
MIT Open Access Articles

Mapping thixo-elasto-visco-plastic behavior

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ewoldt, Randy H., and Gareth H. McKinley. “Mapping Thixo-Elasto-Visco-Plastic 
Behavior.” Rheologica Acta 56, no. 3 (March 2017): 195–210.

As Published: http://dx.doi.org/10.1007/s00397-017-1001-8

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/107482

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/107482
http://creativecommons.org/licenses/by-nc-sa/4.0/


1 

 

Manuscript submitted to Rheologica Acta 

Randy H. Ewoldt 

Department of Mechanical Science and Engineering,  

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 

 

Gareth H. McKinley 

Department of Mechanical Engineering,  

Massachusetts Institute of Technology, Cambridge, MA, USA 

 

Abstract 

A century ago, and more than a decade before the term rheology was formally coined, Bingham 

introduced the concept of plastic flow above a critical stress to describe steady flow curves 

observed in English china clay dispersion.  However, in many complex fluids and soft solids the 

manifestation of a yield stress is also accompanied by other complex rheological phenomena 

such as thixotropy and viscoelastic transient responses, both above and below the critical stress.  

In this perspective article we discuss efforts to map out the different limiting forms of the general 

rheological response of such materials by considering higher dimensional extensions of the 

familiar Pipkin map. Based on transient and nonlinear concepts, the maps first help organize the 

conditions of canonical flow protocols. These conditions can then be normalized with relevant 

material properties to form dimensionless groups that define a three-dimensional state space to 

represent the spectrum of Thixotropic Elastoviscoplastic (TEVP) material responses.  
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Introduction 

One hundred years ago, Eugene Bingham published his first paper investigating “the laws of 

plastic flow”, and noted that “the demarcation of viscous flow from plastic flow has not been 

sharply made” (Bingham 1916).  Many still struggle with unambiguously separating such 

concepts today, and indeed in many real materials the distinction is not black and white but more 

grey or gradual in its characteristics.  With the explosion of interest in the flow of soft matter 

systems over the past few decades, and ready access to advanced rheometry systems, our 

objective here is to describe how to “map” regimes of different rheological complexities, 

especially for including and demarcating nonlinear, viscoelastic, thixotropic, and plastic 

behavior.  

In the introduction to his original article, Bingham quotes directly and re-emphasizes earlier 

comments of Maxwell who clearly appreciated the distinctions between “perfectly elastic”, “soft 

or plastic”, and “viscous fluid” states.  Both Bingham and Maxwell emphasized the need for 

careful consideration of the relevant time scales and force scales for distinguishing between these 

different states of matter.  Bingham’s careful studies of changes in the fluidity (or reciprocal of 

viscosity) of a series of model English china clays over a wide range of concentrations and 

temperatures ultimately led to the development of the constitutive model (or rheological equation 

of state) now known as the Bingham plastic.  

The rheological response of many real-world materials of interest (such as highly-filled gels 

and pastes, foodstuffs and other consumer products) often depends on both the time-scale and 

the level of force imposed, and furthermore also often show a time-varying or thixotropic 

response even at a fixed amplitude of forcing (e.g. at a controlled stress or controlled 

deformation rate). The underlying microstructure of such materials typically consists of a high 

volume fraction of a strongly interacting discrete ‘particulate’ phase (consisting, for example, of 
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spheroidal particles, droplets, fibers, platelets or combinations thereof) imbedded in a viscous (or 

possibly viscoelastic) continuous matrix phase.  Reversible deformation of the microstructure by 

(small) externally imposed deformations can store energy elastically; however as the strain 

amplitude is increased, microstructural rearrangements on progressively larger length scales lead 

to irreversible and permanent (or ‘plastic’) deformation as well as viscous dissipation 

[(Boromand et al. 2017; Jamali et al. 2017)].   Such materials are therefore best described, in the 

most general case, as Thixotropic Elasto-Visco-Plastic (or TEVP) materials and ongoing 

challenges are faced in both experimentally measuring the rheological characteristics of such 

materials as well as approaches to modeling each isolated aspect of the constitutive response as 

the imposed force or processing time scale is varied (Denn and Bonn 2011).  

The goal of this short perspective article is not to review in extensive detail all of the recent 

contributions made in quantifying each of these independent aspects of the material response. 

Excellent reviews are available of both viscoplasticity (Balmforth et al. 2013; Bonn et al. 2015) 

and thixotropic effects (Barnes 1997; Mewis and Wagner 2009) on their own as well as different 

approaches to constitutive modeling of this behavior (de Souza Mendes and Thompson 2012; 

Fraggedakis et al. 2016a). Instead we seek to consider holistically how to isolate, understand and 

describe the interactions of these different rheological phenomena using modern test protocols 

and instrumentation, and how to represent the relative importance of different thixotropic, 

elastic, viscous and plastic contributions using suitable maps and design charts. 

In recent years the Pipkin diagram, proposed by A. C. Pipkin in his Lectures on 

Viscoelasticity (Pipkin 1972) has re-established itself as the canonical map for graphically 

communicating and representing distinctions between linear and nonlinear viscoelastic 

phenomena (Hyun et al. 2011; Bharadwaj and Ewoldt 2014; Swan et al. 2014; Osswald and 
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Rudolph 2015; Carter et al. 2016). We extend this foundational paradigm to include thixotropic 

phenomena and to locate the Bingham model (see Fig.1 below), and moreover to show how to 

map different flow conditions and test protocols to help guide rheological characterization 

(Figs.3-6). These maps represent a systematic way of extending the Pipkin diagram to describe 

materials that are not just linearly or nonlinearly viscoelastic (VE), but which also have stress-

induced changes and transient responses that occur on different timescales than viscoelastic 

relaxation, and which may therefore collectively be referred to as thixotropic in character 

(Barnes 1997). 

 

 

 

Figure 1. Merging Bingham and Pipkin to accommodate Thixo-Elasto-Visco-Plastic (TEVP) materials. (A) Pipkin’s 

original map (Pipkin 1972) of nonlinear viscoelasticity (the abscissa is the imposed frequency ω multiplied by 

characteristic viscoelastic relaxation time T, the ordinate is dimensionless strain amplitude) (reused with permission of 

Springer). Thixotropy and plasticity were not described.  (B) We expand the Pipkin map to account for thixotropic 

timescales τthixo when they are conceptually distinct from viscoelastic relaxation timescales τve. The timescale t 

represents the transient timescale of the deformation. Beyond constitutive model mapping (e.g. the Bingham model 

applicability region is shown for steady plastic flow above a yield stress), this framing can be used to map actual flow 

and rheological test conditions. As we shall see, we generalize the amplitude  to be either strain, rate-of-strain, or 

stress; the choice depends on the circumstance, e.g. the criteria for plastic flow, or the naturally controlled amplitude of 

the deformation.  
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The Pipkin map extended 

Transient and Nonlinear: these two keywords are foundational to organizing rheological 

complexity, and were concepts used by Pipkin in his original diagram shown in Figure 1(A). 

About his map, Pipkin wrote (Pipkin 1972): 

“Laminar shearing flows can be classified, loosely, by assigning to each flow a 

characteristic shear amplitude A and a frequency ω. We will interpret these 

parameters very broadly, but for present purposes, to fix ideas one may think of 

ordinary sinusoidal shearing of a thin layer of fluid.” 

The strain amplitude A defines the ordinate (vertical) axis, representing the direction to travel on 

the map to see nonlinearity. The transient timescale defines the abscissa (horizontal) axis; Pipkin 

used a dimensionless transient timescale corresponding to frequency ω multiplied by a 

characteristic viscoelastic relaxation time (which he denoted T and which we will generically 

denote t ), a grouping we now identify as the Deborah number, De.  

With this framing in Figure 1(A), the limit of linear viscoelasticity is at the bottom edge, 

nominally below the dashed horizontal line at small amplitudes. The limit of steady but nonlinear 

behavior is along the left edge, for low frequencies or, equivalently, long transient times t  . 

A Newtonian fluid, which does not incorporate viscoelasticity and rheological nonlinearity, is 

relegated to the lower left corner of the Pipkin map.   

The provocative question mark in the middle of the map corresponds to Pipkin’s statement 

that “Nothing very systematic is known about the interior region…” because no systematic 

constitutive model generally applies to unsteady flows of viscoelastic fluids at large strains.  

Actually, there is something systematic known about other edges, notably the slightly nonlinear 

(asymptotically-nonlinear) region just above the linear limit based on the memory integral 

expansion. This was acknowledged by Pipkin and has been an area of recent interest for 
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characterization, and is now often known as medium-amplitude oscillatory shear (MAOS) (Davis 

and Macosko 1978; Giacomin et al. 2011; Wagner et al. 2011; Ewoldt and Bharadwaj 2013; 

Bharadwaj and Ewoldt 2015).  Additionally, the retarded motion expansions (a.k.a. ordered fluid 

expansions) systematically extend away from the Newtonian fluid along both axes, e.g. as shown 

recently with a fourth-order fluid expansion (Bharadwaj and Ewoldt 2014). Very recently, the 

uppermost edge of the Pipkin map has been explored with extra-extra-large amplitude oscillatory 

shear (XXLAOS) (Ewoldt 2016; Khair 2016a; Khair 2016b), though at present, the exploration 

is model specific, and not universal. Moreover, most of these “systematic” regions only consider 

nonlinear viscoelasticity, and completely leave out thixotropy.  

Pipkin focused on viscoelasticity and did not consider thixotropy. The phrase “thixo” does 

not appear anywhere in his “Lectures on Viscoelasticity Theory” (Pipkin 1972), and is clearly 

outside the scope as suggested by the title of the lectures.  More generally, however, we might 

consider transient phenomena to include thixotropic breakdown and buildup, in addition to 

viscoelastic relaxation and retardation.  This requires an additional transient axis of the Pipkin 

space, as shown in Figure 1(B), so that one can compare flow timescales t to thixotropic 

timescales (denoted generically as τthixo). We thus can identify a dimensionless ratio of time 

scales τthixo/t to parameterize this axis (here we have used the transient timescale t to highlight the 

general concept rather than a frequency w » 2p t  as used by Pipkin).  This generic thixotropic 

evolution in the material might lead to changes in the viscosity of the material and/or the critical 

stress (i.e. the history dependent yield stress required to support steady flow) in the material, and 

we discuss both effects in more detail below.  Quite generally however, thixotropic effects now 

correspond to regions offset from the “viscoelastic backplane” that was originally drawn by 
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Pipkin. In fact, all simple thixotropic fluid models, without viscoelasticity, describe behavior on 

this separate “thixotropic” plane shown in Figure 1(B).  

With this expanded three-dimensional map, we must address the persistent question of what 

amplitude of forcing to use for the vertical axis (Ewoldt et al. 2012). Although Pipkin used shear 

strain, a more general treatment must recognize that this amplitude A may be strain, rate-of-

strain, or stress (or dimensionless forms thereof); the choice depends on the circumstance, such 

as the constitutive model or flow process of interest, as we shall illustrate with several examples 

later. For now, we note that nonlinearities to be expected at large dimensionless amplitudes 

 would generally include shear-thinning and shear-thickening, normal stress differences, 

thixotropic breakdown or buildup, and plasticity.  If we generalize the map to include extensional 

flow kinematics, and not just shear as considered by Pipkin, then strain hardening would be an 

additional nonlinear effect to appear at large amplitudes. One can imagine separate Pipkin maps 

for describing both extensional and shear flow if strongly nonlinear effects are of interest.  

The three different possible amplitudes of forcing (strain, strain rate, and stress) can also be 

expressed in dimensionless form. The strain-rate can be normalized by a timescale to make a 

Weissenberg number  (typically a viscoelastic time scale is used, but thixotropic 

timescales may be more natural in some cases (Blackwell and Ewoldt 2014)). The Weissenberg 

number describes fluid nonlinearity, in contrast to the Deborah number which describes 

viscoelasticity and flow unsteadiness, as nicely articulated by (Dealy 2010).  

The strain amplitude g 0
 itself is of course already dimensionless, but soft solid materials may 

yield over a wide range of different strain amplitudes; for example many biopolymer gels and 

food gums may withstand strains as large as g c »1 (100% strain) before gradually softening and 

flowing, whilst colloidal and particulate gels may show more pronounced and abrupt transitions 
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at very small strains as small as  or smaller. Normalizing the imposed value with 

respect to the critical strain amplitude g c
 results in a dimensionless group G = g 0 g c

 with much 

deeper and universal meaning. For the final possibility, the amplitude A could be a stress, e.g. in 

the case of creep compliance testing or controlled oscillatory shear stress. In this case the 

appropriate dimensionless stress amplitude should be normalized by a critical stress amplitude 

(e.g. a yield stress, s y
 ) to give a dimensionless variable 0 y   .  

When mapping the predictions of constitutive models of complex fluids, choosing the 

(dimensionless) rate-of-strain (Weissenberg number) for the ordinate offers several benefits, 

primarily the ability to map the ordered fluid expansions, which are perturbations from the 

Newtonian limit for “slow and slowly-varying flows” (Bird et al. 1987) (i.e. uniformly valid 

expansions for small Deborah and Weissenberg numbers, respectively).  If one is more interested 

in rheologically complex solids, where a Newtonian flow limit is unnecessary, then the strain 

amplitude (normalized by a critical strain) may be more appropriate. Stress amplitude may be 

most relevant for yield stress fluids, such as the Bingham model with a critical yield stress.  

The critical value of amplitude causing nonlinearity is generally a function of the transient 

timescale, creating a non-trivial “linear” boundary line. Some very general results have been 

established by considering small deviations from linear viscoelasticity (Astarita and Jongschaap 

1978; Ewoldt and Bharadwaj 2013; Bharadwaj and Ewoldt 2015). Typically, at low Deborah 

numbers (when fluid behavior dominates) a critical strain rate causes nonlinearity, whereas at 

high Deborah numbers (when elastic solid behavior dominates) a critical strain causes the 

nonlinearity.  The shape of the linear limit boundary in terms of critical stress is an open question 

not yet addressed in the literature.   

g c »10-2
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With the expanded Pipkin map in Figure 1(B), one may now ask, where does the traditional 

Bingham model fit on the Pipkin space?  It is not linear at small amplitude, so it cannot touch the 

linear regime. It also neglects viscoelastic and thixotropic transients, so it is restricted to the back 

left corner of Figure 1(B). It does not touch the lower corner of Newtonian behavior, unless the 

model is regularized to include a linear, Newtonian regime, as in the Papanastasiou 

regularization (Papanastasiou 1987). Any real flow scenario with transient conditions may not be 

appropriately modeled by the Bingham model, e.g. sphere sedimentation, depending on the level 

of accuracy desired in the predictions.  

It is worth noting some current uses of the Pipkin map paradigm, to give context to how we 

will expand the usage. The traditional usage of the Pipkin map is mainly for (i) collecting and 

organizing regions of applicability for different constitutive models that describe nonlinear 

viscoelasticity or (ii) showing the results of material characterizations with large-amplitude 

oscillatory shear (LAOS).  Examples of constitutive model mapping include (Dealy and 

Wissbrun 1990; Macosko 1994; Bharadwaj and Ewoldt 2014; Ewoldt 2014). Examples of 

mapping LAOS characterization are perhaps even more common, e.g. (Reimers and Dealy 1996; 

Reimers and Dealy 1998; Ewoldt et al. 2008; Swan et al. 2014; Osswald and Rudolph 2015; 

Ewoldt 2016; Khair 2016a). The LAOS mapping can appear as surface plots across the Pipkin 

Space, and we invite the reader to enjoy the particularly forward-thinking visualization of 

Thurston & Pope (Thurston and Pope 1981) (their Figures 4-5), which include 3D stereoscopic 

views of LAOS harmonics as a function of amplitude and frequency.  Each figure includes a 

stereoscopic pair of separate images, depicting left-eye and right-eye views of the same response 

surface. When viewed together, our brains perceive a single three-dimensional surface as a 

function of the inputs of frequency and amplitude.  
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We will consider both dimensionless and dimensional Pipkin maps, the latter of which is 

particularly useful for mapping flow conditions in a specific process independent of a particular 

material’s timescales. First though, we consider mapping material properties themselves, 

independent of the flow conditions.  Such figures take the flavor of Ashby-style cross-property 

plots (Ashby 1999); providing the timescales and properties needed to make dimensionless 

Pipkin maps.  

 

 

 

Figure 2:  Rheological property maps for viscoelastic, plastic, and thixotropic effects. (A) Cross-property plot of linear 

viscoelastic features including “springiness”; from (Davis 1937) (reused with permission from Cambridge University 

Press). (B) Cross-property plot of dynamic yield stress and post-yield viscosity at 10 s
-1

 for a wide survey of yield stress 

fluids (measured in steady shear flow, colors indicate different material classes, symbols differentiate each material). 

Additional axes can be included with a vision to add important timescales, both viscoelastic and thixotropic. Adapted 

from (Ewoldt et al. 2007; Ewoldt 2014) which describe materials in more detail. 

 

Rheological property maps 

As a first example of a rheological state map that sought to categorize and rank the response 

of a family of elastoviscoplastic materials, we show in Figure 2(A) a plot from (Davis 1937) 

during his studies of the viscoelasticity and springiness of cheese products. The abscissa 
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represents values of the shear viscosity , logarithmically spaced as we do today, but displayed 

as values of pV = 10log ( ) , by analogy with the logarithmic spacing of pH (an interesting 

evolutionary rheological dead-end). The ordinate shows logarithmically spaced values of 

elasticity (or modulus, pM = 10log ( )G ).  Davis considered the linear and nonlinear creep response 

of cheese within the framework of a Maxwell model and correlated the viscoelastic relaxation 

time with the technological property (Reiner 1971) of ‘springiness’. In the space of this material 

property map lines of constant viscoelastic relaxation time t ve = h G thus correspond to 45˚ 

lines with equation 10log ( )vepS pV pM   .  As Davis notes, “this diagram epitomizes the 

plastic and elastic properties not only of cheese and butter but all similar materials.” Reiner & 

Scott Blair provide an extensive lexicon of descriptive terms such as ‘springiness’ and 

‘rubberiness’ which they define to be assessable but not measurable (Reiner and Scott Blair 

1967) as the flow conditions and kinematic history are not simple to define or control.  

Interestingly the language of fractional calculus appears to provide a way forward in quantifying 

such properties in the future (Faber et al. 2017). 

Bingham would note that the plot in Figure 2(A) in fact conflates concepts of plastic flow 

(above a critical forcing amplitude) with creep (below a critical amplitude), and again this 

suggests that we are, in reality, looking at a projection of a three-dimensional representation as 

sketched generically in Figure 1(B).  An alternate and more modern 2D projection of this design 

space that still captures many of the same spirits and features is shown in Figure 2(B), adapted 

from (Ewoldt 2014).  

Figure 2(B) covers a wide survey of yield stress fluids, motivated by using these materials to 

achieve novel functionality in engineered systems. Specifically in (Ewoldt et al. 2007), the 

motivation was a wall-climbing robot, “Robosnail”, inspired by the adhesive locomotion of 

h
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gastropods (snails and slugs). The map of Figure 2(B) is of course more generally useful for 

other scenarios in which yield stress fluids flow, such as particle stabilization, paint spray and 

impact, and additive manufacturing with direct ink writing processes. Logarithmically spaced 

values of the yield stress or critical stress s y  for onset of flow (or in the spirit of Davis, perhaps 

10log ( )ypY  ) are shown against values of the post yield viscosity post yield   (at a characteristic 

shear rate of 10 s
-1

). A given application can select the best material from this cross-property 

plot, similar to Ashby’s famous cross-property plots for material selection in design (Ashby 

1999). For Robosnail, the ideal material would have a high yield stress but a low post-yield 

viscosity, i.e. the upper left portion of Figure 2(B). (We note that the data here are for dynamic 

yield stress during flow, rather than the static yield stress required to initiate flow, which is 

arguably equally relevant but not as generally available for the materials surveyed in Figure 

2(B)). A high yield stress allows the robot to stick to walls, carry its own weight, and still push 

itself upward. A low post-yield viscosity helps the moving portions slide easily along the surface.   

The 45˚ lines in this design space are lines of constant Bingham number y post yield cBn     

(Bird et al. 1983). It can be seen that for most materials considered, the dynamic yield stress and 

the viscosity increase concomitantly, guiding design limitations for robot size and locomotion 

speed (for example, heavier wall-crawling robots will require larger yield stresses to resist 

gravity, but as a result will have to locomote over a more viscous liquid film, post yield).  One 

might circumvent this trade-off by considering the static yield stress rather than the dynamic 

yield stress, although thixotropic timescales are a major concern for recovering a static yield 

stress. Another interesting mode for circumventing these limitations can be readily identified 

from this figure; switching the state of a field responsive material such as a magnetorheological 

or electrorheological fluid from field on (high yield stress) to field off (little or no yield stress) 
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can dramatically change the value of the Bingham number and the location within this design 

space. 

The property map in Figure 2(B) is of course incomplete. These two descriptions of yield 

stress and post-yield viscosity do not describe the full complexity of the materials listed, e.g. one 

may be interested in elastic modulus before yield, or the yield strain, or, importantly to the 

robotic locomotion, the thixotropic restructuring timescale(s) of the material. The open literature 

has not yet organized rheological data as a collection of property maps.  One challenge will be to 

use low-dimensional descriptions that are still adequate for complex, function-valued material 

properties. However complex the fluid, measurement of quantitative values of the relevant 

material properties are needed for construction of Pipkin maps which have dimensionless axes. 

Yet, Pipkin maps need not be dimensionless; in fact, keeping dimensional axes allows for 

mapping flow conditions in a given process of interest independent of the specific material to be 

used.   
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Figure 3. Flow conditions (A) can be mapped to a Pipkin space (B) and compared with limits of steady and linear 

regimes (dashed lines in (B)). Axes that are dimensional (rather than dimensionless), and careful choice of the 

amplitude for the vertical axis may help map flow conditions independent of the material involved. Here, for a 

sphere of radius R sedimenting due to gravity, the characteristic stress  is independent of the 

complex rheology of the surrounding liquid. The transient timescale t relates to the time for a sphere to move one 

particle diameter. Rheological characterization should use conditions relevant to such in-use conditions, e.g. stress-

controlled nonlinear transient testing in both shear and extension; the steady flow regime may not even be relevant.  

 

Flow conditions mapped to Pipkin space 

Pipkin spaces with dimensional axes can be useful for helping to understand specific flow 

processes. That is, what transient timescales and deformation amplitudes are relevant in the flow 

of interest, be it pipe flow, swallowing, or a sedimenting sphere? To what extent can these flow 

conditions be identified independent of the material being processed?  

Consider the flow conditions near a sedimenting sphere, as sketched in Figure 3. Mapping 

the flow conditions (amplitudes and transient timescales) to a Pipkin map will guide appropriate 

rheological characterization, and guide the appropriate conditions for calibrating (and selecting) 

constitutive models, a non-trivial task (Fraggedakis et al. 2016a; Fraggedakis et al. 2016b).  

What amplitude should be chosen to represent the flow conditions: strain, strain-rate, or 

stress? We are often tempted to identify strain-rates that define the process. Here, stress is the 

natural choice, because it is independent of the liquid rheology. The state of stress is set by the 

 char s l gR   



15 

 

density mismatch of the sphere and the liquid, char ~ ~
gV

gR
Area


 


 , where V  is the volume 

and R is the radius of the sedimenting sphere.  This provides a characteristic measure of the 

largest stresses to be expected in the vicinity of the sphere (be it in a Newtonian fluid, or a 

complex TEVP material, whatever the value of yield stress). Fluid far from the sphere 

experiences stresses near zero, thus the range of applicable stress is shown schematically in 

Figure 3.  

What transient timescale to use? This will depend on the rheological details of the fluid to be 

considered. One might however choose a characteristic transient timescale tc ~ R Uss
 

characterized by the time for a sphere to travel one diameter at steady state. For fast flow, this 

may be 10 diameters per second (or higher). For slower sedimentation, it may travel only a 

fraction of a diameter per second. This general range, covering several orders of magnitude, is 

indicated schematically shown in Figure 3.  

Having these expectations for the dynamic conditions in the flow near the sedimenting 

sphere, one can now choose the most relevant rheometric tests to probe the material rheology 

that are involved at these timescales and stress amplitudes. A reasonable choice may be step 

changes in shear stress (creep compliance and recovery) at different values of stress amplitude, 

or large amplitude oscillatory shear, which has been shown useful for model selection and 

calibration (Fraggedakis et al. 2016a; Fraggedakis et al. 2016b). Or, one may choose less-

standard rheometric scheduling to mimic the process, e.g. ramping the imposed stress up and 

down over different timescales (Weber et al. 2012; Poumaere et al. 2014). Clearly, rheometric 

test conditions should match the expected flow conditions to be most informative. Using a 

similar dimensional Pipkin map, the rheological tests can also be mapped to ensure that they 



16 

 

cover the relevant flow kinematics (shear versus extension) and appropriate amplitudes and 

transient timescales.  

 

 

Figure 4. Rheometric conditions can be mapped to a Pipkin space. The type of deformation (e.g. shear or extension) 

and the controlled amplitude must be specified. (A) Experimental data from nonlinear creep compliance (step shear 

stress) of a thixotropic yield stress fluid (Bentonite suspension, adapted from (Coussot et al. 2006), their Figs. 1b, 8, 

Reprinted with permission. Copyright 2006, The Society of Rheology). (B) The rheometric test conditions define 

paths through the Pipkin map. Three examples are shown. Note that steady state conditions only describe the farthest 

left coast of the map, indicated with filled circles in both (A) and (B).  

 

 

Rheometric test conditions mapped to Pipkin space 

Any rheological characterization is a path through the Pipkin space. Typical rheological 

characterization specifies the kinematics of the flow field (e.g. simple shear, or uniaxial 

extension) and then controls an amplitude A (strain, strain-rate, or stress) as a function of time. 

The different choices of amplitude, and especially flow field, may require multiple Pipkin maps, 

composing something of a Pipkin Atlas.  

Figure 4 shows one page of such an atlas for stress-controlled conditions in simple shear 

flow. Figure 4(A) shows the common visualization of the material response for a series of creep 

compliance (step stress) tests (adapted with permission from (Coussot et al. 2006)). Figure 4(B) 
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represents each of these tests as a path through a Pipkin space. The mapping helps emphasize the 

relevant limits for both linear viscoelasticity and the approach to steady flow. For example, when 

reading a paper wherein a single creep compliance curve is shown, the astute reader might 

picture in their mind the full Pipkin map to give perspective to the vast range of behavior 

possible that may not be captured by a single curve. Moreover, the Pipkin map re-emphasizes the 

locus of steady flow states which are confined to the left coast of the map. The approach to 

steady flow conditions may be quite complex; in this example shown in Figure 4(A) creep 

ringing (oscillatory response in the material strain) is observed at short times, followed by 

delayed yielding at long times.  

We also suggest that Pipkin’s framework be extended beyond just shear flow; extension and 

shear flow would then have different maps (akin to two amplitude axes, one for shear, one for 

extension). We know that behavior can be qualitatively different in shear compared to extension 

(e.g. for polymeric liquids shear-thinning versus extensional-thickening at large amplitudes of 

deformation). There is growing evidence of elastoviscoplastic yield stress fluids demonstrating 

rate-thinning in shear flows, but extensional-thickening responses in shear-free flows (Nelson 

2015), yet the simplest models (e.g. the tensorial Bingham elasto-plastic model), as well as other 

test materials (e.g. Carbopol), show qualitatively similar behavior in both shear and extension,.  

For given flow conditions and materials of interest, these distinctions should be probed, not 

assumed, e.g. by considering both the “extensional amplitude” axis and “shear amplitude” axis of 

the Pipkin map.  Of course near the lower corners of the plot, corresponding to Newtonian and 

linear viscoelastic materials, such kinematic distinctions between shear and extension are 

unnecessary (a proper tensorial constitutive treatment provides the interchangeability), but for 

nonlinear responses, both shear and extension may be quite distinct, and the material properties 
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may need to be determined as functions of both the second and third invariants of the rate of 

deformation tensor (Bird et al. 1987). 

 

 

Figure 5. Large-amplitude oscillatory shear (LAOS) characterization data requires a 3-D Pipkin map using two 

transient time axes: frequency ω and transient time t. (A,B) Data from a thixotropic drilling mud (frequency 

ω = 15 rad/s from (Ewoldt et al. 2010), data from their Figs. 1, 14, 15a). (B) Detailed plot of stress hysteresis during 

cyclic testing (represented as a Lissajous-Bowditch curve).  In oscillatory deformation, key signatures of TEVP are 

observed, including (i) transient peak stress response decaying in time towards a periodic attractor, and (ii) 

Lissajous-Bowditch curves with stored and dissipated energy which evolve over timescales different than the stress 

relaxation time.  The limit cycle behavior (known as the “alternance state”) is the region most commonly analyzed, 

for which a two-dimensional Pipkin space can be used, highlighted in gray and with blue circles in (C), 

corresponding to data in (A).  

 

 

As shown in Figure 5 for LAOS, an additional time axis may also be needed to map flow 

conditions to a Pipkin diagram. A typical LAOS amplitude sweep data is shown in Figure 5(A), 

here for a thixo-elasto-visco-plastic drilling mud (data from (Ewoldt et al. 2010)). Underlying 

each data point in Fig. 5(A) is raw oscillatory data that may be evolving over a transient 

timescale t to eventually reach this limit cycle behavior (a.k.a. the “alternance state” (Giacomin 

et al. 2011)).  
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A two-dimensional map of frequency and amplitude is commonly used to describe LAOS 

test conditions, indicated by the gray panel in Figure 5(C).  While frequency and amplitude 

define the imposed test conditions, and conveniently map to Deborah and Weissenberg numbers 

respectively, an additional transient time scale is also involved. This is the total time t since the 

beginning of the oscillation, and can be used to create the additional axis as shown schematically 

in Fig. 5(C).   

The transient evolving material behavior in LAOS can also be important, and deserves an 

additional axis on the Pipkin map. For example, in materials with both viscoelasticity and 

thixotropy, the material response at each instant (and its decomposition into elastic and viscous 

contributions) evolve during this global transient timescale. The material may be said to be 

mutating in time, as first considered by (Mours and Winter 1994). Specialized signal processing 

tools (such as the Gabor transform and/or short time Fourier transform (STFT) commonly used 

in digital speech processing) will be required for systematically deconvoluting temporal and 

frequency information.  The three-dimensional version of Pipkin’s map again helps us consider 

how transients and amplitude may elicit rheological complexity. 

Figure 6 clarifies that some rheological flow fields are more complex than constant stress or 

strain rate and thus follow winding paths across the Pipkin map. We illustrate this by considering 

capillary-breakup extensional rheometry (CaBER) (McKinley 2005; Galindo-Rosales et al. 

2013).  Capillary forces drive the flow in this test, with the capillary stress increasing in time as 

the filament thins. In materials with yield stresses it is common to observe pronounced cusp-like 

regions during capillary thinning experiments as the deformation localizes near the pinch point.  

Mapping the trajectory of this stress forcing onto the Pipkin space helps give context to this 

rheological test. If material timescales are known, the axes can be made dimensionless, showing 
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the evolving values of the dimensionless groups during the test. Here too, the map gives a sense 

of place and context differentiating this and other tests that probe nonlinear and transient 

properties.  

From the sample mappings in Figures 3-6, we hope the reader can see how to map any 

rheometric test, including frequency sweeps at fixed amplitude, nonlinear stress relaxation 

(similar to creep trajectories in Figure 3 but with strain amplitude on the ordinate), or large-

amplitude oscillatory extension (Zhou and Schroeder 2016). Successful computations of 

complex flow fields in elastoviscoplastic fluids (see for example the recent work of (Fraggedakis 

et al. 2016a; Fraggedakis et al. 2016b)) need to calibrate the values of model parameters in 

relevant regions of the Pipkin map, co-locating test conditions and model parameters to the 

kinematic conditions expected in the flow domain of interest.  It is thus of use to try and unify 

these different pages of a Pipkin atlas into a single holistic representation, in the same way that a 

globe integrates cartographic information and reveals connections hitherto hidden. 

 

Figure 6. Non-constant amplitude trajectories through the Pipkin map occur for some rheological characterization 

flows. Here, Capillary-breakup extensional rheometry (CaBER) is a stress-driven flow due to capillary (surface 

tension) forces that increase in time. Inset images from TEVP material and model: Gray silhouette photos of oil-in-

water emulsion with high volume fraction of internal phase (mayonnaise, previously unpublished experiments of 

Anna Park and Gareth H. McKinley); blue rendered image from simulation of a Soft Glassy Rheology (SGR) model 

of a “young” sample, adapted with permission from (Hoyle and Fielding 2015), their Fig.1, Copyrighted by the 

American Physical Society.  
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Figure 7. (A) TEVP materials represented in terms of three timescales. (B) A state space for TEVP Materials, 

created by extending Pipkin’s map of nonlinear viscoelasticity to include thixotropic timescales; key features 

include a non-constant yield surface and rheometric flow trajectories with angle of approach toward the back corner 

determined by the ratio of viscoelastic to thixotropic timescales.  

[Note to Press:  please ensure these figures are typeset side by side across a full page (two 

columns width) in the final article proofs] 
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A Map for Thixo-Elasto-Visco-Plastic (TEVP) Materials & Models 

Pipkin primarily used his map to organize the regions of applicability of predictive 

constitutive models. Nonlinear viscoelastic effects were considered, but not thixotropic 

timescales, nor explicit reference to plasticity. Based on the considerations we have discussed 

above, we use the Pipkin map as a foundation on which to construct a more general framework 

for comparing and ordering the response of Thixotropic Elasto-Visco-Plastic materials and the 

corresponding constitutive models.  

One immediate issue that is faced as we seek to draw an appropriate map is the number of 

dimensions required to represent the most general response of a soft TEVP material; we can 

readily identify at least three different material time scales (associated with the response of the 

elastic, viscous and plastic material response) as well as the amplitude of the deformation (most 

typically the stress amplitude S =s 0 s y  where the yield stress scale s y
 is a constant or 

reference value of the yield stress determined under a carefully specified shearing history or 

preparation protocol, e.g. the ‘dynamic yield stress’ of the material determined after a long 

period of steady shearing).  We therefore require the ability to draw a four dimensional map! 

Rather than attempting to draw a Pipkin Hypercube (!) we thus consider here two different three-

dimensional projections that we believe are useful.  First in Figure 7(A), we sketch a three-

dimensional parameter space for representing the three different time scales associated with a 

general thixotropic elastoviscoplastic (TEVP) material.  In this space, clear distinctions are made 

between (i) the characteristic time scale on which the shear viscosity evolves (the thixotropic 

breakdown time scale, thixo  that typically appears in structural parameter models, such as those 

originating in the work of (Goodeve and Whitfield 1938; Moore 1959) and reviewed by (Mewis 

and Wagner 2009; Denn and Bonn 2011)), (ii) the viscoelastic time scale ve  on which elastic 
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stresses evolve, and which controls – for example – elastic recoil following the cessation of creep 

tests, and (iii) the time scale on which the yield stress is re-established following the cessation of 

flow, p  (often referred to as a thixotropic ‘build up time’ or ‘restructuring time’ or 

‘structuration time scale’).  The idealized inelastic models of Bingham and Herschel-Bulkley sit 

at the origin of this three-dimensional space in Figure 7(A).  In his recent review, (Larson 2015) 

notes that “ideal thixotropic fluids” have instantaneous stress relaxation and no elastic recoil; 

they thus correspond to trajectories in the horizontal plane (with De = 0).  Such materials may be 

difficult to realize in practice because the local interparticle attractive potentials that lead to 

flocculation and rigidity percolation will also give rise to viscoelastic responses at small strains 

(Jamali et al., 2017); however it is an important limit to study conceptually. We can define a 

“thixoviscous number” (i.e. the dimensionless measure of the relative importance of thixotropy 

at a given shear rate) as v thixoT   , and this dimensionless product is commonly encountered in 

purely thixoviscous “structural parameter models” (as discussed by (Larson 2015)).  In these 

models the state of the material microstructure is projected down to a single scalar parameter 

(commonly denoted  ) which evolves with the material’s deformation history.  A large number 

of empirical structural parameter models exist and they commonly propose a simple direct 

relationship between the evolution of the yield stress s y(l(t)) , and the viscosity h(l(t)).  They 

thus correspond to prescribed trajectories through this plane.  Many variants of this relationship 

have been proposed and discussed by Thompson and de Sousa Mendez; for reviews of these 

models see (de Souza Mendes and Thompson 2012; de Souza Mendes and Thompson 2013). 

The relative ratio of any pair of the time scales shown in Figure 7(A) provides the slopes of 

material trajectories through this three-dimensional TEVP space as the imposed shear rate on the 

material is increased; for example, the ratio of the Deborah Number to the Thixoviscous number 
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results in a ‘thixoviscoelastic parameter’ e ve thixoT    which is independent of the flow strength 

and is an intrinsic property of a thixotropic viscoelastic material.  This has been considered by 

(Blackwell and Ewoldt 2014) in studies of LAOS flow of a viscoelastic, thixotropic yield stress 

model. Classical linear and nonlinear viscoelastic models are clustered along the ordinate 

(vertical) axis where Te ®¥. However, recently (Renardy 2010) and (Maki and Renardy 2010) 

have also considered nonlinear viscoelastic constitutive models which have two distinct stress 

relaxation processes and thus effectively two viscoelastic time scales. By allowing these time 

scales to be very widely separated they show that they can emulate the time-dependent yield-like 

response of soft solids (see (Renardy and Renardy 2016) for a recent overview). Larson (Larson 

2015) has also considered this same limit for the Rolie-Poly model of polymer reptation, and 

carefully distinguishes between true thixotropy, which only affects the viscosity (and maybe the 

modulus) and viscoelasticity which results in long-time evolution of the viscoelastic stresses.  

An interesting exercise is to attempt to specify the loci of different materials in this three 

dimensional TEVP space.  For many materials (such as Carbopols and other swollen microgels) 

the thixotropic time scale is much larger than the viscoelastic one, i.e. thixo ve   or 1eT    ; 

however, for certain Carbopol grades and special preparation histories (Dinkgreve et al. 2016) it 

is possible to prepare more ideal elastoplastic materials (corresponding to the left hand plane) 

which have no measurable thixotropy (at least on timescales accessible to current experimental 

methods).  The limit of a purely inelastic thixoviscous material response (with De® 0 ) is 

difficult to achieve; however perhaps the best examples of such materials are the high ionic 

strength flocculated waste slurries and ‘cementitious’ pastes that are encountered in nuclear 

waste handling streams (see for example, (Tracey et al. 1996; Chung et al. 2013)). 
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For more complex materials such as many consumer products, attractive gels, and complex 

fluids such as waxy crude oils, all three time scales may be important and typically 

thixo p ve      so that there is an initial viscoelastic response followed by the development of 

a yield stress and, ultimately, a long term evolution or ‘rheological aging’ in the properties of the 

system.  In such systems a clear specification of the entire sample history is essential to ensure 

that the material response is independent of its preparation or its loading history (see (Fielding et 

al. 2000) for a clear discussion of such ‘waiting time’ effects).   Many liquid-dispensed foods 

(e.g. squeezable mayonnaise or ketchup) on the other hand are designed to ensure that 

 
t

p
<<t

ve
<< t

thixo
, so that a yield stress develops almost immediately after dispensing (and 

shearing), followed by viscoelastic stress relaxation on intermediate timescales, and possibly 

thixoviscous restructuring events under steady shearing; similar behavior can also be observed in 

biological gels (such as gastropod mucus, mucin gels). Designing robust test protocols to capture 

this rapid recovery in the material yield stress following cessation of shearing is an active area of 

current research, e.g. by using high frequency LAOS tests to access short timescale information 

based on predictions for the unique signatures of thixotropy (Blackwell and Ewoldt 2014). 

Because very few studies to date have attempted to quantify all three of these time scales 

associated with recovery of the material yield stress (t p), the fluid viscoelasticity (t ve
) and the 

time scale for thixotropic breakdown ( thixo ), an alternate three-dimensional projection of this 

TEVP material space can be drawn to enable us to quantify the amplitude of the forcing 

experienced by the fluid.  Because the elastic modulus, viscosity, and yield stress of the fluid are 

often all represented as functions of the structural parameter and its dependence on the shear 

protocol history , a convenient approach is to conflate the plastic and thixotropic axes, 
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and replace the third axis with a dimensionless stress amplitude, S0 =s 0 s y , as shown 

schematically in Figure 7(B). We finally arrive at a generalization of Pipkin’s original drawing 

suitable for capturing the TEVP response of soft solid materials.   

In this drawing, viscoelasticity is parameterized by the Deborah number veDe    (or  

veDe t  for a more general time-dependent deformation) and thixotropic effects by the 

thixoviscous parameter v thixoT t .  The classical inelastic and non-thixotropic yield stress 

models proposed by Bingham and Herschel-Bulkley are then located along the ordinate axis for 

stresses 1  . However, for general thixotropic soft solids, the critical stress above which the 

material yields and flows as a liquid is then represented by a (dimensionless) yield surface 

 ,ve thixot t  .  This surface can perhaps be most readily mapped out using large amplitude 

oscillatory stress (LAOStress) measurements with a suitable range of different input frequencies, 

 ,ve thixo    .  We have also indicated that in general this yield surface is not a flat plane.  For 

example the creep compliance trajectories shown in Figure 4(A) indicate that at low stresses  

( 1  ) the material creeps but remains unyielded, whereas for conditions close to the critical 

stress ( 1  ) a thixotropic yield stress material may undergo transition from unyielded to 

yielded as time progresses and deformation accumulates.   For clarity we have represented these 

creep trajectories on the left hand face of this TEVP state space in Figure 7(B); however we note 

that for a given material (e.g. a specific grade of carbopol gel at a specified pH, or a specific 

concentration of colloidal clay) the thixoelastic parameter eT  (i.e. the ratio of the elastic and 

thixotropic time scales) for the material is constant and so trajectories in fact evolve along 

specific vertical planes in this parameter space with azimuthal angle set by e ve thixoT   . So-
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called “ideal yield stress materials” which exhibit no thixotropy (e.g. certain grades of carbopol 

gel) correspond to the rear plane of this space (with 0vT  ).  

 

Constitutive Models for Elastoviscoplastic Materials 

One area of intense recent interest is the development of appropriate rheologically-invariant 

constitutive models that can describe the range of material responses that are observed in 

different thixotropic elastoviscoplastic (TEVP) materials.  Such models need to describe the 

different trajectories through the extended Pipkin space we have discussed above in terms of a 

set of coupled evolution equations for the internal microstructure of the material and the resulting 

macroscopic stress field.  The material constants or functions that enter these models can be 

determined by carefully specifying the specific trajectories to be studied (e.g. creep tests at 

constant stress, or steady shear flow sweeps over a range of imposed shear rates), this is the 

domain of rheometry. Having fully determined these constants and functions, the aim of non-

Newtonian fluid dynamics is to predict the response of such materials in more complex flow 

fields; for example the mixed shearing/extensional flow past a sphere (cf. Fig 3) or the start up of 

steady Poiseuille flow in a long pipe filled with a thixotropic yield stress material (such as a 

drilling mud or a waxy crude oil).   It is not the goal of this perspective article to provide a 

detailed review of these developments; de Souza Mendes & Thompson provide a comprehensive 

overview of the state of the field for thixotropic inelastic fluids (corresponding to 0eT  ) (de 

Souza Mendes and Thompson 2012), and Saramito (2009) has developed a general 

elastoviscoplastic formulation that unites the Bingham/Herschel-Bulkley (viscoplastic) and 

Oldroyd (quasi-linear viscoelastic) formulations in the absence of thixotropy (corresponding to 

1 0eT   ).  Elsewhere in this Special Issue the articles by Mitsoulis and Tsamopoulos (2017) and 
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by Saramito and Wachs (2017) discuss recent progress in using such models for numerically 

simulating complex flows of yield stress fluids.   

To contrast and complement those other works, here we highlight one broad class of 

nonlinear elastoviscoplastic constitutive models that can capture, at least qualitatively, both 

thixotropy and elastoviscoplasticity (and therefore span the range of thixoviscoelastic parameters 

0 eT   , covering the full range of the expanded Pipkin map in Fig. 7).  This Isotropic 

Kinematic Hardening (or IKH) model framework has been introduced and discussed elsewhere 

(Dimitriou et al. 2013; Dimitriou and McKinley 2014).  From an etymological viewpoint the 

name of this framework captures two key ideas; that both the central point (or locus) and the 

extent of the yield surface (for example represented in the form of Mohr’s circle of principal 

stresses) will evolve with the material deformation history (kinematic hardening) and with the 

material’s age (i.e. thixotropy or isotropic hardening).  Here we briefly review the basic structure 

of the governing constitutive equations.   

In the simplest form of the IKH model, the total stress in the material is represented in terms 

of an elastic, or viscoelastic, contribution to the deformation and a nonlinear plastic contribution 

that combine additively so that the total strain is ve p     and the stress in each mechanical 

element is the same, ve p    .  Below the yield stress the viscoelastic solid response of the 

material can be represented by any suitably frame-invariant constitutive expression of 

Maxwell/Kelvin-Voigt form inter-relating ve  and ve .  The state of the microstructure in the 

material is captured by a scalar parameter ( ( ))t    and a tensorial quantity that is termed the 

back stress which also evolves with the time-varying deformation history experienced by the 

material.   Physically, this tensor attempts to capture the evolution and anisotropic distribution of 

the defects (and resulting state of stress) that develop within the soft solid as it deforms. This 
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internal state of stress is generically represented in terms of a frame-invariant strain-like tensor 

A  and a back-stress modulus C so that the back stress is back C A .   In a simple one-

dimensional shearing flow, the ‘flow rule’ governing the macroscopic evolution of the plastic 

strain rate and the shear stress in the system is then given by  

  p p p  e       (1) 

1/m

back y

p

p

  




  
  
 
 

  if  back y     (2) 

where ( )back   is the effective stress driving the evolution of the irreversible plastic strain in 

the material and ( )p back back     e  sets the directionality of the effective stress in the 

material (tracking this directionality can be critically important in time-reversing flows such as 

LAOS).  In equation (2), back  sets the dynamic yield stress of the material (after extended 

periods of steady shearing), y  is an additional contribution to the static yield stress of the 

material (which is expected to be a function of the internal microstructure,  ), p  is a 

(generalized) plastic viscosity with units of [ . ]mPa s   (equivalent to the consistency K in the 

Herschel-Bulkley model) and 0 < m ≤ 1 sets the nonlinearity of the macroscopic flow rule.  The 

evolution of the back stress back CA   is then connected to the evolution of the microstructure in 

the material through evolution equations of the form: 

( ) ( )p pA A q sign A       (3) 

   (4) 

where the overdot indicates a time derivative. In these equations , , , and y pq k    are 

constitutive model parameters (see Dimitriou and McKinley (2014) for details of how they can 

be determined from start-up of steady shear flow and/or LAOS deformations).  The static 
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contribution to the yield stress is related to the degree of microstructure remaining in the material 

at any time t through a function of the form ( )y f  .  Often the simplest possible linear 

relationship y k   is sufficient to capture, at least qualitatively, the effects of thixotropy and 

internal restructuring on changes in the magnitude of the yield stress. However, more general 

nonlinear forms can also be considered, and the evolution equation for the microstructural 

variable l  can also be connected to measures such as the fractal connectivity of the underlying 

microstructure (Mohraz and Solomon 2005; Geri et al. 2017).  

The key feature to recognize in these evolution equations (3) and (4) for the defects and 

overall level of microstructure, respectively, is the dynamical balance between the first (creation) 

and second (nonlinear destruction) terms on the right hand side of each equation.  In eq. (4) a 

fully structured material at equilibrium and under rest conditions corresponds to 1   whilst 

prolonged shearing leads to thixotropy and a progressive loss of microstructure. 

Nondimensionalization of the equation using thixo  as the characteristic time scale immediately 

leads to a thixoviscous number v thixo pT   . Alternatively if the equations are non-

dimensionalized with the viscoelastic time scale (appearing in the separate constitutive equation 

for ve ) then the thixoviscoelastic ratio of time scales e ve thixoT    immediately appears.  In the 

IKH formulation the evolution of the back stress or defect strain (equation (3)) is not 

characterized by a separate, additional time scale but is associated purely with the kinematics of 

the external rate of shearing (i.e. with time scale ~ 1   ).    

Full frame-invariant three-dimensional generalizations of these expressions are given in the 

supporting information of Dimitriou et al. (2014). The tensorial quantity A can be related to an 

elastic free energy function (see (Dimitriou et al. 2013) Appendix B, and (Ames et al. 2009) for 
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additional details) and therefore more complex relationships than a direct linear relationship 

between the components of the back stress tensor and A can easily be developed; such functional 

forms have not yet been explored in detail but may be very important for capturing nonlinear 

elastic effects during rapid transient flows such as LAOS or shear start up flows (see the work by 

(Dinkgreve et al. 2017)  elsewhere in this special issue for examples of the latter test protocol).  

The coupled equations (1) – (4) (combined with an appropriate constitutive expression for 

the viscoelastic stress ve ) can capture many of the key Thixo-Elasto-Visco-Plastic features we 

have described in this perspective article.  In particular, the steady state flow curve becomes non-

monotonic with different values of the static and dynamic yield stress, start up of steady shear 

produces large stress overshoots, and LAOS deformations result in non-elliptical Lissajous-

Bowditch curves as well as stress overshoot and a slow (multicycle) thixotropic decay towards 

the final ‘alternance state’ as can be observed in Figure 5B (see (Dimitriou and McKinley 2014) 

for details).  

If k = y  = 0, then there is no isotropic hardening or restructuring of the material and the 

magnitude of the yield stress does not evolve with time; however the locus of the center of the 

yield stress surface can still evolve with the kinematical flow history and this is now captured by 

the evolution in the internal ‘back stress’ s back
 in the material.  If 1   then the resulting 

Kinematic Hardening (KH) equations can be solved analytically (see (Dimitriou et al. 2013)) and 

at steady state ( 0A ) the material response predicted by eqs. (1) – (3) becomes identical to the 

Herschel-Bulkley model with a critical stress (or dynamic yield stress) c C q  .  Careful 

experimental measurements of the local fluidization in simple yield stress materials also reveal 

this approach towards a limiting Herschel-Bulkley rheological response at long times, and the 
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index m can be related to the ratio of non-trivial fluidization exponents determined in constant 

shear rate and constant stress protocols ((Divoux et al. 2011)).   

In controlled stress deformations, however, the KH model also captures transient 

viscoelastoplastic features such as the one we have sketched generically in Figure 4(B).  

Specifically, for imposed stresses 0 c  , the material flows like a viscous liquid at steady state; 

however for smaller stresses  the material creeps or plastically flows with an apparent viscosity 

0
pd

dt


    that diverges as a power law in time (Dimitriou et al. 2013) because the 

instantaneous rate of shearing slowly approaches zero. (Parenthetically we note that a more 

natural variable (also discussed by Bingham in his original paper a century ago) to plot on the 

ordinate would be the apparent fluidity 
0

1 pd

dt






  , which approaches zero in the limit of long 

times and small stresses). In Figure 8 we show the resulting form of the flow curves (projected 

onto a two dimensional plane) as we pick progressively longer values of the elapsed time, as well 

as corresponding experimental observations by (Møller et al. 2009) for an ideal elastoplastic 

grade of carbopol that doesn't exhibit thixotropic effects.    

It becomes clear that the sharp demarcation of viscous flow from plastic flow, originally 

sought by Bingham one hundred years ago, is in fact somewhat ephemeral, and a function of not 

only the stress imposed but also the total time elapsed in the experiment.  
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Figure 8. Evolution of the apparent viscosity 0 ( )t     for (A) the kinematic hardening model with a critical 

yield stress of 45 Pac C q   . Above the critical stress, the apparent viscosity is independent of the elapsed time, 

and the kinematic hardening model reduces to the Herschel-Bulkley flow curve. However, at lower stresses, the 

viscosity diverges in time. (B) The corresponding experimental measurements as observed in a Carbopol gel 

showing a ‘simple yield stress’ (i.e. non-thixotropic) response, adapted from (Møller et al. 2009).   

[Note to Press:  please ensure these figures remain side by side across a full page (two columns 

width)] 

 

 

Conclusions 

In this work we have attempted to show how the concepts of plasticity and thixotropy can be 

incorporated with viscoelasticity and described using higher dimensional Pipkin maps. 

Moreover, this augmented thixo-elasto-visco-plastic Pipkin space allows for mapping flow 

conditions to rheological test conditions, and this can help isolate different transient behaviors in 

the flow and in the material. We have therefore seen how such Pipkin maps help to organize (i) 

flow/in-use conditions, (ii) rheometric protocols, and (iii) predictive constitutive models. We 

note that a dimensional Pipkin map can be enough, especially for the first two uses enumerated 

above; however a truly dimensionless TEVP Pipkin map requires determination of viscoelastic 
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and thixotropic time scales using appropriate rheological test histories, as discussed by (Mewis 

and Wagner 2009) and (Larson 2015). 

We hope these expanded views of Pipkin’s original map will help researchers identify new 

ways to organize and describe the rheological complexity of thixotropic elastoviscoplastic 

materials.  For example, developing projections such as those sketched in Figure 7 for different 

classes of soft solids may help provide reminders of model limitations and regions of 

applicability, identify different limiting regimes of material behavior, and the range of conditions 

that can be explored with a given rheological characterization protocol.  Pipkin’s original 

paradigm of ordering and distinguishing between different transient and nonlinear conditions 

gives us a foundation to build upon as we begin to explore and organize the world of rheological 

complexity in soft solids such as colloidal gels and clay dispersions which not only exhibit 

nonlinear viscoelasticity and thixotropy, but also the pronounced plastic response that inspired 

Bingham’s original work one hundred years ago.  
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