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Abstract

The problem of maximizing the spread of an opinion inside a social network has been inves-

tigated extensively during the past decade. The importance of this problem in applications

such as marketing has been amplified by the major expansion of online social networks.

In this thesis, we study opinion control policies, first under a broad class of deterministic

dynamics governing the interactions inside a network, and then under the classical "Voter

Model". In the former case, we design a policy that a controller can follow in order to spread

an opinion inside a network with the smallest possible cost. In the latter case, we consider

networks whose underlying graph is the d-dimensional integer torus Zd, and we design

policies that minimize the expected time until the network reaches a consensus. We also

show that, in dimension d > 2, dynamic policies do not perform significantly better than

static policies, while, in dimension d = 1, optimal dynamic policies perform much better

than optimal static policies.

Thesis Supervisor: John N. Tsitsiklis
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

One of the core problems in the Opinion Dynamics literature is to maximize the spread

of an opinion through a network. In this thesis, we study opinion control policies in two

different scenarios. In the first part of the thesis, we consider a broad class of deterministic

dynamics governing the interactions inside a network, and we design a policy that a con-

troller can follow in order to spread an opinion inside a network with the smallest possible

cost. In the second part of the thesis, we focus on the classical "Voter Model" (over networks

whose underlying graph is the d-dimensional integer torus Z'), and we design policies that

minimize the expected time until the network reaches a consensus.

1.1 Main Questions

In the networks we consider, each node has an opinion which can be either 0 or +1. A

controller is interested in driving the state of the network to a 1-consensus (i.e., all nodes

should have the +1 opinion by the end of the experiment).

In the first part of the thesis, we consider networks with deterministic dynamics, under

which the opinion of a node is determined by the opinion of a single given neighbor at the

previous time (unless there is an intervention from the controller). The controller can either

do nothing, or influence directly some nodes in the network at a certain cost. The goal of

the controller is to drive the network to a 1 -consensus by some time T (T can be infinite) at

the smallest possible cost. We also generalize the problem: in this case, the controller wants

13



to have a fraction Iq E (0, 1] nodes with the +1 opinion by some time T. To answer these

questions, we develop what we call the Descendant Algorithm and the Ancestral Algorithm.

In the second part of the thesis, we focus on the Voter Model over networks whose

underlying graph is the d-dimensional integer torus Zd. We control the network by placing

B "stubborn nodes" (i.e., nodes whose opinion is fixed at +1) over the torus. We first

consider the case where we place the stubborn nodes at the start of the experiment and let

the system evolve spontaneously from there (this is the "static case"), and then we consider

the case where we are allowed to change the position of our stubborn nodes over the torus

during the run of the experiment (this is the "dynamic case"). Our goal here is to determine,

for both the static and the dynamic cases, the expected time it takes the network to reach

a 1-consensus when the network is initialized with all nodes in the 0 state, for optimal

policies. We conclude this part of the thesis by showing that, in dimension d> 2, dynamic

policies do not perform significantly better than static policies. However, in dimension

d = 1, optimal dynamic policies perform much better than optimal static policies.

1.2 Special Notation

Throughout the thesis, we will often use notation describing the limiting behavior of a

function when the argument tends to infinity. We clarify this notation in this section.

Consider non-negative functions f and g of some argument n:

1. We write f(n) = 0 (g(n)) when there exists some positive constant k such that

f(n) 5 kg(n) for all large enough n.

2. We write f (n) = Q (g(n)) when there exists some positive constant k such that f(n) >

kg(n) for all large enough n.

3. We write f(n) = o (g(n)) when lim sup f(n) = 0.
n-+oo g(n)

4. We write f(n) = 0 (g(n)) when there exists some positive constants k1 and k2 such

that kig(n) K f(n) k2g(n) for all large enough n.

Furthermore, given the non-negative functions f, gi and 92, we will use the shorthand

notation gi(n) < f(n) < g2(n) to mean that f(n) = Q (g,(n)) and f(n) = 0 (g2(n)).

14



In this thesis, the functions f we will use often depend on multiple arguments: in that

case, we will always consider the limiting behavior of f with respect to the number of

nodes (n in Part I, and N in Part II of the thesis) in the network, while keeping all other

parameters constant.

Finally, given two real numbers a and b, we will sometimes use the shorthand notation

a V b for max(a, b).

1.3 Outline of the Thesis

The thesis is divided into two parts:

The first part of the thesis, introduced in Chapter 2, is organized as follows. In Chapter

3 we introduce the formalism used in this first part of the thesis, and define the general

time-dependent model we will be using to describe the network (the Dynamic Deterministic

System - or DDS). Then, in Chapter 4 we restrict our analysis to a time-invariant model

(the Static Deterministic System - or SDS), and we develop what we call the Descendant

Algorithm for finite and infinite time-horizon problems by analyzing the structure of the

underlying graph of the SDS. Finally, in Chapter 5, we study the DDS and develop what

we call the Ancestral Algorithm. A brief comparison between the Descendant and the

Ancestral Algorithm will conclude that chapter. For both the SDS and the DDS, we will

consider both finite and infinite time-horizon problems. Although most of the algorithms

are developed for the case where we want to influence all the nodes in the network, we

will provide a dynamic program which solves the case in which we only need to influence a

fraction of the nodes in the network.

The second part of the thesis, introduced in Chapter 6, is organized as follows. In

Chapter 7 we provide some background on the Voter Model, and introduce the "dual Voter

Model" approach, a classical tool often used to compute consensus times. Then, in Chapter

8 we restrict our analysis to the Voter Model over a d-dimensional integer torus, and we

construct a static placement of stubborn nodes that minimizes the expected time needed

to set all nodes in the state 1. Finally, in Chapter 9, we study the same model but allow

ourselves to move our set of stubborn nodes during the experiment. In this last chapter, we

15



want to understand whether there exist dynamic policies providing strictly smaller consensus

times than optimal static policies: we will actually show that dynamic policies do not

perform significantly better than static policies when d > 2.

16
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Chapter 2

Introduction

The problem of maximizing the spread of an opinion inside a social network has been inves-

tigated extensively during the past decade. The importance of this problem in applications

such as marketing has been amplified by the major expansion of online social networks.

The first part of this thesis focuses on opinion control policies, under a broad class

of deterministic dynamics governing the interactions inside a network. We start with a

network in which each node has an opinion (which we denote 0 or 1 for simplicity). These

nodes can influence each other according to some dynamics. An external controller wants

to influence the nodes in order to get a desired fraction of 0 and 1 opinions among the

population, at the end of the experiment. Each time the controller decides to influence a

node, it will incur a certain cost. Our goal is to design a policy that the external controller

can follow in order to attain its goal with the smallest possible cost.

2.1 Scope and Related Work

The problem studied in the first part of the thesis has been inspired by various works in

the Opinion Dynamics literature. For example, Domingos and Richardson [5] suggested to

take advantage of the internal dynamics of the network to propagate an opinion through a

network. In their model, the external controller incurs no cost when nodes spontaneously

influence each other. It is therefore crucial to exploit the structure of the network efficiently

and look at the impact of each node on the whole network. By modeling the social network as

19



a Markov random field, they proposed an approximate procedure to determine which nodes

should be influenced. In a subsequent paper [131 they simplified their model of interactions

between nodes and focused on a question of the form "how much should I market to this

node?".

Inspired by [5,13], Kempe, Kleinberg and Tardos [9] provided more efficient approximate

algorithms (as the exact solution is NP-hard to compute) to the problem of finding the most

influential nodes in a network under the Linear Threshold (nodes take the weighted average

opinion of their neighbors and compare it to a threshold) or the Independent Cascade (nodes

can influence their neighbors only once) models of diffusion. In a subsequent paper [101,

the authors considered a Decreasing Cascade model of diffusion and provided a greedy

approximate algorithm for selecting a set of k nodes which maximizes the expected spread

of the diffusion.

From a different perspective, Bharathi, Kempe and Salek [2] introduced a game in which

each of multiple competitors selects a set of nodes to maximize the expected spread of their

own opinion over the network. Although the diffusion model used is probabilistic, once a

node adopts an opinion, it keeps it indefinitely.

The works mentioned above focus only on choosing a good initial set of nodes to influence

to maximize the spread at the end of the experiment. This corresponds to a static policy.

Our goal is to also develop dynamic policies: we are able to influence nodes at each time

step, therefore we want to decide who should we influence and at what time, in order to

reach a desired proportion of 0 and 1 opinions in the network at the end of the experiment,

at minimal cost. The policies we will provide will be of the form "at this time t, influence

the following set of nodes".

Another major difference with earlier work lies in the diffusion model used to describe

the interaction between the nodes. While the papers mentioned above consider stochastic

dynamics such as the Linear Threshold or the Independent Cascade models of diffusion,

in this part of the thesis we will only consider deterministic dynamics. Furthermore, we

assign possibly different costs to each node the controller can influence directly. Thus, the

policy will be node-specific and the algorithm will depend heavily on the structure of the

network. Finally, in our model, we allow a node to change its opinion while the experiment

20



is running, whereas in most previous studies, once a node adopts an opinion it will keep

it. Kempe, Kleinberg and Tardos [9] showed in their Theorem 5.1 how to overcome such a

limitation, for the model they consider, by creating as many copies of the network as there

are time steps in the experiment.

2.2 Contributions

The main contributions of this part of the thesis are as follows. We focus on networks

whose graph can evolve with time in a deterministic fashion, and we assume that the

opinion dynamics over this network follow some specific deterministic rules. In particular,

we focus only on networks composed of nodes of in-degree equal to one (each node can be

influenced by exactly one node at each time, also allowing for self-influences). We formulate

our problem as a mathematical program in order to find dynamic policies the controller can

follow to influence the network at the least possible cost.

For the case where the graph of the network does not change with time, we will produce

an algorithm which determines an optimal set of nodes to influence at each time step. We

will call it the Descendant Algorithm. We will also focus on the case where the network is a

line: when the costs of the nodes are initialized randomly from some discrete distribution,

we will analyze the behavior of the optimal cost required to influence the whole network

as a function of the time-horizon T of the experiment. We will show that, for small values

of T, the optimal cost decreases sharply as a function of T, and that for large values of T

the optimal cost decreases linearly as a function of T. We show that this linear behavior

tends to occur for times T greater than 0(log(n)) when n is large, where n is the number

of nodes. Conversely, this tells us that, for large values of n, if we are willing to pay a cost

of 0(n) we will be able to influence the whole line in time 0(log(n)), while if we wish to

incur a cost of o(n) we will only be able to influence the whole line in time 0(n).

Our last contribution concerns time-evolving networks. In this case, we allow the un-

derlying graph to change with time, i.e., we allow the influencer of a node to change with

time. As long as this evolution is deterministic and is known to the controller at the start

of the experiment, the algorithm we provide will determine an optimal set of nodes to in-
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fluence at each time step. We will call it the Ancestral Algorithm. A small variation of this

algorithm will also allow us to solve cases for which we do not aim to influence all nodes in

the network, but aim instead to arrive at a given fraction of 0 and 1 opinions.

The algorithms we provide run in polynomial time. For example, if the goal is to drive

the network to a consensus of +1 opinions, the Descendant Algorithm will run in time 0(n)

on a path of n nodes, and the Ancestral Algorithm will run in time 0(nT) on a path of n

nodes for a time-horizon T.

2.3 Outline of Part I

The rest of this part of the thesis is organized as follows. In Chapter 3 we introduce

the formalism used in this first part of the thesis, and define the general time-dependent

model we will be using to describe the network (the Dynamic Deterministic System - or

DDS). Then, in Chapter 4 we restrict our analysis to a time-invariant model (the Static

Deterministic System - or SDS), and we develop what we call the Descendant Algorithm

for finite and infinite time-horizon problems by analyzing the structure of the underlying

graph of the SDS. Finally, in Chapter 5, we study the DDS and develop what we call

the Ancestral Algorithm. A brief comparison between the Descendant and the Ancestral

Algorithm will conclude that chapter. For both the SDS and the DDS, we will consider both

finite and infinite time-horizon problems. Although most of the algorithms are developed

for the case where we want to influence all the nodes in the network, we will provide a

dynamic program which solves the case in which we only need to influence a fraction of the

nodes in the network.
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Chapter 3

Model Description

In this chapter, we present the model, notation, and terminology for the first part of the

thesis. We also discuss the validity of a key assumption of our model.

3.1 Model Description

We model our network as a directed graph G (Y, &), in which A' is the set of nodes in

the network and 6 corresponds to the set of directed edges. We can also allow our network

to change with time: in that case, we define a sequence of graphs G(t) = (-, e(t)) (for

t E N) in which the set of edges can evolve in time.

Each of the nodes can be in state 0 or 1 - this is the opinion of the node. Formally, we

denote the state (or opinion) of node i at time t by the variable Xi(t), which takes values 0

or 1. We will assume that a controller external to the network wants to drive the network

to a final state in which the fraction of 1 opinions is higher than some given parameter

r. To achieve his goal, the controller can either wait for the network to update opinions

spontaneously (according to the network's intrinsic dynamics which we will define shortly),

or can influence a node directly while incurring a cost. Figure 3-1 provides an example of

such a network.

The following three definitions introduce some terminology we will use throughout this

first part of the thesis. A more detailed formal discussion will be presented in Section 3.3.

Definition 3.1.1. We say that the controller influences a node i at time t if the controller
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S 5

Figure 3-1: In this exaiple, we see a network of 5 nodes. A arrow going from a node to

anot her node mleasll5 that the forner node infil(ncles the latte.r node. The external controller
call influence the nodes directly but will incur a certain cost (here a cost c1 for node i).

performs an action at time t to set the state of llode / to state 1. The state of node t is

then updated at timle t -1. Forimally, the controller will set Xi(t + 1) to 1

I

Definition 3.1.2. W say that a node j influen-ces (I. node I at tie t if node j can change

the state of nodc i to his own state at time t: unless tHi controller influences 1)oIc i at timue

t, uodc . will inf(nc n odc i at t lie t. Formall N1, Xi(t -- 1) will le set to X (1.), uidess the

controllet also influeinces, nod iat timne t. Graphlicallv if noldc j inlhtuences nde I at tIe

t, we draw an arrow\ froi node j to node i at time t.

Definition 3.1.3. We say that a ietwork is fiiiy influenced It time / it all indes in the

nletwork are in state 1.

I
Suppose that only nodc j can infience iiode 1 at time t: if the controller decides not

to influence niode i at tim( t, then node I will le iifilieiced byv 1odc j at tinme t; if the

COinitroller decides to inflince noilde iat timiue t, then 1od I will ignore node j at time t and

the state Xi(t + 1) of iiode I at time t + 1 will be set to 1. We will formalize these rules in

Section 3.3.
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3.2 The Unique Influencer Assumption

Tlirouglhout this first part of the thesis, wXe wXill always assuinc that each node las a unique

infiuencer at any iiven tiuie. Craphically, this Imin is that the nodes in the netwTork are

coistraiied to have nit in-degi equalt to 0111. Fiirthcriotre, WC, allow the i elucer of a

node to change with tinie. However this is done ill i deteriliiiistic fashion: the coiitr oller

of the ietXvork is assumed to know S( t) for all t E M at the start of the experniient. For

xuample. We caii think of a netwrk of three iodes {1, 2, 3} suchii that node 2 ifluences itself

at all tines, itde 3 infliences itself at all tines, and node I is influeneed by notle 2 at even

tiines, and is influenced by node 3 at odd tinies (Figure 3-2).

Odd time

Figure 3-2: In this exanple, we -see a network of .3 nides thalt evohves in tine. Node 2
influences itself at all tin s and Node 3 in(hiences itself f all times. However, iiode 1 is
influenced by node 2 at cvXn times, and is intfivunced Iy- node 3 at (1( tines.

Why (10 we restrict ourselves to iietworks wjtith nodes of ill-degiee equal to one ? From

a computational ptoiit of view, w) will see in the following ctiapters that the optimization

proJbleiii over such a. network is si ilvable in polynomial time. If nodes are allowed to have

inl-degree higher than one. we need to ise iiiore coniplicated rules For the opinion dynanics:

all example Would be to consider the Linear Threshold model., which takes the average of

the opinions of a node's neighbor and coipares it to a fixedl threshold. However, hopes to

SOlve the optinization problem for a Linear Threshold iittdel in polynoti;a l time are very

thin as Linear Threshold models usiually tead to NP-hartl optimization problens [9]. Our

ai 111 goal is to get insight from )ro)bleils that are tractabe.

Fron the point of view of practical applications, considering ionly in-d'(gree one nodes

niay seem nrestrictive. We partly address this issue by allowing i the inhfitencer to change



The state of a node at time t + 1 Example:
depends on the state of:
- a fixed influencing node at time t - Static Deterministic Model
- exactly one node at time t (the influencer - Dynamic Deterministic Model
may change in a deterministic way)
- multiple fixed nodes in the network at time t - Linear Threshold Model
- multiple nodes at time t (the influencers - Dynamic Linear Threshold Model
may change in a deterministic way) I

Table 3.1: Classification of different possible deterministic models, in order of increasing
complexity.

over time in a deterministic fashion. In-degree one nodes can be viewed as nodes that are

influenced only by their most influential neighbor at a given time. Therefore if we are given

an arbitrary directed graph with edges weighted by the intensity of the influence a node

exerts on his neighbors, we can reduce the in-degree of each node to one by keeping only

an incoming edge with a highest weight.

In Table 3.1, we outline a classification of different deterministic models we can work

with, in order of increasing complexity. In the simplest case, nodes have in-degree one

and the influencer does not change with time: this corresponds to the Static Deterministic

Model. If we allow the influencer to change with time we obtain the Dynamic Deterministic

Model. Finally, by removing the in-degree one condition, we can obtain respectively a

Linear Threshold Model, or a Dynamic Linear Threshold Model. We will always assume

here that the influencer(s) are known to the controller at the start of the experiment.

3.3 Formalism

We introduce here the formalism used in the following chapters, and define the general time-

dependent model we will be using to describe the network (the Dynamic Deterministic Sys-

tem - or DDS). Suppose that the system is initially in a state X(1) = (X1(1),. . . , Xn(1)) E

{0, }" at t = 1. For the moment, it is easier to assume that we start in a state X(1) =

(0...,0). We will later show how to adapt our results to an arbitrary initial state. Since

the nodes in our network have a unique influencer, they have in-degree equal to one. We

define the following.
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Definition 3.3.1. The Influencer I(t, i) (or It(i)) of node i at time t is the unique node

that influences node i at time t. Graphically, we draw a directed edge from I(t, i) to i in the

network at time t, and so 6(t) = {(j, i) : It(i) = j} for all t E N (this is well defined because,

for all i E _/ and t E N, It(i) is unique). Furthermore, I(i) = (Ii(i), I2 (i),..., I'()) is

the chronologically ordered set of nodes that influences node i at times t = 1,2,..., T

respectively. The matrix I = [I(t, i)] for t = 1, 2,. . . , T, and i = 1, 2, . . . , n, contains all the

information about the dynamics of the system during the whole experiment.

In this deterministic model, we assume that the controller already knows the time hori-

zon T and the entire matrix I at the start of the experiment, and can plan accordingly. At

each time, a node i will adopt the state of its influencer It(i) unless the controller intervenes.

In the presence of the controller, and in case the controller decides to influence a node,

we assume that the node will adopt the state of the controller and will ignore his influencer.

When the controller influences a node, it incurs a cost.

Definition 3.3.2. We define c(t, i) (or ci(t)), for t = 1, 2,..., T, to be the cost (or price)

the controller must pay at time t to influence node i. We only require c(t, i) > 0. The

costs of every node at time t are given by the vector c(t) = (ci(t), c2(t),. .. , cn(t)), for

t = 1,2, ... IT. The matrix C = [c(t, i)], for t = 1, 2, ... , T, and i = 1, 2,. .. ,n, contains all

the information about the cost of influence that the controller may incur.

In this deterministic model, we assume the controller already knows the entire matrix

C at the start of the experiment and can plan accordingly. If both matrices I and C

are constant in time, we obtain the Static Deterministic Model: in this case, the matrix

I can be replaced by the vector I = (I(1,1),I(1,2),...,I(1,n)) and C by the vector

C = (c(1, 1), c(1, 2),1 ... ,I c(1, n) ).

We see that the Dynamic Deterministic Model is specified using only two matrices:

I = [I(t, i)] which summarizes the dynamics of the network, and C = [c(t, i)] which contains

the costs to the controller if he decides to influence a given node. Hence, from the controller's

point of view, we are led to the following definitions.

Definition 3.3.3. Let ai(t) (with t E {1, ... , T - 1}) represent the decision the controller

takes about influencing node i at time t:
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, { if the controller influences node i at time t,

if the controller does not influence node i at time t.

We can now formally define the evolution of the state of the nodes:

Definition 3.3.4. The state of a node i at time t + 1 is given by:

Xi(t + 1) = XI(t,)(t), if ai(t) = 0 (with cost =

if ai(t) = 1 (with cost =

In a more compact form :

Xi(t + 1) = ai(t) + (1 - ai(t))XIt,)(t). (3.1)

Our goal is to reach a state X(T) = (1,...,1) at minimal cost, given an initial state

X(1) of the system. In summary, we choose control parameters ai(t) at each time t, based

on the knowledge of I, C, and X(1). We formulate this problem as a mathematical program

in Equation 3.2.

minimize (over a)

subject to

T n

E E Ci~tai(t)
t-1 i=1
n

Z Xi(T) = n
i4=1

ai(t) E 0, 1}, Vi = ,. n, Vt = 1, . .. , T

Xi(1) E {0, 1} is given, Vi = 1,...n

Xi(t) evolves according to Equation 3.1.

When T = oc, the controller wants Xi(t) = n for all t large enough.
i=1

It is also possible to generalize the problem in the following way. Fix some parameter

E [0, 1]. The controller may want to drive the network to a final state in which the fraction

of I opinions is higher than the given parameter 7. In that case, the mathematical program

becomes:
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)t--1)

time
t+1

Figure 3-3: Control se(iiiqece of the system.

inimize (over ()

subject to

1' u

t-I i=1

Xi (T) ;> q
i-1

at)E(0, 1} vi=1 , = 1, - -,

Xil() E {0, 1} is givel, Vi 1, ... ,n

X,(t) evolves accordinlg to Equatioii 3.1.

When T = C, the conitroller wallts A-; (t) > ijnu for all t large eiolih In this casc, we

only riequire the fraction of nodes int the 1 state to be higher than qj. Therefore the network

imist reach, at some finite time, what we will call a recurre nt stItc:

Definition 3.3.5. Fix some finitc time to. The state X(to) of the systenI at timne t0 is

cailed recurrent if the network will reach a state X(t) = X(to) at some finite time t > to

withbout any initervenit iO froi the controller.
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Chapter 4

The Static Deterministic Model

(SDM)

The Static Deterministic Model is based on two time-invariant vectors: I = (1,, 12,.. . , i,,)

(1(1, 1), 1(1, 2), ... , I(1, n)) which summarizes the dynamics of the network, and C =

(ci, c2 ,. .. , c.,) := (c(1, 1), c(1, 2),..., c(1, n)) which contains the costs the controller in-

curs if he decides to influence a given node. The state of a node i at time t + 1 is given

by:

Xi(t + 1) X,(t), if ai (t) = 0 (with cost 0)

1, if ai(t) = 1 (with cost = ci)

We assume that we start at a known state X(1) = (X1(1), . . . , X,(1)). In more compact

form:

Xi(t + 1) = a (t) + (I - ao (t))X1 ,(t) (4.1)

In this chapter, we explore properties of time-invariant directed graphs with nodes of in-

degree one, and use them to solve our optimization problem by developing the Descendant

Algorithm. Unless specified otherwise, we always assume the nodes in our networks to have

in-degree one.

In Section 4.1, we assume that the network forms a line: we start by analyzing the
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struictre of such networks and level p the Desim daIt Alpriun wor IV p aths. We finish

that secti by st11 ying the 1 behavior of tie optinaml cost as Ve vary the tima & horizon T.

In Section 4.2. we analyze more general iun-degree o1)11 graphs 1(dl cply the Descendant

Algorithm over such networks.

4.1 Analysis for a Line Network

W will start our aiia~lysis b assuniiitg our network is a line, according to the following

lefilitioin.

Definition 4.1.1. A directed graph is called a line network if the following holds: when

we ignore the directions of the edges and remove (uplicate eidbgs an(1 self edgces we are left

with an undirected line graph.

For example. all graphs in Figure 4-1 and Figure 4-2 are line networks. We also defile

the notion of a (directed) path in a (lireeted network:

Definition 4.1.2. A (directed) path is a line graph in which all edges (exelldi g self-

pointing edges) point ill the sainii direction.

A directed piath is a sp&Wal asi of alie graph. We have dravn in Figure 4-1 the typical

directel path iofNwork.

Figure 4-1: DirectosdI path of n1 nodes: node I is the self-influential node, andl node o is the

eiidpoiit.

In this chapter, we xiii use the structure of the network to derive the Descendant

Algorithin. We will consider both iite and infinite time-horizon probtlenis. We will first

assume that the controller wants to influence every node by time T. W will then consider

a more general objective by assuming that the controller only wants to influence a fraction

11 (with 1 0 < I/ < I) if the 11)d is by time T.



a.) 2-1Cvle 2-C" 1, 2). (h) Linear Chain wilth I nods UC12).

(c) Mixed Chin with 1 1ods AIC(2, 3).

Figure 4-2: Types of connectcd( comIponeits eincounterod iii the simplified graph.

4.1.1 Properties of the Graph Representation

\Ve start by analyzing the structure of line networks under the following condition: we

assumne Ihat all 1(1s have in-(legree equal to one. Ne first defie:

Definition 4.1.3. A 2-Cycle is a pair of distinct nod s (i ) in which each node only infln-

ences the other one (Fig.4-2a). We will refer to it as the 2-cycle (2-C(i, J). For convenience,

we assume itoCde i to have a sialler cost than11 node j (ci < c; ).

Definition 4.1.4. A Linear Chain is a colinecte I set of 1odes oIl the line with no cycles

present, 1ut with exact ly one self-influencing node i (Fig.4-2b) We will refer to it as tHi'

linear chain LC(I).

Definition 4.1.5. A Mixed Chain is a coHllnected set of nodes on the line with exactly one

2-cycle (1 J) (Fig.4--2c). We will reftr to it as the inixe d chain AJG CI, j). For convenience,

we assume node i to have a smaller cost than node j (ci < c;).

RTm''nark. Note that a 2-cycle is a special case of a mixed chain.

Given a network, we say that a subset of nodes _ fI (with YP c J') forms a co'incete(d

componeInt if. alter ignoring the directions of the eCdges and removing duplicate edges and

self edges, we are left with ai undirected couhlected graph which contains no ed(ges between

* t and . \ - We now show that any line network is a disjoint collection of linear chains

adlll of mixed chains.

Theorem 4.1.6. Lu a tine networ a cou.in'ncted component mufhste eih cer:



1. a linear chain LC(i), or

2. a mixed chain MC(i,j) (which could be a a 2-cycle 2-C(ij)).

To prove this theorem, it is useful to note the following properties of the network:

Lemma 4.1.7. The number of edges equals the number of nodes.

Proof. Suppose that there are n nodes. Since nodes have in-degree one, we must have one

incoming edge per node, hence n edges in total.

Fact. If a line network contains a cycle, it is a 2-cycle.

Lemma 4.1.8. In a line network, a connected set of k nodes either has a single 2-cycle or

a single node influencing itself.

Proof. Suppose that the network is not a 2-cycle: then by the previous fact, the network is

not a cycle. By Lemma 4.1.7, we must have exactly k edges connecting these k nodes. To

connect k nodes on a line, we need only k - 1 edges. However, if we only have k - 1 edges

for k nodes, there must be a node i with in-degree zero. The additional edge can either be

added from node i to itself, or from a neighbor of node i to node i. In the former case, we

get the unique self-influencing node i. In the latter case, node i and his neighbor will form

a 2-cycle.

We can now return to the proof of Theorem. 4.1.6:

Proof. (Theorem. 4.1.6) From the previous lemmata, we have shown that a connected set

of k nodes must have either a unique 2-cycle, or a unique self-influencing node. If this

connected set of nodes has a unique self-influencing node, the graph is a linear chain. If

this connected set of nodes has a unique 2-cycle, the graph is a mixed chain. L

The following property will be very useful to construct an optimal policy to our control

problem.

Proposition 4.1.9. (The Cascade Property) If we remove the self-influencing node

(resp. 2-cycle) of a linear chain (resp. mixed chain), we obtain two chains (one of which
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may be empty). In each chain, all arrows point in the same direction. In other words, edges

go away from a self-influencing node, or a 2-cycle.

Proof. If we remove a self-influencing node from a linear chain, we remove 3 edges if the

self-influencing node has two neighbors, and 2 edges if the self-influencing node has only

one neighbor. In the second case, we get a unique chain: the neighbor of the removed node

now has in-degree zero, and all edges in the chain must have the same orientation as the

edge between the self-influencing node (otherwise some node will have in-degree 2). In the

first case, we get two chains: the argument is similar to the one-chain argument.

Alternate proof. If an edge is going towards a self-influencing node, then this node

has in-degree two which is forbidden. If an edge goes towards a 2-cycle, then one node of

the 2-cycle has in-degree two which is forbidden. L

We now have a complete characterization of the types of connected components we can

encounter in the line network. This will immediately provide an optimal policy for our

control problem over line networks, when T = oc and y = 1.

Infinite Time Horizon Case (T = oo) with r, = 1:

We start with the case of an infinite time horizon (T = oo) where q = 1 (we want

to influence all nodes). This means that the controller's objective is to reach the steady

state X(to) = (1,...,1) at a finite (but arbitrarily large) time to. We also assume that

X (1) = (X1 (1), .1. X1M).

Proposition 4.1.10. If T = c and q = 1:

1. Suppose the controller wants to fully influence a 2-cycle 2-C(i, j) (with ci <; cj).

An optimal policy is to influence node i at times t = 1 and t = 2 (i.e., choose

a (1) = (1-Xj(1)), ai(1) = (1- Xi(1)) and set all other components of a(t) to zero).

The total cost of influence for this connected component will be: ci (2- Xi(1) - Xj (1)).

The whole component will be entirely in the +1 state at t = 3.

2. Suppose the controller wants to fully influence a linear chain LC(i). An optimal policy

is to influence node i at time t = 1 (i.e., choose ai(l) = 1 - X4(1) and set all other
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components of a(t) to zero). The total cost of influence for this connected component

will be: ci. The whole component will be entirely in the +1 state at t = k + 1, where

k is the number of nodes in the longest path starting at i.

3. Suppose the controller wants to fully influence a mixed chain MC(i, j) (with ci ; cj).

An optimal policy is to influence node i at times t = 1 and t = 2 (i.e., choose

ai(1) = (1-X(1)), ai(2) = (1-Xi(1)) and set all other components of a(t) to zero).

The total cost of influence for this connected component will be: ci (2- Xi (1)- Xj (1)).

The whole component will be entirely in the +1 state at time t = k + 1, where k is the

number of nodes in the longest path or cycle starting at i.

In general, the optimal cost for fully influencing the whole line network is given by:

S ci(I - Xi (1)) + ci(2 - Xi(1) - Xj (1)), (4.2)
LC(i) MC(ij)

where we sum the costs over all Linear Chains and all Mixed Chains in the network. The

time to influence the whole network is equal to:

3, if in a 2-cycle 2-C(ij),

T= al mx 1+number of nodes in the longest path starting at i, if in a linear chain LC(i),
components 1+number of nodes in the longest path or cycle .

i .

starting at the node to influence (i orj) ,if in a mixed chain MC(ij).

(4.3)

Proof. For simplicity, assume that X(1) = (0,. . . , 0).

1. Suppose the controller wants to fully influence a 2-cycle 2- C(i, j). We are considering

an infinite time-horizon problem, therefore the controller wants to reach the steady

state X(to) = (1,..., 1) at a finite (but arbitrarily large) time to. Notice that if the

controller only influences one node in the cycle, only one node will be in the +1 state

at each time. Therefore the controller can influence either both nodes simultaneously,

or one node at two consecutive times. Clearly, influencing .the cheapest node twice
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will be an optimal solution. It is easy to check that an optimal policy the controller

can apply is to influence node i at times t = 1 and t = 2 (i.e., choose ai(1) = aj(2 ) = 1

and set all other components of a(t) to zero).

2. Suppose the controller wants to fully influence a linear chain LC(i). We are con-

sidering an infinite time-horizon problem, therefore the controller wants to reach the

steady state X(to) = (1,.. . , 1) at a finite (but arbitrarily large) time to. For node i

to reach a +1 state, the controller will need to influence node i at some finite time,

because node i is only influenced by itself. Once the controller does that, node i will

remain indefinitely in the +1 sate. Therefore the optimal cost of the control problem

is at least equal to ci. By the Cascade Property (Proposition. 4.1.9), we see that

node i will spontaneously influence both sides of the linear chain in a finite amount of

steps. This cascade effect does not require any action from the controller. Therefore

this policy has a cost equal to ci, and our policy must be optimal.

3. Suppose the controller wants to fully influence a mixed chain MC(i, j). We are con-

sidering an infinite time-horizon problem, therefore the controller wants to reach the

steady state X(to) = (1,. . . , 1) at a finite (but arbitrarily large) time to. First, we

view the cycle (i, j) as a unique self-influencing node. By part (2), we see that the

controller must influence the cycle directly in order to reach the desired steady state.

Once the cycle is in the (1, 1) state, the whole mixed chain will be in the +1 state

by the Cascade Property (Proposition. 4.1.9). We now use part (1) to influence the

cycle at an optimal cost.

For an arbitrary initial state X(0), we need to change our policy only if the self-

influencing node, or a node of the 2-cycle is already in the +1 state at time t = 0. The

policies described in the statement of the proposition are clearly optimal.

We can now use the previous proposition to solve the infinite time-horizon control prob-

lem when 0 < r < 1.
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Infinite Time Horizon Case (T = oo) With 0 < 7 < 1:

Suppose that, in our infinite time-horizon problem, the controller only wants to influence

a given fraction 7j of the nodes from the network (where 0 < ri < 1). This means that the

controller wants DU Xi(t) ;> qn at all times t large enough. We still need to reach a

recurrent state in a finite (but arbitrarily large) amount of time. The line network is a

disjoint collection of linear chains and mixed chains. Since the controller does not need to

get all nodes in the +1 state, we simply need to influence the cheapest connected components

of the network in order to get at least qn nodes: this is clearly a knapsack problem. For

simplicity, assume that X(1) = (0,..., 0).

Proposition 4.1.11. For simplicity, assume that X(1) = (0,... ,0). If T = oo and

0< 77 <1:

1. Suppose we have a 2-cycle 2-C(i, j) (with ci < cj):

To have only one node in the +1 state, an optimal policy will be to influence node i

once at time t = 1 (i.e., ai(1) = 1 and set all other components of a(t) to zero)..This

is done at a cost ci by time t = 2.

To have both nodes in the +1 state, an optimal policy will be to influence node i at

times t = 1 and t = 2 (i.e., ai(1) = ai( 2 ) = 1). This is done at a cost 2ci, by time

t = 3.

2. Suppose we have a linear chain LC(i):

Since T = oo, the controller can influence the node i at time t = 1 (i.e., ai(1) = 1

and set all other components of a(t) to zero). Note that this procedure will eventually

influence all nodes in the linear chain. This is done at a cost ci. The whole linear

chain will be entirely in the +1 state by time t = k +1, where k is the number of nodes

in the longest path starting at node i.

Proof. This proposition clearly follows from Proposition 4.1.10.

When we have a Mixed Chain MC(i, j) (with ci < cj), the problem of influencing a

fraction q of nodes in the network should be formulated differently. Indeed, when we reach
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I 2

. it=4i

Figure 4-3: Mixed chain of three nodes evolving in tinie: red iides are nodes in the -1
state Xwhile lue iiodes are in the 0 state. Notice that the number of nodes in the +1 state
(sciliates with tim : there is clit node in the +1 state at 0dd tues. and there are two nodes

in tlIh +1 state at even time .

a recurrent state and then let the network evolve spontanecously from there. the nuiher of

nodes in th+1 st-ate iay not reiiaii constauit. For exaniple. in Figure 4-31 the network

osciltates betwecI a state ill which two nodes are in state +1 (this Iappiens at even tiines),

an.1d a state in which only one litole is in state +1I (this happens (it odd times).

For Mixed Chains, when we ijfience one node of t'he cycle We X vctually reach a

reciUirrent statt. We show eI clow tiat a rciurreit state can either ive " ] nodes in the -P--

state, or N nodes in the +1 statl. Actiially, When tiht systemn is in one of these recurrent

states at tilie t, it wvill ie in the other recurrent state at tine t + 1. Therefore, if we take

a tiie-avrage of thi nml)er of nodes in the -1 state after reaching a recurrent state, we

will have "1.Oi average" -1 nodes in the +1 state.

Proposition 4.1.12. Suppose we hav e a mixcd chain AC(i,.j) (with ci <; Cj :

1. To ifluncc "on aenr ha-' ' /f f the iodcI we can Influeace Only node i at t = I

with a caluc a (1) - 1, at a cost q, by time t = k 1 1 (whcre ! is th number of nods

in the tvimjst path. sti'tinq at odc i)

39



2. To influence all nodes, we can influence node i at t = 1 and t = 2, with a value

ci(O) = ai(1) = 1, at cost 2ci, by time t = k + 1 (where k is the number of nodes in

the longest path starting at node i).

Proof. 1. By influencing only one node in the Mixed Chain's 2-cycle, we eventually

reach a recurrent state. Observe that such recurrent states must be of the form

X = (X1,X 2 ,...,Xn) where X1 = 0 or 1, and Xi = 1-Xi-1 for all i E {1,.. ., n}

(i.e., X = (1,0,1,0,...,Xn) or X = (0, 1,0, 1,...,Xn) in such a recurrent state).

Once such a recurrent state is reached, the system will alternate between these two

states at each iteration. When X1 = 0, the recurrent state has [n] nodes in the +1

state, and when X, = 1, the recurrent state has [Ill nodes in the +1 state. Therefore,

if we take a time-average of the number of nodes in the +1 state after reaching a

recurrent state, we will have "on average" ' nodes in the +1 state.

2. This proposition clearly follows from Proposition 4.1.10.

Proposition 4.1.13. We are given a network consisting of a collection of Linear Chains

and Mixed Chains. To eventually reach a fraction 7 of nodes in the +1 state, we can

follow the procedure outlined in Proposition 4.1.11 and Proposition 4.1.12, and choose the

connected components to influence by solving the following knapsack problem.

Let ai(t) = 1, if we influence node i at time t,

0, if we don't influence node i at time t.

We solve:

minimize j ai(1)ci + (ai(1) + a (2))ci
LC(i) MC(ij)

subject to ?n ; E ai(1)1LC(i)I + 1 IMC(i)t ((1) + ai (2)), (4.4)
LC(i) MC(ij)

ai(t) E {O, 1}, Vi = I . .. n, Vt = 1, 2

where the sums run over all Linear Chains and all Mixed Chains in the network.

Proof. This proposition clearly follows from Proposition 4.1.11 and Proposition 4.1.12. 0
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Equation (4.4) involves complicated notation, but the idea behind it is simple: we

want to select the cheapest connected components and decide how many nodes we need to

influence in each case. This basically boils down to a knapsack problem.

4.1.2 The Descendant Algortithm

We will now consider finite time-horizon problems, first assuming that rj = 1, and then for

a general q E (0, 1). In the former case, we will solve the control problem by developing

the Descendant Algorithm (DA). We will also show that the DA can be extended to the

infinite time-horizon problem. Throughout this section, we will assume for simplicity that

X(1 = (0, ..., 0).

Finite Time-Horizon Case (T < oo) With q = 1:

Note that when T is finite, Proposition 4.1.10 still holds if T > T* (where T* is defined

in Equation (4.3)). T* is interpreted as the smallest time to reach the targeted state under

an optimal policy. If T < T*, the influencing process must be accelerated by influencing

more nodes, so that the entire network will be in the +1 state at time T. The following

proposition provides an optimal policy:

Proposition 4.1.14. Suppose that T < oc andq = 1.

1. Suppose that the controller wants to fully influence a 2-cycle 2 - C(i, j). In this case,

T* = 3. Hence if T > 3, we just need to apply the optimal policy given for the infinite

time-horizon case. If T = 2, then the controller must influence both nodes at t = 1

(i.e. ai(1) = aj (1) = 1) at a cost of ci + cj.

2. Suppose that the controller wants to fully influence a linear chain LC(i). In this case,

an optimal policy is provided by applying the "Descendant Algorithm on a Path" (see

below) on each path of LC(i) from node i to an end of the chain (i.e., a node 1 with

out-degree equal to zero). Note that Linear Chains can have either one or two such

paths (or none: in that case the Linear Chain LC(i) consists only of node i).
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S.ppose that /he cot/rollc waut to filly itifluc-Uc a (i1xed chailn AC(i, j ). IfT = 2.

th(n u'11, optImal poliy Onsist of iflU cg 710hy ( Ode i' IIIh m1iwed caIu at t = 1.

T > 3 anl optimal policy is ra'lchd by in7lU//UTc1nlg the ehtspost d 1 iu th cycle

-( h nod i) It tImeS t =1 (Ul t = U;w thn Upily th LDe UJIu Algor-ithm OU

ai Path" ( Se lowIu) on ach path fi UU/ nod( I to an CUdl of tlhe chai (i. ., Uode I

writh oot-d ] qual to Zero). I'll othte w)dS. CU WC 7ilu 1141C nOde at t I woad

t = 2, vve can U.iluore the ifene mode j has on node i (rem 1e this edge) and treat

the pr-ob / l oem ; as a Linei(ar Chain-.

Fiture 4-4: Linear chaliii of ll. liodes: node 1 is tile seltf-iihuicicing 1ode, uald node n is the

endpoint.

DESCENDANT ALGORITHM ON A PATH:

Without loss of generality, call this path (1,2, 3'.... .) where 1 is the self-influencing

I[ode, and i influeiices / + 1 fOr all I < I - 1 (see Fig.4-4). WVC watii to itfluntice the

whole chain by titme T a(d at minimial cest.

Detal/ed A/ri.th/m:

1. Let /,( - 1 i(d influtence 11ode J/ at time t = 1. This will spontaneously influence

nodes L{. jI 1..., iniT(T P 1+ F - 1, U)} = {1, 2,.... min(T 1, )} until time

T, at a co'st - = ci

If T I - T -- I + j( 1 I , th ' STOP. Otherwise, go to tih, nxt step.

2. Let jt ]w the node with clieapest cost ci a1fl0g1( the set of odes {' + 1, jo +

2,.. /0 + T /1) } (if there is a tic, pick one of the cl(apest nodes arbiitLily).

Let ] 1)b tIhL clit pest node in tile set {T - +jo, T - +j + I ... min(T +I -

Ij - i}.

If 1i (s ceap)'r than j/ iiniliitce 110dl ji mtii(j -- j Ia -1 - p 1o +1) (onsLuiv e
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times starting at t = 1. This will spontaneously influence nodes {T - 1 + jo, T -

1+ jo +1,.. ., min(T - 1+ ji - 1, n)}, at a cost ci min(ji - jo, n - T +1 - jo + 1).

If j2 is strictly cheaper than ji, influence node ji (12 - jo - T + 1) consecutive

times starting at t 1. This will spontaneously influence nodes {T - 1 + jo, T -

1+ jo + 1,..., j2 - 1}, at a cost cj(j2 - jo - T + 1).

If T - 1 I - 1 > n, then STOP. Otherwise, go to the next step.

3. At step k: Let 1k be the node with cheapest cost ci among the set of nodes {Jk-1 +

1, jk-1+2, . . . , Min(jk-1+T-1, n)} (if there is a tie, pick any of the cheapest node).

Let jk+j be the cheapest node in the set {T - 1 +jk-1,... , nin(T -1 +jk - 1, n)}.

If 1k is cheaper than jk+1, influence node k min(jk - jk-1, n - T + 1 - 1A + 1)

consecutive times starting at t = 1. This will spontaneously influence nodes

{T - 1+A-1, T - I+ jk-_+1,... min(T - 1 + A - 1,n)}, at a cost Cjk rnin(jk -

Ak-1, n - T + I - jk_1 + 1).

If jk+1 is strictly cheaper than 1A, influence node k (jk+1 -k -- T + 1) consecutive

times starting at t = 1. This will spontaneously influence nodes {T - 1+Jk-1, T -

1 + 3k-i + 1, ... , jk+1 - 1}, at a cost cyk(jk+1 - 3k-1 - T + 1).

If T - 1 + A - 1 > n, then STOP. Otherwise, go to the next step.

If the algorithm terminates at k = k* then the total cost to influence the whole chain
k*-1

is equal to: cj 0 + E c *min(jk-jk_1,jk+l -k-i -T +1)+(n-T+1-jk*- I+)cjk..
k=1

This algorithm obviously terminates since the jk form a strictly increasing sequence of

integers which is bounded above by n, hence 1 < jk* in - T + 1 when T < n, and jk* = 1

for T > n. Hence the run-time of the algorithm is at worst of order O(nT).

Proof. If we influence the self-influencing node, then we will have influenced the first T - 1

nodes in the path by time T. We now need to influence the remaining n - T + 1 nodes

by influencing any non-self-influencing node of the path: this means that we must choose

n - T + 1 nodes to influence among the remaining n - 1 non-self-influencing nodes at
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convenient times (the nodes chosen do not need to be distinct).

We observe that each node can influence at most T - 1 nodes (including himself) by

time T. Therefore, in an optimal policy, the cheapest node ji in {2,..., T} should be

used to influence the whole set {T, ... , T - 1 + ii - 1}. Actually, if some node j2 E

{T,... T - 1 + Ji - 1} has a strictly cheaper cost than ji, then ji will influence only the

set {T,. . .,2 - 1} (because j2 influences the rest at a strictly cheaper cost). We are now

guaranteed to have influenced all nodes in {T, ... ,2 - 1} at an optimal cost. If it was not

optimal, then some other node j E {2, ... ,j2 - 1} would be strictly cheaper than ji. This

is impossible because, by definition, ji is the cheapest node of that set.

We continue analogously by looking choosing j 2 among the nodes {ji +1,..., T - 1 +

ji - 1}, etc. The same idea applies.

The algorithm above is presented in much detail in order to understand better the

machinery behind it. We now present a simplified version of the Descendant Algorithm.

Simplified Algorithm:

We first select the nodes we will influence directly. This will be a collection J =

{joi, . . . ,jk*} of nodes in {1,. . .

1. Let jo = 1.

2. Let k be the cheapest node in {jk-1 + 1,-. .. , min(jk-1 + T - 1, n)} for all k > 1.

3. Stop when k = k*, where k* is defined by jik*1 > n - T + 1.

We now calculate the number Nk of consecutive times we want to influence node jA:

Nk = min(jk - jk-1, jk+1 -- ik-1 - T +1), V I < k < k*.

If the algorithm terminates at k = k* then the total cost to influence the whole
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ch in wals Itml to:

i j + f imiu(.j -k~ j .I1+ Ik-: -T + 1) + (n T + -, + 1)c J .

The intititjolt bet hid the Descend tat algoritlhmi is that we pick a node at nd see how

imaniy times we should influcuce it (lirectly to r('acll the largest tnmber of descendalnts of

that node by the tinic-horizou.

Finite Time-Horizon Case (T < 90) With 0 < / < I:

If T is filite mid 0 < q/ < 1, the a lition is much trickier. Since we don't need to infln-

ence the entire network. ad the tiit-horizoi is finite, then we may tiot want to Influence

systematically the self-influencing nOl(s or nd)(les in 2-cycles. For exanplc., consider the

following linear chain LC(2) of four nodes:

0

Figlire 4-5: How things can go wrong when T < T* and 0 < ij < 1.

Example 4.1.15. Consider the L( 2) linear chain in Figure -4-5 (the costs per Imit

influence are written in red next to the decisions a). Assume that X(1) = (0, . . .0).

Clearlv. if T oc and I , then we must influence only itodIe 2 (i.e., set (V2(1) = 1),

and the optinal cost l. infllIIice tIhle lincar chain is equal to 1000. Note that T* 3:

if T7 > 3., the prevunis policy reins optimal as we necd to ihflutice all nodes, so wc

muist influence node 2 directlyi at sonic pint. If P < 2, the we will have to influence

45



more nodes: for example, if T - 1, we need to influence all nodes in the network (the

optimal cost will be equal to 1003). If T = 2, an optimal policy would be to influence

node 2 at t = 1, and then influence node 4 at t = 2 (the optimal cost is equal to 1001);

another optimal policy would be to influence nodes 2 and 3 at t = 1 (the optimal cost

is equal to 1001).

If T = oo and 0 < q < 1, the optimal policy will also be to influence node 2 at t = 1

at a cost of 1000. Indeed, because T = oc, we cannot influence any smaller number of

nodes. For example take q = 50%: then the controller wants to have at least 2 nodes

in the +1 state at T = oo. If we don't influence node 2, we will have to influence other

nodes (say only node 3) at infinitely many times: this leads to an infinite cost.

The case is much trickier when T is finite and 0 < q < 1. Let q = 0.5: in this

example, an optimal policy will be to influence nodes 3 and 4 at time T (or influence

node 3 at times T - 1 and T). The optimal cost is therefore equal to 2 (which is much

cheaper than if we would influence node 2). However this solution is "unstable" as all

nodes will go back to the 0 state at time T +2: this may not be an issue if the problem

we are interested in does not care about the evolution of the system after time T (for

example, during elections, T would be the time at which the voting sites close: a party

wants to have enough voters in its favor at that time, but the opinion of the voters after

that time does not matter much ... until the next elections perhaps !).

From the previous example, we see that optimal policies for finite T and 0 < q < 1

would consist of influencing "cheap" nodes at times "close" to T. It is possible to find a

similar approach as that of the Descendant Algorithm, however the Ancestral Algorithm

we will develop later on will provide a much simpler way of tackling this case.

4.1.3 More About the Optimal Cost vs. Time Horizon Plot

Throughout this section, we assume that q = 1 and X(1) = (0,.. . ,0). The plots presented

here are obtained by running the "Descendant Algorithm on a Path". Notice that the first

point (at T=1) has an optimal cost equal to the sum of all the costs of the nodes in the path,
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and tti last point (when T is equail to the nutnler of nodes in the path) has an optimal

cost equal to the cost of the first node (the self-intbuencing node).

In Fig. 4-6, we consider a path of 10 nodes {1, 2,. . . , 10} with associated costs C

(8, 1, 3, 1, 1, 9, 7, 4, 10, 1). We then plot the value of the optimal cost as a finction of the time-

horizon T. We imnediiately see from this example that such a fiumnction is not necessarily

conVex. However, it is easy to see that such a function will always be non-increasing, as

inucreasing tihe tine-horizon cannot increase the optimnal cost.

--- C5* I I I d: IN1A,17 10.

457

0-

1 2 3ISISI1

Figure 4-6: Example of an Optimal Cost vs. Time Horizon Plot: this example shows that

the function (loes not need to lie convex.

In Figures 4-7 to 4-9, we consider a path of o. nodks {1, 2,.. . ,n} for large values of n. We

grenerate costs c1 , . ,. independently from a discrete uniform distribution over {1, . 10}.

We then plot the value of the optimal cost as a function of the tiue-horizon T. In Fig.

4-7, we consider a path of 1000 nodes in which the cost of each node is generated from a

discrete uniform distribution over {1,..., 10}; we then plot the corresponding optimal-cost

vs. time-horizon graph. In Fig. 4-8, we generate 200 paths of 1000 nodes and plot their

corresponding optimal-cost vs. time-horizon plot. Finally, in Fig. 4-9 we consider a path

of 10' nodes; we then plot the corresponding optimal-cost vs. time-horizon graph.

We notice the following trend for long paths: the optimal cost tends to decay sharply

for smaller values of T, and linearly for values of T closer to T*. Indeed, for smaller values

of T, we need to influence fewer nodes as we increase the value of T and therefore we stop
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Line with 10 nodes, and Cost - Ut1,10)

5000

40M2

n300

2000

1000

10 200 300 400 500 600 700 00 900 1 WO
Time Horizon T

Figure 4-7: Example of an Optimal Cost vs. Time Horizon Plot for 10 nodes with node
costs drawn uniformly at randoi in {1, 10} . We observe that the optimal cost decreases

sharply as T grows until T t 50; then the optimal cost seems to decrease linearly as T grows.

200 paths of 1000 nodes each, Cost-UJ1,10)

4000 -

4000

o

2000

1000

0 100 200 300 400 00 600 700 000 900 100
Tine Horizon T

Figure 4-8: 200 Optimal Cost vs. Time Horizon Plot with node costs drawn unifornty at

randoni in { .... 10}. A pattern seems to emerge: the function decreases very fast at the

beginno and then goes linearly to the cost of the self-influencing node.

influencing some expensive nodes. Depending on the distribution of the costs along the

path, we are left mainly with chxaper nodes after some time (we will define properly this

cutoff time as T' in the next proposition). This implies that the optimal cost will decrease

slower for larger vai es of T.

We can now try to be more quantitative about the optimal cost vs. tine horizon curves



.. o Line with 10' nodes, and Cost - U{l,10)

Sr

'n 3

P0

1X 1.04

0 10 2000 3000 40 00 r00 7000 O0n 90M 10003
Tire Horion T

Figure 4-9: Example of an Optimal Cost vs. Tine Horizon Plot for 104 nodes with node

costs drawn uniformly at randoi in {1, . .- , 10}. We conjecture that, for values of T greater

than log(n), and as the number of nodes goes to infinity, the optimal cost function tends to

the line a - (T + 1).

(e.g., see Fig.4-8):

We generate a path of - nodes by randomily choosing the costs Ci of the nodes according

to some Probability Mass Function (PMF) PC(c) defined for positive values of the cost c.

For simplicity, we can assume that the cost C, (Cl ~ I(, i = 1, ... , i are independent and

identically distributed) satisfy P(c) 0 for all c < 1, and Ec(I) > 0. Define 0(T) as the

optimual cost at time T.

Approxiiate Colcdulation -1.1.16. Undler such a. construction:

E[C(T = I) nE[C] = n ' ii c (c)
c=-1

E[C(T =I, + 1)] = E[C1] = ePc(c) (Which is the expected cost of the self-influencing

node)

Define e = min Ci as the cheapest cost in the path. We assume that the path is long

enough (with respect to I/Po(1)), so that we can make the approximation that co = 1. Call

T, the earliest time at which the optimal policy influences only nodes with cost co (except

p)ossibly for ihe self-influencing nodIc of tlie path). Tc corresponds to the time at which the

behavior of the curves becomes ap)proxiniately linear. Then we can approximate E[T.] by:
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(2;)
E[Tc_ ~~ n - 0 p (1 -p)"~OZ(1 - (1 - p))"O, (4.5)

n0=1 ( Ant=1

or
n-il (i - p(l - PO

E[Tc Z ~ (1p)f (4.6)
t=1

where p = PC(co)

n
Justification. First, E[t(T = 1)] E[E Ci] = nE[C] because when T = 1 we must influence

i=1
all nodes on the path, so the optimal cost is just the sum of the costs of all nodes. Also,

E[C(T = n)] = E[C1] because when T > n we only need to influence the first node of the

path, as its influence has enough time to propagate through the entire path.

Assume that the path is long enough, so that we have co = 1. For i = 1,... , n, let Y

be the following indicator random variable:

1, if Ci = co,

0, if Ci > co.

Hence Y are IID Bernoulli random variables with parameter p = PC(co). Then, T, corre-

sponds to the largest interval between two successes (including the index of the first success).

The lengths of such intervals are random variables which approximately follow a geometric

distribution (ignoring end-horizon effects) with parameter p = Pc(co). We define these

random variables as: Wj = length of the jth interval. If No is the number of nodes with

cost co, then given NO: Tc = max Wj. We make the approximation that the Wj are
=1,..No

independent of No and are independent of each other. In that case, for 1 < t < n:
No No [tJ [tJ

P(Tc tINo) = P( max Wj t)= f lP(Wj 5 t) ~ E p( - p)k-1 -=pNo(Z(1 _
=1. j=1 j=1 k=1 k=1

P)k-)No

So: P(Tc < tINo) ~ pNo (-1 l )) N [1 _ P)tNo

Therefore:

n
E[TcINo] ~ (1 - P(Tc t)) = n - E(1 - (1 - p)t)N

t=1 t=1
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Finally, using the Tower Property E[Tc] = EE[TcINo]], and using the fact that No ~

Bin (n, p) truncated at zero (we assumed that there was at least one node with cost co), we

conclude that:

E[Tc] ~- ,(1 -p))l-'O Y(1 - (1 -))710

n0=1 ( )t=1

This double sum is hard to evaluate. We will now derive a shorter formula by first calculating

the cumulative distribution function of Tc:

P(Tc:5 t = V. t ("nn)p "(1 - )-u"o
1P(Tc K t) = P(T. K t|No = no)P(No = no) ~ [1 - (1 - p)t fo ] o(01 -

n=1= (1 ~)

so

(1-P(j-p)t)'n-(j-p)" ift<n
P(TC < t) 1--'i .(4.7)(1, if t ;> n.

and

1- -i p(l - p) - (1 - P) n n-1 1 - 1 - p(l - p)t
E[-Tc ~= I 1y -= )

Remark. Recall, from the Descendant Algorithm, that if Ji,. .. , jk* are the nodes in the

path we have to influence, then the number Nk of consecutive times we need to influence a

node jA:

N- =min(jk -Jk- 1, jk+1 -- i-1 - T + 1), V 1 k < k*.

Therefore if the costs of the nodes are generated independently from a PMF Pc(c), the

Ng can be approximated by the random variables Wk in the proof above, and will thus

approximately have a geometric distribution with mean 1/Pc(co).

We can also approximate the expression obtained in the Approximate Calculation 4.1.16,
n

for large values of n. Indeed, we have shown that E[TeINo] - (1 - (1 - p))NO. In
t=1

the limit where n is large, the strong law of large number tells us that No/n converges to p

almost surely. Hence we can approximate No by np for large values of n. Thus, for large

51



values of n:

E[T' [~1 - (1 - (1 - p)t )NpI
t=1 .

(4.8)

The formula derived in Equation (4.8) is not very practical for approximating E[Tc]

when n gets large. We want to understand how fast this function grows with n. In the

following, we show that E[T] grows as O(log n).

For simplicity, let q = 1-p: then n-E[Tc ~t (1-q)"P. If qo <g (sot > - )
up log(q)

log(np)
then, for to > - (and assuming np > 1), we obtain

log(q)

nto n to n

(1-qt)P 1 t )nP + (1 - qt)P ( -qt)P pqt).
t=1 t=1 t=to+1 t=1 t=to+1

Thus,

to 7 to n
E[Tc]~ n5-(I-q')"P- 1 (1- npq)=-5(1-q)lP+to+np E qt.

t=1 t=to+1 t=1 t=to+l
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Example 4.1.17. We apply the previous proposition to Figure4-7: here, n = 1000,

C 'U{1,10}, therefore E[C] = 5.5 and p = 0.1. So:

E[C(T = 1)] = nE[C] = 5500

E[C(T = n)] = E[CiI = 5.5
n-1 1 _ (I _ P(I _ P),

E[Tc] ~:

1E[TI S 1 -(1 -0.1)000 ~ 48.6919
t=1 10001001

E[Tc] ~ 1 -(1 - (1 - 0 1))1000 487945
t=1t1

E[Tc] ~E 1 -(1 - (1 - 0.1)t) 000"0.1 48.7345

Note that for n = 10 (Figure 4-6) we get: E[Tc ~I 6.3732 which agrees with the

sample path shown (the linear behavior starts at T = 5 in Figure 4-6).



Hence,
to n-to

E [Tcl (( - q )"P + npqto+ o
t=11 

- + to

Now,
to to to

S (1 - qI)fl <5(1 - qt )fP < (1 -qtO gn',
t=1 t=1 t=1

so that
to

tonPlog(--) to(1 q)"'P < >(1 - qt) nP < to(I - qtO)flP tne-n
t=1

is negligible when n is large. Hence,

-pqto 1 1 qn-to _ q 'n+l 1 o
E [T] npq +to npqto - npqn+ + to ~~ npq 0  + to,

1-q 1-q 1-q 1-q

which gives

i- p i -p log(np)
E[Tc] ~ npqt O +to =O(1) log(1p)

p p log(1 - P),

Therefore E[Tc] scales as log(n) for large values of n. This means that, for large values

of n, if we are willing to pay a cost of O(n) we will be able to influence the whole line in

time O(log(n)), while if we wish to incur a cost of o(n) we will be able to influence the

whole line in time O(n).
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4.2 Analysis for a General Network

In this section, we generalize the results obtained for Line Networks to general networks.

We will use the structure of general in-degree one networks to show that the Descendant

Algorithm can still be applied to obtain an optimal policy to our optimization problem. We

will consider both finite and infinite time-horizon problems. We will first assume that the

controller wants to influence every node in the network by time T, and then we will relax

this condition by assuming the controller only wants to influence a fraction iq E (0, 1) of the

nodes by time T. Unless otherwise specified, all networks are assumed to be in-degree one

networks throughout this section.

4.2.1 Properties of the Graph Representation

We start by analyzing the structure of general in-degree one networks. We will show that

such networks are composed of only two possible types of connected components. We first

define:

Definition 4.2.1. A k-Cycle is a cycle of k nodes (ii, ... , ik) in which each node influences

exactly one of his neighbors, and all edges are oriented in the same direction (Figure 4-10a).

We will refer to it as the k-cycle k-C(ii,... , ik). For convenience, we assume node i1 to

have the least cost (ci, cij for all j E {2, ... , k}).

Definition 4.2.2. A Tree Chain is a connected set of nodes that contains no cycles, but

which contains exactly one self-influencing node i (Figure 4-10c). We will refer to it as the

Tree Chain TC(i).

Definition 4.2.3. A Mixed Chain is a connected set of nodes that contains a unique

cycle of some finite length k: k-C(ii, .. , ik) (Figure 4-10d). We will refer to it as the mixed

chain MC(ii, ... , ik). For convenience, we assume node ii to have the least cost along the

cycle (ci, cij for all j E {2,.. . , k}).

Remark. Note that a k-cycle is a special case of a mixed chain.

Theorem 4.2.4. For a general in-degree one network, a connected component is either:
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1. a tree chain TC(i), or

2. a mixed chain MC(i1,..., ik) (which could be a k-cycle k-C(iI,... ,ik))

To prove this theorem, we note the following property of the network:

Lemma 4.2.5. If all nodes of a network have in-degree one, then there must be as many

edges as there are nodes.

Proof. Suppose there are n nodes in the network. Since nodes have in-degree one, we must

have one incoming edge per node, hence n edges in total. 0

Lemma 4.2.6. A connected set of k nodes either has a unique cycle (of some finite length

k) or a unique node influencing itself.

Proof. By Lemma 4.2.5, we must have exactly k edges connecting these k nodes. To connect

k nodes, we need only k - 1 edges. However, if we only have k - 1 edges for k nodes, there

must be a node i with in-degree zero. The additional edge can either be added from this

node i to itself, or from some node j to this node i. In the former case, we get the unique

self-influencing node i. In the latter case, we claim that nodes i and j will be part of a

k-cycle:

Because the network with k - 1 edges is already connected, and node i is the only node

with in-degree zero, we get a tree with root i. This implies that all edges flow away from i in

the same direction (see Prop. 4.2.7 below). Therefore there must exist a path (ii, i2, - - -, ik)

from node i to node j where i1 = i, ik = j. By adding the edge from node j to node i, we

create a k-cycle. 0

We can now return to the proof of Theorem 4.2.4:

Proof. (Theorem 4.2.4) From the previous lemmata, we have shown that a connected set of

k nodes must have either a unique cycle, or a unique self-influencing node. If this connected

set of nodes has a unique self-influencing node, the graph is a Tree Chain. If this connected

set of nodes has a unique cycle, the graph is a Mixed Chain.

We can now generalize the Cascade Property to general in-degree one networks. This

property will be very useful in constructing an optimal policy.
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Proposition 4.2.7. (The Cascade Property) If we remove the self-influencing node

(resp. k-cycle) of a Tree Chain (resp. Mixed Chain), we obtain a collection of disjoint

chains. In each chain, all arrows point in the same direction. In other words, edges either

go away from a self-influencing node or from a k-cycle.

Proof. If an edge is going towards a self-influencing node, then this node has in-degree two

which is forbidden. If an edge goes towards a k-cycle, then one node of the k-cycle has

in-degree two which is forbidden. L

We now have a complete characterization of the connected components we can encounter

in general in-degree-one networks. This will immediately provide an optimal policy for our

control problem over such networks, when T = oo and 1 = 1.

Infinite Time Horizon Case (T = oc) With 1 = 1: We start with the case of an

infinite time horizon (T = oo) where 71 = 1 (i.e., we want to fully influence the network).

This means that the controller's objective is to reach the steady state X(to) = (1,... , 1) at

a finite (but arbitrarily large) time to. We assume that X(1) = (0,..... , 0). The policy when

X(1) = (X1 (1),. .. , Xa(1)) follows from the theorem below and is described in the remark

below.

Proposition 4.2.8. If T = oo and r = 1:

1. Suppose the controller wants to fully influence a k-cycle k-C(i1,..., ik) (with cheapest

node i1). An optimal policy is to influence node il at times t = 1, 2,... , k (i.e., choose

ail (1) = ... = ai (k) = 1, and set all other components of a(t) to zero). The total

cost of influence for this connected component will be: kci,. The whole component

will be entirely in the +1 state at time t = k + 1.

2. Suppose the controller wants to fully influence a tree chain TC(i). An optimal policy

is to influence node i at time t = 1 (i.e., choose a(l) = 1 and set all other components

of a(t) to zero). The total cost of influence for this connected component will be: ci.
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The whole component will be entirely in the +1 state at time t = q + 1, where q is the

number of nodes in the longest path starting at node i.

3. Suppose the controller wants to fully influence a mixed chain MC(i,... ,ik) (with

cheapest node i1 in the cycle). An optimal policy is to influence the node i1 at times

t = 1, 2,... , k (i.e., choose ai 1(1) = ... = c(k) = 1, and set all other components of

a(t) to zero). The total cost of influence for this connected component will be: kci,.

The whole component will be entirely in the +1 state at time t = q + 1, where q is the

number of nodes in the longest path (or cycle) starting at node i1 .

In general, the optimal cost for fully influencing the whole network is given by:

Z ci + kci, (4.9)
TC(i) MC(il,...,ik)

and the time needed to influence the whole network is equal to:

k + 1, if in a k-cycle k-C(ii,..., ik),

T*= max 1+number of nodes in the longest if in a Tree Chain LC(i)all connected path starting at node i e
components 1+number of nodes in the lonest if in a Mixed Chain MC(i1,...,i4).

(4.10)

Proof. For simplicity, we assume that X(1) = (0,... ,0).

1. Suppose the controller wants to fully influence a k-cycle k-C (i1 , ... , ik). We are con-

sidering an infinite time-horizon problem, therefore the controller wants to reach the

steady state X(to) = (1, . .. , 1) at a finite (but arbitrarily large) time to. Notice

that if the controller only influences one node in the cycle, only one node will be

in the +1 state at each time. Therefore the controller must perform k influences in

total. Clearly, influencing the cheapest node k times will be an optimal solution.

Thus, an optimal policy is to influence node i1 at times t = 1,... , k (i.e., choose

ail (1) = ... = ail (k) = 1 and set all other components of a(t) to zero).

2. Suppose the controller wants to fully influence a tree chain TC(i). We are considering
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an infinite time-horizon problem, therefore the controller wants to reach the steady

state X(to) = (1, .... , 1) at a finite (but arbitrarily large) time to. For node i to reach

a +1 state, the controller will need to influence node i at some finite time, because

node i is only influenced by itself. Once the controller does that, node i will remain

indefinitely in the +1 sate. Therefore the optimal cost of the control problem is at

least equal to ci. By the Cascade Property (Proposition. 4.2.7), we see that node i

will spontaneously influence every path starting at node i in a finite amount of steps.

This cascade effect does not require any action from the controller. Therefore this

policy has a cost equal to ci, and our policy must be an optimal policy.

3. Suppose the controller wants to fully influence a mixed chain MC(ii,..., ik) . We are

considering an infinite time-horizon problem, therefore the controller wants to reach

the steady state X(to) = (1,...,1) at a finite (but arbitrarily large) time to. First, we

view the cycle (i,..., ik) as a unique self-influencing node. By part (2), we see that

the controller must influence the cycle directly in order to reach the desired steady

state. Observe that the whole mixed chain will be in the +1 state if and only if the

full cycle is in the +1 state (by the Cascade Property, Prop. 4.2.7). We now use part

(1) to influence the cycle at an optimal cost.

D

For an arbitrary initial state X(1), we need to change our policy only if the self-

influencing node, or nodes of the k-cycle are already in the +1 state at time t = 1. The

policies described in the following remark are clearly optimal.

Remark. For an arbitrary initial state X(1) = (Xi(1),... , X,,(1)), we can obtain optimal

policies in a similar way. For a k-cycle k-C(i1, ... , ik) that starts with K nodes in the +1

state, we influence node ii (k - K) times when node il is in a 0 state: this policy reaches

the optimal cost (k - K)ci,. Similarly, for a Mixed Chain MC(ii, ... , i4) whose cycle starts

with K nodes in the +1 state, we influence node ii (k - K) times when node i1 is in a 0

state: this policy reaches the optimal cost (k - K)ci,. For a Tree Chain TC(i), if node i

starts in the +1 state, do nothing; if node i starts in the 0 state, influence node i at t = 1

at a cost ci.
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We can now use the previous proposition to solve the infinite time-horizon control prob-

lem when 0 < 7 < 1.

Infinite Time Horizon Case (T = ca) With 0 <,q < 1:

Suppose that, in our infinite time-horizon problem, the controller only wants to influence

a fraction of the nodes from the network (i.e., 0 < 7 < 1). We still need to reach a recurrent

state in a finite (but arbitrarily large) amount of time. The network is a disjoint collection

of tree chains and mixed chains. Since the controller does not need to get all nodes in the

+1 state, we simply need to influence the cheapest connected components of the network

in order to get at least qn nodes: this is clearly a knapsack problem. For simplicity, assume

that X(1) = (0, ... , 0).

Proposition 4.2.9. For simplicity, assume that X(1) (0, ... ,0). If T = oc and 0 <

17 <1:

1. Suppose we have a k-cycle k-C(i,..., ik) (with i1 being the cheapest node): to have

m nodes in the +1 state, an optimal policy will be to influence node i1 m consecutive

times (i.e., oi,1(1) = ... = ei,(m) = 1 and set all other components of a(t) to zero).

This is done at a cost mci, by time t = m + 1.

2. Suppose we have a tree chain TC(i):

Since T = oc, the controller must influence the node i at time t = 1 (i.e., ai(1) = 1

and set all other components of a(t) to zero). Note that this procedure will influence

all nodes in the tree chain by the Cascade Property (Proposition 4.2.7). This is done

at a cost ci. The whole tree chain will be entirely in the +1 state by time t = q + 1,

where q is the number of nodes in the largest path starting at node i.

Proof. This proposition clearly follows from Proposition 4.2.8. 0

For Mixed Chains of n nodes, when we directly influence m nodes of the cycle, we

eventually reach a recurrent state. If the cycle of the Mixed Chain has k nodes, then there

will be k recurrent states occurring periodically. We show below that, if we take a time-
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average of the number of nodes in the +1 state after reaching a recurrent state, we will have

"on average" n- nodes in the +1 state in the Mixed Chain.

Proposition 4.2.10. Suppose we have a mixed chain MC(i1,..., i) of n nodes (with

ci1 < ci for all j E {2,.. ., k}).

1. To influence "on average " n/r nodes (for some s E {1. n}), we can influence node

ii at m = [k/ri consecutive times with a value aj,(1) = ... = aj, (m) = 1, at a cost

mcil, by time t = q + 1 (where q is the highest number of nodes on either side of node

i).

2. To influence all nodes, we can influence node i1 at k consecutive times, at cost kci1,

by time t = q + 1 (where q is the number of nodes in the longest path starting at node

i).

Proof. 1. Suppose the Mixed Chain has n nodes, and that we directly influence m nodes

in the cycle of length k. Now consider a "branch" of the Mixed Chain: we define

a branch as a path of the Mixed Chain that starts from a node of the cycle, and

reaches an out-degree zero node of the network without passing by a node of the

cycle. Consider a branch of b nodes.

Now draw a configuration of the cycle with m nodes in the +1 state, and k - m nodes

in the 0 state. Start from node i1 in the cyple and count the number of nodes in the

+1 state among the set {ii,... , ib}. Go to node i2 and count the number of nodes

in the +1 state among the set {i 2 , .. -, ib+1}. Continue in that way until you reach

node ik in the cycle, and count the number of nodes in the +1 state among the set

{ik, .. . , ib 1}. These sets of b nodes correspond to all the configurations of the branch

we can observe in k successive time steps.

Thus in k time steps, we will have counted nib nodes in the +1 state. Therefore, on

average, a branch of length b will have mb/k nodes in the +1 state. So we conclude

that, on average, the network will have mn/k nodes in the +1 state.

Therefore, for any configuration of the cycle with m nodes (out of k) in the +1 state,

we have, on average, mn/k nodes in the +1 state in the network. This means that
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by influencing m nodes in the cycle, we get, on average, mn/k nodes in the +1 state.

The cheapest way to influence m nodes in the cycle is to influence the cheapest node

of the cycle m times. Hence the policy proposed here is optimal.

2. This proposition clearly follows from Proposition 4.2.8.

Proposition 4.2.11. We are given a network consisting of a collection of Tree Chains and

Mixed Chains. To eventually reach a fraction q of nodes in the +1 state, we can follow the

procedure outlined in Proposition 4.2.9 and Proposition 4.2.10, and choose the connected

components to influence by solving the following knapsack problem.

Let ai(t) = 1, if we influence node i at time t,

0, if we don't influence node i at time t.

We solve:

minimize E ai(1)ci + (ail (1) + .+ ail(k)) ci
TC(i) MC(ii,...,ik)

subject to 77n < S ai(1)jTC(i)j + S MC(i ... , ikh ai( + + ail ([k/r])
TC(i) MC(ii,.r

ai(t) E {0, 1},Vi = 1. ... n, Vt = 1, . .. , k
(4.11)

where the sums run over all TRee Chains and all Mixed Chains in the network.

Note that the last estimate of the number of nodes in the mixed chains is approximate

(it gives the average number of nodes that will be in the +1 state for this mixed chain).

Proof. This proposition clearly follows from Proposition 4.2.9 and Proposition 4.2.10. 0

Equation (4.11) involves complicated notation, but the idea behind it is simple: we

want to select the cheapest connected components and decide how many nodes we need to

influence in each case. This basically boils down to a knapsack problem.

4.2.2 Applications of The Descendant Algortithm

We will now consider finite time-horizon problems, first assuming that q = 1, and then for

a general 7 E (0, 1). In the former case, we will solve the control problem by applying the
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Descendant Algorithm (DA). We will also show that the DA can be extended to infinite

time-horizon problems. For simplicity, we will assume X(1) = (0,. .. , 0) in the entire sec-

tion.

Finite Time Horizon (T < oo) and r,= 1

Note that if T is finite, the proposition still holds when T* < T (where T* is defined in

Equation (4.10) as the smallest time to reach the targeted state under an optimal policy).

If T* > T, then the process must be accelerated by influencing more nodes. This way, the

entire network will be in the +1 state at time T. The following proposition provides an

optimal policy:

Proposition 4.2.12. If T < oc and q = 1:

1. Suppose the controller wants to fully influence a k-cycle k-C(ii,..., ik) (where i1 is

the cheapest node of the cycle). In this case, T* = k + 1. Hence, if T > k + 1, we just

need to apply the optimal policy provided for the infinite time-horizon case. If T < k,

then the controller can influence node i1 at times t = 1, ... , T - 1, delete the arrow

from ik to i1 and apply the Descendant Algorithm on the path (i1,... , ik), viewing i 1

as the self-influencing node.

2. Suppose the controller wants to fully influence a tree chain TC(i). The controller will

apply the Descendant Algorithm to all the paths of TC(i) going from node i to an

end of the tree chain (i.e., a node j with out-degree equal to zero). If a node belongs

to different paths, the algorithm will tell us how many times we should influence this

node for each path considered: we must therefore take the maximum of these values

to get the number of times we need to influence this node.

3. Suppose the controller wants to fully influence a mixed chain MC(i,..., ik) (where

il is the cheapest node of the cycle). In this case, T* = k + 1. Hence, if T > k + 1,

we just need to apply the optimal policy described in the infinite time-horizon case. If

T < k, then the controller can influence node i1 at times t = 1,. . . , T - 1, delete the
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arrow from ik to i1 and apply the Descendant Algorithm on all paths going from i1 to

an end of the mixed chain (i.e., a node j with out-degree equal to zero) viewing i1 as

the self-influencing node. If a node belongs to different paths, the algorithm will tell

us how many times we should influence the node for each path considered: we must

therefore take the maximum of these values to get the number of times we need to

influence this node.

Proof. This proposition follows from the proof of the Descendant Algorithm on a Path. 0

Remark. We observe that the Descendant Algorithm can also be applied to this control

problem when T = 00.

Finite Time Horizon Case (T < oo) With 0 < r7 < 1:

If T is finite and 0 < q < 1, the solution is much trickier. Since we do not need

to influence the entire network, and the time-horizon is finite, then we may not want to

influence directly the self-influencing nodes or nodes in cycles. Things can go very wrong

as shown in the case of the line LC(2) in Example 4.1.15. Optimal policies for finite T and

0 < 77 < 1 would consist of influencing "cheap" nodes at times "close" to T. The formalism

we will develop in the next chapter for the Ancestral Algorithm will allow us to solve this

problem in a much simpler way. We thus defer the analysis of this case to the next chapter.
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Chapter 5

The Dynamic Deterministic Model

(DDM)

In this chapter, we will solve our optimization problem for the case of the Dynamic Deter-

ministic Model (DDM). Our approach here will differ from the one we used earlier for the

Static Deterministic Problem (SDP). Previously, we were looking at a node and checking

which nodes it can influence and at what price: we referred to this method as the "descen-

dant method". This approach is intuitive and easy to implement, however it is much harder

to generalize to the DD problem. Furthermore, the Descendant Method requires more work

when some nodes in the system are already influenced at time zero.

Recall that the Dynamic Deterministic Problem (DDP) is based on the following time-

dependent matrices: the matrix of Influencers I = [I(t, i)] (for t {1, ... ,T} and i E

{1,.. . , n}) summarizing the dynamics of the network, and the matrix of Costs C = [c(t, i)]

(for t E {1, ... , T} and i E {G1,.. , n}), corresponding to the cost the controller would incur

if it decides to influence a particular node at a given time. The control vector a(t) =

(al(t),..., ai(t)) E {0, 1}1" has a positive ith component when the controller decides to

influence node i at time t. Finally, the state of a node i at time t is given by:

Xi(t + 1) = XI(t,)(t), if ai(t) = 0 (with cost = 0) ,

1, if ai(t) = 1 (with cost = ci(t))
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To solve the DD optimization problem, we work backwards in time: we will look at a

node and check its genealogy, i.e., his influencer one time-step earlier, the influencer of his

influencer two time-steps earlier, . .. Once we create this ancestral path, we will check which

node is the cheapest possible influencer and decide if it is convenient to influence it directly.

We will refer to this method as the "ancestral method". Building the ancestral path may

appear less intuitive at first as it requires us to think about time and space simultaneously

(i.e., who is the influencing node t time-steps earlier), and we must look backwards in time.

However, once we have it, we can solve the SDP as easily as the DDP. Furthermore, we

will show that the ancestral method is easily applied to the case in which some nodes are

already influenced at time zero.

However, we will note that the ancestral method requires, at time t = 1, the full knowl-

edge of the evolution of the system. The descendant method approach would be better

suited for heuristic policies when there are uncertainties in the future state of the nodes

(for example, we could think of a model in which the edges in the network can be switched

on and off with probability 1/2).

We will mostly consider finite time-horizon problems and will show that any such prob-

lem can be solved using the Ancestral Algorithm. In the case of an infinite time-horizon,

we will be able to solve any problem in which the graph dynamics reach a recurrent state at

some finite time To. Infinite time-horizon problem are not very useful if they do not behave

in a tractable way: it would be more suited to work with stochastic models in that case.

To simplify the presentation, we will assume that the last time at which the controller

is allowed to act is time t = T (not t = T - 1), i.e., that the controller wants to reach its

target state by time t = T + 1.

In this chapter, we begin in Section 5.1 by presenting the formalism used to set up the

Ancestral Algorithm and we describe the algorithm. In Section 5.2, we apply the Ancestral

Algorithm to the Static Deterministic System. In Section 5.3, we apply the Ancestral

Algorithm to the Dynamic Deterministic System when we want to have at least ? nodes

(with 0 < q < 1) in state +1 by time T. Finally, in Section 5.4, we illustrate through an

example the theory developed throughout the chapter.
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5.1 The Ancestral Path, the Ancestral Network, and the An-

cestral Algorithm

Our goal will be, given an initial state X(1) of the system, to obtain a state X(T)

(1, ... , 1) at minimal cost. This will be accomplished by the Ancestral Algorithm. To

develop this algorithm, we first construct the Ancestral Network. We will start by defining

the Ancestral Path. Recall that I(t, i) is the unique node that will influence node i at time t.

Definition 5.1.1. We define the at ancestor Ia(t, i) of a node i at time t as the node

whose state at time t - a affects the state of node i at time t. Formally:

Ia(t, i) = t - a+1, I(t -a, I(t-- a- III(. .. I(t, i))))

or recursively:

Ia(t, i) = I(t - a + 1, Ia--1 (t, i)), where 10 (t, i) = i and 11(t, i) = I(t, i)

Example 5.1.2. We see that:

I (t, i) = I(t - I1+ 1, 1'-' (t, i)) =I(t, i),

I2(t, i) = I(t - 2 + 1, 12-1 (t, i)) =I(t - 1, I(t, i))

I3(t, i) = I(t - 3 + 1, 13-1 (t, i)) =I(t - 2, 12(t, i)) =I(t - 2, I(t - 1, I(t, i)))

The notation may seem involved, but the intuition is very simple: if I influence node

Ja(t, i) at time t - a, then I know that node i will be influenced at time t without any other

intervention.

Definition 5.1.3. The Ancestral Path of a node i with respect to time t consists

of the sequence of ancestors: A(t, i) = (i, I(t, i),12 (ti).. -1(, i))

Since we want to get our nodes influenced by time T, we will mostly focus on the

sequence A(T, i).

Definition 5.1.4. The Ancestral Path of a node i consists of the sequence of ancestors:

A(i) := A(T, i) = (i, I(T, i), 12(T, i) .,IT-1(T, i)).

The Ancestral Path of a node is well defined because nodes have in-degrees equal to

one.
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Figu're 5-1: Network used in Ex. 5.1.5: we are here descr ibiig aii SiDM, and we assiime

Exarnple 5.1.5. Consider the following SDI: suppose tht otri network lynanics are

constatli ill tiie, and cotisidei a path (1, 2. 3. 4) with. T 5 (see Fig. 5-1). We assine node

1 to w the self-hifluencing node. Thn:

A (2) =(2. 1, 1, 1,1)

A 3) (3 2, 1, 1)

A4) (1. 3, 2, 1, 1)

We will later represent these Ancestral Paths in the Ancestral Network. The Ancestral

Network of Fig. 5-1 is shown it Fig. 5-2.

1) Node 2

Node 4

Figitre 5-2: Ancestral Network of Fig. 5-1: this is constricted using the Ancestral Paths
calculated in Ex. 5.1.5. The first index at each node of the Ancestral Network indicates
tinia. while the secodl(l index indicates the corresponding node in the original network.

We (an now define the Ancestral Network:

Definition 5.1.6. The Ancestral Network is a directed graph with the following prop-

erties:

1. Each node in the Ancestra Network represents a pair (t, i) correspodi ag to node i at

tiIic t in the origilial network. We only inclad e f)airs (t. I) that appta in the ancestral

path of at itsist oIn(e node of the originalt network.
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2. We include a directed edge from a pair (t, i) to another (t + 1, j) if and only if node

j's direct ancestor at time t + 1 is node i.

The Ancestral Network displays the "genealogy" of the nodes in the network. It also in-

dicates nodes that share common ancestors. Some basic properties of the Ancestral Network

are derived below.

Proposition 5.1.7. We have:

1. A node of the Ancestral Network has in-degree equal to one.

2. The Ancestral Network has no cycles.

3. All paths starting at any node (t, i) of the Ancestral Network will have the same length;

furthermore, if we start at a node with t = 1, any path of the Ancestral Network will

have length equal to T.

In particular, the Ancestral Network is a forest of directed trees.

Proof.

1. A node i of the original network has a unique ancestor I(t, i) at any time t. Therefore

node (t, i) of the Ancestral Network will have a unique incoming edge.

2. Edges of the Ancestral Network always point towards a node of the form (t, i) to a

node of the form (t + 1, j) (for some node i and j of the original network). Hence,

edges of the Ancestral Network point "forward in time". A cycle would require edges

going backward in time, which is not possible.

3. Edges of the Ancestral Network point "forward in time", so a node (t, i) will have

exactly (T - t + 1) descendants along each possible path starting at (t, i). Therefore,

each of these paths will have length (T - t + 1). In particular, paths starting at nodes

of the form (1, i) have length T.

LI
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Notice that when trees in the Ancestral Network are disjoint, their nodes do not share

any common ancestors. So, for disjoint trees, we can solve the optimization problem on

each ancestral tree independently.

5.1.1 The Ancestral Algorithm

Assume that 1 = 1 in this subsection; the case 0 < 'q < 1 will be treated later. We are

given the I matrix and the C matrix. From the I matrix, we construct the Ancestral Paths

A(i) of each node i of the network (total run-time = O(nT)). We construct the Ancestral

Network based on the A matrix, and associate with each node (t, i) its cost c(i, t). In

general, the Ancestral Network consists of a forest of disjoint directed trees with nodes of

in-degree one (except for the root of the tree). In the Ancestral Network, each tree of the

forest is composed of one or multiple paths of length T sourced at a node S = (t = 1, io)

(where io is a node of the original network).

We can formulate our optimization problem in terms of the Ancestral Network. We want

all nodes of the original network to be in the +1 state at time T. These nodes correspond

to the leaves (nodes of out-degree zero) of the Ancestral Network. To influence any one

of these nodes (T, i), we must influence at least one node along the path going from S to

(T, i). Therefore we must choose a subset of nodes from the Ancestral Network (a "cover")

such that every leaf has at least one ancestor chosen. In this case, we say that the chosen

ancestors constitute a subset that covers all leaves of the Ancestral Network. The cost of

such a cover is equal to the sum of the costs of the nodes in the cover. We want to cover

all n leaves of the Ancestral Network by using the cheapest covering subset. This is a set

covering problem, but because of the special structure, it admits an efficient solution.

This covering problem is solved by the following dynamic program, which we call the

Ancestral Algorithm:

ANCESTRAL ALGORITHM:

Assume 7 = 1, and suppose we are already given the Ancestral Network. The

following algorithm tells us which nodes of the Ancestral Network we should influence
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at the optimal cost.

For all nodes (t, i) of the Ancestral Network, define 9(t, i) as the set of descendants

of node (t, i): this is the set of nodes (t', i') such that there is a path from (t, i) to (t', i').

In particular, the set {(t + 1, i') E 9(t, i)} corresponds to the immediate descendants

of node (t, i) in the Ancestral Network. We also define the value of a node (t, i) of

the Ancestral Network as:

V(T, i) := c(T, i) (5.1)

V(t, i) := min c(t, i)(, V(t + 1, i')}. (5.2)

Then the value V(t, i) of node (t, i) is defined as the smallest cost needed to have

all its final descendants in the +1 state (i.e., at time T). We already know that

V(T, i) = c(T, i), V(T, i) E 4A. Then starting from the leaves of the Ancestral Net-

work, it is possible to calculate V(t, i) for all nodes (t, i) of the Ancestral Network using

the recursion in (5.2).

The total run-time of the algorithm is of order O(nT).

5.2 Application of the Ancestral Algorithm to the Static De-

terministic System

For Linear Chains LC(1) in the Static Deterministic System (for an example, see Fig. 5-

3a), then, in the Ancestral Network, there always exist a tree with a path of the form

((1, 1), (2, 1), ... , (T, 1)). Note that S = (1, 1) will be the source of this directed tree of the

Ancestral Network. Since we consider the static case, the original network does not evolve

with time, therefore c(t, i) = ci is constant in t. Note that V(t, 1) = min{ci, V(t + 1, 1) +

V(t + 1, 2)} and V(T, 1) = cl. This implies that V(t, 1) = ci for all t > 1, therefore it is

optimal to influence node 1 at time t = 1. When T < n (for an example, see Fig. 5-3b),

the Ancestral Network will also contain disjoint paths which are also disjoint from the tree
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Node t

Node

:'4) Iode 43

(a) Ancestral Network when T -

Figure 5-3: We consider here a Linear Chain of

the Linear Chain for different tinie horizons.

® ode 2

Node 3

Node 4

(h) Ancestral Network when = 3.

4 nodes. We plot the Ancestral Network of

of source S. Over these paths, the Ancestral Algorithin simply picks the cheapest node.

For k-cycles (for an example, see Fig. 5-4), the costs are constant, so we pick the

cheapest one (call it nmode i = 1) and ise it as the source S = ( 1, 1). Assuine that T _>

k. The Ancestral Network of a k-cycle will look like this: ((1. 1), (2. 2), . . . , (k. k) (k -

1, 1), . . . k) (2k + 1, 1). . . . , (T .)) for the an ancestral tree (not neccssarily the one

correspondimg to node 1), ((1, 2), (2. 3). . . . , (k, 1), (k +1, 2). .... (2k, I) I1 (k 1 . . . (IT, ))

for a nother ancestral tree, ... until a k-th ancestral tree. lene the ic1apest nodes will

always Iie (1, 1) in the first tree, (k, 1) in the second tree, (k - 1, 1) in the thinI tree, . . . and

(2. 1) in the k-th tree. These are exactly the nodes to infhience at the given tines, i.e.. we

must intiueuce node i = 1 at tinies t = 1, 2 ... .

For k-cycles, if' T < k (for an examnple. see Fig. 5-5), we cannot always access the

cheapest node of the cycke so we niist pick the cheapest accessible imode. All accessible

nodics are shovii in the Ancestral Network.

Case of infinite time-horizon T = :: in the Static Deterministic System, we eventm ally

reach a recurrent state, so truncate the time-horizon to T = i. Note that for our general

determiiistic system, if the system reaches a recurrent state at some time 71, we can

truncate our tine-horizon to T = T(I + . Actually we can truncate the time even more by

taking

T = (T4 - number of nod/es in the longcst path f.rom smrce in .4'acestnd Netwok).
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?I ode 2

Node 3

0 Node 4

Figure 5-4I: A 4-cycle network (T 5) with its Ancestral Network: note that tie Ancestral

Network consists of four disjoint paths as expected fromn the periodicity of the origiinl
network. We labeled by nole 1 the Chelest 1ode of the 4-cycle. The red nodes in the

Ancestral Network correspond to the ones picked by the Ancestral Algorithm.

t3

(1 3) 2 4 Node 1

1 4 --- + 32) YNode 2

303) Node 3

(1 2 "3) Node 4

Figure 5-5: A 4-cycle network (T -- 3) with its Ancestral Network: note that the Ancestral

Network consists of four disjoint pathls as expected from the(' periodicity of the origi1a

ntetwI k. We labeled by noW I the cheapest node of the 4-cycle.

The Ancestral Algoritlhm applied to the Static Determniastic System can he written out

as follows:
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We now see the power of our Ancestral Algorithm: even if the formalism is more compli-

cated than the one of the Descendant Algorithm, we see that this algorithm can be applied

directly to all problems with r7 = 1.
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ANCESTRAL ALGORITHM ON A PATH FOR THE STATIC DETERMINISTIC

MODEL FOR r,= 1:

Without loss of generality, call this path (1, 2, 3,.., n) where 1 is the self-influencing

node, and i influences i + 1 for all 1 < i < n - 1 (see Fig.4-4). We want to influence the

whole chain within a time T (T can be infinite) and at minimal cost.

1. If for node i we have T + 1 < i < n, then construct the line containing nodes

(tj,j): {(1,i - T + 1),(2,i - T + 2),... ,(T,i)} with their corresponding costs

c(tj, j) = c3 . Take the node with cheapest cost (and take the one with smallest

time in case of ties).

2. If for node i we have 1 < i < T, then construct the line containing nodes (tj, j):

{(1,1), (2, 1),.., (T - i + 1, 1), (T - i + 2,2),..., (T, i)}. We pick node (1,1) to

influence directly.

This algorithm is extended to any Static Deterministic graphs (not only paths) as

follows. Take any node i in the original network:

a. if none of the previous T nodes are self-influencing nodes, apply rule 1 above.

b. otherwise, if there is a self-influencing node (say node k) among the previous T

nodes, apply rule 2 above with k as the reference node (i.e., take k as "1").



5.3 Application of the Ancestral Algorithm to the Case r E

(0,1)

Our Ancestral Network is also very powerful because it can also be used for any problem

with 7 E (0, 1). However, in this case, our solution will involve solving an integer program.

Consider now the Ancestral Network with the costs C associated with it. Let -A" be

the set of all nodes (t, i) present in the Ancestral Network. Furthermore, let A(i) be the

ancestral path of node (T, i) (including node (T, i) according to our earlier definition). We

also define a(t, i) to be the following control variable

S 1, if we influence node i at time t,

0, otherwise.

The solution is given by solving the following optimization problem:

minimize E a(t,i)c(t,i)
(t,i) E,.4

subject to E Y(T, i) > n7
(T,i)EY (5.3)

V(T, i) C J-: 0 Y(T, i) Z a(t', i')
(',X)E A(i)

V(t, i) E 4 : a(t, i) E {0, 1}, and Y(T, i) E {0, 1}

The integer program given in Equation (5.3) will solve our optimization problem, as the

objective is to minimize the cost incurred by influencing nodes from the Ancestral Network.

The last constraint follows from the definition of a(t, i). The first constraint will guarantee

that at least nn nodes of the original network will be in the +1 state at time T: indeed,

Y(T, i) tells us exactly how many leaves of the Ancestral Network will be in the +1 state at

time T. The only tricky part is to make sure we are not counting the same node multiple

times. The second constraint discards this case: if all the a(t', i') = 0 for (t', i') E A(i),

then no nodes are in the +1 state along the ancestral path, so the leaf (T, i) cannot be in

the +1 state at time T. If at least one a(t', i') = 1 for some (t', i') E A(i), then the second

constraint gives us the freedom to choose Y(T, i) to be 0 or 1: the objective function and
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the first constraint will make us choose 1.

The optimization problem in Equation (5.3) provides a general solution to any General

Deterministic problem (for any q E (0, 11). It also holds when q = 1 as we will show below.

For infinite time-horizon problems, if the system reaches a recurrent state at some time To,

we can truncate our time-horizon to T = (To-in) where n is the number of nodes in the origi-

nal network (it is actually enough to set T = (To+length of largest path from source in Ancestral Network))

and apply Equation (5.3).

In the case q = 1, the Ancestral Algorithm works because we take the cheapest nodes

that can influence the most nodes. We can obtain the same solution as the one given by

the Ancestral Algorithm by solving:

minimize O c(ti)c(ti)
(t,i)EX

subject to E Y(T, i) = n
(T,i)EA' (5.4)

V(T, i) C / : 0 < Y(T, i) a(t', i')
(t',i')EA(i)

V(t, i) E : a(t,i) C {0, 1}, and Y(T, i) E {0, 1}

Equation (5.4) holds only when the Ancestral Network is composed by a single tree. If

the Ancestral Network is a forest of disjoint trees, we need to use a knapsack-type integer

program.

An equivalent formulation of the problem in 5.3 is given below (note that the first

constraint is quadratic):

minimize 5 a(t, i)c(t, i)
(t,i) EX

subject to a c(t, i) (y(t, i) - a o(t', i')-y(t', i')) > nr (5.5)

a(t, i) C {0, 1}, V(t, i) E /

We can simplify the optimization by applying the three following rules: for a node (t, i),

set a(t, i) = 0 if

1. c(t, i) is equal to or higher than the sum of the costs of his direct descendants.
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2. c(t, i) is equal to or higher than the sum of the costs of qn of his descendants at time

T.

3. c(t, i) is equal to or higher than the cost of one of his ancestor whose a has not yet

been set to zero using the first two rules.

As we will show through an example in Section 5.4, these rules can sometimes reduce the

complexity of the optimization problem. As can be seen from the double-sum in Equation

(5.5), we can simplify the problem considerably when we can set a - 0 for nodes with small

values of t.

5.3.1 A Dynamic Programming Solution to the 0 <,q < 1 case

Assume 0 < i < 1, and suppose we are already given the Ancestral Network. Our goal is

to derive an algorithm that will tell us which nodes of the Ancestral Network we should

influence at the optimal cost. In this section, we will use a Dynamic Programming approach

of polynomial complexity.

For all nodes (t, i) of the Ancestral Network, define 9(t, i) as the set of descendants of

node (t, i): this is the set of nodes (t', i') such that there is a path from (t, i) to (t', i'). In

particular, the set { (t + 1, i') C 0?(t, i)} corresponds to the immediate descendants of node

(t, i) in the Ancestral Network. We also define the k-value V(t, i, ki) of a node (t, i) of

the Ancestral Network as:

V(T, i, kg) := ki x c(T, i), where ki E {0, 1} (5.6)

V(t, i, ki) := mil c(t, i), min V(t + 1, i', kgi) (5.7)
kit s.t. (t+1,i)E9(t'i), ' 1i)9 ti

and V(t + 1, it, ki ) exists,

Z k, ;> k

(5.8)

When ki = 1, the value V(t, i, ki) of node (t, i) represents the smallest cost needed to

have all its final descendants in the +1 state. When ki = 0, then V(t, i, ki) = 0 as we decide
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not to have any of the final descendants of node (t, i) in the +1 state. We also impose the

following condition on V(t, i, ki): if V(t, i, k) = V(t, i, k') for some k' > k, then delete the

value V(t, i, k) and keep only V(t, i, k'). This is what we mean by "V(t, i, ki) exists".

Then starting from the leaves of the Ancestral Network, it is possible to calculate

V(t, i, k) for all nodes (t, i) of the Ancestral Network for each feasible value of k. Then

the optimal cost is:

Vopt = min V(1, io, k),k>rn, and
V(1,io,k) exists

where (1, io) is the root of the tree considered. Once we know the optimal cost, we find an

optimal policy just by keeping track of our minimizing selections at each DP iteration.

Note that the inner minimization

min ( V(t + 1, i', kg)
kit s.t. (+,'E(~) t1i)9ti

and V(t + 1,i', kig) exists, ' ('

(k, ;> ki

can be solved in polynomial time using the following dynamic program:

For all i E {1, ... , n}, let Wi,t(k') be the minimal cost the controller incurs if he aims to

influence a total of k' nodes among the set {i, ... , n} at time t + 1. Then:

Wn,t(k') V(t + 1, n, k') (5.9)

Wi-,t(k') : min Wi,t(k' - k) + V(t + 1, i - 1, k)]. (5.10)
k=1, ...,k IV I

It is convenient to let V(t + 1, n, k') be infinite if k' is higher than the possible number of

nodes (t + 1, n) can influence.

When the Ancestral Network consists of a single tree, we use the recursion in (5.10)

which can be implemented in 0(n 3) time.

If the Ancestral Network is a forest of trees with roots ii, i2 , ... , iq. Then the optimal

cost for the forest is given by the following knapsack problem:
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V ~ ui 1, 1 , l).(5.11)

J- AIA'1

This knapsack proldem ahdmits a pynonial-tiie algorithl of comiplexity O( x 111 x

itT) =O~rPT).

5.4 Illustrative Example

Figure 5-6: This network is assunied to be the same for times t 1, 2 3 (this corresponrds
to a Simple Deterinistic Systeni . We assIM I = 3, antd the costs C of each node are

given in teii red l)oxes.

In this section we will inaly/c the network depicted in Fig. 5-6. For siliplicitY, we will

use a Simple Deterministic netvrk (i.e., this network is the sane at times t = . 2.3). For

our General Do'terministic Model, th sanic procedure appies.

Sfirst build the Ancestral Network from the given network (Fig. 5-7a): in the Ances-

tral Nctwirk, (ach node represeiits the couple (ti, I), where t1 is the time at which node i is

an Ancsto)r of the node considered. This is the only step that differs slightly ill the case of

a Gentral Deterministic nmotdcl because we need to pay attention the time evolution of the

givert network. WX'e also include the costs of each nodc of the Ancstia Network.

In the first step of the Ancest rl Algorithm (Fi. 5-7b), we solve the rec5rsion in (5.2).

St arting from the leaves, we assign vine (T, i) = ci leaf (7', . Then we move to the

ancestor of each leaf und, usiig the niinimization in (5. 2 ). we obt aii the vtlies V(T - 1, )
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3 4 Node 4

73 Node I

Node 2

Node 3

(a) Amcestral Network 1r F'g. 5-6: the
Cols do Ille 1)le are reportled ill ilo
pik hoxes.

Node 4

0 0) 2 3 1 Node I

Node 2

Node 3

(b) First iteration of the Ancestial Al-
gorithin: we compute the valies of each
node (/, I) in the green boxes.

Node 2

(2,2) , Node 3

c) Second iteration of t he Ancestral Al-

goritlan: ve nark all no(es whose value
are equal t,. 1their cost. We then delete

all descendants of iarked iodes.

Figure 5-7: Ancestral Network for Fig. 5-6 adlI its evOltlOn thrugh the Aitestral Algo-

ritlin: nodles are represented by the couple (t, I).

I
for nod (T -- 1, /). We contimie in that fashion until we reach the soi trce (1, 1).

In the second step of the Ancestral Algorithm (Fig. 5-7), we mark all nodes whose

valui V(t, I) is equal to c We then delete all descendants of a marked node. The remaining

mak(d nodes are the ones we should ilfLence.

Therefore the Ancestral Algorithin picks node (1, 1) in the Ancestral Network, so we

must influence node 1 at tie t 1.

Now suppose we want to influence q = 50%. of the nod s of the network. We use the

Aincestral Network, and associate to it the costs of the nodes as shown in Fig. 5-8.

I

Nowv, qu = 2, and , 1; {(i, 1)(2,1), (2,2), (3, 1), (3, 2), (3, 3), (3, 4)} with respective
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(3 4> Node 4

O, ,1Node 1

Node 2

Node 3

Figure 5-8: Ancestral Network for Fig. 5-6: the origInal cost of cach nodce is reported 'It
the pink boxes.

costs C = {4, 4, 1, 4, 1. 1, 0.5 }. Applying Equation (5.5). we need to solve:

mninimiize 4o(L, 1) + 4o(2.') I) + o,(2, 2) + 4(_(3, 1) + o,(3. 2) + o(3,31) + 0.5(3,41)

subject to I (1, 1) (4 - 3(2. 1) - (2 2) -(((3 1) a(3, 2) -a(3, 3) -- o(3, 4)

+ (2, 1) 3 -- 3, 1) a(3, 2) - (3, 4) (5.12)

+ (2. 2) 1 - .(3, )

+(.3, 1) + v(3, 2) + (3. 3) + o(3 4) = 2

o(t, ,) a {(. } , i) c '

We wilt ILOw Siiiplify IhI pIohin using the three rides outlines in the previous section:

1. Rule 1 sets f(2, 1) = 0.

2. Rule 2 sets n(1, 1) = 0.

3. Rule 3 sets (-(3, 3) = 0.

So the optimization probtein redlces to the foiL wing Integer Prograni:

minnize ( (2, 2) + 44(3, 1) + (3, 2) + 0.5o (3, 4)

subject to ( (2, 2) + a(3, 1) + (3. 2) + o(3, 4)=2 (5.13)

a t I . I- { I } ~ ,i

Using the constraint, we gt: v(2, 2) + a(3, 2) = 2 o(3,1) - ((3, 4). Hence we need to:



minimize 2 + 3a(3, 1) - 0.5a(3, 4)

subject to a(3,1) E {0, 1} (5.14)

a(3,4) E {0, 1}

Thus a(3, 1) = 0 and a(3,4) = 1. So we must have a(2,2) + a(3,2) = 2 - 0 - 1 = 1.

Hence a(3, 4) = 1 and either a(2, 2) = 1 or a(3, 2) = 1 are two optimal solutions to the

optimization problem. We see that, in this example, our three rules have simplified the

problem a lot !

By inspection, we can also see that there are exactly three optimal solutions from Fig.

5-8: we can influence node 4 at time t = 3, and either node 2 at t = 2 or t = 3, or node 3

at t = 3. Hence: a(3,4) = 1 and either a(2,2) = 1, or a(3,2) = 1, or a(3,3) = 1.

5.5 Summary of the Results

In this section, we summarize the main results from Chapters 4 and 5. In this first part

of the thesis, we considered in-degree one networks over which nodes interact according to

deterministic dynamics. An external controller wants to influence the nodes in order to get

a population sharing the +1 opinion, by some time T. Each time the controller decides to

influence a node, it will incur a certain cost. Our goal is to design a policy that the external

controller can follow in order to attain its goal with the smallest possible cost.

In Chapter 4, we assumed that the network (of n nodes) did not evolve with time and

we were able to construct the Descendant Algorithm to achieve, in linear time 0(n), the

controller's goal. In Chapter 5, we allowed the network (of n nodes) to evolve with time in

a deterministic way, and we were able to construct the Ancestral Algorithm to achieve, in

linear time 0(n), the controller's goal.

If the external controller wants to influence the nodes in order to get a fraction 77

(for some 0 < q. < 1) of 0 and 1 opinions among the population, by some time T, then

we formulated a Dynamic Program which achieves the controller's goal in polynomial time

0(n3 ) if the Ancestral Network contains a single tree. When the Ancestral Network contains

more than a tree (which happens when k-cycles are present in the original network), we
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basically need to solve a knapsack problem.
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Chapter 6

Introduction

The previous part of the thesis focused on deterministic processes taking place over a given

network. In contrast, the second part of the thesis focuses on a particular type of stochastic

process taking place over a network: the classical and well studied "Voter Model" [3,8].

The Voter Model can be described as follows (for a detailed survey, Liggett [12] is a good

reference). We start with a network of N nodes in which each node has an opinion (which

we denote 0 or 1 for simplicity) and a fixed set of neighbors. At each time step, a node

updates its opinion by randomly selecting one of its neighbors and adopting the opinion of

the neighbor selected. In this thesis we will only consider the case where the graph of the

network is the d-dimensional integer. torus Z Following the work of Yildiz, Acemoglu,

Ozdaglar, Saberi and Scaglione [14], as well as Fagnani [7], we first consider static models

in which we allow nodes of the network to be "stubborn" (they are commonly referred to as

"stubborn nodes" or "stubborn agents"): this means that such nodes maintain their initial

opinion during the whole process.

6.1 Scope and Main Objectives

In this part of the thesis, we assume that we can place a set - of B stubborn nodes (also

called stubborn nodes) over the network. All stubborn nodes have the same opinion "1".

We know in this case [14] that the network will eventually reach a 1-consensus: we mean

by this that all non-stubborn nodes in the network will be in the 1-state after some finite
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time. Our goal is to measure the expected time until the network reaches the 1-consensus.

We first consider a static setting in which we initially position our B stubborn nodes

over the lattice and compute the expected time the system requires to reach consensus. We

then consider a dynamic setting in which we are allowed to move our B stubborn nodes

at each time step, as a function of the current state of the network. Given a number B

of stubborn nodes, we want to answer the following questions: "how fast can we reach

consensus in the static setting ?" and "can we do better in the dynamic setting ?".

6.2 Related Work and Contributions

The Voter Model is a classical type of Markov process which was introduced independently

by Clifford and Sudbury [3], and Holley and Liggett [8]. The main questions to be answered

are usually: "what is the probability that the process reaches a consensus ?", "if a consensus

is reached, what is the probability of having a consensus with all nodes in the 1-state ?",

and "what is the expected time to reach a consensus ?".

Holley and Liggett [8] have proved that a consensus will always be reached over the

infinite lattice Zd when d = 1 or 2, but consensus is not necessarily reached in higher

dimensions. However, on finite networks a consensus is always reached. Cox [4] has later

shown that for a Voter Model over a d-dimensional integer torus Zd which starts from a

product measure with probability p E (0, 1) of starting in the +1 state, we expect consensus

to be reached in time O(cpn2 ) when d = 1, Q(cn 2 log n) when d = 2, and O(cpnd) when

d > 3, where c, = -p log p - (1 - p) log(1 - p). Note that in this thesis, we will not initialize

our lattice randomly, and we allow some nodes to be stubborn.

Indeed, we will focus on a generalization introduced by Yildiz, Acemoglu, Ozdaglar,

Saberi and Scaglione [14], and Fagnani [7], in which we allow some nodes to maintain their

original opinion throughout the whole process: these nodes are called "stubborn nodes" or

"stubborn agents". Clearly, if all stubborn nodes are in the same state (say the 1-state),

then the network will reach a 1-consensus with probability one [14]. Using a Theorem from

Aldous and Fill [1], Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14] have shown that,

when stubborn nodes were added in the network, the expected time to reach consensus can
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be upper bounded (up to a log factor depending on the size of the network) by the longest

expected time a symmetric random walk would take to hit a stubborn node.

Using the results mentioned above, the main goals of this part of the thesis are as follows.

First, we want to find a static placement of our B nodes that minimizes the expected time

to reach the 1-consensus. Then, we allow our stubborn nodes to move inside the network,

and checi if there exists a sequence of placements of the stubborn nodes in the dynamic

setting which leads to a shorter expected time to reach consensus than an optimal placement

of the stubborn nodes in the static setting.

6.3 Outline of Part 1I

The rest of this part of the thesis is organized as follows. In Chapter 7 we provide some

background on the Voter Model, and introduce the "dual Voter Model" approach, a classical

tool often used to compute consensus times. Then, in Chapter 8 we restrict our analysis to

the Voter Model over a d-dimensional integer torus, and we construct a static placement

of stubborn nodes that minimizes the expected time needed to set all nodes in the state

1. Finally, in Chapter 9, we study the same model but allow ourselves to move our set of

stubborn nodes during the experiment. In this last chapter, we want to understand whether

there exist dynamic policies providing strictly smaller consensus times than optimal static

policies: we will actually show that dynamic policies do not perform significantly better

than static policies when d > 2.
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Chapter 7

Background on the Voter Model

In this chapter, we provide some background information about the Voter Model. In par-

ticular, we present the classical dual approach to the Voter Model. This approach is very

useful: it provides an elegant correspondence between consensus times for a Voter process,

and coalescence times for simple random walks. This framework will be much simpler to

work with and will be used extensively in Chapter 8.

We first start by describing the Voter process and apply it to the model we will be

using. We then introduce the classical dual process, and present a Proposition from Yildiz,

Acemoglu, Ozdaglar, Saberi and Scaglione [14] which will be heavily used in Chapter 8.

7.1 The Voter Process for our Model

In this thesis, we consider the Voter Model over a d-dimensional integer torus Zd (which

we also refer to as a d-dimensional periodic lattice). Such a lattice contains N = nd nodes.

We always denote the total number of nodes in the lattice by N, and the number of nodes

on each side of the lattice by n. At each instant, a node will be in one of two states, 0 or 1.

Nodes in the network update their state according to independent Poisson processes of

rate v = 1. We say that a Poisson clock ticks whenever the Poisson process registers an ar-

rival (Poisson clock and Poisson process will be used interchangeably here). We will assume

each node to have its own Poisson clock of rate 1, and all Poisson clocks are independent

from each other. When a node's clock ticks, the node will choose one of his neighbors
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uniformly at random and will adopt the state of that chosen neighbor.

In addition, we possess a set - of B "stubborn nodes": these nodes are special as they

do not update their state during the process and keep their original state throughout the

whole experiment. We assume that all stubborn nodes in our problem are in the +1 state.

In Chapter 8, we will place the set of stubborn nodes over the lattice at the beginning of

the process and wait for the system to reach consensus. In Chapter 9, we will be able to

modify the positions of the stubborn nodes during the run of the experiment. Our goal is

to make the network reach a 1-consensus: we mean by this that we want all nodes in the

network to be in the +1 state after some finite time.

It is already known that the Voter model always reaches a consensus over finite lattices

(e.g., see Cox [4]). In particular, in the presence of stubborn nodes which all share the

same state (say, +1), the network will always reach a 1-consensus in finite time (see Yildiz,

Acemoglu, Ozdaglar, Saberi and Scaglione [14]). Since a 1-consensus is reached with

probability 1, we are interested in finding how fast the 1-consensus is reached. As discussed

in Chapters 8 and 9, this will depend on the chosen placement of stubborn nodes over the

lattice.

In this part of the thesis, we assume that all non-stubborn nodes are initially in the

sate 0. Note that a network initialized with some non-stubborn nodes already in the +1

state cannot reach a 1-consensus slower (in expectation) than a network initialized with

all non-stubborn nodes in the 0 state, given a same placement of 1-stubborn nodes. Hence

considering all non-stubborn nodes initially in the 0 state corresponds to a "worst case

scenario".

7.2 The Dual Process

To compute consensus times, it is often easier to look at the process backwards in time: this

classical approach is referred to as the dual of the Voter process, or as the coalescing random

walk process. For a more detailed discussion of the dual process, see Aldous and Fill [1]

(Chapter 14.3), or Durett [6] (Chapter 6.9). The dual approach has been used for the Voter

Model with stubborn nodes in Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14].
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As presented in Aldous and Fill [1] (Chapter 14.3), in the dual approach, we consider

a particle at each node of the lattice. The particles all perform independent symmetric

random walks over the lattice. If two particles meet at a node, they coalesce i.e., they

merge and move as a single symmetric random walk. If a particle lands at a stubborn node,

it stays there indefinitely.

Let Thit be the time until all random walks hit a stubborn node, and Tvote, be the time

until the Voter process reaches consensus. As discussed in Aldous and Fill [1] (Chapter

14.3), these random variables have the same distribution. Intuitively, if we look at the

Voter process backwards in time, we will see the dual process. In fact, in the dual process

we are tracking the origin of the current state of the node.

Using the dual approach, Yildiz, Acemoglu, Ozdaglar, Saberi and Scaglione [14] prove

the following proposition:

Proposition 7.2.1. Given a set R of B stubborn nodes in the +1 state, the expected time

to reach consensus is bounded above by

E[Tconsensusl < e log(2 + N - B) max E[T],

where E[T] is the expected time a random walk initialized at node i first hits the set -.

It can be shown that E[Ti] is bounded above by O(N3 ) for general graphs (e.g., see

Aldous and Fill [1]). Therefore consensus is expected to be reached by time O(N 3 log N) in

general. Our goal is to get much sharper bounds in the case of d-dimensional integer tori,

and to also capture the dependence on B, as B increases.

For the rest of the thesis, we will use the following notation: We define -r* as the expected

time to reach consensus in the Voter process. We define r as the expected hitting time from

one point in the lattice to the set of stubborn nodes in the worst case over all stubborn

nodes. If -4 is the set of stubborn nodes then T = maxjX2Ej[Tm], where E;[T4J is the

expected time a random walk initialized at node i first hits the set -.

Using Proposition 7.2.1, we immediately get the following corollary:
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Corollary 7.2.2. Given a set - of B stubborn nodes in the +1 state:

r < r* < rlog(N - B)

With this corollary in mind, we will simplify our analysis in Chapter 8 by computing r

instead of r*. This will allow us to use well understood tools from Markov Processes and

the random walk literature (see Aldous and Fill [1], Levin book). When the stubborn nodes

are allowed to move (see Chapter 9), the dual process will not be helpful as we would need

to compute the expected time until a random walk hits a moving set.
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Chapter 8

Convergence Time to Consensus

for a Static Policy

In this chapter, we study the following static policy: given a budget B of stubborn nodes

with opinion +1, we place these nodes over a d-dimensional lattice Zd of N nodes at

the start of the experiment and then we try to bound the expected time needed for such a

network to reach consensus.

This chapter is structured as follows: after having introduced the model used here, we

will consider random walks over Zd which will be helpful to develop general lower bounds

for the desired consensus times. We will then study the effect of placing all the budget on

the boundary of the lattice, as well as "spreading" all the budget over the lattice. This

will allow us to construct an optimal placement for stubborn nodes which minimizes the

expected time needed to reach consensus. Finally, we will attempt to rederive a result from

Levin, Peres and Wilmer [11] which we use heavily through the chapter.

8.1 Model Description

We begin by describing the process studied in this chapter. As mentioned in Chapters 6

and 7, we will mainly focus on square lattices with periodic boundary conditions (i.e., tori)

of dimension d with N nodes.

We possess a budget B of stubborn nodes in the +1 state. We allow this budget to
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depend on N. Although we will obtain results for general budgets B, we typically start

by considering budgets of the type B ~ 0(1) (this corresponds to a "very small" budget),
d-1

budgets of the type B ~ O(N d-) (this corresponds to having a budget comparable to the

size of a full face of the d-dimensional lattice), and budgets of the type B - O(N) (this

corresponds to having a budget comparable to the size of the full lattice). We thus position

these stubborn nodes on the lattice and bound the expected time r*(N) for the process

to reach consensus. Recall that nodes in the lattice update their opinion by selecting the

opinion of one of their neighbors uniformly at random, and that the times at which a node

updates his opinion occurs when the rate-1 Poisson process of this node registers an arrival.

As we will show later, the expected time to reach consensus can change significantly if

we modify the initial placement of the stubborn nodes. We typically consider two types of

placements for our stubborn nodes: we either place all our stubborn nodes on the boundary

of the lattice, or we spread the stubborn nodes uniformly over the lattice.

Definition 8.1.1. Consider a d-dimensional lattice with N nodes and a budget B of stub-

born nodes. Assume that the quantity s = (N) ld is an integer. We say that we spread

the budget B of stubborn nodes uniformly over the lattice if the positions of the stubborn

nodes form a subgrid of the lattice with spacing s.

If ()11d is not a integer, we find some s such that s = ( )ld + o(1) and place the

stubborn nodes over a subgrid of spacing s.

Given a budget B, we have roughly B1/d stubborn nodes on each edge of the lattice.

We want these Bl/d nodes to be spaced by a distance s. An edge of the lattice has size

Nl/d, therefore we require s x Bl/d - Nl/d. We solve for s and get s = (L) d (ignoring

the fact that the result may not be an integer).

8.2 Main Results

We summarize here the main results we will obtain in this chapter. We define r* as the

expected time to reach consensus in the Voter process. We define -r as the expected hitting

time from one point in the lattice to the set of stubborn nodes in the worst case over all
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stubborn nodes. If J is the set of stubborn nodes then T = maxjg2 Ei [TaI, where Ei [T]

is the expected time a random walk initialized at node i first hits the set -.

Remark. Throughout the chapter, we always consider the worst case scenario for hitting

times: this means that we consider the largest expected hitting time to a set over all starting

node in the lattice.

In the chapter, we compute the expected time it takes a single random walk (in the

worst case scenario) to hit a stubborn node. We use Corollary 7.2.2 to deduce the expected

time to reach consensus by multiplying our result by a log(N - B) factor. We are given a

budget B of stubborn nodes which we need to place over a d-dimensional periodic lattice

of N nodes.

If we spread our budget evenly over the lattice, then (see Section 8.6):

(J)2 <T* 5; ()2 log(N - B), if d = 1,

(N) log ( ) 3 T* < ( ) log (N) log(N - B), if d = 2, (8.1)

r* < (N) log(N - B), if d > 3.

If B =Q (N , and if we place our budget over the boundary of the lattice as well

as over equally spaced internal slices of the lattice, then (see Section 8.5):

(N ) 2  r* < log(N -B) , when d > 1. (8.2)

/d-1 ),I
If B = o (N , and if we place our budget over the faces of a small cube of side Bd-

in the lattice, then we conjecture the following upper bounds (see Section 8.5.4):

B 2 (N - B)2 < * < B2 V (N - B)2 log(N - B), if d= 1,

B2 V N log N < T* < B2 V N log log(N - B), if d = 2, (8.3)

B- N B * B V Nog log(N -B), if d > 3.
B -9B <T*<(

To obtain the above results on r*, we bound the hitting time T and use Corollary

7.2.2 to bound T*. We will show in Section 8.7 that spreading the budget of stubborn nodes
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uniformly ove1 the lattice is actually an optimal policy for d ;> 3 (as it produces the smallest

value of T). Indeed, we will show in Proposition 8.4.1 that the lower bound (N/B) K T is

tight for d > 3 (as it is reached when we spread the budget uniformly over the lattice). The

optimal placement of stubborn nodes when d = 2 will be left open, but we will conjecture

that the expected hitting time r scales as (N/B) log(N/B) if we place our stub)orn nodes

in an optimal way. When d = 1, we also prove that spreading the budget is an optimal

policy.

We see that, for d > 2, placing the budget over the boundary of the lattice is much

worse that spread the budget evenly over the lattice; the latter is order optimal and we will

see in Chapter 9 that it is close to optimal when compared to dynamic placements.

8.3 Symmetric Random Walks on a Lattice of Dimension d

Before diving into hitting times for more complicated settings, we start by developing some

easy results for a much simpler and well known setting. In this section, we consider a

synmetric random walk oil "': we are interested in bounding the expected time for a

random walk initialized at the origin to escape froim a d--dimensional hypercube of side I

centered at the origin.

Figure 8-1: 3-dimensional cube of size I in Z3 over which we will run a random walk

initialized at center (red node). We prove in Lemina 8.3.1 that the expected time for the

random walk to hit the boundary of the cub is of order 9(12).

We begin by defining the symmetric random walk on V7'. For each i E 1,... 1 d}, let

e, be the unit vector whose only nonzero component is the i" one. Let {Xk}.ifj be i.i.d.

random variables such that P(Xk = ei) and P(X. = -ej) for each i E f1, . 111
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and let Xo = 0 be the origin. We define the random walk Sk 1 = Sk + Xk+1 == XO

initiated at the origin So = 0.

Lemma 8.3.1. For any d > 1, the random walk {S}o defined above will exit a d-dimensional

square of side l centered at the origin in time E(1 2 ), for a fixed d.

Proof. We define our stopping time

r; = min{k > 1 : one component of Sk is + }.2

ri corresponds to the first time our random walk reaches the edge of the d-dimensional

square of side i centered at the origin. We consider the random walk Sk (Si,..., Sk)

defined above, which is initialized at node (0,.. . , 0). The walk halts as soon as S' reaches

the value 1/2 for some i c {1, . . . ,d}.

To get the lower bound, we argue as follows. Define Yk =|SkI11 2 - k, where 11.1 is the

euclidean norm. We first show that Y is a martingale. Note that E ikIIS12] = E [Sk - 8 kI =

k=1 ZY=1 E[Xi -Xj], so by independence of the Xi (and since E[Xi] = 0, l|XIA- = 1) we get

that IE [IsI2l -- O E [X~II2] = k. Hence, IE[YkI = E [iSkl2 - k = 0 which is bounded

for all k. We finish by computing

E [Yk+I|Yk] = E[Sk+1-Sk+1lYkl-k-1

= E [(Sk + Xk+1). (Sk + Xk+1)Yk] - k - I

= E [1Sk112 + 2 Sk - Xk+1 +iIXk+1|2 Yk] - k - 1

=Y- + 2E [Sk - Xk+lIYk]

= Y + 2E [Sk yk] - E [Xk+1], as Xk+1 is independent of both Sk and Y

= Yk + 2E [Sk ]0

=Yk.

Note that < IISg|i lf. Applying Doob's Optional Stopping Theorem, we get E[ri] =

E |Sa||I (j)2 = (. Therefore E[r] 1 2, hence E[ri] = (12/4).

Applying Doob's Optional Stopping Theorem for the upper bound, we get E[Tr] =
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E |ISnI 2] < (ld)2 = d. Therefore E[ri} < 2, hence E[-r] = O(12d/4). When d is fixed,

we conclude that E[r] = E(1 2 ).

This simple lemma will be useful in the following sections as it helps us to prove simple

lower bounds for more general hitting times of random walks over lattices (Proposition

8.4.1), and for analyzing the expected time needed to reach consensus for the voter process

when all stubborn nodes are placed on the boundary (results in Section 8.5). The case

d = 1, in which we consider the hitting time for a random walk over a cycle, will be used

in Lemma 8.6.1, and Theorem 8.6.2.

8.4 A General Lower Bound for Hitting Times on a Lattice

In this section, we will consider a general budget B (which can possibly depend on N)

allocated arbitrarily over a d-dimensional lattice of N nodes with periodic boundary con-

ditions. Considering a symmetric d-dimensional random walk starting from any non stub-

born node of the lattice, we provide a lower bound for the first time that the random walk

hits a stubborn node.

We begin by stating and proving a proposition which directly follows from Lemma 8.3.1.

Proposition 8.4.1. We are given an arbitrary budget B (which can possibly depend on

N). Let Xk be a symmetric d-dimensional random walk over the periodic lattice, starting

from any non stubborn node of the lattice. Let r be the maximum expected first time that

the random walk hits a stubborn node, over all starting point of the random walk. Then

E[r] = Q B , with d fixed.

Proof. Let s be the spacing in the case of a uniform spreading: s = (N). Observe that

for a general placement of the nodes there must exist a non-stubborn node in the lattice

which is at a Euclidean distance greater or equal to s/2 from its closest stubborn node. We

can therefore lower bound the expected time the random walk initiated at this node would

take to hit a stubborn node by computing the time it takes for this random walk to exit
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a square of side s. From Lemma. 8.3.1, we obtain E['r} = Q(s2 ), which gives the desired

lower bound. 0

Even though this lower bound is clearly tight for d = 1 (because of the geometry of a

line), it is not tight enough for higher dimensions. We can get a better lower bound using

more sophisticated tools from Aldous and Fill [1]. Let - be the set of stubborn nodes, let

Xk be a symmetric d-dimensional random walk over the d-dimensional periodic lattice,

and define

= min{k > 1|Xk E -4}, and

Tm = min{k > O|Xk }

T is the first return time to the set of stubborns, and TM the first hitting time to the set

of stubborns (TM and T, are equal unless Xo E -). We also define 7ri as the stationary

distribution of the Markov chain at the state i, and 7r(4) = &EM 7ri. Also, Ex,[.] corre-

sponds to taking an expected value when the Markov chain is initialized from the stationary

distribution over -. In Chapter 2 of Aldous and Fill [1], the authors prove "Kac's formula":

Lemma 8.4.2. (Kac's Formula) Using the notations introduced above: E,, [T ] = 1

Using Kac's formula, we will be able to prove a better lower bound for the hitting time

over an arbitrary set of stubborn nodes -.

Proposition 8.4.3. Let ri be the expected hitting time of the random walk, starting at

node i, over the usual d-dimensional lattice on the set of stubborn nodes -. Define T as

maxj M Ti. Assume the lattice has N nodes, and || = B. Then E[r] = Q(N/B).

Proof. First, note that 7ri = 1/N for any node i in the lattice, therefore 7r(-4) = ri

. From Kac's formula, we get E,,, [Tl - )= N/B.
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We now want to show that 1 + E[r] E [T+]. We have:

E, [T+] = P(M -+ -4 transition) + P(2 - 4 transition)EMc [Tql

< 1 + E~c[TV]

< 1 + 1 riP(.4 -+ i transition)

< 1+maxri=1+E[],

as r considers the worst case scenario. Therefore E[TI ! - - 1, and so E[r] = l(N/B). L

This proposition will be very useful to show that spreading the budget of stubborn nodes

uniformly over the lattice is actually an optimal policy for d 3. Indeed, we will show that

the lower bound (N/B) we have just derived is tight for d > 3 (as it is reached when we

spread the budget uniformly over the lattice), while the lower bound (N/B) 2/d obtained

in Proposition 8.4.1 is reached for d = 1. The optimal placement of stubborn nodes when

d = 2 will be left open, but we will conjecture that the expected hitting time T scales as

(N/B) log(N/B) if we place our stubborn nodes in an optimal way.

8.5 Effect of Placing all Resources on the Boundary

In this section we consider placing all our budget B over the boundary of the lattice. We

first study the cases B - O(N), O(N d ) and 0(1), before providing upper and lower

bounds for more general budgets.

8.5.1 Linear Budget

Given a linear budget B = O(N), we can place all resources on the boundary and the

rest inside the lattice. We assume that we possess a budget B = ceN for some constant

a E (0, 11.

An order optimal placement of the nodes would be to position stubborn nodes over all

the faces of the lattice and then spread the rest of the budget O(N(a - N-l/d)) = 0(aN)

uniformly inside (Fig. 8-2a). Indeed, with such a placement a non-stubborn node will be

contained in a hypercube of side Q((l/a)/d) in which we have a stubborn node at each
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corner. By periodicity of the lattice, it is similar to computing the hitting time for a random

walk over the periodic lattice Zd -)1d. There is no dependency on N here, so T = E(1) (with

a possible dependency on d). This placement is thus order optimal.

We can also consider a sub-optimal placement of the nodes: start by placing the stubborn

nodes over all faces of the lattice, and then cover as many adjacent parallel internal faces

as possible (Fig. 8-2b). We obtain a lattice filled with stubborn nodes but with a hole of

side O(N d ). As shown in Lemma. 8.3.1, r = 9(N2~ -) which is clearly sub-optimal.

Note in the last case however that, if instead of piling up all the stubborn nodes in

adjacent parallel faces we space the stubborn faces by a distance of order O((1/a)) (see

Figure 8-2c), then a random walk hits the stubborn set in constant time E(1) (with a

possible dependency on d though).

8.5.2 Stubborn Boundary Budget

d-1
Given a budget of the form B - O(N-d-), we can place stubborn nodes over all the faces

of the lattice. Then using Lemma. 8.3.1, we immediately obtain that, for any fixed d,

r - 9(N 2/d) E((:) 2) because the side of our lattice has size Nl/d.

Remark. Note that we do not need to cover all the faces of the lattice: if we cover only one

face, the random walk will hit the stubborn set equally fast. Indeed, by symmetry we can

consider the first face as a single state "1", and all internal slices which are parallel to this

face will be represented by states "2",...,"N/d",. We define a random walk Yk over this

new graph: we get a lazy birth-death chain in which P(Yk+1 = ilYk = i) = -, if Ii - il = 1,

and P(Y+ 1 = ilk = i) = i (assume state Nl/d + 1 and state 1 are identical). We can even

modify this chain to be absorbing at state 1: P(Yk+1 = 1|Yk = 1) = 1. A random walk over

this lazy birth-death chain will hit the absorbing state in time E(N 2/d) as well. Indeed, this

can be seen by looking at a one-dimensional random walk on Z defined by S. = Zi'O Xi,

with Xo = 0 and Xi E {-1, 0, 1} such that P(Xi = 1) = P(Xi = -1) = IP(Xi = 0). In

this case, we consider the martingale Y, = S - 1 and the stopping time TN = minfn > 1:2_

IS I = Nl/d}. Doob's theorem implies that E[TN] ~ N 2/d (the idea is very similar to the

proof of Lemma 8.3.1).
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Figure 8-3: We illustrate an easy way to decompose the lattice if only one face (in green)

is covered by stubborn nodes.

8.5.3 Constant Budget

We now consider a buidget B indepwendent of the numrber ofnodes in the lattice (i.e., B ~

0(l), for a. ffixed (1). For example, this can be Pictured as placing the stubborn nodes at

the corners of the hatticc. We will see in Section 8.6 that, for a lattice of side N'.I" with

stub-born nodcs at its corners, the hitting time is:

8(Ni ) ,if d = 1,

T = (N Iog N), ,if d

0 (N), ,if d ;> 3.

8.5.3 Censral Budget

We finish this sctio by considering a genral budget placed over the bonumdry of thea.

lattic. Wraf consider two cases: i the first one, we assume that our budget is at least as

large as the size of the botundary (i.e., we are able to fully cover.-i the boundaries of the lattice

with stubborn nodes). In the second case, we look at buidgets that are smaller than the

size of the bolairy (ie., we arc able to fully cover the fondarices of the lattice with

stubborn nodes).

Case : Large Budget B =Q(N 'I

if the budget is B = o(N Ilil ) then we can place the stubborn nodes over all faces of the

lattice, and add mor of te nd i e lattice. Already, With a oundary fully covered by

wtstubbor ii ndes, We IanV th O(N d). Assuwe that the budget is of the form B = N the
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for sonic a such that 1 < a < N' /". Then we can reduce th hitting tiirne r by covering

01 internal slices of the lattice separated by a distance ' from ach other (see Figure

8-4). We have thus divided our lattice into many sublattices of side V . Therefore this

pilaceient of stubborn nodes produces a hitting time r = 0 . In the next section,

we will prove in Theorein 8.6.5 that spreading the resources uniformly over the lattice cani

rdCe11 the hitting time to T = ( when d > 3: therefore spreading the resources over

the lattice is strictly better than grouping resources over faces of the lattice.

\Il/d

th&e L-tc is stil(

Nla-1

AN 4

"'0 AM

N" to 44o e

Figure 8-4: We illustrate a way to place the stublbornl nodes for a budget of B = (N )

nodes. In this case, r = (( N)2

Case 2: Small Budget B = o(N 1 +)

When the budget is smaller than the size of the boundary, we do not have a rigorous result.

Instead we present an argume it that results in the estimate:

B2 \ (N - B) 2 , ifd=1,

B2 < 1 N log (+ if d = 2, (8.4)

v \ B , if d > 3.

If the budget is B o(N " ), then we can place all the budget over the faces of some

smaller cube of side I = I . We now attempt to estimate aii upper bound for the hitting
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LM
L + - - - - - - -

I * 1

(b) Approximating the random walk

(a) Original random walk over the lattice over the lattice by a delayed synnet-
of side L. This random walk halts as soo ric random walk on a new lattice of side

as it lits the green cube of side 1. L/L.

Figure 8-5: In (a), we consider a random walk over a periodic lattice of side L which halts as

soon as it hits the cube of side 1. In (b), we approximate this random walk by a symmetric

random walk over a lattice of side L'= L/i halting when the walk hits the unit cube.

time to the cube. Define St as the origina random walk over the lattice of side L = N i/, as

represented in Fig. 8-5a. S, halts as soon as it hits the green cube of side 1. Next, we define

a raidomn walk S' over a new attice of side L' = L/i which halts as soon as it hits a cube of

side 1. We couple St and S' is follows: we partition the original lattice into cubes of side 1

as shown in Fig. 8-5a: while S, is inside such a cube, the walk S' stays at the center of the

corresponding cube in its own lattice space. As soon as St crosses a boundary, S' moves by

one unit in the direction of the crossing S performed. S', then performs a delayed random

walk over the primed lattice: the expected time between successive jumps in S is of order

Q(12 ) (it is the expected time for St to exit the cube of side 1). Unfortunately the primed

random walk is no longer svmietric because, at each jump, S' has a much higher probability

to imove back at its previous position. If we approximate 6' as a symuetric random walk

(by assuming i to be small compared to L) this reces the probkm to computing the

expected hitting time of a syninetric random walk to a point: as we will see in the next

section (Proposition 8.6.3). this scales as L'1 when d > 3 and L'2 log L' if d = 2. Based on
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this heuristic argument, we are led to conjecture that:

J (12 x L2log L), if d = 2,

o(l2 x Ld), if d > 3.

0 (L2log (), if d = 2,

177-,2 if d > 3.

Nlog( ), if d = 2,

O B(N~d') if d > 3.

Note that if the green square gets bigger, then we must also consider the hitting time of a

random walk inside the green square: this takes time O(BWT). Thus

( B2 v Nlog ()), if d =2,
r ~ 2(8.5)

O(B2- V LBdl), if d > 3.

where a V b is defined as max(a, b). This bound has not been rigorously derived; in Section

8.8 we derive the same upper bounds by performing a continuous approximation to the

random walk. Note that if d = 1, then r = ) (B2 v (N - B)2).

8.6 Effect of Spreading all Resources Uniformly Inside the

Lattice

In this section we consider spreading all our budget B uniformly inside the lattice. The

spacing used will be s = (-) d = Nd (ignoring the possible o(1) correction which in-

sures the integrality of s). We first study the cases B ~ 9(N), 8(N d ) and E(1), before

providing upper and lower bounds for more general budgets.

8.6.1 Linear Budget

If we use a budget B ~ O(N), then obviously E[r] = 0(1). Note that, if we use the result

of the following subsection, we can prove that for B = N (for some a > 1) and d fixed, we
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have

W(2 ), if d = 1,

T = ) (a log a), if d = 2,

E(a), if d > 3.

8.6.2 Stubborn Boundary Budget

We will now bound the expected hitting time for a budget B = ((N d) when we spread

all the stubborn nodes uniformly over the lattice. Recall that the value of the spacing

s = e ((N) d In this case, by applying the lower bound theorem (Proposition 8.4.1),

we obtain a lower bound of: T = Q Ni). By applying the finer lower bound theorem

(Proposition 8.4.3), we see that r = Q (N).

Lemma 8.6.1. Set d = 2, let B - E(VNW) and spread all the stubborn nodes over the

lattice so that the spacing between stubborn nodes will be s = O(N4). Then s2 < T

1 3
i.e. N2 <, T < N4.

Proof. (Sketch) We consider the backwards random walk Xt = (Xt, Yt) initialized at node

(xo, yo). The walk halts as soon as Xt or Y reach a stubborn node. As the boundary

conditions are periodic, it is sufficient to analyze the halting time of a random walk over

one square of side s = N4 with one stubborn node at each corner.

Viewing Xt as a product chain, we see that Xt and YE are generating a random walk

over a one-dimensional line of size s. We immediately get the lower bound T(s) = Q(s 2 )

as each one-dimensional random walk takes time Q(s2 ) to reach a stubborn node at the

endpoints, and we need both random walks to hit their target simultaneously.

To get the upper bound, we argue as follows. We can first simplify the analysis by

viewing Xt and Y as random walks on a cycle Z, of length s which halt at soon as they

simultaneously hit node zero. We know Xt reaches zero in time 0(s2). By Levin and Peres

[ref:mixing times textbook -5.3.1], the mixing time for a random walk over a cycle of length

s is of order 0(s2). This result is also proved by Aldous and Finn [relaxation time T2 for

the cycle is 0(s2)]. This means that, after time O(82), Y is uniformly randomized over the

cycle, so Y is at node zero with probability -. So we expect about s trials for Y to reach
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node zero. Hence r(s) = O(s2 ) X O(s) = 0(S3).

d-1
Theorem 8.6.2. For d > 1, let B ~ O(N-d ) and spread all the stubborn nodes over

the lattice so that the spacing between stubborn nodes will be s = e (Ni). Then T(s) =

1(d l 1
O(sd+1). Furthermore, Nd < T(N) < Nd x Nd.

Proof. We consider again the backwards random walk Xt = (XJ, ... , Xtd) initialized at node

(xo,..., x). The walk halts as soon as an Xl reaches a stubborn node. As the boundary

conditions are periodic, it is sufficient to analyze the halting time of a random walk over

one d-dimensional lattice of side s = N7 with one stubborn node at each corner.

Viewing Xt = (XJ,.. . , Xft) as a product chain, we see that the XI are generating a

random walk over a one-dimensional line of size s. We immediately get the lower bound

r(s) = Q(s2) as each one-dimensional random walk takes time Q(s2) to reach a stubborn

node at the endpoints. and we need all random walks to hit their target simultaneously.

2 2
Expressing this lower bound as a function of N, we get s2 = NT. To compute a better

lower bound in the entire lattice, we use the finer lower bound theorem (Proposition 8.4.3)

we derived earlier. This yields a lower bound of N/B = Nd.

To get the upper bound, we argue as follows. We can first simplify the analysis by

viewing the Xj as a random walk on a cycle Z, of length s which halts at soon as all

random walks Xt,..., Xt simultaneously hit node zero. We know Xf reaches zero in time

O(s2). By Levin and Peres [ref:mixing times textbook -5.3.1], the mixing time for a random

walk over a cycle of length s is of order O(s2). This result is also proved by Aldous and

Finn [relaxation time -2 for the cycle is 0(s2 )]. This means that after time 0(s2), the other

Xl are uniformly randomized over the cycle, so all the remaining Xl are at node zero with

probability -- r. So we expect about s-1 trials for the remaining Xl to reach node zero.

Hence r(s) = O(s 2 ) X O(Sd-1) = O(Sd+1)

Until now, we were able to show that

I N /d N 11 2

108

0



It is actually possible to find a tighter asymptotic bound. Such a theorem can be found in

Chapter 10 of Levin, Peres and Wilmer [11] (Chapter 10):

Proposition 8.6.3. (Levin, Peres and Wilmer [11]) Let x and y be two points at distance

k > 1 in the torus Zd . Let rxy be the expected time of first visit to y, starting from x. Then

9(12 log k), if d = 2,

E(d), ,independently of k if d > 3.

Corollary 8.6.4. Consider a random walk over a lattice Zld of N nodes with B =

O(Nddl) stubborn nodes evenly spread over the lattice. Then, in the worst case (over

initial state) scenario, the expected time at which the random walk hits a stubborn node for

the first time is given by:

r (N2 ), if d = 1,

T = e(vNlog N), if d = 2,

9(N1/d), if d > 3.

Proof. This immediately follows from Proposition 8.6.3 by taking i = s, i.e., 1 = N1/d 2 and

by setting k = 1 to get the worst case scenario. Note that Proposition 8.6.3 is about hitting

a single node. Since we spread our budget evenly over the lattice, then studying the whole

lattice of N nodes with B stubborn nodes evenly spread is equivalent to looking at the

small periodic lattice of side s with a single stubborn node at its corner.

If we compare our previous bounds to the ones derived by Levin, Peres and Wilmer [11],

we see that our lower bound was actually providing the correct asymptotic behavior when

d > 3, and our upper bound was providing the correct asymptotic behavior when d = 1.

The case d = 2 which is in between is the trickiest.
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18.6.3 Constant Budget

When we have a constant budget B - 0(1), we can bound the expected hitting time r

using Peres' theorem and get:

J (N2), if d = 1,

E (N log N), if d = 2,

E(N), if d > 3.

8.6.4 General Budget Evenly Spread over the Lattice

In this section, we consider the case of a general budget B, when we spread all the stubborn

nodes evenly along the lattice. We therefore partition our lattice into squares of side s =

E) with a stubborn node at each corner. We can therefore apply results of the

previous section to obtain:

Theorem 8.6.5. In dimension d > 1, if we spread our budget B of stubborn nodes evenly

along the lattice, then

N ()N) 1+1/d

B (N) ,

Using the bounds from Peres, we get

7(()2, if d = 1,

T E (L log Y), if d = 2,

E)(N), if d > 3.

Proof. Partition the lattice into squares of side s = e ( ld with a stubborn node at

each corner and apply the bounds we derived in the Theorem 8.6.2 and Corollary 8.6.4. 0

8.7 Optimal Placement of Stubborn nodes

Now that we have bounded the expected hitting times for uniformly spread stubborn nodes,

we can show that this placement is actually optimal for d : 2 and conjecture that it still is
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optimal when d = 2. In this section, we say that a placement of stubborn nodes is optimal

if it minimizes the worst case expected hitting time from a non-stubborn node to the set of

stubborn nodes.

Lemma 8.7.1. Let d = 1. Given a budget B of stubborn nodes, an order optimal placement

(which minimizes the worst case scenario, over initial state, of the expected hitting time)

for the stubborn nodes consists in spreading them evenly at a distance s = O(N/B) of each

other. Therefore the optimal hitting time is T = (N/B)2.

Proof. If we spread evenly the budget over the line, stubborn nodes will be at a distance

O(N/B) of each other, therefore the hitting time will be equal to (N/B) 2 . We proved in

Theorem 8.6.5 that T = Q (. (N)2) So the hitting time cannot be lower

than (N/B) 2 in one dimension. We conclude that this placement is indeed optimal. L

Note. We can also prove the optimality of the evenly spread placement when d = 1 by

arguing in the following way. Suppose that we place the stubborn nodes along the line at

distances li, 12, .. - , 1B-1 of each other (where 0 < lk N). Then r = maxi=1...B_1 ri, where

-ri is the expected hitting time over the segment of length li which has stubborn nodes i and

i +1 for endpoints. We know that T = l?, therefore T = maxi=1...B_1 1? for any placement of

the stubborn nodes over the line. We conclude that the optimal placement of the stubborn

nodes i.e., the placement that minimizes the expected hitting time, should minimize the

largest possible distance between consecutive stubborn nodes. This implies that an optimal

placement consists of spreading evenly all the stubborn nodes over the line.

We can now provide the main result of the chapter:

Theorem 8.7.2. Let d > 1 and d * 2. Given a budget B of stubborn nodes, an order

optimal placement for the stubborn nodes over the lattice Z consists in spreading them

evenly at a distance s = O((N/B)l/d) of each other. The expected hitting time for a random

walk is given by: I (( )2 ), if d = 1,
r1 =

E) (N), if d > 3.
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Proof. We have proved the theorem for d = 1. Now for d > 3, we already know that the

hitting time is bounded below by (N/B) (Proposition 8.4.3). Since the lower bound is

reached when we spread the resources evenly over the lattice (Theorem 8.6.5), we conclude

that such a policy is indeed optimal.

Conjecture 8.7.3. We believe that for d = 2, spreading the resources evenly over the lattice

will be an order optimal policy. We already know from Theorem 8.6.5 that the hitting time

for such a random walk would be, in expectation, r = e(E log N).

The main idea is to avoid wasting resources, by avoiding to create large clumps of

stubborn nodes. Indeed, a square of side 1 filled with stubborn nodes will have the same

effect as an empty square of side I with stubborn nodes only on the boundary, as long as

1 is not too large (the time 12 it takes to hit the boundary of the square from the inside of

the square should be smaller than the time it takes to hit the boundary of the square from

the outside of the square). Indeed, in that case a filled square uses the d-th power of the

budget for a comparable hitting time.

8.8 Another Attempt at Computing the Hitting Time to a

Point

In this section, we will once again consider the hitting time to a point for a symmetric

random walk over a d-dimensional lattice of size s (with sd nodes).

Fact. For d = 2, suppose we have one stubborn node in a corner of the 2-dimensional

periodic lattice of side s. Then T(s) ~ O(s2 log(s 2)).

This result is already known, and can be found in Levin, Peres and Wilmer [11] (see

Theorem 8.6.3). The proof in [11] relies on circuit analogies, and relies on P6lya urn

processes. In the following, we want to offer a plausible argument for this fact by performing

a continuous approximation of the problem and by solving PDEs with appropriate boundary

conditions. The "proof" attempted below is not rigorous and we will highlight the missing

steps.
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Proof. Attempt. We will first derive a recursion equation in the lattice space for the values

of the hitting times to the targeted point (initialized at various nodes in the lattice). Then

we will look at a continuous approximation to these equations. This step is often performed

and can be rigorously justified. So far, we would have to solve a PDE over a square. Due to

the symmetry of the problem, it is much easier to solve the PDE over a disk: this is exactly

where the non-rigorous part of the proof lies. We would need to prove that, a Brownian

motion initialized on the boundary of a square would hit a "small" target in its center at

roughly the same time as a Brownian motion initialized on the boundary of a disk of com-

parable size, in orders of magnitude of the lattice size s.

Step 1: recursive relation

As before, we focus on a random walk over a periodic square of side s which has a

stubborn node at each corner. Define T(k, k') to be the expected time to reach a corner

if the random walk is initialized at node (k, k'). By periodicity of the boundaries, we

see that T(k, k') = T(-k, k') = T(d - k, k') and by symmetry we see that T(k, k') =

T(k', k).

We obtain the following recursive equation:

T(k, k') = 1 + T(k - 1, k') + T(k + 1, k') + T(k, k' - 1) + T(k, k' + 1)

T(0, 0) = 0 = T(d, 0) = T(O, d) = T(d, d)

T(k, k') = T(-k, k') = T(d - k, k')

T(k, k') = T(k', k)

We are interested in computing Trid = T(LdJ, LdJ) to obtain an upper bound for the

expected time to reach the stubborn node if we start in the middle of a square. This

recursion is very hard to solve.
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Step 2: continuous approximation

We will convert the square lattice of side s to a disk of unit area. To do this conversion,

we must scale distances as follows: the lattice has area s2 and the disk has area 1,

therefore 1 unit in the lattice corresponds to units on the disk. To scale time

correctly, recall that we expect to reach a boundary in time s2 on the lattice, while

on the disk the boundary is reached in unit time, therefore 1 time unit on the lattice

process corresponds to I/s' time units on the disk. To avoid confusion, we will use

the notations T(x, y) or T(i) over the disk (where 0 f - 2 + ^2 < 1). Thus we

have the following conversions:

x = x/s, =y/s, and

T(2, S)2= T(x/s, y/s).

Over the disk, we can view the process as a diffusion by approximating the recursion

equations derived above.

T(k, k') =1 + 1 T(k - 1, k') + T(k + 1,k') + T(k, k' - 1) + T(k, k' + 1)

becomes

(,9)= 42T (

= 23 T ,- +T - T - T y-

We thus obtain:

1
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t - , ) + t - 2t(2, + t (i, - + t , - 2T(l ,

__ {t(2- ) t i(2+ , ) - 2T(s, ) t (, p- }) + t(z, 9+) - 2(,Q
4s2  1/s 2  + 1/s2

Rearranging the terms, we write

T z- ,9 + i(+ , )-2t ( t 9 (&, y- +T- (x-, 9 + 1) -2f(&, Q
-4 1/s 2  

1/s2

Taking the limit as s goes to infinity, we get:

02 02
T(2, 9) + 0g 2 T(2, ) = --4 (8.6)

Writing the Laplacian in polar coordinates and using spherical symmetry, we get the

following ODE for t(): "() + I'() = -4, which implies that

( 2 + a log( ) + #, (8.7)

for some constants a,#.

On a disk of radius fo < 1, we have T(fo) = 0, implying that

1 = f 2-- a log(fo).

The Po we will use will be of order 1/s since T(r) = 0 for r < 1 over the lattice.

We know that t(1) = dr2 + lt(1) + It(1 + dr) + l(1 - dr) on the boundary. Due

to spherical symmetry and by periodicity of the boundary conditions, we observe that

t(1+ dr) = T(1 - dr). Therefore t(i) = dr2 + 1t(1) + -I(1 - dr), i.e. (1) - T(1 -

dr) = 2dr2 . This implies that i'(I) = limdr-o 2dr = 0. We have P( ) = -2r + a/i,

therefore 0 = '(1) = -2 + a so a = 2 and = - 2log(fo). We conclude that:

( )= (f - 2) + log( ). (8.8)
r0
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Step 3: conversion to the discrete space

If we discretize the result we see that T(r) = s2 t(r/s), therefore:

T(r) (8.9)- (s2 8 - r2) + s2 log((4 )2rosr-)2

- (ro - r2 )+s2 log ()

= (1 - r2) +s 2 log(r2 )

(8.10)

(8.11)

since ro ~ 1.

The right hand side is of order 0
(r2

+ s2 log(r2)). The highest value of T is reached

at the middle of the lattice (so r ~ s/2). In that case:

T = 9(s2 log(s 2 )).

We conclude that the longest time needed to hit a point on a 2-dimensional lattice is

T = e(s 2 log(S2)).

Now if we consider the hitting time to a square of side ro instead of a point, we get

T = E s2 iog
(S )2))

Note. By the same argument, in dimensions d > 3, we obtain: AZT() = -2d, leading to

s(fg) = -2 + 2b-a d

Using the same boundary conditions we obtain

-(0) = -P2 2 d 2ro - ^2-d)
2-d 0 r
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Converting the problem back to the original discrete lattice:

T(s) = (r2 - s2) + 2 d d(s2-d - r2-d).

We conclude that:
2 d1 1

T(s) 2 sd( -2 Sd 2 - r2) (8.12)
r0

Using the fact that ro = 1:

T(s) 2 (Sd - S2) - (S2 - 1). (8.13)
2 - d

We therefore recover the result T(s) = e(sd). We also observe that, for a more general

ro < s, we have T(s) = e ). In this case, if we consider the d-dimensional lattice

of side s Nl/d with a budget B placed on the faces of a cube of side ro = BF1, we get

)((N)2), if d = 1,

EB2 V N log- T-i d 2
T(s) = (-B--) T

(BbrvN d-N2/d)) if d > 3.

where the first B 2 term comes from the hitting time inside the square, and where a V b is

defined as max(a, b).

if d= 1,

T(s) E (B2 V N log -), if d = 2, (8.14)

E Bd -21 V B , if d > 3.

d-1
Recall that B can take values between 1 and N d: then when B is actually equal to

d-1
N- - (which corresponds to covering all faces of the lattice with stubborn nodes), the term

2 29
BWT dominates and yields Nd in agreement with our results in Section 8.5.2. Furthermore,

the result we conjecture here is consistent with the upper bound we estimated in Section

8.5.4 (Equation (8.5)).
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Chapter 9

Convergence Time to Consensus

for a Dynamic Policy

In Chapter 8, we considered a static model in which we placed B stubborn nodes with

opinion +1 over a d-dimensional lattice Z Id of N nodes and waited for the network

to reach a 1-consensus. In this chapter, we consider a dynamic variation of the problem

studied in Chapter 8: we are once again given a budget of B stubborn nodes with opinion

+1 and a d-dimensional lattice Zd o
N1/d of N nodes, but this time we are allowed to change

the position of the stubborn nodes over the lattice during the run of the experiment. We

want to bound the expected time needed for such a network to reach a 1-consensus. Our

ultimate goal is to see if we can significantly improve the convergence time to consensus by

adopting dynamic policies instead of static policies.

This chapter is structured as follows: after having introduced the model used here, we

consider dynamic policies for budgets at least as large as the size of the boundary of the

lattice, and also dynamic policies for budgets smaller than the size of the boundary of the

lattice. We then consider the case of a general budget, and we conclude the chapter by

comparing the performance of static and dynamic policies.
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9.1 The Model

We use the same model as in Chapter 8. We possess a budget B of stubborn nodes in the

+1 state, and position these stubborn nodes on a d-dimensional lattice Zdi/d of N nodes.

What is different is that we are allowed to reposition all our stubborn nodes over the lattice

each time a single Poisson clock (independent of the Poisson clocks of the nodes in the

lattice) of rate v = 1 ticks. Our goal is to bound the expected time T* for the network to

reach a 1-consensus. We assume throughout the chapter that all nodes are in the 0 state

at time t = 0.

If a node was stubborn at time t, and if we decide not to select it as a stubborn node

at a later time t', then the node will be in state +1 at time t' but will resume updating

his opinion according to the Voter process (this means that the node is no longer protected

and can adopt state 0 if one of its neighbors with opinion 0 influences him after time t').

On the other hand, if a non-stubborn node is in state 0 at time t and if we decide to

make it stubborn at time t, the node will immediately adopt the opinion +1 at time t.

Thus, in our dynamic model, we can essentially switch nodes from a 0 state to a +1 state

at an average rate of B nodes per unit time.

In this Chapter, we study two cases: we first consider budgets B at least at large as the

size of the boundary of the lattice (i.e., B = Q (N- )) in Section 9.2, and then budgets

B smaller than the size of the boundary of the lattice (i.e., B = o (Ndd) in Section 9.3.

For simplicity, we will refer to the former case as the "large budget case", and the latter

case as the "small budget case" throughout the whole chapter. We will consider the case of

a general budget in Section 9.4.

Note that, in contrast with Chapter 8, we will directly use the Voter process (instead

of using the dual process). This is because, when stubborn nodes are mobile, the dual

formulation becomes much harder to analyze.
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9.2 The Large Budget Case:

We begin by considering what we refer to as "large budgets", i.e., budgets B at least as

large as the size of the boundary of the lattice. In this case, B = (N--) . We describe

below a policy according to which the network can reach a 1 consensus in time ((N/B):

r1/d

NgAT

54&M,

IF a-

Figure 9-1: Our large-budget dynamic policy applied to a 2-dimensional lattice of N nodes.

Consensus is expected to be reached in tiie 1T*= 0(N/B).

A DYNAMIC POLICY FOR LARGE BUDGETS:

As B .1 = ( N ) we can assume that B = a x N 'ia' for some Q - (1). As

shown in Figure 9-1, we place our stubborn nodes over a slices (of N nodes) of the

lattice that are spaced at a distance N d of each other. For simplicity, we actually

cover two successive sliccs instead of one each time: this means that we have a pairs of

adjacent slices that are spaced at a distance N1> of each other (see Figure 9-1). The

policy then consists of moving the right slices to the right, and the left slices to the left,

as shown in Figure 9-1.

in the following theoremn we derive the expected time to consensus, when using the

dynamic policy outlined above:

Theorem 9.2.1. Given a budget B= 0 N the d- dimensional lattice ZNI' of N
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nodes can Frcach a 1-co7nscnsusS in timle. T = 'hen. usiqn the (i'ttlamic policy for late

bhdycts described above.

Proof Using the dynamic policy for large budgets described above, we observe that nodes

can only transition fron state 0 to state +1 (as the moving slices protect the nodes which

have been set to the +1 state). Therefore we expect a 1-consensus to be reached in time

N' M)NB1a (N)

We will prove in Theorem 9.4.2 that the "dynamic policy for large budgets" is actually

an order-optimal policy.

9.3 The Small Budget Case:

d-1

B......

4

2 ~

2 \

2
2
2

2

2

Figure 9-2: Our small-budget dynamic policy applied to a 2--dimensional lattice of N nodes.
Consensus is expected to be reached in time r* = O(N/B).

We now consider what we refer to as "small budgets", i.e., budgets 13 smaller than the

size of the boinda.rv of the lattice. In this case, B = o (N . This case seems harder
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to analyze as we cannot protect the set of +1 non-stubborn nodes anymore. We describe

below a policy according to which the network can reach a 1-consensus in time 9(N/B):

A DYNAMIC POLICY FOR SMALL BUDGETS:

Divide the lattice into (N/B) cubes of side 1 = Bl/d. We place our budget B -

0 (N d over one of these cubes of side 1: call this cube Co. We then move our

stubborn cube over neighboring cubes in the direction of a spiral centered at Co, as

shown in Figure 9-2. We also try to place stubborn nodes over +1 nodes that have

returned to a 0 state along the way.

We will show in Theorem 9.4.2 that the "dynamic policy for small budgets" leads to a

1-consensus in expected time r* = e (M), and that the policy is actually an order-optimal

policy.

9.4 The General Budget Case:

We are now ready to prove the main result of the chapter: we show here that, for an order-

optimal policy, r* = 9 (N). Furthermore, we show that, in dimension d > 2, dynamic

policies do not perform significantly better than static policies.

We begin by defining "non-static" policies.

Definition 9.4.1. We say that a policy is non-static if the policy is dynamic, and has the

following property: if the controller's clock ticks at time t, and if there are k nodes with

opinion 0 just before time t, then the set of stubborn nodes just after time t must include

min{k, B} nodes whose opinion was 0 before time t.

We can now state and prove the main result of the chapter:

Theorem 9.4.2. Given an arbitrary budget B, the d-dimensional lattice Z Ild of N nodes

can reach a 1-consensus in time T* = 0 (N) when using any non-static policy.

Proof. Let {Xi} 1 be i.i.d. Exponential random variable with parameter 1. Define Ki =

= 1 Xj: then the random variable Ki represents the time at which the controller's Poisson
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clock will tick for the ith time. Define NK, as the number of nodes in the +1 state imme-

diately after time Ki (so that this number also reflects the action the controller performed

at time Ki). Observe that, while NK 5 N - B, we have the following inequality:

B < E[NKi+l - NKINK] B(2d + 1). (9.1)

Indeed, in between two clock ticks, i.e., in the time interval [Ki, Ki+i), we expect:

1. Pairs of non stubborn nodes to influence each other with the same probability (as the

lattice is a regular graph): in this case, the expected number of non-stubborn nodes

with the +1 opinion that have not been influenced by a stubborn node should be

constant.

2. Stubborn nodes can influence non stubborn nodes: in that case, the expected number

of non-stubborn nodes with the +1 opinion that have been influenced by a stubborn

node should lie in the interval (0, 2dB).

3. The policy we use is non-static, therefore B new nodes with opinion 0 just before time

Ki+1 will take the +1 opinion just after time Ki+1-

Define Nk. = NK, - BKi and N" = NKi - B(2d + 1)Ki. We show below that, while

NK, < N - B, N'. is a sub-martingale, and N". is a super-martingale. Indeed, using

Inequality (9.1), we get:

E[NK'+ 1 |Nk,.] = E[NK, -BKi+1INkI

> E[NK, + B - B(Ki + Xi+1)INk,]

= E[N4NkINk] + B(1 - E[Xi+ 1]) =N

as Xi+ 1 is independent from N , and has mean 1; also,

E[N ,INZI" = E[NK,+1 -2dBKi+1INJI

< E[NK + 2dB - 2dB(Ki + Xi+1)IN{

= E[Nf\N,] + 2dB(1 - E[Xi+1 J) = N
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as Xi+1 is independent from N" and has mean 1.

Define the stopping time KI as the smallest time K1 such that NK1 > N - B. Applying

Doob's Optional Stopping theorem to the sub-martingale NK., we get:

0 =E[No] E[NGI = =E[NK] - BE[K1 ].

Therefore,

E[NK1] N
B B*

Applying Doob's Optional Stopping theorem to the super-martingale N ., we get:

0 = E[No'] > E[N I| = E[NKI] - B(dI+ 1)E[KiI.

Therefore,

IE[NK] N -B
E[KI] > > .-

2dB 2dB

Therefore,
N I N

- _ I < E[K] B (9.2)

and so E[K1 ] = e(N/B).

Now, between time K1 and time KI+i (actually just before time KI+1), the expected

number of nodes in the +1 state is expected to remain greater than (N - B). Then, at time

Ki+1 the controller will choose the remaining nodes as stubborn nodes, and the network

will have reached a 1-consensus. Therefore our expected consensus time T* should be equal

to 1 + E[K+1 ]. We conclude that r* = e (N) when using any non-static policy. 0

Notice that Theorem 9.4.2 also holds for arbitrary "regular networks" (i.e., networks

whose underlying graph is a regular graph).

Theorem 9.4.3. Given an arbitrary budget B, a regular network of N nodes of degree r

can reach a 1-consensus in time r* = E (N) when using any non-static policy.

Proof. This theorem follows from the proof of Theorem 9.4.2, by taking replacing 2d by r.

Since r is taken to be constant, the result follows. L
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As a corollary of Theorem 9.4.2, we see that the "dynamic policy for small budgets" is

actually order-optimal (and it also applies to budgets larger than the size of the boundary).

We also see that the "dynamic policy for large budgets" is also order-optimal.

9.5 Is There an Advantage to being Dynamic ?

In this section, we compare the results obtained in Chapter 8 and Chapter 9.

If d = 1, we saw in Chapter 8 that static policies could reach a 1-consensus in time r*

such that:

(N) 2  r* log (N - B).

In Chapter 9, we can use the "dynamic policy for large budgets" (here we can use it even

for small budgets too) to reach consensus in time

r* = E (N)

We clearly see that a dynamic policy can perform significantly better than a static policy

when d = 1.

If d = 2, we saw in Chapter 8 that, by uniformly spreading the budget over the lattice,

we could reach a 1-consensus in time r* such that:

log , r* 3 log -log (N -B) .

We have proved that an order optimal policy should lead to an expected time to consensus

that falls inside these bounds. In Chapter 9, we can use the "dynamic policy for large

budgets" when B = Q (N d), or the "dynamic policy for small budgets" when B =

o (Nd) to reach consensus in time

r* = E (N)

From Theorem 9.4.2, we know that these dynamic policies are order-optimal: this implies
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that a dynamic policy, for an arbitrary budget B, cannot perform better than a static policy

by more than a (log N) 2 factor.

If d > 3, we saw in Chapter 8 that, by uniformly spreading the budget over the lattice,

we could reach a 1-consensus in time r* such that:

(N < * < N log (N - B).

We have proved that an order optimal policy should lead to an expected time to consensus

that falls inside these bounds. In Chapter 9, we can use the "dynamic policy for large

budgets" when B = Q (N-W), or the "dynamic policy for small budgets" when B

o (N-d) to reach consensus in time

B(N)

From Theorem 9.4.2, we know that these dynamic policies are order-optimal: this implies

that a dynamic policy, for an arbitrary budget B, cannot perform better than a static policy

by more than a log N factor.

In conclusion, we have proved the following theorem:

Theorem 9.5.1. We are given an arbitrary budget B and a d-dimensional lattice Zd ld Of

N nodes. Let rs and rd represent the expected time to reach a 1-consensus for, respectively,

an optimal static policy and an optimal dynamic policy. Then:

1. If d = 1, a dynamic policy can perform significantly better than a static

Ord)2

2. If d = 2, a dynamic policy cannot perform better than a static policy by

(log N)2 factor: s < (log N)2 .

3. If d > 3, a dynamic policy cannot perform better than a static policy by

log N factor: I < log N.

We conclude that, in dimension d > 2, dynamic policies do not perform

better than static policies.

policy: 'r, =

more than a

more than a

significantly
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Chapter 10

Conclusion and Future Prospects

The general goal of this thesis was to study opinion control policies in two different scenar-

ios. In the first part of the thesis, we considered a broad class of deterministic dynamics

governing the interactions inside a network, and we designed a policy that a controller can

follow in order to spread an opinion inside a network with the smallest possible cost: this

lead to the development of the Descendant Algorithm and the Ancestral Algorithm. In the

second part of the thesis, we focused on the classical "Voter Model" (over networks whose

underlying graph is the d-diiensional integer torus Zd), and we designed policies that

minimize the expected time until the network reaches a consensus. In the second part, we

considered the case where stubborn nodes were fixed over the lattice, and the case where

the controller is allowed to move the stubborn nodes during the experiment. We ended this

part of the thesis by showing that, in dimension d > 2, dynamic policies do not perform

significantly better than static policies. However, in dimension d = 1, optimal dynamic

policies perform much better than optimal static policies.

In the following, we discuss a few remaining open problems:

Part I: A Deterministic Model

In this first part of the thesis, we have considered networks with deterministic dynamics,

and have developed the Descendant Algorithm and the Ancestral Algorithm to spread an

opinion inside the network with the smallest possible cost. We have also assumed that

the controller has full knowledge of the entire evolution of the network at the start of the
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experiment. It would be interesting to generalize both algorithms and apply them to cases

where the controller only knows how the network evolves over a time window comprised

of the next K steps , or where the network evolves in a stochastic way; for example, we

can build a model in which each edge in the network has probability p of appearing and

probability (1 - p) of disappearing at each time step.

Part 2: Static Versus Dynamic Policies for the Voter Model

In this second part of the thesis, we focused on the Voter Model over networks whose

underlying graph is the d-dimensional integer torus Zd. We controlled the network by

placing B stubborn nodes over the torus. We first studied the case where we place the

stubborn nodes at the start of the experiment and let the system evolve spontaneously

from there (this is the "static case"), and then studied the case where we are allowed to

change the position of our stubborn nodes over the torus during the run of the experiment

(this is the "dynamic case").

1. Static Case: it would be interesting to show that spreading the budget uniformly

over the torus is actually an order optimal policy in dimension d = 2 (we have proved

that it was order optimal for d = 1 and d > 3). Another open problem consists in

getting tighter bounds for the expected time to reach consensus r*: in this work we

are bounding T* up to a factor of log(N - B).

2. Dynamic Case: an open problem consists in determining whether dynamic policies

are significantly better than static policies in other network topologies. In particular,

we can consider general regular graphs (in this case, we have proved that r* = e (
for optimal dynamic policies), and try to bound T* for optimal static policies.

130



Bibliography

[1] David Aldous and James Allen Fill. Reversible markov chains and random walks on
graphs, 2002. Unfinished monograph, recompiled 2014, available at http: //www. stat.
berkeley. edu/-aldous/RWG/book .html.

[2] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence maximiza-
tion in social networks. In Proceedings of the 3rd International Conference on Internet
and Network Economics, WINE'07, pages 306-311, Berlin, Heidelberg, 2007. Springer-
Verlag.

[3] Peter Clifford and Aidan Sudbury. A model for spatial conflict. Biometrika, 60(3):581-
588, 1973.

[4] J. T. Cox. Coalescing random walks and voter model consensus times on the torus in
Zd. Ann. Probab., 17(4):1333-1366, 10 1989.

[5] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '01, pages 57-66, New York, NY, USA, 2001. ACM.

[6] Rick Durrett. Random Graph Dynamics (Cambridge Series in Statistical and Proba-
bilistic Mathematics). Cambridge University Press, New York, NY, USA, 2006.

[7] Fabio Fagnani. Consensus dynamics over networks. 2014. Technical paper available
at http://www-sop.inria.fr/members/Giovanni.Neglia/complexnetworksl4/
14winterschool-complexnetworks consensus%20dynamicsnotes.pdf.

[8] Richard A. Holley and Thomas M. Liggett. Ergodic theorems for weakly interacting
infinite systems and the voter model. Ann. Probab., 3(4):643-663, 08 1975.

[9] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence
through a social network. In Proceedings pf the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD '03, pages 137-146, New
York, NY, USA, 2003. ACM.

[10] David Kempe, Jon Kleinberg, and Eva Tardos. Influential nodes in a diffusion model
for social networks. In Proceedings of the 32Nd International Conference on Automata,
Languages and Programming, ICALP'05, pages 1127-1138, Berlin, Heidelberg, 2005.
Springer-Verlag.

[11] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Soc.

131



[12] Thomas Milton Liggett. Stochastic interacting systems : contact, voter, and exclusion
processes. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin,
New York, 1999.

[13] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '02, pages 61-70, New York, NY, USA,
2002. ACM.

[14] Ercan Yildiz, Asuman Ozdaglar, Daron Acemoglu, Amin Saberi, and Anna Scaglione.
Binary opinion dynamics with stubborn agents. A CM Trans. Econ. Comput., 1(4):19:1-
19:30, December 2013.

132


