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Abstract

We present Sensei, the first system designed to understand social interaction and learning in an early-

childhood classroom using a distributed sensor network. Our unobtrusive sensors measure

proximity between each node in a dynamic range-based mesh network. The sensors can be worn in

the shoes, attached to selected landmarks in the classroom, and placed on lessons. This data,
accessible to teachers in a web dashboard, enables teachers to derive deeper insights from their

classrooms. Further, the anonymized data can be used in large-scale research in early childhood.

Sensei is currently deployed in three Montessori schools and we have evaluated the effectiveness of

the system with teachers. Our user evaluations have shown that Sensei helps discover insights that

would have otherwise been lost.

3



4



Sensei: Sensing Educational Interaction
by

Nazmus Saquib

The following served as a reader for this thesis.

Signature redacted

U-,,
Alex (Sandy) Pentland

Professor, Media Arts and Sciences
Massachusetts Institute of Technology





Sensei: Sensing Educational Interaction
by

Nazmus Saquib

The following served as a reader for this thesis.

Signature redacted

Mitchel Resnick
LEGO Papert Professor of Learning Research

Program in Media Arts and Sciences
Massachusetts Institute of Technology





Acknowledgements

Sep Kamvar has become an influential figure in my life and the future course it is going to take. Not

many people have significantly influenced my decisions and philosophy in life, but I am proud to say

that he has. It's been a privilege having him as my mentor for the last few years. Sandy Pentland and

Mitch Resnick provided valuable feedback about my work and served as readers for the thesis.

Sensei would not have been possible to develop at scale and deploy without the help of two fellow

graduate students: Ayesha Bose and Dwyane George. Their dedication to the project was

unparalleled and inspiring.

Yonatan Cohen, an artist and designer in the Social Computing group, has been a good friend,
mentor, and collaborator for the past two years. He was an early enthusiast of Sensei, and assisted us

in many aspects of the project, starting from helping us design and build lesson trays, to producing

various ideas of customizing shoes for deploying the sensors.

Fellow Social Computers who assisted in developing Sensei deserve a big thank you. Kim Smith, Gal

Koren, Salman Ahmad, Jia Zhang, Noah Wall, Caroline Jaffe, and Elizabeth Christoforetti helped

me with valuable feedback and inspiration during the project. RaMell Ross helped us produce a great

video that describes Sensei with playful details.

Deeni Fatiha has always been there during the ups and downs in my life at MIT. Thank you for

tolerating and encouraging me. My parents and sisters have always done the same, I am indebted to

them forever.

The MIT Bangladeshi Students' Association community has been an integral part of my MIT life.

Special thanks to Khalid Jawed and Syed Arefinul Haque who patiently listened about my projects

during buffet lunches. Mehrab Bakhtiar, Tamzid Islam, and Salman Saqib peppered my life with

humor every now and then - thanks for being good friends to me.

Last, but not the least, Linda Peterson and Keira Horowitz have saved my life multiple times! They

always find a way to accommodate the needs of MIT Media Lab students. Thank you for being

there.

9



Dedicated to everyone who filled my life with love.

I am grateful for all the love I have received during the critical times of my life. The least I can do is
to dedicate my work to people who were there during my difficult times. It requires only a few
words to dedicate my work, but the magnitude of love and support I have received surpassed all
expectations by many folds. I always thought that three things essential to life are dreams, hope, and
imagination. As I go through different life experiences over the years, I have decided to add one
more ingredient to the list of essentials: people who shower you with unconditional love. This may
sound like a clich6, but it is only by going through difficult experiences that we internalize such
ingredients for living.

Here is to loving and living.

10



Table of Contents
1 Introduction.............................................................................................................................................14

1.1 M ontessori E ducation .................................................................................................................... 14

1.2 M anual O bservation ....................................................................................................................... 15

1.3 C ontribution.....................................................................................................................................16

2 U ser Interview s and Class O bservation .......................................................................................... 17

2.1 Initial T eacher Interview s .............................................................................................................. 17

2.1.1 Q uestions ................................................................................................................................. 17

2.1.2 Sum m ary of K ey Insights ................................................................................................... 18

2.2 M anual D ata Collection E xperim ent......................................................................................... 19

2.2.1 O bservation Cards .................................................................................................................. 19

3 System O verview .................................................................................................................................... 21

3.1 C ore C oncept...................................................................................................................................21

3.2 System O verview ............................................................................................................................. 22

3.3 Intended U se C ases.........................................................................................................................22

3.4 Potential Pitfalls...............................................................................................................................22

4 H ardw are D esign .................................................................................................................................... 23

4.1 D esign D ecisions.............................................................................................................................23

4.2 D esign Iterations ............................................................................................................................. 25

4.2.1 Shoe Sensor..............................................................................................................................25

4.2.2 Lesson/R egion T racker ..................................................................................................... 28

4.2.3 M other N ode ........................................................................................................................... 30

4.2.4 Program m ers ........................................................................................................................... 31

4.2.5 Recharging Strip ...................................................................................................................... 31

4.3 Low Pow er C onsiderations............................................................................................................32

5 Firm w are D evelopm ent.........................................................................................................................33

5.1 Proxim ity Sensing Protocol ........................................................................................................... 33

5.1.1 Packet Reception Evaluation ............................................................................................ 33

5.2 Synchronized N etw ork Event Scheduling Schem e................................................................ 34

5.2.1 T ransm ission Pow er Level Tuning.................................................................................. 36

6 Sm artphone A pplication and W eb D ashboard ............................................................................. 37

6.1 Sm artphone A pplication ................................................................................................................ 37

6.1.1 Starting Sensor N etw ork.................................................................................................... 38

11



6.1.2 Collecting D ata........................................................................................................................38

6.1.3 V iewing Tim e Spent w ith Children.................................................................................. 38

6.1.4 V iewing Battery Life...............................................................................................................38

6.2 W eb D ashboard...............................................................................................................................38

6.2.1 H om epage................................................................................................................................39

6.2.2 Social Interaction Chart ..................................................................................................... 40

6.2.3 Clustered Interaction Chart............................................................................................... 41

6.2.4 Teacher Interactions Radar Chart .................................................................................... 42

6.2.5 Lesson Progress Chart ........................................................................................................... 43

6.2.6 Region and Shelf A ctivity ................................................................................................. 44

6.2.7 M otion V isualization .............................................................................................................. 45

7 N etw ork D ynam ics and Evolution ................................................................................................. 46

7.1 Tem poral Contact N etw ork D ynam ics.................................................................................... 46

7.1.1 N etw ork Form ation................................................................................................................46

7.1.2 N etw ork Structure Evolution and PageRank ................................................................ 46

7.1.3 Com m unity D etection in Tem poral N etw orks ............................................................. 49

7.2 Region Preference D ynam ics ................................................................................................... 52

7.2.1 Student-Location Frequency M atrix ............................................................................... 52

7.2.2 Principal Com ponents A nalysis (PCA)........................................................................... 53

7.2.3 Co-occurrence M atrix.............................................................................................................55

8 U se Cases Evaluation ............................................................................................................................. 57

8.1 Perception about Sensei D eploym ent...................................................................................... 57

8.2 A ugm enting M anual O bservation with Sensei....................................................................... 57

8.3 N eeds for Increased Interaction ............................................................................................... 57

8.4 Tracking Learning Progress ........................................................................................................... 58

8.5 Proxim ity as a Proxy for Interaction ........................................................................................ 58

9 Related W orks ......................................................................................................................................... 60

9.1 Wearable Electronics and Software for Contact Networks ............................. 60

9.2 Com puter V ision in the Classroom ........................................................................................... 60

9.3 Technology in M ontessori Classroom s.................................................................................... 60

9.4 Proxim ity D ata A nalysis and V isualization.............................................................................. 61

10 Future W ork ............................................................................................................................................ 62

11 Bibliography.............................................................................................................................................63

12



13



1 Introduction
Understanding early childhood development has received increasing attention in the recent years.
Early childhood has been shown to be the most important time in development [1, 2]. Early
environments are very influential, especially nurturing relationships formed during this stage [3]. A
child's ability to learn and actively construct knowledge is unparalleled, but it is still a field that
remains relatively complicated to analyze and study.

Our work aims to create a set of tools for a preliminary understanding of early childhood
development. Sensei (Sensing Educational Interaction) is a system to help teachers, educators, and
researchers develop a greater understanding of early childhood learning in the Montessori
classroom. It is more effective in alternative forms of education, such as Montessori [4], Reggio [5]
etc. where children have freedom of movement and exploration in the classroom.

The Montessori classroom emphasizes independence and teachers act as facilitators to guide
learning. As facilitators, teachers are to spend a good part of their day observing the children [6].
Current methods of such observation are difficult and error-prone, especially in a busy classroom.
Sensei helps alleviate some of the need for constant observation by introducing an unobtrusive
sensor network in the classroom to measure educational interactions.

Sensei has been developed by a team of graduate students at MIT: myself, Ayesha Bose, and
Dwyane George. I conceived the notion of Sensei after attempting several technical solutions to
automate and augment observation in Montessori classrooms, creating the early RFduino prototypes
of Sensei in the process (Chapter 4). Over the past year, this system has grown in its breadth and
maturity as my teammates joined to enhance and scale it. Specifically, I designed the hardware and
developed the firmware for the current version of Sensei, along with assisting the development of
the smartphone app and web dashboard. This thesis briefly chronicles the journey and design
decisions behind Sensei, and describes the current version in detail.

1.1 Montessori Education
A variety of different educational methods have emerged that challenge the traditional notion of
education, teachers, and students [7, 8]. The Montessori educational method is over 100 years old
and is used in over 5000 schools in the United States [6]. The method is unique in its multi-age
classrooms, educational materials, and the students' freedom to choose their lessons.

Studies have shown that Montessori children performed better on standardized tests, engaged in
more positive interaction, and show more advanced social cognition. Montessori students have also
indicated having a greater sense of community, as the educational method allows for more peer-
guided learning than traditional classroom environments [7, 9].

The Social Computing group at the MIT Media Lab has recently started a network of schools,
known as Wildflower Schools. These schools are an open source approach to Montessori learning,
blending both traditional Montessori methods with new enhancements. As lab schools, the
Wildflower schools serve as a research setting dedicated to advancing the Montessori method. Our
work with Sensei focuses on enhancing an important component of the Montessori method:
observation.
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1.2 Manual Observation
Dr. Maria Montessori, the creator of the Montessori Method, described observation as a critical

component in a Montessori classroom [4]. Through observation, a teacher can better understand

each student's interests, learning style, and individual needs.

There are three main types of observation.

Individuals: Teachers can observe an individual's progress with all the lessons in a classroom. For

each lesson, they can track concentration of the student (engagement with the lesson), level of

completeness, and the mood associated with working on the lesson. They can track the mood

associated while working with other students too.

Social: Teachers can determine patterns of social behavior, like learning a new lesson together or

assisting others. They can track recurring social groups of students and study their learning progress

over time.

Environmental: Teachers can track which areas of the classroom or materials are used more,

adjusting the design of the room as needed to encourage students to explore new or important

concepts.

Wildflower classrooms usually have two teachers and 12 - 15 students. Given all the distinct events

for observation, it can be very difficult for two teachers to accurately assess such a classroom. Using

these observation, teachers also help students who are having trouble, and often intervene with

students who are new to the Montessori environment. A common theme that was apparent in our

initial interviews of teachers (Chapter 2) was how they want to spend more time on observation.

Teachers currently record observations with handwritten notes, which are harder and more time

consuming to analyze when there are many of these notes.

rnr
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1.3 Contribution
Sensei enhances the fields of learning analytics and Montessori observation methods by the
following technical contributions:

- Sensors designed to instrument a classroom to capture proximity and motion data in an
accurate, low-cost, and minimally-invasive manner

- A network event scheduling scheme that enables data collection at a reasonably high
sampling rate for social interaction, in a battery-preserving manner

- A smartphone application to facilitate data collection by teachers
- An interactive web application designed to visualize social, material, and classroom

interactions

Together, the system allows the study of both social interaction and learning at scale.

Other than describing the contributions in detail, a quantitative evaluation of our custom wireless
protocol's robustness is done, along with a qualitative evaluation and interviews with teachers about
the use cases of the system. Chapter 2 gives an overview of our initial interviews with teachers and

manual data collection tests we have done in the schools. Chapter 3 gives an overview of the system
design. Chapter 4 shows hardware design iterations of Sensei, and the reasoning behind each
iteration. My custom sensor network protocol and other firmware related developments are
described in Chapter 5. Chapter 6 describes the smartphone application and the web visualization

dashboard. Chapter 7 demonstrates the use of some statistical and network analysis methods as a
way to research and model the Sensei data further. Chapter 8 describes the use cases interviews we
have done with Montessori teachers after our final pilot study was conducted in three different

schools. Related works are described in Chapter 9, and the exciting future work section concludes

the thesis in Chapter 10.
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2 User Interviews and Class Observation
The idea of Sensei was conceived and motivated by interviewing teachers in Wildflower Montessori
schools. Interviews were designed to inquire into the nature of classroom observations, and the
current limitations teachers face in their everyday classroom activities. By aggregating and analyzing
answers from three different schools, we came up with several concrete use cases where technology
could have a potentially impactful contribution. The design decisions for the hardware, firmware,
and visualization components were also motivated by the teacher interviews.

Between the time of teacher interviews and actual deployment, we also deployed some manual
observation cards in the classroom that provided us some data and insights about these concrete use
cases. In this section, we detail our interview process and questionnaire, along with the deployment
of manual observation cards that informed the intended use cases of Sensei.

2.1 Initial Teacher Interviews
Six teachers were recruited from three different Montessori Schools in Cambridge. They were all
females, certified by the American Montessori Association to teach at the pre-K level. The schools
were: Wildflower Montessori School (children aged 3 - 5), Dandelion Montessori School (children
aged 2 - 4), and Violeta Montessori School (children aged 2 - 4). Each interview typically lasted for
20 minutes. Handwritten notes on paper were taken for each question (appendix A), and the
interviews were recorded on audio recorders. The key answer parts were transcribed later into text.
Teachers were usually given an initial prompt, and we let them speak about their individual
classroom scenario without leading the discussion.

2.1.1 Questions
The goal of the prompts was to find out what social interactions and learning interactions are most
important in the Montessori classrooms, and determine the key information teachers look for day to
day to gauge learning.

The following questions were the general prompts for the user interviews. As teachers answered our
questions, sometimes we asked additional clarifying questions.

1. What events lead/motivate you to an observation at different times of the day?
2. What motivates you to write down these observations? How do you use these notes later?
3. I want you to walk me through a day in the school. What do you observe at different times

in relation to the activities in the school?
4. What are some key lessons/categories that are housed in lesson trays?

5. What leads you to interact with a child?
6. How do you define focus or engagement for a child? For example, is this the length of time

spent on the lesson, or the intensity?
7. What are the different kind of social interactions that happen in the classroom?

8. Tell us about specific patterns that seem to be recurring activities in the classroom. Is it

important for you to observe this rhythm/pattern?

9. How can we help you observe? Or enable you to observe certain things?

10. If you see a child is not interacting much with a category of lessons, do you intervene or try

to encourage them to use it?

17



2.1.2 Summary of Key Insights
We received varied responses from different schools. It was interesting to see that depending on

different age groups of the students, the problems faced by teachers were somewhat different. There

were also some common limitations of current observation methods that they pointed out.

2.1.2.1 Observation Criteria
There are many factors that prompt a teacher to make observations and write them down. Some key

observations made by teachers are:

" Individual student work cycles
o Level of focus and pace
o Some lessons deal with physical engagement: e.g., table washing
o Some are mental engagement: mentally engaged and usually involves fine motor

movement
o Purposeful work is most important: they should not be distracted

" Social connections and group work activities.
* Activity level of teachers: how much time they spend observing and working with individual

child as opposed to moving around in classroom.
* Most active areas of classroom. As the classroom space is organized according to different

categories of lessons, what shelves and activities are specific children choosing?
* Is there a group flow that happens throughout the day?
* Difference between movement of younger and older children.
* Gauge whether students are interrupting each other.
" How many pieces of work they took off the shelf every day.

2.1.2.2 Frequency and Importance of Observation
All teachers emphasized on the importance of observing students and their activities as

recommended by Maria Montessori in her book [4]. Lesson planning, how much time teachers
spend per student, individual child's progress tracking, what category of lessons are children

interested in, these are a few common themes that were of concern to most teachers. Given the
unobtrusive nature of the Montessori Method, teachers generally like to allow the children to work

on their own and act as a passive influence to stir them towards new lessons and class interactions.

Keeping notes about student activities allow them to design informed teaching methodology for

each child. Record keeping lesson progress for each child is a common activity for teachers.

Sometimes the frequency of repeating the same lesson is also noted by teachers, as they deem

repetition is important.

A teacher spends most of her day giving lessons to individual students. When not giving lessons,
they observe students and write down these observations in notebooks. The aim is to aggregate

these observations for each student to plan individual curriculum for them. Thus many times

teachers would like to observe how a child is performing a lesson right after they explain the lesson

to him/her. Typically, teachers usually shift their roles several times a day from actively giving

lessons and helping students to passively observing them. Sometimes, between two teachers in a

classroom, one dedicates her time on presenting lessons, and the other observes and takes notes all

day.

18



2.1.2.3 Challenges

When asked "what is the most difficult thing to keep track of," all teachers said that it is hard to

glean the full picture for the observation data that recorded different moments in the classroom.

The only way to track a child right now is to observe a single child all day. Hence, they are usually

forced to decide on one particular child who seems to have trouble picking up lessons or exhibits a

specific behavior.

Additionally, it is also quite difficult to find time to go back to the notes and read them, or to even

find notes about a specific child or certain event. Teachers need to report progress to parents

periodically, and the observation notes serve an important role in such reports. Compiling such a

report is also troublesome from handwritten notes. It seemed that teachers are currently using their

notes within a time window of a few days. The notes and associated observations remain fresh in

their minds only within that period, hence their planning activities remain bounded to a week or two

at maximum. They also did not seem too interested to digitize their notes as it would be a

painstaking task that would not solve all of the existing challenges.

2.2 Manual Data Collection Experiment

Before we started designing a technological solution for the existing observation challenges in

Montessori schools, we decided to gauge teachers' interest in collecting lesson progress and social

interaction data by giving them some manual observation cards. The goal was to collect their

feedback after a few days to see if such data would be useful for them in their daily planning

activities.

2.2.1 Observation Cards

The following observation cards were given to teachers. They were asked to fill them up every 20

minutes during the active class period.

Cl)

Mary Enn

2.()bscr ltln R) ri ard, fir9t p
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I igure 2.3. . closer look at the observatlon card for a particular child.

Appendix B shows some filled up cards we collected from the schools.

Teachers filled up these cards over a period of a week. We transcribed and aggregated this data, and

provided them a basic mockup of some visualizations that we could potentially build using such

data. The responses were quite positive, and formed the inspiration and intended use cases of

Sensei. We will present a full use case interview of the Sensei system in Chapter 8.
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3 System Overview
We designed Sensei to augment teachers' observations and solve some of the challenges faced by

teachers currently. In this section, we present the description of the pipeline and some of the

intended use cases of this system.

3.1 Core Concept
The core concept of our system relies on a wearable sensor board equipped with a Bluetooth radio

that is capable of creating a mesh network with other sensors. The perceived signal strength value

(RSSI) of each data packet received from other nodes in this network can be used to create an

approximation of social proximity. These nodes will be placed in children's shoes, and the

microcontroller in the sensor board will log the proximity data of other shoes present within a

certain radius of the individual child (Figure 3.1). This will provide us data about group work and

social interactions. If teachers carry these wearable boards, then we can also get data about how

much time a teacher spends with each child over a day.

i 3ur 11. S11(es cruarte a dynamic and physical range based tmesh netwrk lewci cn thcmselvcs.

The same idea can be used to track lesson progress for the lessons that are housed in lesson trays. A

similar sensor board attached to a lesson tray can be used to receive pings from nearby shoe sensors,

measuring the approximate time a student spends near a lesson tray. To avoid scanning for pings

when the trays are idle on the shelves, we modify the design to include motion based activation, so

the trays only start scanning when they are taken out from the shelves.

The lesson tracker idea can also be extended so that we place them on shelves, and continuously

monitor the shelves to know which students spend how long in the vicinity of a shelf.
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3.2 System Overview

Models Engine

Web
Application

Shoe APISensors 
A.

Region AL
Tracker - ,, App --
Sensors

Lesson , *
Tracker
Sensors

I"igurc 3.2. Sensci svstcm overvicw

Figure 3.2 shows the components of Sensei. Shoe sensors log social proximity, region trackers are

used to track which shelves are visited more, and lesson trackers are attached to lesson trays and

scan for nearby shoe sensors to log how much time children spend working on particular lessons.

The logged data from each of these sensor boards can be collected through a mother node attached

to an app. The app visualizes some preliminary data and also uploads all the data to a server. This

forms the backbone of a web visualization dashboard available to teachers. The data can also be

used to study longer term patterns in education using statistical models.

3.3 Intended Use Cases
Teachers may expect to use Sensei in several ways to augment their classroom observations. Some

of the use cases are:

* Measuring a child's progress through the curriculum.

* Sharing such progress evaluation with parents.

* Identifying students in need of more teacher time.

* Identifying lessons that all students have mastered and can be removed.

* Understanding group work and also the evolution of social groups among students.

3.4 Potential Pitfalls
Proximity does not always mean interaction. Proximity among children may not mean they are

working together or chatting. Proximity of a student to a lesson tray that is taken out from the shelf

does not guarantee that she/he is working on the lesson actively. However, our aim in designing this

system is to approximate educational interactions. Tracking focus, concentration, and real

interactions without interrupting natural interactions in the classroom is left as future work.
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4 Hardware Design
Sensei has several sensor boards that were designed over a few iterations. Some of these iterations

were deployed in the classrooms, and we received intermediate feedback from teachers to improve,

and at times entirely change our designs. In this section, we describe the design decisions and the

constraints imposed by the classroom environment, and an overview of the hardware developed

during major iterations.

4.1 Design Decisions
Initially, instead of sensors that can be embedded in shoes, we planned to design a badge or a

wristband that would house the same proximity tracking circuitry. Some teachers during a follow up

meeting suggested that badges or wristbands may distract students. After some brainstorming, we

decided that the school shoe could be a possible candidate for placing a sensor board in a minimally

invasive fashion. Children come in the morning and change their shoes to wear a particular kind of

shoes for the rest of the day. At the end of the day, they leave the shoes to a shoe rack before

leaving school.

sensor

I, u 4. 1 MN ()di eid sh1(c t lat cI I oust a 2C III x 2.-cm IP B in I mi I ni l i nvasiv ash inI .

In our final pilot deployment, each shoe was modified by cutting the velcro seam (Figure 4.1),

creating a pocket to insert the sensor PCB in a minimally invasive fashion. This worked well during

the deployment, with no reported incidents of student distractions or diversions from the teachers

(Chapter 8).

Not all Montessori lesson materials are housed in trays. I lowever, a good portion of the lessons are.

We decided to focus on tracking those particular lessons. Initially, we created lesson feet that can

house a Scm x 1.5cm PCB, which is the size of our lesson tracker, and a 3.7V 10OOmAh capacity

23
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Lithium-Polymer (Li-Po) battery. Figure 4.2 shows four lesson feet that can be attached to a lesson
tray on four corners, one of the feet carrying the PCB and battery.

~ ~

I uigrc 4.2. I xsson trix fect that wvere deplo\ cd durinEl in1iliAl pilot 'tudies.

This design was not particularly famous among teachers. We used double sided mounting tapes to

mount these feet, and this required modifying all existing trays in the classroom. On a few occasions

(during our initial pilots), a few feet came off some lesson trays. Also, lesson trays vary by size. Some
small sized trays did not look appealing to teachers with big lesson feet.

In this case, we decided to make our own lesson trays after consulting with some teachers. Figure

4.3 shows the new lesson trays. These have pockets on the bottom corner of the trays where the

PCB and the battery could be inserted. One end of the pocket was kept open so that the battery

could be charged through that port. This design was better received by teachers and used during our

final pilot study.
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These were the major design decisions that we had to make during our hardware development
process. Some of the other decisions and improvements were solely based on low power
optimization. This will be appropriately described in the subsequent sections.

4.2 Design Iterations

4.2.1 Shoe Sensor
R.Fduino prototype: The first prototype was designed with the RFduino module [10I. The RFduino
is a 1.5cm x 1.5cm Bluetooth module with an embedded antenna. Our prototype had a SPDT switch
(to turn scanning on and off and a coin cell battery holder at the back.

PrNet vO.3 saquib

I~,!

Fi ire 4.4. 1 irst PCB pr otot\p with Ri iuino IIIodtlC.

The PCB was 3cm x 2cm in size. They were initially deployed in the classrooms by stitching a badge

like pocket above the shoe.
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Even though this worked well initially, we started noticing drops in our Bluetooth ping and RSSI

data during initial pilots. We also eventually required mesh networking in order to scale up from the

star network topology of Bluetooth to a larger classroom. Hence we decided to change our platform

from Rduino and started researching mesh networking SoC (System-on-Chip) modules. Our

research led us to an nRF51 based module called Simblee. This led to our next series of iterations.

Simblee Prototypes: Simblee [11] is a 1cm x 0.7cm QFN module that has a smaller form factor

compared to Rlduino, 26 GPIO pins (so we can accommodate more sensing modules), and an

embedded antenna. Our experiments suggested that the RSSI fall off with respect to distance is

smoother for Simblee compared to RFduino. Moreover, Simblee offers a mesh networking protocol

(SimbleeCOM) to the developers, which would be useful for scaling to a large number of units in

the classroom.

The first prototype with Simblee had a SD card, a Real Time Clock (RTC) module, a kxtc209

accelerometer, and a coin cell battery at the back.

I'urc 4.6. Simblrc sh e sensor with SD cmrd md RI(

Our initial Simblee prototype looked a little different. We did not have the RTC in the beginning.

I lowever, time syncing issues arose with the internal 32.768 kI lz clock when we tested a mesh

network with 20 units. The sleeping cycles to conserve battery would add a variable offset value to

26



the timer when using the internal clock, hence all units in the mesh network would be off sync

within a few minutes of powering up. To tackle the issue, we added a DS3231M RTC module to our

design. It fires an accurate interrupt every second, which allows the Simblee to sync its time even

while sleeping.

Initially we planned that the proximity data will be logged in the SD card. The SD card required SPI

communication from the Simblee module at a high rate of current (90 mA). The 20mm CR2032

coin cell battery we used had a capacity of 225 mAh, and using the SD card was not a good idea in

terms of saving battery life.

In our next iteration (Figure 4.7), we discarded the SD card and relied on the internally available

128KB flash ROM memory in the Simblee. We compressed the data by using some bit shifting

techniques (more on this in the Firmware section), and the memory proved to be adequate for a day

worth data. We also changed our accelerometer to ADXL337 analog accelerometer module since it

had better energy saving features. A few 0603 0.01uF SMD capacitors were added to create low pass

filters on the analog three axes outputs of the accelerometer. A mini USB port was added so we

could upload our firmware using a custom USB programmer, and also transfer data from the

internal ROM through UART communication (serial port).

I igure 4.-. Second design iteration with Simb1ee.

Our final design (Figure 4.8) involved adding some nice-to-have features. We added options for

using either a coin cell or a small Iithium-Polymer battery. A small 3.3V voltage regulator was added

so we can use the 3.7V Li-Po battery. A MEMS microphone was added to our design so we could

collect sound level data if needed.
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4.2.2 Lesson/Region Tracker
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After iterating on our dcsigns for the shoe sensor, prototyping the lesson/region tracker boardwa

easier. These could be made considerably bigger (5cm x 1 .5cm) compared to the shoe, as there was

imnimal size constraints with our custom made lesson trays and region tracker enclosures. These

boards were similar in size with the 1000 mAh rechargeable I i Po baittery we used, so they fit on the

same stack.

Other than the Simblee module, RTC, and MLMS imcrophone, we added an external flash ROM, a

power switch, and a whole newv section for recharging circuitry. WVe used Texas Instrument 's
MCP73833 I i-Po charging IC for charge and power management. A nice feature of this chip helps
us control or stop charging instantaneously as the circuit heats up. A 10k thermistor helps us control

the charging rate in this way. The power management section allows us to connect the circuit to a

5V UJSB wall power suppiy for charging, and also simultaneous1 y provide power to the sensing
section.
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We also added a new accelerometer MMA8451 (from NXP Semiconductors) that has motion

activation capabilities. This is utilized in our firmware code to carry on minimal operations under a

deep sleep state until an interrupt is fired by the accelerometer in the event of a big shake or

movement. This feature is used in lesson trays to conserve battery and scan for other units only

when a tray is taken out from a shelf.

The region tracker (that sits on shelves to track shoes that are within 3 - 4 feet) has a custom

enclosure that we designed and built. It houses the same circuit and the battery, and can be attached

under shelf racks using mounting tapes. It is made by cutting and carving wood in MIT Media Lab's

machine shop. The choice of material was inspired by teachers' recommendation to camouflage our

equipment in the classroom environment.

'igure 4.1 1. Reg i 1 Acker enclos rc madc Crm \,()()d.
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4.2.3 Mother Node
To transfer data to a smartphone application, we designed and manufactured a mother node that

can be attached to a smartphone with OTG (On The Go) host capabilities. This allows all the sensor

boards (shoes, lesson tracker, and region tracker) to send and receive commands from a smartphone
when within Simblee radio's maximum range, and transfer data from their flash ROM to the

smartphone.

I "i'igur 4. 1 T2111 imIth RI IiodC CIMINh C Tphi 1ommunicate to all sesi s it) the classrc m.

The mother node circuit (Figure 4.13) has an FTDI chip that allows UART communication to a

host machine. It is used to talk to its host through the serial RX and TX channels of a Simblee

module. There is an RTC to drive time synced operations and an RGB LED (WS2812) to give the

user a sense of current operations performed by the node.

I 11-1ti1C -1. 13. h lo ict iit )dc a(ra C~cl t( :1 S1 I I frlloI(MC' t h I( L.Ii,lI I 'SB.
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4.2.4 Programmers

P3rogrammers to upload firmware code from the computer to the sensor boards also evolved as the

project evolved over different design iterations. Initially, we used an FTDI based commercial

programmer for RFduino.

Fig'uurc 4.14. Initial programner solut i( .

However, we soon moved onto adding USB ports in our sensor boards, and designed and

manufactured a custom programmer for this purpose with an FTDI chip. We can upload firmware

both from a computer or a smartphone in this case.

hiurc 4.17 Ti) I )ased c ustom pr mmfr.

This proved to be particularly useful when we needed to rapidly test and upload programs to sensor

boards during field trips. The loose pin contacts in our previous versions would make it hard to

program sensors otherwise.

4.2.5 Recharging Strip

At the end of the day, the teachers can recharge the sensors that have run low in battery. We have

designed a 5V UASB wall port based recharging strip where shoe sensors can be plugged in. This is an

extension of the MCP73833 based recharging section we designed for the lesson/region tracker

circuits, but it has six ports for simultaneous recharging.
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4.3 Low Power Considerations
Throughout the design iterations, one of our main focus was optimizing for battery conservation.
The modules used in our sensor boards were carefully chosen after researching competing modules'
datasheets for leakage current rates. By designing hardware that enables the firmware to take

advantage of sleeping the microcontroller most of the times, we were able to conserve significant
amount of battery. For example, the ADXIL337 accelerometer was chosen based on its price and
also because its power could be controlled from a PWM pin of the microcontroller, completely

shutting off current supply to the accelerometer when needed, as determined by the firmware code.
We moved away from a SD card solution to ROM memory for logging data over time, to conserve

battery. There are several tricks employed in the firmware design that also helps ensure longer

battery life.
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5 Firmware Development
Sensei has two main firmware components. In this section, we will describe the design behind these

firmware algorithms.

" A distributed sensor network protocol to sense proximity and establish social interaction

context by logging motion and ambient sound level data.

" A time synchronized network event scheduling scheme that allows efficient battery

consumption, while maintaining a proximity sampling rate of 10 seconds to distinguish

between ephemeral contacts and longer social interactions.

5.1 Proximity Sensing Protocol
The Simblee transceiver radio provides a suit of firmware for different networking protocols. We

utilize the SimbleeCOM mesh networking protocol for communicating between the sensors. Under

this protocol, each sensor can engage with another sensor for a duration of three milliseconds to

exchange a packet of data and an acknowledgement.

In our proximity sensing protocol, every 10th second each sensor in the network repeatedly

broadcasts a data packet containing a unique identifier, for 500 milliseconds. The Simblee module

has only one radio chip for broadcasting and receiving. It cannot do both simultaneously. Thus,
between each broadcast, we insert a random delay so we enable the radio to listen to others who are

broadcasting. Other than the 10th second, we program the microcontroller to enter a deep sleep

mode for 9 seconds, conserving battery in the process.

After collecting data packets from all sensors who were within range (range is defined by the

transmission power of the radio), each node records an entry for each device that sent a packet. As

described in the hardware design section, we have to rely on a constrained memory space to save

our data with low power consumption. Thus, each entry for a node only takes 4 bytes of space, and

we compress our data to fit in that space.

Each proximity entry is a 4 byte integer of the form DDRRHHMMSS, where DD is the device

identifier, R is the mean RSSI of all packets received from the particular sender DD during that one

second period, and H, M, and S are the hour, minute, and second components of the timestamp

respectively. We use bit shifting techniques to compress all of this data to this 4 byte memory. The

resulting data set is a time series identifying when a student is in proximity to another student or to

another region/lesson tracker sensor.

5.1.1 Packet Reception Evaluation

In our experiments, we found that a random sized delay between 5ms and 50ms works well for

maximizing the number of packets received during the proximity sensing period (every 10 seconds).

However, there are times, even with the random delay, when two or more radios within range would

be simultaneously broadcasting and not listening. In those cases, the proximity data would be lost

between these devices due to collisions.

To evaluate how well our protocol captures proximity with other nodes in range, we conducted

some laboratory experiments to check packet reception success. Five shoe sensors were placed

within a range of 3 - 4 feet (our estimated social proximity range in these schools), all of them
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placed inside shoes. Region trackers were also placed to measure how well they capture proximity of

these shoe sensors. The shoe sensors ran for 12 hours and sent 82, 680 packets altogether. The

region trackers ran for a total of 25 hours, and collected 43, 310 packets.

'I
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D Shoe Sensors (n 82 68k) D Region Trackers (n 43 31k)
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The mean number of packets received by the shoe sensors was 4.6, during each 500ms window

every 10th second. 'Ihe region trackers collected 7.6 packets on average. fhe probability of detecting
other shoes by a shoe sensor can be defined as the probability that at least one packet was received

from each shoe in that 500ms time window. Using this metric, shoe sensors have a probability of

95.98% to detect each other when in range. For region trackers, the probability is 99.75%. Since

region trackers do not broadcast but just listen for broadcasts from shoes, the probability of success
is higher.

5.2 Synchronized Network Event Scheduling Scheme
As mentioned before, all nodes must have their radios active for 500ms period of time in every 10th

second in order to measure proximity with each other. Sleeping for 9 seconds and waking up at the

same instant is a challenging task if we consider many nodes in the network. The clock capabilities
provided by the Simblee module is decent. I lowever, for a millisecond level precision task, this does

not suit our needs. An easier solution is to keep the transceiver radio active for a longer amount of

time, but this consumes battery at a rate that does not allow us to collect proximity data for the

duration of a full day.

Microcontroller and Transceiver State Current draw (mA)
Active microcontroller 4.1

Active transceiver 12 - 19.8

RTC interrupt callback (background 0.2

process)
Sleep (with background processes on) 0.45
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Sleep (clock and most processes off, 0.005

except interrupt checking)

When the microcontroller is active, it spends 4.1 mA. When the transceiver radio is active, the

current draw is a few times higher. An interrupt trigger wakes the microcontroller up for a few

milliseconds, consuming 0.2 mA. The only effective sleep state that ensures a longer battery life

(enough to go on for a day or two) requires most background processes and the clock to be turned

off.

The DS3231M RTC module provides accurate timekeeping capabilities with 5 ppm accuracy. An

external 1 Hz interrupt allows us to accomplish an event scheduling scheme for each shoe sensor, so

they wake up at the same time (with some inherent offset of a few milliseconds, which does not

have any significant effect for the 500 ms time window), communicate with each other for proximity

mapping and read values from the accelerometer and the microphone. Figure 5.2 shows the event

schedule in details.

t 0 t, I t. 2 t 3

Interrup~t

RTC Clock

Time Probe 'Probt- < - XXX

Blietooth Radio X S R XXX

Accelerometer XXX ea d XXX

Microphone XX >ead XXX

Flish Memory XXX > XXX

Sleep XXX Sleep "' Sleep Sleep

tir 5.2. SYnchronized CVCt s'cheduling 'sC11C that occurs In cach shoc sensor.

At the rising edge of the interrupt, the MCU wakes up and the software clock updates itself from the

external clock by probing the accurate time from the RTC. The interrupt is a 500 ms long square

wave, during which the probing happens. In the remaining 500 ms window, the radio sends and

receives pings using random delays to accommodate these operations. The random delay is between

5 ms to 50 ms, and the random number seed is chosen by probing for an unattended analog input

pin for hardware generated random noise. During the proximity mapping operations, the

accelerometer and microphones are sampled for analog values too. At the end of the 500 ms

window, the proximity and sensor data are written to the flash memory (W), and the MCU goes

back to the deep sleep mode. When new interrupts are fired every second, the MCU checks the

software clock (0.2 mA) and go back to sleep if it is not the next 10th second yet (0.005 mA). This

scheme allows maximum battery conservation (around 2 days of battery life with 80 mAh

rechargeable Li-Po battery) while maintaining a decent proximity mapping rate of six probes per

minute.
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5.2.1 Transmission Power Level Tuning
The transceiver radio can transmit data packets at higher ranges at the cost of more current
expenditure. For our purpose, I tuned the radio such that the effective range is only 3 - 4 feet, the
social proximity range we have agreed on after manual observation of video feeds of interactions.
Any RSSI trace means that the shoe is within the social proximity range.

Transmission Power Level Approximate Range Current Expenditure
(dBm) (m) (mA)

4 40 19.8
0 25 14.6
-4 12 12.5
-8 4 11.5
-12 1 10.8
-16 0.2 10.3
-20 0.07 10

The approximate range is measured manually in laboratory setting by keeping one shoe sensor fixed

in place and taking another one away from it until the signal is lost. Based on the current

expenditure and the approximate range, I decided to use -12 as the appropriate power level for the

transceiver radio.
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6 Smartphone Application and Web Dashboard
A smartphone application facilitates data collection by teachers. A web dashboard enables them to

look at visualized data and understand classroom dynamics in details. In this section, I describe the

main components of the smartphone application and web dashboard, and how they serve the

intended use cases of Sensci. These components in the Sensei pipeline were designed by me and

developed in collaboration with my research group members. The student and teacher names are

anonymized in these visualization demos for the purpose of presenting the thesis, but teachers see

real names in their dashboard.

6.1 Smartphone Application
The app allows teachers to collect data at any time of the day, start the shoe sensors by sending a

start command (otherwise the sensors sleep without receiving that command every day), visualize

how much time they have spent with children for a particular day, and also view an estimated battery

life statistics for the sensors present in the classroom to make plans for recharging the units.

The smartphone app utilizes the Physicaloid library [12] for Android to communicate to the mother

node's FTDI chip using the UART protocol. By sending and receiving messages with appropriate

header elements, the phone and the Simblee module in the mother node communicate through the

FIDI chip.
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6.1.1 Starting Sensor Network
At the beginning of each day, teachers activate the network in the classroom with a single button

press. The mother node needs to be attached to the smartphone in order to send this command to
the rest of the nodes in the network. A real time view helps the teacher understand which sensors

have acknowledged the receipt of the command.

6.1.2 Collecting Data

Typically, at the end of the day the teachers would be expected to collect data from the shoe sensors.

A similar view shows the teachers if each sensor finished reporting their data to the mother node.
The wireless protocol to transfer data remotely was designed by myself and developed by Dwyane

George in my research group.

6.1.3 Viewing Time Spent with Children

Sprint 4 ' 24%/.. 12:22 AM

View Data MORE

Time Spent with Children
3

2

0
Alice Bob Chris Dave Eliza Fred George Helen Ivan

Students

'igure 6.2. iew oin 1 )e pclit with childrin ovur I line

Teachers expressed interest during the design and mockup phase of the app that the most

immediate and useful information for them at the end of the day is how much time they have spent

with each child for that particular day. After collecting data from each sensor, they can also check

this statistics from a bar chart presented in the app.

6.1.4 Viewing Battery Life
Currently a work in progress, the app allows teachers to view the sensors (shoes, lesson trays and

region trackers in the classroom) that need recharging. This is approximated by checking the logged

data for how long the sensors slept and how long they were active.

6.2 Web Dashboard
The web dashboard was developed (in collaboration with Ayesha Bose) with an aim to give insights

to teachers that are usually lost due to the high frequency of social and lesson interaction going on in

a dynamic classroom. When teachers enter the web portal, they are presented with a login screen,
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and the homepage after login allows them to view essential data visualizations categorized according

to the use cases. Visualizations were created using the web engine D3 [13].

6.2.1 Homepage

Teachers get updates for the last few days from an automated summary generated from the weekly

data. They can view data about students interaction, their own interaction duration with each

student, progress of students on the materials that are on lesson trays, classroom dynamics (locations

where students spent their time), and write notes and observations. Each teacher's dashboard are

customized based on their classroom floorplan and student updates.

students teachers materials classroom viotes contact IOgout

Updotes for Wildflower:

and worked together for the last two days

I have spent the last two days with

has spent the last four days on tic (1 it e

No students have spent any time by the :nt, righ i of the classroom

customize pdates

Figiirc (.3. (C ustOI1'izied toIC)mcpagc Of \\ ild1t(Ver \vCb pOrtal.

39



6.2.2 Social Interaction Chart
Under the student interaction page (Figure 6.4), teachers are presented with a visual interface that

allow them to see the social interactions for a full day between students. The stacked bar charts

provide an understanding of group formation at different times of the day. They can hover their

mouse over the charts to see individual interaction slices and the students associated in the

interaction.

Social Interaction for Dave

Date: 4-1-16

Person: Dave
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As seen from the particular dataset of Dave, he spent most of his time with Chris on 4-1-2016, and

occasionally with I lelen. In the beginning and ending periods of the school day, all shoes are put

back together in the shoe rack. The visualization clearly captures these events too.
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Clustered Interactions
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This view allows the teacher to see the aggregated interaction information without the time axis.

Teachers can select students by hovering over their names and see who they have worked with for

the full duration of the day.
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6.2.4 Teacher Interactions Radar Chart

Teachers had an immense curiosity to know how much time they spend with individual students as

this information helps them optimize their interaction and lesson giving time. In order to facilitate

teachers with this information, we have incorporated a radar chart in our dashboard.

Teacher Interactions
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The chart allows teachers to see all teachers' time distribution with different students. This data from

a day in the classroom shows that both teachers spent time with the same students, and other

students were independently working on their own, mostly.
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6.2.5 Lesson Progress Chart

The proximity mapping data from the lesson trays

progress with different materials in the classroom.

particular lessons for particular students.

gives teachers a unique ability to check student's

It is a simple bar chart of time spent with
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In this particular case, a teacher can clearly see when the wood polishing lesson was first introduced

to Alice, and how long she worked with the lesson over the next few days. This visualization can

also inform teachers when a student is ready to be shown a new lesson.
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6.2.6 Region and Shelf Activity
Children spend their time in different areas of the classroom. We placed region trackers on different
shelves to track how much time students spend near each shelf. The shelves are organized and
located according to category of lessons, and students spend time near different shelves before they
choose to work on a certain lesson, so this data can illuminate teachers about students' interests in
different category of lessons.

Regions of the Wildflower Classroom

Practical Life

CN

*Fe
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Jack
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This visualization allows teachers to select regions in their classrooms (where they install region
trackers) and check how much time students have spent in that area over a day.
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6.2.7 Motion Visualization

This visualization allows teachers to understand an aggregated motion profile of students on a

particular day.

Motion Activity Profiles

)ate: 3-2-16

30

25.

Chris
Bob
Alice
John
Mike

1 Todd

Elizabeth

1001 i2 i - (

I iLueC 6.9. (ti) acivi\ vti A At IO11.

The motion data acquired from the accelerometer can be numerically integrated to find velocity

profiles for each student. The above is a histogram of velocity values sampled every 10 seconds for

the whole day, filtering stationary values and keeping only the motion values over a small threshold

to get rid of noise and inaccuracies due to the numerical integration.
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7 Network Dynamics and Evolution
One of the most interesting aspects of Sensei is that it enables researchers, educators, and teachers

to analyze longer term learning behavior at scale. Early childhood classrooms have rich learning

dynamics, both from social and lesson progress perspectives. The ability to collect fine grained social

proximity information with high time resolution (10 seconds) provides us ways to test hypotheses

about individual learning, deploy different interventions in the classroom and research their

effectiveness, and many other similar research opportunities. In this section, we demonstrate some

analysis methods that can be used as tools to research and understand early childhood social

proximity data.

7.1 Temporal Contact Network Dynamics
As students and teachers come into the social proximity range of each other, they form a temporal

network [14] between themselves. These networks are highly dynamic in nature, are relatively short

lived compared to the span of the whole day, and are difficult to observe without Sensei proximity

mapping in the classroom. There are several kind of analysis that can be done on such networks to

understand community structure, dominant figures and their followers in the classroom, and how

the social structure change over time (both during a day and over a scale of days, weeks, and

months). These can help researchers understand how social factors influence learning.

7.1.1 Network Formation
In this demonstration, we take one day's worth real data collected from the classroom, and chop the

proximity mapping time series of each shoe sensor into hourly bins. This will allow us to form

temporal networks on an hourly basis. Next, for a given hour, we create an undirected edge between

two shoes if there is a trace of proximity at any instant during the hour. The edges are undirected as

there is no concept of who is approaching whom in this dataset. If there are duplicate edges because

both shoes saw each other at the same time, we merge both the observations into one edge in the

temporal network.

7.1.2 Network Structure Evolution and PageRank

The PageRank algorithm [15, 16] can be used to assign a centrality measure to students and teachers

at different hours of the day. There are other centrality measures that can be interesting in this

context [17, 18]. We use PageRank (a version of eigenvector centrality) for the purpose of

demonstration.

The teachers in this dataset are numbered 10 and 11. The rest are children in a Wildflower

Montessori classroom.
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Network Structure
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The initial hours' networks are dense, a lot of interactions are happening in those times. Teachers

have dominant role in the social network as lesson giver and caregivers too. A few students do have

more sense of independence, and are surrounded by students who spend time with both of these

influencers and teachers. As the day goes on, students are dispersed in the classroom and the

PageRank chart reveals a shift in the usual dynamics. Students 5 and 6 are were playing a dominant

role by spending time with both teachers and other students. However, their roles diminish as the

day goes on, probably they work by themselves for the rest of the day. At the end of the day,
students start leaving, so the number of nodes are decreasing in the hour-based temporal networks.

We still see two dominant clusters in the network based on the PageRank score.

7.1.3 Community Detection in Temporal Networks
We use a modularity maximization based community detection algorithm [19] to find community

structure in these temporal networks. The results illuminate the PageRank evolution results further,
and provide basis for future work for social structure analysis in early-childhood learning domains.
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Community Structure Evolution
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Community detection methods reveal finer details of student-teacher and student-student dynamics
that unfold during a typical day. We have verified this community structure by manual observation
during that particular day. Initially, teachers (10 and 11) have their own clusters in the first hour,
when both of them are giving lessons to students, separately. From 11 am - 12 pm, the students and
teachers come together for circle time, when social activities happen involving everyone. For the rest
of the day, some students work on lessons by themselves, whereas teachers spend time together with
a few students who need more attention. Students start to leave at the end of the day, and there are

more clustered interaction happening. Community detection, in such cases, can give us a very good
picture of social clusters and dynamics, along with social learning and group work. Such analysis
done over months of data can reveal unique patterns in social learning and effectiveness of teaching
lessons to students.

7.2 Region Preference Dynamics
As discussed before, the regions in the classroom are important markers of interest among students.
Our visualization of region occupation over time provides a way for teachers to understand their
classroom design better. Additionally, soeic statistical analysis techniques can group students
according to their preferred locations in the classroom.

7.2.1 Student-Location Frequency Matrix
The region data collected over a day can be used to form a matrix M of student-location frequency
matrix, similar to term-document frequency matrix. Rows are individual students, and columns are
marked shelf locations where region trackers were placed. As each student visits different shelves in
the classroom, his/her proximity data are logged in the region tracker. Every 10 seconds, the
occupation count increases once in this way. The symmetric matrix IIM' can be used to find co-
occurrence of students with each other. A principal components analysis would also reveal clusters
of students based on common locations (the two most varying dimensions of PCA can be plotted to
find these clusters). Thus data collected over months can show unique patterns in learning
preference.

]or demonstration purpose, we show the analysis a few sample days spread over a month: a few
days before and a continuous week after spring break in a classroom.
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7.2.2 Principal Components Analysis (PCA)
The PCA\ results on the timeline stated above reveal social groups clustered according to region

preference in the classroom. This gives a relevant spatial context to the community detection

methods.
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On some days, there are a few students who cannot be assigned to a tight cluster, but the rest are

usually very much clustered that show preference towards certain locations. Before and after the

spring break (3/29 to 4/3), there is a significant change in shelf preferences, but the preferences

stabilize soon enough to previous patterns. As we learned, this can be due to certain classroom

designs teachers changed over the break.
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7.2.3 Co-occurrence Matrix

Another way to look at the same data is by calculating the co-occurrence matrix for the same days.

The student-location matrix columns are normalized before we calculate the co-occurrence.
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As seen from the matrix plots, right after spring break, the clustering preferences among 1 to 5
changed, but they settle down onto similar habits of choosing their previous favorite locations

before spring break.

Doing a co-occurrence analysis based on the spatial context can provide such insights over months

of data, which has the potential to reveal preferential bias among students to adhere to certain

category of lessons and shelves.
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8 Use Cases Evaluation
After deploying Sensei for four weeks in three different Montessori classrooms, we interviewed

teachers about the intended use cases of the system. They were given access to the web dashboard

to look at their own classroom data, and described what they thought about the usefulness of Sensei

in their classroom.

Ten certified Montessori teachers were recruited from classrooms with three different types of

student demographics: ages 1.5-3, ages 3-6, and bilingual schools. This variety of schools gave us a

diversity of opinions and how they thought Sensei would be useful in the context of their

classrooms. Out of the ten teachers, six of them were in classrooms where we deployed our final

pilot study with Sensei sensors. We conducted a 30 minute long qualitative study with them, and

found that they were more inclined to discuss how they could leverage the data, rather than specific

details about the dashboard and the visualizations. Teachers were shown all of the visualizations in

the web dashboard and we recorded videos of the 30-minute interviews to transcribe their

comments.

8.1 Perception about Sensei Deployment
In our initial interviews, Montessori teachers indicated that they were hesitant to introduce

technology in the classroom, especially in the form of screens. However, teachers seemed quite

enthusiastic to deploy Sensei in their classrooms. They found the visualizations useful in different

ways according to their own classroom settings. Teachers who were from the classrooms where we

already deployed our system mentioned that they did not notice any change in natural classroom

interactions because of Sensei; students could barely recognize the changes we made in their

classrooms. In other words, Sensei was successful in blending in with the seamiess classroom

experience.

8.2 Augmenting Manual Observation with Sensei
All in all, the teachers most appreciated the aspect of having "specific quantifying elements" to

augment their observations. Almost all of them remarked that Sensei is an excellent tool for

capturing insights that may otherwise have been lost.

One teacher commented that she can now have more meaningful conversations about her students

with their parents, so this system "would be especially meaningful around parent-teacher check-in

time". Another teacher from a 3-6 year old classroom divided with walls said that this data would be

particularly useful for her, as she does not have a full view of her classroom to observe properly.

Another teacher from a 1.5-3 year old classroom commented that these classrooms are more

difficult to observe as younger children prefer to rapidly move around the classroom and socialize,
rather than spend too much time on lessons. These teachers need to be more active and hence their

observation records are usually minimal compared to other Montessori classrooms.

8.3 Needs for Increased Interaction
When shown the three visualizations using social interaction data, nearly every teacher drew

comparisons between the visualizations and their own classroom. Moreover, teachers were able to

identify clusters of children based on the data presented to them.
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Teachers who wore the sensors during our final round of pilot study were shown their level of

interaction with the student body. They expressed concern about children who spent less time with

them and more time alone, and thus the teachers were able to make informed decisions about to
whom they would need to reach out.

All of the teachers were drawn to the data about their own interactions, which reflected our findings
in our initial teacher interviews. One teacher reflected on how much time was spent with children: "I
need to get these two kids more independent from us. One of the key Montessori principles is
independence." In the bilingual classroom, teachers were interested in seeing which students spent
more time with the Spanish-speaking teacher over the English-speaking teacher. With this
visualization, teachers can self-reflect on their own methods in the classroom.

8.4 Tracking Learning Progress
Teachers from 3-6 year old classrooms were very interested in the data gathered from sensors

located around the room and on lesson trays. According to them, this information can assist in
optimizing learning outcomes in the classroom by determining what lessons to introduce to
children.

When shown the visualization using lesson interaction data, teachers who taught the 1.5-3 year old
classrooms were not very interested, because younger children spend less time working on specific
lessons. However, teachers who taught older classrooms were very interested in using this to inform
their weekly lesson planning. They were also interested in this data to inform them when they should
introduce a new lesson into the classroom: "If these lessons aren't being used at all, then my class is
done with them".

Teachers were also interested in identifying a child's specific interest. One teacher described a
scenario where a child chooses a lesson, removes it from the shelf, but then returns it when it is too
advanced for them. By seeing proximity data from this scenario, they can recognize these often
quick interactions and choose to present the lesson to the child instead of having the child
attempting it by himself/herself.

When shown the visualization of region tracker data, teachers, especially those who taught the 3-6
year old classrooms, were drawn to the pie chart depicting a child's time spent in particular areas of
the classroom. They remarked on how this information would help them determine when a child
should be encouraged to explore a new subject area.

Teachers also raised questions on how Sensei can measure a student's actual focus on a lesson.
Although a student might be in close proximity to the lesson, their attention might be divided.

8.5 Proximity as a Proxy for Interaction
Proximity does not always represent social interaction, which is an assumption on which we

designed the system. This was an issue raised by teachers too. To determine how often children are

actually interacting, we studied how well proximity maps to social activity by quantifying how often

these interactions happen on a typical day.

We recorded four hours of video in one school that has 3 - 6 year old children. Three observers

manually annotated the video, recording timestamps when they thought social interactions occurred

58



between children. To imitate our sensor network configuration, less than ten seconds of proximity

were ignored in the manual annotation. They also recorded when the children were in close

proximity but were not interacting.

Using aggregate values of social interaction and proximity durations, we calculated that children

were actually engaged in interaction 84.9% of the time when they were in proximity. By tracking

patterns over time and gathering more longitudinal data, we can help alleviate this limitation of our

system.
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9 Related Works
9.1 Wearable Electronics and Software for Contact Networks
The Sociometric Badge and Sociopatterns proximity sensor log proximity data between groups of

people [20, 21, 22]. The Sociometric Badge is a wearable badge that was designed to measure
proximity during meetings and conferences. Bluetooth modules search for similar modules in their
proximity and use the RSSI value of the incoming data packets to measure that proximity.
Smartphones have also been used as proximity sensors in some studies. The authors of [23] used

Bluetooth RSSI signal strength between phones to understand proximity and create a social
interaction network of students in the Copenhagen Network Study.

A challenge of using these sensors in an early childhood classroom setting is their high power
requirement and the consequent effect on the size of the circuitry. The batteries tend to be larger
than coin cells, and using a big badge in early education classrooms is discouraged by Montessori

educators and teachers. Screens are also discouraged, and children cannot really carry a smartphone
around. In contrast, our sensors are small and discreet in nature, so they do not disrupt the

classroom experience.

9.2 Computer Vision in the Classroom
A review of the literature on people tracking is well beyond the scope of this thesis, we will only
mention a few examples of the related work here. Authors of [24, 25] demonstrated, among many,
that it is possible to track people in a mildly cluttered scene when individual motion tracks are
intersecting in a video. In the recent years, multilayer neural networks have become popular in
recognizing and segmenting objects in a video. A survey of several methods inspired by this
technique is available in [26]. Depth sensing imaging devices like Kinect have been used widely to

detect and track multiple human figures [27]. Thermal imaging was used in [28] to improve human

figure detection, and infrared motion tracking systems exist [29] that occasionally require people to
wear tracking tags.

There are certain caveats to using computer vision in classrooms. Other than privacy concerns, most

computer vision algorithms require good lighting conditions and are challenged by occlusion limits.

It is difficult to track 15 - 20 children of small heights in a cluttered classroom scene where tables
and furniture act as major occlusion. Kinect and similar stereo based camera systems have a
maximum range within which they are accurate (5m for Kinect) [30], and Kinect can track only up

to a finite number of human figures simultaneously using its skeleton tracker features. Thermal and
infrared camera systems also require multiple cameras installed in the classroom.

Moreover, they are typically very expensive and are not suitable for a small school budget. Our

sensors are low-cost, uniquely identifiable, and do not require changing the existing classroom

design to install a camera system.

9.3 Technology in Montessori Classrooms
Both early childhood classrooms and Montessori classrooms have started to employ technology in

different ways to augment lesson presentation and curriculum planning [31, 32]. There are existing

tools to help teachers record their observation notes [33]. These tools are useful for comparing
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notes later, but they are not sensor enabled and do not present any quantitative data on lesson

progress, social interaction or region based activities.

9.4 Proximity Data Analysis and Visualization
Visualization platforms for proximity data are limited to understanding social and organizational

behavior [34]. Authors in [35] demonstrated how social network analysis could be used with

qualitative evaluation data to understand the context behind classroom interactions. Data from

Sociometric badges have been used to identify important social factors in organizational design and

management. The authors of [36] used the badges to study and visualize longitudinal social

interaction patterns over weeks. The visualizations were designed for research purpose only.

Sociopattern proximity sensors have been used in a high school [37, 38] to demonstrate the

superiority of proximity data in understanding social interactions, compared to observation diaries

and friendship surveys. However, to our knowledge, no proximity visualization framework exists

that is accessible to a person outside the domain of research and engineering. Additionally, no

system currently enables a teacher or a parent to understand changes in social behavior in the

classroom and lesson progress of children.
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10 Future Work
Sensei will be enhanced both in the hardware and firmware fronts. The region tracker solution can
log proximity data for three weeks at maximum. Better sleep schedules and smarter protocols can
enhance the battery life further. We plan to develop rigid-flex PCBs [39] of Sensei hardware so we
can deploy the sensors in student's work rugs and carpets.

We would like to run more pilots and deploy Sensei in different classrooms of Wildflower Schools
to evaluate its usefulness in individualized curriculum design. Classroom design changes inspired by
Sensei will also be evaluated, as this is an important and impactful use case of our system.

The Sensei API will facilitate early childhood learning research in many different ways. Sensei
deployed in Montessori classrooms for a period of months will provide a unique dataset about early
childhood education. This rich dataset can be used, among other things, to create models of social
and learning interaction. For example, using Hidden Markov Models [40], we can classify "hidden
states" underlying children's learning patterns based on lesson activity. Using Probabilistic Latent
Semantic Indexing (PLSI) [41] on student-location or student-lesson time series, we can group
students according to their interest in different topics and track how the groups evolve.

Maria Montessori and other early childhood researchers have observed that children have "sensitive
periods" in which they are particularly open to learning a certain subject [7]. HMMs can help to
understand and quantify these sensitive periods.

Even though the social network produced from our proximity data is an undirected graph, we can
treat it as a directed graph based on who is speaking in a group (captured from microphone data).
This creates a better ground for PageRank-like algorithms to analyze the network, helping to
understand the influence of different children in the classroom.
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Appendix A

Field interview samples.

I What events kcad/motwate Nou to an observanon at different tunes of the day?

2 What motivates yoil to wtte down these observanons? IHow do you use these notes later

I I want you to w alk me through a day in the school. What do you observe at different tinmes
in relauon to the activities in the school?

4. What arc some key lessons/categoeris that are housed in lesson trays

5. What leads you to interact with a child

6. H low do you define focus or engagement for a child? I-or example, is this the length of time
spent on the lesson, ot the intensity'

2. What are the different kind of scial interaction that happens in the classrooim?

I eli us Abi'ut spefit pattemi' that seem to be a recurnng activity in the classroom, like a
rhythm. Is it important for you to observe this rhythm/patient?

9. How can we help you obsecrve? Or enable you to observe certain thuigs.

10. If sou see a Ld Is t ut racaig nuch with a category of lessons, do you intervene or try
to encourage them to use ii
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I. What events lead/motvate you to an observation at different times of the day?

2. What motivates you to wnte down these observations How do you use these notes later

. I want you to walk me through a day i the school. What do you observe at different times

to relation to the acuies in the school?

4. What are some key lessons/categories that are housed in lesson trays

5. What leads you to oMteract with a child
I 1 ~

'V*

6. 1 low do you define focus or engagement for a child? [or example, is this the length of time

spent oi the lesson, or the intensity

7. What are the different kind of social miteraction that hAppens in the classroom?

8. Tell us about specific patterns that seem to he a recurrng actwiy it the classroom, like a

thythm. Is it important for you to observe this rhythmn/pattern

9. How can we help you observe? Or enable you to observe certain things.
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Appendix B

Observation cards filled by teachers during our ideation phase.

date:) /.Z./ 20 1 5 time.,

arousal 0 . ' .......
engagement
challeng
sntpersa 1x1 peraton
prcOsoctal behavnor

Aury

(D

vOrume C
matenal name __ _ __ _

date:- _ k2015 tme l2 _0

arousal .. y ...

engagement
challenge
,nterpesonal coorperal wn
pmosocial behavor
voksme

matenal name C

Kaetyn

KatW4n
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