenbg 82 =

Vi{l,i, k‘j) exists, J=1

q
ane Z ILJ > nn
i=1

This knapsack problem admits a polynomial-time algorithm of complexity O(n x nn x

nT) = O(n®T).

5.4 Illustrative Example

Figure 5-6: This network is assumed to be the same for times ¢ = 1,2, 3 (this corresponds
to a Simple Deterministic System). We assume T = 3, and the costs C' of cach node are
given in the red boxes.

In this scction we will analyze the network depicted in Fig. 5-6. For simplicity, we will
use a Simple Deterministic network (i.c., this network is the same at times ¢ = 1, 2,3). For
our General Deterministic Model, the same procedure applies.

We first build the Ancestral Network from the given nctwori; (Fig. 5-Ta): in the Ances-
tral Network, cach node represents the couple (¢5,4), where #; is the time at which node 4 is
an ancestor of the node considered. This is the only step that differs slightly in the case of
a General Deterministic model because we need to pay attention the time evolution of the
given network. We also include the costs of cach node of the Ancestral Network.

In the first step of the Ancestral Algorithm (Fig. 5-7b), we solve the recursion in (5.2).
Starting from the leaves, we assign value V(T,i) = ¢; leaf (T,7). Then we move to the

ancestor of cach leaf and, using the minimization in (5.2), we obtain the values V(T — 1,4)

/2| Node 4

: Node 1
Node 2

) [] Noce

{(a) Ancestral Network for Fig. 5-G: the
cost of the nodes are reported in the
pink boxes.

s e i Node 4
ming4,4+1} | i, A T 0.5 :
P ode =4 4
min{4,4+1+0.5; E,—.?,"_} N 4

= 4
E} Node 1

E} Node 2

{ mint4,4+1) l
Losa |

Node 3

(¢) Second iteration of the Ancestral Al-

(b) First iteration of the Ancestral Al- gorithm: we mark all nodes whose value

gorithim: we compute the values of each are equal to their cost. We then delete
node (t,i) in the green boxes. all descendants of marked nodes.

Figure 5-7: Ancestral Network for Fig. 5-6 and its cvolution through the Ancestral Algo-
rithm: nodes are represented by the couple (t;,7).

for node (7' — 1,i). We continue in that fashion until we reach the source (1,1).

In the sccond step of the Ancestral Algorithm (Fig. 5-7c¢), we mark all nodes whose
value V(¢,1) is equal to ¢;. We then delete all descendants of a marked node. The remaining

marked nodes are the ones we should influence.

Therefore the Ancestral Algorithm picks node {1,1) in the Ancestral Network, so we

must influence node 1 at time £ = 1.

Now suppose we want to influence n = 50% of the nodes of the network. We use the

Ancestral Network, and associate to it the costs of the nodes as shown in IMig. 5-8.

Now, nn = 2, and A = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4)} with respective

30

)) [172] Node 4

. Node 1

§) [1] Node2

} Node 3

Figure 5-8: Ancestral Network for Fig. 5-6: the original cost of cach node is reported in
the pink boxes.

costs C' = {4,4,1,4,1,1,0.5}. Applying Equation (5.5), we nced to solve:

minimize 4a(1, 1) + 4a(2, 1) + @(2,2) + 4a(3,1) + a(3,2) + (3, 3) + 0.5c(3, 4)
sibjadt s ofl, 1)(4 C30(21) — a(2,2) — a(3,1) — a(3.2) — a(3,3) — a-(3,4))
+a(2,1) (3 Ca(31) — a(3.2) — af3, 4))
ta(2,2) (1 ~ a3, 3))

+a(3,1) + a(3,2) +a(3,3) + a(3,4) =2

(5.12)

a(t,i) € {0,1},V(t,2) € A
We will now simplify the problem using the three rules outlines in the previous scetion:
1. Rule 1 sets a(2,1) = 0.
2. Rule 2 sets o1,1) = 0.
3. Rule 3 sets «(3,3) = 0.
So the optimization problem reduces to the following Integer Program:
minimize @(2,2) +4a(3,1) + «(3,2) + 0.5a(3, 4)

subject to @(2,2) + «(3,1) + «(3,2) + a(3,4) = 2 (5.13)
alt, i) € {0,1},V(t, i) € A

Using the constraint, we get: «(2,2) + «(3,2) = 2 — «(3,1) — «(3,4). Hence we need to:

81

minimize 2 + 3a(3,1) — 0.5a(3,4)
subject to «(3,1) € {0,1} (5.14)
a(3,4) € {0,1}

Thus a(3,1) = 0 and (3,4) = 1. So we must have a(2,2) + «(3,2) =2-0-1=1.
Hence «(3,4) = 1 and either &(2,2) = 1 or a(3,2) = 1 are two optimal solutions to the
optimization problem. We see that, in this example, our three rules have simplified the
problem a lot !

By inspection, we can also see that there are exactly three optimal solutions from Fig.
5-8: we can influence node 4 at time ¢ = 3, and either node 2 at t = 2 or ¢t = 3, or node 3

at t = 3. Hence: (3,4) = 1 and either a(2,2) =1, or a(3,2) =1, or «(3,3) =1.:

5.5 Summary of the Results

In this section, we summarize the main results from Chapters 4 and 5. In this first part
of the thesis, we considered in-degree one networks over which nodes interact according to
deterministic dynamics. An external controller wants to influence the nodes in order to get
a population sharing the -+1 opinion, by some time T. Each time the controller decides to
influence a node, it will incur a certain cost. Qur goal is to design a policy that the external
controller can follow in order to attain its goal with the smallest possible cost.

In Chapter 4, we assumed that the network (of n nodes) did not evolve with time and
we were able to construct the Descendant Algorithm to achieve, in linear time O(n), the
controller’s goal. In Chapter 5, we allowed the network (of » nodes) to evolve with time in
a deterministic way, and we were able to construct the Ancestral Algorithm to achieve, in
linear time O(n), the controller’s goal.

If the external controller wants to influence the nodes in order to get a fraction 5
(for some 0 < 7. < 1) of 0 and 1 opinions among the population, by some time T, then
we formulated a Dynamic Program which achieves the controller’s goal in polynomial time
O(n3) if the Ancestral Network contains a single tree. When the Ancestral Network contains

more than a tree (which happens when k—cycles are present in the original network), we

82

basically need to solve a knapsack problem.

83

Part 11

Static versus Dynamic Policies for

the Voter Model

84

Chapter 6

Introduction

The previous part of the thesis focused on deterministic processes taking place over a given
network. In contrast, the second part of the thesis focuses on a particular type of stochastic
process taking place over a network: the classical and well studied “Voter Model” (3, 8].
The Voter Model can be described as follows (for a detailed survey, Liggett [12] is a good
reference). We start with a network of N nodes in which each node has an opinion (which
we denote 0 or 1 for simplicity) and a fixed set of neighbors. At each time step, a node
updates its opinion by randomly selecting one of its neighbors and adopting the opinion of
the neighbor selected. In this thesis we will only consider the case where the graph of the
network is the d—dimensional integer torus Z;lz. Following the work of Yildiz, Acemoglu,
Ozdaglar, Saberi and Scaglione [14], as well as Fagnani (7], we first consider static models
in which we allow nodes of the network to be “stubborn” (they are commonly referred to as
“stubborn nodes” or “stubborn agents™): this means that such nodes maintain their initial

opinion during the whole process.

6.1 Scope and Main Objectives

In this part of the thesis, we assume that we can place a set & of B stubborn nodes (also
called stubborn nodes) over the network. All stubborn nodes have the same opinion “1”.
We know in this case [14] that the network will eventually reach a 1—consensus: we mean

by this that all non-stubborn nodes in the network will be in the 1—state after some finite

85

time. Our goal is to measure the expected time until the network reaches the 1—consensus.

We first consider a static setting in which we initially position our B stubborn nodes
over the lattice and compute the expected time the system requires to reach consensus. We
then consider a dynamic setting in which we are allowed to move our B stubborn nodes
at each time step, as a function of the current state of the network. Given a number B
of stubborn nodes, we want to answer the following questions: “how fast can we reach

consensus in the static setting 7”7 and “can we do better in the dynamic setting ?”.

6.2 Related Work and Contributions

The Voter Model is a classical type of Markov process which was introduced independently
by Clifford and Sudbury [3], and Holley and Liggett [8]. The main questions to be answered
are usually: “what is the probability that the process reaches a consensus 7”7, “if a consensus
is reached, what is the probability of having a consensus with all nodes in the 1—state 7,
and “what is the expected time to reach a consensus 7”.

Holley and Liggett [8] have proved that a consensus will always be reached over the
infinite lattice Z¢ when d = 1 or 2, but consensus is not necessarily reached in higher
dimensions. However, on finite networks a consensus is always reached. Cox [4] has later
shown that for a Voter Model over a d—dimensional integer torus ZZ which starts from a
product measure with probability p € (0,1) of starting in the +1 state, we expect consensus
to be reached in time O(cpn?) when d = 1, O(cpn?logn) when d = 2, and O(cpn?) when
d > 3, where ¢, = —plogp— (1 —p) log(1 — p). Note that in this thesis, we will not initialize
our lattice randomly, and we allow some nodes to be stubborn.

Indeed, we will focus on a generalization introduced by Yildiz, Acemoglu, Ozdaglar,
Saberi and Scaglione [14], and Fagnani [7], in which we allow some nodes to maintain their
original opinion throughout the whole process: these nodes are called “stubborn nodes” or
“stubborn agents”. Clearly, if all stubborn nodes are in the same state (say the 1—state),
then the network will reach a 1—consensus with probability one [14]. Using a Theorem from
Aldous and Fill [1], Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14] have shown that,

when stubborn nodes were added in the network, the expected time to reach consensus can

86

be upper bounded (up to a log factor depending on the size of the network) by the longest
expected time a symmetric random walk would take to hit a stubborn node.

Using the results mentioned above, the main goals of this part of the thesis are as follows.
First, we want to find a static placement of our B nodes that minimizes the expected time
to reach the 1—consensus. Then, we allow our stubborn nodes to move inside the network,
and check if there exists a sequence of placements of the stubborn nodes in the dynamic
sctting which leads to a shorter expected time to reach consensus than an optimal placement

of the stubborn nodes in the static setting.

6.3 OQOutline of Part II

The rest of this part of the thesis is organized as follows. In Chapter 7 we provide some
background on the Voter Model, and introduce the “dual Voter Model” approach, a classical
tool often used to compute consensus times. Then, in Chapter 8 we restrict our analysis to
the Voter Model over a d—dimensional integer torus, and we construct a static placement
of stubborn nodes that minimizes the expected time needed to set all nodes in the state
1. Finally, in Chapter 9, we study the same model but allow ourselves to move our set of
stubborn nodes during the experiment. In this last chapter, we want to understand whether
there exist dynamic policies providing strictly smaller consensus times than optimal static
policies: we will actually show that dynamic policies do not perform significantly better

than static policics when d > 2.

87

88

Chapter 7

Background on the Voter Model

In this chapter, we provide some background information about the Voter Model. In par-
ticular, we present the classical dual approach to the Voter Model. This approach is very
useful: it provides an elegant correspondence between consensus times for a Voter process,
and coalescence times for simple random walks. This framework will be much simpler to
work with and will be used extensively in Chapter 8.

We first start by describing the Voter process and apply it to the model we will be
using. We then introduce the classical dual process, and present a Proposition from Yildiz,

Acemoglu, Ozdaglar, Saberi and Scaglione [14] which will be heavily used in Chapter 8.

7.1 The Voter Process for our Model

In this thesis, we consider the Voter Model over a d—dimensional integer torus Z¢ (which
we also refer to as a d—dimensional periodic lattice). Such a lattice contains N = n¢ nodes.
We always denote the total number of nodes in the lattice by IV, and the number of nodes
on cach side of the lattice by n. At each instant, a node will be in one of two states, 0 or 1.

Nodes in the network update their state according to independent Poisson processes of
rate v = 1. We say that a Poisson clock ticks whenever the Poisson process registers an ar-
rival (Poisson clock and Poisson process will be used interchangeably here). We will assume
each node to have its own Poisson clock of rate 1, and all Poisson clocks arc independent

from cach other. When a node’s clock ticks, the node will choose one of his neighbors

89

uniformly at random and will adopt the state of that chosen neighbor.

In addition, we possess a set Z of B “stubborn nodes”: these nodes are special as they
do not update their state during the process and keep their original state throughout the
whole experiment. We assume that all stubborn nodes in our problem are in the +1 state.
In Chapter 8, we will place the set of stubborn nodes over the lattice at the beginning of
the process and wait for the system to reach consensus. In Chapter 9, we will be able to
modify the positions of the stubborn nodes during the run of the experiment. Our goal is
to make the network reach a 1—consensus: we mean by this that we want all nodes in the
network to be in the +1 state after some finite time.

It is already known that the Voter model always reaches a consensus over finite lattices
(e.g., see Cox [4]). In particular, in the presence of stubborn nodes which all share the
same state (say, +1), the network will always reach a 1—consensus in finite time (see Yildiz,
Acemoglu, Ozdaglar, Saberi and Scaglione [14]). Since a 1-—consensus is reached with
probability 1, we are interested in finding how fast the 1—consensus is reached. As discussed
in Chapters 8 and 9, this will depend on the chosen placement of stubborn nodes over the
lattice.

In this part of the thesis, we assume that all non-stubborn nodes are initially in the
sate 0. Note that a network initialized with some non-stubborn nodes already in the +1
state cannot reach a 1—consensus slower (in expectation) than a network initialized with
all non-stubborn nodes in the 0 state, given a same placement of 1—stubborn nodes. Hence
considering all non-stubborn nodes initially in the 0 state corresponds to a “worst case

scenario”.

7.2 The Dual Process

To compute consensus times, it is often easier to look at the process backwards in time: this
classical approach is referred to as the dual of the Voter process, or as the coalescing random
walk process. For a more detailed discussion of the dual process, see Aldous and Fill [1]
(Chapter 14.3), or Durett [6] (Chapter 6.9). The dual approach has been used for the Voter

Model with stubborn nodes in Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14].

90

As presented in Aldous and Fill [1] (Chapter 14.3), in the dual approach, we consider
a particle at each node of the lattice. The particles all perform independent symmetric
random walks over the lattice. If two particles meet at a node, they coalesce i.e., they
merge and move as a single symmetric random walk. If a particle lands at a stubborn node,
it stays there indefinitely.

Let Ty be the time until all random walks hit a stubborn node, and T,oter be the time
until the Voter process reaches consensus. As discussed in Aldous and Fill [1] (Chapter
14.3), these random variables have the same distribution. Intuitively, if we look at the
Voter process baci{wards in time, we will see the dual process. In fact, in the dual process
we are tracking the origin of the current state of the node.

Using the dual approach, Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14] prove

the following proposition:

Proposition 7.2.1. Given a set & of B stubborn nodes in the +1 state, the expected time

to reach consensus is bounded above by
E[Tconsensus] <e 10g(2 + N — B) néag E[Tz],
2

where E[T}] is the expected time a random walk initialized at node i first hits the set 4.

It can be shown that E[T}] is bounded above by O(N3) for general graphs (e.g., sce
Aldous and Fill [1]). Therefore consensus is expected to be reached by time O(N3log N) in
general. Our goal is to get much sharper bounds in the casc of d—dimensional integer tori,

and to also capture the dependence on B, as B increases.

For the rest of the thesis, we will use the following notation: We define 7* as the expected
time to reach consensus in the Voter process. We define 7 as the expected hitting time from
one point in the lattice to the set of stubborn nodes in the worst case over all stubborn
nodes. If # is the set of stubborn nodes then 7 = max;gz E;[T|, where E;[Tg] is the

expected time a random walk initialized at node 7 first hits the set 4.

Using Proposition 7.2.1, we immediately get the following corollary:

91

Corollary 7.2.2. Given a set B of B stubborn nodes in the +1 state:

7 <7 < rlog(N — B)

With this corollary in mind, we will simplify our analysis in Chapter 8 by computing 7
instead of 7*. This will allow us to use well understood tools from Markov Processes and
the random walk literature (see Aldous and Fill [1], Levin book). When the stubborn nodes
are allowed to move (see Chapter 9), the dual process will not be helpful as we would need

to compute the expected time until a random walk hits a moving set.

92

Chapter 8

Convergence Time to Consensus

for a Static Policy

In this chapter, we study the following static policy: given a budget B of stubborn nodes
with opinion +1, we place these nodes over a d—dimensional lattice ZOJ(VI ,a of N nodes at
thé start of the experiment and then we try to bound the expected time needed for such a
network to reach consensus.

This chapter is structured as follows: after having introduced the model used here, we
will consider random walks over Z¢ which will be helpful to develop general lower bounds
for the desired consensus times. We will then study the effect of placing all the budget on
the boundary of the lattice, as well as “spreading” all the budget over the lattice. This
will allow us to construct an optimal placement for stubborn nodes which minimizes the
expected time needed to reach consensus. Finally, we will attempt to rederive a result from

Levin, Peres and Wilmer [11] which we use heavily through the chapter.

8.1 Model Description

We begin by describing the process studied in this chapter. As mentioned in Chapters 6
and 7, we will mainly focus on square lattices with periodic boundary conditions (i.e., tori)
of dimension d with N nodes.

We posscss a budget B of stubborn nodes in the +1 state. We allow this budget to

93

depend on N. Although we will obtain results for general budgets B, we typically start
by considering budgets of the type B ~ O(1) (this corresponds to a “very small” budget),
budgets of the type B ~ O(N 'd';‘l) (this corresponds to having a budget comparable to the
size of a full face of the d—dimensional lattice), and budgets of the type B ~ O(N) (this
corresponds to having a budget comparable to the size of the full lattice). We thus position
these stubborn nodes on the lattice and bound the expected time 7*(N) for the process
to reach consensus. Recall that nodes in the lattice update their opinion by seclecting the
opinion of one of their neighbors uniformly at random, and that the times at which a node
updates his opinion occurs when the rate-1 Poisson process of this node registers an arrival.

As we will show later, the expected time to reach consensus can change significantly if
we modify the initial placement of the stubborn nodes. We typically consider two types of
placements for our stubborn nodes: we either place all our stubborn nodes on the boundary

of the lattice, or we spread the stubborn nodes uniformly over the lattice.

Definition 8.1.1. Consider a d-dimensional lattice with N nodes and a budget B of stub-
born nodes. Assume that the quantity s = (%)1/11 is an integer. We say that we spread
the budget B of stubborn nodes uniformly over the lattice if the positions of the stubborn
nodes form a subgrid of the lattice with spacing s.

If (%)Ud is not a integer, we find some s such that s = (%) v + o(1) and place the

stubborn nodes over a subgrid of spacing s.

Given a budget B, we have roughly BY/¢ stubborn nodes on each edge of the lattice.

We want these B¢ nodes to be spaced by a distance s. An edge of the lattice has size

1/d
N4, therefore we require s x BY/4 = N'/4. We solve for s and get s = (%) / (ignoring

the fact that the result may not be an integer).

8.2 Main Results

We summarize here the main results we will obtain in this chapter. We define 7* as the
expected time to reach consensus in the Voter process. We define T as the expected hitting

time from one point in the lattice to the set of stubborn nodes in the worst case over all

94

stubborn nodes. If 2 is the sct of stubborn nodes then 7 = max;gz E;[T|, where E;[Tg]

is the expected time a random walk initialized at node i first hits the set 4.

Remark. Throughout the chapter, we always consider the worst case scenario for hitting
times: this means that we consider the largest expected hitting time to a set over all starting

node in the latticec.

In the chapter, we compute the expected time it takes a single random walk (in the
worst case scenario) to hit a stubborn node. We use Corollary 7.2.2 to deduce the expected
time to reach consensus by multiplying our result by a log(N — B) factor. We are given a
budget B of stubborn nodes which we need to place over a d—dimensional periodic lattice

of N nodecs.

If we spread our budget evenly over the lattice, then (seec Section 8.6):

() S S (F)*log(N - B), ifd=1,
(%) log (%) <7< (%) log (%) log(N — B), ifd=2, (8.1)
(%) s7 5 (5) 10s(v - B), if d > 3.

IfB=Q (N d_z_l‘l), and if we place our budget over the boundary of the lattice as well

as over equally spaced internal slices of the lattice, then (see Section 8.5):

2 2
(%) <7< <%) log(N — B) , when d > 1. (8.2)

IfB=o (N dz_l) , and if we place our budget over the faces of a small cube of side BT

in the lattice, then we conjecture the following upper bounds (see Section 8.5.4):

B?V (N -B)* S S (B*V (N - B)?) log(N — B), ifd=1,
B*VNlog() S5 (32 V Nlog (g,)) log(N — B), ifd=2, (8.3)
B#1v BTt <7 < <Bﬁ—1 v %Bﬁ) log(N — B), ifd>3

To obtain the above results on 7%, we bound the hitting time 7 and use Corollary

7.2.2 to bound 7*. We will show in Section 8.7 that spreading the budget of stubborn nodes

95

uniformly over the lattice is actually an optimal policy for d > 3 (as it produces the smallest
value of 7). Indeed, we will show in Proposition 8.4.1 that the lower bound (N/B) < 7 is
tight for d > 3 (as it is reached when we spread the budget uniformly over the lattice). The
optimal placement of stubborn nodes when d = 2 will be left open, but we will conjecture
that the expected hitting time 7 scales as (N/B) log(N/B) if we place our stubborn nodes
in an optimal way. When d = 1, we also prove that spreading the budget is an optimal
policy.

We see that, for d > 2, placing the budget over the boundary of the lattice is much
worse that spread the budget evenly over the lattice; the latter is order optimal and we will

sce in Chapter 9 that it is close to optimal when compared to dynamic placements.

8.3 Symmetric Random Walks on a Lattice of Dimension d

Before diving into hitting times for more complicated scttings, we start by developing some
casy results for a much simpler and well known sctting. In this section, we consider a
symmetric random walk on Z%: we arc interested in bounding the cxpected time for a
random walk initialized at the origin to escape from a d—dimensional hypercube of side

centered at the origin.

J 'w%p‘ g "’.i’v‘;".’ WW_(.%‘;
R ek %\é
e e ot ¢ }%’
-4 a0 87
i
: f ’f{
: o
t smmm gl
pertirin o)
o“#' P4 i
A
” i
s F

Figurc 8-1: 3—dimensional cube of size [in Z* over which we will run a random walk
initialized at center (red node). We prove in Lemma 8.3.1 that the expected time for the
random walk to hit the boundary of the cube is of order ©(I?).

We begin by defining the symmetric random walk on Z%. For cach i € {1,...,d}, let
e; be the unit vector whose only nonzero component is the i one. Let {X;}32, be iid.

random variables such that P(X; = ;) = % and P(X; = —e;) = 2—1{, for cach 7 € {1,...,d},

96

and let Xg = O be the origin. We define the random walk Sy 1 = Sy + Xpy1 = Zf:ol X;

initiated at the origin Sg = 0.

Lemma 8.3.1. For anyd > 1, the random walk {Sx }32, defined above will exit a d— dimensional

square of side | centered at the origin in time ©(I?), for a fized d.

Proof. We define our stopping time
. . l
7 = min{k > 1: one component of Sy is + 5}

77 corresponds to the first time our random walk reaches the edge of the d—dimensional
square of side I centered at the origin. We consider the random walk Sk = (S},...,S¢)
defined above, which is initialized at node (0, ...,0). The walk halts as soon as Si reaches
the value {/2 for some i € {1,...,d}.

To get the lower bound, we arguc as follows. Define Y} = ||Sk||® — k, where ||.|| is the
euclidean norm. We first show that Y}, is a martingale. Note that E [||Sk||2] =E[Sk - Sk| =
Yt ¥ E[X; - X;], so by independence of the X; (and since E[X;] = 0, | Xi|| = 1) we get
that E [nskn?] =k E [||Xi||2] = k. Hence, E[Y}] = E [nskn?] — k = 0 which is bounded

for all k. We finish by computing

E [Ye+1|Ye] = E[Skta-Ska|Ve] -k~ 1
= E[(Sk+ Xis1) - Sk + Xpy1)|Va] -k -1
— E[ISul® + 28 X Xl 1] k=1
= Yk +2E [Sk - Xj41|Y%]
= Yj + 2E [Sk|Yk] - E[Xk+1], as Xg41 is independent of both Sk and Y
= Y. +2E [Sk|Yk] -0

= Y.

Note that % <8kl < l‘/TE. Applying Doob’s Optional Stopping Theorem, we get E[ry] =
E [”STIHQ] > (4)?2 = %. Therefore E[r} > %, hence E[r] = Q(12/4).

Applying Doob’s Optional Stopping Theorem for the upper bound, we get E[n] =

97

E [ISn|] < (132)? = 52. Therefore Efn] < 52, hence E[n] = O(%d/4). When d is fixed,
we conclude that E[r] = ©(1?).

O

This simple lemma will be useful in the following sections as it helps us to prove simple
lower bounds for more general hitting times of random walks over lattices (Proposition
8.4.1), and for analyzing the expected time needed to reach consensus for the voter process
when all stubborn nodes are placed on the boundary (results in Section 8.5). The case
d = 1, in which we consider the hitting time for a random walk over a cycle, will be used

in Lemma 8.6.1, and Theorem 8.6.2.

8.4 A General Lower Bound for Hitting Times on a Lattice

In this section, we will consider a general budget B (which can possibly depend on N)
allocated arbitrarily over a d—dimensional lattice of N nodes with periodic boundai‘y'con-
ditions. Considering a symmetric d—dimensional random walk starting from any non stub-
born node of the lattice, we provide a lower bound for the first time that the random walk
hits a stubborn node.

We begin by stating and proving a proposition which directly follows from Lemma 8.3.1.

Proposition 8.4.1. We are given an arbitrary budget B (which can possibly depend on
N). Let X, be a symmetric d—dimensional random walk over the periodic lattice, starting
from any non stubborn node of the lattice. Let T be the mazimum expected first time that

the random walk hits a stubborn node, over all starting point of the random walk. Then

E[r|=Q ((%)%), with d fized.

1/d
Proof. Let s be the spacing in the case of a uniform spreading: s = (X / . Observe that
B

for a general placement of the nodes there must exist a non-stubborn node in the lattice
which is at a Euclidean distance greater or equal to s/2 from its closest stubborn node. We
can therefore lower bound the expected time the random walk initiated at this node would

take to hit a stubborn node by computing the time it takes for this random walk to exit

98

a square of side s. From Lemma. 8.3.1, we obtain E[7] = £2(s?), which gives the desired

lower bound. O

Even though this lower bound is clearly tight for d = 1 (because of the geometry of a
line), it is not tight enough for higher dimensions. We can get a better lower bound using
more sophisticated tools from Aldous and Fill [1]. Let £ be the set of stubborn nodes, let
X}, be a symmetric d—dimensional random walk over the d—dimensional periodic lattice,
and define

T} = min{k > 1| X} € 8}, and

Tz = min{k > 0| X € B} .

Tgig is the first return time to the set of stubborns, and T'¢ the first hitting time to the set
of stubborns (T and Tgé are equal unless Xy € %). We also define 7; as the stationary
distribution of the Markov chain at the state i, and 7(8) = 3_;cp ™. Also, Ex[.] corre-
sponds to taking an expected value when the Markov chain is initialized from the stationary

distribution over Z. In Chapter 2 of Aldous and Fill [1], the authors prove “Kac’s formula”:
Lemma 8.4.2. (Kac’s Formula) Using the notations introduced above: Er,, {T}] = }—(125

Using Kac’s formula, we will be able to prove a better lower bound for the hitting time

over an arbitrary set of stubborn nodes 4.

Proposition 8.4.3. Let 7; be the expected hitting time of the random walk, starting at
node i, over the usual d—dimensional lattice on the set of stubborn nodes 9B. Define 7 as

maX;ggp 7;. Assume the lattice has N nodes, and | %8| = B. Then E[r] = Q(N/B).

Proof. First, note that m; = 1/N for any node 7 in the lattice, therefore 7(#) = > ;cumi =

B From Kac’s formula, we get Er,, [T%] = H;T) = N/B.

99

We now want to show that 1+ E[r] > E,,, [T::;] We have:

D [T%] = P(# — &P transition) + P(# — B¢ transition)Eggc [Te]

< 14+ Eg[Tg

< 1+ Z 7iP(# — ¢ transition)
igB

< 1+ max7 =1+E[r],
1ERB

as T considers the worst case scenario. Therefore E[r] > ¥ —1, and so E[r] = Q(N/B). O

This proposition will be very useful to show that spreading the budget of stubborn nodes
“uniformly over the lattice is actually an optimal policy for d > 3. Indeed, we will show that
the lower bound (N/B) we have just derived is tight for d > 3 (as it is reached when we
spread the budget uniformly over the lattice), while the lower bound (N/B)%/¢ obtained
in Proposition 8.4.1 is reached for d = 1. The optimal placement of stubborn nodes when
d = 2 will be left open, but we will conjecture that the expected hitting time 7 scales as

(N/B)log(N/B) if we place our stubborn nodes in an optimal way.

8.5 Effect of Placing all Resources on the Boundary

In this section we consider placing all our budget B over the boundary of the lattice. We
first study the cases B ~ O(N),O(N d_}l) and O(1), before providing upper and lower

bounds for more general budgets.

8.5.1 Linear Budget l

Given a linear budget B = O(N), we can place all resources on the boundary and the
rest inside the lattice. We assume that we possess a budget B = aN for some constant
a € (0,1].

An order optimal placement of the nodes would be to position stubborn nodes over all
the faces of the lattice and then spread the rest of the budget O(N(a ~ N~/)) = O(aN)
uniformly inside (Fig. 8-2a). Indeed, with such a placement a non-stubborn node will be

contained in a hypercube of side O((1/@)'/?%) in which we have a stubborn node at each

100

corner. By periodicity of the lattice, it is similar to computing the hitting time for a random

d
(B

walk over the periodic lattice Z There is no dependency on N here, so 7 = ©(1) (with
a possible dependency on d). This placement is thus order optimal.

We can also consider a sub-optimal placement of the nodes: start by placing the stubborn
nodes over all faces of the lattice, and then cover as many adjacent parallel internal faces
as possible (Fig. 8-2b). We obtain a lattice filled with stubborn nodes but with a hole of
side O(N 15”1) As shown in Lemma. 8.3.1, 7 = O(N 2%) which is clearly sub-optimal.

Note in the last casc however that, if instead of piling up all the stubborn nodes in
adjacent parallel faces we space the stubborn faces by a distance of order O((1/«)) (see

Figure 8-2c), then a random walk hits the stubborn set in constant time ©(1) (with a

possible dependency on d though).

8.5.2 Stubborn Boundary Budget]

Given a budget of the form B ~ (N g%l), we can place stubborn nodes over all the faces
of the lattice. Then using Lemma. 8.3.1, we immediately obtain that, for any fixed d,

T =O(N?¥d) = 9((%)2) because the side of our lattice has size N4,

Remark. Note that we do not need to cover all the faces of the lattice: if we cover only one
face, the random walk will hit the stubborn set equally fast. Indeed, by symmetry we can
consider the first face as a single state “1”, and all internal slices which are parallel to this
face will be represented by states “27,...,“NY2” We define a random walk Y}, over this
new graph: we get a lazy birth-death chain in which P(Yy 1 = j|Yx =) = -;—, iflj—i =1,
and P(Yj41 = i|Yi = i) = 1 (assume state N/¢+ 1 and state 1 are identical). We can cven
modify this chain to be absorbing at state 1: P(Yy4+1 = 1|Y;, = 1) = 1. A random walk over
this lazy birth-death chain will hit the absorbing state in‘ time ©(N?2/4) as well. Indeed, this
can be seen by looking at a one-dimensional random walk on Z defined by S, = 3 Xi,
with Xo = 0 and X; € {—1,0,1} such that P(X; = 1) = P(X; = —1) = iP(X; = 0). In
this case, we consider the martingale Y,, = S% — 2 and the stopping time Ty = min{n > 1:
|S,.] = NY/4}. Doob’s theorem implies that E[Tx] ~ N?/¢ (the idea is very similar to the

proof of Lemma 8.3.1).

101

d—1
~N—a

(a) An order optimal placement of stub- (b) A sub-optimal placement of stub-
born nodes. born nodes.
d—1

N—=T

(¢) An other order optimal placement of
stubborn nodes.

Figurc 8-2: Three different placements of roughly N/2 stubborn nodes over the lattice. In
(a) a random walk hits the set of stubborn nodes in constant time (i.c., the hitting time is

independent of N). In (b) the hitting time is of order ©(N 2%1}. In (c) the hitting time is
of order ©(1).

102

o

Figure 8-3: We illustrate an casy way to decompose the lattice if only one face (in green)
is covered by stubborn nodes.

[8.5.3 Constant Budget |

We now consider a budget B independent of the number of nodes in the lattice (i.c., B ~
O(1), for a fixed d). For example, this can be pictured as placing the stubborn nodes at
the corners of the lattice. We will sec in Section 8.6 that, for a lattice of side N'/¢ with

stubborn nodes at its corners, the hitting time is:

O(N?), Jifd =1,
T=4 O(NlogN), ,ifd=2,
O(N), ifd 238,

8.5.4 General Budget]

We finish this scction by considering a gencral budget placed over the boundary of the
lattice. We consider two cases: in the first one, we assume that our budget is at least as
large as the size of the boundary (i.c., we are able to fully cover the boundaries of the lattice
with stubborn nodes). In the second case, we look at budgets that arc smaller than the
size of the boundary (i.c., we are not able to fully cover the houndaries of the lattice with

stubborn nodes).

Casel: Large Budget B = Q(Nir;—l)

d—
If the budget is B = QN Tj) then we can place the stubborn nodes over all faces of the
lattice, and add more nodes inside the lattice. Alrecady, with a boundary fully covered by

b d-
stubborn nodes, we have 7 = O(N?/4). Assume that the budget is of the form B = aN =3

103

for some « such that 1 < o« < N4, Then we can reduce the hitting time 7 by covering

. . . - 1/d .
« internal slices of the lattice scparated by a distance Na,“ from cach other (sce Figure

Nl/d
C

8-4). We have thus divided our lattice into many sublattices of side . Thercfore this

2
placement of stubborn nodes produces a hitting time 7 = © ((%)) In the next section,

we will prove in Theorem 8.6.5 that spreading the resources uniformly over the lattice can

reduce the hitting time to 7 = @ (%) when d > 3: therefore spreading the resources over

the lattice is strietly better than grouping resources over faces of the lattice.

Figure 8-4: We illustrate a way to place the stubborn nodes for a budget of B = Q(N d;d')
N2
nodes. In this case, 7 = © ((%))

Case 2: Small Budget B = o(Nd_J-ﬁl)

When the budget is smaller than the size of the boundary, we do not have a rigorous result.

Instead we present an argument that results in the estimate:

B?v (N — B)?, ifd=1,
T5¢ B2V Nlog (gg) if d =2, (8.4)

BTTvEBTT ifd>3.

If the budget is B = o(N d—El), then we can place all the budget over the faces of some

1
smaller cube of side [= B7 7, We now attempt to estimate an upper bound for the hitting

104

L _ L/¢

e
eemp——— ; . | 2
e i
W ' : E -
I . ol :
: Wt * 3 Y
g Y Y
H
H
», a “ > -
ek - q,,,c‘
e -3 i i 1
STE: V4 1 :
3 : ;
Yo adiinsnprredosd B b .
mgeegret B " t P8, Bk :
¥ . - Snunn :
S
PR 2 b
H
FXY B0 NS
3 v -
3
.
et

(b) Approximating the random walk
(a) Original random walk over the lattice over the lattice by a delayed symmet-
of side L. This random walk halts as soon ric random walk on a new lattice of side
as it hits the green cube of side [. L' =L/l

Figure 8-5: In (a), we consider a random walk over a periodic lattice of side L which halts as
soon as it hits the cube of side I. In (b), we approximate this random walk by a symmectric
random walk over a lattice of side L' = L/l halting when the walk hits the unit cube.

time to the cube. Define S; as the original random walk over the lattice of side L = N 1/d as
represented in Fig. 8-5a. S; halts as soon as it hits the green cube of side I. Next, we define
a random walk S} over a new lattice of side L’ = L/l which halts as soon as it hits a cube of
side 1. We couple S; and S; as follows: we partition the original lattice into cubes of side [
as shown in Fig. 8-5a; while S; is inside such a cube, the walk S stays at the center of the
corresponding cube in its own lattice space. As soon as S; crosses a boundary, S; moves by
one unit in the direction of the crossing S, performed. S/, then performs a delayed random
walk over the primed lattice: the expected time between successive jumps in S} is of order
O(I?) (it is the expected time for S; to exit the cube of side I). Unfortunately the primed
random walk is no longer symmetric because, at cach jump, Sf has a much higher probability
to move back at its previous position. If we approximate S; as a symmetric random walk
(by assuming ! to be small compared to L), this reduces the problem to computing the
expected hitting time of a symmetric random walk to a point: as we will sce in the next

section (Proposition 8.6.3), this scales as L' when d > 3 and L' log L' if d = 2. Based on

105

this heuristic argument, we are led to conjecture that:

, 0(l2xL’210gL'), ifd =2,
T =
o(l2 x L'd), if d > 3.
N J O(Lilog(-f-)), if d = 2,
\ 0(1-5:7), if d > 3.
6] (Nlog (g,)) ifd=2,
- 0(%32‘1—1). if d > 3.
{

Note that if the green square gets bigger, then we must also consider the hitting time of a

random walk inside the green square: this takes time O(Bﬁ). Thus

o) (B2VNlog (g,)) , ifd=2,

~

PIR . (8.5)
O|Bi1V $Ba1|, ifd>3.
where a V b is defined as max(a,b). This bound has not been rigorously derived; in Section

8.8 we derive the same upper bounds by performing a continuous approximation to the

random walk. Note that if d = 1, then 7 = 6 (B2 V(N - B)2).

8.6 Effect of Spreading all Resources Uniformly Inside the

Lattice

In this section we consider spreading all our budget B uniformly inside the lattice. The
1/d

spacing used will be s = (%) / - NZ (ignoring the possible o(1) correction which in-

sures the integrality of s). We first study the cases B ~ O(N), O(N %) and O(1), before

providing upper and lower bounds for more general budgets.

IEG.I Linear Budget]

If we use a budget B ~ ©(N), then obviously E[r] = ©(1). Note that, if we use the result

of the following subsection, we can prove that for B = % (for some a > 1) and d fixed, we

106

have
0(a?), ifd=1,
T=14 O(aloga), ifd=2,
O(w), ifd>3.

8.6.2 Stubborn Boundary Budgetl

We will now bound the expected hitting time for a budget B = O(N %) when we spread

all the stubborn nodes uniformly over the lattice. Recall that the value of the spacing
1/d

s=0 ((%) /) In this case, by applying the lower bound theorem (Proposition 8.4.1),

we obtain a lower bound of: 7 = Q (N 32?) By applying the finer lower bound theorem

(Proposition 8.4.3), we see that 7 = Q (N%)

Lemma 8.6.1. Set d = 2, let B ~ ©(v/N) and spread all the stubborn nodes over the
lattice so that the spacing between stubborn nodes will be s = O(N1). Then s2 < 7 < &8,

1 3
ie. N2 <t S Na,

Proof. (Sketch) We consider the backwards random walk X = (X, Y;) initialized at node
(zo,v0).- The walk halts as soon as X; or ¥; reach a stubborn node. As the boundary
conditions are periodic, it is sufficient to analyze the halting time of a random walk over
one square of side s = N T with one stubborn node at each corner.

Viewing X as a product chain, we see that X; and Y; are generating a random walk
over a one-dimensional line of size s. We immediately get the lower bound 7(s) = 2(s?)
as cach one-dimensional random walk takes time £2(s?) to reach a stubborn node at the
endpoints, and we need both random walks to hit their target simultaneously.

To get the upper bound, we argue as follows. We can first simplify the analysis by
viewing X; and Y; as random walks on a cycle Z; of length s which halt at soon as they
simultaneously hit node zero. We know X; reaches zero in time O(s?). By Levin and Peres
[ref:mixing times textbook -5.3.1], the mixing time for a random walk over a cycle of length
s is of order O(s?). This result is also proved by Aldous and Finn [relaxation time 12 for
the cycle is O(s?)]. This mcans that, after time O(s2), Y; is uniformly randomized over the

cycle, so Y; is at node zero with probability % So we expect about s trials for Y; to reach

107

node zero. Hence 7(s) = O(s?) x O(s) = O(s%). O

Theorem 8.6.2. Ford > 1, let B ~ O(Nd_;l') and spread all the stubborn nodes over
the lattice so that the spacing between stubborn nodes will be s = © (N 317) Then 7(s) =
O(s%+1). Furthermore, Na < 7(N) < N x N#E.

Proof. We consider again the backwards random walk X = (X}, ..., X#) initialized at node
(€3, ...,z8). The walk halts as soon as an X? reaches a stubborn node.‘ As the boundary
conditions are periodic, it is sufficient to analyze the halting time of a random walk over
one d—dimensional lattice of side s= N & with one stubborn node at each corner.

Viewing X; = (X},... ,Xf) as a product chain, we see that the X} are generating a
random walk over a one-dimensional line of size s. We immediately get the lower bound
7(s) = Q(s?) as each one-dimensional random walk takes time (s?) to reach a stubborn
node at the endpoints. and we need all random walks to hit their target sirultaneously.
Expressing this lower bound as a function of N, we get s2 = N £. To compute a better
lower bound in the entire lattice, we use the finer lower bound theorem (Proposition 8.4.3)
we derived earlier. This yields a lower bound of N/B = N Q.

To get the upper bound, we argue as follows. We can first simplify the analysis by
viewing the X} as a random walk on a cycle Z; of length s which halts at soon as all
random walks X7, ..., X simultaneously hit node zero. We know X} reaches zero in time
O(s?). By Levin and Peres [ref:mixing times textbook -5.3.1], the mixing time for a random
walk over a cycle of length s is of order O(s?). This result is also proved by Aldous and
Finn [relaxation time 72 for the cycle is O(s?)]. This means that after time O(s?), the other
X} are uniformly randomized over the cycle, so all the remaining X} are at node zero with
probability ;;;1_—1 So we expect about s%~! trials for the remaining X} to reach node zero.
Hence 7(s) = O(s?) x O(s*1) = O(s*1).

O

Until now, we were able to show that

T 1/d?
1S v SNV

108

It is actually possible to find a tighter asymptotic bound. Such a theorem can be found in

Chapter 10 of Levin, Peres and Wilmer [11] (Chapter 10):

Proposition 8.6.3. (Levin, Peres and Wilmer [11]) Let x and y be two points at distance

k > 1 in the torus Zf. Let 1, be the expected time of first visit to y, starting from x. Then

O(Plogk), ifd=2,
Tay =
oY), , independently of k if d > 3.

Corollary 8.6.4. Consider a random walk over a lattice Zjivl sa of N nodes with B =
O(N %) stubborn nodes evenly spread over the lattice. Then, in the worst case (over
initial state) scenario, the expected time at which the random walk hits a stubborn node for

the first time is given by:

O(N?), ifd=1,
T=4 O(WNlogN), ifd=2,
O(N/4), ifd> 3.

Proof. This immediately follows from Proposition 8.6.3 by taking = s, i.e., [= N/ @ and
by setting k = [to get the worst case scenario. Note that Proposition 8.6.3 is about hitting
a single node. Since we spread our budget evenly over the lattice, then studying the whole
lattice of N nodes with B stubborn nodes evenly spread is equivalent to looking at the

small periodic lattice of side s with a single stubborn node at its corner. 0

If we compare our previous bounds to the ones derived by Levin, Peres and Wilmer [11],
we see that our lower bound was actually providing the correct asymptotic behavior when
d > 3, and our upper bound was providing the correct asymptotic behavior when d = 1.

The case d = 2 which is in between is the trickiest.

109

8.6.3 Constant Budget

When we have a constant budget B ~ O(1), we can bound the expected hitting time 7

using Peres’ theorem and get:

O(N?), ifd=1,
T=1{ O(NlogN), ifd=2,
o(N), if d > 3.

8.6.4 General Budget Evenly Spread over the Lattice

In this section, we consider the case of a general budget B, when we spread all the stubborn

nodes evenly along the lattice. We therefore partition our lattice into squares of side s =
1/d

S} ((%) /) with a stubborn node at each corner. We can therefore apply results of the

previous section to obtain:

Theorem 8.6.5. In dimension d > 1, if we spread our budget B of stubborn nodes evenly

along the lattice, then

| =

N) 1+l/d

ST(N) S (E

Using the bounds from Peres, we get

e(%)2)a Zfd =1,
T= e(_IB\LIOg %)7 ifd=2,

(), ifd>3.

1/d
Proof. Partition the lattice into squares of side s = © ((%) /) with a stubborn node at

each corner and apply the bounds we derived in the Theorem 8.6.2 and Corollary 8.6.4. [

8.7 Optimal Placement of Stubborn nodes

Now that we have bounded the expected hitting times for uniformly spread stubborn nodes,

we can show that this placement is actually optimal for d # 2 and conjecture that it still is

110

optimal when d = 2. In this section, we say that a placement of stubborn nodes is optimal
if it minimizes the worst case expected hitting time from a non-stubborn node to the set of

stubborn nodes.

Lemma 8.7.1. Letd = 1. Given a budget B of stubborn nodes, an order optimal placement
(which minimizes the worst case scenario, over initial state, of the expected hitting time)
for the stubborn nodes consists in spreading them evenly at a distance s = O(N/B) of each

other. Therefore the optimal hitting time is 7 = (N/B)2.

Proof. If we spread evenly the budget over the line, stubborn nodes will be at a distance

O(N/B) of each other, therefore the hitting time will be equal to (N/B)2?. We proved in
2 2

Theorem 8.6.5 that 7 = € ((%—) d) = 0 ((%)) So the hitting time cannot be lower

than (N/B)? in one dimension. We conclude that this placement is indeed optimal. O

Note. We can also prove the optimality of the evenly spread placement when d = 1 by
arguing in the following way. Suppose that we place the stubborn nodes along the line at
distances Iy, {2, ...,lp—1 of each other (where 0 < I < N). Then 7 = max;—1.._p—1 7;, where
7; is the expected hitting time over the segment of length /; which has stubborn nodes ¢ and
i+ 1 for endpoints. We know that 7; = l?, therefore 7 = max;—1._ p_1 l? for any placement of
the stubborn nodes over the line. We conclude that the optimal placement of the stubborn
nodes i.e., the placement that minimizes the expected hitting time, should minimize the
largest possible distance between consecutive stubborn nodes. This implies that an optimal

placement consists of spreading evenly all the stubborn nodes over the line.

We can now provide the main result of the chapter:

Theorem 8.7.2. Let d > 1 and d # 2. Given a budget B of stubborn nodes, an order
optimal placement for the stubborn nodes over the lattice Zj‘(,l /a consists in spreading them
evenly at a distance s = O((N/B)'/4) of each other. The expected hitting time for a random
walk is given by:

o((3)), ifd=1,

o), ifd>3.

111

Proof. We have proved the theorem for d = 1. Now for d > 3, we already know that the
hitting time is bounded below by (N/B) (Proposition 8.4.3). Since the lower bound is
reached when we spread the resources evenly over the lattice (Theorem 8.6.5), we conclude

that such a policy is indeed optimal. ‘ O

Conjecture 8.7.3. We believe that for d = 2, spreading the resources evenly over the lattice
will be an order optimal policy. We already know from Theorem 8.6.5 that the hitting time

for such a random walk would be, in expectation, T = @(% log %)

The main idea is to avoid wasting resources, by avoiding to create large clumps of
stubborn nodes. Indeed, a square of side ! filled with stubborn nodes will have the same
effect as an empty square of side [with stubborn nodes only on the boundary, as long as
l is not too large (the time I? it takes to hit the boundary of the square from the inside of
the square should be smaller than the time it takes to hit the boundary of the square from
the outside of the square). Indeed, in that case a filled square uses the d—th power of the

budget for a comparable hitting time.

8.8 Another Attempt at Computing the Hitting Time to a

Point

In this section, we will once again consider the hitting time to a point for a symmetric

random walk over a d—dimensional lattice of size s (with s¢ nodes).

Fact. For d = 2, suppose we have one stubborn node in a corner of the 2—dimensional

periodic lattice of side s. Then T(s) ~ O(s?log(s?)).

This result is already known, and can be found in Levin, Peres and Wilmer [11] (sec
Theorem 8.6.3). The proof in [11] relies on circuit analogies, and relies on Pélya urn
processes. In the following, we want to offer a plausible argument for this fact by performing
a continuous approximation of the problem and by solving PDEs with appropriate boundary
conditions. The “proof” attempted below is not rigorous and we will highlight the missing

steps.

112

Proof. Attempt. We will first derive a recursion equation in the lattice space for the values
of the hitting times to the targeted point (initialized at various nodes in the lattice). Then
we will look at a continuous approximation to these equations. This step is often performed
and can be rigorously justified. So far, we would have to solve a PDE over a square. Due to
the symmetry of the problem, it is much easier to solve the PDE over a disk: this is exactly
where the non-rigorous part of the proof lies. We would need to prove that, a Brownian
motion initialized on the boundary of a square would hit a “small” target in its center at
roughly the same time as a Brownian motion initialized on the boundary of a disk of com-

parable size, in orders of magnitude of the lattice size s.

Step 1: recursive relation

As before, we focus on a random walk over a periodic square of side s which has a
stubborn node at each corner. Define T'(k, k) to be the expected time to reach a corner
if the random walk is initialized at node (k, k"). By periodicity of the boundaries, we
see that T'(k,k') = T(—k,k’) = T(d — k,k’) and by symmetry we see that T'(k, k') =
T(K, k).

We obtain the following recursive equation:

1
T(k, k') = 1+ 1 (T(k —LEY+T(k+1L,KE)+T(k, kK — 1)+ T(k, k' + 1))

T(0,0)

0 = T(d,0) = T(0,d) = T(d, d)

T(k, k) = T(—kK)=T(d— kK

Tk,K) = T, k)

We are interested in computing Tiniq = T(| 4], |4]) to obtain an upper bound for the
expected time to reach the stubborn node if we start in the middle of a square. This

recursion is very hard to solve.

113

Step 2: continuous approximation

We will convert the square lattice of side s to a disk of unit area. To do this conversion,
we must scale distances as follows: the lattice has area s? and the disk has area 1,
therefore 1 unit in the lattice corresponds to % units on the disk. To scale time
correctly, recall that we expect to reach a boundary in time s? on the lattice, while
on the disk the boundary is reached in unit time, therefore 1 time unit on the lattice
process corresponds to 1/s® time units on the disk. To avoid confusion, we will use
the notations T'(%,9) or T'(7) over the disk (where 0 < # = 2 + §2 < 1). Thus we

have the following conversions:

Z=uz/s,9=1y/s, and

P(&,9) = T(w/5,/5)

Over the disk, we can view the process as a diffusion by approximating the recursion

equations derived above.

T(k, k') =1+ i (T(k — LK)+ T(k+ 1,K) + T(k, k' — 1) + T(k, k' + 1))

becomes
A 1 Ty
@9 = =7(%,Y
@0 = 57(3Y)
1 — 1 —1
() (2)
82 4s2 s s s s s’ s s’ s
1 1/~ 1 A 1 A 1 ~ 1
= —§+—(T(A——,Q)+T £+—,g)+:r(:e,g—~)+ (xy+—))
s 4 s S s s

114

Rearranging the terms, we write

(2 -1,9) +7 (2 +1,9) —2T<@,:«9)+T(-%,@—%) +7 (2,9+1) - 2T (3,9)

4 =
1/s? 1/s2

Taking the limit as s goes to infinity, we get:

&% . . 8% .
@T(JJ,ZH + 3—372T(37, j)=—4 | (8.6)

Writing the Laplacian in polar coordinates and using spherical symmetry, we get the

following ODE for T'(7): T"(#) + %T’ (f) = —4, which implies that

T(#) = —#% + alog(f) + B, (8.7)

for some constants «, 3.

On a disk of radius 7y < 1, we have T(fo) = 0, implying that
B = 7§ — alog(fo).

The 7y we will use will be of order 1/s since T'(r) = 0 for r < 1 over the latticc.

We know that T'(1) = dr? + %T(l) + %T(l +dr) + %’f“(l — dr) on the boundary. Duc
to spherical symmetry and by periodicity of the boundary conditions, we observe that
T(1+dr) = T(1—dr). Therefore T(1) = dr?+ 1T(1) + 1T(1 — dr), i.e. T(1) - T(1
dr) = 2dr?. This implies that 77(1) = limg,_,o 2dr = 0. We have T" (F) = =27 + o/,

therefore 0 = 7(1) = ~2 + a so a = 2 and 8 = 72 — 2log(#y). We conclude that:
P 2 a2 72
7(7) = (7~) +log(). (89)
0

115

Step 3: conversion to the discrete space

If we discretize the result we see that T(r) = s2T'(r/s), therefore:

r\2

T(r) = (PF2—12)+8° log((%>) (8.9)
= (ro—r?)+s’log <(:—0)2) (8.10)
= (1—7%) +s%log(r?) (8.11)

since rg ~ 1.

The right hand side is of order O (7‘2 + 52 10g(r2)). The highest value of T is reached

at the middle of the lattice (so r ~ s/2). In that case:

T = 6(s?log(s?)).

We conclude that the longest time needed to hit a point on a 2—dimensional lattice is
T = O(s%log(s?)).

Now if we consider the hitting time to a square of side 7 instead of a point, we get

T=0 (32 log <(:—0>2)) :

O

Note. By the same argument, in dimensions d > 3, we obtain: AT(.%) = —2d, leading to

~2-d
T(#) = 72 + am— + B.

2—-d

Using the same boundary conditions we obtain

2
2—d

T() = (7§ = 72) + g5 (5" =779,

116

Converting the problem back to the original discrete lattice:

T(s) = (1 — %) + g—s(s> % — 37,

S

2-d
We conclude that:
2 a1 1 2 _ 2
T(s) = 2_ds (rg_2_3d"2)~(s —r5)- (8.12)
Using the fact that o = 1:
2
T(s) = 2—_—E(sd —s%) — (s —1). (8.13)

We therefore recover the result T(s) = O(s?). We also observe that, for a more general
ro < s, we have T'(s) = © (F__s;?> In this case, if we consider the d—dimensional lattice
=T

of side s = N/ with a budget B placed on the faces of a cube of side ro = B ﬁ, we get

(8((1—1\3{)2)7 ifd=1,

2 N . .
T(S):{ G(B VNlOg;%—‘z_:), lfd—2,
2] (Bﬁ‘l v <-—’;V;7—N2/d)) . ifd>3.
Bd—1
\

where the first B2 term comes from the hitting time inside the square, and where a V b is

defined as max(a, b).

(%)), ifd=1,
T(s)={ © (32 V Nlog g,) . ifd=2, (8.14)
e(BﬁTv%Bﬁ‘i), if d > 3.

Recall that B can take values between 1 and N7 : then when B is actually equal to
N (which corresponds to covering all faces of the lattice with stubborn nodes), the term
2
B4a-T dominates and yields N iin agreement with our results in Section 8.5.2. Furthermore,

the result we conjecture here is consistent with the upper bound we estimated in Section

8.5.4 (Equation (8.5)).

117

118

Chapter 9

Convergence Time to Consensus

for a Dynamic Policy

In Chapter 8, we considered a static model in which we placed B stubborn nodes with
opinion +1 over a d—dimensional lattice Z‘fvl ,a of N nodes and waited for the network
to reach a 1—consensus. In this chapter, we consider a dynamic variation of the problem
studied in Chapter 8: we are once again given a budget of B stubborn nodes with opinion
+1 and a d—dimensional lattice Z‘]I\‘,1 ;o of N nodes, but this time we are allowed to change
the position of the stubborn nodes over the lattice during the run of the experiment. We
want to bound the expected time needed for such a network to reach a 1—consensus. Our
ultimate goal is to see if we can significantly improve the convergence time to consensus by

adopting dynamic policies instead of static policies.

This chapter is structured as follows: after having introduced the model used here, we
consider dynamic policies for budgets at least as large as the size of the boundary of the
lattice, and also dynamic policies for budgets smaller than the size of the boundary of the
lattice. We then consider the casc of a general budget, and we conclude the chapter by

comparing the performance of static and dynamic policies.

119

9.1 The Model

We use the same model as in Chapter 8. We possess a budget B of stubborn nodes in the
+1 state, and position these stubborn nodes on a d—dimensional lattice val sa of N nodes.
What is different is that we are allowed to reposition all our stubborn nodes over the lattice
each time a single Poisson clock (independent of the Poisson clocks of the nodes in the
lattice) of rate v = 1 ticks. Our goal is to bound the expected time 7* for the network to

reach a 1—consensus. We assume throughout the chapter that all nodes are in the 0 state

at time ¢t = 0.

If a node was stubborn at time ¢, and if we decide not to select it as a stubborn node
at a later time t/, then the node will be in state +1 at time ¢’ but will resume updating
his opinion according to the Voter process (this means that the node is no longer protected

and can adopt state 0 if one of its neighbors with opinion 0 influences him after time #').

On the other hand, if a non-stubborn node is in state 0 at time ¢ and if we decide to
make it stubborn at time ¢, the node will immediately adopt the opinion +1 at time ¢.
Thus, in our dynamic model, we can essentially switch nodes from a 0 state to a +1 state

at an average rate of B nodes per unit time.

In this Chapter, we study two cases: we first consider budgets B at least at large as the
size of the boundary of the lattice (i.e., B =) (N %)) in Section 9.2, and then budgets
B smaller than the size of the boundary of the lattice (i.e., B=o0 (N g%;)) in Section 9.3.
For simplicity, we will refer to the former case as the “large budget case”, and the latter

case as the “small budget case” throughout the whole chapter. We will consider the case of

a general budget in Section 9.4.

Note that, in contrast with Chapter 8, we will directly use the Voter process (instead
of using the dual process). This is because, when stubborn nodes are mobile, the dual

formulation becomes much harder to analyze.

120

9.2 The Large Budget Case:

We begin by considering what we refer to as “large budgets”, i.c., budgets B at least as
i
large as the size of the boundary of the lattice. In this case, B = { (N _dl‘) We describe

below a policy according to which the network can reach a 1—consensus in time ©(N/B):

Nl/d

Figure 9-1: Our large-budget dynamic policy applied to a 2—dimensional lattice of N nodes.
Consensus is expected to be reached in time 7% = O(N/B).

A DYNAMIC POLICY FOR LARGE BUDGETS:

As B =0 (Ndr;tl), we can assume that B = a x N'T for some o = Q(1). As

. d-1 .
shown in Figure 9-1, we place our stubborn nodes over a slices (of N7 nodes) of the

lattice that arc spaced at a distance E%}i of each other. For simplicity, we actually
cover two successive slices instead of one each time: this means that we have o pairs of
adjacent slices that arc spaced at a distance ﬂ:{i of cach other (sec Figure 9-1). The
policy then consists of moving the right slices to the right, and the left slices to the left,

as shown in Figure 9-1.

In the following theorem we derive the expected time to consensus, when using the

dynamic policy outlined above:

d—1

Theorem 9.2.1. Given a budget B = (N]), the d—dimensional lattice Zde of N

121

nodes can reach a 1—consensus in time 7* = © (%) when using the dynamic policy for large

budgets described above.

Proof. Using the dynamic policy for large budgets described above, we observe that nodes
can only transition from state 0 to state +1 (as the moving slices protect the nodes which

have been set to the +1 state). Therefore we expect a 1—consensus to be reached in time

. N'l/d Nl/d N
=0 (o) =0 (—B/Nl_{lfld)) =0 (E) -

O

We will prove in Theorem 9.4.2 that the “dynamic policy for large budgets™ is actually

an order-optimal policy.

9.3 The Small Budget Case:

Figure 9-2: Our small-budget dynamic policy applied to a 2—dimensional lattice of N nodes.
Consensus is expected to be reached in time 7% = O(N/B).

We now consider what we refer to as “small budgets”, i.c., budgets B smaller than the

d—1
size of the boundary of the lattice. In this case, B = o (N —:) This case scems harder

122

to analyze as wec cannot protect the set of +1 non-stubborn nodes anymore. We describe

below a policy according to which the network can reach a 1—consensus in time ©(N/B):

A DYNAMIC POLICY FOR SMALL BUDGETS:

Divide the lattice into (N/B) cubes of side I = BY/¢. We place our budget B =
] (N %l) over one of these cubes of side [: call this cube Cy. We then move our
stubborn cube over neighboring cubes in the direction of a spiral centered at Cy, as
shown in Figure 9-2. We also try to place stubborn nodes over +1 nodes that have

returned to a 0 state along the way.

We will show in Theorem 9.4.2 that the “dynamic policy for small budgets” leads to a
1—consensus in expected time 7% = © (%’), and that the policy is actually an order-optimal

policy.

9.4 The General Budget Case:

We are now ready to prove the main result of the chapter: we show here that, for an order-
optimal policy, 7* = © (%) Furthermore, we show that, in dimension d > 2, dynamic
policies do not perform significantly better than static policies.

We begin by defining “non-static” policies.

Definition 9.4.1. We say that a policy is non-static if the policy is dynamic, and has the
following property: if the controller’s clock ticks at time ¢, and if there are k& nodes with
opinion 0 just before time ¢, then the set of stubborn nodes just after time ¢ must include

min{k, B} nodes whose opinion was 0 before time t.
We can now state and prove the main result of the chapter:

Theorem 9.4.2. Given an arbitrary budget B, the d—dimensional lattice Z‘fvl sa of N nodes

can reach a 1—consensus in time 7™ = © (%) when using any non-static policy.

Proof. Let {X;}$2, be i.i.d. Exponential random variable with paramecter 1. Define K; =

Ej___l X;: then the random variable K; represents the time at which the controller’s Poisson

123

clock will tick for the i** time. Define Nk, as the number of nodes in the +1 state imme-
diately after time K; (so that this number also reflects the action the controller performed

at time K;). Observe that, while Nk, < N — B, we have the following inequality:
B<]E[NKH-l - NKi'NKi] < B(2d + 1) . (91)

Indeed, in between two clock ticks, i.e., in the time interval [K;, K;1), we expect:

1. Pairs of non stubborn nodes to influence each other with the same probability (as the
lattice is a regular graph): in this case, the expected number of non-stubborn nodes
with the +1 opinion that have not been influenced by a stubborn node should be

constant.

2. Stubborn nodes can influence non stubborn nodes: in that case, the expected number
of non-stubborn nodes with the +1 opinion that have been influenced by a stubborn

node should lie in the interval (0, 2dB).

3. The policy we use is non-static, therefore B new nodes with opinion 0 just before time

K1 will take the +1 opinion just after time K;,1.

Define Ny, = Nk, — BK; and Ng, = Nk, — B(2d + 1)K;. We show below that, while
Nk, £ N - B, N}{i is a sub-martingale, and N}'Q is a super-martingale. Indeed, using

Inequality (9.1), we get:

]E[N;('i.'.l IN;{z] =]E[NK‘H-I - BK1'+1|N.lKg]
> E[Nk, + B — B(K; + Xi41)|Ng,]

= E[Ng, Nk]+ B(1 - E[Xi1]) = N,
as Xy is independent from Ni. and has mean 1; also,

E[N;I(,:.H IN”i] = E[NKi+1 - 2dBK‘L+1|N;I(,]
< E[Nk, +2dB — 2dB(K; + Xi31)| N

= E[Ng,|Ng,]+2dB(1 - E[Xi1]) = Nk, ,

124

as X;1 is independent from N }'(z and has mean 1.
Define the stopping time K7 as the smallest time K such that Ng, > N — B. Applying

Doob’s Optional Stopping theorem to the sub-martingale N ki, we get:
0 = E[Nj] < E[N},| = E[Nk,] — BE[K/],

Therefore,
E[Ni] _ N

s _
Bl <=5 B

Applying Doob’s Optional Stopping theorem to the super-martingale N ., we get:

0 = E[Ng] > E[Ng,] = E[Nk,] — B(d + 1)E[K]].

Therefore,
ElK] 2 Elzggl] A;dBB
Thercfore,
(.g_ _ 1) L <EK] <Y 02)

and so E[K;| = ©(N/B).

Now, between time Ky and time Ky q (actﬁally just before time Kpy1), the expected
number of nodes in the +1 state is expected to remain greater than (N — B). Then, at time
K1 the controller will choose the remaining nodes as stubborn nodes, and the network
will have reached a 1—consensus. Therefore our expected consensus time 7* should be equal

to 1+ E[K141]. We conclude that 7* = © (%) when using any non-static policy. |

Notice that Theorem 9.4.2 also holds for arbitrary “regular networks” (i.e., networks

whose underlying graph is a regular graph).

Theorem 9.4.3. Given an arbitrary budget B, a regular network of N nodes of degree r

can reach a 1—consensus in time 7* = © (%) when using any non-static policy.

Proof. This thcorem follows from the proof of Theorem 9.4.2, by taking replacing 2d by 7.

Since r is taken to be constant, the result follows.)

125

As a corollary of Theorem 9.4.2, we see that the “dynamic policy for small budgets” is
actually order-optimal (and it also applies to budgets larger than the size of the boundary).

We also see that the “dynamic policy for large budgets” is also order-optimal.

9.5 Is There an Advantage to being Dynamic ?

In this section, we compare the results obtained in Chapter 8 and Chapter 9.

If d = 1, we saw in Chapter 8 that static policies could reach a 1—consensus in time 7*

2 2
(%) <7™< (%) log (N — B).

In Chapter 9, we can use the “dynamic policy for large budgets” (here we can use it even

such that:

for small budgets too) to reach consensus in time

T*:e(%).

We clearly see that a dynamic policy can perform significantly better than a static policy

when d = 1.

If d = 2, we saw in Chapter & that, by uniformly spreading the budget over the lattice,

we could reach a 1—consensus in time 7* such that:

(i)

We have proved that an order optimal policy should lead to an expected time to consensus
that falls inside these bounds. In Chapter 9, we can use the “dynamic policy for large
budgets” when B = 2 (N 15‘1’), or the “dynamic policy for small budgets” when B =

d—1 . .
o (N T) to reach consensus in time

~=o(%).

From Theorem 9.4.2, we know that these dynamic policies are order-optimal: this implies

126

that a dynamic policy, for an arbitrary budget B, cannot perform better than a static policy
by more than a (log N)? factor.
If d > 3, we saw in Chapter 8 that, by uniformly spreading the budget over the lattice,

we could reach a 1—consensus in time 7* such that:

<%> S5 (%) log (N — B).

We have proved that an order optimal policy should lead to an expected time to consensus
that falls inside these bounds. In Chapter 9, we can use the “dynamic policy for large

budgets” when B = Q (N 'd;_l), or the “dynamic policy for small budgets” when B =

d—1 . .
o (N T) to reach consensus in time

From Theorem 9.4.2, we know that these dynamic policies are order-optimal: this implies
that a dynamic policy, for an arbitrary budget B, cannot perform better than a static policy
by more than a log N factor.

In conclusion, we have proved the following theorem:

Theorem 9.5.1. We are given an arbitrary budget B and a d—dimensional lattice Z‘}(ﬂ sa of
N nodes. Let T, and 14 represent the expected time to reach a 1—consensus for, respectively,

an optimal static policy and an optimal dynamic policy. Then:

1. If d = 1, a dynamic policy can perform significantly better than a static policy: T4 =

(7a)?.

2. If d = 2, a dynamic policy cannot perform better than a static policy by more than a
(log N)? factor: = < (log N)2.

3. If d > 3, a dynamic policy cannot perform better than a static policy by more than a
log N factor: %Z— SlogN.

We conclude that, in dimension d > 2, dynamic policies do not perform significantly

better than static policies.

127

128

Chapter 10

Conclusion and Future Prospects

The general goal of this thesis was to study opinion control policies in two different scenar-
ios. In the first part of the thesis, we considered a broad class of deterministic dynamics
governing the interactions inside a network, and we designed a policy that a controller can
follow in order to spread an opinion inside a network with the smallest possible cost: this
lead to the development of the Descendant Algorithm and the Ancestral Algorithm. In the
second part of the thesis, we focused on the classical “Voter Model” (over networks whose
underlying graph is the d—dimensional integer torus Z%), and we designed policies that
minimize the expected time until the network reaches a consensus. In the second part, we
considered the case where stubborn nodes were fixed over the lattice, and the case where
the controller is allowed to move the stubborn nodes during the experiment. We ended this
part of the thesis by showing that, in dimension d > 2, dynamic policics do not perform
significantly better than static policies. However, in dimension d = 1, optimal dynamic

policies perform much better than optimal static policies.

In the following, we discuss a few remaining open problems:

Part I: A Deterministic Model

In this first part of the thesis, we have considered networks with deterministic dynamics,
and have developed the Descendant Algorithm and the Ancestral Algorithm to spread an
opinion inside the network with the smallest possible cost. We have also assumed that

the controller has full knowledge of the entire evolution of the network at the start of the

129

experiment. It would be interesting to generalize both algorithms and apply them to cases
where the controller only knows how the network evolves over a time window comprised
of the next K steps , or where the network evolves in a stochastic way; for example, we
can build a model in which each edge in the network has probability p of appearing and
probability (1 — p) of disappearing at each time step.

Part 2: Static Versus Dynamic Policies for the Voter Model

In this second part of the thesis, we focused on the Voter Model over networks whose
underlying graph is the d—dimensional integer torus Z¢. We controlled the network by
placing B stubborn nodes over the torus. We first studied the case where we place the
stubborn nodes at the start of the experiment and let the system evolve spontaneously
from there (this is the “static case”), and then studied the case where we are allowed to
change the pdsition of our stubborn nodes over the torus during the run of the experiment

(this is the “dynamic case”).

1. Static Case: it would be interesting to show that spreading the budget uniformly
over the torus is actually an order optimal policy in dimension d = 2 (we have proved
that it was order optimal for d = 1 and d > 3). Another open problem consists in
gefting tighter bounds for the expected time to reach consensus 7*: in this work we

are bounding 7* up to a factor of log(N — B).

2. Dynamic Case: an open problem consists in determining whether dynamic policies
are significantly better than static policies in other network topologies. In particular,
we can consider general regular graphs (in this case, we have proved that 7* = © (%)

for optimal dynamic policies), and try to bound 7* for optimal static policies.

130

Bibliography

[1] David Aldous and James Allen Fill. Reversible markov chains and random walks on
graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.stat.
berkeley.edu/~aldous/RWG/book.html.

[2] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence maximiza-
tion in social networks. In Proceedings of the 3rd International Conference on Internet
and Network Economics, WINE'07, pages 306311, Berlin, Heidelberg, 2007. Springer-
Verlag.

[3] Peter Clifford and Aidan Sudbury. A model for spatial conflict. Biometrika, 60(3):581—
588, 1973.

[4] J. T. Cox. Coalescing random walks and voter model consensus times on the torus in
Z2. Ann. Probab., 17(4):1333-1366, 10 1989.

[5] Pedro Domingos and Matt Richardson. Mining the nctwork value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '01, pages 57-66, New York, NY, USA, 2001. ACM.

[6] Rick Durrctt. Random Graph Dynamics (Cambridge Series in Statistical and Proba-
bilistic Mathematics). Cambridge University Press, New York, NY, USA, 2006.

[7] Fabio Fagnani. Consensus dynamics over networks. 2014. Technical paper available
at http://www-sop.inria.fr/members/Giovanni.Neglia/complexnetworksi4/
14winter_school_complex_networks_consensus20dynamics_notes.pdf.

[8] Richard A. Holley and Thomas M. Liggett. Ergodic theorems for weakly interacting
infinite systems and the voter model. Ann. Probab., 3(4):643-663, 08 1975.

[9] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 03, pages 137-146, New
York, NY, USA, 2003. ACM.

[10] David Kempe, Jon Kleinberg, and Eva Tardos. Influential nodes in a diffusion model
for social networks. In Proceedings of the 32Nd International Conference on Automata,
Languages and Programming, ICALP’05, pages 1127-1138, Berlin, Heidelberg, 2005.
Springer-Verlag.

[11] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov Chains and Mizing Times. American
Mathematical Soc.

131

[12] Thomas Milton Liggett. Stochastic interacting systems : contact, voter, and exclusion
processes. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin,
New York, 1999.

[13] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 02, pages 61-70, New York, NY, USA,
2002. ACM.

[14] Ercan Yildiz, Asuman Ozdaglar, Daron Acemoglu, Amin Saberi, and Anna Scaglione.
Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput., 1(4):19:1-
19:30, December 2013.

132

