
Learning Structured Representations for Perception

and Control

by

Tejas Dattatraya Kulkarni

B.S., Purdue University (2010)

MASSACHUSETTS INSTITUTE
OF TECHNOWOGY

DEC 20 2016

LIBRARIES

Submitted to the Department of Brain and Cognitive Science GHIOE$
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

@ Massachusetts Institute of Technology 2016. All rights reserved.

Author.. Signature redacted
I Department of Brain and Cognitive Science

Signature redacted
August 12, 2016

Certified by.
Joshua B. Tenenbaum

Paul E. Newton Career Development Professor of Cognitive Science and
\ Computation

Signature redacted Thesis Supervisor

Accepted .
Matthew A. Wilson

er airk rrofessor of Neuroscience and Picower Scholar
Director of Graduate Education for Brain and Cognitive Sciences

MlTLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
,best quality available.

Learning Structured Representations for Perception and

Control

by

Tejas Dattatraya Kulkarni

Submitted to the Department of Brain and Cognitive Science
on August 12, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

I argue that the intersection of deep learning, hierarchical reinforcement learning, and

generative models provides a promising avenue towards building agents that learn to
produce goal-directed behavior given sensations. I present models and algorithms that
learn from raw observations and will emphasize on minimizing their sample complexity
and number of training steps required for convergence. To this end, I introduce
hierarchical variants of deep reinforcement learning algorithms, which produce and
utilize temporally extended abstractions over actions. I also present a hybrid model-
free and model-based deep reinforcement learning model, which can also be potentially

used to automatically extract subgoals for bootstrapping temporal abstractions. I will
then present a model-based approach for perception, which unifies deep learning and
probabilistic models, to learn powerful representations of images without labeled data

or external rewards.
Learning goal-directed behavior with sparse and delayed rewards is a fundamental

challenge for reinforcement learning algorithms. The primary difficulty arises due
to insufficient exploration, resulting in an agent being unable to learn robust value
functions. I present the Deep Hierarchical Reinforcement Learning (h-DQN) approach,
which integrates hierarchical value functions operating at different time scales, along
with goal-driven intrinsically motivated behavior for efficient exploration. Intrinsically
motivated agents can explore new behavior for its own sake rather than to directly

solve problems. Such intrinsic behaviors could eventually help the agent solve tasks

posed by the environment. h-DQN allows for flexible goal specifications, such as

functions over entities and relations. This provides an efficient space for exploration

in complicated environments. I will demonstrate h-DQN's ability to learn optimal

behavior given raw pixels in environments with very sparse and delayed feedback.

I will then introduce the Deep Successor Reinforcement (DSR) learning approach.

DSR is a hybrid model-free and model-based RL algorithm. It learns the value function
of a state by taking the inner product between the state's expected future feature
occupancy and the corresponding immediate rewards. This factorization of the value
function has several appealing properties - increased sensitivity to changes in the

3

reward structure and potentially the ability to automatically extract subgoals for
learning temporal abstractions.

Finally, I argue for the need for better representations of images, both in rein-
forcement learning tasks and in general. Existing deep learning approaches learn
useful representations given lots of labeled data or rewards. Moreover, they also
lack the inductive biases needed to disentangle causal structure in images such as -
objects, shape, pose and other intrinsic scene properties. I present generative models
of vision, often referred to as analysis-by-synthesis approaches, by combining deep
generative methods with probabilistic modeling. This approach aims to learn struc-
tured representations of images given raw observations. I argue that such intermediate
representations will be crucial to scale-up deep reinforcement learning algorithms, and
to bridge the gap between machine and human learning.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Paul E. Newton Career Development Professor of Cognitive Science and Com-
putation

4

Acknowledgments

This thesis is a culmination of many years of debates, disagreements, friendships,

support, sacrifice and love.

I must begin with the person that taught me how to think. Everyone knows that

Josh is one of the best thinkers of our time. But perhaps only a handful of students,

friends and family have been lucky enough to be mentored by him. When I first came

to MIT, I was profoundly lost. Josh's relentless enthusiasm for understanding the

mind and his unwavering faith in himself was contagious. It is fair to say that I found

new meaning in my research and life after being his student.

Next, it would have been difficult to continue my self-exploration without the

guidance of Vikash Mansinghka. Vikash has always gone out of his way to help me.

He introduced me to the world of Al and Machine Learning. He taught me how to be

rigorous in my thinking, while avoiding pigeon holing myself into academic obscurity.

Without the love and sacrifice of my wife and parents, I wouldn't be able to write

this thesis. I must begin with Nisha, the love of my life. She has been an unwavering

source of energy and support. Academia can often make you feel excruciatingly

isolated and lonely. Without her love and sacrifice, I wouldn't have been able to grow

as much. Next my parents and younger sister Tanvi - they literally spent all their

life savings to ship me to the US. I will be forever grateful for their support, sacrifice

and love. For the last decade, Nisha's family has been a home away from home. I feel

fortunate to be surrounded by such wonderful and supportive family.

I have been lucky to work with many collaborators. Without Karthik Rajagopal

and Ardavan Saeedi, I would have never forayed into reinforcement learning. I

will always cherish our late night discussions about the future of Al, intense gym

sessions intermixed with philosophical discussions, and late night coding sessions to

get our Al systems to converge. Sometime last year, a bunch of random students

got together to take over an empty office space and called themselves the "AGI

people". Will Whitney was the first one to join me. Will is one of those exceptional

people with lots of raw intelligence. I learnt a lot from him and will always cherish

our late night conversations about neural nets, information theory and physics. I

also had the privilege to collaborate with some exception undergraduate researchers

- Simanta Gautam, Michael Janner and Michael Chang. I must also thank Yura

Perov, with whom I wrote my first paper in graduate school. Whenever I had any

question about the brain, Ilker never hesitated to help out. Vlad has always been

my go-to mathematician and I always learnt something new from talking to him.

Sam Gershman's scientific work and his ability to effectively communicate ideas has

always been inspiring. Without Pushmeet's optimism, it would have been difficult

to push some of the earlier ideas in my academic career. Everyone has scientific and

philosophical heroes, whose work inevitably end up shaping your own perspectives.

Along with Josh, my perspective has been heavily influenced by - Rich Sutton, Geoff

Hinton, Ray Solomonoff, Alan Turing.

My friends really made my MIT experience special. Pedro, Mikhil, Max KW,

Max S, David, Rishi, You - I am forever grateful for your company. Pedro has been

a very dear friend for the longest time. He always pushed and inspired me to lead

a healthier life style. I will miss those endless conversations with him about life,

philosophy, and the nature of happiness. Mikhil's curiosity has always struck me and

every conversation with him has taught me something new. I hope at least some of us

end up in the same city.

I am grateful to my committee members - Tommy Poggio, Ted Adelson and Bill

Freeman. They gave me the utmost freedom to explore anything that I wanted to. I

was also fortunate enough to be at MIT while the Center for Brains, Machines and

Minds (CBMM) was being created. CBMM along with Siemens generously supported

me for the final year of my PhD. I also want to acknowledge the Singleton and

Leventhal fellowship for their generous support.

The research presented in chapters 2 and 3 was done in collaboration with Karthik

Rajagopal, Ardavan Saeedi, Simanta Gautam, Sam Gershman and Joshua Tenenbaum.

Finally, research in chapter 4&5 was done in collaboration with Will Whitney, Pushmeet

Kohli, Vikash Mansinghka and Joshua Tenenbaum.

6

Contents

1 Introduction

1.1 M otivation .

1.2 Building Features, Theories or Explanations from Visual Observations

1.2.1 Bottom-up Approach to Perception

1.2.2 Analysis-by-Synthesis: Top-down Approach to Perception . . .

1.3 Learning Goal-directed Behavior .

1.3.1 Reinforcement Learning .

1.3.2 Hierarchies in Reinforcement Learning

1.3.3 Intrinsic M otivation .

1.3.4 Extracting subgoals to build options

1.4 Summary of Contributions .

1.4.1 Integrating Perception and Control

1.4.2 Towards more structured models of perception

2 Deep Hierarchical Reinforcement Learning

2.1 Introduction .

2.2 M odel .

2.3 Experim ents

2.3.1 Stochastic Decision Process with Delayed Rewards .

2.3.2 ATARI Game with Delayed Rewards

2.4 Conclusion

7

23

23

24

26

26

29

30

31

32

33

34

35

36

39

. 39

. 40

. 44

. 44

. 47

. 50

3 Deep Successor Reinforcement Learning: A Hybrid Model-free and

Model-based Approach

3.1 Introduction

3.2 Related work

3.3 M odel

3.3.1 Background

3.3.2 The successor representation

3.3.3 Deep successor representation

3.3.4 Learning

3.4 Automatic Subgoal Extraction .

3.5 Experiments

3.5.1 Goal-directed Behavior .

3.5.2 Value function sensitivity to distal reward changes .

3.5.3 Extracting subgoals from the DSR

3.6 Conclusion .

4 Perception as analysis-by-synthesis

4.1 Introduction .

4.2 Picture Language .

4.2.1 Architecture

4.3 Inference .

4.3.1 Distance Metrics and Likelihood-free Inference

4.3.2 Proposal Kernels

4.4 Example Picture Programs

4.4.1 3D Analysis of Faces

4.4.2 3D Human Pose Estimation

4.4.3 3D Shape Program

4.5 D iscussion .

5 Learning analysis-by-synthesis models

5.1 Introduction .

8

55

. 55

. 57

.... 58

. 58

. 59

. 59

. 60

. 61

63

63

64

65

66

69

. 69

. 72

. 75

. 76

. 78

. 78

. 81

. 81

. 84

. 85

. 87

91

91

5.2 Related Work . 93

5.3 M odel . 95

5.3.1 Training with Specific Transformations 96

5.3.2 Invariance Targeting . 98

5.4 Experiments . 100

5.4.1 3D Face Dataset . 100

5.4.2 Chair Dataset . 103

5.5 D iscussion . 103

6 Conclusion 105

6.1 Closing Remarks . 105

6.2 Future Directions . 106

6.2.1 Scaling up object-based subgoal discovery 107

6.2.2 Deep Hierarchical Successor Reinforcement Learning 108

6.2.3 Deep Temporal Compressor 108

A 111

A.1 3D medially-symmetric object reconstruction program 111

A.2 3D Human Pose Program . 112

A.3 Generative Face Program . 113

9

10

List of Figures

1-1 Thesis Overview: I present agents that learn to produce goal-directed

behavior from pixels. This is achieved by algorithms that learn spatio-

temporal representations from raw experiences. I also present model-

based approaches for perception, which will be increasingly important

for building goal seeking agents. (a) In chapter 2, I present the Deep

Hierarchical Reinforcement learning approach (h-DQN), which inte-

grates multiple value functions operating at different time scales, to

enable efficient policy learning in complex environments. (b) In chapter

3, I present a hybrid model-free and model-based RL approach called

the Deep Successor Reinforcement learning algorithm (DSR). DSR has

several appealing properties - rapid sensitivity to distal changes in

rewards and ability to extract subgoals from experiences. DSR could

also be plugged directly into h-DQN for hierarchical RL. (c) Due to

the sparse and delayed reward problem in RL, it can be difficult to

learn features from images. Unsupervised deep learning, probabilis-

tic generative models and their combinations can be utilized to build

structured generative models that produce powerful representations of

images. I present analysis-by-synthesis based approaches (also referred

to as inverse graphics) for perception (chapter 4&5). 25

11

2-1 Overview: The agent produces actions and receives sensory observa-

tions. Separate deep-Q networks are used inside the meta-controller

and controller. The meta-controller that looks at the raw states and pro-

duces a policy over goals by estimating the value function Q2(st, gt; 02)

(by maximizing expected future extrinsic reward). The controller takes

in states and the current goal, and produces a policy over actions by

estimating the value function Q2(st, at; 01, gt) to solve the predicted goal

(by maximizing expected future intrinsic reward). The internal critic

checks if goal is reached and provides an appropriate intrinsic reward

to the controller. The controller terminates either when the episode

ends or when g is accomplished. The meta-controller then chooses a

new g and the process repeats. 42

2-2 A stochastic decision process where the reward at the terminal state s1

depends on whether s6 is visited (r = 1) or not (r = 1/100). 46

2-3 Average reward for 10 runs of our approach compared to Q-learning. . 47

2-4 Number of visits (for states S3 to s6) averaged over 1000 episodes. The

initial state is S2 and the terminal state is s. 47

2-5 (a) A sample screen from the ATARI 2600 game called 'Montezuma's

Revenge'. (b) Architecture: DQN architecture for the controller (Qi).

A similar architecture produces Q2 for the meta-controller (without

goal as input). In practice, both these networks could share lower level

features but we do not enforce this. 48

12

2-6 Results on Montezuma's Revenge: These plots depict the joint

training phase of the model. As described in Section 2.3.2, the first

training phase pre-trains the lower level controller for about 2.3 million

steps. The joint training learns to consistently get high rewards after

additional 2 million steps as shown in (a). (b) Goal success ratio:

The agent learns to choose the key more often as training proceeds and

is successful at achieving it. (c) Goal statistics: During early phases

of joint training, all goals are equally preferred due to high exploration

but as training proceeds, the agent learns to select appropriate goals

such as the key and bottom-left door. 51

2-7 Sample gameplay by our agent on Montezuma's Revenge: The

four quadrants are arranged in a temporally coherent manner (top-

left, top-right, bottom-left and bottom-right). At the very beginning,

the meta-controller chooses key as the goal (illustrated in red). The

controller then tries to satisfy this goal by taking a series of low level

actions (only a subset shown) but fails due to colliding with the skull

(the episode terminates here). The meta-controller then chooses the

bottom-right ladder as the next goal and the controller terminates after

reaching it. Subsequently, the meta-controller chooses the key and the

top-right door and the controller is able to successfully achieve both

these goals. 52

2-8 Sample gameplay by our agent on Montezuma's Revenge with

finer tim e resolution . 53

13

3-1 Model Architecture: DSR consists of: (1) feature branch fo (CNN)

which takes in raw images and computes the features <0, (2) successor

branch u,, which computes the SR ms,,a for each possible action a E A,

(3) a deep convolutional decoder which produces the input reconstruc-

tion st and (4) a linear regressor to predict instantaneous rewards at St.

The Q-value function can be estimated by taking the inner-product of

the SR with reward weights: Qr(s, a) maa - w............. 56

3-2 Environments: (left) MazeBase [133] map where the agent starts at

an arbitrary location and needs to get to the goal state. The agent

gets a penalty of -0.5 per-step, -1 to step on the water-block (blue) and

+1 for reaching the goal state. The model observes raw pixel images

during learning. (center) A Doom map using the VizDoom engine

[71] where the agent starts in a room and has to get to another room

to collect ammo (per-step penalty = -0.01, reward for reaching goal =

+1). (right) Sample screen-shots of the agent exploring the 3D maze. 64

3-3 Average trajectory of the reward (left) over 100k steps for the grid-

world maze. (right) over 180k steps for the Doom map over multiple

ru n s. 64

3-4 Changing the value of the distal reward: We train the model

to learn the optimal policy on the maze shown in Figure 3-2. After

convergence, we change the value of the distal reward and update the

Q-value for the optimal action at the origin (bottom-left corner of the

maze). In order for the value function to converge again, the model only

needs to update the linear weights w given the new external rewards. 65

14

3-5 Subgoal extraction on grid-world: Given a random policy, we train

DSR until convergence and collect a large number of sample transitions

and their corresponding successor representations as described in sec-

tion 3.4. We apply a normalized cut-based algorithm on the SRs to

obtain a partition of the environment as well as the bottleneck states

(which correspond to goals) (a) Subgoals are states which separate

different partitions of the environments under the normalized-cut algo-

rithm. Our approach is able to find reasonable subgoal candidates. (b)

Partitions of the environment reflect latent structure in the environment. 66

3-6 Subgoal extraction on the Doom map The subgoals are extracted

using the normalized cut-based algorithm on the SR. The SR samples

are collected based on a random policy. The subgoals mostly correspond

to the rooms' entrances in the common area between the rooms. Due

to random policy, we sometimes observe high variance in the subgoal

quality. Future work should address robust statistical techniques to

obtain subgoals, as well as non-parametric approaches to obtaining

flexible number of subgoals. 67

15

4-1 Overview: (a) All models share a common template; only the scene descrip-

tion S and image ID changes across problems. Every probabilistic graphics

program f defines a stochastic procedure that generates both a scene de-

scription and all the other information needed to render an approximation

IR of a given observed image ID. The program f induces a joint proba-

bility distribution on these program traces p. Every Picture program has

the following components. Scene Language: Describes 2D/3D scenes and

generates particular scene related trace variables SP E p during execution.

Approximate Renderer: Produces graphics rendering IR given SP and

latents XP for controlling the fidelity or tolerance of rendering. Represen-

tation Layer: Transforms ID or IR into a hierarchy of coarse-to-fine image

representations v(ID) and v(IR) (deep neural networks [82, 76], contours [29]

and pixels). Comparator: During inference, IR and ID can be compared us-

ing a likelihood function or a distance metric A (as in Approximate Bayesian

Computation [152]). (b) Inference Engine: Automatically produces a

variety of proposals and iteratively evolves the scene hypothesis S to reach a

high probability state given ID. (c): Representative random scenes drawn

from probabilistic graphics programs for faces, objects, and bodies. 71

16

4-2 Picture code illustration for 3D face analysis: Modules from Figure 4-la,b

are highlighted in bold. Running the program unconditionally (by removing

observe's in code) produces random faces as shown in Figure 4-1c. Running

the program conditionally (keeping observe's) on ID results in posterior infer-

ence as shown in Figure 4-3. The variables MU, PC, EV correspond to the

mean shape/texture face, principal components, and eigenvectors respectively

(see [105] for details). These arguments parametrize the prior on the learned

shape and appearance of 3D faces. The argument VERTEXORDER

denotes the ordered list of vertices to render triangle based meshes. The

observe directive constrains the program execution based on both the pixel

data and CNN features. The infer directive starts the inference engine with

the specified set of inference schemes (takes the program trace, a callback

function CB for debugging, number of iterations and inference schemes). In

this example, data-driven proposals are run for a few iterations to initialize

the sampler, followed by slice sampling moves to further refine the high

dimensional scene latents. 73

4-3 Inference on representative faces using Picture: We tested our ap-

proach on a held-out dataset of 2D image projections of laser-scanned faces

from [105]. Our short probabilistic program is applicable to non-frontal faces

and provides reasonable parses as illustrated above using only general-purpose

inference machinery. For quantitative metrics, refer to section 4.4.1. 74

4-4 Formal Summary: The scene S can be conceptualized as a program

that describes the structure of known or unknown number of objects,

texture-maps, lighting and other scene variables. The symbol T denotes

the number of times the program f is executed to generate data-driven

proposals (see section 4.3.2 for details). The rendering differentiator

produces gradients of the program density with respect to continuous

variables Sreai in the program. 77

4-5 Helmholtz Proposals. (a) Training Phase. (b) Testing Phase 82

17

4-6 The effect of adding data-driven proposals for 3D face program: A

mixture of automatically learned data-driven proposals and elliptical slice

proposals significantly improves speed and accuracy of inference over a pure

elliptical slice sampler. We ran 50 independent chains for both approaches

and show a few sample trajectories as well as the mean trajectories (in bold). 83

4-7 Quantitative and qualitative results for 3D human pose program:

Refer to supplementary Figure 4 for the probabilistic program. We quantita-

tively evaluate the pose program on a dataset collected from various sources

such as KTH [1191, LabelMe [113] images with significant occlusion in the

"person sitting" category and the Internet. On the given dataset, as shown

in the error histogram in (a), our model is more accurate on average than

just using the DPM based human pose detector [157]. The histogram shows

average error for all methods considered over the entire dataset separated

over each body part. 88

4-8 Illustration of data-driven proposal learning for 3D human-pose

program: (a) Random program traces sampled from the prior during

training. The colored stick figures are the results of applying DPM pose

model on the hallucinated data from the program. (b) Representative test

image. (c) Visualization of the representation layer v(ID). (d) Result

after inference. (e) Samples drawn from the learned bottom-up proposals

conditioned on the test image are semantically close to the test image and

results are fine-tuned by top-down inference to close the gap. As shown

on the log-l plot, we run about 100 independent chains with and without

the learned proposal. Inference with a mixture kernel of learned bottom-up

proposals and single-site MH consistently outperforms baseline in terms of

both speed and accuracy..... 89

18

4-9 Qualitative and quantitative results of 3D object reconstruction

program: Refer to supplementary Figure 3 for the probabilistic program.

Top: We illustrate a typical inference trajectory of the sampler from prior to

the posterior on a representative real world image. Middle: Qualitative re-

sults on representative images. Bottom: Quantitative results in comparison

to 151. For details about the scoring metrics, refer to section 4.4.3. 90

5-1 Model Architecture: Deep Convolutional Inverse Graphics Network

(DC-IGN) has an encoder and a decoder. We follow the variational

autoencoder [72] architecture with variations. The encoder consists of

several layers of convolutions followed by max-pooling and the decoder

has several layers of unpooling (upsampling using nearest neighbors)

followed by convolution. (a) During training, data x is passed through

the encoder to produce the posterior approximation Q(zilx), where zi

consists of scene latent variables such as pose, light, texture or shape.

In order to learn parameters in DC-IGN, gradients are back-propagated

using stochastic gradient descent using the following variational object

function: -log(P(xlzi))+KL(Q(zilx)IP(zi)) for every zi. We can force

DC-IGN to learn a disentangled representation by showing mini-batches

with a set of inactive and active transformations (e.g. face rotating,

light sweeping in some direction etc). (b) During test, data x can be

passed through the encoder to get latents zi. Images can be re-rendered

to different viewpoints, lighting conditions, shape variations, etc by

setting the appropriate graphics code group (zi), which is how one

would manipulate an off-the-shelf 3D graphics engine. 93

5-2 Structure of the representation vector. # is the azimuth of the

face, a is the elevation of the face with respect to the camera, and cL

is the azimuth of the light source. 94

19

5-3 Training on a minibatch in which only #, the azimuth angle

of the face, changes. During the forward step, the output from each

component zi / z, of the encoder is altered to be the same for each

sample in the batch. This reflects the fact that the generating variables

of the image (e.g. the identity of the face) which correspond to the

desired values of these latents are unchanged throughout the batch.

By holding these outputs constant throughout the batch, the single

neuron zi is forced to explain all the variance within the batch, i.e. the

full range of changes to the image caused by changing #. During the

backward step zi is the only neuron which receives a gradient signal

from the attempted reconstruction, and all zi $ z1 receive a signal

which nudges them to be closer to their respective averages over the

batch. During the complete training process, after this batch, another

batch is selected at random; it likewise contains variations of only one of

0, a, OL, intrinsic; all neurons which do not correspond to the selected

latent are clamped; and the training proceeds. 96

5-4 Manipulating light and elevation variables: Qualitative results

showing the generalization capability of the learned DC-IGN decoder

to re-render a single input image with different pose directions. (a) We

change the latent Zlight smoothly leaving all 199 other latents unchanged.

(b) We change the latent Zelevation smoothly leaving all 199 other latents

unchanged. (c) The latent neuron Zazimuth is changed to random values

but all other latents are clamped. 99

20

5-5 Generalization of decoder to render images in novel view-

points and lighting conditions: We generated several datasets by

varying light, azimuth and elevation, and tested the invariance proper-

ties of DC-IGN's representation Z. We show quantitative performance

on three network configurations as described in section 5.4.1. (a,b,c) All

DC-IGN encoder networks reasonably predicts transformations from

static test images. Interestingly, as seen in (a), the encoder network

seems to have learnt a switch node to separately process azimuth on

left and right profile side of the face. 101

5-6 Entangled versus disentangled representations. First column: Orig-

inal images. Second column: transformed image using DC-IGN. Third

column: transformed image using normally-trained network. 102

5-7 Manipulating rotation: Each row was generated by encoding the

input image (leftmost) with the encoder, then changing the value of a

single latent and putting this modified encoding through the decoder.

The network has never seen these chairs before at any orientation. (a)

Some positive examples. Note that the DC-IGN is making a conjecture

about any components of the chair it cannot see; in particular, it

guesses that the chair in the top row has arms, because it can't see that

it doesn't. (b) Examples in which the network extrapolates to new

viewpoints less accurately. 104

A-1 3D Shape Program Visualization 112

A-2 Inference run-time comparison for face program: We ran 30 in-

dependent inference runs each by toggling the inference scheme between

single-site metropolis hastings and elliptical slice proposals. Elliptical

moves give significant speedup to reach a certain level of score, which

is expected as single-site updates will scale linearly with dimensionality

of latents. 113

21

A-3 Picture code for 3D Object Reconstruction via Lathing: Gaus-

sian Process based 3D reconstruction program of lathe objects. This

program samples 3D shapes with two independent sub-parts. We used

probabilistic chamfer distance as the stochastic comparator. 114

A-4 Picture code for 3D Human Pose: This program use an existing

base mesh of a human body, defines priors over bone location and joints,

and enables armature skin-modifier[14] via Picture's Blender engine

API. We used probabilistic chamfer distance as the comparator. . . . 115

22

Chapter 1

Introduction

1.1 Motivation

The science of intelligence is about the construction, analysis, and understanding of

agents behaving in peculiar ways in different environments. Intelligence is multifaceted

and encompasses many notions like induction, logic, perception, learning, problem

solving, intrinsic motivation, knowledge representations and more. Ultimately, any

theory of intelligence must formalize all of these facets within a coherent mathematical

framework. Why does an agent need to posses or manifest all of these capabilities? It

can be argued that it enables the agent to solve many goals in many environments.

The ability to perceive is one of the first capabilities that a human-like agent

must possess. What are the models and algorithms that can learn state abstractions

from raw sensations? Second, how can an agent learn higher levels of representations

to solve many goals in a diverse set of environments? Existing learning algorithms

are inferior than the way humans learn. Humans can learn autonomously, while

using much less sample complexity [83], and they are also able to effectively transfer

knowledge between tasks.

In this thesis, I take modest steps towards building more powerful perception and

control systems that learn from experiences. I develop joint perception and control

models, which learn spatio-temporal representations of pixels to produce goal-directed

behavior. There has been remarkable progress in deep learning approaches, which

23

learn abstract features given image, speech and text data [851. There has also been lots

of progress in learning goal-directed behavior using reinforcement learning algorithms

[134]. These two disparate threads have been recently unified [49, 74, 94, 123] under

the umbrella of so called deep reinforcement learning (deep RL) approaches. However,

existing deep RL approaches struggle given sparse and delayed feedback, are slow to

adapt to changes in rewards, and do not successfully make use of temporally extended

abstractions over actions. In chapters 2&3, I present models to alleviate some these

issues. See Figure 1-la&b for an overview.

Finally, efficient goal learning mandates good representations of images. Although

deep learning approaches such as Convolutional Neural Nets (CNNs) [84] provide a

reasonable state abstractions, it is imperative to build systems that disentangle the

causal structure in images to scale up deep RL approaches. In chapter 4&5, I present

model-based approaches for perception, by combining ideas from unsupervised deep

learning, probabilistic generative models, and computer graphics. See Figure 1-1c for

an overview.

My working hypothesis is that by combining deep learning, hierarchical reinforce-

ment learning and probabilistic generative modeling, it is possible to start building

more human-like agents that learn to perceive and produce optimal behaviors towards

solving goals.

1.2 Building Features, Theories or Explanations from

Visual Observations

There is a long history of trying to understand what it means to "see" in philosophy

and science. I take a pre-dominantly computational perspective and discuss two

of the most appealing conceptual frameworks - (1)Bottom-up Empirical Regressors:

sensory information passes through a series of computational processes to give rise to

increasingly complex features and (2) Model or theory building (analysis-by-synthesis):

a top-down computational process which iteratively refines itself to best explain in-

24

- WW_-

(a) (b)

action External observations

extrinsic
reward

Meta
Controller

Tqoal

--- --- -- ---- S R (st)

* Criti

r ntr nsicaction cwrdrreward M~

- - Controller

(c)

eye image light

Lights -~t L
1e

Materials

Objects - image

object

Computer Graphics

Vision - Inverse Graphics

Figure 1-1: Thesis Overview: I present agents that learn to produce goal-directed

behavior from pixels. This is achieved by algorithms that learn spatio-temporal

representations from raw experiences. I also present model-based approaches for

perception, which will be increasingly important for building goal seeking agents.

(a) In chapter 2, 1 present the Deep Hierarchical Reinforcement learning approach

(h-DQN), which integrates multiple value functions operating at different time scales,

to enable efficient policy learning in complex environments. (b) In chapter 3, I

present a hybrid model-free and model-based RL approach called the Deep Successor

Reinforcement learning algorithm (DSR). DSR has several appealing properties -

rapid sensitivity to distal changes in rewards and ability to extract subgoals from

experiences. DSR could also be plugged directly into h-DQN for hierarchical RL.

(c) Due to the sparse and delayed reward problem in RL, it can be difficult to learn

features from images. Unsupervised deep learning, probabilistic generative models and

their combinations can be utilized to build structured generative models that produce

powerful representations of images. I present analysis-by-synthesis based approaches

(also referred to as inverse graphics) for perception (chapter 4&5).

25

coming sensory information, often taking aid from bottom-up computational processes

for inference.

1.2.1 Bottom-up Approach to Perception

Deep learning has led to remarkable breakthroughs in learning hierarchical represen-

tations of images. Models such as CNNs, Restricted Boltzmann Machines [53, 114],

and Auto-encoders [10, 148] have been successfully applied to produce multiple layers

of increasingly abstract feature representations. These techniques have been used to

solve a variety of tasks including: object recognition [761, machine translation and

reinforcement learning [94, 123, 931. However, coming up with the best representation

for any given task is still an open question, especially in the absence of labeled data

or when the environment provides sparse and delayed rewards.

Various work [11, 17, 40, 1071 has been done on the theory and practice of represen-

tation learning, and from this work a consistent set of desiderata for representations

have emerged: invariance, interpretability, abstraction, and disentanglement. In

particular, Bengio et al. [11] propose that a disentangled representation is one for

which changes in the encoded data are sparse over real-world transformations; that is,

changes in only a few latents at a time should be able to represent sequences which

are likely to happen in the real world.

1.2.2 Analysis-by-Synthesis: Top-down Approach to Percep-

tion

Perhaps the oldest philosophical foundation for analysis-by-synthesis came from David

Hume. Hume argued that ideas are mental images and minds only have indirect access

to reality. Another early account was proposed by Hermann von Helmholtz in his

book titled Treatise on physiological optics [149]. Helmholtz describes the nature of

perception as -

"The general rule determining the ideas of vision that are formed whenever an

impression is made on the eye, with or without the aid of optical instruments, is that

26

such objects are always imagined as being present in the field of vision as would have

to be there in order to produce the same impression on the nervous mechanism, the

eyes being used under ordinary normal conditions ".

There is evidence that our own visual system seems to interpret sensory information

via model building. The most notable evidence comes from optical illusions developed

by Louis Necker [101j, Friedrich Schumann 1121], Gaetano Kanizsa [69] and others. A

person watching the Necker cube can observe the two different 3D interpretations from

the same 2D image. This suggests the presence of a top-down processes attempting to

explain the incoming sensory information. In the Kanizsa triangle experiment, this

top-down process is even more profound as the subject undergoing the experiment

can hallucinate triangle edges that do not even exist in the original image.

The idea of analysis-by-synthesis was revived by Dayan et. al. [23] via a model

termed as the Helmholtz Machine. This paper highlights the idea of self-supervised

learning that relates the function of bottom-up and top-down cortical processing

pathways. In this model, a feed-forward neural network takes in sensory data and

produces a hierarchy of neural activations. A top-down generative network uses

these hypothesized neural states to re-produce observations. In this way, the model

uses iterative feed-forward passes and top-down synthesis to learn a compressed

representation of data. After learning, the top layer of the model disentangles hidden

factors of variations within data.

The Helmholtz Machine uses a neural network to model the top-down generative

process. Although neural networks can approximate any computable continuous

functions [19], there are no formal guarantees on the learnability of a network's weights

for a specified task. Therefore, there is no a-priori reason to believe that a simple

feed-forward decoder used in the Helmholtz Machine model can efficiently represent

the generative process.

In order to create more flexible vision models, a powerful and principled conceptual

framework is that of "vision as inverse graphics" (inverse graphics). Computer graphics

depicts the process of going from structured description of scenes to image data. The

task of vision can be though.of as running this process backwards. Given observations,

27

we are typically interested in obtaining the hidden properties of the scene including

- number of objects, shape, texture, lighting, orientation, mass, etc. The field of

computer graphics has seen rapid growth over the last few decades [62] and provides

powerful and flexible graphics simulators that are very much relevant for the goal of

inverse-graphics. Moreover, the idea of co-ordinate frames to relate whole-to-parts in

graphics is crucial if we want our vision systems to have strong generalization properties

[55]. There has been a lot of progress in parametric 3D shape models [4, 33, 13] and

procedural graphics [1121. The insights from computer graphics will likely accelerate

progress in analysis-by-synthesis, by providing new ideas for flexible model classes and

constraints on the structure of generative models.

Computer vision began with approaches in a similar vein, especially the work of

Larry Roberts who argued that "the perception of solid objects is a process which

can be based on the properties of three-dimensional transformations and the laws

of nature" [68]. More recently, probabilistic generative models for a range of image

parsing tasks have been explored [144, 24, 145, 160, 153]. These provide an appealing

avenue for integrating top-down constraints with bottom-up processing, and provide

an inspiration for the inverse graphics approach. But like traditional bottom-up

pipelines for vision, these approaches have relied on considerable problem specific

engineering, chiefly to design and/or learn custom inference strategies, such as MCMC

proposals [145, 1601 that incorporate bottom up cues. Other combinations of top

down knowledge with bottom up processing have been remarkably powerful [59].

For example, [58] has shown that global, 3D geometric information can significantly

improve the performance of bottom-up object detectors. What's needed are automatic

modeling and inference techniques to scale-up these approaches for richer visual

reasoning tasks.

In chater 4, I present Picture, a probabilistic programming framework for visual

scene perception. A picture program induces a probability distribution over visual

scenes and applies a general-purpose inference algorithm for image scene interpretation.

In order to scale up probabilistic inference, I develop inference amortization algorithms

using deep neural networks.

28

Probabilistic generative models make it easy to express computations with compo-

sitional structure. However, this flexibility comes at a price - the programmer needs

to express a lot of the structure and therefore it is harder to scale these approaches

with increasing computation. In the final parts of my thesis, I develop models that

combine the best of both worlds - take the compositional ideas from probabilistic

generative models and use them to design structured deep generative models.

One of the first analysis-by-synthesis style neural network model was the Boltzmann

machine [1], which was later constrained to layer-wise connections for tractability

and termed as restricted boltzmann machines [56]. Since then, there have been

plenty of papers on using encoder-decoder style architectures for unsupervised feature

learning [108, 56]. In more recent work, structured deep generative models have been

designed to disentangle multiple factors of variations such as - intrinsic images [1391,

objects [31, 61, 42], attention-based models to handle affine transformations [63], 3D

transformations [82, 151, 156, 161].

In chapter 5, I present a new neural network based analysis-by-synthesis approach

for learning interpretable features called the Deep Convolutional Inverse Graphics

Network (DC-IGN) [82]. DC-IGN factors out latent factors such as 3D pose and

lighting given contiguous frames of images. In the future, it will be crucial to use such

structured generative models within deep RL for scaling it to handle more complex

learning problems. Current deep RL agents spend most of their time on learning

a visual system rather than higher level representations useful for learning policies.

Deep generative models along with weakly supervised methods can greatly aid in

pre-training a visual system before solving the reinforcement learning problem.

1.3 Learning Goal-directed Behavior

The ultimate objective of an agent could be formulated as the maximization of its

expected utility function given observations. Utility theory dates back to work by

Von Neumann and Morgenstern, where they defined rational actions for a decision-

making agent. They made the observation that ideal decisions are actions that

.29

maximize an agent's expected utility. As utility and probability theory developed,

probabilistic approaches dominated mainstream Al field in the late 1980s. This led

to the development of probabilistic graphical models [106, 73], ultimately leading

to several advances in approximate inference techniques, probabilistic programming,

structure learning and probabilistic approaches for decision making under uncertainty.

A historical overview of probabilistic approaches in decision making is summarized in

[36, 38].

1.3.1 Reinforcement Learning

In a separate line of work, the field of reinforcement learning (RL) was taking shape

motivated by the same questions but stemming from Psychology and Neuroscience.

Some of the earliest work dates back to Thorndike's work on behavioral conditioning

[141], Bellman's work on optimal control theory [9], Minsky's work on SNARCs

(Stochastic Neural-Analog Reinforcement Calculators), and many others. Sutton

& Barto's textbook on RL [134] provides a detailed historical overview of the field.

Between 1970-80 [134], Sutton & Barto developed temporal-difference (TD) learning

algorithms, inspired by the notion of secondary reinforcers. Watkin [150] then made

the significant contribution of integrating TD learning with optimal control algorithms,

to develop Q-learning.

From a theoretical perspective, a series of papers [110, 116] bridged reinforcement

learning with universal induction as an idealized model of intelligence. One such

idealized model is called AIXI; it maximizes the expected cumulative rewards received

from the environment. At each time step, it checks every possible program, evaluates

the possible reward achieved conditioned on an action, weighs the future reward by the

program's Kolmogorov complexity (description length) and then selects the best action

by averaging contributions from all the programs. However, AIXI is incomputable but

there have been computable approximations of the model [147]. The constraint on

description length of the program in AIXI effectively places an inductive bias to prefer

programs with a lower Kolmogorov complexity. This is directly related to the problem

of induction. Induction can be defined as the process of drawing 'best' conclusions

30

from a set of observations [110]. Probabilistic generative models described in chapters

4&5 share the same goal - producing compact programs that can reproduce all of the

given observations.

In 1990s, there was an explosion of work in combining linear function approxi-

mations with TD learning algorithms [671. These ideas were generalized much later,

when researchers started combining deep neural networks with reinforcement learn-

ing. One of the first empirical work was presented in [49], where the authors used

evolutionary approaches to train a neural network to play Atari games. In a similar

vein, [741 developed a reinforcement learning agent that learns to play a car racing

games from raw pixels. Subsequently, [941 presented an impressive demonstration of

deep reinforcement learning on Atari games, where the agent surpassed human-level

performance on several of the games. More recently, many other approaches have

emerged in the deep reinforcement learning literature including asynchronous actor

critic methods [93]. policy gradient methods [120, 52] . However, existing approaches

suffer when the rewards are sparse and delayed. This makes it hard for the agent to

efficiently explore the environment for learning robust value functions. These models

also lack strong generalization properties across tasks (transfer learning) and their

learning curves are significantly worse than humans [83].

1.3.2 Hierarchies in Reinforcement Learning

One of the main ideas to mitigate some of these problems was to use temporal

abstractions in RL. Sutton et al.[136] proposed the options framework, which involves

abstractions over the space of actions. At each step, the agent chooses either a one

step "primitive" action or a "multi-step" action policy (option). Each option defines a

policy over actions (either primitive or other options) and can be terminated according

to a stochastic function. Thus, the traditional MDP setting can be extended to a

semi-Markov decision process (SMDP) with the use of options. Recently, several

methods have been proposed to learn options in real-time by using varying reward

functions [1381 or by composing existing options [128). Value functions have also been

generalized to consider goals along with states [115]. This universal value function

31

V(s, g; 6) provides an universal option that approximately represents optimal behavior

towards the goal g.

Other related work for hierarchical formulations include the model of Dayan

and Hinton [22] which consisted of "managers" taking decisions at various levels of

granularity, percolating all the way down to atomic actions made by the agent. The

MAXQ framework [27] built up on this work to decompose the value function of

an MDP into combinations of value functions of smaller constituent MDPs, as did

Guestrin et al.[47] in their factored MDP formulation.

Singh et al.[127 explored agents with intrinsic reward structures in order to learn

generic options that can apply to a wide variety of tasks. Using a notion of "salient

events" as sub-goals, the agent can learn options to get to such events. In the context

of hierarchical RL, Goel and Huber [391 discuss a framework for subgoal discovery

using the structural aspects of a learned policy model.

1.3.3 Intrinsic Motivation

The issue of sparse and delayed rewards is also related to the notion of intrinsic

motivation in Al and Psychology. Intrinsically motivated agents can explore new

behavior for its own sake rather than to directly solve problems. Such intrinsic

behaviors could eventually help the agent solve tasks posed by the environment.

The nature and origin of supposedly good intrinsic reward functions is an open

question in reinforcement learning. Oudeyer et al. categorized intrinsic motivation

into three different models - knowledge based models, competence based models and

morphological models [103j.

Knowledge based models of intrinsic motivation relies on an error signal (value

error, learning progress, reward error etc.) to build a pseudo-reward functions. Schmid-

huber [1171 provided a coherent formulation of knowledge based intrinsic motivation,

which is measured by the improvements to a predictive world model made by the

learning algorithm. Mohamed and Rezende [95] have recently proposed a notion of

intrinsically motivated learning within the framework of mutual information maxi-

mization. Frank et al. [351 demonstrated the effectiveness of artificial curiosity using

32

information gain maximization in a humanoid robot. Bellemare et al. [8] proposed a

count-based model for training deep RL agents to facilitate deep exploration.

There has also been work on formulating intrinsic rewards from an evolutionary

perspective. In another paper, Singh et al.[126] take an evolutionary perspective to

optimize over the space of reward functions for the agent, leading to the notion of

extrinsically and intrinsically motivated behavior.

The nature and origin of intrinsic rewards in humans is a thorny issue but there

are some notable insights from existing literature, especially related to the space

of competence based models of intrinsic motivation. There is converging evidence

in developmental psychology that human infants, primates, children, and adults in

diverse cultures base their core knowledge on certain cognitive systems including -

entities, agents and their actions, numerical quantities, space, social-structures and

intuitive theories [129, 83]. Even newborns and infants seem to represent the visual

world in terms of coherent visual entities, centered around spatio-temporal principles of

cohesion, continuity, and contact. They also seem to explicitly represent other agents,

with the assumption that an agent's behavior is goal-directed and efficient. Infants

can also discriminate relative sizes of objects, relative distances and higher order

numerical relations such as the ratio of object sizes. During curiosity-driven activities,

toddlers use this knowledge to generate intrinsic goals such as building physically

stable block structures. In order to accomplish these goals, toddlers seem to construct

sub-goals in the space of their core knowledge, such as - putting a heavier entity on

top of (relation) a lighter entity in order to build tall blocks. I will primarily focus on

hierarchical RL models of this nature. However, knowledge based and competence

based models are complementary and should be combined.

1.3.4 Extracting subgoals to build options

As described in section , there are many ways to think about intrinsic rewards -

subgoals in the space of < object1, relation, object2 >, decomposition of the SR

representation, communication from other agents, goal embedding predicted from

another value network, and more. Within a hierarchical RL framework, intrinsic

33

rewards in the space of subgoals can then be defined and a lower level controller can

learn to solve these subgoals. In Chapter 2, I present Deep Hierarchical Reinforcement

Learning (h-DQN), which learns hierarchical values functions over subgoals to enable

efficient goal driven exploration.

Knowledge of space can also be utilized to learn a hierarchical decomposition

of spatial environments, where the bottlenecks between different spatial groupings

correspond to sub-goals. This has been explored in Neuroscience with the successor

representation, which represents a value function in terms of the expected future state

occupancy. Decomposition of the successor representation (SR) yields reasonable

sub-goals for spatial navigation problems [21, 37, 130]. Botvinick et al.[16] have written

a general overview of hierarchical reinforcement learning in the context of cognitive

science and neuroscience. In Chapter 3, I present a generalization of SR, called the

Deep Successor Reinforcement Learning, which combines deep neural networks with

SR to learn robust value functions.

I demonstrate that under a random policy, we can learn the SR representation

and extract subgoals by using the normalized cut algorithm [1221. Random walk in

the the environment induces a graph structure of states clustered with respect to

their corresponding state abstractions. The bottleneck states connecting the cluster

pair can be thought of as plausible subgoal candidates. One of the earliest work in

automatic subgoal discovery is presented in csimcsek2005identifying. In this work, a

collection of state trajectories were considered and subgoals were extracted using the

normalized cuts algorithm [122].

1.4 Summary of Contributions

My objective was to explore two main questions: (1) How does an agent build compact

descriptions of visual scenes from experiences, and (2) how can it effectively use and

fine tune these representations, along with learning temporal abstractions for efficient

goal driven exploration to produce behavior? My contributions can be summarized as

follows:

34

1.4.1 Integrating Perception and Control

" Deep Hierarchical Reinforcement Learning with Intrinsic Motivation:

Learning goal-directed behavior in environments with sparse feedback is a major

challenge for reinforcement learning algorithms. The primary difficulty arises

due to insufficient exploration, resulting in an agent being unable to learn robust

value functions. Intrinsically motivated agents can explore new behavior for its

own sake rather than to directly solve problems. Such intrinsic behaviors could

eventually help the agent solve tasks posed by the environment.

I present hierarchical-DQN (h-DQN), a framework to integrate hierarchical

value functions, operating at different temporal scales, with competence based

intrinsically motivated deep reinforcement learning. A top-level value function

learns a policy over intrinsic goals, and a lower-level function learns a policy

over atomic actions to satisfy the given goals. h-DQN allows for flexible goal

specifications, such as functions over entities and relations. This provides an

efficient space for exploration in complicated environments.

Paper: Kulkarni, T.D., Narasimhan, K.R., Saeedi, A. and Tenenbaum, J.B.,

2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstrac-

tion and Intrinsic Motivation. arXiv preprint arXiv:1604.06057.

" Deep Successor Reinforcement Learning:

Learning robust value functions given raw observations and rewards is possible

with model-free and model-based deep reinforcement learning algorithms. There

is a third alternative, called Successor Representations (SR), which decomposes

the value function into two components - a reward predictor and a successor map.

The successor map represents the expected future state occupancy from any given

state and the reward predictor maps states to scalar rewards. The value function

of a state can be computed as the inner product between the successor map

and the reward weights. This disentanglement of the value function separates

knowledge about the world from that of goals, which is a crucial property for

transfer learning of policies.

35

I present DSR, which generalizes SR within an end-to-end deep reinforcement

learning framework. DSR has several appealing properties including: increased

sensitivity to distal reward changes due to factorization of reward and world

dynamics, and the ability to extract bottleneck states (subgoals) given successor

maps trained under a random policy.

Paper: Deep Successor Reinforcement Learning. Under Submission. NIPS

2016.

1.4.2 Towards more structured models of perception

The papers that I published relevant to this section are - [78, 82, 79, 81, 151, 911.

" Unified framework for analysis-by-synthesis:

I shall lay out a conceptual and theoretical framework to cast the problem of

vision as the inverse of computer graphics. Inverse graphics is a conceptual

framework for analysis-by-synthesis where graphics simulations define the gen-

erative process. I shall lay out the foundations for defining the scene model,

approximate rendering, representation layers for comparing hypotheses with

observations and a general-purpose inference layer for interpretation.

" Design and implementation of a probabilistic programming language

for scene perception: I design and experiment with a general-purpose proba-

bilistic language for visual scene perception. This language unifies the process

of expressing generative vision models, probabilistic inference techniques, and

data-driven techniques for scaling up inference. I demonstrate this system on a

wide variety of tasks including: 3D face analysis, 3D body pose estimation, 3D

shape perception, solving CAPTCHA's, 3D road-lane estimation, etc.

" General-purpose inference algorithms: Due to the high-dimensional latent

space of typical probabilistic programs, inference is often intractable and requires

task specific updates for reliable mixing and convergence. I develop a host of

probabilistic inference algorithms to handle mixed discrete-continuous latent

36

Irl - - I WIM I I I .

variables. I bridge the gap between neural networks and probabilistic programs by

using neural networks as a general-purpose scheme to amortize inference. I also

explore particle based techniques for variational inference to handle generative

processes with discrete latent variables.

* Learning structured deep generative models: Deep Neural Networks have

been successful at learning a mapping between input and target labels. However,

there has been relatively less success in trying to learn structured generative

models with neural networks. Moreover, the learnt representations of a neural

networks are often not interpretable and disentangled with respect to factors

of variations in the data. I present neural network architectures which learn

disentangled and interpretable generative models form image sequences. I

demonstrate the system for learning 3D generative models of faces and chairs.

37

38

Chapter 2

Deep Hierarchical Reinforcement

Learning

2.1 Introduction

Learning goal-directed behavior with sparse feedback from complex environments is a

fundamental challenge for artificial intelligence. Learning in this setting requires the

agent to represent knowledge at multiple levels of spatio-temporal abstractions and

to explore the environment efficiently. Recently, non-linear function approximators

coupled with reinforcement learning [75, 94, 123] have made it possible to learn

abstractions over high-dimensional state spaces, but the task of exploration with

sparse feedback still remains a major challenge. Existing methods like Boltzmann

exploration and Thomson sampling [131, 102] offer significant improvements over

E-greedy, but are limited due to the underlying models functioning at the level of basic

actions. In this work, we propose a framework that integrates deep reinforcement

learning with hierarchical value functions (h-DQN), where the agent is motivated to

solve intrinsic goals (via learning options) to aid exploration. These goals provide for

efficient exploration and help mitigate the sparse feedback problem. Additionally, we

observe that goals defined in the space of entities and relations can help significantly

constrain the exploration space for data-efficient learning in complex environments.

Reinforcement learning (RL) formalizes control problems as finding a policy 7r

39

that maximizes expected future rewards [134]. Value functions V(s) are central to

RL, and they cache the utility of any state s in achieving the agent's overall objective.

Recently, value functions have also been generalized as V(s, g) in order to represent the

utility of state s for achieving a given goal g E G [135, 115]. When the environment

provides delayed rewards, we adopt a strategy to first learn ways to achieve intrinsically

generated goals, and subsequently learn an optimal policy to chain them together.

Each of the value functions V(s, g) can be used to generate a policy that termi-

nates when the agent reaches the goal state g. A collection of these policies can be

hierarchically arranged with temporal dynamics for learning or planning within the

framework of semi-Markov decision processes [136, 138. In high-dimensional problems,

these value functions can be approximated by neural networks as V(s, g; 6).

We propose a framework with hierarchically organized deep reinforcement learning

modules working at different time-scales. The model takes decisions over two levels of

hierarchy - (a) the top level module (meta-controller) takes in the state and picks a

new goal, (b) the lower-level module (controller) uses both the state and the chosen

goal to select actions either until the goal is reached or the episode is terminated. The

meta-controller then chooses another goal and steps (a-b) repeat. We train our model

using stochastic gradient descent at different temporal scales to optimize expected

future intrinsic (controller) and extrinsic rewards (meta-controller). We demonstrate

the strength of our approach on problems with long-range delayed feedback: (1) a

discrete stochastic decision process with a long chain of states before receiving optimal

extrinsic rewards and (2) a classic ATARI game ('Montezuma's Revenge') with even

longer-range delayed rewards where most existing state-of-art deep reinforcement

learning approaches fail to

2.2 Model

Consider a Markov decision process (MDP) represented by states s E S, actions a E A,

and transition function T : (s, a) -+ s'. An agent operating in this framework receives

a state s from the external environment and can take an action a, which results in a

40

new state s'. We define the extrinsic reward function as F: (s) -+ R. The objective

of the agent is to maximize this function over long periods of time. For example, this

function can take the form of the agent's survival time or score in a game.

Agents Effective exploration in MDPs is a significant challenge in learning good

control policies. Methods such as c-greedy are useful for local exploration but fail to

provide impetus for the agent to explore different areas of the state space. In order to

tackle this, we utilize a notion of goals g E g, which provide intrinsic motivation for

the agent. The agent focuses on setting and achieving sequences of goals in order to

maximize cumulative extrinsic reward.

We use the temporal abstraction of options [136] to define policies 7rg for each

goal g. The agent learns these option policies simultaneously along with learning the

optimal sequence of goals to follow. In order to learn each 7r., the agent also has a

critic, which provides intrinsic rewards, based on whether the agent is able to achieve

its goals (see Figure 5-1).

Temporal Abstractions As shown in Figure 5-1, the agent uses a two-stage hier-

archy consisting of a controller and a meta-controller. The meta-controller receives

state st and chooses a goal gt E Q, where g denotes the set of all possible current goals.

The controller then selects an action at using st and gt. The goal gt remains in place

for the next few time steps either until it is achieved or a terminal state is reached.

The internal critic is responsible for evaluating whether a goal has been reached and

providing an appropriate reward rt(g) to the controller. The objective function for

the controller is to maximize cumulative intrinsic reward: Rt(g) = E ' '-t(g).

Similarly, the objective of the meta-controller is to optimize the cumulative extrinsic

reward Fe = Et tyt'-ft,, where ft are reward signals received from the environment.

One can also view this setup as similar to optimizing over the space of optimal

reward functions to maximize fitness [125]. In our case, the reward functions are

dynamic and temporally dependent on the sequential history of goals. Figure 5-1

provides an illustration of the agent's use of the hierarchy over subsequent time steps.

41

action External observations

Environment

extrinsic
reward

at+1 at+N

I I
Qstja;91, gt) Q1(St+N, a; Oi,gt)

gt+N
t

Q2(St+N, gt+N; 02)

Meta
ntroller)

St+N

Controller

t
St+N

Figure 2-1: Overview: The agent produces actions and receives sensory observations.
Separate deep-Q networks are used inside the meta-controller and controller. The
meta-controller that looks at the raw states and produces a policy over goals by
estimating the value function Q2(st, gt; 02) (by maximizing expected future extrinsic
reward). The controller takes in states and the current goal, and produces a policy
over actions by estimating the value function Q2 (st, at; 01, gt) to solve the predicted
goal (by maximizing expected future intrinsic reward). The internal critic checks if
goal is reached and provides an appropriate intrinsic reward to the controller. The
controller terminates either when the episode ends or when g is accomplished. The
meta-controller then chooses a new g and the process repeats.

42

Meta
Controller

goal

Critic

intrinsicaction rwr
reward

Controller

agent

gt

t
Q2(St, 9; 02)

Meta
Controller IT

St

at

I
Q1(st, a; 01, gt)

LControlle
tiI 6 t

Controller

-i
St+1

gt

Deep Reinforcement Learning with Temporal Abstractions

We use the Deep Q-Learning framework [941 to learn policies for both the controller

and the meta-controller. Specifically, the controller estimates the following Q-value

function:

00
Q*(s, a; g) maxE[E I st = s, at = a, gt g, 7ag]

7rg t'=t (2.1)

= max E[rt + -y maxaQ*(st+1, at+,; g) I st = s, at = a, g g, 7rag]
7ag

where g is the agent's goal in state s and rag = P(aIs, g) is the action policy.

Similarly, for the meta-controller, we have:

t+N

Q*(s, g) = max7 rgE ft, +y maxgQ*(st+N, 9) st = s, 9t = 9,7rg] (2.2)
t'=t

where N denotes the number of time steps until the controller halts given the current

goal, g' is the agent's goal in state St+N, and 7rg = P(gls) is the policy over goals. It

is important to note that the transitions (St, gt, ft, St+N) generated by Q2 run at a

slower time-scale than the transitions (st, at, gt, rt, st+i) generated by Q1.

We can represent Q*(s, g) ~~ Q(s, g; 0) using a non-linear function approximator

with parameters 0, called a deep Q-network (DQN). Each Q E {Qi, Q2} can be trained

by minimizing corresponding loss functions - L 1(01) and L2 (02). We store experiences

(st, gt, ft, St+N) for Q2 and (st, at, gt, rt, st+1) for Qi in disjoint memory spaces D and

D2 respectively. The loss function for Qi can then be stated as:

l01i =E(s,a,g,,s)-.Di [(Yi,i - Qi(s, a; 1',j, g)) 2], (2.3)

where i denotes the training iteration number and yi,i = r + -Y maxaQi (s', a'; i_1, g).

Following [94], the parameters 01,i_- from the previous iteration are held fixed

when optimising the loss function. The parameters 01 can be optimized using the

43

gradient:

V1 L 1(1,)

= E(s,a,r,s/D) (r + -Y maXa'Q1(s, a; 01,i-1, g) - Q,(s, a; 01,i, g) V 01 Qi (s, a; 01,j, g

The loss function L2 and its gradients can be derived using a similar procedure.

Learning Algorithm We learn the parameters of h-DQN using stochastic gradient

descent at different time scales - experiences (or transitions) from the controller are

collected at every time step but experiences from meta-controller are only collected

when the controller terminates (i.e. when a goal is re-picked or the episode ends). Each

new goal g is drawn in an e-greedy fashion (Algorithms 4 & 2) with the exploration

probability E2 annealed as learning proceeds (from a starting value of 1).

In the controller, at every time step, an action is drawn with a goal using the

exploration probability El,g which is dependent on the current empirical success rate

of reaching g. The model parameters (01, 02) are periodically updated by drawing

experiences from replay memories D and D 2), respectively (see Algorithm 3).

2.3 Experiments

We perform experiments on two different domains involving delayed rewards. The

first is a discrete-state stochastic decision process with stochastic transitions, and the

second is an ATARI 2600 game called 'Montezuma's Revenge'.

2.3.1 Stochastic Decision Process with Delayed Rewards

Game Setup We consider a stochastic decision process where the extrinsic reward

depends on the history of visited states in addition to the current state. We selected

this task in order to demonstrate the importance of intrinsic motivation for exploration

in such environments.

There are 6 possible states and the agent always starts at s2 . The agent moves

left deterministically when it chooses left action; but the action right only succeeds

44

Algorithm 1 Learning algorithm for h-DQN

1: Initialize experience replay memories {D , D2} and parameters {1, 02} for the
controller and meta-controller respectively.

2: Initialize exploration probability i,, = 1 for the controller for all goals g and
E2 = 1 for the meta-controller.

3: for i = 1, num_episodes do
4: Initialize game and get start state description s
5: g +- EPSGREEDY(S, g, C 2 , Q2)

6: while s is not terminal do
7: F- 0
8: SO S
9: while not (s is terminal or goal g reached) do

10: a +- EPSGREEDY({S, g}, A, 6 1,g, Qi)
11: Execute a and obtain next state s' and extrinsic reward f from environ-

ment
12: Obtain intrinsic reward r(s, a, s') from internal critic
13: Store transition ({s, g}, a, r, {s', g}) in D1

14: UPDATEPARAMS(1 (61,j), D1)
15: UPDATEPARAMS(C 2 (0 2,i), D2)
16: F - F + f
17: s s'
18: end while
19: Store transition (so, g, F, s') in D2
20: if s is not terminal then
21. 9 g- EPSGREEDY(s, G, E2, Q2)
22: end if
23: end while
24: Anneal 62 and adaptively anneal c1,g using average success rate of reaching

goal g.
25: end for

Algorithm 2 : EPSGREEDY(xBcQ)

1: if random() < e then
2: return random element from set B
3: else
4: return argmaxmEBQ(x, m)
5: end if

Algorithm 3 : UPDATEPARAMS(C, D)

1: Randomly sample mini-batches from D
2: Perform gradient descent on loss L(O) (cf. (2.2))

45

50% of the time, resulting in a left move otherwise. The terminal state is si and the

agent receives the reward of 1 when it first visits s6 and then s1 . The reward for

going to si without visiting s6 is 0.01. This is a modified version of the MDP in [102],

with the reward structure adding complexity to the task. The process is illustrated in

Figure 2-2.

We consider each state as a possible
0.5 0.5 0.5 0.5 0.5

goal for exploration. This encourages the r=1/100 s, ",' s

agent to visit state S6 (whenever it is 1.0 1.0 1.0 1.0 1.0

chosen as a goal) and hence, learn the Figure 2-2: A stochastic decision process
where the reward at the terminal state s,

optimal policy. For each goal, the agent depends on whether s6 is visited (r = 1) or
receives a positive intrinsic reward if and not (r = 1/100).

only if it reaches the corresponding state.

Results We compare the performance of our approach (without the deep neural

networks) with Q-Learning as a baseline (without intrinsic rewards) in terms of the

average extrinsic reward gained in an episode. In our experiments, all E parameters

are annealed from 1 to 0.1 over 50,000 steps. The learning rate is set to 0.00025.

Figure 2-3 plots the evolution of reward for both methods averaged over 10 different

runs. As expected, we see that Q-Learning is unable to find the optimal policy even

after 200 epochs, converging to a sub-optimal policy of reaching state si directly to

obtain a reward of 0.01. In contrast, our approach with hierarchical Q-estimators

learns to choose goals S4, S5 or s6, which statistically lead the agent to visit S6 before

going back to si. Therefore, the agent obtains a significantly higher average reward of

around 0.13.

Figure 2-4 illustrates that the number of visits to states s3, 84, S, S6 increases with

episodes of training. Each data point shows the average number of visits for each

state over the last 1000 episodes. This indicates that our model is choosing goals in a

way so that it reaches the critical state s6 more often.

46

._ ' -- 'W 'P""W' -T-1"-" I I M TM, 'W_1R F".- - "W "V - .11 qrp

0.18
0.16
0.14 A
0.12-

0.1
0.08
0.06- Baseline
0.04- Our Approach0.02 ,

0-
0 50 150 200

steps

Figure 2-3: Average reward for 10 runs of our approach compared to Q-learning.

1.2 State 3
-State 4
-State 5

0.8 ~~State 6

0.6

0.4

0.2 7

()
2 4 6 8

Episodes (* 1000)
10 12

Figure 2-4: Number of visits (for states S3 to S6) averaged over 1000 episodes. The

initial state is S2 and the terminal state is si.

2.3.2 ATARI Game with Delayed Rewards

Game Description We consider 'Montezuma's Revenge', an ATARI game with

sparse, delayed rewards. The game (Figure 2-5(a)) requires the player to navigate

the explorer (in red) through several rooms while collecting treasures. In order to

pass through doors (in the top right and top left corners of the figure), the player has

to first pick up the key. The player has to then climb down the ladders on the right

and move left towards the key, resulting in a long sequence of actions before receiving

a reward (+100) for collecting the key. After this, navigating towards the door and

opening it results in another reward (+300).

Existing deep RL approaches fail to learn in this environment since the agent

rarely reaches a state with non-zero reward. For instance, the basic DQN 194] achieves

a score of 0 while even the best performing system, Gorila DQN [981, manages only

4.16 on average.

47

Qi(s, a; g)
t

Linear
t

ReLU:Linear (h=512)

t
ReLU:Conv (filter:3, ftr-maps:64, strides: 1)

ReLU:Conv (filter:4, ftr-maps:64, strides:2)

ft IL
ReLU:Conv (filter:8, ftr-maps:32, strides:4)

t
(b) image (s) + goal (g)

Figure 2-5: (a) A sample screen from the ATARI 2600 game called 'Montezuma's

Revenge'. (b) Architecture: DQN architecture for the controller (Q1). A similar

architecture produces Q2 for the meta-controller (without goal as input). In practice,
both these networks could share lower level features but we do not enforce this.

Setup The agent needs intrinsic motivation to explore meaningful parts of the scene

before it can learn about the advantage of getting the key for itself. Inspired by

the developmental psychology literature [1291 and object-oriented MiDPs [28], we use

entities or objects in the scene to parameterize goals in this environment. Unsupervised

detection of objects in visual scenes is an open problem in computer vision, although

there has been recent progress in obtaining objects directly from image or motion

data [34, 31, 42]. In this work, we built a custom object detector that provides

plausible object candidates. The controller and meta-controller are convolutional

neural networks (see Figure 2-5(b)) that learn representations from raw pixel data.

We use the Arcade Learning Environment [7] to perform experiments.

The internal critic is defined in the space of (entityi, relation, entity2), where

relat ion is a function over configurations of the entities. In our experiments, the agent

is free to choose any entity2 . For instance, the agent is deemed to have completed

a goal (and receives a reward) if tie agent entity reaches another entity such as the

door. Note that this notion of relational intrinsic rewards can be generalized to other

settings. For instance, in the ATARI game 'Asteroids', the agent could be rewarded

when the bullet reaches the asteroid or if simply the ship never reaches an asteroid.

In the game of 'Pacman', the agent could be rewarded if the pellets on the screen

48

are reached. In the most general case, we can potentially let the model evolve a

parameterized intrinsic reward function given entities. We leave this for future work.

Model Architecture and Training As shown in Figure 2-5b, the model consists

of stacked convolutional layers with rectified linear units (ReLU). The input to the

meta-controller is a set of four consecutive images of size 84 x 84. To encode the

goal output from the meta-controller, we append a binary mask of the goal location

in image space along with the original 4 consecutive frames. This augmented input

is passed to the controller. The experience replay memories D1 and D2 were set to

be equal to 1E6 and 5E4 respectively. We set the learning rate to be 2.5E-4, with

a discount rate of 0.99. We follow a two phase training procedure - (1) In the first

phase, we set the exploration parameter 62 of the meta-controller to 1 and train the

controller on actions. This effectively leads to pre-training the controller so that it

can learn to solve a subset of the goals. (2) In the second phase, we jointly train the

controller and meta-controller.

Results Figure 2-6(a) shows reward progress from the joint training phase from

which it is evident that the model starts gradually learning to both reach the key and

open the door to get a reward of around +400 per episode. As shown in Figure 2-6(b),

the agent learns to choose the key more often as training proceeds and is also successful

at reaching it. As training proceeds, we observe that the agent first learns to perform

the simpler goals (such as reaching the right door or the middle ladder) and then

slowly starts learning the 'harder' goals such as the key and the bottom ladders,

which provide a path to higher rewards. Figure 2-6(c) shows the evolution of the

success rate of goals that are picked. At the end of training, we can see that the 'key',

'bottom-left-ladder' and 'bottom-right-ladders' are chosen increasingly more often. In

order to scale-up to solve the entire game, several key ingredients are missing such as -

automatic discovery of objects from videos to aid goal parametrization we considered,

a flexible short-term memory, ability to intermittently terminate ongoing options.

We also show some screen-shots from a test run with our agent (with epsilon set

49

to 0.1) in Figure 2-7, as well as a sample animation of the run.1

2.4 Conclusion

We have presented h-DQN, a framework consisting of hierarchical value functions

operating at different time scales. Temporally decomposing the value function allows

the agent to perform intrinsically motivated behavior, which in turn yields efficient

exploration in environments with delayed rewards. We also observe that parameterizing

intrinsic motivation in the space of entities and relations provides a promising avenue

for building agents with temporally extended exploration. We also plan to explore

alternative parameterizations of goals with h-DQN in the future.

The current framework has several missing components including automatically

disentangling objects from raw pixels and a short-term memory. The state abstractions

learnt by vanilla deep-Q-networks are not structured or sufficiently compositional.

There has been recent work [31, 42, 111, 82, 151, 43, 611 in using deep generative models

to disentangle multiple factors of variations (objects, pose, location, etc) from pixel

data. We hope that our work motivates the combination of deep generative models of

images with h-DQN. Additionally, in order to handle longer range dependencies, the

agent needs to store a history of previous goals, actions and representations. There has

been some recent work in using recurrent networks in conjunction with reinforcement

learning [50, 99]. In order to scale-up our approach to harder non-Markovian settings,

it will be necessary to incorporate a flexible episodic memory module.

'Sample trajectory of a run on 'Montezuma's Revenge' - https: //goo . gl/3Z64Ji

50

1M Steps 1.5M

Our Approach
-DQN

2M

(a) Total extrinsic reward

1

0.8

0.6

0.4

0.2

0-

0 0.5M iM
Steps

1.5M

(b) Success ratio for reaching the

0.25

0.2-

0.15

0.1

0.05-

0 0 05M
1M Steps

goal 'key'

top-left door
top-right door

a middle-ladder
- bottom-left-ladder
0 bottom-right-ladder

L key

1.5M 2M

(c) Success % of different goals over time

Figure 2-6: Results on Montezuma's Revenge: These plots depict the joint

training phase of the model. As described in Section 2.3.2, the first training phase

pre-trains the lower level controller for about 2.3 million steps. The joint training

learns to consistently get high rewards after additional 2 million steps as shown in (a).

(b) Goal success ratio: The agent learns to choose the key more often as training

proceeds and is successful at achieving it. (c) Goal statistics: During early phases

of joint training, all goals are equally preferred due to high exploration but as training

proceeds, the agent learns to select appropriate goals such as the key and bottom-left

door.

51

400-
350-
300-
250-
200-
150
100-

50-

0 0.5M

2M

Meta
Controller

termination goal
(death) reached

Controller

1 2 3 5

Meta
Controller

goal
reached

Controller

7 8 9 10 11 12

Figure 2-7: Sample gameplay by our agent on Montezuma's Revenge: The
four quadrants are arranged in a temporally coherent manner (top-left, top-right,
bottom-left and bottom-right). At the very beginning, the ieta-controller chooses

key as the goal (illustrated in red). The controller then tries to satisfy this goal by
taking a series of low level actions (only a subset shown) but fails due to colliding

with the skull (the episode terminates here). The ineta-controller then chooses the

bottom-right ladder as the next goal and the controller terminates after reaching it.

Subsequently, the meta-controller chooses the key and the top-right door and the

controller is able to successfully achieve both these goals.

52

0z00 bObC,C00

c * -
-

--C

54

Chapter 3

Deep Successor Reinforcement

Learning: A Hybrid Model-free and

Model-based Approach

3.1 Introduction

Many learning problems involve inferring properties of temporally extended sequences

given -an objective function. For instance, in reinforcement learning (RL), the task

is to find a policy that maximizes expected future discounted rewards (value). RL

algorithms fall into two main classes: (1) model-free algorithms that learn cached

value functions directly from sample trajectories, and (2) model-based algorithms

that estimate transition and reward functions, from which values can be computed

using tree-search or dynamic programming. However, there is a third class, based on

the successor representation (SR), that factors the value function into a predictive

representation and a reward function. Specifically, the value function at a state can

be expressed as the dot product between the vector of expected discounted future

state occupancies and the immediate reward in each of those successor states.

Representing the value function using the SR has several appealing properties. It

combines computational efficiency comparable to model-free algorithms with some

55

512 256 128 64 channels
4x4 4x4 4x4 4x4 4x4

32 64 64 5128x8 4x4 3x3

512 256 512

St K R(st) mst,a=1

512 256 512

-Hmst,a=n

Figure 3-1: Model Architecture: DSR consists of: (1) feature branch fo (CNN)
which takes in raw images and computes the features t,, (2) successor branch u,
which computes the SR m,,,a for each possible action a E A, (3) a deep convolutional
decoder which produces the input reconstruction st and (4) a linear regressor to predict
instantaneous rewards at st. The Q-value function can be estimated by taking the
inner-product of the SR with reward weights: QT(s, a) ~ msa - w.

of the flexibility of model-based algorithms. In particular, the SR can adapt quickly

to changes in distal reward, unlike model-free algorithms. In this paper, we also

highlight a feature of the SR that has been less well-investigated: the ability to

extract bottleneck states (candidate subgoals) from the successor representation under

a random policy [130]. These subgoals can then be used within a hierarchical RL

framework. In this paper we develop a powerful function approximation algorithm

and architecture for the SR using a deep neural network, which we call Deep Successor

Reinforcement Learning (DSR). This enables learning the SR and reward function

from raw sensory observations with end-to-end training.

The DSR consists of two sub-components: (1) a reward feature learning component,

constructed as a deep neural network, predicts intrinsic and extrinsic rewards to learn

useful features from raw observations; and (2) an SR component, constructed as a

separate deep neural network, that estimates the expected future "feature occupancy"

56

conditioned on the current state and averaged over all actions. The value function can

then be estimated as the dot product between these two factored representations. We

train DSR by sampling experience trajectories (state, next-state, action and reward)

from an experience replay memory and apply stochastic gradient descent to optimize

model parameters. To avoid instability in the learning algorithm, we interleave training

of the successor and reward components.

We show the efficacy of our approach on two different domains: (1) learning to

solve goals in grid-world domains using the MazeBase game engine and (2) learning to

navigate a 3D maze to gather a resource using the Doom game engine. We show the

empirical convergence results on several policy learning problems as well as sensitivity

of the value estimator given distal reward changes. We also demonstrate the possibility

of extracting plausible subgoals for hierarchical RL by performing normalized-cuts on

the SR {122].

3.2 Related work

The SR has been used in neuroscience as a model for describing different cognitive

phenomena. [37] showed that the temporal context model [601, a model of episodic

memory, is in fact estimating the SR using the temporal difference algorithm. [18]

introduced a model based on SR for preplay and rapid path planning in the CA3

region of the hippocampus. They interpret the SR as an an attractor network in

a lowaAdimensional space and show that if the network is stimulated with a goal

location it can generate a path to the goal. [130] suggested a model for tying the

problems of navigation and reward maximization in the brain. They claimed that

the brain's spatial representations are designed to support the reward maximization

problem (RL); they showed the behavior of the place cells and grid cells can be

explained by finding the optimal spatial representation that can support RL. Based on

their model they proposed a way for identifying reasonable subgoals from the spectral

features of the SR. Other work (see for instance, [15, 20]) have also discussed utilizing

the SR for subgoal and option discovery.

57

There are also models similar to the SR that have been been applied to other

RL-related domains. [118] introduced a model for evaluating the positions in the

game of Go; the model is reminiscent of SR as it predicts the fate of every position

of the board instead of the overall game score. Another reward-independent model,

universal option model (UOM), proposed in [138], uses state occupancy function to

build a general model of options. They proved that UOM of an option, given a reward

function, can construct a traditional option model.

Our model is also related to the literature on value function approximation using

deep neural networks. The deep-Q learning model [941 and its variants 11231 have been

successful in learning Q-value functions from high-dimensional complex input states.

3.3 Model

3.3.1 Background

Consider an MDP with a set of states S, set of actions A, reward function R : S -+ R,

discount factor -y E [0, 1], and a transition distribution T : S x A -+ [0, 1]. Given

a policy ir : S x A -+ [0, 1], the Q-value function for selecting action a in state s is

defined as the expected future discounted return:

Q'(s,a)-= E ['R(st)so =s,ao = a , (3.1)

where, st is the state visited at time t and the expectation is with respect to the policy

and transition distribution. The agent's goal is to find the optimal policy Q* which

follows the Bellman equation:

Q*(s, a) = R(st) + -y max E [Q(st+, a')] . (3.2)
a/

58

3.3.2 The successor representation

The SR can be used for calculating the Q-value function as follows. Given a state s,

action a and future states s', SR is defined as the expected discounted future state

occupancy:
00

M (s, s', a) = E I: yt [st = S'11s0 = s, ao = a,
t=0

where 1[.] = 1 when its argument is true and zero otherwise. This implicitly captures

the state visitation count. Similar to the Bellman equation for the Q-value function

(Eq. 3.2), we can express the SR in a recursive form:

M(s, s', a) = E(st = s'] + -yE[M(st+1, s', at+1)]. (3.3)

Given the SR, the Q-value for selecting action a in state s can be expressed as the

inner product of the immediate reward and the SR [21]:

Q'(s, a) = E M(s, s', a)R(s') (3.4)
s'ES

3.3.3 Deep successor representation

For large state spaces, representing and learning the SR can become intractable;

hence, we appeal to non-linear function approximation. We represent each state s

by a D-dimensional feature vector q, which is the output of a deep neural network

fo : S --* RD parameterized by 0.

For a feature vector 0,, we define a feature-based SR as the expected future

occupancy of the features and denote it by ma. We approximate ma by another deep

neural network ua parameterized by a: ma u (#8, a). We also approximate the

immediate reward for state s as a linear function of the feature vector Os: R(s) ~i , -w,

where w E RD is a weight vector. Since reward values can be sparse, we can also

train an intrinsic reward predictor Ri(s) = g(#,). A good intrinsic reward channel

should give dense feedback signal and provide features that preserve latent factors of

variations in the data (e.g. deep generative models that do reconstruction). Putting

59

these two pieces together, the Q-value function can be approximated as (see 3.4 for

closed form):

Q'(s, a) ~ msa - W. (3.5)

The SR for the optimal policy in the non-linear function approximation case can then

be obtained from the following Bellman equation:

msa = #s + 'E [mst+laf1 (3.6)

where a' = argmaxamnsa - W.

3.3.4 Learning

The parameters (0, a, w, 0) can be learned online through stochastic gradient descent.

The loss function for a is given by:

L'(a, 0) = E[(#(st) + yuc(pr#v(s 1, a') - Ua(#s,, a))2 ,

where a' = argmaxanuC(08st+ 1, a) -w and the parameter aprev denotes a previously

cached parameter value, set periodically to a. This is essential for stable Q-learning

with function approximations (see [94]).

For learning w, the weights for the reward approximation function, we use the

following squared loss function:

L'(w, 0) = (R(st) - #st . w) 2 (3.7)

Parameter 0 is used for obtaining the #(s), the shared feature representation for

both reward prediction and SR approximation. An ideal O(s) should be: 1) a good

predictor for the immediate reward for that state and 2) a good discriminator for the

states. The first condition can be handled by minimizing loss function L'; however,

we also need a loss function to help in the second condition. To this end, we use

60

a deep convolutional auto-encoder to reconstruct images under an L2 loss function.

This dense feedback signal can be interpreted as an intrinsic reward function. The

loss function can be stated as:

L(9, 9) (g6(08t)- St)2. (3.8)

The composite loss function is the sum of the three loss functions given above:

Lt(0, , w 0) = L'(a, 9) + L (w, 9) + La(0, 9) (3.9)

For optimizing Eq. 3.9, with respect to the parameters (0, a, w, 9), we iteratively

update a and (9, w, 9). That is, we learn a feature representation by minimizing

Lr(w) + La(6); then given (9*, w*, 9*), we find the optimal a*. This iteration is

important to ensure that the successor branch does not back-propagate gradients to

affect 9. We use experience replay memory D of size le6 to store transitions, and

apply stochastic gradient descent with a learning rate of 2.5e--4 , momentum of 0.95,

a discount factor of 0.99 and the exploration parameter e annealed from 1 to 0.1 as

training progresses. Algorithm 1 highlights the learning algorithm in greater detail.

3.4 Automatic Subgoal Extraction

Learning policies given sparse or delayed rewards is a significant challenge for current

reinforcement learning algorithms. This is mainly due to inefficient exploration schemes

such as E-greedy. Existing methods like Boltzmann exploration and Thomson sampling

[131, 102] offer significant improvements over E-greedy, but are limited due to the

underlying models functioning at the level of basic actions. Hierarchical reinforcement

learning algorithms [6] such as the options framework [138, 136] provide a flexible

framework to create temporal abstractions, which will enable exploration at different

time-scales. Inspired by previous work in subgoal discovery from state trajectories

[1241 and the tabular SR [130], we use the learned SR to generate plausible subgoal

candidates.

61

Algorithm 4 Learning algorithm for DSR

1: Initialize experience replay memory D, parameters {0, a, w, 0} and exploration
probability c = 1.

2: for i = 1 : #episodes do
3: Initialize game and get start state description s
4: while not terminal do
5: Os = fe(s)
6: With probability e, sample a random action a, otherwise choose

maxa U0 (, 8 , a) -w
7: Execute a and obtain next state s' and reward R(s') from environment
8: Store transition (s, a, R(s'), s') in D
9: Randomly sample mini-batches from D

10: Perform gradient descent on the loss Lr(w, 0) + La(0, 0) with respect to w,
0 and 6.

11: Fix (0, 0, w) and perform gradient descent on L'm (a, 0) with respect to a.
12: s <-- s'

13: end while
14: Anneal exploration variable c
15: end for

Given a random policy 7r, (6 = 1), we train the DSR until convergence and

collect the SR for a large number of states T = {msi,ai, m8 2 ,a2 , ... , msn,an}. Following

[124, 122], we generate an affinity matrix W given T, by applying a radial basis

function (with Euclidean distance metric) for each pairwise entry (msi,ai, ms,a3) in

T (to generate wij). Let D be a diagonal matrix with D(i, i) = j wij. Then as per

[1221, the second largest eigenvalue of the matrix D- 1 (D - W) gives an approximation

of the minimum normalized cut value of the partition of T. The states that lie on

the end-points of the cut are plausible subgoal candidates, as they provide a path

between a community of state groups. Given randomly sampled T from 7rr, we can

collect statistics of how many times a particular state lies along the cut. We pick the

top-k states as the subgoals. Our experiments indicate that it is possible to extract

useful subgoals from the DSR.

62

3.5 Experiments

In this section, we demonstrate the properties of our approach on MazeBase [133],

a grid-world environment, and the Doom game engine 1711. In both environments,

observations are presented as raw pixels to the agent. In the first experiment we

show that our approach is comparable to DQN in two goal-reaching tasks. Next, we

investigate the effect of modifying the distal reward on the initial Q-value. Finally,

using normalized-cuts, we identify subgoals given the successor representations in the

two environments.

3.5.1 Goal-directed Behavior

Solving a maze in MazeBase We learn the optimal policy in the maze shown

in Figure 3-2 using the DSR and compare its performance to the DQN [94]. The

cost of living or moving over water blocks is -0.5 and the reward value is 1. For this

experiment, we set the discount rate to 0.99 and the learning rate to 2.5. 104. We

anneal the 6 from 1 to 0.1 over 20k steps; furthermore, for training the reward branch,

we anneal the number of samples that we use, from 4000 to 1 by a factor of 0.5 after

each training episode. For all experiments, we prioritize the reward training by keeping

a database of non-zero rewards and sampling randomly from the replay buffer with a

0.8 probability and 0.2 from the database. Figure 3-3 shows the average trajectory

(over 5 runs) of the rewards obtained over 100k episodes. As the plot suggests, DSR

performs on par with DQN.

Finding a goal in a 3D environment We created a map with 4 rooms using the

ViZDoom platform [711. The map is shown in Figure 3-2. We share the same network

architecture as in the case of MazeBase. The agent is spawned inside a room, and can

explore any of the other three rooms. The agent gets a per-step penalty of -0.01 and

a positive reward of 1.0 after collecting an item from one of the room (highlighted in

red in Figure3-2). As shown in Figure3-3, the agent is able to successfully navigate

the environment to obtain the reward, and is competitive with DQN.

63

Figure 3-2: Environments: (left) MazeBase 1133] map where the agent starts at an
arbitrary location and needs to get to the goal state. The agent gets a penalty of -0.5
per-step, -1 to step on the water-block (blue) and - 1 for reaching the goal state. The
model observes raw pixel images during learning. (center) A Doom map using the
VizDoom engine [711 where the agent starts in a room and has to get, to another room
to collect ammo (per-step penalty - -0.01, reward for reaching goal +1). (right)
Sample screen-shots of the agent exploring the 3D maze.

-50 8
-- DQN 80 DQN

-100 DSR 60 - DSR

40
-150

20

iy -200
0

-250- 7V -20 W

--300 -40
0 20 40 60 80 0 20 40 60 80 100 120 140 160

Steps (x 1000) Steps (x 1000)

Figure 3-3: Average trajectory of the reward (left) over 100k steps for the grid-world
maze. (right) over 180k steps for the Doom map over multiple runs.

3.5.2 Value function sensitivity to distal reward changes

The decomposition of value function into SR and immediate reward prediction allows

DSR to rapidly adapt to changes in the reward function. In order to probe this, we

performed experiments to measure the adaptability of the value function to distal

reward changes. Given the grid-world imap in Figure3-2, we can train the agent to

solve the goal specified in the map as highlighted in section 3.5.1. Without changing

the goal location, we can change the reward scalar value upon reaching the goal from

1.0 to 3.0. Our hypothesis is that due to the SR-based value decomposition, our value

estimate converges to this change by just updating the reward weights w (SR remains

same). As shown in Figure 3-4, we confirm that the DSR is able to quickly adapt to

64

DSR - Reward=1
DSR - Reward=3

-- DSR - Reward=5
--- DON - Reward=1

DQN - Reward=3
-4 ' DON - Reward=5

-----. ----------

400 600 800 1000 1200 1400 1600 1800

Training steps

Figure 3-4: Changing the value of the distal reward: We train the model to

learn the optimal policy on the maze shown in Figure 3-2. After convergence, we

change the value of the distal reward and update the Q-value for the optimal action at

the origin (bottom-left corner of the maze). In order for the value function to converge

again, the model only needs to update the linear weights w given the new external

rewards.

the new value function by just updating w.

3.5.3 Extracting subgoals from the DSR

Following section 3.4, we can also extract subgoals from the SR. We collect T by

running a random policy on both MazeBase and VizDoom. During learning, we only

update SR (a) and the reconstruction branch (ga), as the immediate reward at any

state is zero (due to random policy).

As shown in Figures 3-5 and 3-6, our subgoal extraction scheme is able to capture

useful subgoals and clusters the environment into reasonable segments. Such a scheme

can be ran periodically within a hierarchical reinforcement learning framework to

aid exploration. One inherent limitation of this approach is that due to the random

policy, the subgoal candidates are often quite noisy. Future work should address

this limitation and provide statistically robust ways to extract plausible candidates.

Additionally, the subgoal extraction algorithm should be non-parametric to handle

flexible number of subgoals.

65

(a) (b)

Figure 3-5: Subgoal extraction on grid-world: Given a random policy, we train
DSR until convergence and collect a large number of sample transitions and their
corresponding successor representations as described in section 3.4. We apply a
normalized cut-based algorithm on the SRs to obtain a partition of the environment as
well as the bottleneck states (which correspond to goals) (a) Subgoals are states which
separate different partitions of the environments under the normalized-cut algorithm.
Our approach is able to find reasonable subgoal candidates. (b) Partitions of the
environment reflect latent structure in the environment.

3.6 Conclusion

We presented the DSR, a novel deep reinforcement learning framework to learn

goal-directed behavior given raw sensory observations. The DSR estimates the value

function by taking the inner product between the SR and immediate reward predictions.

This factorization of the value function gives rise to several appealing properties over

existing deep reinforcement learning methods-namely increased sensitivity of the

value function to distal reward changes and the possibility of extracting subgoals from

the SR under a random policy.

For future work, we plan to combine the DSR with hierarchical reinforcement

learning. Learning goal-directed behavior with sparse rewards is a fundamental

challenge for existing reinforcement learning algorithms. The DSR can enable efficient

exploration by periodically extracting subgoals, learning policies to satisfy these

intrinsic goals (skills), and subsequently learning hierarchical policy over these subgoals

in an options framework [138, 80, 115]. One of the major issues with the DSR is

learning discriminative features. In order to scale up our approach to more expressive

66

I

Figure 3-6: Subgoal extraction on the Doom map The subgoals are extracted

using the norialized cut-based algoritlm on the SR. The SR samnples are collected

based on a random policy. The subgoals mostly correspond to the rooms' entrances in

the common area, between the rooms. Due to randoin policy, we sometimes observe

high variance in the subgoal quality. Future work should address robust statistical

techniques to obtain subgoals, as well as non-parametric approaches to obtaining

flexible number of subgoals.

environments, it will be critical to conibine state-of-art deep generative models with

our approach.

67

68

Chapter 4

Perception as analysis-by-synthesis

4.1 Introduction

In this section, I develop model-based techniques for representing visual scenes. So

far, I have been effectively using CNNs for representation learning. However, in order

to learn features in regimes with much less data and without human labels, it is

important to go beyond feature learning and explore causal models of perception.

Probabilistic generative models of perception aim to produce high-probability

descriptions of scenes conditioned on observed images or videos, typically either via

discriminatively trained models or generative models in an "analysis by synthesis"

framework. Discriminative approaches lend themselves to fast, bottom-up inference

methods and relatively knowledge-free, data-intensive training regimes, and have been

remarkably successful on many recognition problems [32, 76, 84, 90]. Generative

approaches hold out the promise of analyzing complex scenes more richly and flexibly

[44, 45, 160, 25, 64, 89, 91, 53, 66], but have been less widely embraced for two

main reasons: Inference typically depends on slower forms of approximate inference,

and both model-building and inference can involve considerable problem-specific

engineering to obtain robust and reliable results. These factors make it difficult to

develop simple variations on state-of-the-art models, to thoroughly explore the many

possible combinations of modeling, representation, and inference strategies, or to

richly integrate complementary discriminative and generative modeling approaches to

69

the same problem. More generally, to handle increasingly realistic scenes, generative

approaches have to scale not just with respect to data size but also with respect to model

and scene complexity. This scaling arguably requires general-purpose frameworks to

compose, extend and automatically perform inference in complex structured generative

models - tools that for the most part do not yet exist.

Here we present Picture, a probabilistic programming language that aims to provide

a common representation language and inference engine suitable for a broad class

of generative scene perception problems. We see probabilistic programming as key

to realizing the promise of "vision as inverse graphics". Generative models can be

represented via stochastic code that samples hypothesized scenes and generates images

given those scenes. Rich deterministic and stochastic data structures can express

complex 3D scenes that are difficult to manually specify. Multiple representation and

inference strategies are specifically designed to address the main perceived limitations

of generative approaches to vision. Instead of requiring photo-realistic generative

models with pixel-level matching to images, we can compare hypothesized scenes

to observations using a hierarchy of more abstract image representations such as

contours, discriminatively trained part-based skeletons, or deep neural network features.

Available Markov Chain Monte Carlo (MCMC) inference algorithms include not only

traditional Metropolis-Hastings, but also more advanced techniques for inference in

high-dimensional continuous spaces, such as elliptical slice sampling, and Hamiltonian

Monte Carlo which can exploit the gradients of automatically differentiable renderers.

These top-down inference approaches are integrated with bottom-up and automatically

constructed data-driven proposals, which can dramatically accelerate inference by

eliminating most of the "burn in" time of traditional samplers and enabling rapid

mode-switching.

We demonstrate Picture on three challenging vision problems: inferring the 3D

shape and detailed appearance of faces, the 3D pose of articulated human bodies, and

the 3D shape of medially-symmetric objects. The vast majority of code for image

modeling and inference is reusable across these and many other tasks. We shows

that Picture yields performance competitive with optimized baselines on each of these

70

a) Scene
Language Representation Layer

Scene SP e.g. Deep Neural Net,

Approximate Contours, Skeletons, Pixels Observed
Approimat ImageRenderer IR i-D

lu'(R) v(ID) Img
X Likelihood or Likelihood-free

Rendering Comparator
Tolerance

P(IDIIR, X)
or

A(v(ID), -(IR))

(b) Inference Engine

Given Automatically
current produces -+

(SP XP) ~ MCMC, HMC,
Elliptical Slice, '

and Data-driven -
image ID proposals

4 4 groNew
qle(sp - , (S'", X'/)T'e eal real

qpat((",X") -> (S'1, X'f))

(c)

Random
samples IR

drawn from
example

probabilistic
programs

3D Face
program

b4

3D object 3D human-pose
program program

Figure 4-1: Overview: (a) All models share a common template; only the scene description

S and image ID changes across problems. Every probabilistic graphics program f defines a

stochastic procedure that generates both a scene description and all the other information

needed to render an approximation IR of a given observed image ID. The program f induces

a joint probability distribution on these program traces p. Every Picture program has the

following components. Scene Language: Describes 2D/3D scenes and generates particular

scene related trace variables SP E p during execution. Approximate Renderer: Produces

graphics rendering -I given SP and latents XP for controlling the fidelity or tolerance of

rendering. Representation Layer: Transforms ID or IR into a hierarchy of coarse-to-fine

image representations v(ID) and v(IR) (deep neural networks [82, 76], contours [29] and
pixels). Comparator: During inference, IR and ID can be compared using a likelihood
function or a distance metric A (as in Approximate Bayesian Computation [152]). (b)
Inference Engine: Automatically produces a variety of proposals and iteratively evolves
the scene hypothesis S to reach a high probability state given ID. (c): Representative
random scenes drawn from probabilistic graphics programs for faces, objects, and bodies.

71

I

(

benchmark tasks.

4.2 Picture Language

Picture descends from our earlier work on generative probabilistic graphics program-

ming (GPGP) [91], and also incorporates insights for inference from the Helmholtz

machine [54, 23] and recent work on differentiable renderers [89] and informed sam-

plers [64]. GPGP aimed to address the main challenges of generative vision by

representing visual scenes as short probabilistic programs with random variables,

and using a generic MCMC (single-site Metropolis-Hastings) method for inference.

However, due to modeling limitations of earlier probabilistic programming languages,

and the inefficiency of the Metropolis-Hastings sampler, GPGP was limited to working

with low-dimensional scenes, restricted shapes, and low levels of appearance variability.

Moreover, it did not support the integration of bottom-up discriminative models such

as deep neural networks [76, 82] for data-driven proposal learning. Our current work

extends the GPGP framework in all of these directions, letting us tackle a richer set

of real-world 3D vision problems.

Picture is an imperative programming language, where expressions can take on

either deterministic or stochastic values. We use the transformational compilation

technique [154] to implement Picture, which is a general method of transforming

arbitrary programming languages into probabilistic programming languages. Com-

pared to earlier formulations of GPGP, Picture is dynamically compiled at run-time

(JIT-compilation) instead of interpreting, making program execution much faster.

A Picture program f defines a stochastic procedure that generates both a scene

description and all other information needed to render an approximation image IR for

comparison with an observed image ID. The program f induces a joint probability

distribution on the program trace p = {pi}, the set of all random choices i needed to

specify the scene hypothesis S and render IR. Each random choice p can belong to a

familiar parametric or non-parametric family of distributions, such as Multinomial,

MvNormal, Discrete Uniform, Poisson, or Gaussian_ Process, but in being used to

72

I"P MW "IMM"'I"Mr, -- III lip IMINIFIRININIIII I" IN 'I I - MIRUMMON I IN IMPRIM111 IIWWMM

function PROGRAM(MU, PC, EV, VERTEXORDER)

Scene Language: Stochastic Scene Gen
face=Dict();shape = [; texture = [I;

for S in ["shape", "texture"]

for p in ["nose", "eyes", "outline", "lips"]

coeff = MvNorm a(0,1,1,99)

face[S] [p] = MU[S] [p]+PC[S] [p] .*(coeff .*EV[S] [p])

end
end
shape=f ace ["shape"] [:1 ; tex=f ace ["texture"] [:1
camera = Uiform(-1,1,1,2); light = Uniforw(-iii,2)

Approximate Renderer
renderedimg= MeshRenderer (shape, tex, light , camera)

Representation Layer
ren-ftrs = getFeatures("CNNConv6", rendered-img)

Comparator
#Using Pixel as Summary Statistics

observe(Mvflrmai (0,0. 01) , rendered_ img-obsi img)

#Using CNN last conv layer as Summary Statistics

observe (M.rNorima (0,10), renjftrs-obs-cnn)

end

global obs-img = imread("test.png")

global obscnn = getFeatures("CNNConv6", img)

#Load args from file

TR = trace (PROGRAM, args= [MU,PC, EV,VERTEX-ORDER])

Data-Driven Learning
Learndatadriven.proposals(TR, 100000, "CNN_.Conv6")

load-proposals (TR)

Inference
infer(TR,CB,20, ["DATA-DRIVEN"])

infer(TR,CB,200, ["ELLIPTICAL "])

Figure 4-2: Picture code illustration for 3D face analysis: Modules from Figure 4-la,b are

highlighted in bold. Running the program unconditionally (by removing observe's in code)

produces random faces as shown in Figure 4-1c. Running the program conditionally (keeping

observe's) on ID results in posterior inference as shown in Figure 4-3. The variables MU,
PC, EV correspond to the mean shape/texture face, principal components, and eigenvectors

respectively (see [1051 for details). These arguments parametrize the prior on the learned

shape and appearance of 3D faces. The argument VERTEX ORDER denotes the ordered

list of vertices to render triangle based meshes. The observe directive constrains the program

execution based on both the pixel data and CNN features. The infer directive starts the

inference engine with the specified set of inference schemes (takes the program trace, a

callback function CB for debugging, number of iterations and inference schemes). In this

example, data-driven proposals are run for a few iterations to initialize the sampler, followed

by slice sampling moves to further refine the high dimensional scene latents.

73

Inferred model Inferred model
Obsee onferred re-rendered with re-rendered with
Image (reconstruction) novel poses novel lighting

Figure 4-3: Inference on representative faces using Picture: We tested our approach
on a held-out dataset of 2D image projections of laser-scanned faces from [105]. Our short
probabilistic program is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery. For quantitative metrics,
refer to section 4.4.1.

specify the trace of a probabilistic graphics program, their effects can be combined

much more richly than is typical for random variables in traditional statistical models.

Consider running the program in Figure 4-2 unconditionally (without observed

data): as different pi's are encountered (for e.g. coeff), random values are sampled

w.r.t their underlying probability distribution and cached in the current state of the

inference engine. Program execution outputs an image of a face with random shape,

texture, camera and lighting parameters. Given image data ID, inference in Picture

programs amounts to iteratively sampling or evolving program trace p to a high

probability state while respecting constraints imposed by the data (Figure 4-3). This

constrained simulation can be achieved by using the observe language construct (see

code in Figure 4-2), first proposed in Venture [92] and also used in [104, 155].

74

4.2.1 Architecture

In this section, we explain the essential architectural components highlighted in

Figure 4-1 (see Figure 4-4 for a summary of notation used).

Scene Language: The scene language is used to describe 2D/3D visual scenes as

probabilistic code. Visual scenes can be built out of several graphics primitives such

as: description of 3D objects in the scene (e.g. mesh, z-map, volumetric), one or

more lights, textures, and the camera information. It is important to note that scenes

expressed as probabilistic code are more general than parametric prior density functions

as is typical in generative vision models. The probabilistic programs we demonstrate

in this paper embed ideas from computer-aided design (CAD) and nonparametric

Bayesian statistics[109] to express variability in 3D shapes.

Approximate Renderer (AR): Picture's AR layer takes in a scene representation

trace SP and tolerance variables XP, and uses general-purpose graphics simulators

(Blender[14 and OpenGL) to render 3D scenes. The rendering tolerance XO defines a

structured noise process over the rendering and is useful for the following purposes:

(a) to make automatic inference more tractable or robust, analogous to simulated

annealing (e.g. global or local blur variables in GPGP 1911), and (b) to soak up model

mismatch between the true scene rendering ID and the hypothesized rendering IR.

Inspired by the differentiable renderer[89], Picture also supports expressing AR's

entire graphics pipeline as Picture code, enabling the language to express end-to-end

differentiable generative models.

Representation Layer (RL): To avoid the need for photo-realistic rendering of

complex scenes, which can be slow and modeling-intensive, or for pixel-wise comparison

of hypothesized scenes and observed images, which can sometimes yield posteriors that

are intractable for sampling-based inference, the RL supports comparison of generated

and observed images in terms of a hierarchy of abstract features. The RL can be

defined as a function v which produces summary statistics given ID or IR, and may

also have internal parameters 0, (e.g. weights of a deep neural net). For notational

convenience, we denote v(ID; O) and v(ID; 0,) to be v(ID) and v(IR) respectively.

75

RL produces summary statistics (features) that are used in two scenarios: (a) to

compare the hypothesis IR with observed image ID during inference (RL denoted

by v in this setting), and (b) as a dimensionality reduction technique for hashing

learned data-driven proposals (RL denoted by Vdd and its parameters odd). Picture

supports a variety of summary statistic functions including raw pixels, contours [291 and

supervised/unsupervised convolutional neural network (CNN) architectures[76, 821.

Likelihood and Likelihood-free Comparator: Picture supports likelihood P(ID IR)

inference in a bayesian setting. However, in the presence of black-box rendering simu-

lators, the likelihood function is often unavailable in closed form. Given an arbitrary

distance function A(v(ID), v(IR)) (e.g. Li error), approximate bayesian computation

(ABC) [152] can be used to perform likelihood-free inference.

4.3 Inference

We can formulate the task of image interpretation as approximately sampling mostly

likely values of SP given observed image ID (L stands for P(ID IR, XP)):

P(SP|ID) OC J P(SP)P(X)6render(SP,XP)(IR) L dXP

Automatic inference in Picture programs can be especially hard due to a mix of

discrete and continuous scene variables, which may be independent a priori but highly

coupled in their posterior distributions ("explaining away"), and also because clutter,

occlusion or noise can lead to local maxima of the scene posterior.

Given a program trace p, probabilistic inference amounts to updating (SP, XP) to

(S'P, X'P) until convergence via proposal kernels q((SP, XP) -+ q(S'P, X'P)). Let K =

I{SP}I-+j{XP} and K' = I{S'P}+|{X'P}I be the total number of random choices in the

execution before and after applying the proposal kernels q(.). Let the log-likelihoods

of old and new trace be L = P(ID IIR, X) and L' = P(IDII, X') respectively. Let us

denote the probabilities of deleted and newly created random choices created in SP

to be P(SdPl) and P(Sne,) respectively. Let q(s',x'>)(s,x) := q((S'P, X'P) -+ (SP, XP))

76

Modules
Scene Representation S:

Functional Description

light_source { <0, 199, 20>
color rgb<1.5,1.5,1.5> }

camera { location <30,48,-10> angle 40
lookat <30,44,50> }

object{leg-right vertices ...
trans <32.7,43.6,9>}

object{arm-left vertices scale 0.2

... rotate x*0}

object{arm-left texture}

Program trace: p = {pi}

Rendering tolerance:
Stochastic Scene:
Approximate Rendering:
Approximate Renderer:
Image data:
Data-driven Proposals:
Data representations:
Comparator:

Rendering Differentiator:

XP E p
SP E p
IR

render: (S, X) -+ IR

ID

(f, T, Vdd, Owdd) qdata(.)

v(ID) and v(IR)
A : (V(ID), v(IR)) -4 R

P(v(ID) IV(IR), X)
VSP 1 :-p-

grad_model _density(Sreal; ID)

Figure 4-4: Formal Summary: The scene S can be conceptualized as a program

that describes the structure of known or unknown number of objects, texture-maps,
lighting and other scene variables. The symbol T denotes the number of times the

program f is executed to generate data-driven proposals (see section 4.3.2 for details).

The rendering differentiator produces gradients of the program density with respect

to continuous variables Srea in the program.

77

and q(s,x)-+(s',x') := q((SP, XP) -+ (S'P, X'p)). The new trace (S'P, X'P) can now be

accepted or rejected using the acceptance ratio:

4.3.1 Distance Metrics and Likelihood-free Inference

The likelihood function in closed form is often unavailable when integrating top-down

automatic inference with bottom-up computational elements. Moreover, this issue is

exacerbated when programs use black-box rendering simulators. Approximate bayesian

computation (ABC) allows Bayesian inference in likelihood-free settings, where the

basic idea is to use a summary statistic function v(.), distance metric A(v(ID), v(IR))

and tolerance variable XP to approximately sample the posterior distribution [152].

Inference in likelihood-free settings can also be interpreted as a variant of the

probabilistic approximate MCMC algorithm [1521, which is similar to MCMC but

with an additional tolerance parameter c E XP on the observation model. We can

interpret our approach as systematically reasoning about the model error arising due

to the difference of generative model's "cartoon" view of the world with reality. Let

o be the space of all possible renderings IR that could be hypothesized and P be

the error model (e.g. Gaussian). The target stationary distribution that we wish to

sample can be expressed as:

P SPIID) C j P(SP)P(v(fD) - v(IR))P((IR)JSP)dIR-

During inference, the updated scene S'P (assuming random choices remain unchanged,

otherwise add terms relating to addition/deletion of random variables as in equation

1) can then be accepted with probability:

mini 1Pe(v(ID) - IR'))P(S'P)P(X'P) q(s',x')-+(s,x)
' PE(v(ID) - v(IR))P(SP)P(XP) q(s,x)-+(s',x')

4.3.2 Proposal Kernels

In this section, we propose a variety of proposal kernels for scaling up Picture to

complex 3D scenes.

78

Local and Blocked Proposals from Prior: Single site metropolis hastings moves

on continuous variables and Gibbs moves on discrete variables can be useful in many

cases. However, because the latent pose variables for objects in 3D scenes (e.g.,

positions and orientations) are often highly coupled, our inference library allows users

to define arbitrary blocked proposals: qp((SP, XP) -+ (S'P, X'P)) = [HPsE(sP,XP) P(p)

Gradient Proposal: Picture inference supports automatic differentiation for a re-

stricted class of programs (where each expression provides output and gradients

w.r.t input). Therefore it is straightforward to obtain Vs,,atp using reverse mode

automatic differentiation, where S.,., E SP denotes all continuous variables. This

enables us to automatically construct Hamiltonian Monte Carlo proposals[100, 153]

qhmc(Sreal -4 Sreal'P) (see supplementary material for a simple example).

Elliptical Slice Proposals: To adaptively propose changes to a large set of la-

tent variables at once, our inference library supports elliptical slice moves with or

without adaptive step sizes (see Figure 4-2 for an example)[1.2, 97]. For simplicity,

assume Sreai ' .A(O, E). We can generate a new sub-trace S'eaI efficiently as follows:

Srea= 1 - (X2 Sreal + aO, where 0 - /(O, E) and a - Uniform(-1, 1).

Data-driven Proposals: The top-down nature of MCMC inference in generative

models can be slow, due to the initial "burn-in" period and the cost of mixing among

multiple posterior modes. However, vision problems often lend themselves to much

faster bottom-up inference based on data-driven proposals [64, 146]. Arguably the

most important inference innovation in Picture is the capacity for automatically

constructing data-driven proposals by simple learning methods. Such techniques

fall under the broader idea of amortizing or caching inference to improve speed

and accuracy [1321. We have explored several approaches generally inspired by the

Helmholtz machine [54, 23], and indeed Helmholtz's own proposals, including using

deep learning to construct bottom-up predictors for all or a subset of the latent scene

79

variables in p [158, 821. Here we focus on a simple and general-purpose memory-based

approach (similar in spirit to the informed sampler [64]) that can be summarized as

follows: We "imagine" a large set of hypothetical scenes sampled from the generative

model, store the imagined latents and corresponding rendered image data in memory,

and build a fast bottom-up kernel density estimate proposer that samples variants of

stored graphics program traces best matching the observed image data - where these

bottom-up "matches" are determined using the same representation layer tools we

introduced earlier for comparing top-down rendered and observed images. Figure 4-5

provides a qualitative description of the algorithm. More formally, we can construct

data-driven proposals qudta as follows:

(1) Specify the number of times T to forward simulate (unconditional runs) the

graphics program f.

(2) Draw T samples from f to create program traces pt and approximate renderings

I4, where {1 < t < T}.

(3) Specify a summary statistic function Vdd with model parameters 0 ,d,. We can

use the same representation layer tools introduced earlier to specify vdd, subject to

the additional constraint that feature dimensionalities should be as small as possible

to enable proposal learning and evaluation on massive datasets.

(4) Fine-tune parameters 6
vdd of the representation layer Vdd using supervised learning

to best predict program traces {pt}[1 from corresponding rendered images {I}T1 .

If labeled data is available for full or partial scene traces {S} corresponding to

actual observed images {ID}, the parameters 0
vdd can also be fine-tuned further to

predict these labels. (see deep convolutional inverse graphics network [82] as an

alternative Vdd, which works in an weakly supervised setting.)

(5) Define a hash function H : v(I4) -+ ht, where ht denotes the hash value for

v(I). For instance, H can be defined in terms of K-nearest neighbors or a Dirichlet

Process mixture model. Store triplets {pt, v(IR'), ht} in a database C.

(6) To generate data-driven proposals for an observed image ID with hash value

hD, extract all triplets {pi, v(I), hi}Y that have hash value equal to hD. We can

then estimate the data-driven proposal as:

80

_F1 171MMMIW I

qata(S' --+ S'"0 C, ID) - Pdensity (Pji)=

where Pdensity is a density estimator such as the multivariate gaussian kernel in

[64]).

4.4 Example. Picture Programs

To illustrate how Picture can be applied to a wide variety of 2D and 3D computer

vision problems, we present three sample applications to the core vision tasks of 3D

body pose estimation, 3D reconstruction of objects and 3D face analysis. Although

additional steps could be employed to improve results for any of these tasks, and there

may exist better fine-tuned baselines, our goal here is to show how to solve a broad

class of problems efficiently and competitively with task-specific baseline systems,

using only minimal problem-specific engineering.

See Appendix A for details about some of the experiments.

4.4.1 3D Analysis of Faces

We obtained a 3D deformable face model trained on laser scanned faces from Paysan

et al [1051. After training with this dataset, the model generates a mean shape mesh

and mean texture map, along with principal components and eigenvectors. A new face

can be rendered by randomly choosing coefficients for the 3D model and running the

program shown in Figure 4-2. The representation layer v in this program used the top

convolutional-layer features from the ImageNet CNN model[65] as well as raw pixels.

(Even better results can be obtained using the deep convolutional inverse graphics

network [821 instead of the CNN.) We evaluated the program on a held-out test set of

2D projected images of 3D laser scanned data (dataset from [105]). We additionally

produced a dataset of about 30 images from the held-out set with different viewpoints

and lighting conditions. In Figure 4-3, we show qualitative results of inference runs

on the dataset.

81

Long-term
Memory

(a)

WP, 41}

Hallucinated Data
(Sleep)

Learning

(Krlzbevsky et al.)

Probabilistic
Program q(S S' IID)

CNN

Test Data

ID

Now run inference
90%: Data-driven (Pattern Matching)

10%: Sampling/Search (Reasoning)

Long-term Memory
(Sleep)

Figure 4-5: Helmholtz Proposals. (a) Training Phase. (b) Testing Phase

82

Probabilistic
Program

Unconditional
Runs

v(.)

/11
0.0

* .0

- Conditional Density Estimator

%0
% 0

.*,0 .0*
.0-

.0 *

(b)

-500000 -

oa - 01000000-

CV -15000001

o -2000000- Jo

-2500000 -With Data-driven Proposals
-Without Data-driven Proposals

-3000000
0 100 200 300 400 500

Time (seconds)

Figure 4-6: The effect of adding data-driven proposals for 3D face program:

A mixture of automatically learned data-driven proposals and elliptical slice proposals

significantly improves speed and accuracy of inference over a pure elliptical slice sampler.

We ran 50 independent chains for both approaches and show a few sample trajectories as

well as the mean trajectories (in bold).

During experimentation, we discovered that since the number of latent variables is

large (8 sets of 100 dimensional continuous coupled variables), elliptical slice moves

are significantly more efficient than Metropolis-Hastings proposals (see supplementary

Figure 2 for quantitative results). We also found that adding learned data-driven

proposals significantly outperforms using only the elliptical slice proposals in terms of

both speed and accuracy. We trained the data-driven proposals from around 100k

program traces drawn from unconditional runs. The summary statistic function

Vdd used were the top convolutional-layer features from the pre-trained ImageNet

CNN model[65]. The conditional proposal density Pdensity was a multivariate kernel

density function over cached latents with a Gaussian Kernel (0.01 bandwidth). Figure

4-6 shows the gains in inference from use of a mixture kernel of these data-driven

proposals (0.1 probability) and elliptical slice proposals (0.9 probability), relative to a

pure elliptical slice sampler.

Many other academic researchers have used 3D deformable face models in an

analysis-by-synthesis based approach [88, 70, 2]. However, Picture is the only system

to solve this as well as many other unrelated computer vision problems using a general-

83

purpose system. Moreover, the data-driven proposals and abstract summary statistics

(top convolutional-layer activations) allow us to tackle the problem without explicitly

using 2D face landmarks as compared to traditional approaches.

4.4.2 3D Human Pose Estimation

We developed a Picture program for parsing 3D pose of articulated humans from single

images. There has been notable work in model-based approaches [46, 87] for 3D human

pose estimation, which served as an inspiration for the program we describe in this

section. However, in contrast to Picture, existing approaches typically require custom

inference strategies and significant task-specific model engineering. The probabilistic

code (see supplementary Figure 4) consists of latent variables denoting bone and

joints of an articulated 3D base mesh of a body. In our probabilistic code, we use an

existing base mesh of a human body, defined priors over bone location and joints, and

enable the armature skin-modifier API via Picture's Blender engine API. The latent

scene SP in this program can be visualized as a tree with the root node around the

center of the mesh, and consists of bone location variables, bone rotation variables

and camera parameters. The representation layer v in this program uses fine-grained

image contours [291 and the comparator is expressed as the probabilistic chamfer

distance [140].

We evaluated our program on a dataset of humans performing a variety of poses,

which was aggregated from KTH [1191 and LabelMe [113] images with significant

occlusion in the "person sitting"(around 50 total images). This dataset was chosen to

highlight the distinctive value of a graphics model-based approach, emphasizing certain

dimensions of task difficulty while minimizing others: While graphics simulators for

articulated bodies can represent arbitrarily complex body configurations, they are

limited with respect to fine-grained appearance (e.g., skin and clothing), and fast

methods for fine-grained contour detection currently work well only in low clutter

environments. We initially used only single-site MH proposals, although blocked

proposals or HMC can somewhat accelerate inference.

We compared this approach with the discriminatively trained Deformable Parts

84

Model (DPM) for pose estimation [157] (referred as DPM-pose), which is notably a 2D

pose model. As shown in Figure 4-7b, images with people sitting and heavy occlusion

are very hard for the discriminative model to get right - mainly due to "missing"

observation signal - while our model-based approach can handle these reasonably if

we constrain the knee parameters to bend only in natural ways in the prior. Most of

our model's failure cases, as shown in Figure 4-7b, are in inferring the arm position;

this is typically due to noisy and low quality feature maps around the arm area due

to its small size.

In order to quantitatively compare results, we project the 3D pose obtained from

our model to 2D key-points. As shown in Figure 4-7a, our system localizes these

key-points significantly better than DPM-pose on this dataset. However, DPM-pose

is a much faster bottom-up method, and we explored ways to combine its strengths

with our model-based approach, by using it as the basis for learning data-driven

proposals. We generated around 500k program traces by unconditionally running the

body pose program. We used a pie-trained DPM pose model [157] as the function

Vdd, and used a similar density function Pdensity as in the face example. As shown in

Figure 4-8, inference using a mixture kernel of data-driven proposals (0.1 probability)

and single-site MH (0.9 probability) consistently outperformed pure top-down MH

inference in both speed and accuracy. We see this as representative of many ways

that top-down inference in model-based approaches could be profitably combined with

fast bottom-up methods like DPM-pose to solve richer scene parsing problems more

quickly.

4.4.3 . 3D Shape Program

Lathing and casting is a useful representation to express CAD models and inspires our

approach to modeling medially-symmetric 3D objects. It is straightforward to generate

random CAD object models using a probabilistic program, as shown in supplementary

Figure 3. However, the distribution induced by such a program may be quite complex.

Given object boundaries in B C 7Z2 space, we can lathe an object by taking a cross

section of points (fixed for this program), defining a medial axis for the cross section

85

and sweeping the cross section across the medial axis by continuously perturbing

with respect to B. Capturing the full range of 3D shape variability in real objects

requires a very large space of possible boundaries B. To this end, Picture allows

flexible non-parametric priors over object profiles: here we generate B from a Gaussian

Process [109] (GP). The probabilistic shape program produces an intermediate mesh

of all or part of the 3D object (soft-constrained to be in the middle of the scene),

which then gets rendered to an image IR by a deterministic camera re-projection

function. The representation layer and the comparator used in this program were

same as those used for the 3D human pose example. The proposal kernel we used

during inference consisted of blocked MCMC proposals on all the coupled continuous

variables as described in the supplementary material. (For more details of the program

and inference summarized here, refer to supplementary Section 1.)

We evaluate this program on an RGB image dataset of 3D objects with large shape

variability. We asked CAD experts to manually generate CAD model fits to these

images in Blender, and evaluated our approach in comparison to a state-of-the-art 3D

surface reconstruction algorithm from [5](SIRFS). To judge quantitative performance,

we calculated two metrics: (a) Z-MAE - Shift-invariant surface mean-squared error and

(b) N-MSE - mean-squared error over normals[5]. As shown in Figure 4-9, inference

using our probabilistic shape program has a lower Z-MAE and N-MSE score than

SIRFS [5], and we also obtain qualitatively better reconstruction results. However, it

is important to note that SIRFS predominantly utilizes only low level shape priors

such as piece-wise smoothness, in contrast to the high-level shape priors we assume,

and SIRFS solves a more general and harder problem of inferring full intrinsic images

(shape, illumination and reflectance). In the future, we hope to combine the best of

SIRFS-style approaches and our probabilistic CAD programs to reconstruct rich 3D

shape and appearance models for generic object classes, robustly and efficiently.

86

4.5 Discussion

There are many promising directions for future research in probabilistic graphics

programming. Introducing a dependency tracking mechanism could let us exploit

the many conditional independencies in rendering for more efficient parallel inference.

Automatic particle-filter based inference schemes [155, 81] could extend the approach

to image sequences. Better illumination [162], texture and shading models could let us

work with more natural scenes. Procedural graphics techniques [4, 33] would support

far more complex object and scene models [159, 48, 25, 51]. Flexible scene generator

libraries will be essential in scaling up to the full range of scenes people can interpret.

We are also interested in extending Picture by taking insights from learning based

"analysis-by-synthesis" approaches such as transforming auto-encoders [55], capsule

networks [1431 and deep convolutional inverse graphics network [821. These models

learn an implicit graphics engine in an encoder-decoder style architecture. With

probabilistic programming, the space of decoders need not be restricted to neural

networks and could consist of arbitrary probabilistic graphics programs with internal

parameters.

The recent renewal of interest in inverse graphics approaches to vision has motivated

a number of new modeling and inference tools. Each addresses a different facet of the

general problem. Earlier formulations of probabilistic graphics programming provided

compositional languages for scene modeling and a flexible template for automatic

inference. Differentiable renderers make it easier to fine-tune the numerical parameters

of high-dimensional scene models. Data-driven proposal schemes suggest a way to

rapidly identify plausible scene elements, avoiding the slow burn-in and mixing times

of top-down MCMC-based inference in generative models. Deep neural networks,

deformable parts models and other discriminative learning methods can be used to

automatically construct good representation layers or similarity metrics for comparing

hypothesized scenes to observed images. Here we show that by integrating all of these

ideas into a single probabilistic language and inference framework, it may be feasible

to begin scaling up inverse graphics to a range of real-world vision problems.

87

100

80

0

u'

60

40[

20

(a)
Ob eryvd

Head Armi Arm2 Foti Fot2

BaSelne PIc'ure Observed Baseline

JI

AI

(b)

Figure 4-7: Quantitative and qualitative results for 3D human pose program:
Refer to supplementary Figure 4 for the probabilistic program. We quantitatively evaluate
the pose program on a dataset collected from various sources such as KTH [119], LabelMe [113]
images with significant occlusion in the "person sitting" category and the Internet. On the
given dataset. as shown in the error histogram in (a), our model is more accurate on average
than just using the DPM based human pose detector [1571. The histogram shows average
error for all methods considered over the entire dataset separated over each body part.

88

Baseline
Our Method

I

Picture

AM

11

(a)
-15.

-20

-35
(b) (C) (d)

-40

-
-45 - oj I

-50 -With Data-driven Proposals
Without Data-driven Proposals

1 16 31 46 61 76 91 106 121 136 151

(e) Iteration

Figure 4-8: Illustration of data-driven proposal learning for 3D human-pose pro-
gram: (a) Random program traces sampled from the prior during training. The colored
stick figures are the results of applying DPM pose model on the hallucinated data from
the program. (b) Representative test image. (c) Visualization of the representation layer
v(ID). (d) Result after inference. (e) Samples drawn from the learned bottom-up propos-
als conditioned on the test image are semantically close to the test image and results are
fine-tuned by top-down inference to close the gap. As shown on the log-l plot, we run about
100 independent chains with and without the learned proposal. Inference with a mixture
kernel of learned bottom-up proposals and single-site MH consistently outperforms baseline
in terms of both speed and accuracy.

89

to reconstruct input images. Our work is similar in spirit to these works but has some

key differences: (a) It uses a very generic convolutional architecture in the encoder

and decoder networks to enable efficient learning on large datasets and image sizes;

(b) it can handle single static frames as opposed to pair of images required in [55];

and (c) it is generative.

5.3 Model

As shown in Figure 5-1, the basic structure of the Deep Convolutional Inverse Graphics

Network (DC-IGN) consists of two parts: an encoder network which captures a

distribution over graphics codes Z given data x and a decoder network which learns

a conditional distribution to produce an approximation d- given Z. Z can be a

disentangled representation containing a factored set of latent variables zi E Z such

as pose, light and shape. This is important in learning a meaningful approximation of

a 3D graphics engine and helps tease apart the generalization capability of the model

with respect to different tvDes of transformations.

Let us denote the encoder output of DC-IGN to be ye = encoder(x). The encoder

output is used to parametrize the variational approximation Q(zilye), where Q is

chosen to be a multivariate normal distribution. There are two reasons for using

this parametrization: (1) Gradients of samples with respect to parameters 0 of Q

can be easily obtained using the reparametrization trick proposed in [72], and (2)

Various statistical shape models trained on 3D scanner data such as faces have the

same multivariate normal latent distribution [1051. Given that model parameters We

connect ye' and Zj, the distribution parameters 0 = (p, Z,) and latents Z can then

be expressed as:

pz = Wy, E, = diag(exp(Weye)) (5.1)

Vi, zi ~A/(pzi, Ezi) (5.2)

We present a novel training procedure which allows networks to be trained to have

95

Observed

-L

Prior Posterior
Iteration

Observed Ground Baseline Picture Infered
TruthMoe

Quantitative Metrics
METHOD Z-MAE N-MS EI
Barronet a2j 7 15.19 2.07 x 10-
Picture 11.40 1.704 x 10

Figure 4-9: Qualitative and quantitative results of 3D object reconstruction pro-
gram: Refer to supplementary Figure 3 for the probabilistic program. Top: We illustrate a

typical inference trajectory of the sampler from prior to the posterior on a representative real

world image. Middle: Qualitative results on representative images. Bottom: Quantitative

results in comparison to [5]. For details about the scoring metrics, refer to section 4.4.3.

90

Chapter 5

Learning analysis-by-synthesis models

5.1 Introduction

Neural Networks can be thought of as differentiable programs or differentiable proba-

bilistic programs. Under this view, we can define any computational process, discrimi-

native or generative, and do learning or inference conditioned on data. Many modern

deep learning systems are designed with an explicit structure for richer inductive biases

- Neural Turing Machines [41] with explicit read/write memory heads, differentiable at-

tention modules for selective read/write in images 163], transforming autoencoders 155],

etc. This new conceptual paradigm can allow us to express structured probabilistic

and non-probabilistic models, and apply efficient gradient based learning algorithms

for training. In this section, I propose a purely learning based approach to inverse

graphics, while preserving insights about the causal structure within images.

The desiderata for good representations of images can be summarized as follows:

invariance, interpretability, abstraction, and disentanglement. The inverse graphics

paradigm suggests a representation for images which provides these features. Computer

graphics consists of a function to go from compact descriptions of scenes (the graphics

code) to images, and this graphics code is typically disentangled to allow for rendering

scenes with fine-grained control over transformations such as object location, pose,

lighting, texture, and shape. This encoding is designed to easily and interpretably

represent sequences of real data so that common transformations may be compactly

91

represented in software code.

Recent work in inverse graphics [91, 79, 78] follows a general strategy of defining a

probabilistic with latent parameters, then using an inference algorithm to find the most

appropriate set of latent parameters given the observations. Recently, Tieleman et al.

[1431 moved beyond this two-stage pipeline by using a generic encoder network and a

domain-specific decoder network to approximate a 2D rendering function. However,

none of these approaches have been shown to automatically produce a semantically-

interpretable graphics code and to learn a 3D rendering engine to reproduce images.

In this section, I present an approach which attempts to learn interpretable graphics

codes for complex transformations such as out-of-plane rotations and lighting variations.

Given a set of images, we use a hybrid encoder-decoder model to learn a representation

that is disentangled with respect to various transformations such as object out-of-plane

rotations and lighting variations. We employ a deep directed graphical model with

many layers of convolution and de-convolution operators that is trained using the

Stochastic Gradient Variational Bayes (SGVB) algorithm [72].

I propose a training procedure to encourage each group of neurons in the graphics

code layer to distinctly represent a specific transformation. To learn a disentangled

representation, we train using data where each mini-batch has a set of active and

inactive transformations, but we do not provide target values as in supervised learning;

the objective function remains reconstruction quality. For example, a nodding face

would have the 3D elevation transformation active but its shape, texture and other

transformations would be inactive. We exploit this type of training data to force chosen

neurons in the graphics code layer to specifically represent active transformations,

thereby automatically creating a disentangled representation. Given a single face

image, our model can re-generate the input image with a different pose and lighting.

We present qualitative and quantitative results of the model's efficacy at learning a

3D rendering engine.

92

Q(zi|x)
graphics code

Convolution + Pooling Unpooling (Nearest Neighbor) +
Convolution

7200

.... P(Xz)

observed
image \ \

Filters 96 Filters = 64 Filters = 32 Filters = 32 Filters = 64 Filters 96
kernelsize(KS)=5 KS=5 KS=5 KS=7 KS=7 KS=7

J200- E2001
| |

Encoder Decoder
(De-rendering) (Renderer)

Figure 5-1: Model Architecture: Deep Convolutional Inverse Graphics Network

(DC-IGN) has an encoder and a decoder. We follow the variational autoencoder [721

architecture with variations. The encoder consists of several layers of convolutions

followed by max-pooling and the decoder has several layers of unpooling (upsampling

using nearest neighbors) followed by convolution. (a) During training, data x is

passed through the encoder to produce the posterior approximation Q(zilx), where zi

consists of scene latent variables such as pose, light, texture or shape. In order to learn

parameters in DC-IGN, gradients are back-propagated using stochastic gradient descent

using the following variational object function: -log(P(xJzi)) + KL(Q(zilx)||P(zi))

for every zi. We can force DC-IGN to learn a disentangled representation by showing

mini-batches with a set of inactive and active transformations (e.g. face rotating, light

sweeping in some direction etc). (b) During test, data x can be passed through the

encoder to get latents z,. Images can be re-rendered to different viewpoints, lighting

conditions, shape variations, etc by setting the appropriate graphics code group (zi),
which is how one would manipulate an off-the-shelf 3D graphics engine.

5.2 Related Work

As mentioned previously, a number of generative models have been proposed in the

literature to obtain abstract visual representations. Unlike most RBM-based models

[53, 114, 861, our approach is trained using back-propagation with objective function

consisting of data reconstruction and the variational bound.

Relatively recently, Kingnia et al. [72] proposed the SGVB algorithm to learn

generative models with continuous latent variables. In this work, a feed-forward neural

network (encoder) is used to approximate the posterior distribution and a decoder

network serves to enable stochastic reconstruction of observations. In order to handle

fine-grained geometry of faces, we work with relatively large scale images (150 x 150

93

Z z1 z2 z3 4

corresponds to P a 4, intrinsic properties (shape, texture, etc)

Figure 5-2: Structure of the representation vector. # is the azimuth of the face,
a is the elevation of the face with respect to the camera, and #L is the azimuth of the
light source.

pixels). Our approach extends and applies the SGVB algorithm to jointly train and

utilize many layers of convolution and de-convolution operators for the encoder and

decoder network respectively. The decoder network is a function that transform a

compact graphics code (200 dimensions) to a 150 x 150 image. We propose using

unpooling (nearest neighbor sampling) followed by convolution to handle the massive

increase in dimensionality with a manageable number of parameters.

Recently, 130] proposed using CNNs to generate images given object-specific

parameters in a supervised setting. As their approach requires ground-truth labels for

the graphics code layer, it cannot be directly applied to image interpretation tasks.

Our work is similar to Ranzato et al. 1108], whose work was amongst the first to use a

generic encoder-decoder architecture for feature learning. However, in comparison to

our proposal their model was trained layer-wise, the intermediate representations were

not disentangled like a graphics code, and their approach does not use the variational

auto-encoder loss to approximate the posterior distribution. Our work is also similar in

spirit to [139], but in comparison our model does not assume a Lambertian reflectance

model and implicitly constructs the 3D representations. Another piece of related work

is Desjardins et al. [261, who used a spike and slab prior to factorize representations

in a generative deep network.

In comparison to existing approaches, it is important to note that our encoder

network produces the interpretable and disentangled representations necessary to learn

a meaningful 3D graphics engine. A number of inverse-graphics inspired methods have

recently been proposed in the literature [91]. However, most such methods rely on

hand-crafted rendering engines. The exception to this is work by Hinton et al. [55J

and Tieleman 1143] on transforming autoencoders which use a domain-specific decoder

94

I . ltll _ q"" - - -_! - 1 11.111 1111111 - 'k 11111 1100 11- 1 1 1 R1 0MRIM"I" IRR"? "N"11PRIM 1011MM 1 ,

Forward Backward

Decoder

1tout an

o tE Zn r k c

D larfl1)ed

ZI Z2 Z3 ZdU

Encoder

Decoder

VoutE

gr(1 VZ gr)a(I ieaii z kgrad I Ik c bat:h'

I Encoder

Figure 5-3: Training on a minibatch in which only 0, the azimuth angle of
the face, changes. During the forward step, the output from each component zi zi
of the encoder is altered to be the same for each sample in the batch. This reflects the
fact that the generating variables of the image (e.g. the identity of the face) which
correspond to the desired values of these latents are unchanged throughout the batch.
By holding these outputs constant throughout the batch, the single neuron z1 is forced
to explain all the variance within the batch, i.e. the full range of changes to the image
caused by changing #. During the backward step z, is the only neuron which receives
a gradient signal from the attempted reconstruction, and all zi : zi receive a signal
which nudges them to be closer to their respective averages over the batch. During
the complete training process, after this batch, another batch is selected at random; it
likewise contains variations of only one of 0, a, OL, intrinsic; all neurons which do not
correspond to the selected latent are clamped; and the training proceeds.

disentangled and interpretable representations.

5.3.1 Training with Specific Transformations

The main goal of this work is to learn a representation of the data which consists of

disentangled and semantically interpretable latent variables. We would like only a

small subset of the latent variables to change for sequences of inputs corresponding to

real-world events.

One natural choice of target representation for information about scenes is that

already designed for use in graphics engines. If we can deconstruct a face image by

splitting it into variables for pose, light, and shape, we can trivially represent the same

transformations that these variables are used for in graphics applications. Figure 5-2

depicts the representation which we attempt to learn.

With this goal in mind, we perform a training procedure which directly targets this

96

definition of disentanglement. We organize our data into mini-batches corresponding to

changes in only a single scene variable (azimuth angle, elevation angle, azimuth angle

of the light source); these are transformations which might occur in the real world.

We term these the extrinsic variables, and they are represented by the components

z 1 ,2 ,3 of the encoding.

We also generate mini-batches in which the three extrinsic scene variables are held

fixed but all other properties of the face change. That is, these batches consist of many

different faces under the same viewing conditions and pose. These intrinsic properties

of the model, which describe identity, shape, expression, etc., are represented by

the remainder of the latent variables Z[4 ,2 00]. These mini-batches varying intrinsic

properties are interspersed stochastically with those varying the extrinsic properties.

We train this representation using SGVB, but we make some key adjustments to

the outputs of the encoder and the gradients which train it. The procedure (Figure

5-3) is as follows.

1. Select at random a latent variable Ztrain which we wish to correspond to one of

{azimuth angle, elevation angle, azimuth of light source, intrinsic properties}.

2. Select at random a mini-batch in which that only that variable changes.

3. Show the network each example in the minibatch and capture its latent repre-

sentation for that example zk.

4. Calculate the average of those representation vectors over the entire batch.

5. Before putting the encoder's output into the decoder, replace the values zi # Ztrain

with their averages over the entire batch. These outputs are "clamped".

6. Calculate reconstruction error and backpropagate as per SGVB in the decoder.

7. Replace the gradients for the latents zi 74 Ztrain (the clamped neurons) with their

difference from the mean (see Section 5.3.2). The gradient at Ztrain is passed

through unchanged.

8. Continue backpropagation through the encoder using the modified gradient.

97

Since the intrinsic representation is much higher-dimensional than the extrinsic

ones, it requires more training. Accordingly we select the type of batch to use in a

ratio of about 1:1:1:10, azimuth : elevation : lighting : intrinsic; we arrived at this

ratio after extensive testing, and it works well for both of our datasets.

This training procedure works to train both the encoder and decoder to represent

certain properties of the data in a specific neuron. By clamping the output of all but

one of the neurons, we force the decoder to recreate all the variation in that batch

using only the changes in that one neuron's value. By clamping the gradients, we

train the encoder to put all the information about the variations in the batch into one

output neuron.

This training method leads to networks whose latent variables have a strong

equivariance with the corresponding generating parameters, as shown in Figure 5-5.

This allows the value of the true generating parameter (e.g. the true angle of the face)

to be trivially extracted from the encoder.

5.3.2 Invariance Targeting

By training with only one transformation at a time, we are encouraging certain neurons

to contain specific information; this is equivariance. But we also wish to explicitly

discourage them from having other information; that is, we want them to be invariant

to other transformations. Since our mini-batches of training data consist of only one

transformation per batch, then this goal corresponds to having all but one of the

output neurons of the encoder give the same output for every image in the batch.

To encourage this property of the DC-IGN, we train all the neurons which corre-

spond to the inactive transformations with an error gradient equal to their difference

from the mean. It is simplest to think about this gradient as acting on the set of

subvectors Zinactive from the encoder for each input in the batch. Each of these Zinactive 'S

will be pointing to a close-together but not identical point in a high-dimensional space;

the invariance training signal will push them all closer together. We don't care where

they are; the network can represent the face shown in this batch however it likes.

We only care that the network always represents it as still being the same face, no

98

Original

I1

(a)

(b)

(c)

Reconstruction Light direction varied
------------------------ j --------

Original Reconstruction Pose (Elevation) varied

fL

Original Reconstruction Pose (Azimuth) varied
--- --- -- --- -- --- ------ ---------

Figure 5-4: Manipulating light and elevation variables: Qualitative results
showing the generalization capability of the learned DC-IGN decoder to re-render
a single input image with different pose directions. (a) We change the latent Zlight

smoothly leaving all 199 other latents unchanged. (b) We change the latent Zelevation

smoothly leaving all 199 other latents unchanged. (c) The latent neuron Zazimuth is
changed to random values but all other latents are clamped.

99

matter which way it's facing. This regularizing force needs to be scaled to be much

smaller than the true training signal, otherwise it can overwhelm the reconstruction

goal. Empirically, a factor of 1/100 works well.

5.4 Experiments

We trained our model on about 12,000 batches of faces generated from a 3D face

model obtained from Paysan et al. [105], where each batch consists of 20 faces with

random variations on face identity variables (shape/texture), pose, or lighting. We

used the rmsprop [142] learning algorithm during training and set the meta learning

rate equal to 0.0005, the momentum decay to 0.1 and weight decay to 0.01.

To ensure that these techniques work on other types of data, we also trained

networks to perform reconstruction on images of widely varied 3D chairs from many

perspectives derived from the Pascal Visual Object Classes dataset as extracted by

Aubry et al. [96, 3]. This task tests the ability of the DC-IGN to learn a rendering

function for a dataset with high variation between the elements of the set; the

chairs vary from office chairs to wicker to modern designs, and viewpoints span 360

degrees and two elevations. These networks were trained with the same methods and

parameters as the ones above.

5.4.1 3D Face Dataset

The decoder network learns an approximate rendering engine as shown in Figures

(5-4,5-6). Given a static test image, the encoder network produces the latents Z

depicting scene variables such as light, pose, shape etc. Similar to an off-the-shelf

rendering engine, we can independently control these to generate new images with the

decoder. For example, as shown in Figure 5-6, given the original test image, we can

vary the lighting of an image by keeping all the other latents constant and varying

Zlight. It is perhaps surprising that the fully-trained decoder network is able to function

as a 3D rendering engine.

We also quantitatively illustrate the network's ability to represent pose and light

100

Pose (Azimuth)
30

20

10

4-

C A
-10-

-20

2.0 -15 -1.0 -0.5 0.0 05 1.0 1.5 2.0

(a) Ground Truth

Pose (Elevation)
20

15

10

0

45

-10

201 - -____
-- --- 2 0.0 0.2 04

(b) Ground Truth

Light

15 -

10

-10
4- I

151

-00 -50 0 50 100

(c) Ground Truth

Figure 5-5: Generalization of decoder to render images in novel viewpoints
and lighting conditions: We generated several datasets by varying light, azimuth
and elevation, and tested the invariance properties of DC-IGN's representation Z.
We show quantitative performance on three network configurations as described in
section 5.4.1. (a,b,c) All DC-IGN encoder networks reasonably predicts transformations
from static test images. Interestingly, as seen in (a), the encoder network seems to
have learnt a switch node to separately process azimuth on left and right profile side
of the face.

101

Figure 5-6: Entangled versus disentangled representations. First column: Original
images. Second column: transforrned nia ige using DC-IGN. Third column: transformed
image using norinally-trained network.

on a smooth linear manifold as shown in Figure 5-5, which directly demonstrates our

training algorithm's ability to disentangle complex transformations. In these plots, the

inferred and ground-truth transforination values are plotted for a random subset of the

test set. Interestingly, as shown in Figure 5-5(a), the encoder network's representation

of azimuth has a discontinuity at 0' (facing straight, forward).

Comparison with Entangled Representations

To explore how much of a difference the DC-IGN training proceldure makes, we compare

the novel-view reconstruction performance of networks with entangled represent at o10s

(baseline) versus disentangled representations (DC-IGN). The baseline network is

identical in every way to the DC-IGN, but was trained with SGVB without using

our proposed training procedure. As in Figure 5-4., we feed each network a single

input inmage, then attempt to use the decoder to re-render this image at different

azimuth angles. To do this, we first must figure out which latent, of the entangled

representation most closely corresponds to the azimuth. This we do rather siniply.

First, we encode all images in an azimuth-varied batch using the baseline's encoder.

Then we calculate the variance of each of the latents over this batch. The latent with

the largest variance is then the one most closely associated with the azimuth of the

face, and we call it . Once that is found, the latent Z-,: is varied for both

the models to render a novel view of the face given a single immage of that face. Figure

102

5-6 shows that explicit disentanglement is critical for novel-view reconstruction.

5.4.2 Chair Dataset

We performed a similar set of experiments on the 3D chairs dataset described above.

This dataset contains still images rendered from 3D CAD models of 1357 different

chairs, each model skinned with the photographic texture of the real chair. Each of

these models is rendered in 60 different poses; at each of two elevations, there are

30 images taken from 360 degrees around the model. We used approximately 1200

of these chairs in the training set and the remaining 150 in the test set; as such,

the networks had never seen the chairs in the test set from any angle, so the tests

explore the networks' ability to generalize to arbitrary chairs. We resized the images

to 150 x 150 pixels and made them grayscale to match our face dataset.

We trained these networks with the azimuth (flat rotation) of the chair as a

disentangled variable represented by a, single node zi; all other variation between

images is undifferentiated and represented by Z[2,200]. The DC-IGN network succeeded

in achieving a mean-squared error (MSE) of reconstruction of 2.7722 x 10- on the

test set. Each image has grayscale values in the range [0, 1] and is 150 x 150 pixels.

In Figure 5-7 we have included examples of the network's ability to re-render

previously-unseen chairs at different angles given a single image. For some chairs it

is able to render fairly smooth transitions, showing the chair at many intermediate

poses, while for others it seems to only capture a sort of "keyframes" representation,

only having distinct outputs for a few angles. Interestingly, the task of rotating a

chair seen only from one angle requires speculation about unseen components; the

chair might have arms, or not; a curved seat or a flat one; etc.

5.5 Discussion

We have shown that it is possible to train a deep convolutional inverse graphics

network with a fairly disentangled, interpretable graphics code layer representation

from static images. By utilizing a deep convolution and de-convolution architecture

103

(a)

(b)

Figure 5-7: Manipulating rotation: Each iowx wxas generated by encoding the input
image (leftmost) with the encoder, then changing the value of a single latent and
putting this modified encoding through the decoder. The network has never seen these
chairs before at any orientation. (a) Some positive examples. Note that the DC-IGN
is making a conjecture about any components of the chair it cannot see; in particular,
it guesses that, the chair in the top row has arns, because it, can't see that it doesn't.
(b) Examples in which the network extrapolates to new viewpoints less accurately.

within a variational autoencoder formulation, our model can be trained end-to-end

using back-propagation on the stochastic variational objective function t721. We

proposed a training procedure to force the network to learn disentangled and inter-

pretable representations. Using 3D face and chair analysis as a working example,

we have demonstrated the invariant and equivariant characteristics of the learned

representations.

104

Chapter 6

Conclusion

6.1 Closing Remarks

By combining ideas from deep learning, reinforcement learning and probabilistic

generative models, I have presented models and algorithms that produce compact

descriptions of visual scenes and learn control policies from raw experiences. Fully

autonomous agents that learn to solve many goals in many environments is the holy

grail of Al research. There are several technical and conceptual challenges that lie

ahead - the principles of unsupervised learning, origin of goals and intrinsic motivation,

and the key principles underlying learning and representations in humans.

A first step towards this goal is to build machines than learn to perceive and use

their new found capabilities to control their environment. As I described throughout

this thesis, there are two broad frameworks to think about perception - a top-down

view which emphasizes causal models of vision and a bottom-up view, which emphasizes

learning feature based representations under some object function(s). As shown in

Chapters 4&5, these two views can also be unified via the use of bottom-up models to

amortize inference in top-down models.

For all upstream cognitive tasks such as policy learning,, scene understanding,

recognition, language-grounding, it seems essential to build systems that learn com-

positional representations. 1831. Top-down models make it easy to express arbitrary

computational structures. This allows the programmer to express flexible prior knowl-

105

edge into these systems. This is one the biggest strengths of top-down approaches,

leading to the probabilistic renaissance in Al since the 1980s. However, this flexibility

and the need for human in the loop comes at a price - once you define a model, it is

very hard for the agent to manage and further improves it's representations for future

learning.

In the cognitive science literature, the use of bayesian non-parametrics and proba-

bilistic programming was motivated by similar concerns. These approaches advocate

for non-parametric approaches that grow their structures with observations. However,

inference in such models is often intractable. It is also very difficult to specify a uni-

versal probabilistic program and perform inference to learn in arbitrary environments.

In my view, research in deep neural networks tries to address both these problems

- the ability to express arbitrary computations and efficient credit-assignment due

to differentiability. However, it is very difficult to specify prior knowledge in this

setting and learning is often done from scratch for every new tasks. This seems like

an important direction for deep learning research.

We are far from building general reinforcement learning agents that effectively

share and generalize knowledge across tasks. It is hard to predict when and how Al

will arrive. However, the history of machine learning, AI and my graduate career

made me realize an important lesson - any promising path towards intelligence must

scale with computation. Unifying deep learning, reinforcement learning and generative

models might stand a real chance to modestly contribute towards artificial general

intelligence, as they often seem to scale gracefully with more computation [123, 77, 941.

6.2 Future Directions

Existing learning systems face two fundamental challenges: continually creating

temporal abstractions to scale up exploration in reinforcement learning approaches

and learning useful representations of experiences without hand-crafted labels or

rewards.

I finish by laying out some concrete problems to make progress in this direction:

106

1""PlIq "Will "I

6.2.1 Scaling up object-based subgoal discovery

Competence based intrinsic motivation can be scaled up by taking help from computer

vision. In particular, to scale up goal-driven exploration, visual representations such

as objects could facilitate progress in this direction. One obvious path is to train

a vision system to predict many different targets on many different datasets and

environments - object localization, categorization, segmentation, depth prediction,

motion estimation, etc. This might enable us to abstract away unseen environments

due to the universality of such targets and construct pseudo-rewards in this space of

representations.

In conjunction, we should also develop object based deep generative models.

Regardless of the underlying object model, an algorithm to train such a system would

consist of the following steps:

(1) Initialize h-DQN's hyper-parameters.

(2) Collect frames using the current policy.

(3) Use a motion segmentation algorithms to get plausible object candidates. An

alternative is to use deep generative models that produce object-based representa-

tions [31]. Another alternative is to train object localizers on different datasets or

environments.

(4) Take the object proposals and train a CNN to predict an entity detector. Pick

positive examples as the object candidates and random patches as the 'non-entity'

class.

(5) Apply CNN on current frame obtained from the environment to obtain a set

of entities.

(6) Causal Inference: Collect all moving entities. For each of these entities, do a

causality test on which of these entities is controllable by the provided actions. This

is the Self.

(7) Given the Self entity and all other entities in the current scene, the agent now

has access to many subgoal candidates. Define intrinsic rewards in this space.

(8) Train h-DQN using algorithm 4. Goto (1).

107

6.2.2 Deep Hierarchical Successor Reinforcement Learning

A promising research direction is to combine DSR with h-DQN. As demonstrated

in chapter 3, it is possible to extract subgoals after learning the SR representation.

Every so often, a few candidate subgoals can be extracted and stored into a short

term memory M. The meta-controller in h-DQN can choose any of the following

actions: (1) choose a subgoal from M, (2) delete entries from M. The meta-controller

can also output a probability indicating whether the current option should terminate

or continue to execute, similar to intra-options [137]. To further minimize sample

complexity during training, DSR can be extended to incorporate explicit model-based

reasoning. In principle, a simple modification to the existing architecture could enable

this - let the decoder network predict the next frames along with the current frame.

However, learning deep generative models of images is an open problem in deep

learning. Any advances in this research topic will create a big impact on reinforcement

learning algorithms.

Another interesting possibility is to build a deep hierarchy of successor based

Q-networks. Extrinsic rewards come at the highest level, where the network outputs

a reward vector as an action for the downstream successor Q-network to solve. The

bottom most Q-network outputs actions. This entire hierarchy can be trained end-to-

end in a manner similar to h-DQN. Every reward vector outputted in the intermediate

stages of the hierarchy can be thought of as subgoals. However, the semantics of the

subgoals are not pre-specified and would be learned automatically by the network.

6.2.3 Deep Temporal Compressor

A good representation of the visual world can often make the upstream task of policy

learning relatively more easy. I end by attempting to sketch an unsupervised learning

algorithm to obtain representations of videos. The first few frames that an agent ever

sees are highly informative due to new information. Subsequent few frames would

108

carry much less information under a spatio-temporal continuity assumption. This

is a very reasonable assumption of our world (in the local context). Modern video

compression algorithms like MPEG already make use of this inductive bias. In fact,

Zhou et al. [161] used a similar assumption for multi-view synthesis of objects.

A desirable deep generative model would share a lot of characteristics with video

compression algorithms like MPEG. Given the current xt, we can predict the next

frame xtA1 by copying as many pixels as possible and generating only the residual

error. Zhou et al.'s model does not generate new pixels and it is important to do this

for dynamic scenes. However, we must ensure that the generator and copy operator

are weighted proportionally. We expect the copy operator to do most of the work and

the generator should only need to explain partial pixels under the spatio-temporal

continuity assumption. We can enforce this by putting an information content penalty

on both the channels so that most of the generator pixels turn out to be zero. Starting

with such inductive biases seems like a promising start towards building more human

like vision systems.

109

110

Appendix A

A. 1 3D medially-symmetric object reconstruction pro-

gram

As illustrated in Figure A-1, the height H of the object is sampled from a uniform

distribution. 3D Objects can consist of several sub-parts. Without the loss of generality

and for simplicity, we study objects with up-to two sub-parts and circular cross-section.

We sample a cut C along the medial axis of the object using the beta distribution,

resulting in two independent GPs spanning the cut proportions. Since the smoothness

and profile of 3D objects is a priori unknown, we need to do hyper-parameter inference

on the bandwidths LI and L2 of the covariance kernel of the GPs. The resulting

points fgp(x) from GPs are passed to the graphics simulator for lathing based mesh

generation, which results in the generation of IR. During inference, reconstructing

3D objects amounts to calculating the posterior P(S = {H, C, L1 , L2} ID). While

collecting results, we found that running multiple indepedent chains and aggregating

the estimates (MAP or average) gave much better parses. For visualizing the underlying

stochastic process, refer to supplemental video.

The 3D shape program in Figure A-3 could then be roughly formalized as follows:

H ~ Unif orm(ao,bo) and C ~ a, + b, * Beta(1, H)

L, - a, + biBeta(2, 5), x1 = [ao, C]

111

0

2 f~'(x) :ut

00 1 2
Object Half-Width

Cross-Section

Figure A-1: 3D Shape Program Visualization

L2-~ a + biBeta(2, 5), x 2 = [C + 1, bo]

((i - Xj)
k(', x1) = exp --..- 2L

where p E {1, 2} denote parts and

ini(X) < (i, <) nmax(xP)

f~x f norinalize(gP(O, k(x, <))) 0 < length(xp)

0 otherwise

IR = 9LATHE({fgp(X)}, {f() I2

where min(xi) m max(xi) and nin(x2) < n max(x 2).

A.2 3D Human Pose Program

It is important to note that this particular program faces a lot of difficulty under clutter

mainly due to lack of robust bottom-up features. Moreover, the graphics program could

be significantly improved by using BlendSCAPE[571 model along with approximately

reasoning about people's clothes for more accurate body-part localization. Please

refer to Figure A-4 to view the probabilistic program. While collecting results, we

112

4Singe-siteMH
400 Elliptical Move
350

50
2 000

200

50 F= 151

Iterations

Figure A-2: Inference run-time comparison for face program: We ran 30

independent inference runs each by toggling the inference scheme between single-site

metropolis hastings and elliptical slice proposals. Elliptical moves give significant

speedup to reach a certain level of score. which is expected as single-site updates will

scale linearly with diniensionality of latents.

found that running multiple indepedent chains and aggregating the estiniates (MAP

or average) gave much better parses.

A.3 Generative Face Program

Since the diniensionality of the face program is high (8 sets of 100 dimensional

continuous coupled lateNit variables), singte-site netropolis hastings algorithm is highly

inefficient as the numnber of simulation updates scale linearly with dinensionality of

latents. Picture allows us to easily swap inference schienie, which enabled us to quickly

discover that elliptical slicc NIoves are significantly more efficient than Metropolis-

Hastings proposals (see Figure A-2). While collecting results, we found that running

multiple indepedent chains and aggregating the estimates (MAP or average) gave

much better parses.

113

function GP(xs,L)
cov = zeros(length(xs),length(xs))
mu = zeros(length(xs))
for i=1:length(xs)

for j=1:length(xs)
cov = exp(-(xs[i]-xs[j])^2/(2*l^2))

end
end
return mu,cov

end

function PROGRAM(observation-dt)
RES = 120

height = Uniform(5,7.8,1,1)
xs = (0:height/RES:height]
samples = zeros(length(xs))

cut-var = iotm(l,5,1,i)
cutl,cut2 = samplecut(xs height,cutsvar,RES)
11 = 5*Beta(2,5,1,1)
12 = 5*Beta(2,5,1,1)

if length(cutl)>0
mu,cov = GP(xs[cutl],11)
samples [cut1]=MvNormal (mu, cov)
samples(cuti] = normalize(samples [cut1])

end

if length(cut2)>0
mu,cov = GP(xs[cut2],12)
samples [cut2l=MvNo' ';i(mu, cov)
samples[cut2] = normalize (samples [cut2])

end
#camera:(scale,rotation,translation]
camera = [Normal (0.98,0.1,1,3), No.r-a(0,5,1,3),

Uniform(-1,1,1,3)]
#Call Blender API
render = render("profile", samples, "cross-sec", xs, "camera", camera)
edgemap = canny(rendering,1.0);
valid-indxs = np.where(edgemap>O)
D = np.multiply(observationdistance-transform, rendering)
observe(0,NrmaI(0,0.35),D)

end

global observationdistancertransforo

edge-img = canny(imread("test.png"),1.0)
observation-distancetransform = scipy.distance-transform.bf(edgeimg)

TR = trace(PROGRAM,[])
infer(TR, debug-callback,100,"MCMC")

Figure A-3: Picture code for 3D Object Reconstruction via Lathing: Gaussian
Process based 3D reconstruction program of lathe objects. This program samples 3D
shapes with two independent sub-parts. We used probabilistic chamfer distance as
the stochastic comparator.

114

function render(hip_location,...,camera)

args = [hip-location,...,camera]

blender.println("cmd: skin-modif ier")

rendered-image = blender.println(args)
return rendered-image

end

function PROGRAM()

sigma_0 = n (10,50,1,1)

hip-location =

elbowR-rotation = xfrmaK(0,sigma_0,1,3); elbowR_location = nifom(-1,1,1,3)

elbowL-rotation = Narma(0,sigma0,1,3); elbowLlocation = nIform(-1,1,1,3)

heelLlocation = iFo(-0.1,0.45,1,3); heelRlocation = Uniform(-0.1,0.45,l,3)

#camera: [scale, rotation, translation]

camera = [NU(0.98,0.1,1,1), ra(0,5,1,3), UnfJor(-1,1,1,2)]

#Call Blender API

rendering = render ("bone-id0", hiplocation.., ...,"camera", camera)

edgemap = canny(rendering,1.0);
valid-indxs = np.where(edgemap>0)
D = np. multiply(otservatn t transfr[valid-indxs], rendering[validindxs])

observe (0 , rC (0, 0. 35) , D)
end

global observatoin_ d:ist ance. _ranstorm

edge-img = canny(imread("test.png"),1.0)

observation-distance transform = scipy.distance-transform-bf(edge-img)

TR = trace(PROGRAM,[1)
infer(TR, debug-callback, 100, "MCMC")

Figure A-4: Picture code for 3D Human Pose: This program use an existing
base mesh of a human body, defines priors over bone location and joints, and enables
armature skin-modifiert141 via Picture's Blender engine API. We used probabilistic
chamfer distance as the comparator.

115

116

Bibliography

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for boltzmann machines*. Cognitive science, 9(1):147-169, 1985.

[2] Oswald Aldrian and William AP Smith. Inverse rendering of faces with a 3d
morphable model. PAMI, 2013.

13] Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic.
Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of
cad models. In CVPR, 2014.

[4] Melinos Averkiou, Vladimir G Kim, Youyi Zheng, and Niloy J Mitra. Shapesynth:
Parameterizing model collections for coupled shape exploration and synthesis.
In Computer Graphics Forum, volume 33, pages 125-134. Wiley Online Library,
2014.

[5] Jonathan Barron and Jitendra Malik. Shape, illumination, and reflectance from
shading. Technical report, Berkeley Tech Report, 2013.

[61 Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(4):341-379, 2003.

[7] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 2012.

[8] Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David
Saxton, and Remi Munos. Unifying count-based exploration and intrinsic
motivation. arXiv preprint arXiv:1606.01868, 2016.

[9] Richard Bellman. A markovian decision process. Technical report, DTIC
Document, 1957.

[101 Yoshua Bengio. Learning deep architectures for ai. Foundations and trends@ in

Machine Learning, 2(1):1-127, 2009.

[111 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1798-1828, 2013.

117

[12] JM Bernardo, JO Berger, AP Dawid, AFM Smith, et al. Regression and
classification using gaussian process priors. In Bayesian Statistics 6: Proceedings
of the sixth Valencia international meeting, volume 6, page 475, 1998.

[13] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d
faces. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 187-194. ACM Press/Addison-Wesley Publishing
Co., 1999.

114] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam,

[15] Matthew Botvinick and Ari Weinstein. Model-based hierarchical reinforcement
learning and human action control. Philosophical Transactions of the Royal
Society of London B: Biological Sciences, 369(1655):20130480, 2014.

[16] Matthew M Botvinick, Yael Niv, and Andrew C Barto. Hierarchically organized
behavior and its neural foundations: A reinforcement learning perspective.
Cognition, 113(3):262-280, 2009.

[17] Taco Cohen and Max Welling. Learning the irreducible representations of
commutative lie groups. arXiv preprint arXiv:1402.4437, 2014.

[18] Dane S Corneil and Wulfram Gerstner. Attractor network dynamics enable
preplay and rapid path planning in maze-like environments. In Advances in
Neural Information Processing Systems, pages 1675-1683, 2015.

[19] Balizs Csanid Csaiji. Approximation with artificial neural networks. Faculty of
Sciences, Etvs Lornd University, Hungary, 24, 2001.

[20] Nathaniel D Daw and Peter Dayan. The algorithmic anatomy of model-based
evaluation. Philosophical Transactions of the Royal Society of London B: Bio-
logical Sciences, 369(1655):20130478, 2014.

[21] Peter Dayan. Improving generalization for temporal difference learning: The
successor representation. Neural Computation, 5(4):613-624, 1993.

[22] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances
in neural information processing systems, pages 271-271. Morgan Kaufmann
Publishers, 1993.

[23] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The
helmholtz machine. Neural computation, 7(5):889-904, 1995.

[24] L Del Pero, J Bowdish, Daniel Fried, B Kermgard, E Hartley, and Kobus
Barnard. Bayesian geometric modeling of indoor scenes. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2719-2726.
IEEE, 2012.

118

[251 Luca Del Pero, Joshua Bowdish, Bonnie Kermgard, Emily Hartley, and Kobus
Barnard. Understanding bayesian rooms using composite 3d object models. In
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 153-160. IEEE, 2013.

[26] Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. Disentangling
factors of variation via generative entangling. arXiv preprint arXiv:1210.5474,
2012.

[271 Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value
function decomposition. J. Artif. Intell. Res. (JAIR), 13:227-303, 2000.

[28] Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented represen-

tation for efficient reinforcement learning. In Proceedings of the 25th international
conference on Machine learning, pages 240-247. ACM, 2008.

[29] Piotr Dollar and C Lawrence Zitnick. Structured forests for fast edge detection.
2013.

[301 A. Dosovitskiy, J. Springenberg, and T. Brox. Learning to generate chairs with
convolutional neural networks. arXiv:1411.5928, 2015.

[311 SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu,
and Geoffrey E Hinton. Attend, infer, repeat: Fast scene understanding with
generative models. arXiv preprint arXiv:1603.08575, 2016.

132] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. PAMI, 2010.

[33] Noa Fish, Melinos Averkiou, Oliver Van Kaick, Olga Sorkine-Hornung, Daniel
Cohen-Or, and Niloy J Mitra. Meta-representation of shape families. In Computer

Graphics Forum, volume 32, pages 189-200, 2013.

[34] Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Jitendra Malik. Learn-
ing to segment moving objects in videos. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, pages 4083-4090. IEEE, 2015.

[35] Mikhail Frank, Jiirgen Leitner, Marijn Stollenga, Alexander F6rster, and Jiirgen
Schmidhuber. Curiosity driven reinforcement learning for motion planning
on humanoids. Intrinsic motivations and open-ended development in animals,
humans, and robots, page 245, 2015.

[36] Samuel J Gershman, Eric J Horvitz, and Joshua B Tenenbaum. Computa-
tional rationality: A converging paradigm for intelligence in brains, minds, and
machines. Science, 349(6245):273-278, 2015.

[37] Samuel J Gershman, Christopher D Moore, Michael T Todd, Kenneth A Norman,
and Per B Sederberg. The successor representation and temporal context. Neural
Computation, 24(6):1553--1568, 2012.

119

[38] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452-459, 2015.

[39] Sandeep Goel and Manfred Huber. Subgoal discovery for hierarchical reinforce-
ment learning using learned policies. In FLAIRS conference, pages 346-350,
2003.

[401 Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe, and Andrew Y Ng.
Measuring invariances in deep networks. In Advances in neural information
processing systems, pages 646-654, 2009.

[41] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[42] Klaus Greff, Rupesh Kumar Srivastava, and Jiirgen Schmidhuber. Binding via
reconstruction clustering. arXiv preprint arXiv:1511.06418, 2015.

[43] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A
recurrent neural network for image generation. arXiv preprint arXiv:1502.04623,
2015.

[44] Ulf Grenander. General pattern theory-A mathematical study of regular structures.
Clarendon Press, 1993.

[451 Ulf Grenander, Yun-shyong Chow, and Daniel M Keenan. Hands: A pattern
theoretic study of biological shapes. Springer-Verlag New York, Inc., 1991.

[46] Peng Guan, Alexander Weiss, Alexandru 0 Balan, and Michael J Black. Esti-
mating human shape and pose from a single image. In Computer Vision, 2009
IEEE 12th International Conference on, pages 1381-1388. IEEE, 2009.

[47] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman.
Efficient solution algorithms for factored indps. Journal of Artificial Intelligence
Research, pages 399-468, 2003.

[48] Abhinav Gupta, Alexei A Efros, and Martial Hebert. Blocks world revisited:
Image understanding using qualitative geometry and mechanics. In Computer
Vision-ECCV 2010, pages 482-496. Springer, 2010.

[49] Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A neu-
roevolution approach to general atari game playing. Computational Intelligence
and Al in Games, IEEE Transactions on, 6(4):355-366, 2014.

[50] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. arXiv preprint arXiv:1507.06527, 2015.

[51] Varsha Hedau, Derek Hoiem, and David Forsyth. Thinking inside the box:
Using appearance models and context based on room geometry. In Computer
Vision-ECCV 2010, pages 224-237. Springer, 2010.

120

[52] Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and
Yuval Tassa. Learning continuous control policies by stochastic value gradients.
In Advances in Neural Information Processing Systems, pages 2944-2952, 2015.

[53j Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527-1554, 2006.

[54] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The"
wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):1158--
1161, 1995.

[551 Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-
encoders. In Artificial Neural Networks and Machine Learning-ICANN 2011,
pages 44-51. Springer, 2011.

[56] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504-507, 2006.

[57] David A Hirshberg, Matthew Loper, Eric Rachlin, and Michael J Black. Coreg-
istration: Simultaneous alignment and modeling of articulated 3d shape. In
ECCV. 2012.

[581 Derek Hoiem, Alexei A Efros, and Martial Hebert. Putting objects in perspective.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 2, pages 2137-2144. IEEE, 2006.

[59] Derek Hoiem, Alexei A Efros, and Martial Hebert. Recovering surface layout
from an image. International Journal of Computer Vision, 75(1):151-172, 2007.

160] Marc W Howard and Michael J Kahana. A distributed representation of temporal
context. Journal of Mathematical Psychology, 46(3):269-299, 2002.

161] Jonathan Huang and Kevin Murphy. Efficient inference in occlusion-aware
generative models of images. arXiv preprint arXiv:1511.06362, 2015.

[621 John F Hughes, Andries Van Dam, James D Foley, and Steven K Feiner.
Computer graphics: principles and practice. Pearson Education, 2013.

[63] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in Neural Information Processing Systems, pages 2008-
2016, 2015.

[641 Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V Gehler. The
informed sampler: A discriminative approach to bayesian inference in generative
computer vision models. arXiv preprint arXiv:1402.0859, 2014.

[65] Yangqing Jia, Evan Shelhanier, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the ACM International
Conference on Multimedia, pages 675-678. ACM, 2014.

121

[66] Ya Jin and Stuart Geman. Context and hierarchy in a probabilistic image model.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 2, pages 2145-2152. IEEE, 2006.

[67] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, pages 237-285,
1996.

[68] Takeo Kanade. Recovery of the three-dimensional shape of an object from a
single view. Artificial intelligence, 17(1):409-460, 1981.

[69] Gaetano Kanizsa. Subjective contours. Scientific American, 234(4):48-52, 1976.

[70] Ira Kemelmacher-Shlizerman and Ronen Basri. 3d face reconstruction from a
single image using a single reference face shape. PA MI, 2011.

[71] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski. Vizdoom: A doom-based ai research platform for visual reinforcement
learning. arXiv preprint arXiv:1605.02097, 2016.

[72] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[73] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[74] Jan Koutnik, Giuseppe Cuccu, Jirgen Schmidhuber, and Faustino Gomez.
Evolving large-scale neural networks for vision-based reinforcement learning.
In Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pages 1061-1068. ACM, 2013.

[75] Jan Koutnik, Jiirgen Schmidhuber, and Faustino Gomez. Evolving deep un-
supervised convolutional networks for vision-based reinforcement learning. In
Proceedings of the 2014 conference on Genetic and evolutionary computation,
pages 541-548. ACM, 2014.

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012.

[78] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mans-
inghka. Picture: A probabilistic programming language for scene perception. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4390-4399, 2015.

[79] Tejas D Kulkarni, Vikash K Mansinghka, Pushmeet Kohli, and Joshua B
Tenenbaum. Inverse graphics with probabilistic cad models. arXiv preprint
arXiv:1407.1339, 2014.

122

[801 Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B
Tenenbaum. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. arXiv preprint arXiv:1604.06057, 2016.

[81] Tejas D Kulkarni, Ardavan Saeedi, and Samuel Gershman. Variational particle
approximations. arXiv preprint arXiv:1402.5715, 2014.

[821 Tejas D Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B Tenenbaum.
Deep convolutional inverse graphics network. arXiv preprint arXiv:1503.03167,
2015.

[83] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J
Gershman. Building machines that learn and think like people. arXiv preprint
arXiv:1604.00289, 2016.

[84] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech,
and timc scrics. The handbook of brain theory and neural networks, 3361, 1995.

[851 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015.

[861 Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolu-
tional deep belief networks for scalable unsupervised learning of hierarchical

representations. In Proceedings of the 26th Annual International Conference on

Machine Learning, pages 609-616. ACM, 2009.

[871 Mun Wai Lee and Isaac Cohen. A model-based approach for estimating human
3d poses in static images. P4MI, 2006.

[88] Martin D Levine and Yingfeng Yu. State-of-the-art of 3d facial reconstruction

methods for face recognition based on a single 2d training image per person.

Pattern Recognitwon Letters, 30(10):908-913, 2009.

[89] Matthew M Loper and Michael J Black. Opendr: An approximate differentiable
renderer. In ECCV 2014. 2014.

[90] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
2004.

[91] Vikash Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum.
Approximate bayesian image interpretation using generative probabilistic graph-
ics programs. In Advances in Neural Information Processing Systems, pages
1520-1528, 2013.

[921 Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order
probabilistic programming platform with programmable inference. arXiv preprint
arXiv:1404.0099, 2014.

123

[93] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783, 2016.

[94] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015.

[95] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximi-
sation for intrinsically motivated reinforcement learning. In Advances in Neural
Information Processing Systems, pages 2116-2124, 2015.

[96] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan
Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for
object detection and semantic segmentation in the wild. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.

[97] Iain Murray, Ryan Prescott Adams, and David JC MacKay. Elliptical slice
sampling. arXiv preprint arXiv:1001.0175, 2009.

[98] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1507. 04296, 2015.

[99] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language under-
standing for text-based games using deep reinforcement learning. arXiv preprint
arXiv:1506.08941, 2015.

[100] Radford Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2, 2011.

[101] Louis Albert Necker. Lxi. observations on some remarkable optical phanomena
seen in switzerland; and on an optical phanomenon which occurs on viewing a
figure of a crystal or geometrical solid. 1832.

[102] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. arXiv preprint arXiv:1602.04621, 2016.

[103] Pierre-Yves Oudeyer, Frederic Kaplan, et al. How can we define intrinsic
motivation. In Proc. 8th Int. Conf. Epigenetic Robot.: Modeling Cogn. Develop.
Robot. Syst, 2008.

[104] Brooks Paige and Frank Wood. A compilation target for probabilistic program-
ming languages. arXiv preprint arXiv:1403.0504, 2014.

[105] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model
for pose and illumination invariant face recognition. Genova, Italy, 2009. IEEE.

124

[1061 Judea Pearl. Graphical models for probabilistic and causal reasoning. In Quan-
tified Representation of Uncertainty and Imprecision, pages 367-389. Springer,
1998.

[107] Tomaso Poggio, Jim Mutch, Joel Leibo, Lorenzo Rosasco, and Andrea Tacchetti.

The computational magic of the ventral stream: sketch of a theory (and why

some deep architectures work). 2012.

[1081 M Ranzato, Fu Jie Huang, Y-L Boureau, and Yann LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object recognition.

In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference

on, pages 1-8. IEEE, 2007.

[1091 Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[1101 Samuel Rathmanner and Marcus Hutter. A philosophical treatise of universal
induction. Entropy, 13(6):1076-1136, 2011.

[1111 Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and
Daan Wierstra. One-shot generalization in deep generative models. arXiv

preprint arXiv:1603.05106, 2016.

[1121 Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. Con-
trolling procedural modeling programs with stochastically-ordered sequential
monte carlo. ACM Trans. Graph., 34(4):105:1-105:11, July 2015.

[1131 Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
Labelme: a database and web-based tool for image annotation. IJCV, 2008.

[1141 Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In

International Conference on Artificial Intelligence and Statistics, pages 448-455,
2009.

[115] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 1312-1320, 2015.

[116] Jirgen Schmidhiuber. G6del machines: Fully self-referential optimal universal
self-improvers. In Artificial general intelligence, pages 199-226. Springer, 2007.

[1171 Jiirgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation
(1990-2010). Autonomous Mental Development, IEEE Transactions on, 2(3):230-
247, 2010.

[118] Nicol N Schraudolph, Peter Dayan, and Terrence J Sejnowski. Temporal dif-
ference learning of position evaluation in the game of go. Advances in Neural
Information Processing Systems, pages 817--817, 1994.

125

[119] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human
actions: a local svm approach. In ICPR, 2004.

[1201 John Schulman, Sergey Levine, Philipp Moritz, Michael I Jordan, and Pieter
Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015.

[121] F Schumann. Beitrlge zur analyse der gesichtswahrnehmungen. erste abhandlung.
einige beobachtungen ilber die zusammenfassung von gesichtseindriicken zu
einheiten. Z. Psychol, 23:1-32, 1900.

[122] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888-905, 2000.

[123] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484-489, 2016.

[124] Ozgiir ;imgek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals
in reinforcement learning by local graph partitioning. In Proceedings of the 22nd
international conference on Machine learning, pages 816-823. ACM, 2005.

[125] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come
from. In Proceedings of the annual conference of the cognitive science society,
pages 2601-2606, 2009.

[126] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. In-
trinsically motivated reinforcement learning: An evolutionary perspective. Au-
tonomous Mental Development, IEEE Transactions on, 2(2):70-82, 2010.

[127] Satinder P Singh, Andrew G Barto, and Nuttapong Chentanez. Intrinsically
motivated reinforcement learning. In Advances in neural information processing
systems, pages 1281-1288, 2004.

[128] Jonathan Sorg and Satinder Singh. Linear options. In Proceedings of the
9th International Conference on Autonomous Agents and Multiagent Systems:
Volume 1 - Volume 1, AAMAS '10, pages 31-38, Richland, SC, 2010. International
Foundation for Autonomous Agents and Multiagent Systems.

[129] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental
science, 10(1):89-96, 2007.

[130] Kimberly L Stachenfeld, Matthew Botvinick, and Samuel J Gershman. Design
principles of the hippocampal cognitive map. In Advances in neural information
processing systems, pages 2528-2536, 2014.

[131] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing explo-
ration in reinforcement learning with deep predictive models. arXiv preprint
arXiv:1507.00814, 2015.

126

[132] Andreas Stuhlmiiller, Jacob Taylor, and Noah Goodman. Learning stochastic
inverses. In Advances in neural information processing systems, pages 3048-3056,
2013.

[1331 Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, and
Rob Fergus. Mazebase: A sandbox for learning from games. arXiv preprint
arXiv:1511.07401, 2015.

1134] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning.
MIT Press, 1998.

[135] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. Horde: A scalable real-time ar-
chitecture for learning knowledge from unsupervised sensorimotor interaction.
In The 10th International Conference on Autonomous Agents and Multiagent

Systems- Volume 2, pages 761-768. International Foundation for Autonomous
Agents and Multiagent Systems, 2011.

[136] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence, 112:181-211, 1999.

[137] Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning
about temporally abstract actions. In ICML, volume 98, pages 556-564, 1998.

[1381 Csaba Szepesvari, Richard S Sutton, Joseph Modayil, Shalabh Bhatnagar, et al.
Universal option models. In Advances in Neural Information Processing Systems,
pages 990-998, 2014.

[139] Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton. Deep lambertian
networks. arXiv preprint arXiv:1206.6445, 2012.

[140] Arasanathan Thayananthan, Bjoern Stenger, Philip HS Torr, and Roberto
Cipolla. Shape context and chamfer matching in cluttered scenes. In CVPR,
2003.

[1411 Edward L Thorndike. The law of effect. The American Journal of Psychology,
39(1/4):212-222, 1927.

[1421 T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera: Neural networks
for machine learning. 2012.

[143] Tijmen Tieleman. Optimizing Neural Networks that Generate Images. PhD
thesis, University of Toronto, 2014.

[144] Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. Image
parsing: Unifying segmentation, detection, and recognition. IJCV, 2005.

127

[145] Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven markov
chain monte carlo. IEEE Trans. Pattern Anal. Mach. Intell., 24(5), May 2002.

[146] Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven markov
chain monte carlo. PA MI, 24(5):657-673, 2002.

[147] Joel Veness, Kee Siong Ng, Marcus Hutter, and David Silver. Reinforcement
learning via aixi approximation. arXiv preprint arXiv:1007.2049, 2010.

[148] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion. The Journal of Machine
Learning Research, 11:3371-3408, 2010.

[149] Hermann von Helmholtz and James Powell Cocke Southall. Treatise on physio-
logical optics, volume 3. Courier Corporation, 2005.

[150] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279-292, 1992.

[151] William F Whitney, Michael Chang, Tejas Kulkarni, and Joshua B Tenen-
baum. Understanding visual concepts with continuation learning. arXiv preprint
arXiv:1602.06822, 2016.

[1521 Richard David Wilkinson. Approximate bayesian computation (abc) gives exact
results under the assumption of model error. Statistical applications in genetics
and molecular biology, 12(2):129-141, 2013.

[153] David Wingate, Noah D Goodman, A Stuhlmueller, and J Siskind. Nonstandard
interpretations of probabilistic programs for efficient inference. NIPS, 23, 2011.

[154] David Wingate, Andreas Stuhlmueller, and Noah D Goodman. Lightweight
implementations of probabilistic programming languages via transformational
compilation. In International Conference on Artificial Intelligence and Statistics,
pages 770-778, 2011.

[155] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new
approach to probabilistic programming inference. In AISTA TS, 2014.

[156] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-
supervised disentangling with recurrent transformations for 3d view synthesis.
In Advances in Neural Information Processing Systems, pages 1099-1107, 2015.

[157] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible mixtures-
of-parts. In CVPR, 2011.

[158] Ilker Yildirim, Tejas D Kulkarni, Winrich A Freiwald, and Joshua B Tenenbaum.
Efficient and robust analysis-by-synthesis in vision: A computational framework,
behavioral tests, and modeling neuronal representations.

128

[159] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong Xiao. Panocontext: A
whole-room 3d context model for panoramic scene understanding. In Computer
Vision-ECCV 2014, pages 668-686. Springer, 2014.

[160] Yibiao Zhao and Song-Chun Zhu. Image parsing via stochastic scene grammar.
In NIPS, 2011.

[1611 Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A
Efros. View synthesis by appearance flow. arXiv preprint arXiv:1605.03557,
2016.

[1621 Jasenko Zivanov, Andreas Forster, Sandro Schonborn, and Thomas Vetter.
Human face shape analysis under spherical harmonics illumination considering
self occlusion. In Biometrics (ICB), 2013 International Conference on, pages
1-8. IEEE, 2013.

129

