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Abstract

In this thesis the topic of linear pure and warping torsion is investigated. The effects of
these phenomena on an arbitrary cross section is presented. Due to the complexity of
some sections, the problem of numerically identifying the shear center is resolved which
is a key component in quantifying the shear and normal stresses caused by pure and
warping torsion. For pure or St. Venant’s torsion a governing differential equation will
be developed and related to Laplace’s equation for an expanding membrane so as to
better understand the relationship between the torsional rotation on a beam and the shear
stress it creates.

Closed thin-walled sections such as continuous and multicontinuous cells are examined
under the influence of pure torsion and resolved in a manner comparable to that of planar
bending. A connection between torsion and planar bending in such sections is also
investigated. Built-up sections are also discussed along with a numerical approach to
determining the torsional stiffness of a given cross section.

The normal and shear stresses caused by the out of plane torsion known as warping is
also studied. Torsional properties such as the normalized upit warping function, statical
warping moment, and the warping constant are numerically evaluated using Simpson’s
integration rules and plotted using MATLAB?® sc the maximum values of these functions
can be observed. The maximum combination of stresses created by pure and warping
torsion together on any given beam with arbitrary supports and loading is also discussed.
The finite difference method is used to solve the differential equations which govern the
behavior of pure and warping torsion in combination.

An object-oriented computer program is also written to abet in pulling together the entire
torsional analysis procedure. The implementation of classes and linked lists to store and
create new information is discussed in the last part of this thesis.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering .
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Chapter 1

Introduction

In the discipline of structural engineering, there are two quintessential facets of study
which, when combined, helip the engineer to more appropriately understand the behavior
of a particular structure: analysis and design. Through the use of computers, the engineer
is abetted in procuring accurate and reliable results in a fraction of the time it took by
hand. In the area of analysis, however, the subject of linear torsion is widely avoided in
most analyses due to the shear complication of solving a plethora of differential
equations and then correctly combining them with any additional planar shear and
bending forces on the structure.

The most common occurrence of torsion is in straight or curved girders where the loading
is eccentric with respect to the axis of the girder or its shear center. Since this particular
phenomena can not be neglected in most of these situations, engineers introduce only
pure (St. Venant’s) torsion in the analysis. St. Venant’s torsion is a function cf the
rotation of the beam and its inherent torsional stiffness. When open and built-up sections
are introduced, the computation of the aforementioned parameters become extremely
complicated. Another significant aspect of torsion is warping which results when out of
plane displacements caused by an external torque are restrained and thus, engender extra
shear and bending forces throughout the beam. Warping is a function of three critical,
innate parameters of a beam: the warping constant, the normalized unit warping function,
and the warping statical moment. When arbitrary open cross sections are used, these

constants have to be evaluated numerically.
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This study is concerned with the computational aspects of torsional analysis in structural
systems. These systems entail beams which possess arbitrary cross sections including
open and closed multicontinuous cells. Several numerical solutions to the warping and
pure torsion problems such as closed-form evaluation of differential equations and finite
difference methods will be introduced and developed. Finally, an interactive computer
program will be developed that will attempt to evaluate the behavior of torsion on a beam
with a random cross section, various boundary constraints, and an arbitrary external
torque (concentrated or distributed). The program will have an interface with Matlab®
which will allow the user to graphically view the geometrically varying warping
functions across the cross section of the member. This process is extremely imperative in
the understanding of the superposition process which determines the location of the

combined maximum planar and torsional forces along the longitudinal axis of the beam.
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1.1 Significance of torsion

Frequently torsion is a secondary, though not necessarily, a minor effect that must
be considered in combination with other types of behavior. The most efficient cross
section for carrying an external torque is a hollow circular shaft. The mathematical
reason for this deduction will be described in latter sections. Although circular shafts
such as tubes or pipes are ideal in torsional loading situations, these shapes do not carry
and/or transfer other types of loading in an efficient manner. The shapes that comprise
“good” columns and beams are those that have their material distributed as far from their
centroids as practicable. Thus, their resistance to bending at the extreme fibers is
increased since most of the material is positioned as far from the neutral axis as possible.

Efficient sections such as channels and wide-flanges minimize the following ratio
[y aa
A

d

-
M

MIN 1.1

where the variables y, and d. are depicted in Figure 1-1. This ratio is defined as the

section modulus.

Centroid .

L LI

Figure 1-1 Area for deriving the section modulus .
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Box sections and thin walled circular shafts can not provide the same resistance in
bending as a wide-flange or channel with the same cross sectional area. Common open
sections (most of which are listed in the ASD Manual for Steel Construction) must be
analyzed for torsion in case of any eccentric loadings.

There are relatively few occasions in actual practice where the torsional load can
cause significant twisting. One instance is during the erection or construction of the
actual structure. In most building constructions the members are laterally restrained by
attachments along the length of the member and thus, are restricted to twist. Shear
stiffeners or braces along the web of the beam are sometimes used as intermediate
restraints for this purpose. Even without lateral restraints, the twisting bestowed on a
member from an external torque may be limited by the rotation or slope of any existing
transversely attached member. Suppose a column framed to a beam through a rigid
connection imposes an eccentric load onto the beam. The rotation the beam undergoes
from the eccentric loading is limited by the rotational bending stiffness of the column at
its point of connection to the beam. Any torsional moment the beam is faced to resist
will be reduced by the column which will have to pick up an additional end moment.

Other places where torsion may enter are in the analysis of spandrel beams where
the torsional loading may be uniformly distributed. It also exists in situations where a
beam frames into a girder on one side only, or where unequal reactions come to opposite
sides of a girder. The design of crane runway girders involves the combination of biaxial
bending and torsion which will be discussed in latter sectior‘ls. When a high torsional
stiffness is required for items like aircraft structurai components and curved girders,
closed sections become ideal and in some cases, a necessity. Single and multicontinuous
thin-walled cells are utilized in these situations. Using the Prandtl membrane analogy,

the torsional response of these cells can be analyzed numerically.
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1.2 Determination of shear center of variak’= cross
sections

In the development of the general stress equations for Bending, it is assumed that the
external force system is applied such that the resultant of these forces passes through a
point called the shear center or center of twist. This implies that there is no twisting of
the cross section and ornly plane bending will be induced. To correctly apply the general
equations of bending, the location of the shear center must be known. Then, the loading
pattern has to be modified so that the bending and torsiona!l effects can be calculated
independently. The location of this shear center can be found through two techniques.
One is designated as the Force Method while the other is a numerical interpretation of the

surface integrals used in the Force Method.
1.2.1 Physicalitv of shear center

In Figure 1-2 an arbitrary thin walled, open cross section is subjected to a vertical
load P. The centroid and the shear center of the section are designated as cand S.C.,
respectively. Since the load has an eccentricity with respect to the centroid of the section,
it can be vectorally resolved into a force which acts through the center and a
corresponding twisting moment 7 as shown in Figure 1-3. By resolving the force in this
manner, the stresses on the body can be differentiated into two categories: stresses due to
the vertical load P in plane bending conditions and stresses induced by a twisting
moment T = (e, +x,)P. Inorder to obtain the torsional induced stresses, the location of
the shear center is imperative. It is at this point where the externally applied forces
balance any internal couple so as to prevent twisting. Thus, the assumptions of planar
bending conditions can be applied without the introduction of extraneous axial or
torsional loads.

An open prismatic section subject only to bending type stresses (i.e. planar normal

and shear stresses) will be considered. This section has a cross sectional

14



Figure 1-2 Eccentrically loaded thin walled section

T=(, +x,)

/’

v

Figure 1-3 Resolution of forcing system

v
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thickness ¢ which is a function of the length s and does not vary along the longitudinal
axis of the beam z. The walls of the section are assumed to be sufficiently thin so that
the computations may be based on center line dimensions. Also, with thin wall theory,
the shear stresses that develop across the beam are assumed to remain constant across the
thickness of the walls. The cross section will also adhere to Navier’s hypothesis which
states that plane sections will remain plane during the loading of the section. The
coordinate axes are referenced to the centroid of the cross section, but are not necessarily
principal axes. This statement will become more lucid as the relation of the shear center
to other known properties of the cross section are developed. An illustration of the
depicted cross section along with the stress state of a small element located along the
opexn cross section can be found in Figure 1-4. The normal bending stress and horizontal
shearing stress are designated as o, and 7, respectively.

Since the discrete element must lie in a state of equilibrium, summation of forces

along the longitudinal z axis must equate to zero or
a:tds+ztdz—(ttdz+d(1't)dz)—(a'ztds+d0':tds)=0 1.2

Since a force system is required, the stresses are multiplied by the surface area which they
act upon. As the stresses move across the plane of the element, the stress increments by a
finite differential (i.e. d(1) or do.). Using the well known chain rule in calculus, these

differentials in stress can alternatively be written as

oo, o(n)
do, = ézdz’ d(t)= P ds 1.3

Substituting 1.3 into 1.2 and simplifying, the equilibrium equation in the z direction
becomes

oo, ot
t—dz+ ( )ds=

P P 0 14
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ds /\:.y\@ . “ |
S,

/

> X
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t

~\~~
~
~
~
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~
2

b

wdz + d(1t)dz

\ a':tds +d0'ztds
d

4

udy

Figure 1-4 Stresses on element of general open section
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From planar bending theory, the state of stress of a general cross section subjected to

bending about two mutually perpendicular axes and an axial force is given by

P Ixyx—lyy I,yy-lxx
o, =—"+—5——"—

2 x+ 2 1-5
AL L L -1,

The assumption that was made in developing this equilibrium equation was that the

P
section was only subject to bending type forces so the axial term = is zero. Taking the

partial derivative of the normal bending stress o, with respect to z

do._M, M, 6
= K .
& z v

[,y-1Ix

I x-1)y 1

1;'2 - I.v.: I and W, respectively. Since

where x and y are constants equal to

the goal is to derive a physical interpretation of the geometric location of the shear center
of an arbitrary cross section, the moments about the perpendicular axes must be
decomposed into shear forces. From mechanics, the first-order change of the moment
along any axis is the resultant shear force. Thus, the resultant shear forces on the cross

sectionare V, =cM /& and V, =M /¢ which is convenient since equation 1.6 is
A

already in this form. Substituting ¥, and ¥, into equation 1.6 and then, equation 1.6 into

1.4, the equilibrium equation becomes

o(nt
—(c‘;—) ==V ix -V ty 1.7

Integrating across the surface of the section from o to s (some arbitrary point along the

cross section) and substituting values in for ¥ and y , the shear flow 7 along the cross

section can be expressed as

18



. , , . ;
11=m[Vx[l_’_-£ytds—Iv!xtds]+Vy(1,‘!xtds—lv‘[ytds‘” 1.8

If the coordinate axes that are chosen are the principal axes of the section, the product of

inertia 7, is equal to zero. Equation 1.8 then reduces to

vV s V s
a=—f£ym-7:-£m 1.9

The integrals in equation 1.8 are known as the statical moment or first moment of area.
Letting @, = _f ytds and Q, = Ixtds the shear flow for the cross section can simply be
0 0

written as
v, ¥,
nM=-— - .
I Q, Iy 0. 1.10

which is the familiar shear flow equation described in basic strength of materials. Similar
to the discrete element, the cross section must also be in a state of equilibrium which
means that the resultant torque caused by the shear stresses inust be equal and opposite to
the external torque produced by the forces ¥, and ¥,. The location of these forces are
known as the shear center. Determination of either component of the shear center
requires that the shear force in that direction have some magnitude while the other force

be zero. Summation of moments about the centroid ¢, assuming ¥V, and ¥, act singly or

V, =0, gives

19



b b
SM =0=V.X,-[p(mds o X, =Vi | patyds 111
0 x 0

- B b
where X is the horizontal component of the shear center. The-integral Ip(n)ds is the
0

summation of all the shear forces acting along the surface of the cross section. While the
force per unit length is the shear flow 7, the corresponding moment arm is the variable
p which is graphically represented in Figure 1-5a. The distance p is the perpendicular
distance from the centroid of the section to a tangent line drawn through a segment ds .
Substituting equation 1.8 for 7, the horizontal component of the shear center is defined

as

X =i _I”{Ixi( j' \ f(pdgj‘m” 1.12

where the integral o — b is along the entire length of the cross section and o~ s isa

particular discrete length. A similar equation will result in a formal expression for ¥,

the vertical component of the shear center, by assuming ¥V, = 0.

© Sy

0

(A I

1 b s
nogr )

The closed form solutions of these expression are quite complex, especially if the surface
is arbitrary. Determining the moment arm can be difficult since the tangent line of each
element must be calculated. In the next section, a numerical solution to the shear center
problem will be examined along with an adaptive computer algorithm that will be able to

solve the shear center of any geometry.

20



1.2.2 Numerical Procedure using Simpson’s 1/3™ Integration Scheme

Let the variable wequal the following expression

w=fpds or dw=pds 1.14
0 .

Substituting this expression irto equation 1.13, the second integral expression reduces to

b s b s
I[pdsjﬂds)=j(dwfﬂds) 115
0 0 0 0
Integrating this expression by parts gives
b s b
j(pdg[ytdg):-fwym 1.16
0 0 0
Similarly, for the first integral expression
)
b s b
j(pdsfxtdg):—ij:ds 117
0 0 0
The expressions in equation 1.15 and 1.16 will be defined as
b
I, =|wxtads 118
0
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b
1, = wyds 119
0

Substituting equations 1.17 and 1.18 into the expressions for the components of the shear
center in equations 1.12 and 1.13, closed form expressions of the shear center are
obtained which are solely dependent on geometric properties that can be solved

numerically.

11, 11 II,_-I1
X, ="2"—"" and YV, =—T7—"7~ 1.20
1. -1, 1-11,

The introduction of equation 1.19 requires only the determination of two new geometric
properties defined as I, and/,, .

The following method, which employs Simpson’s 1/3" integration scheme, assumes
that the members comprising the cross section are thin flat elements. Most structural
members adhere to this assumption. If members contain curved surfaces, approximations
can be made to utilize the following methods or direct use of the integrals can be applied.

Calculation of I, and I, directly depends on the computation of the variable w which

is equal to I p ds. This integral can be expressed in index notation as
0
w,=w,+p;L; 1.21
where the points i and j are the starting and ending points of a particular element in the
cross section (see Figure 1-5b). Since the integral can be decomposed into a summation

over the entire cross section, the value of w at any point k in the cross section can be

represented as

Jj=k

W, = le p;L; 1.22

22



Tangent )

3

Figure 1-5a Elements of cross section with a positive pjj for element ij

LW

Figure 1-5b Linear variation of w
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The moment arm p; will be defined as positive if the centroid is fo the left when viewing

the element from itoj along the tangent line. From equation 1.20, it is readily
seen that the variable w varies, at most, linearly across any element. Thus, the value of

an intermediate point of w, relative to w; and w,, can be linearly interpolated as

(w; —w;)(x-x,)

(x;, —x;)

1.23

w=w, +

From Figure 1-5 a discrete elemental surface ds can be expressed as dx/cosa;;.

Substituting equation 1.22 and the value for ds into equation 1.17, the geometric

property I, cannow be represented as

b, (w, —w,)(x—x;) ’
I, = Z ! x(w‘. +— ]dx 1.24
0 cosa; o (x; —x;)

Simpson’s 1/3™ rule can now be used to interpolate the integrand with a second-order

Lagrange polynomial. Thus, 1.23 can be numerically represented as

1¢ , 19
I, = ;Z‘,:(W.-xi WX, )’iJLu +'6';(”’fo Wi )"il‘ii 1.25

)

b
where the summation Y indicates the sum of each element in the cross section (b =
0

number of elements the cross section is subdivided into). Following a similar procedure,

the geometric property I, can be evaluated as

b

1¢ 1
I, = 3;(”’:}’: + ijf)‘aLa +3;(”’l”1 * ”’13’1)’01"7 1.26
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The moments of inertia and the product of inertia can also be derived in a similar fashion.

W= W]

(yi +y.y;ty; )yLy
(2

+x,x, +x,’)r,,L,, 1.27

b

(xiyi +X;); )'qLa +%Zo:(x,y, +tX, )‘ﬂLa

QN

]
|
oMb—

The convenience of equations 1.25 and 1.26 lies in the ability for these equations to
decompose a particular cross section into a series of elements.
Incorporation of a computer algorithm to solve these geometric properties can

easily be created by simply defining a loop which goes over all the elements and

calculates Iy, Iy, Iy, Iwx, and Iy for each element. By implementing the algorithm in
the C architecture, a C structure for the cross section with an associated pointer can be
developed. This pointer could in turn point to a linked list of elements which comprise
the cross section. This eclectic method of programming allows for each element to have
its own identity and thus, be able to tell the cross section what its geometric properties
are. The burden of a reference axis, especially when calculating the sign of the moment

arm p;, can be eliminated since the orientation of each element will be known by the

element itself. Also, since each element is internally linked'to all the other elements, its
orientation with respect to any adjacent element can be readily obtained.

The details of the structure of the code will be discussed in later chapters. It is
imperative, however, to understand the significance of isolating each element and having
it develop its own properties. Other torsional functions such as the unit warping constant
or the normalized warping function across an element will directly depend on the values
of the warping functions along adjacent elements. These functions are fully compatible at

the boundaries of the elements which means that continuity must be preserved across the
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entire cross section. If common arrays are utilized to check the compatibility, more

storage would be requircd to preserve the relationships among the elements.

1.2.3 Force Method

The force method considers the resultant shear flow ¢, as expressed in equation
1.10, and applies simple equilibrium to obtain the shear center. Magnitudes of the first
moment of area around both axes are determined for a specified number of points along
the cross section. The cross section is usually broken down into finite elements, each

having its own @, and @, . After the first moments of area are determined, the

summation of moments about the centroid of the cross section are taken. Since the body
is in equilibrium, the shear flow caused by torsion must balance the external shear force
being applied. The point of application of this force is the corresponding moment arm
from the centroid (i.e. the shear center).

From equilibrium,

b
2 M, =0= —f ()pds+V. X, 1.28
0

where positive directions are those which cause a counterclockwise rotation about the
centroid. Although equation 1.27 defines the equation for the horizontal component of
the shear center, the vertical component can be derived in the same manner. The shear
flow 7 can be replaced by equation 1.10 while the integral can be substituted for a
summation over all the elements. The moment arm p is the perpendicular distance from
the centroid of the cross section to the center of the shear flow diagram on a particular
element.

Hand calculations of the shear center of an arbitrary cross section using the force
method were comparable to the results obtained from the numerical method. The devised
computer program was implemented with a script pre-processor (SPRE) which can read

an input file listing the geometry of the cross section. Element orientations and properties
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are then calculated using the engine of the program, TORAB (TORsional Analysis of
Beams). A comparison of the shear center of a skewed channel section using both the
force method and TORAB are depicted in Table 1-1. The input file used in creating the
skewed channel section for the TORAB program is listed in Figure 1-7 along with an
illustration of the channel in Figure 1-6. The section is broken into twelve continuous
elements. By adding more elements into the system, the accuracy of the shear center
computation actually decreases. The reason is that normal floating point numbers can
only carry single precision. Thus, the error in storage of one of these numbers propagates
when used in conjunction (arithmetically) with other numbers with similar errors. To
circumvent this problem, double precision variables can be introduced which store
sixteen digits. Differences in the two results can also be attributed to the Simpson
numerical integration scheme used to evaluate the various inertias of each element. A
more advanced numerical integration technique such as the Gaussian quadrature or even
Simpson’s 3/8" method could lead to better results. The discrepancies in this particular
case, however, are relatively negligible. Additional information about the TORAB

program will be discussed in upcoming chapters.
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Table 1-1 Shear center calculation using Force Method and TORAB. All values
are referenced from origin of section.
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Figure 1-6 Dimensions of skewed channel section. The centroid is calculated by
TORAB as well.




% Sample TORAB input file for skewed channel section

CROSS-SECTION
JOINT COORD
15.20.

24.520.

34.20.

43.520.

53.20.

62.520.

72.20.

8 1.5 20.

9 1.0 20.

10 0.5 20.

11 0. 20.

12 0. 0.

13 10. 0.
ELEM INCID
112

223

334

445

556

667

778

889

9910
101011
111112
121213
ELEM PROP
10.50

2050

30.50

40.50

50.50

6 0.50

70.50

8 0.50

90.50

10 0.50

11 0.50

12 0.50
PRINT CENTROID
PRINT SHEAR CENTER
END

Figure 1-7 TORAB input file for Figure 1-6
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Chapter 2

Pure Linear Tersion in Cpen and Closed Prismatic Sections

This chapter will describe the stress state on a cross section induced by a torsional
moment M, applied at the shear center of the section. The governing equaticns for pure

or St. Venant’s torsion will be mathematically developed using elastic theory and then be
reduced from a three-state system equation to a two-state system through the use of
Airy’s Stress Function and Laplace’s theorem. Prandtl’s membrane analogy for the
torsional response of a section will also be developed to abet in analyzing open and
closed, thin-walled, multicontinuous cells. Similar to the shear center problem in Chapter
1, several numerical methods will be introduced to alleviate the inconveniences of
solving line and surface integrals for such parameters as the torsional stiffness of a
section. TORAB will be utilized to solve for these constants. Shear stresses caused by
St. Venant’s torsion will be analyzed separately from planar bending shear stresses so the

effects of each can be isolated.
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2.1 Differential representation of St. Venant’s torsion

Pure torsion, as it will be referred to as from here forward, is developed from
elasticity on the differential level using two basic assumptions. The first is an extension
of Navier’s hypothesis which states that a cross sectional plane ,prior to application of
torsion, remains a plane after the torque is applied. This assumption allows the strains to
remain proportional to the neutral axis. The second assumption is that Hooke’s Law is
valid. (i.e. stress is proportional to strain).

The stress state on one face of a differential element subjec =d to shearing stresses is

illustrated in Figure 2-1a. The coordinate axes are referenced to the shear center of the

entire section. The resulting torque M, about the shear center can be expressed as

M, I( V=S x) 2.1

where S, and S are the shear stresses acting on the x-z and y-z planes of the element,

respectively. In Figure 2-1b a three dimensional view of the isolated element is

depicted. In order for this element to be in a state of equilibrium, the ZFZ =0or

&, &,
S.d4,-| S, +—;le dA, +S_dA, - | S, +?dy d4, =0 2.2

3

which, when reduced, gives

—Z4+—==0 2.3

By taking ZF, = 0 or from symmetry, a similar expression can be obtained
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&+$n =0
x Ty 24

Finally, from summation of moments about the y and x axes, it can be shown that
S, ,=-S,and §_=-5.

Some establishment of the relationship between the rotations and displacements
must be created in order to interrelate the geometry, material properties, and stresses of a
cross section. Timoshenko and Goodier proposed a relationship between in-plane

distortions and rotation with the following equations:

v=x¢$ and u=-y¢p 25

where the translational displacements in the horizontal and vertical directions are » and
v, respectively. In addition to these in-plane distortions, an element will also displace an
amount w out of the plane of the section in the z direction. Thus, the shearing strains on

the element are equal to
M w & W
Y=t 5 and "=t 2.6

The rate of change of the translational displacements # and v with respect to the axis of
)
revolution of the applied torque (z-axis) can be derived by differentiating equation 2.5

with respect to z, or

&R

a’ [ a‘ [
&—x =x¢' and &——y =--yd 2.7

where ¢' is the change of the rotation per unit length. Material and geometric
relationships between the shear strains, shear stresses, and the rotation of the cross section

can be established by substituting equation 2.7 into 2.6 and identifying that for a
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Solid section

> x
2
Figure 2-1a Shear stress distribution on x-y plane of discrete element due to
external torque at shear center of cross section.
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Figure 2-1b 3-D shear stress distribution from element in Figure 2-1a
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linear elastic material, the strain 7 can be related to the shear stress by the shear modulus
or ¥y =8/G. Therefore,

S, ,
Ye="g =¥+ 2.8
Y
7K =?’z=x¢'+— 209
These equations can be combined into one by taking &/Jy of equation 2.8 and J/Jx of

equation 2.9 and then, subtracting the two resulting equations. This leads to the

expression

B dg"—za' 2.10
a2 '

Equation 2.10 in conjunction with equation 2.1 gives an interrelationship between an
external torque applied on a section and the shearing stresses and rotation that occur as a
result of this torque. All that is needed to solve for the shearing stresses and rotation on a
body due to an externally applied torque is the geometry of the section. Unfortunately,
there are two equations and three unknowns (S, §,., and ¢). The need for an extra
equation can be circumvented by introducing a function wh;ch relates the two shearing
stresses together. This function is known as the Airy’s Stress Function and was
introduced by Seeley and Smith [Seeley and Smith, 1952].

2.1.1 Airy’s Stress Function

The utilization of Airy’s Stress Function to physically model the response of both
shear stresses (.S, and S, ) through a single function is the force approach to rectifying

v
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the problem of having two equations and three unknowns. This approach is explained by
Connor [Connor, 1976] and will be redeveloped here so that a smooth transition into the

membrane analogy can be made.
Assume that

and S, = 2.11

»”

S =

X X
=" &

where w(x,y)is function which can possibly identically satisfy the stress equilibrium
equation listed in equation 2.4. Substituting these relationships from 2.11 into the

equilibrium equation of 2.4 gives:

vy Py
) Bk

2.12

Thus, the relationship between the y function and the shear stresses is valid since it
satisfies the equilibrium condition derived in equation 2.4. To reduce our three state
variable system in equation 2.10, we can proceed to substitute the expressions for the
shear stresses as a function of the Airy Stress Function (i.e., equation 2.11) into equation

1}

2.10. This gives the following equation:

y Py
&2 + @'2

= Viy = -2G¢' 2.13

This equation is a replication of Laplace’s equation for two dimensional flow through a
plate or any other two dimensional surface. A discussion about equation 2.13 will be
presented in the next section. The equilibrium equation (2.1) can be modified by using

equation 2.11, which gives:

-
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M. =£(%y +%x)dzﬂ 2.14

Applying Green’s theorem ‘o equation 2.14 with the assumption that y is a harmonic
function, leads to the following physical description relating the external torque to the
Airy Stress Function:

M, =2{[y dxdy 2.15

Equation 2.15 is significant in that the applied torque is exactly equal to twice the area

under the y function. From equation 2.11 it can be seen that the shearing stresses are
equal to the slope of the y function. Thus, once this ¥ function can be evaluated, the

shearing stresses can then be readily determined.

2.2 Laplace’s equation of bidirectional flow in pure tersion

The solution of the basic torsion equation (2.13) can be obtained by creating an
analogy between the element in examination and a thin membrane. Laplace’s equation is
used to describe the flow in a two dimensional medium. In this particular situation, it
will be used to characterize the displacement field of a thin ;nembrane. The displacement
field is created as a result of a pressure being applied directly underneath the membrane.
Thus, instead of solving for the abstract function y, we can solve for the displacement of
a thin membrane under a pressure. The latter is something which can easily be derived

from mechanics.
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2.3 Prandtl’s membrane analogy

The analogy between the Airy Stress Function and the displacement field of a thin
membrane was first proposed by Prandtl [Prandtl, 1903]. This technique allows for a
visualization of the y function by considering the inflation of a hypothetical thin
membrane over the exact cross section which is subjected to a torsional moment A ..
Instead of being subjected to an external torque, the membrane will be exposed to an
analogous external pressure ¢ applied undemeath it. The equilibrium of this fictitious
membrane is an equation that is identical to the torsion equation in which the vertical

displacement of the inflated membrane is analogous to the y function.

2.3.1 Analogy of Prandtl’s membrane and the pure torsion problem

The cross section of an arbitrary beam is depicted in Figure 2-2a. The section has
an inflated membrane placed over it which is subjected to a pressure ¢ and has a
displacement field z(Z). The forces on a small element dx-dy of the thin membrane is
illustrated in Figure 2-2b. Since the membrane is thin and has negligible bending
resistance, only axial forces will preside normal to the edges of the membrane. These
axial forces are denoted as S and are forces per unit length of the discrete membrane. It
is imperative to mention that a body whose cross sectional c;imensions are small in
comparison to its longitudinal dimension is referred to as a member [Connor, 1976].
Unlike a member, a membrane is a two dimensional surface where one of the planar

dimensions can not be neglected. Thus, the forces which act along the surface of the

membrane are forces per unit length.

Transverse sections of the differential membrane along the x and y axes are
depicted in Figure 2-2c. The two angles @ and @ are obviously different since the
edges dx and dy could be of different magnitudes. The summation of forces in the z

-

direction must be in equilibrium or
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> F, = 0 = gdxdy - Sdysin 0 + Sdysin(6 +d6) - 2.15
Sdxsin@ + Sdxsin(d +d8)

Since the assumption of small strain theory is valid in linear cases, the perturbed angle

from the normal is very small. Thus, the following assumption can be made

sinf=tanf=0O=dg/dx and sind =tand =8 =dz/dy
sin(@ + d6) = dz/dx +(d*z/dx*)dx and sin(@ +d8) = dz/dy + (d*z/dy*)dy

Equation 2.15 can then be reduced to an extension of Laplace’s equation by substituting

the assumptions made on the angles and simplifying.

-q d2z+d2z
S _‘kz dyz

2.16

2.3.2 Membrane analogy relationships

The differential equation (2.16) is similar to equation 2.13 where the displacement
field z(Z) of the membrane is mathematically analogous to the ¥ function, and the
~¢q/S term is analogous to 2G¢'. Since the differential equations are inherently similar
in nature, the slopes of the membrane (first order change of the displacement field with
respect to each side) Jz/& and /&y are analogous to the shear stresses which act along

the cross section as a result of the external torque.

-S

XT
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=S, and 5}-

R|e
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38



y »
Discrete Membrane
> x
4 1 \ m \ 1 4
dx
2(2Z)
Section A-A
Z

Figure 2-2a Inflated Membrane over a Solid Cross Section
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In addition to the relationship between the shear stresses and the slopes of the membrane,
there is a monotonic relationship between the displacement z and the function y. Thus,

from equation 2.15, the volume under the y function is analogous to the volume under

the inflated membrane (H zdxdy). If the volume under the membrane were doubled, the

value of the externally applied torque M, can be obtained (equation 2.15). A summary

of the interrelationships between the membrane and the two-state variable torsional

functions is listed in Table 2-1.

Table 2-1 Membrane and Pure Torsion Relationship

2.4 Solution of Laplace’s equation using Prandtl’s membrane

In order to obtain the solution for the displacement field of the membrane, an example
must be used so a closed form solution can be derived. Since most structural cross
sections are composed of flat rectangular elements (i.e., channels, tees, angles, wide-
flanges, etc.) , a rectangular plate, like the one illustrated in Figure 2-3, will be used in the
derivation. The height of the plate is not specified because only an in-plane section will
be examined. The inflated membrane that is applied across any x-y plane of the plate is

shown in Figure 2-4a with the corresponding free body diagram in Figure 2-4b. Again,

-
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the membrane is assumed to be thin ( length >> thickness) so that only axial forces
prevail. This assumption also allows for the end effects of the membrane to be neglected.

The displacement z(Z) of the membrane depicted in Figure 2-4b is assumed to have a
parabolic distribution and a height of Z,, at its point of inflection. Thus, the shape of the
displacement field can be approximated by ...e parabola z(Z) = Ay® where the
coefficient 4 must be obtained from prescribed boundary conditions. Since at y=t/2,
Z=Z,, the coefficient 4 is

Z,=At*/4 ot A=4Z [t

which gives an expression for the displacement across the y-z plane of the membrane as

4z, ,
I=—73)y 2.16
t
The slope of the displacement field is
& _gZs 217
& 7 :

which varies linearly since the original function was a second order function. From Table
\
2-1 the slope of the membrane is analogous to the shearing stresses in the same plane.

Thus,

Zo
S, =t=8—73y 2.18

The shearing stress is a maximum at y=t/2 or

7., =4Z, [t o219



<
'

Figure 2-3  Rectangular Plate Element Subjected to External Torque
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Inflated membrane

x-y plane cof plate

Figure 2-4a Inflated Membrane over the x-y plane of Plate in Figure 2-3

Figure 2-4b Free Body Diagram of Inflated Membrane
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The shear flow can now be visualized since the characteristics of the slope of the
membrane are known. Since the slope of the membrane changes its sign at y=t/2 and
varies linearly across the thickness of the plate, the shear stress will do the same since it is
analogous to the slope of the membrane. The shear flow actually changes direction at the
mid-thickness of the plate which is where the tangent of the assumed displacement field
is zero.

The magnitude of the shear stress is not known since the height Z, of the
membrane was assumed to be some constant. The height can be obtained by utilizing the
analogy between the externally applied torque and the volume under the membrane. The

volume under the membrane is V = (2¢Z, / 3) L which results in a torque of 2V . Thus,

substituting and rearranging terms gives

o 1 t[ 2'2[]
max - ir - L 2-21

which resembles the torsion formula for circular shafts where K is similar to the polar
)

moment of inertia.

Laplace’s equation has now been solved for the maximum shear stress in the
cross section. However, the torsional stiffness constant K, has to be resolved for any
arbitrary cross section which entails built-up sections. Also, a basic force-rotation
equation needs to be derived for numerical purposes. If this relationship can be
developed, all that would need to be determined are a few innate properties of the cross
section such as the shear modulus and the torsional stiffness. Thus, given the geometry

of any section with an externally applied torque, the corresponding maximum shear stress

-



can be obtained by either looking at the force-rotation diagram or by directly solving an

equation which can interrelate the shear stress on a section to its rotation.

2.5 Differential equation describing shear stress caused by pure
torsion

In order to properly derive an equation that relates the external torque or shear
stress to the rotation of a section, the membrane analogy summarized in Table 2-1 must
be utilized again. Considering Figure 2-4b the distortion of the cross section can be
obtained by looking at the equilibrium of the membrane which is inflated above it. By

taking ) F, =0,
gtL - 2SLsina = 0 2.22

It is important to recall that the pressure is per unit area and must be multiplied by the
area to create an appropriate force, and the axial forces are per unit length of the
membrane since the membrane is not a member but a plate. Assuming small strain and

rotation theory, sina = dz/dy =4Z [t at y=1/2. Substituting this value for the slope and
the value for Z, (2.20) into equation 2.22,

1_%N. 2.23
s £L )
From the membrane analogy summarized in Table 2.1, ¢/S = 2G¢’' which, when
substituted into equation 2.23 and isolated for M, yieids the following
M. =GK.¢' 2.24

where K, is the torsional stiffness constant for a rectangular plate (2.21). Substituting

v

equation 2.24 into 2.21, gives
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7, = Gtg' 2.25

Equation 2.24 is the force-rotation relationship that is needed to map the section’s
response to an external torque. This particular equation is also similar to the basic
strength of materials torsion equation ¢ = TI,/JG , which can be modified to

¢/L = ¢' =T/JG . Numerically, the rotation at any point in the beam can be solved by
analyzing the differential equation which govems the torsional response of the beam.

The rotation is a function of two discrete variables: the externally applied torque and the
boundary conditions on the beam. Although in the derivations the torque was assumed to
be concentrated at the shear center, it can be a function of the longitudinal axis of the
beam. The torque may be uniformly distributed, linearly varying, or even concentrated at
different points along the beam. As mentioned previously, a force-rotation diagram can
be created for different loading cases and boundary conditions since the shear modulus
and torsional stiffness are constants with respect to a certain cross section. This is what
equation 2.24 provides. A further discussion of the effects of pure torsion on a cross
section and the incorporation of standard plots which depict the force-rotation

interrelationships will be discussed after warping is introduced.

2.6 Approximation fer torsional stiffness constant K,

\

Use of the membrane analogy lead to the evaluation of the torsional stiffness K, for

a flat rectangular plate. This procedure, however, is very time consuming both

numerically and physically especially if the cross section is quite complex. Also, when
setting up the defining equations of structures or in stability investigation, the interest
may not lie in the shear stresses obtained from the membrane analogy but instead, in the
torsional rigidity of the members. Kollbrunner and Basler [Kollbrunner and Basler
,1966] developed an approximate equation which can be used to evaluate K, for solid

sections of any shape without having to calculate the shear stresses or rotations first.
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The torsional stiffness constant is independent of the planar axes x or y just like the
polar moment of inertia. For a rectangular plate, the polar moment of inertia is equal to
the sum of the principal moment of inertias /x and I,,, where one of the inertias will be
negligible since the thickness is much smaller than the length. Thus, the polar moment of

inertia I, is a good starting function for approximating K, since both are independent of

the planar axes. Kollbrunner and Basler assumed the following for K,
pILK, =A* or K,=A'/pI 2.26

where # is a constant which reflects the geometric arrangement of a particular cross
section and A is the cross sectional area. This assumption is quite simple but very
general since K, is a function whose parameters should be independent of a particular
coordinate system. The polar moment of inertia and the area satisfy this requirement. To

evaluate the constant £ , several shapes need to be examined. For a rectangular plate,
B=(A*/1 K,)=(L)*[(tL*/12- L¢*[3) = 36

This expression is derived from the case where one length was presumably longer than

the other. The constant S, however, should be determined from a cross section which

has about the same length in every direction like a circle. A circular cross section has a

[ of about 40 which is a conservative assumption for any cross section. Equation 2.26

could then be expressed as:
K, =A4*/401I, 2.27

This formula is valid not only for cross sections with equal lengths along two mutually

perpendicular directions, but also for cases where these lengths are quite different.
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2.6.1 K, for built-up solid cross sections

The previous developments were related to the behavior of a single solid element
subjected to a torque of M. In most structures the section subjected to such a torque is

composed of several such solid elements as illustrated in Figure 2-5. These built-up
sections are used to absorb the torsion more efficiently since they have a much higher
torsional stiffness. Assuming that each element in the cross section experiences the same

rotation, the torsional response of the same section is characterized by:
M, =GK.¢' or ¢'=M, /GK, 2.28
Since the rotations for each element j are assumed to be all equal,
M, /(GK,)j =M__ [GK, or M. = (K, /K,)Mzw 2.29
Equation 2.29, of course, assumes that the material is homogeneous throughout the cross

section. The total applied torque M__ has to be equal to the sum of the torques absorbed

by each individual element comprising the cross section. Therefore, summing up both

sides of 2.29,

4

M. =2 (K |[K)H, 2.30
j=1
Since Mz,.., is a constant,

K, =) (K;) 2.31
j=1

48



@, = ¢(i = 1,2,.....n elements)

Figure 2-5  Built-up open cross section with assumed equal rotations
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which signifies that the total torsional stiffness of the entire section is equal to the sum of
the torsional stiffness of each element. Substituting equation 2.31 into 2.27 gives,

134
KT = 40 “ Ir 2.32

TORAB has the ability to determine the torsional stiffness for any cross section using
equation 2.32. This censtant is obviously needed to determine the torsional response of a

beam.

2.7 Pure torsion on closed thin-walled cell sections

The membrane analogy that was used to develop an expression for the torsional
stiffness constant of open and solid sections can also be extended for closed sections as
well. Closed sections are more appropriate when torsion needs to be resisted since they
possess a higher stiffness in the twisting direction of the section. Since these sections are
thin-walled, they are hollow between the edges of opposite walls. The membrane
analogy must reflect this by accounting for the fact that there are no shear stresses
between the walls.

To proceed with adapting the membrane analogy to closed thin-walled sections, an
arbitrary closed thin-walled section will be examined in detail (Figure 2-6). The section
is assumed to be thin-walled which implies that the shear stress across the thickness of
the element is constant. Bredt [Bredt, 1902] showed that this assumption was not true
since the slope at the ends of a fictitious membrane placed above the section was always
greater than the slope at the inner boundary. This difference in slope leads to an

additional shear stress of Az which produces an extra torsional moment AM,. Vlasow

and Kolbrunner [Vlasow and Kolbrunner, 1961] argued that this extra torque could be
ignored since the lever arm belonging to AM, is the thickness of the wxii which is

relatively small compared to the other cross section dimensions. As a rule of thumb,
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Vlasow proposed thst the error in calculating the shear stresses for a hollow cross section
with a constant wall thickness is less than 10% when the effective area of the cross
section is less than one fifth the area enclosed by the wall center line.

Figure 2-6 depicts a thin-walled closed cell with an external torque applied at its
shear center. The corresponding membrane associated with this cell changes its slope
twice due to the distribution of the shear stresses throughout the section. As stated in
Table 2-1 the slopes of the membrane are directly related to the shear stresses in the
actual cross section. Thus, the slope of the membrane positioned across the thickness of
the section is constant while the remaining portion sparning the hollow area is zero since

there is no shear stress there. Using the membrane analogy,
r=Z,Jt or Z,=u

For equilibrium to hold, the externally applied torque M_ has to balance the moments

caused by the shear flow around the cross section or

M, =afpds 2.33
k)

where the line integral is taken around the surface S (the perimeter of the cross section)
and p is the perpendicular distance from the shear center to the centerline of each
individual element. The shear flow 7 is a measure of force‘per unit length and is
independent of its location on the surface since it is constant (from the assumption about
thin-walled cells). From geometry the area enclosed by the ds element is related to the

line integral in equation 2.33 by the following equation:

1
dA=-2-dsp or 2dA=pds
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center line

t=2Z,/t S,

Figure 2-6 Membrane of a thin-walled closed cross section
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Integrating both sides of equation 2.33 states that the § p ds is equivalent to 24, where
LY

A, is the area enclosed by the thin-walled cross section. Using this fact, equation 2.33

can be rewritten as

M. =214, 234
The primary goal in the development of an equation which defines the pure
torsional response of a closed thin-walled cell is to maintain the integrity of equation
2.28. By conforming to the same functional parameters as 2.28, the application of closed
thin-walled and open sections to a pure torsional load can be identified without any

changes in the structure of an algorithm. Since the rotation, of which the solution will be
discussed in later chapters, and the shear modulus can readily be obtained for thin-walled
sections, all that is required is a closed form relationship defining the torsional stiffness

K,. The summation of forces in the z-direction must be in equilibrium for the membrane

in Figure 2-6 so:

Y F, =0 or gd,=$S, ds 2.35
S

where, from Figure 2-6, S, = Ssina =S Z, [t = St. The slope of the membrane (or the
shear stress in the section) is a linear term which depends oﬁly on the thickness and the
height of the inflated membrane. The thickness and the shear stress are inversely related
since as the thickness decreases, the shear stress increases. Since a constant shear stress
distribution was assumed in the wall, the force S along with the height of the membrane

will also be constants. Thus, equation 2.35 can be expressed as:

4 Z,pds
== — 2.36
S it

A

4
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From the membrane analogy summary in Table 2-1, the right hand side of the Laplacian
equations signifies that q/S = 2G¢’ . Also, from equations 2.34 through 2.36, it can be
shown that Z, = M, /24, which, when substituted into equation 2.36 and simplified,
yields:

M, = 44, G¢' 2.37
| pds

s

The form of this equation is identical to that of equation 2.28 if K is defined as:

K _ 44,
T~ ods
S

2.38

which gives M, = GK,¢'. Thus, the pure torsional response of a thin-walled closed cell
is governed by the same equation as a solid rectangular element. Substituting the value
for the externally applied torque from equation 2.37 into 2.34, the shear stress in the
section is defined as:

GK,) ,
T= ( 240 ¢ 2.39

2.7.1 Pure torsion on multicontinuous cells

Multicontinuous cells are prevalently seen as box girders which are essential in
bridge construction. These particular cells are simply a group of closed, thin-walled,
single cells attached to each other with no separation. Since each individual cell

54



obviously affects the behavior of an adjacent cell, the determination of the shear stresses
can not be made directly as in the case of the single cell. The sectional stresses are
indeterminate and thus, require the development of special relationships between each
cell. These cells can be thought of as spans of a continuously supported beam where the
boundaries of adjacent cells are prescribed boundary conditions or supports.

To attack the boundary problem, the shear flow in a muiticell section (Figure 2-7)
has to be carefully inspected. Any multicell section has to be continuous which implies
that the wall thickness of adjacent boundary elements must be the same. Most box
sections have the same thickness around its perimeter for economical and practical
reasons. Although the webs or flanges of these sections can be tapered, it will not be
considered in this section or in TORAB. The summation of forces in the z-direction of

the membrane derived in section 2.7 (equation 2.35) can be rewritten as

§rds=2M.4,/K, 2.40
S

if the term S, is replaced by Sz (= SZ,/t) and G¢' replaced by M_/K, . The line
integral now represcnts the flow of stress around a single cell and A, is the area enclosed
by each cell. In Figure 2-7 cells 1 and 2 share a common boundary element labeled C.
The shear stress flow in each cell is assumed to be acting counterclockwise which will be
designated as the positive direction. Since the shear stress contribution from cell 1 (z,) is
resisting the shear stress in cell 2 (z,), the net shear stress ;cting on the boundary is

simply the difference bet-veen the two stresses. By defining the shear stress 7 as g/,
where q is the shear flow, equation 2.40 can be applied to cell 1 as follows:

2
ql§$—quifi= oM. /K,)A, 2.41
I 1

where the line integral sums up the stresses around ceil 1 and the definite integral

represents the shear stress of the wall which is adjacent to cells 1 and 2 (segment C in
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Figure 2-7). The term A, is the enclosed area o cell 1. This particular example can be

related to Kirchoff’s law of voltages which states that the sum of the voltages around a
loop in a circuit has to be equal to the sum of the externally applied voltages on that
circuit. Each multicontinuous cell can be thought of as a loop in the circuit where the
moments caused by the shear stresses are the internal voltages while the external torque is
the externally applied voltage. Also, similar to Kirchoff’s law, all boundary segments
must equilibrate the voltages coming from all cells which share this segment.

In general equation 2.41 can be applied to a series of interconnected multicells which

possess several adjacent boundary segments.

qué—z 9 I? = 2(1”.:/KT)A¢:, 2.42

T e

where the line integral represents the total shear stress along the entire cell j , and & are
the number of cells which are adjacent to cell j. If there are n cells in the system,

equation 2.42 will produce n simultaneous equations of the form
q,=C(M,/K,) 2.43

where C, is a vector of constants obtained after solving 2.42 for g. The solution of 2.42

can not be directly obtained since the value of the torsional Stiffness constant K is

unknown during the solution process. Therefore, once the constant vector C, is obtained,
the torsional stiffness constant can be expressed in terms of this vector. Using the
membrane analogy, the externally applied torque is equivalent to twice the volume under

the membrane. Thus,

M_=2) q,4,=2).C(M,/K,)4, 2.44
i=1 i=1
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t 1
t t
Segment C

Figure 2-7 Shear stress distribution in a 3-span multicell section. CCW
is taken as the positive sense for stress and rotation.
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Since the torque is a constant, it can be taken out of the summation which gives
K, = 22 Ci4, 2.45
i=1

The analysis of multicontinuous cell systems requires only the geometry and the

loading of the system. The solution for the rotation of the system is not required since the
ratio of G¢' = M, / K, was used to eliminate that particular unknown. However, the

unknown was eliminated by introducing another unknown which could be solved for in a
more systematic manner. Since the torsional stiffness for any arbitrary section (open or
closed thin-walled) is already being calculated for the pure torsion problem, the algorithm
which produces the constant needs to be slightly altered to encompass single or
multicontinuous cells. The algorithm has to be passed a flag which tells it if a closed
thin-walled section is being analyzed. If this is the case, the algorithm needs to revert to
another solution process which specifically handles closed thin-walled sections.

Solid rectangular elements found in open cross sections follow Kollbrunner and
Basler’s equation (2.27) which is derived from relating the polar moment of inertia to a
factor B. The form of this equation has its rudimentary basis from the membrane which
was imposed on the solid rectangular element. Since the m?mbrane changes slope along
its length (parabolic nature), the shear stress also changes parabolically. In the thin-
walled case the shear stress is assumed to remain constant across the thickness of the
section. Thus, the membrane behaves linearly. The major difference in the computation
of the torsional stiffness lies in the shear force distribution in the membrane. With the
open section, the shear force is finite since the forces only act at an angle at the ends of
the membrane. In the closed thin-walled section a summation of the forces along the
surface of the section must be taken since the surface is not defined like the rectangular

elements comprising the open structural sections. Thus, the equilibrium of forces in the

v
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z-direction of the membrane produce a different expression for the torsional stiffness
constant.
The use of TORAB to analyze single and multicontinuous cells will be discussed in

later chapters with specific examples. The simultareous equations are stored using

normal matrix techniques. The solution of the linear equation AX = B is solved using
Gaussian elimination with partial pivoting. When enormous multicell systems are
analyzed, more powerful computational techniques are necessary to solve for the
unknown stresses such as an active column storage algorithm or the conjugate gradient
method. These topics, however, are beyond the scope of this thesis. Once the unknown
values of ¢ (= 7/t) are obtained from the solution of equation 2.42, the stresses in the
cells are evaluated by simply multiplying by the thickness of the cross section. For the

boundary segments, the shearing stresses are equal to the difference between each

adjoining cell shear stress value 7; and 7, or:
7, =2z, -7, (M. /K, )1 2.46

where / is a unit of length obtained after solving the linear equations in 2.42. The factor
of two is to account for the shear stress on each side of the boundary element. When the
stresses are obtained, it is important to understand the signs that are associated with the

magnitudes. If the sign is negative, the stress is acting clockwise (negative sense) which

indicates the initial assumption was incorrect.

2.7.2 Advantages of membrane analogy in analysis of multicell
sections under pure torsion

The most advantageous facet of using the formulation presented in equation 2.42 is
that it allows for a direct combination of bending stresses caused by planar bending
forces. If planar bending shear stresses are applied to a multicell section, a similar
formulation can be derived using equation 1.10. The only obstacle lies in the fact that

equation 1.10 is appiicable for thin-walled open cross sections whereas multicell sections
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are closed. If the equation was directly applied to a closed cell section, a free edge would
be required for the integral to evaluate the first moment of areas Qx and Q),(1.9). In the

s
instance of a closed cell, there is no free surface and thus the integration I is not valid in
0

determining the shear flow. To utilize equation 1.10, an imaginary cut is made at some
location on the cell, or in the case of multicells, enough cuts are made to determine the
bending shear flow around each of the cells. When the structure is cut, however, the
shear flows become discontinuous at the edges. In order to restore compatibility, an
unknown shear flow(s) is/are applied at the cut(s) to close the cut.

The constraint equation which ensures compatibility can be comparad to a Lagrange
multiplier. This particular type of multiplier includes the constraint equation in the
solution equation similar to the inclusion of enforced displacements in the formulation of
finite element equations. The compatibility equation is that the shear deformation,

integrated around each cell j, must equal zero or
§J yds=0 2.47

This constraint or Lagrange multiplier can be compared to Kirchoff’s law of currents
where the sum of the currents around a loop must be equal to zero. The shearing strain
¥ =7/G or y = q/tG where g is the shear flow which is equal to the sum of the shear

flow in the open section (g, ) and the redundant cr indeterminate shear flow applied to

close the cut (¢,). Substituting these values into 2.47 gives,

[ ds
6 B9 %6 fGt Z"" i Gt = 2.48

where the summation component represents the adjacent cells which share common
boundaries. The above equation is almost exactly analogous to equation 2.42 for pure

torsion. The surface integrals ds/t are evaluated by simply dividing each indivjdual
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element’s length by its thickness. By establishing this relationship between plane
bending shear stresses and pure torsional shear stresses, one algorithm could soive for the
stresses caused by each phenomena and then simply superimpose them. Along with
solving for the shear stresses of the open section ¢, (which is done using equation 1.10),
the redundant or indeterminate shear stresses that are applied to close the section must

also be solved for. Thus, the linear equation AX = B which needs to be solved in this

particular case has A4 as the matrix containing the coefficients of the redundant shear

stresses, X as a vector containing the redundant shear stresses, and B as a vector

containing the constants derived from the shear stresses of the open cross section (i.e.

fj g,/GT ds). For the situation of torsional shear stresses, the matrix A contains the

coefficients of the shearing stresses around each cell, X contains the actual shear stresses,

and B contains the right hand side of 2.42. It is important to note that the bending shear
stresses vary around each individual cell since the first moment of area changes with
respect to the local y-axis. This is the reason why g, is inside the integral.

TORAB was not equipped to handle bending shear stresses, but a more advanced
computer program could easily incorporate the aforementioned theory. It is the belief of
the author that this relationship derived from the membrane theory has not been properly
automated in any commercial programs. However, the simplification of the mechanics of
pure torsion to a more sensible numerical scheme (TORAB) should be a stepping point to

introduce pure torsion into everyday structural analysis.
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Chapter 3

Warping Torsion in Open and Closed Prismatic Sections

In chapter 2 the distributions of shearing stresses due to an applied torque M, at the

shear center or: solid, thin-walled open and closed cross sections were analyzed. The
displacements that were acting on the section were in the plane of the section while the
out of plane displacement was assumed to be unrestrained. If the out of plane
displacements are restrained or altered, normal and shear stresses will be induced into the
beam. These normal and shear stresses are referred to as warping normal and warping
shear stresses, respeciively. The warping shear stresses will provide an additional
torsional restraining moment similar to the moment caused by the shear flow when oniy
pure torsion was applied. This moment, defined as the warping torsional moment, in
conjunction with the pure torsional moment maintain equilibrium for the beam.
Functional warping parameters of the cross section like the normalized unit warping
function and the warping statical moment will be developed analytically for a general
cross section and thezx be evaluated using a numerical proceaure. An equation relating
the warping normal and shear stresses to these functions and the rotation of the beam will

also be evaluated. TORAB will also be utilized to solve for the aforementioned

functional parameters.
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3.1 Significance of warping torsion; Assumptions made in theory

A prismatic member exhibits two ways to resist twist. The first results in a
circulatory shear flow in the cross section while the second yields shear stresses resulting
from the change in axial stresses. The first contribution was discussed in Chapter 2 and is
referred to as pure torsion. The latter phenomena is denoted as warping torsion and is
usually negligible in most cases. Design methods such as the ASD (Allowable Stress
Design) account for warping torsion by allowing local corrections in certain members
such as slender members with compact solid or hollow cross sections. Warping torsion
is a fairly new subject that was not fully realized until the past fifty years. The mechanics
behind it are fairly sophisticated and require the development of an unique coordinate
system in order to keep track of the sign conventions for force and rotation.

When dealing with warping torsion, the assumption of plane sections remaining
plane no longer holds valid. For structural components, however, the web extension of
the section is assumed not to experience any planar rotation. The reason for this is that all
flanges can then be assumed to deflect laterally an equal amount. Thus, it is assumed the
web is thick enough compared to the flanges so that it does not bend during twisting as a
result of the high torsional resistance of the flanges. Kubo and Johnston [Kubo and
Johnston , 1956] showed that except for thin-web plate girders, neglecting lateral bending
in the web does not affect the warping response of the entire section. If an external
torque is applied through the shear center of a cross section,,in and out of plane
displacements will occur. The in-plane displacements contribute to the closed shear flow
(pure torsion) while the out of plane displacements pertain to the warping of the section.
If these particular displacements are somehow restrained or altered along the axis of the
section, the existing axial stresses will undergo a perturbation which results in extra shear

stresses being produced.
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3.2 Warping moment in a general open cross section

It is much easier to represent the displacements (in and out of plane) of an open
cross section using curvilinear coordinates rather than Cartesian. Thus, the expressions
for the shearing strains must be rewritten to reflect this new curvilinear system. From the
shearing strains, a relationship between the normal and shear stresses and the rotation of
the section can be developed which in turn, leads to a closed form expression for the
moment induced by the section to abet in resisting the externally applied torque.

The same stress block depicted in Figure 1-4 can be used to derive the basic warping
equations except that all strains and displacements will be referenced with respect to the
arc coordinate s. From equation 2.6 the shearing strain in the y-z plane of a differential
element was defined as the change in position of the element with respect to the z and y
axes. If the out of plane displacement w is measured in terms of the arc length (along the

longitudinal surface of the element) s, the shearing strain can be written as

—+— 3.1

The displacement v along the curvilinear coordinate s needs to be expressed in terms of
displacements acting in the x- and y-directions and the rotation around an axis which is
parallel to the member axis z. In order to accomplish this, a new set of coordinate labels
(&,1,¢ ) will be used to denote the respective displacements mentioned above. To
clarify this reference system, Figure 3-1 depicts the side view of the discrete element
from Figure 1-4 with the direction of the in-plane displacement v. This particular
displacement must be put in terms of the &,7,¢ system which can be though of as the
local x-y-z coordinate frame. Although the shearing strain in the y-z plane was chosen to
express the displacements in the £,7,¢ system, the derivation could proceed using the
shearing strain in the x-z plane as well. In that case, the displacement in question would

be u.
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Figure 3-1 Deformations and displacements of a discreie thin-walled element. The first
two pictures show the v displacement along the x and y surfaces, respectively. The last
picture illustrates the relationship between the displacement v and the rotation ¢.

65




The angle a represents the inclination between the positive x-axis and the positive
tangential direction measured counterclockwise. Thus, the tangential displacement v can

now be written in terms of the local translational and rotational degrees of freedom
dv=dfcosa, dv=dnsina, dv=p,do @)

The distance p, is the perpendicular distance from the shear center of the cross section to
the tangent of the discrete element. The sign of this distance can be chosen to be
anything as long as it is consistent. Heins and Yoo [Heins and Yoo , 1974] suggested
that this value should be positive if the shear center is to the left of the element when
viewing it from node j to node k where node j represents the starting point of the element
and node £ the ending point. This particular notation is well suited for numerical
purposes since the orientation of all the elements comprising the cross section can be
defined with respect to the shear center. Superimposing the contributions of the

tangential displacement v from the two translational and one rotational directions,
dv=décosa +dnsina + p,dp 3.2

Since £, n7,and ¢ are functions of the coordinates s and z while & and p, do not
depend on z, the contribution of the displacement v in the y-z shear strain can be

expressed as:

% i % 33

cosa +——sina+p, -
174

& &

In the instance of pure torsion only, there are no axial forces or bending momems being
induced on the cross section. Thus, the displacements in the £ and 7 directions are zero

which reduces equation 3.3 to the following:
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The formulation of 3.4 has some intrinsic assumptions built into it. The first
assumption is that the integrity of the cross sectional shape has to be preserved. This
means that the functions £(s,z), 7(s,z), and @(s, z) have to assume equal values at all
points of the cross section and must not depend on the cross sectional coordinate s. In
other words these functions vary over the length of the beam but are representative for the
entire cross section. The second assumption assumes negligible shear deformation which
means the shearing strain in equation 3.1 is zero. Although Timoshenko [Timoshenko ,
1945] developed a similar formulation with shear deformation included, that topic will

not be covered here. With this assumption equation 3.1 can be rewritten as:

= —_——= ﬁ: —po¢' 3-5

w_
a a Pa

The final assumption is that Hooke’s law holds valid which means that the first derivative
of the displacements are related to the stresses by Young’s modulus or o = Edw/¢ .

3.2.1 Relationship of unit warping to tangential displacement

The tangential displacement v is related to the out of plane displacement w by

equation 3.5. Rewriting this equation to isolate w gives,
dw=-p,¢' ds (@)

Integrating equation (a) over the surface of the section results in the following:
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w= —¢’_.. p,ds+w,(2) 3.6
0

where w is the out of plane displacement or warping of a particular element in the cross
section. #, is the constant of integration that is undetermined as of yet. This expression
clearly shows that plane cross sections do not necessarily remain plane when the section
is subjected to pure twist. The cross section warps according to the longitudinal
displacement w. Since we are dealing with structural cross sections which are comprised
of rectangular elements, the warping w is, at most, distributed linearly across the section.
If the tangential distance p, is not constant (i.e. for curved surfaces), the warping w
would be a function of the surface function governing the shape of the element. In this
case p, would have to be left in the integral in equation 3.6. Defining a new constant w,

as the unit warping with respect to the shear center,

w,=|p,ds 3.7

4

© Cmnmnmy 0

equation 3.6 can be expressed as:

w=—¢'w, +Ww, 3.8
\

The relationship between the rotation and warping of an element in a section is
defined in 3.8. From the shear strain in a plane of the section, the out of plane and in-
plane displacements were expressed in terms of a coordinate system that only varied
along the length of the beam and not along the cross section. This transformation of
coordinate system established a relationship between the rotation and out of plane
displacement or warping of the section (3.8). The objective, however, is to establish how
much stress (normal and shear) is being produced by this warping. In order to determine

the contribution of warping to the overall stress in a section, the constant of integration

-
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w, must be evaluated. Alsc, the relationship between shearing and normal stresses and

the unit warping with respect to some point must be established.
3.2.2 Nermal warping and shear stress; open form differential equation

One of the assumptions encompassed into equation 3.4 is that the strains are related

linearly to the stresses. Thus, the longitudinal stress can be expressed as:
o, =Eeg, (a)

where the strain in the longitudinal direction is simply dv/&. This longitudinal stress is
referred to as the warping normal stress. Substituting equation 3.8 into Hooke’s law, the

warping normal stress can be written as:

O
o.=E P (W, -w,¢")E 3.9

It is important to note that the rotation as well as the constant of integration w, are a
function of the longitudinal axis (z) of the beam. From the stress block depicted in Figure
1-4, the horizontal shearing stresses have to be in equilibrium with the normal stresses in
all directions of the element in order to maintain equilibrium. Thus, integrating equation
1.4 (which is derived from reducing the equilibrium of the stress block) over the surface

of the element, the shear flow is given as:
s ao,.
7 = [ 1+—ds 3.10

The problem with equation 3.9 is that the unit warping is not well defined in terms of the

geometry of the cross section which is tangible. By exploiting some basic geometric
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relationships and using equilibrium, the unit warping and the constant of integration can
be combined into one function which describes the warping geometry over the entire
cross section. A similar process can be applied to equation 3.10 after a suitable

expression for the normal warping stress is derived.

3.2.3 Normalized unit warping function of the cross section

In order to better understand the physical nature of the unit warping of each element,
equation 3.9 needs to have a closed form solution for the constant of integration W, {z).
Alsc, a function which describes the warping of the geometry as a whole rather than each
element (like the unit warping does) is desired. To accomplish this, 3.9 needs to be
rewritten as to entail geometric properties of the cross section which are already known or
can be derived using simple numerical techniques. For example, the tangential distance

from the shear center to some element in the cross section ( o, ) can be expressed in terms

of the shear center coordinates or
3.11

where X, and ¥, are the shear center coordinates and p is the perpendicular distance
from the centroid of the cross section to a tangent drawn at any point (x,y). Substituting

3.11 into 3.7 gives:

'w,, =ipds+YoIdx—Xofdy 3.12
0

X1 N

where x; and y; are the coordinate distances to the starting surface of the section
referenced to the centroid. Defining w as the unit warping with respect to the centroid

(whereas wy, is the unit warping with respect to the shear center) as:
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w= [ pds 3.3

0

Equation 3.12 can now be simplified by integrating over the boundaries and substituting
3.13 where suitable:

w,=Yx-Yx -Xy+ X,y +w 3.14

o

Equation 3.14 still includes the unit warping w of each element with respect to the
centroid of the entire cross section. The problem with this term is that it carries a
constant of integration W, (z) which is still undetermined. However, this term can be
evaluated by looking at the equilibrium of a stress block under a torsional momez... The
stress state on this particular element is assumed to be caused only by the application of

atorque M,. Therefore, the resultant longitudinal axial force N and moments caused by

planar bending My and M) are zero. Thus, from mechanics [Seeley and Smith, 1952],

b
N=[otds=0
0
b
M, =[oytds=0 3.14
0
b
M,=|oxtds=0
0
where the integration is across the entire length of the section since each element
comprising the section contributes some moment and axial force. Also, for convenience,

the reference axes will be taken as the principal centroidal axes. The normal warping

stress from equation 3.9 can then be substituted into the three equations in 3.14. Noting

from mechanics that
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f.uds:fytds=jmds‘=0; f:ds:A; fx’:ds:ly; fy‘tds:l,; (a)
& 0 0 0 0 0

and from equations 1.24 and 1.25,

b

[wxt as=1,, and _fwyt ds=1I, (b)
0

0

two of the three equations from 3.14 can be reduced. The moment equations (M, and

My, respectively) give:
$'(-x,1,+1,)=0 and ¢'(¥,1,+1,,)=0 ©

In order for the equations in ( ¢ ) to be non-trivial, ¢ can not be equal to zero which
means that the part of the equations in the parenthesis must be equal to zero. Therefore,

the shear center can be written as:

I“
and Y = (d)

which is the same expression derived in Chapter 1 using thé equilibrium of a stress block
under bending forces only (no axial or torsional forces). Thus, the center of twist is
identical to the shear center of a cross section. This conclusion was first realized by
Maillart and Eggenschwyler [Maillart and Eggenschwyler, 1921].

After substituting 3.9 into the axial equation in 3.14, the resulting equation

becomes:
b b ¢u b
w |tds—¢"|w,itds=0 or w,=—|w,itds 3.15
frasf A
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where W! (z) is the derivative of the constant of integration obtained from integrating

equation 3.7. Substituting 3.15 into the equation for the warping normal stress (3.9),

o, =EW,¢" 3.16
where W), is defined as:
b
W, == [ w,tds—w 3.7
n A 5 o o *

W, is defined as the normalized unit warping of the cross section. This equation is
extremely powerful in the way it relates the unit warping function of each element
comprising the cross section to the entire warping function. The unit warping of each
element (wy) can be obtained through equation 3.7. It can be readily seen that w, is, at
most, a linear function as long as the moment arm from the shear center p, is constant.
Thus, for structural sections with curved elements, the computation of 3.17 becomes
more complex. Heins and Evick [Heirs and Evick , 1973] discuss the solution of non-
prismatic curved girders using the Fourier series method. This concept, however, will not
be discussed here.

If the cross section is thought of in an eclectic sense, the computation of 3.17 can be
done through a numericai integration procedure. Each element in the cross section is a
subset of the spatial domain of the entire cross section. By storing the spatial information
of each element (i.e., joint coordinates, local and global orientations, etc.), it is possible to
define a warping sub-function which can relate the unit warping at any point in the cross
section to an overall warping function. Another words, the warping sub-function can be
though of as a weighting factor which normalizes the unit warping of each element in the
section. By establishing the warping sub-function, a simple calculation of the unit

warping at various points is all that is needed to calculate the overall normalized unit

-
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warping. The numerical solution process of the normalized unit warping function and

other similar torsional functions will be discussed in section 3.3.
3.2.4 Warping statical moment and warping constant

The expression for the shear flow caused by warping (3.10) can be simplified by
differentiating the normal warping stress with respect to the longitudinal axis of the

beam. Thus,

d_o-:__EW "
dz - u¢ (a)

It is important to recall that the normalized unit warping function does not vary along the
longitudinal axis of the beam since the cross section is assumed to preserve its shape
throughout the length of the beam. Substituting equation (a) into 3.10, the shear flow can

be expressed as:
t=—ES, ¢" 3.18

where S, is referred to as the warping statical moment of the cross section and is defined

as: .

S, = jW,,t ds 3.19
0

The surface integral around the cross section in equation 3.10 does not apply to the
rotation of the beam. The reason for this is the assumption stated in Chapter 2 that all the
elements in the cross section rotate an equal amount. Thus, the rotation, or any

derivatives, are not a function of the cross section and may be pulled out of the integral.

-
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The warping moment can be determined by summing the moments about the z-axis
of the cross section. The shear flow (3.18) produces moments which can be found by

multiplying the moment arms of each element by the shear flow through each element or

M, = p,(a) ds (b)

Substituting equations 3.18 and 3.19 into the moment equilibrium equation (b) and
integrating gives:

<

M, =—EI ¢" 3.20

where I, is called the warping constant and is defined as:
b

I, =[was 3.21
0

The warping moment is an innate characteristic of every beam. It abets to resist any
externally applied torque in combination with the moment caused by pure torsion. As
can be seen, equations 3.16, 3.18, and 3.20 have been derived as to entail geometric
properties that are inherent to any cross sectional shape. The rotation, which will be
discussed in the next chapter, is the only item which is a function of the longitudipal axis
of the beam rather than its cross section. Thus, the normalized unit warping function,
warping statical moment, and the warping constant can be evaluated by either directly

solving the integrals or through numerical integration techniques.
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3.2.5 Normal warping stress as a function of the bimoment

An analogy between flexure and warping torsion can be established which is
extremely useful when boundary conditions need to be defined in order to solve for the
rotations along the beam. In Bernoulli beam theory the moment curvature relationship is

defined as:

M(2)=-EDl"(2) (a)

where v(z) is the displacement function and M(z) is the variation of the bending
moment. The beam is assumed to have a constant flexural rigidity. A similar expression

exists in torsional analysis by simply rewriting equation 3.20 as:

Bi(z) = EI ¢" 3.22

where Bi is referred to as the bimoment of the beam. In ordinary flexural analysis the
bending moment is a function of the second derivative of the displacement. Similarly, in
torsional analysis the bimoment is a function of the second derivative of the rotation or
the cut of plane displacements. If the derivative of the governing bending moment
equation is taken, the shearing forces acting on the beam can be determined since the
shear function is the first order change of the moment. Analogously, the derivative of the
bimoment (3.22) yields the warping moment expressed in equation 3.20. Hence, the

warping moment M corresponds to the shear force in a beam subjected to pure flexure.
Substituting the equation for the bimoment (3.22) into the equation for the normal

warping stress (3.16) gives:

o, =—" 3.23

76



which is similar to the plain bending stress equation MC/I.

There is also a relationship between the load and the warping moment ir: torsion
similar to the relationship of the load and shear force for a member under pure bending.
The equilibrium condition for a discrete element length dz acted upon by a distributed

torsional load m; is written as:

M.
-M, +m:dz+(M: +—;—dz) =0 or m,=-M 3.24

Thus, the derivative of the warping moment gives the equation for the loading on the
member. The relationships between the planar bending and warping equations are
summarized in Table 3-1. When muilticontinuous cells were analyzed in Chapter 2, a
similar interrelationship was observed between the equations governing pure bending and
pure torsion. The advantage of establishing these links is that a single algorithm can be
devised to handle bending and torsion at one time. Since the differential equation in 3.22
is similar to that of its flexural counterpart, only the warping constant and the moment of
inertia about the axis under analysis needs to be passed to evaluate both the bimoment
and the bending moment. The forms of the differential equation are identical so only one

numerical solution procedure is required. The solution process will be discussed in detail

in the next chapter.

3.3 Numerical solution of warping torsional properties

The determination of the warping torsional properties W, , S, , and I, can be
obtained by considering the cross section to be composed of interconnected rectangular
plate elements [Heins and Seaburg, 1963]. The same concept was implemented in
Chapters 1 and 2 when a numerical solution for the shear center and the torsional stiffness
were derived. This assumption is accurate for structural cross sections which are mostly

composed of rectangular plate elements.
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If a plate slement of length ;jand thickness #j; is considered (Figure 1-5a), the
perpendicular distance from the shear center to the tangent line between the end points of
the element is constant {i.c. the element is not curved). Thus, the technique used to
calculate the parameters /,yx and Iy, in Chapter 1 can be utilized to calculate the warping

properties here. The determination of the geometric properties Iy and /yyy required a

general relationship for w (= f pds) between points w;and wj. This term was, at most,
0

linear since

<
a

Table 3-1 Relationship of a member under pure flexure and warping torsion

oo M = —EIW¢'" ‘ = —Inu"

the perpendicular distance from the centroid to the tangent line through the two points on
the element was constant. A similar relationship can be developed for w, which is
required to determine W), and thus, Sy, and /,;,. Equation 1.21 gave an expression for w

relative to the centroid. w, can be expressed similarly except that it is referenced relative

to the shear center. Therefore,

w, =2 p,L
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b
The expression [w,rds in equation 3.17 can then be evaluated for an element ij and is

0

given by the expression:

b
I w,tds = Z t;L, (w,‘ +W, )/2 3.25
0

From Figure 1-5b it can be seen that the function w, at most, varies linearly over the
element. Since w,, is analogous to w except for the reference point, the distribution of the
unit warping across each element can be taken as the average of the unit warping values
at the start and end of the element. The unit warping at a specified point j in an element

is given by:

w, =P, L; 3.26
Substituting 3.25 into 3.17 gives:
l n
Wn, = a—;(wo, + w"/ )’lJLu - Wo’ 3.27

Equation 3.27 is the normalized unit warping at point i for any element jj. The term

Z(”’ﬂ: +W,, ):,,L,, is the sum effect of the unit warping of all the elements in the
0

1
Wn =24

cross section. This term is called the warping sub-function. This particular term weighs

or normalizes the unit warping w, at any point i in the element.
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3.3.1 Assumptions and techniques used to numerically evaluate
the normalized unit warping

By replacing the surface integral in 3.17 with an equivalent summation, the
normalized unit warping function can be evaluated numerically over a series of points.
There are some techniques, however, that must be implemented to numerically solve for
the normalized unit warping of the section. First, the unit warping at the starting point
(any open point in the section) is assumed to be zero. Secondly, the unit warping at one

end of an element is a function of the unit warping across the element (p,L;) and the

unit warping at the other end of the element. Thus, by assuming a starting point to have a
unit warping of zero, the unit warping at the point on the other end of the element
containing the designated starting point is evaluated by simply linearly adding the unit
warping across the element with the starting unit warping value.

To simplify things, it maybe easier to visualize the normalized wzarping as a current
flowing through the elements of the section. For example, Figure 3-2 depicts a wide-
flanged cross section with a fictitious current flow going through the elements. The
wide-flanged section is broken into five interconnected rectangular elements as shown in
the figure. If the unit warping at point 1 is assumed to be zero, the unit warping at point 2
can readily be found by evaluating the unit warping across element 1 and adding it to the
unit warping at point 1. As can be seen by the direction of the arrow (current flow), the
unit warping at point 3 is related to point 2 and the unit warping across element 2. Thus,
the same procedure can be applied to find the unit warping at point 3. A problem arises,
however, when the unit warping at point 5 or 6 needs to be determined. Since the
direction of the flow in elements 4 and 5 are assumed to go from points 6 and S to points
3 and 2, respectively, the process used to determine the unit warpirg at the other points
must be reversed. For example, to evaluate the unit warping at point 6, the unit warping
across the element must be determined along with the unit warping at point 3. Since the
flow goes from point 6 to 3, the unit warping at point 6 is the difference between the unit

warping at point 3 and the unit warping across element 4. Table 3-2 summarizes the
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numerical procedure to calculate the unit warping at each point and subsequently, the
normalized unit warping at each point. The table basically helps to visualize the
parameters needed for equation 3.27.

3.3.2 TORAB?’s capabilities in evaluating the normalized unit warping

Conceptually, the aforementioned process is fairly easy to implement for basic
structural cross sections. When built-up sections are utilized, however, a fair amount of
“bookkeeping” is necessary. A flow pattern must be kept which means constructing a
scheme that allows TORAB to be able to decide if the unit warping at one end of an
element needs to be added or subtracted from the unit warping across the element.
TORAB actually creates its own flow pattern by taking the starting joint coordinate as the
origin of the flow. Thus, according to the joint coordinate input given in the input file,

the starting joint is automatically registered as the first joint coordinate. The next

Point Po L(I p"l” « %o tyLy (WO- +w, )tyLy n
1 /' 0 bh/ 4
hi2 b/2 bhl4 bt/2 b*ht/8
2 bhi4 0
0 h 0 wh bi*w /2
3 ™ bhi4 0
h/2 b/2 bh/4 o bt/2 3b%ht /8
4 bh/2 \ —~bh/4
5 "N bh/2 —bh/ 4
—h/2 b/2  —bhid4 bt/2 3b°ht /8
2 ~ bh/4 0
6 0 bhi4
h/2 b/2 bh/id4 _____  bt/2 b*ht/8
3 bh/4 0

(2tb+wh) (b*ht+bhw/2
>

[ Known auanty

Table 3-2 Numerical evaluation of normalized unit warping
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Figure 3-2 Fictitious current flow through meshed wide-flanged section

problem arises when the joint coordinate scheme is not in any specific pattern. If this
problem occurs, TORAB will automatically regenerate the joint numbering scheme and
keep an internal record of the acwal joint numbering for the user’s purpose. This
technique is similar to the bandwidth reduction procedure which attempts to minimize the
bandwidth of a matrix by renumbering the joint coordinates internally.

From Table 3-2 it can be seen that the sum of the terms in column seven divided by

twice the sum of the terms in column six gives the warping sub-function or the term

1 &
Wnu-/um. = EZ; ( wot + wo/ )t"] L'J (a)

Thus, column eight, the normalized unit warping, is simply the difference between the
warping sub-function and the unit warping at each point. TORAB finds the warping sub-
function in this manner, but does not require a significant amount of “bookkeeping” to
find the necessary values. Through the use of C and C++ tools such as pointers,

structures, and classes, each element in the cross section knows what elements are
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connected to it and how to go about getting information (i.e. where the flow through the
element starts) it does not have. Although procedures such as a renumbering scheme are
redundant, they will prove much more useful when the actual differential equations of
warping and pure torsion need to be resolved. More of TORAB’s internal abilities will

be discussed in the next few chapters.

3.3.3 Numerical determination of the warping constant and the
warping statical moment

After outlining a definitive method to numerically compute the normalized unit

warping function, a similar expression for equation 3.21 (the warping constant 7, ) can be
defined. The warping constant is simply the integral of the square of the normalized unit

warping curve across the entire cross section. Since this curve is, at most, linear as long

as the distance p, remains constant, the general W, relative to W, and w., of element

length L; can be written as:
W, =W, +[(W,,I -w,)/L, ]s 3.28

Equation 3.28 is just a linear interpolation for any point W, on the line W, (s) (see Figure
1-5b). Substituting 3.28 into equation 3.21 for one element and integrating using

)
Limpson’s 1/3™ integration method gives:

Ly
I (w,)*tds = %L,]t,](W,: +W, W, +W,; ) 3.29

) f

For the entire cross section, the warping constants can be summed up for each individual

element or:
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I - %; (w2 +w, W, +W2)e,L, 3.30

The warping statical moment S, from equation 3.19 can now be discretized through

the utilization of equation 3.27. Since §, is the area underneath the normalized unit
warping curve, the term jt ds in 3.19 equals the area of the cross section which cancels
0

out the area constant in equation 3.27. Thus, the warping statical moment can be written

as:

1
S, = EZ(W"' +w, L, 331

0

It is imperative to note that the S, is not a constant, like the warping constant, but a
variable across the entire cross section. The minimum and maximum for the function
may change over each element comprising the section. Also, since the function is the
integral of the normalized unit warping curve, this perticular function will vary, at most,
parabolically over an element since the unit warping curve is, at most, a linear curve. For
example, in a wide-flanged section with equivalent flanges , S, will be zero at the edge
of the flanges and a maximum at the mid-span. Obviously, the magnitude of S, will be
zero along the length of the web since the value of the normalized unit warping function
is zero (ee Table 3-2). A detailed examination of the numerical algorithm TORAB uses

to calculate S, and I, can be found in subsequent chap:ers along with specific examples.
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Chapter 4

Combination of Pure and Warping Tersion

In the prior chapters, the action of a section subjected to a torque M, which produced

pure torsional stresses and warping torsional stresses was examined. Under certain
boundary conditions both or only one of these aforementioned stresses may develop to
resist the external torque. This chapter will discuss the combined influence of the internal
torques and their solution. It is assumed that the section under examination is prismatic
and straight. In order to solve the differential equations which govern the torsional
behavior of the beam, a closed and approximate solution using the finite difference

method will be examined.

4.1 Governing differential equation for combined torsional resistance

The combined torsional resistance of a section is comprised of the pure torsional

resisting torque and the warping resisting torque. Thus, the sum effects are
M_=MM + M7 4.1

The torque caused by pure torsion is equal to GK,¢'(2.24) while that produced by

warping torsion is equal to — E/ _¢" (3.20). Substituting these equations into 4.1 gives:

M. =GK¢'-El ¢" 4.2
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where M, is an external concentrated torque. If a uniform torque m, (torque per unit
length) is applied along the length of the beam, a relationship between M, and m, can
be established. A free body diagram would show that m, = —dM, /dz which, when

substituted into 4.2, gives:

m_=EI ¢" —-GK.$" 43
4.1.1 Solution of combined torsional resistance equation

The solution of equation 4.2 must be broken down into two parts since it is a non-
homogeneous differential equation. These parts entail a homogeneous and a particular
solution. Equation 4.2 is modified as follows to provide a path for a standard solution

process:

"e __GKT ' — M: 4.4
¢ El, ¥=F .

w

Let > =GK,/EI and M. /EI, =0 in order to solve for the homogeneous part of the

solution. Thus, equation 4.4 can be rewritten as:

" -22¢'=0 45

Equation 4.5 is basically a replica of a standard first order differential equation except

that the derivatives are of a higher order. To solve 4.5, assume the solution is of the form

Py =e™ (2)
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Taking the appropriate derivatives of (a) corresponding to equation 4.5 and substituting

them back into 4.5 gives the following characteristic equation:

m(m* —1*)=0 (b)

where the roois ¢ f (b) are

m=0,+t4 (c)

The total homogeneous solution can then be expressed 2 ::

¢y =ce’ +c,e® +c,e7* (d)

The particular solution of 4.2 can be obtained by assuming that ¢, = AZ where 4 is

some constant that can be determined by substituting the assumed particular equation into

4.4. Thus, the particular solution is

M:
= 7Er,” ©
The total solution is the sum of ¢, +¢, or '
M
p=ce’ +c,e® +c,e* + ﬂ.zEzI z 4.6

The exponential terms can be written as hyperbolic functions, and the constants can be

regrouped to give the following equation:
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M
¢=A+Bcosh,{z+Csinh,1z+le‘I z 4.7

Equation 4.6 was rewritten using trigonometric functions so that the graph and limits
of the rotation can easily be obtained. The solution of equation 4.3 can be obtained in a

similar manner. The only differences are that the homogeneous equation has four roots
and the particular solution is obtained by assuming ¢, = AZ* + BZ". In hyperbolic

form, the solution to equation 4.3 is

m
¢=A+BZ+CcoshAz+DsinhAz—ZAIE‘_I" z? 4.8

4.1.2 Support types and corresponding boundary conditions

Since 4.7 and 4.8 are differential equations of order three and four, respectively, an
equivalent amount of boundary conditions are necessary to properly ~lve for the
torsional rotational response. These restraints, however, should be chosen such that the
physical problem is modeled correctly in 2 mathematical sense. According to the LRFD
code, clause A2.2, two basic types of restraint construction are permitted: Type FR (fully
restrained) which is the typical “rigid frame” construction and Type PR (partially
restrained) which entails “simple” or “conventional” framing [Chen and Jolissaint, 1983].
The latter type of restraint boils down to pinned and roller connections which carry a
negligible amount of flexure and “semi-rigid” connections which can resist flexure to
some extent (i.e. partial moment release). The ASD has its own classification of torsional
restraints listed in clause A2.2. The ASD defines three types of restraint construction:
Type 1 which is equivalent to Type FR in the LRFD code, Type 2 which is “simple” or
“conventional” framing, and Type 3 which is “semi-rigid” framing. ASD Types 2 and 3

are encompassed by the LRFD’s definition of Type PR.
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The correlation of “simple” and “rigid” framing with torsional restraints is illustrated

in Figure 4-1a and 4-1b. The situation in which there is zero deflection and zero moment

(pinned support) corresponds torsionally to ¢ =0 and d*@¢/dz* = 0. Ojalvo [Ojalvo,
1975] suggested that the rotation is zero if and only if the simple connection extends
over a significant portion of the beam depth. Figure 4-1b depicts a rigid connection
where zero deflection and zero slope translates torsionally to ¢ =0 and dg/dz=0.
Hotchkiss [Hotchkiss, 1966] states that the ends of the beams must be boxed in order for
the connection to be classified as rigid or torsionally fixed. Boxing is the process of
providing welding stiffener plates between the toes of flanges and extending them along
the beam for a length equivalent to the beam’s depth. A plan view of the plate
configuration is illustrated in Figure 4-1b. These plates ensure that there is no deflection
or rotation at the joint. If the column has flexible flanges, column stiffeners should be
provided in a similar manner (plates B in Figure 4-1b). Several research studies have
been conducted on torsional restraints at I-section joints by Vacharajittiphan and Trahair
[Vacharajittiphan and Trahair , 1974], but few have been done on other section types.
The aforementioned support types have associated boundary conditions which are
summarized in Table 4-1. Although partially restrained supports (partial moment
releases) are very typical in structural problems, only Type 1 and Type 2 restraints will be

discussed here due to the complexity of partial flexural restraining supports.

Table 4-1 Torsional boundary conditions for simple and rigid connectéons

' ; — s R
(ight) i = Biy.,
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4.2 Closed form solution of governing torsional differential equation

In order to solve either equations 4.7 or 4.8, the unknown constants inherent to
each equation must be appropriately determined using Table 4-1. To understand how to
implement Table 4-1, a simple cantilever beam of length L subjected to a concentrated
torque of M, at the free end of the beam will be examined. Suppose that the global axis
along the length of the beam is the z-axis and the fixed end of the beam is at Z=0 while
the free end is at Z=L. The boundary conditions for this beam are at Z=0, ¢ = ¢’ =0 and
at Z=L, ¢" = 0. Since a concentrated torque is being applied, equation 4.7 needs to be
evaluated with the above boundary conditions. T;lking the appropriate derivatives of 4.7
and applying the boundary conditions gives:

Z=0,6=0 0=A+B (1)
Z=0,0'=0 0=AC+M_/GK, (2)
Z=L,¢"=0  0=A'BcoshAL + A*Csinh AL 3)

The solution of these linearly independent equations for the constants 4,8, and C gives:
A=-B, C=-M,/GK A, B=(M, /GK A)tanhiL 4)

Substitution of these constants in equation 4.7 yields a closed form solution for the

function describing the torsionai rotation at any point along the beam.

L [4z - sinh Az + tanh AL(cosh Az - 1)]
¢= GK, 1 -s + tan cosh Az —- 4.9

The derivatives of equation 4.9 can then be evaluated. These derivatives, listed in
equation 4.10, are required for the determination of the stresses caused by pure and

warping torsion (2.25 ,3.16, and 3.18). .
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¢'= GK
M.A

¢" = GK, [~ sinh Az + tanh AL cosh Az) 4.10
M A

¢" = —:—[- cosh Az + tanh AL sinh Az]
GK,

Thus, for a given length and material properties, the pure torsional and warping
stresses can be evaluated at any ; »int along the span of the beam. It is interesting to note
that for this particular example the warping stresses are zero at the free edge of the beam.
This can obviously be proven from the boundary condition (no warping shear at the free
end), but physically, it should also make sense. The out-of-plane displacements w at the
free edge are uninhibited from following their normal path. Thus, there will be no
corresponding secondary force transmitted through the longitudinal axis of the beam to
account for any restraint on these displacements. Another important point is that the
warping and pure torsional stresses vary across the cross section. This is due to the fact
that the normalized unit warping function W, and the statical warping moment S, vary
across the elements comprising the cross section. For example, if the beam given in the
example above had a wide-flanged cross section, the normal and shear stresses caused by
warping would be zero in the web since W, and S, are both zero along the web. The
normal warping stress can be proven to be zero in the web if the analogy between the
bimoment and bending moment (3.23) is examined. A detailed discussion about the
relationship between normal and shear stresses caused by pure flexure and torsion will be

discussed in the next chapter.
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4.3 Torsional charts dimensionalizing force-rotation reiationships

Since it is rather complicated to develop a numerical scheme or algorithm to solve
for the torsional response of a beam under any given boundary condition and load case,
Heins and Seaburg [Heins and Seaburg, 1963] developed several torsional charts which
would allow for an engineer to graphically determine the rotation and its successive
derivatives at any point in the beam. These charts are the force-rotation diagrams that

were discussed in Chapter 2. The rotation and its derivatives are always a function of

K,,M_,G, and 1. Hence, the equations in 4.9 and 4.10 can be written as:

GK
F(") =4 2
z
GK
F@¢y=¢'-
z

] ) GK, 4.11
F(¢")=¢ VoA
V4

n GKT
F(gp")=9¢" M
V.4

where F(¢") (n=0,1,2,3) contains the values of the contents in the brackets [] from
equations 4.9 and 4.10. Although these charts can prove to be advantageous, they reveal
nothing about the type of cross section being used. Thus, il order to evaluate the stresses
in the beam, one must still proceed to calculate the centroid, shear center, warping
constant, statical warping moment, and the normalized warping function.

As can be seen by the equations in 4.11, a common thread lies in the evaluation of
the terms AL and Az. Heins and Seaburg state that a reasonable range for AL is from a
minimum of 2 to a maximum of 5. Thus, to properly construct a chart which generalizes
the torsional behavior of a beam under certain constraints and loading, it is necessary to

evaluate the situation for a motley assortment of lengths and material properties. Usually,

equation 4.11 is evaluated for AL’s 0of 2.0, 3.0, 4.0, and 5.0 and any value which is
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required in between is simply interpolated. The horizontal axis represents the fracticn of

the span length which is being examined (i.e. Z/L). The vertical axis represents the range

of the function F(¢"). Since this function contains the values for all the bracketed []
equations in 4.9 and 4.10 (i.e. the rotation function and its three successive derivatives),

the range needs to be calculated so it can properly depict the rotation response for any
ordinary value of AL. Kuo and Heins [Kuo and Heins, 1971] acquired a significant

amount of research from bridge and highway developers which contained values for A
used in standard practices as well as expected rotational values. It is important to
understand that these charts only represent what is found in actual, modern torsional
problems. If an unorthodox torque or material property is used, the charts will not
produce an accurate answer. In that case a closed or approximate solution to equations
4.7 or 4.8 is required.

The force-rotation graph for the cantilevered beam under a concentrated torque at
the free end is illustrated in Figure 4-2. To procure similar graphs with different loading
cases and boundary conditions, the appropriate differential equation (4.7 or 4.8) would
have to be solved and rearranged into the form given in equation 4.11. A graph similar to
that in Figure 4-2 depicts the force-rotation relationship for a cantilevered beam subjected
to a uniform distributed torsional loading (Figure 4-3). Again, the range for the values of

AL’s are chosen from experience gathered from actual observations.

4.4 Approximate solution to governing torsional differential
equations using finite difference

An alternate method for solving the basic differential equations (4.7 and 4.8) can
be obtained by use of finite difference equations. The application of such a formulation
gives a discrete solution rather than a closed form continuous function. Although
accuracy can be lost by pursuing a discrete formulation, with enough mesh points (i.e. a
smaller step size), the solution can be very precise. The finite difference approach used

here will be the central difference approach. The goal of this approach is to transform the
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Figure 4-2 Force-rotation torsional chart for cantilever beam with cor.centrated torque
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Figure 4-3 Force-rotation torsional chart for cantilever beam with distributed torque
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differential equations into a set of simultaneous algebraic equations that can be solved
using standard linear decomposition techniques. One good facet of the matrix containing
the coefficients of the linearly independent equations is that it is tridiagonal. This sparse

but organized matrix is rather easy to store and decompose.

4.4.1 Solution for torsional rotation using central difference method

The finite difference equations for the torsional rotation ¢ can be formulated by first
considering the solutions for ¢ that are known at specified mesh points. The rumber of
mesh points, of course, is dependent upon the accuracy required for the solution. In
Figure 4-4 a portion of a beam which has been meshed into x amount of points with a
spacing of 4 between each point is shown. Assume that the quantities ¢, ,,4,, and ¢,,,
are known where n is a specific node on the beam. Since there are three known data
points in the mesh, a parabolic curve can be passed through to simulate the actual

behavior of the rotation function. The curve is of the form:

¢ =AZ* +BZ +C 4.12

This equation has to satisfy the conditions thatat Z=0, Z=+h,and Z=-h, ¢ equals
?,59...,and @, ,, respectively. Using these three prescribed boundary conditions, the
)

coefficients in equation 4.12 can be resolved by solving three simultaneous equations.

. atZ=0, =g, or ¢, = A(0)+ B(0)+C {i)
. atZ=+h, ¢ =¢, or .., = Ak’ + Bh+C (i)
o atZ=-h, ¢=¢_, or ¢, =Ah* —Bh+C (iii)

The solution of the expressions (i), (ii), and (iii) for the coefficients 4, B, and C yield:
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(¢n-l - 2¢n + ¢n+l)

4= 20
(¢n+l - ¢ —l)
= 4.13
C=¢,
h h h h
L Je Je <
N
L Lz
8 S S S———
a4
¢._2 ¢n+2
¢ -1 3 ¢n+l
¢
Figure 4-4 Mesh points for finite difference equations
Substituting the constants in equation 4.13 into 4.12, the rotation can be written as:
—_ (¢n-l - 2¢n + ¢n+l) 2 (¢n+l - ¢u—l)
¢ = Sh Z°+ Y Z+g, 4.14
1)
The first two derivatives of 4.14 at the point Z = 0 are:
7 (¢n+l -9, -l)
=" 4.15
(-2, +4.)
", = (6 S 4.16

Although the determination of the third derivative (and the fourth derivative in cases of

distributed loading) is required, higher derivatives of equation 4.14 result in zero
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quantities. In order to circumvent this problem, additional mesh points (¢, , and ¢, ,,)

are added as shown in Figure 4-4. The third derivative can be written as:

—_ d — 1
7= P =77 100 - 28+ 41 417

However, ¢’ at a given point, as given by equation 4.15, is ¢ at the right minus ¢ at the

left of the given point divided by 2A. Therefore, 4.17 can be rewritten and simplified as:

-ZTIL:Q) = [¢n+2 - 2¢n+l +2¢ -1 ) --2]/2,‘3 4.18

Following a similar procedure, the fourth derivative can be obtained by taking the second

derivative of equation 4.16 or

i dz n 1 1" " "
o =g (P =7 [00 -2+ 41 419

From the central difference procedure or equation 4.16, the second derivative of ¢ is
given for a point as the sum of the two adjacent nodes minus twice the center divided by
k. Therefore, equation 4.19 can be reduced by substituting equation 4.16 wherever there

isa ¢" to yield: .
aivl.'.:ﬂ = [¢ -2 _4¢ll-l + 6¢Il _4¢n+l + ¢n+2 ]/h4 4.20

4.4.2 Establishment of mesh patterns in tridiagonal form for finite
difference equations (concentrated torque)

The necessary derivatives of the torsional rotation in finite difference form were

calculated in section 4.3.1. These equations can now be used to represent the governing

-
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differential equation for pure and warping torsion in combination (4.2 and 4.3). For the
case of a concentrated torque (4.2), the first and third derivatives can be replaced by
equations 4.15 and 4.18 and simplified to yield:

2M_h

GK, = (¢"“ =i ) - 'B(¢~*2 -20,,+2¢, - ¢n—2) 4.21

where
p=EI,[n GK,
Equation 4.21 can be represented as a mesh pattern by collecting terms together to give:

2M_h

[(8) (-1-28) @ (1+26) (AP =2 an
where qT is a column vector equal to:
F=[0r b b b Bua] 423

When written for each mesh point, equation 4.22 produces a well-conditioned system
of linear simultaneous equations having strong pivotal elements. To establish these
equations, the appropriate boundary modifications must be incorporated into 4.22 to
determine the difference equations for mesh points adjacent to boundary points. From
section 4.1.2 it was assumed that the torsional restraints used in practice were either rigid
(fixed) or “simple” (pinned). Suppose a beam with one end is torsionally fixed as shown
in Figure 4-5. From Table 4-1 a torsionally fixed end translates into the rotation and the
slope equaling zero. This condition expressed in central differences at point 1 (using

equation 4.15) is:
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4=0=(¢,-4)2n or ¢ =4 (a)

2 3 4 5 6 n-l1 n-2 n ntl n+2

—

h

Figure 4-5 General central difference mesh notation

Substituting the relation obtained in (a) into the mesh pattern in 4.22 with the constraint

@, =0, gives the mesh equation for n =2 (i.e. node 2):

= 2M.h
=2 [p 1428 -pl = ®)

~

where the column vector $ is

¢z = [¢z ) ¢4]r (©

)
It is important to note that the ¢, term is not in (b) because it combines with ¢, due to

(a). Thus, @7, =&, +@, =0+ F. Also, the term ¢, is not in (b) because it is
inherently zero from the boundary condition associated with a torsionally fixed support.
The equations for the rest of the mesh points can be found in a similar fashion. Of
course, the mesh equations for the right end must be evaluated carefully since another
boundary condition exists. Suppose that Figure 4-5 was a complete beam, meshed into
nine points, and that the right end was free. The natural boundary conditions associated

with a free end are ¢y'= ¢;"=0. One problem that arises in creating the mesh pattern in

-
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equation 4.22 is that the terms @,, and ¢,, show up. These terms have to be written in
terms of rotations that are physically on the beam. In order to accomplish this, the

boundary conditions must be utilized. Hence,

#'=0= B or B0 =20, — & @

n — 200 20, -
oo BTMetb) e @

In matrix form, the mesh pattern for a cantilevered beam (discretized into nine points)

with a toisionally rigid left end and a free right end is given as:

B 1428 -8 0 0 0 o 0
“1-28 0 1428 -8B 0 0 o 0
B -1-28 0 1+28 -B 0 0o 0
| 0 B -1-28 0 1428 -B 0 0
=" 0 g -1-28 0o 1+28 -8 o|®
0 0 0 B -1-28 0 1+28 -8
0 0 0 0 g -1-28 B 1
0 0 0 0 0 o -2 2

Notice how the matrix R is an 8x8 matrix as opposed to a 9x9 matrix. The reason is that
the first point (i.e. n = 1) is given as an essential boundary condition which is
@, = ¢/ = 0. This boundary condition is built into the other mesh point equations. If it

was physically inserted irto the mairix given in (f), the matrix would be singular. To
actually solve for the torsional rotations at each mesh point, the equation ﬁ:} = L must

be evaluated where the matrices ¢ and L are:

$=[¢z b b & & & & ¢9]r (2
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2M h

L=
GK,

1111111 M)

The load vector L is the same at each point because there is only one concentrated torque
M applied at the end of the beam. Thus, the torque at any point in the beam is the same
for equilibrium to hold. If the torque varied across the beam, it would have to be

reflected at each mesh point in the load vector L.

The solution to the equation depicted in (f) (or any other one like it) can be easily
obtained since the R matrix is tridiagonal. Since the matrix consists solely of a band of
entries three columns wide along the diagonal, the decomposition process is very short.
A standard Gaussian procedure can be used to solve for the torsional rotations in the
system. One key point is that the R matrix is not always symmetric which means that
standard solution procedures such as LDLT decomposition will not work since the lower
and upper triangles are not identical. Expedient storage procedures can be used to store

the tridiagonal matrices which can help precipitate the solution process.

4.4.3 Establishment of mesh patterns in tridiagonal form for finite
difference equations (distributed torque)

A procedure similar to the onie given in section 4.3.2 can be applied to a beam

subjected to a distributed torque instead of a concentrated one. In this case equation 4.8

must be expressed in finite difference form by substituting the expressions for ¢* and

@" in equations 4.20 and 4.18 into 4.8. This substitution gives:

m,

= [bn =400+ 68, 40,1 44,10~ [4 -2, +00] a4

GK.

where the value f is:
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B =EI,[h GK,

The mesh pattern for the uniform distributed loading case is:

2
m

h
GK,

[(8) (-1-4p) (2+6p) (-1-48) (B)|F = 4.25

where J is the same column vector given in equation 4.23. The derivation of a series of
simultaneous equations to represent all the mesh points on a particular beam depend, of
course, on the boundary conditions on both ends. The process, however, is exactly the
same as for the concentrated torque example.

To properly demonstrate the situation for a distributed torque as well as incorporate
a “simple” support, a beam with conventional (pinned) supports at both ends subjected to
a uniform distributed torque across the entire length will be examined. Assume that nine
mesh points are used (evenly spaced at a distance A) just like in the example in section
4.3.2. According to Table 4-1, a “torsionally pinned” support signifies that the rotation

and corresponding bimoment (i.€. @,z s Proundary ) € Z€r0. These boundary conditions

translate into

h=d=4'=¢'=0 ' (a)

if it is assumed that point 1 is the constraint at the left end while point 9 is the constraint

at the opposite end. In order to derive the first mesh equation for point 2 (i.e. n = 2), it is

necessary to determine the value of ¢, (i.e. 4,,| _,). From equation 4.16,

#'=0= ﬁ:'z::ﬁ-_% or b =—9, (b)
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Thus, substituting (b) into the mesh pattern in equation 4.25 and collecting like terms
gives the finite difference equation for node 2:

m_ht

GK,

n=2 [2+58 -1-4p ﬁ];f: (©)

where the column vector ¢ is

¢z=[¢z s ¢4]r (d)

Since this beam has identical torsional restraints on both ends, it is symmetric. Thus,

the evaluation of the difference equations on the right side of the beam will entail

following the exact procedure given above. The R matrix for this case is as follows:

(2458 -1-48 B 0 0 0 0
-1-48 2+68 -1-48 B 0 0 0
B -1-48 2+68 -1-48 f 0 0
R=| 0 B -1-48 2+68 -1-48 B 0 (€
0 0 B -1-48 2+68 -1-48 p
0 0 0 B -1-48 2468 -1-4p
0 0 0 0 B -1-48 2+58

Here, the R matrix is a 7x7 matrix as opposed to an 8x8 matrix when the beam was
cantilevered. Although the same number of mesh points were used in both examples, this
particular case has two essential boundary conditions: the pinned supports on both ends.

These constraints are built into the other mesh point equations. If they were included in

the R matrix as a separate entity, the matrix would be singular. To directly solve for the
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rotations on the beam, the equation R@ = L must be evaluated where the matrices ¢

and L are:

5=l & & & 4 ¢ 4 | ®
_._m:h2 { T
L—GKT[I 11111 | ©

4.5 Comparison of finite difference solution to exact closed form
solution

It is impractical to solve the governing torsional differential equations (4.7 and
4.8) in a closed form since the number of realistic combinations of boundary conditions
and loading patterns are much too large. Since all combinations can not be accounted for,
a neural network would have to be created in which the “black box” would have to be
taught how to solve a new problem using relational information it already knows from
past situations. A much easier way to tackle the solution process is to use the finite
difference method mentioned in section 4.3. It can be shown that in order to achieve
convergence to the real solution (i.e. the closed form solution of 4.7 or 4.8), the number
of required discrete mesh points is quite small.

Figures 4-6 and 4-7 contrast the difference obtained in using the finite difference
method to obtain the torsional rotational response of a system. Figure 4-6 simulates the
case in which the beam is torsionally pinned at both ends and subjected to a uniformly
distributed torque. Figure 4-7 is the case of a cantilevered beam with a simple
concentrated torque at the free end. The finite difference solutions were obtained using
TORAB. The automation process for the finite difference solution is quite

straightforward since there exits only two essential and one natural boundary condition.

Thus, the R matrices can be assembled rather easily since the effects of the free, pinned,

and fixed constraints on the difference equations are known in advance. All that needs to

be automated is the load vector L which can vary from a concentrated torque placed
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Figure 4-6 Comparison of exact solution of rotation and successive derivatives to that of finite
central difference method for a pin-pin beam with distributed torque (m, = -3 kein/in,
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Figure 4-7 Comparison of exact solution of rotation and successive derivatives to that of finite
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anywhere on the beam to a linearly distributed torque along a certain portion of the

beam. A discussion of the procedure TORAB undergoes to determine R and L canbe
found in Chapter 5.

Figures 4-6 and 4-7 also illustrate the differences between the first, second, and third
derivatives of the rotation obtained from the finite difference and exact solutions. The
finite difference solution used contained nine mesh points. Heins and Looney [Heins and
Looney, 1967] stated that accurate solutions could only be obtained if a fine mesh was
used. However, the problems in Figures 4-6 and 4-7 were run through TORAB under
coarser meshes (six nodes) and the results slightly differed from the nine node mesh.
Since these matrices are rather small and extremely sparse, it is not computationally

expensive to set up a fine mesh if absolute accuracy is of top priority.

109



Chapter 5

Implementation of numerical algorithm to solve the torsional
response of a beam (TORAB)

The focus of this chapter is to discuss a devised scheme which can properly and
accurately handle the entire torsional problem of a beam. This scheme would entail the
tedious and problematic tasks of calculating the centroid, shear centers, warping
properties, etc. for any cross section as well as the evaluation of the resulting warping and
pure torsional shear and normal stresses. The responses for both open and closed cross
sections (i.e. continuous and multicontinuous cells) can be determined using a simple text
input file. TORAB (TORsional Analysis of Beams) is written in the C and C++
architectures for both the PC and UNIX platforms. It is also equipped with a MATLAB®
interface which produces a MATALB?® file that graphically displays such things as the
distribution of the normalized warping function and the statical warping moment.

5.1 User interface for defining 2 cross section in TORAB

The torsional properties for a given cross section were numerically calculated in
Chapters 2 and 3. These properties entail the torsional stiffness K r» the normalized unit
warping function W, , the statical warping moment S, , the warping constant /,, and
the shear center X, and ¥,. Although the determination of these properties are rather
straightforward when looking at the problem in a physical basis, the computer has no idea
about the shape of the cross section, the elements that comprise it, or the orientation of
the joints. In order to ‘feed” the computer the relevant information it needs to determine

the characteristics of the cross section, an input language was created as an interface

medium. This input language is a simple text language that is comprised of a series of

v
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phrases which tnay be used in combination with each other. A listing of all the

commands in the language can be found in Appendix A.
5.1.1 Joint and element orientation for cross sections

The frame of reference which TORAB utilizes thrcaghout the analysis is based upon
the joint coordinates provided by the user. The cross section, as described in Chapters 1
and 2, is comprised of smaller reciangular elements of which the starting and ending
coordinates must be supplied by the user. Since flat rectangular elements constitute most
structural sections, TORAB is not equipped to handle sections which embody curvilinear
surfaces. Adding curvilinear clements would completely change the numerical
derivations described in Chapters 1 through 3 since the tangential distance p or p,
would not be constant. The cross section in question is divided into parts by the user and
not by TORAB. The process of meshing the cross section either for accuracy or
convenience is beyond the scope of this thesis and the code behind it.

The joint coordinates can be numbered in any order. The joint number is succeeded
by the x and y coordinates, respectiQely. Each element has two joints associated with it,
but joints may be shared among adjacent elements. These joints, obviously, should not
be listed twice. Once the joint coordinates have been listed, the element connectivity
information must be ascertained. The elements can be numbered in any order where the
element number is succeeded by the starting and ending joint numbers, respectively. As

discussed in section 3.3.1, the internal flow used to evaluate the normalized warping sub-

function (Wn,.-,,.,,,. ) is decided by the starting and ending joints. The flow is

automatically designated to travel into the direction of the ending joint.

TORAB creates a frame of reference for the cross section by sorting out the joint
coordinates provided in the input file. TORAB looks for the joint which has the
minimum abscissa and ordinate and designates that as the origin for the entire cross
section. Thus, the centroid and shear center is referenced from the newly created origin.

The reason the frame of reference was chosen in this particular mauner was that the cross

-
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section did not have to be scaled from an actual design, plan, or blueprint. An alternate
comsiand, labeled FRAME, is also included so that the user can create a “dummy node”
which would simulate an origin the user desired. However, the author recommends that
the origin should be a point which is physically on the section so that frame of reference
is entirely encompassed by the section itself.

The storage scheme used to organize the joint coordinates, element connectivity, and

the frame of reference is done with classes and structures. Since there can be an arbitrary

amount of joints and elements, the class (Class SectionInfo), which is assigned to
hold all this information, has the ability to dynamically allocate memory every time a
new element needs to be created. Of course, the amount of memory is solely limited by
the hardware on which TORAB is being run on. Element connectivity is processed by
the same class through a technique called doubly linked listing [Johnsonbaugh and Kalin,
1993]. This linked list is simply an array of structures where each structure contains all
the information about a particular element (i.e. length, joint coordinates, thickness, etc.).
The fact that the elements in the cross section are placed in a linked list allows for
TORAB to grasp the orientation of each element with respect to adjacent elements. If
TORAB sees that two elements share the same joint coordinates (adjacent elements), it
will place the element (element 2), whose unique joint number is spatially greater than
the other element’s (element 1) unique joint number, in the slot in the list directly to the
right of element 1. Not only does this allow for TORAB to understand element
orientations, but it also arranges the elements in an order which would make the
calculations of the torsional properties much simpler. As cz;n be seen by equations 3.27
and 3.29 a..d Table 3-2, it is imperative to know how the elements are interconnected by
geometry.

Figure 5-1 illustrates how the doubly linked list behaves. If a simple array of
structures were used, it would be much more difficult to insert and move elements in the
array when a new one was added. It must be recalled that the elements comprising the
cross section may be defined in any order. Thus, with a linked list, a new link can be
created to insert a new element into the list without interrupting the continuity of the

other linked elements. The linked list can be traversed in both directions since the links
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Figure 5-1 Doubly linked list used to store element structures as they are read from the input file

point in both directions. An additional comment must also be made on the element
structures themselves. These structures are quite complex in regards to their contents.
They include dynamically allocated arrays which hold such information as joint
coordinates, element number, orientation, thickness, local centroids, and elemental
offsets. In order to manage memory, these arrays within the structures are allocated
during run-time, not compile-time. This technique is used t? safeguard against cross

sections which need to be defined by several elements.

5.1.2 Local vs. global; clement offsets and local centroids

TORARB calculates the local geometric properties of elements as well as their
global counterparts. For example, the local centroid of each individual element is
evaluated and stored in the element structure (Figure 5-1). The reason for this is that it

alleviates the computational effort needed to derive the global geometric properties of the
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entire cross section which is a functicn of the geometric properties of each individual
element. When the global centroid is calculated, the areas of each element along with the
distance from the centroid of each element from the origin (in each direction) needs to be

determined. These local values are also used to calculate the local moment of inertias
I.,I,,and I, for each element.

Element offsets can also be defined in TORAB with the command ELEM OFFSET
followed by the amount of offset necessary in the y-direction only. The offset option is
provided so that the user can shift the position of the joint coordinate with respect to the
clement thickness. The default for the offset is zero which means that the joint is placed
at the mid-surface of the element. Figure 5-2 graphically depicts how the offset

command can be used.

ELEM OFFSET 0 ELEM OFFSET -b/2

Zﬁﬂ/ """"" }- ol :

Midsurface Joint coordinate

Figure 5-2 Example of element offset

5.1.3 Elemental properties

The thickness of each element can be defined under the command ELEM PROP.
This command is to be used after the definition of the elemental connectivity so TORAB
can properly place the thickness of each element in the correct structure. The correct
usage of this command entails listing the element number followed by the thickness.
TORAB reads everything in double precision so the thickness can be a very precise
number if necessary. Tapered elements can not be used in TORAB since the tangential
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distance from the centroid or shear center to the element mid-surface becomes a function
of the degree of taper rather than a constant. This would change the expressions for the
torsional properties derived in the previous chapters. Although this problem can be
included into the formulation for the torsional properties of a cross section, the concept is

not applicable to structural cross sections used in practice today.

5.1.4 Distinction between closed cells and ordinary cross sections

Closed continuous and multicontinuous cells are treated slightly different than
typical open cross sections. The quintessential reason for this is that the solution process
used in determining the torsional stiffness K, involves solving the simultaneous
equations obtained from equation 2.39. To distinguish between cell elements and
ordinary elements, the command CELL is used instead of the command ELEM INCID
which is used for defining the element connectivity for a single cross section (see Figure
1-7). Following the CELL command, the cell number, the height, and the width must be
listed in that order. TORAB will understand when the user has completed listing all the
cells in the box section since it incessantly searches for a new command that will take it
out of the command process routine it is currently in. This is true for any command
which needs to be terminated (i.e. joint coordinate listing, element incidences, element
properties, etc.). The thickness for the cells is listed under the command CELL PROP in
the input file. It should be recalled that the boundary thickness between elements must be
the same to preserve cell continuity. The information related to each cell is stored in a
structure similar to that of an ordinary element. Allocation of new memory is performed
when new cells are added to the box section. All cell structures are still a part of the
higher class in which these structures as well as the element structures are stored (Class
SectionInfo). This is so TORAB can treat either an element or a cell as a separate
object rather than just a part of the cross section. It abets to establish a hierarchy among

the elements or cells and the cross section itself.
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5.2 User interface for defining a beam for anaiysis in TORAB

In order to start the input for the cross section, the command CROSS SECTION

must be listed before any other command. Similarly, to begin the input for the beam
itself, the command BEAM must be given after the end of the cross section input. After
the BEAM command, the joints along the beam and the support conditions must be given
using the commands JOINTS and SUPPORT. An example of the usage of the
aforementioned commands is given in Figure 5-3. It should be noted that the SUPPORT

command (listed in Appendix A) can maintain the following values:

= FREE (no shear or bimoment)
= PINNED (no deflection)
= FIXED (no deflection or rotation)

BEAM
JOINTS
10.0
220.0
355.0
SUPPORT
1 FIXED
2 PINNED
3 FIXED

Figure 5-3 Sample continuous beam with TORAB input file -
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5.3 Evaluation of torsional properties using TORAB

The torsional properties of a cross section, including the normalized warping
function, warping constant, torsional stiffness, and warping statical moment, can be
evaluated using the equations derived in Chapters 2 and 3. The implementation of these
equations in a computer algorithm usually would require some “bookkeeping”, but with
the use of a class architecture, the “bookkeeping” can be eliminated. Since the warping
statical moment and the warping constant are a function of the normalized unit warping
function, the primary goal for TORAB is to first evaluate the normalized unit warping
function at the discrete nodes provided by the user.

Through object-oriented programming, each element in the cross section has the
ability to understand its geometric disposition with respect to all other elements. The
doubly linked list described in section 5.1.1 abets in giving each element its own identity
and at the same time, establishes a relationship wth other elements. Thus, after obtaining
the origin for the cross section (section 5.1.1) and the global coordinate axis system (i.e.
frame of reference), information such as the distance from the centroid or the shear center
to the mid-line of an element can be obtained by each element itself. These pieces of
information are vital to acquiring the normalized warping function and sub-function.
Each element has its own structure which carries all the information pertinent to that
particular element. With this information, the element can further proceed to calculate
any other distance, angle, etc. so that it can determine its coptn'bution to a specific global
property. A flow chart depicting this object-oriented relationship between the local

elemental properties and the global cross sectional properties is shown in Figure 5-4.
5.3.1 Evaluation of torsional stiffness of a cross section in TORAB

Since each element in the cross section (including built-up sections) is assumed to be

rectangular, the resolution of equations 2.27 or 2.32 can be made by simply evaluating
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I Geometric input from user

Create linked list to form cross section |

stablish unknown geometric relationships
between all elements and reference points

Use the new information to calculate the individual
contributions of each element to the global torsional
properties
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properties to the global cross sectional properties

Plot the torsional functions to visually identify the
position of the maximum values

Figure 5-4 Flow chart of TORAB’s torsional properties
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the polar moment of inertia I,. For a rectangular section the moment of inertia along the
minor axis is negligible since the thickness is small compared to the depth of the section.
Since each element already knows its major moment of inertia (and thus, the polar
moment of inertia) with reference to the principal axes of the cross section, equation 2.27
or 2.32 can be evaluated to find the total torsional stiffness. The area of each element can
be individually evaluated by the element itself since it already knows its own dimensions.
Class functions such as Element .Area () and

Element.GetPolarInertia ()are used by the element to obtain the
aforementioned properties. Once these properties are calculated, they are stored in the

element’s structure.

5.3.2 Evaluation of normalized warping function of a cross section in
TORAB

In order to evaluate the normalized warping at a discrete point in the cross section,
the determination of the warping sub-function is necessary. The process through which
this value is determined is listed in Table 3-2. Since TORAB automatically creates a
flow pattern between the joints (from the starting and ending joint coordinates of an
element), it is left to the individual elements to decide whether to add or subtract the
warping across itself from one joint to the next. The initial warping is automatically set
to zero at joint coordinate one. This, of course, means that if the user does not assign
joint coordinate one to be one of the open joints where the Warping is zero, TORAB will
do so internally. Since each element knows the direction of the flow across it, the
element can determine whether it should add or subtract the warping from the starting
joint by simply checking its structure and seeing which end is the starting end. To get the
variation in warping across the element, the area of the element, the distance from the

shear center to the mid- or tangent line of each element p, , and the sign of p, need to be

calculated. The sign of p, is assumed to be positive if while looking at the element from
the starting joint to the ending joint, the shear center falls on the left hand side. TORAB

can determine this numerically by using an algorithm called the convex hull [Sedgewick,
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1992]. This algorithm determines the relative orientation of a vector to a specific point
on a two-dimensional plane. The details of this algorithm are actually quite complex and
will not be discussed in this thesis.

After the area and the magnitude and sign of p, are determined for each element,
Table 3-2 can be processed by simply traversing through the linked list and following the
correct flow in the cross section. The goal is to first determine the warping sub-function
which, from Table 3-2, is column seven divided by twice the value obtained in column
six. The value in column six is the area of the entire cross section which TORAB already
knows from the contributions of each element. Column seven is evaluated from the
process described in the above paragraph. After the warping sub-function is obtained, the

normalized unit warping W, at each joint / in the cross section can be determined by

subtracting the unit warping w,, at each joint i from the warping sub-function. Of course,

the normalized unit warping at each joint is stored in the structure of the element which
possesses those joints. If one joint is common to more than one element, the unit
normaliized warping is not stored in all common elements. Each element structure
possesses several other structures which contain linked lists of various information. This
organizational network is referred to as a substructural network. In this case e..ch element
structure has a pointer to the joint coordinate linked list which contains information
relative to each joint such as the unit normalized warping and the warping statical
moment. It should be noted that the information provided in all linked lists are
dynamically allocated at run time. Although extended memory is not a problem for
computers today, larger or more detailed problems are being examined where there may

be over a thousand types of cross sections used.

5.3.3 Evaluation of statical warping moment and warping constant of
a cross section in TORAB

Once the unit normalized warping function is evaluated at each joint in the cross
section, the statical warping moment S, and the warping constant I,, can be easily

obtained through equations 3.30 and 3.31. A simple traversal through the linked list of
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elements of the cross section is required to pick up the values of the normalized warping
function, substitute them into the appropriate equations, and sum up the results over all
the elements. The contribution to the warping constant from each element is stored in the
individual element structure. Since the statical warping moment is the integral of the
normalized unit warping function, the value of the moment can vary at the discrete joints
along the cross section. Thus, the value of S, at each joint is stored in the joint linked

list which can be accessed by each individual element.

5.4 Graphical interface of torsional properties using MATLAB® and
TORAB

In order to determine the maximum values of the normalized unit warping function
and the statical warping moment, a listing of the values along various points on the cross
section is needed. The maximum values of these properties are required so that the
maximum values of the normal and shear stresses caused from warping can be obtained
(equations 3.16 and 3.18). Although the maximum value of these properties illustrate
where the maximum stresses on the cross section will be, it does not give insight to where
the maximum stresses along the beam are. Since the warping normal and shear stresses
are also a function of the rotation which, in tumn, is a function of the longitudinal distance
along the beam, the maximum values of the torsional properties can only portray the
maximum stresses on the cross section.

TORAB has the capabilities to interface with MATLAB® by creating . m files that
contain information for plotting the normalized unit warping and statical moment
functions. There is no command that is required to create these plot files. The name of
the .m file that is created is identical to that of the input file name used in TORAB.
TORAB plots the cross section (in two separate plots) with the normalized unit warping
and statical moment superimposed on top. The user can now visually see where the
maximum values of these two functions lie on the cross section. The magnitudes of the
functions are also displayed along with the exact location of the maximum values. Of

course, with the command PRINT RESULTS (all print commands are describftd in
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Appendix A), a text output for the same results can also be obtained. A sample plot of
the two warping properties for the skewed channel cross section in Figure 1-6 is
illustrated in Figure 5-5. It is apparent from Figure 5-5 that the location of the minimum
values of the normalized unit warping function corresponds to the maximum values of the

statical warping moment.

5.5 Location of maximum stress combination using TORAB

Although the locations of the maximum normal and shear stress caused by warping
can be found, these locations will most likely not coincide with each other or the location
of the maximum pure torsional shear stress. Since the shear stress on the cross section
caused by pure torsion is a function of the shear modulus and the thickness, the stress
does not vary along the length of the section but rather along the thickness. Thus, by
finding the location of the maximum value of the statical warping moment, the location
of the maximum combined shear stress on the cross section is also known. The value of
the pure torsional and warping shear stresses are then added together at that point.

The shear and normal torsional stresses also vary along the length of the beam since
the rotation and its derivatives change. However, assuming the cross section does not
vary, only specific points along the length of the beam need to be evaluated for the values
of the rotation and its derivatives to find the maximum. TORAB divides the beam into
fifty discrete points (including the supports) and finds the maximum value among those
points. There is no storage problem here since the values at only one point need to be
stored ard compared against a new one. Any information related to the beam is stored in
aclass called Class BeamInfo which contains structures entailing information about
the beam. Most of this information is final results such as the location and magnitudes of
the maximum stresses.

When a beam is subjected to planar bending forces which produce planar normal and
shear stresses, these stresses must also be correctly added to the stresses caused by
torsion. The location of the maximum values of the planar normal and shear stresses will

probably lie at a different spot than their torsional counterparts. For wide-flange sections
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Figure 5-5 Normalized unit warping and statical warping moment plots of skewed channel

the normal stresses caused by warping and pure bending are both at their maximum
values at the edges of the flanges. Likewise, there are always two flange tips where these
stresses add regardless of the directions of the applied torsional and bending moments.
Thus, for wide-flange cross sections, the normal warping and bending stresses should
always be added to determine the maximum longitudinal stress on the cross section.
Also, for wide-flange sections, the maximum values of the shear stresses caused by
warping, pure torsion, and planar bending in the flanges will always add at some point
regardless of the direction of the applied torsional moment and vertical shear to give the
maximum shear stress in the flange. For the web, the maximum value of the planar shear
stress adds to the value of the shear stress caused by pure torsion in the web, regardless of
the direction of loading, to give the maximum shear stress in the web. For other types of

structural cross sections such as channels and Z shapes, it is impossible to provide general
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rules for the magnitude of the maximum combined stresses. It is necessary, for these
shapes, to consider the directions of the applied loading and to check the combined
stresses at several locations in both the flange and the web.

TORAB summarizes the stresses in the output with the commands PRINT
STRESSES ALL or PRINT STRESSES MAXIMUM. The former command prints
the combined normal and shear stresses caused from pure and warping torsion at all fifty
points along the beam. Only the maximum stresses on the flange and the web are
reported for those points. The latter command prints the maximum combined normal and
shear stress for the whole beam along with the location. This command also separates the
information into the maximum combined normal and shear stresses for the flange and the

web.

5.6 Solution of torsional rotation and successive derivatives in
TORAB

In order to determine the stresses caused by pure and warping torsion, it is necessary
to obtain the value of the torsional rotation along the longitudinal span of the beam. The
numerical procedure to calculate the torsional rotation and its derivatives were explained
in Chapter 4. The mesh equations given in cquations 4.22 and 4.25 are “hardcoded” in
memory since the only general types of loads available are concentrated and distributed.
If the distributed torque is not uniform (i.e., linearly varying), the right hand side of

equation 4.25g must be changed to reflect the variation in m,. Since the boundary

constraints affect the finite difference equations and thus, the R matrix in equations 4.23f

and 4.25e, these constraints must be pre-calculated so the assemblage of the R matrix
becomes simpler. TORAB uses the constraints listed in Table 4-1 and creates the
difference equations for the mesh points affected by the boundary conditions. Thus,
when TORAB realizes (from the input file) that a specific joint is constrained in some

manner, it pulls the appropriate finite difference equation associated with the constraint

and substitutes it into the correct position in the R matrix. TORAB is capable of

determining if the beam presented by the user has symmetric boundary conditions. If this
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is the case, it will only calculate one triangular part of the square R matrix and simply

transpose those entries to fill the other triangle.

The solution to the set of finite difference equations , 8¢ = L where ¢ and L are

the rotation and load vectors, respectively, is resolved using a standard Gaussian solver
with partial pivoting. Since the R matr'x may not be symmetric, it is not possible to use
solvers such as LDLT since the lower and upper triangles of the R matrix are not the

transpose of each other. However, the R matrix is tridiagonal which allows TORAB to
only store the blocked bandwidth. This bandwidth is, at maximum, three entries wide.
The rest of the matrix is just filled with zeroes. The Gaussian solver used is slightly
altered to accommodate the sparseness of the matrix and the elements being stored.

After the rotations are obtained, TORAB uses equations 4.15 through 4.20 to solve for
the derivatives of the rotation at each mesh point. TORAB goes through a loop and
applies those equations for every mesh point on the beam. If a mesh point coincides with
a boundary point, TORAB will automatically be informed by the structure in the beam
class which keeps track of mesh points that are boundary constraints. Therefore, instead
of applying one of the equations from 4.15 to 4.20, the correct boundary condition will be
substituted. All of the values for the rotations and its successive derivatives are stored in

linked lists pointed to by pointers stored in the beam class Class BeamInfo.
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Chapter 6

Conclusion

The problem of torsion in structural problems is very complicated and extremely time
consuming if accurate results are to be obtained. Linear torsion is often avoided in most
analyses since the amount of computation required to solve for the torsional properties,
rotations, and stresses does not compensate for the information acquired. The focus of
this paper, however, was to create a numerical forum in which the computation is
simplified by converting the differential equations and line and surface integrals into
discrete, closed form expressions.

The most complicated aspect of torsional analysis is the fact that structural cross
sections may be open, closed, continuous, or even built-up. Since these cross sections
may vary from one beam to the next, it is ditficult to calculate the shear center for each
section, especially since the shear center is difficult to quantify in a numerical sense. In
this paper, it was shown that the shear center was a function of the tangential distance
from the mid-line of each element in the cross section to the centroid. By quantifying this
value, it was possible to express the shear center in terms of the geometric inertial
properties of a cross section. The Force Method was used ‘to compare the results of the
numerical scheme with an unorthodox cross section.

The concept of pure or St. Venant’s torsion was examined and developed using elastic
theory. The Airy’s Stress Function was introduced to express the governing differential
equation for pure torsion in terms of a Laplace based equation for bidirectional flow.
With the aid of Prandtl’s membrane analogy, the Laplace equation for pure torsion was
proven to be analogous to a thin membrane inflated by some pressure. The effects of this
membrane subjected to a pressure could easily be obtained. Thus, with the help of the

analogy, it was discovered that the slope of the displacement field of the membrane
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caused by the pressure was exactly equal to the shear stresses imposed on the cross
section by the pure torsion. It was also shown that the volume underneath the inflated
membrane was equal to the torque developed by the cross section to resist the external
torque. A numerical scheme was developed to calculate the torsional stiffness constant
for any cross section. For built-up sections, it was proven that the total torsional stiffness
was simply the sum of the torsional stiffness for each individual section. Continuous and
multicontinuous cells, such as box sections, were also introduced. Since these sections
are indeterminate, a separate algorithm was utilized to solve for the torsional stiffness and
shear stresses. Redundant forces were imposed to create a cut in the original section so it
could be treated as an ordinary open, thin-walled section. A set of simultaneous
equations were introduced and solved to get both the torsional stiffness of the entire
section as well as the shear stresses through the elements of the section. Boundary
elements were treated separately since the stresses in adjacent cells sharing the boundary
element needed to be vectorally added.

The phenomena of warping torsion and the effects it has on the existing axial forces
in a beam were also examined. Warping was shown to be an out of plane effect arising
when the out of plane displacements are somehow constrained. The normal and shear
stresses caused by warping were related to the torsional rotation of the beam and several
warping properties. These warping properties, including the normalized unit warping, the
statical warping moment, and the warping constant, were very abstract quantities that
were difficult to obtain even by hand. However, by isolating and quantifying parts of the
equations related to these properties, it was discovered that ‘a key parameter in
numerically decomposing these properties lied in the tangential distance from the shear
center to the mid-line of an element in the cross section. The integration of this quantity
over the surface of all the elements in the section was done using Simpson’s 1/3"
integration technique. Thus, the normal and shear stresses could now be obtained using a
numerical procedure.

The combination of pure and warping torsion created a fourth order differential
equation whose closed-form solution, depending on the loading, was undesirable. In

order to bypass the differential equation, the finite difference method was introduced, and
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the beam was decomposed into several discrete points to accommodate the method. A
mesh equation was developed for each point by rewriting the derivatives of the torsional
rotation at that point as a function of the tersional rotations at other points. The boundary
conditions were also included in the formulation as they affect the finite difference
equations for certain points. The equations were then assembled into matrix form and
solved using an altered Gaussian elimination scheme. Since the matrix containing the
coefficients of the difference equations was tridiagonal, storage was not a problem.
Finally, a computer program (TORAB) was created to assemble the whole torsion
process together. With a simple text input file, the user could create a cross section of
any shape and a beam with arbitrary continuous supports and loading. TORAB has the
ability to determine the centroid and shear center and graphically display the warping
properties inherent to a specific cross section. TORAB will also solve for the torsional
rotations on the beam and determine the maximum combined pure and warping stresses
on the cross section and along the longitudinal axis on the beam. It will separate the
cross section into flanges and webs and will also report the maximum stresses on each
component. Created in an object-oriented environment, TORAB treats the cross section
as a group of individual elements of which each is autonomous of the next. Each element
is capable of deriving its orientation, area, relative distances, etc. and passing this
information to the cross section. All of the elements are placed in a doubly linked list of
structures which allows the cross section to easily traverse the list and find any
information it needs. The joint coordinates and any final results are also kept in the same

\
manner.
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Appendix A

This appendix contains a brief synopsis of all the commands available in TORAB.

CROSS-SECTION
Used at the very beginning of the input file before any data for the cross section is given
JOINT COCRD

Used for the cross section to specify the nodes desired by the user to configure the cross
section. The syntax for specifying a joint is the joint number followed by the x and y
coordinates.

ELEM INCID

Used to create actual elements by connecting joints. In order to create an element, the
element number followed by the starting and ending joint numbers must be listed.

ELEM PROP

Used to specify the thickness of an element. The correct usage for this command is to
first list the element number followed by the thickness of the element.

PRINT CENTROID

Prints the coordinates of the centroid ir. the output file.
PRINT SHEAR CENTER

Prints the coordinates of the shear center in the output file.

FRAME

User can specify an alternate origin for the cross section. The syntax for this command
. . . .« . )
is to list the x and y coordinate for the new origin.

ELEM OFFSET

Used to shift the position of the joint coordinates with respect to the thickness of the
element. Only the y-coordinate of the joint can be shifted.

CELL

Used to create continuous or multicontinuous cell sections. The command is
followed by the cell number, cell height, and cell width. Used in place of ELEM
INCID when cell sections are desired.

CELL PROP
Used to designate the thickness of the cells. Since each cell has four segments, the user
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can provide a thickness for each segment by listing the cell number followed by the four
values. All boundary segments must share the same thickness for continuity purposes.
TORAB will inform the user if this is not the case.

BEAM

Used to start the data for the beam under investigation.

JOINTS

Used to specify the joints where support are located. The command is followed by the
joint number and the longitudinal distance from the left end of the beam.

SUPPORT

Used to designate the type of support at each joint. The command is followed by the
joint number where the support lies and the type of support desired. The three types of
supports available are: FREE, FIXED, and PINNED.

CONSTANTS

The modulus of elasticity and the shear modulus are listed after this command.

LOADING

Used to specify the torsional loading on the beam. The first piece of inforrnation listed is
the type of loading: CONCENTRATED or DISTRIBUTED. For a concentrated load
the distance from the left end of the beam where the torque is applied and the magnitude
of the torque is required. For a distributed load the starting and ending distances
(measured from the left end of the beam) of the load followed by the magnitude at the

start and end are required.
PRINT RESULTS

Prints all values of the torsional properties (i.e. unit normalized warping function,
warping statical moment, warping constant, torsional stiffness) at each joint in the cross
section where applicable. The results are printed in an output file under the same name
as the input file but with a .an! extension. :

PRINT STRESSES ALL

This command prints the combined normal and shear stresses caused from pure and
warping torsion at all fifty points along the beam. Only the maximum stresses on the
flange and the web are reported for those points.

PRINT STRESSES MAXIMUM

This command prints the maximum combined normal and shear stress for the whole
beam along with the location. This command also separates the information into the
maximum combined normal and shear stresses for the flange and the web.

PRINT ROTATIONS
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Prints the torsional rotation at all fifty points along the beam.

END
Signifies the end of the input file.
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