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Real-time Manhattan World Rotation Estimation in 3D

Julian Straub, Nishchal Bhandari, John J. Leonard and John W. Fisher III

Abstract— Drift of the rotation estimate is a well known
problem in visual odometry systems as it is the main source
of positioning inaccuracy. We propose three novel algorithms
to estimate the full 3D rotation to the surrounding Manhattan
World (MW) in as short as 20 ms using surface-normals derived
from the depth channel of a RGB-D camera. Importantly, this
rotation estimate acts as a structure compass which can be
used to estimate the bias of an odometry system, such as an
inertial measurement unit (IMU), and thus remove its angular
drift. We evaluate the run-time as well as the accuracy of the
proposed algorithms on groundtruth data. They achieve zero-
drift rotation estimation with RMSEs below 3.4◦ by themselves
and below 2.8◦ when integrated with an IMU in a standard
extended Kalman filter (EKF). Additional qualitative results
show the accuracy in a large scale indoor environment as well
as the ability to handle fast motion. Selected segmentations of
scenes from the NYU depth dataset demonstrate the robustness
of the inference algorithms to clutter and hint at the usefulness
of the segmentation for further processing.

I. INTRODUCTION

Man-made environments exhibit significant structural or-
ganization. For example, taken collectively, surfaces in a
given location tend to be aligned to a set of orthogonal axes.
Models that exploit this property refer to this as the Manhat-
tan World (MW) assumption [1]. While the MW assumption
may hold locally, global organization may be better described
as a composition of MWs that are rotated with respected to
each other. This can be observed in indoor environments
where hallways turn at non-perpendicular angles, or more
prevalently in cities where neighborhood orientations vary
due to geographic influences (e.g., rivers or mountains). The
Atlanta World [2] describes this by rotations about a single
axis, while the Mixture of Manhattan Frames (MMF) [3]
generalizes the idea to arbitrary 3D rotations.

Humans exploit structural regularities such as the local
MW property to both navigate and interact with their en-
vironments. In fact, Manhattan and many newly developed
cities incorporate MW regularities precisely to improve the
ease of navigation. Here, we are interested in endowing
autonomous agents and non-actuated sensors with a similar
ability to infer and exploit the local 3D MW structure
of their environment. In addition to aiding navigation via
improved rotation estimation [1], [4], such a capability may
aid regularization of 3D reconstructions [5], [6], and facilitate
depth camera focal length calibration [3].
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Fig. 1: Illustrations of the two probabilistic Manhattan Frame
representations utilized by the proposed Real-time Manhattan
Frame (RTMF) inference algorithms. Left: the tangent-space
Gaussian model. Right: the von-Mises-Fisher-based model.

Inference of MW properties of the environment has been
addressed previously by extracting and tracking vanishing
points (VP) from camera images [1], [4], [7]. This approach
utilizes the connection between VPs and 3D MW structure
via projective geometry [8]: lines defined by intersections of
surfaces of the MW projected into the camera intersect in
VPs. Hence the location of VPs in the image depends on the
rotation of the camera with respect to the surrounding MW.

Following the approach of [3], we focus on surface normal
data, such as can be extracted from representations of 3D
structure including depth images or point clouds. Surface
normals can be treated as observations of the orientation
of the planes that constitute the surrounding local MW. We
adopt their concept of a Manhattan Frame (MF) to describe
the distribution of surface normals generated by a MW. See
Fig. 1 for an illustration. In contrast to VP-based methods,
which utilizes sparse observations of lines in the camera
image, the proposed surface-normal-based approach takes
advantage of the availability of dense observations due to
planar structures in the scene.

Our contributions are threefold: first, we derive an ap-
proximation to the tangent-space model of [3] which enables
real-time maximum a posteriori (MAP) inference of the local
MF. Second, we propose a novel MF model, depicted in
Fig. 1, which utilizes the isotropic and circular von-Mises-
Fisher (vMF) [9] distribution and lends itself to even more
efficient inference. Third, we detail a GPU-supported real-
time MF inference (RTMF) implementation which enables
accurate Rotation tracking of dynamic and full 3D camera
motion in typical indoor environments. We show how to
further improve the resulting rotation estimates by fusing
them with IMU rotational velocities in a standard EKF. In
addition to the MW rotation estimate, the RTMF algorithm
also provides a segmentation of the RGB-D frame into the
six directions of a MW, which may be used for further
processing.



II. RELATED WORK

The use of the MW assumption for tracking the rotation
of a camera and using surface normals for estimating MW
rotations have both been considered previously. While the
initial work on MW rotation estimation [1] framed VP
estimation as a Bayesian inference problem on the full RGB
image, the multi-stage approach [7] of first extracting line
segments and then estimating VPs as the intersection-points
of those segments has become popular [4], [10], [11]. VP-
based MW rotation estimation from an RGB camera was
used to estimate orientations within man-made environments
for the visually impaired by Coughlan et al. [1] and for robots
by Bosse et al. [4] where incorporation of MW orientation
estimates resulted in significant reduction in drift. Flint et
al. [12] integrate information across a stream of RGB images
to obtain a semantic segmentation of the scene which relies
on the MW structure of the observed environment.

Several approaches utilize depth or surface normal ob-
servations to improve VP-based MW orientation estimation.
Neverova et al. [10] integrate VP extraction from the RGB
image with entropy minimization of the projection of the
point cloud onto the MW directions for MW orientation
estimation. Silberman et al. [11] rank VP-based [7] MW
orientation proposals according to their alignment with sur-
face normals extracted from the depth image. Purely surface-
normal-aided MW estimation has been explored previously
by Furukawa et al. [13] who employ a greedy algorithm for
a single-MF extraction from normal estimates that works on
a discretized sphere.

Besides VP-based MW rotation estimation by Bosse et al.,
Peasley et al. [5] demonstrate the use of a MW constraint
directly within a pose-graph based SLAM setup. The 2D
orientation of a robot with respect to the surrounding MW
is estimated by extracting the dominant direction in a hor-
izontal scan-line of the depth image using RANSAC. The
resulting drift reduction allows direct integration of RGB-D
measurements into an octree representation of the world. In
contrast to the proposed method, [5] relies on the assumption
that the camera is constrained to movements in a 2D plane.

III. MANHATTAN FRAME (MF)

The use of a Manhattan Frame (MF) [3] facilitates incor-
porating the geometric and manifold properties of rotations
into a probabilistic model suitable for inference. Here, this
manifests as inference of rotation matrices from surface nor-
mal observations. MFs are defined as the set of all planes that
are parallel to one of the three major planes of an orthogonal
coordinate system. Hence, they can be represented by a
rotation matrix R ∈ SO(3). In practice, planes are observed
indirectly via noisy surface-normal measurements extracted,
e.g., from depth images or LiDAR data. As such, it is useful
to think of a MF as the set of normals that are aligned with
one of the six orthogonal directions {µk}6k=1 parameterized
by R and −R:

[R,−R] = [µ1, . . . , µ6] ⇔ µk = sign(k)Rk mod 3 , (1)

Fig. 2: The axes of an MF displayed in RGB within the unit
sphere S2. The blue plane shows TpS2, the tangent space to
S2 at point p. A vector x ∈ TpS2 is mapped to q ∈ S2 via
Expp, the Riemannian exponential map with respect to p.

where sign(k) is 1 for k < 3 and −1 for k ≥ 3 and Rk mod 3

selects the (k mod 3)th column of R.

A. The Manifold of the Unit Sphere S2

The unit sphere S2 is a two-dimensional Riemannian
manifold whose geometry is well understood. As such, we
represent surface-normals as points on S2. We make use of
the following properties, intrinsic to the unit sphere S2 in
3D, for reasoning over the rotation of a MF [14], [15].

Let p and q be two points in S2. The geodesic distance
between p and q is given by [14]

dG(p, q) = arccos(pT q) . (2)

That is, the geodesic distance (i.e., the distance along the
manifold) between two unit normals is equal to the angle
between them.

A second important concept is the notion of a tangent
space to the sphere at a point p denoted TpS

2. Figure 2
illustrates this concept. We can use the Riemannian Expo-
nential map Expp(x) to map a point x ∈ TpS2 back onto
the sphere and the inverse, the Riemannian Logarithm map
Logp(q), to map a point q ∈ S2 into the tangent space TpS2.
Mathematically, these maps are computed as:

Expp(x) = p cos(||x||2) +
x

||x||2
sin(||x||2) (3)

Logp(q) = (q − p cos θ)
θ

sin θ
, (4)

where θ = dG(p, q) = ||x||2.
The Karcher mean q̃ of a set of points on a manifold

{qi}Ni=1 is a generalization of the sample mean in Euclidean
space [16]. It is a local minimizer of the following weighted
cost function:

q̃ = arg minp∈M
∑N

i=1
wid

2(p, qi) . (5)

Here, wi = 1, M = S2, and d(·, ·) = dG(·, ·) In this case,
excepting degenerate sets, it has a single minimum. It may
be computed by the following iterative algorithm:

1) project all {qi}Ni=1 into Tq̃tS
2 and compute their sam-

ple mean x̄ = 1
N

∑N
i=1 Logq̃t(qi).

2) project x̄ from Tq̃tS
2 back onto the sphere to obtain

q̃t+1 = Expq̃t(x̄).
3) iterate until ||x̄||2 is sufficiently close to 0.



IV. MANHATTAN FRAME ESTIMATION USING THE
TANGENT SPACE MODEL

As proposed in [3], a generative model for the MF using
Riemannian geometry describes a surface normal, qi, as
generated from a zero-mean Gaussian distribution in the
tangent space around its respective associated MF axis µzi .

R ∼ Unif(SO(3)) zi ∼ Cat(π)

qi ∼ N (Logµzi
(qi); 0,Σ)

(6)

The joint distribution of this model is:

p(z,q, R;π,Σ) = p(R)
N∏
i=1

πzi N (Logµzi
(qi); 0,Σ) . (7)

In the absence of further knowledge about the scene, the
surface normals are assumed to be generated with equal
probability from any of the axes, i.e. all πk = 1

6 . For the same
reason we assume the same small and isotropic covariance
Σ = σ2I for all MF axes.

Starting from this probabilistic MF model we first derive
the MAP inference directly before introducing an approxi-
mation to improve efficiency.

A. Direct MAP MF Rotation Estimation
Starting from the joint distribution of the tangent space

MF model in Eq. (7), we derive the direct MAP MF rotation
estimation. The posterior over assignments zi of surface
normals qi to axis of the MF is given by

p(zi = k|R, qi;π,Σ) ∝ πkN (Logµk(qi); 0,Σ) . (8)

Therefore the MAP estimate for the label assignment zi
becomes:

zi = arg min
k∈{1...6}

Logµk(qi)
TΣ−1Logµk(qi)

= arg min
k∈{1...6}

arccos2(qTi µk) ,
(9)

where we have used arccos(qTi µk) = ||Logµk(qi)||2 and the
assumption that the covariance Σ is isotropic.

With p(R) = Unif(SO(3)), the posterior over the MF
rotation R is
p(R|q, z; Σ) ∝ p(q|z, R; Σ)p(R) ∝ p(q|z, R; Σ) =

=
N∏
i=1

N (Logµzi
(qi); 0,Σ) .

(10)

Working in the log-domain, the MAP estimate for R is:

R? = arg min
R

− log p(R|q, z; Σ) := arg min
R

f(R) . (11)

Plugging in the posterior from Eq. (10) we obtain:

f(R) = − log

[
N∏
i=1

N (Logµzi
(qi); 0,Σ)

]

∝
N∑
i=1

Logµzi
(qi)

TΣ−1Logµzi
(qi)

∝
N∑
i=1

arccos2(qTi µzi) ,

(12)

µ

q̃

qi

Logq̃(qi)

Logµ(qi) ≈ Logµ(q̃) + R
µ
q̃
Logq̃(qi)

Fig. 3: Illustration of the geometry underlying the approxi-
mation of the mapping of qi into TµS2 via Logµ(qi).

where we have used the same trick as in Eq. (9). This method
is called direct since the cost function directly penalizes the
deviation of a normal from its assigned MF axis.

We enforce the constraints on R by explicitly optimizing
the cost function on the SO(3) manifold. Specifically, we em-
ploy the conjugate gradient optimization algorithm from [17],
which is also summarized in Alg. 1. Note, that the SO(3)
manifold is equivalent to a 3× 3 Stiefel manifold.

With εi = arccos(qTi µzi) and Ik = {i | zi = k}, the
Jacobian J = [J0, J1, J2] ∈ R3×3 for the optimization is:

Jk =
∂f(R)

∂Rk
=

∑
i∈Ik∪Ik+3

2 sign(zi)εi√
1− (qTi µzi)

2
qi . (13)

B. Approximate MAP MF Rotation Estimation

The direct approach derived in the previous section is
inefficient since the cost function in Eq. (12), as well as
the respective Jacobian, involves a sum over all data-points.
These quantities need to be re-computed after each update
to R in the optimization. Especially the required line-search
along the SO(3) manifold required by the conjugate gradient
optimization algorithm (c.f. line 8 of Alg. 1) makes the
direct approach computationally expensive since it requires a
significant number of cost function evaluations per iteration.

To address this inefficiency, we derive an approximate
estimation algorithm by exploiting the geometry of the
manifold of the unit sphere.

The approximation necessitates the computation of the
Karcher means {q̃k}6k=1 for each of the sets of normals
associated with the respective MF axis. After this preparation
step, we approximate Logµ(qi) using the Karcher mean q̃zi
of its associated set of data {qi}Izi :

Logµ(qi) ≈ Logµ(q̃) +Rµq̃Logq̃(qi) . (14)

where Rµq̃ rotates vectors in Tq̃S
2 to TµS

2 as proposed
in [18]. Intuitively this approximates the mapping of qi into
µzi by the mapping of the Karcher mean into µzi plus a
correction term that accounts for the deviation of qi from the
q̃zi . See Fig. 3 for an illustration of underlying geometry.

With this the cost function f(R) from Eq. (12) can be



Fig. 4: 2D vMF distributions with concentrations τ = 1 (left)
and τ = 100 (right) around mean µ = (

√
1/2,

√
1/2).

approximated by f̃(R) as:

f(R) ≈ f̃(R) ∝
N∑
i=1

Logµzi
(qi)

TΣ−1Logµzi
(qi)

∝
6∑
k=1

∑
i∈Ik

Logµk(q̃k)TLogµk(q̃k)

+ 2Logq̃k(qi)
T (Rµkq̃k )TLogµk(q̃k)

=

6∑
k=1

|Ik| arccos2(q̃Tk µk) ,

(15)

where we have used that the sample mean in the tangent
space of the associated Karcher mean

∑
i∈Ik Logq̃k(qi)

T =
0 by definition. The Jacobian for this approximate cost
function thus becomes:

Jj =
∂f̃(R)

∂Rj
=

∑
k∈{j,j+3}

2 sign(k)|Ik|εk√
1− (q̃Tk µk)2

q̃k , (16)

where εk = arccos(q̃Tk µk). Thus the optimization of the
MF’s rotation only utilizes the Karcher means {q̃k}6k=1,
which can be pre-computed. The need to iterate over all data-
points inside the optimization is eliminated.

V. MANHATTAN FRAME ESTIMATION USING
VON-MISES-FISHER DISTRIBUTIONS

In this section, instead of assuming tangent-space Gaus-
sian distributions, we explore modeling the surface normals
as von-Mises-Fisher (vMF) [9], [19] distributed. This distri-
bution is natively defined over the manifold of the sphere and
commonly used to model directional data [20], [21], [22],
[23]. We show that the structure of the vMF distribution
lends itself to even more efficient MAP inference.

A. Probabilistic MF-vMF model

The von-Mises-Fisher distribution defines an isotropic
distribution for data {qi}Ni=1 on the sphere around a mean
direction µ with a concentration τ and has the form:

vMF(q;µ, τ) = Z(τ) exp(τqTi µ) (17)

where Z(τ) is the normalizing constant. See Fig. 4 for a 2D
illustrative example. Similar to the previous model, the MF
can be described as a mixture model where we use vMF
distributions as the observation model for the normals qi.
Again, lacking prior knowledge of the scene, we assume that

the normals are uniformly generated from the six axes, i.e.
πk = 1

6 , and that the vMFs have the same concentration τ :

R ∼ Unif(SO(3)) zi ∼ Cat(π)

qi ∼ vMF(qi;µzi , τ) .
(18)

The joint distribution for this model thus is:

p(z,q, R;π, τ) = p(R)
N∏
i=1

πzi vMF(qi;µzi , τ) . (19)

B. MAP Inference in the MF-vMF Model

For the vMF-based MF model we derive the MAP estimate
first for the labels z and then the MF’s rotation R. With the
uniform distribution over labels, i.e. πk = 1

6 , the posterior
distribution over label zi follows the proportionality:

p(zi = k|qi, R; τ) ∝ vMF(qi;µk, τ) ∝ exp(τqTi µk) . (20)

Since we assume equal concentration parameter τ for the six
vMF distributions, the MAP assignment for zi is:

zi = arg max
k∈{1,...,6}

qTi µk . (21)

The MAP estimate for the MF rotation is derived using
the posterior distribution:

p(R|q, z; τ) ∝ p(q|z, R; τ)p(R) ∝ p(q|z, R; τ) =

=
N∏
i=1

vMF(qi|µzi ; τ) .
(22)

Similar to the previous section the cost function fvMF(R)
which is minimized by the optimal R? is:

fvMF(R) = − log p(R|q, z; τ) ∝ −
N∑
i=1

τqTi µzi

∝ −
6∑
k=1

(∑
i∈Ik

qi

)T
µk .

(23)

The final expression is rearranged to reveal the efficiency of
this cost function: at each time-step the sums over data-points
belonging to each MF axis can be pre-computed.

The Jacobian can also be expressed in terms of these sums:

Jj =
∂fvMF(R)

∂Rj
=

∑
k∈{j,j+3}

− sign(k)
∑
i∈Ik

qi . (24)

VI. REAL-TIME MANHATTAN FRAME INFERENCE

To achieve real-time operation of the three different kinds
of MF inference algorithms on the full 640 × 480 depth
image, we exploit parallelism in computing normals from
the depth image, normal assignments to MF axes, as well as
cost function evaluation. Additionally, we show that most of
the data can remain in GPU memory. Only small matrices
need to be copied out to the CPU. This is important, because
moving data between CPU and GPU is time-intensive.

To reduce the number of conjugate gradient iterations, the
MF rotation estimation at each frame is initialized from the
previous frame’s rotation. This also eliminates the need to



Algorithm 1 Optimization over the MF rotation R ∈ SO(3).
The difference between the proposed approaches (direct,
approximate and vMF-based) is in how the labels {zi}Ni=1

and the Jacobians are computed and which statistics are used.

1: Initialize R0 (to the previous timestep’s frame rotation)
2: On GPU: Obtain {zi}Ni=1 using Eq. (9) or (21)
3: On GPU: compute statistics (approx. and vMF-based)
4: Compute J0 using Eq. (13), (16) or (24) respectively
5: G0 = J0 −R0J

T
0 R0

6: H0 = −G0

7: for t ∈ {1 . . . T} do
8: Rt = arg minR∈SO(3) along direction Ht−1

f(R)
9: Compute Jt using Eq. (13), (16) or (24) respectively

10: Gt = Jt −RtJTt Rt
11: if t mod 3 = 0 then
12: Ht = −Gt
13: else
14: Ht = −Gt + tr{(Gt−Gt−1)Gt}

tr{GtGt} Ht−1Mmin

15: end if
16: end for
17: return RT

reason about the inherent 90◦ ambiguity of the MF rotation
estimate from frame to frame even for fast dynamic motions
(see Sec. VII-D). Intuitively, as long as the rotation of the
camera between two frames is less than 45◦ about any axis
of rotation, the MF rotation estimate will consistently track
the same MF orientation without slipping to one of the other
equivalent MF rotations describing the same MW.

A. Smooth Surface Normal Extraction from Depth Images

We extract surface-normals from the depth image by
performing, per point, a cross product of local gradients of
the point cloud in image column and row direction. This
approach hinges on a “clean” depth image since the local
gradients are sensitive to noise.

We pre-process the depth image with an edge-preserving
filter which accounts for depth discontinuities. These are
ubiquitous in indoor environments. Iterative approaches such
as anisotropic diffusion [24], [25] which simulates a dif-
ferential equation to obtain increasingly smoothed images
while preserving edges are not suitable for real-time op-
eration. Among the fastest edge-preserving filters are the
bilateral [26] as well as the guided filter [27]. We found the
guided filter to yield the fastest edge-preserving algorithm in
practice. In contrast to the bilateral filter, its time complexity
is independent of the kernel size since integral images can
be utilized. Additionally fast implementations of the bilateral
filter usually rely on approximations [28].

After applying the guided filter we compute the point
cloud from the smoothed depth image. For each, the x, y,
and z, channel of the point cloud, a convolution with Sobel
kernels yields approximate gradients pu = [xu, yu, zu] and
pv = [xv, yv, zv] in the image coordinate system. Finally, we
can compute surface-normals for each 3D point as the vector

orthogonal to these two local gradients:

q =
pu × pv
|pu × pv|

. (25)

Note that this operation is equivalent to the Gauss map [29]
for regular surfaces.

All operations, convolutions as well as the cross products,
are implemented on the GPU. The only necessary significant
memory copy is moving the depth image into the GPU mem-
ory. The MF rotation-estimation never needs the normals in
CPU memory, but performs all operations involving normals
entirely on the GPU. Depending on the inference algorithm
statistics of the data, Jacobians and cost-function values are
computed on the GPU and copied to CPU memory.

B. Fusion of MF Rotations with Rotational Velocity Sensors

As alluded to in the introduction one important property
of the MF rotation estimate is that it is a drift-free, absolute
measurement with respect to the surrounding structure of the
environment. Therefore, it can be used as an external refer-
ence to correct the bias of orientation tracking systems that
rely on integrating rotational velocities such as gyroscope
or wheel-odometry sensors. If the bias is not corrected it
is integrated together with the rotational velocities and thus
causes the rotation estimate to drift.

We utilize an EKF to fuse rotational velocity measure-
ments with the inferred absolute RTMF rotations. As pro-
posed in [30] the state of the EKF contains the estimated
fused rotation represented as a Quaternion and the bias of
the sensor. While the rotational velocities measurements are
used for the EKF prediction step, the RTMF rotation estimate
is used in the update step. The observation model is straight
forward since we directly observe the rotation via the RTMF
algorithm. The uncertainty of the rotation estimate is set
to a fixed value. Derivation of a method for estimating the
uncertainty in the MF rotation is left for future research.

VII. RESULTS

We give qualitative and quantitative comparison of all
three derived algorithms on several datasets. First, we evalu-
ate the run-times and the rotation estimation accuracy of the
different algorithms on a dataset with groundtruth data from
a Vicon motion capture system. Second, we show rotation
estimates for a large-scale indoor environment around Killian
Court of MIT. Third, we show the MW segmentation of a set
of scenes from the NYU depth dataset [11]. All evaluation
was run on an Intel Core i7-3940XM CPU at 3.00GHz with
a NVIDIA Quadro K2000M GPU.

With the goal of achieving real-time MF estimation, we
use the following parameters throughout the whole evalua-
tion. The direct RTMF algorithm was run for at most ten
conjugate gradient iterations per frame with ten line-search
steps each. Any fewer iterations rendered the MF rotation
estimation unusable. For the approximate and the vMF-based
RTMF algorithm we exploit the efficiency of the rotation
optimization which uses only pre-computed statistics of the
data. Hence we can run the conjugate gradient optimization
for at most 25 iterations with 100 line-search steps each.
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Fig. 5: Two different datasets with groundtruth data (first row). The percentages of points associated to a respective MF
axis over time is color-coded in the second row. Rows two to four show the angular deviation from the groundtruth of
the approximate as well as the vMF-based RTMF algorithm with and without fusion with the IMU. The IMU orientation
estimate is displayed in the last row. Note that the RTMF algorithms are drift free in comparison to the IMU.

Fig. 6: Timing breakdown for the three different MF infer-
ence algorithms. The error bars show the one-σ range.

A. Estimation Accuracy and Timing on Groundtruth Data

We obtained groundtruth data using a Vicon motion cap-
ture system to track the full 3D pose of an Xtion RGB-
D sensor with attached IMU. We use Horn’s closed form
absolute orientation estimation approach [31] to calibrate the
IMU-Vicon-camera system. The datasets for this evaluation
were obtained by waving the camera randomly in full 3D
motion up-down as well as left-right in front of a wall with
a rectangular pillar. The yaw, pitch, and roll angles of the
Vicon groundtruth are displayed in the first row of Fig. 5.

1) Accuracy: Besides the evaluation of the rotation esti-
mates of the proposed RTMF algorithms, we show the ro-
tation estimates obtained by integrating rotational velocities
measured by a Microstrain 3DM-GX3 IMU using an EKF
as described in Sec. VI-B. Since the direct method is not
real-time capable, we omit accuracy evaluation for it.

For the shorter groundtruth dataset of 90 s length, dis-
played to the left in Fig. 5, we obtain an angular RMSE of the
vMF-based MF rotation estimate from the Vicon groundtruth
rotation of 6.36◦ and 4.92◦ for the approximate method. The
IMU rotation estimate drifts and exhibits an RMSE of 3.91◦.
Note that while the drift can be reduced by incorporating
IMU acceleration and magnetic field data, it can not be fully
eliminated. Fusing the RTMF rotation estimates with the
IMU using the EKF achieves even lower RMSEs of 3.05◦

for the vMF-based and 3.28◦ for the approximate method.

Figure 5 to the right shows the angular deviation from Vi-
con groundtruth during a longer sequence of about 4:30 min
taken at the same location. Similar to the shorter sequence,
the two MF rotation estimation algorithms exhibit zero drift
and an RMSE below 3.4◦. The drift of the IMU is clearly
observable and explains the high RMSE of 8.50◦. The fusion
of the rotation estimates using the Quaternion EKF again
improves the RMSEs to below 2.8◦.

The percentages of surface normals associated with the
MF axes displayed in the second row of Fig. 5 support the
intuition that a less uniform distribution of normals across the
MF axes results in a worse rotation estimate: large angular
deviations occur when there are surface normals on only one
or two MF axes for several frames.

The lower RMSE of the EKF rotation estimates results
from improving the estimate using the gyroscope when
the MF estimation is not well constrained due to skewed
distributions of surface normals across the MF axes. This
highlights the complementary nature of the fusion approach:
the IMU helps support rotation estimates on short timescales
when the MF inference problem is not well constrained. In
turn the RTMF rotation estimates help estimate and thus
eliminate the bias from the gyroscope measurements.

2) Timings: We divide up the computation times into the
following stages of the proposed algorithms: (1) applying
the guided filter to the raw depth image, (2) computing
surface normals from the smoothed depth image, (3) pre-
computing of statistics of the data and (4) conjugate gradient
optimization for the MF rotation.

The timings shown in Fig. 6 were computed over all
frames of the shorter 90 s dataset. The direct method cannot
be run in real-time as it takes an average of 105 ms per frame.
While the approximate method improves significantly over
the direct algorithm it is still 12 ms slower than the vMF-
based approach which runs in 19.8 ms per frame on average.
Therefore both the approximate and the vMF-based RTMF



Fig. 7: MF orientations extracted as a Turtlebot V2 traverses
the hallways around Killian court in the main building of
MIT. The zoomed in area displays the top left corner of the
loop. Note that the orientations align with the local MW
structure of the environment.

algorithm can be run at a camera frame-rate of 30 Hz.
The approximate and the vMF-based algorithm spend most

of their time preprocessing the surface normal-data: while
the approximate algorithm needs to compute the Karcher
means for the six directions, the vMF-based approach needs
to compute the sum over data-points for each direction. Using
those statistics of the data, the conjugate gradient algorithm
runs in a fraction of the time of the direct method, while
allowing for more optimization iterations as well as a fine-
grained line-search. In comparison to the vMF-based method
the approximate algorithm is slower since the Karcher mean
computation is an iterative procedure that computes on all
data as described in Sec. III-A. In the following we omit the
direct method from the evaluation due to its slow runtime.

B. MF Inference for the large-scale Killian Court Dataset

For this experiment a Turtlebot V2 robot equipped with a
laser-scanner-based SLAM system was driven through the
hallways surrounding Killian court in the main building
of MIT. We ran the vMF-based RTMF algorithm on the
depth stream from the Kinect camera of the robot. Figure 7
shows the inferred MF rotations every 200th frame at the
respective position obtained via the SLAM system. It can
be seen that the algorithm correctly tracks the orientation of
the local MW. A part of the hallway on the top right does
not align with the overall MW orientation and the estimated
orientations are thus aligned with this local MW which is at
an angle with respect to the rest of the map. This highlights
that the MW assumption is best treated as a local property
of the environment as argued in the introduction. In parts of
the map without nearby structure the MW rotation estimate
is off due to the lack of data.

C. Manhattan World Scene Segmentation

As a by-product of the MF rotation estimate the algorithm
also provides a segmentation of the frame into the six
different orthogonal and opposite directions. This segmen-
tation can be used as an additional source of information
for further processing. For example, using the direction of

gravity it would be easy to extract the ground plane for
obstacle avoidance. We show several examples of segmented
scenes taken from the NYU depth dataset [11] in Fig. 8. The
RTMF algorithms used the same parameters as before. The
segmentations show that the vMF-based and the approximate
method perform well on a wide range of cluttered scenes.
The direct algorithm with a fine-grained line-search in the
conjugate gradient optimization give similar results to the
two other approaches but is significantly slower.

D. Manhattan Frame Inference under dynamic Motion

The proposed MF inference algorithm performs well even
under highly dynamic motions such as running down a
corridor with 90◦ turns or up a stair case. In Fig. 9 we
show key frames from longer sequences which may be found
in the supplementary video. While running around the 90◦

turn, the MF rotation is consistently tracked at rotational
velocities of 50◦s−1 and jerky motion. The video contains
several more examples of consistent tracking through rapid
camera movement.

VIII. CONCLUSION
We have derived three MF rotation inference algorithms

and demonstrated their usefulness and accuracy as a “struc-
ture compass” providing absolute rotation estimates in envi-
ronments with local MW structure in real-time. The rotation
inference was surprisingly robust to fast and dynamic camera
motions such as occur while running. Of the three, our
evaluation demonstrates that the vMF-based algorithm runs
both faster (∼ 20 ms per estimated MF) and with more
reliable running time (i.e., low run time standard deviation)
while delivering the same quality of rotation estimates as
the other two approaches. Despite its longer run time, the
direct method is useful for comparison purposes and poten-
tially provides a more expressive representation as it allows
for anisotropic scattering of normals about their respective
means (though, we did not exploit this property in this
presentation). While we have shown promising MW scene
segmentations, we envision a host of potential applications,
for example, in aiding semantic scene understanding where
it is important to align the scenes to a common orientation
before further processing [11], [32].

Future work will aim to obtain the global mixture of MW
structure of the environment from the locally tracked MFs.
Another avenue of research is integrating the MF labels into
a 3D reconstruction pipeline for Manhattan Worlds.

All code and the supplementary video is available at
http://people.csail.mit.edu/jstraub/.
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