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Abstract

Subspace analysis is a target independent parallel compilation technique. It applies
to a wide range of parallel architectures including vector, SIMD, distributed memory
MIMD, shared miemory MIMD, symmetric multiprocessors and VLIW systems.

The focus of the subspace analysis is shape. The shape of an object is a subset
of the iteration indices. Each index represents an axis of the object. The concept of
shape is a hidden but crucial theme underlying the work in parallelism detection al-
gorithms, many architecture specific optimizations and many strategies for compiling
to parallel programs. Parallelization is shape-based. So are a variety of optimizations
(e.g., privatization), strategies (e.g., the replication of scalars in SPMD systems) and
language issues (e.g., conformance in Fortran 90).

Shape is of critical importance in parallel systems since a shape that is too small
(has too few axes) can result in unnecessary serialization whereas a shape that is too
large (has too many axes) can result in unnecessary computation and communication.

Our goal is to unify and generalize existing shape-based analyses and strategies
by attacking shape directly, instead of incorporating shape in different ways into a
variety of distinct analyses. We present an algorithm that determines the natural
shape of data objects and operations. There are two benefits to this approach: The
compiler for a given target is simpler, and a more significant portion of the compiler
is independent of the parallel target architecture.

If the input is explicitly parallel, subspace analysis performs shape-based optimiza-
tions, possibly increasing parallelism in the process. If the input is scalar, subspace
analysis also acts as the parallelization phase.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Overview

Subspace analysis is a target independent parallel compilation technique. It applies
to a wide range of parallel architectures including vector, SIMD, distributed memory
MIMD, shared memory MIMD, symmetric multiprocessors and VLIW systems.

The focus of the subspace analysis is shape. The shape of an object is a subset
of the iteration indices. Each index represents an axis of the object. The concept of
shape is a hidden but crucial theme underlying the work in parallelism detection al-
gorithms, many architecture specific optimizations and many strategies for compiling
to parallel programs. Parallelization is shape-based. So are a variety of optimizations
(e.g., privatization), strategies (e.g., the replication of scalars in SPMD systems) and
language issues (e.g., conformance in Fortran 90).

The problem with the current state-of-the-art is that different analyses attack
shape in very different ways for different effects. Invariant code motion, for example,
attempts to remove an axis from the shape of an operation in order to decrease
computation whereas privatization attempts to add an axis to the shape of a data
object in order to increase parallelization. A compilation strategy may determine
shape not as the focus of analysis but rather as a side effect. For example, the
distribution of iterations to processors determines the shape of operations on shared
memory systems and the owner-computes rule determines the shape of operations
on data parallel systems. In these cases, shape is determined as a side effect of

determining location.
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Shape is of critical importance in parallel systems since a shape that is too small
(has too few axes) can result in unnecessary serialization whereas a shape that is too
large (has too many axes) can result in unnecessary computation and communication.

Our goal is to unify and generalize existing shape-based analyses and strategics
by attacking shape directly, instead of incorporating shape in different ways into a
variety of distinct analyses. We present an algorithm that determines the natural
shape of data objects and operations. There are two benefits to this approach: The
compiler for a given target is simpler, and a more significant portion of the compiler
is independent of the parallel target architecture.

The subspace model is based on a two-part abstraction: shape (subspace) and
how the shape is attained (expansion). A subspace compiler analyzes every reference
in the program, both named references (e.g., a(i)) and references to the results of
intermediate operations (e.g., a(i) + 8) with respect to this two-part abstraction.

e The subspace of a reference is a subset of loop indices. An index is in the
subspace of a reference if, as the value of the index varies, the value of the reference
may vary. For example, the subspace of a reference, a(i), within loops on i, j and
k is the set {i,j} if the value of a(i) varies through loops i and j but remains the
same throughout loop k. An index may be explicit in the reference but not be in its
subspace. An index may be in the subspace but not be explicit in the reference.

e An expansion is determined for each index in a subspace of a reference. A refer-
ence in subspace {1, j} specifies an object that starts empty (a 2-dimensional object of
undefined elements) and ends up full (all elements defined). During the computation,
the defined portion expands along each axis. Expansion analysis determines for each
axis in the subspace of each reference, whether the definitions may expand along that
axis via a serial, parallel or parallel-prefix ! computation. Notice that expansions arc
determined for indices in the subspace, not the indices explicit in the reference nor
the indices in the iteration space.

Based on this two-part abstraction, the source program is transformed so that each

! Parallel-prefix expansions are used, for example, to compute s = s + a(i) by doing a sum
reduction in logarithmic time.
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operation is in loops which correspond to its subspace (set of indices) and expansions
(parallel, parallel-prefix or serial).

Subspace transformations subsume existing optimizations. For example, privati-
zation that adds axes and invariant code motion that removes axes are replaced by
a single transformation that finds the correct axes. Subspace transformations also
improve over existing strategies. For example, SPMD systems employ the owner-
computes strategy to determine the processors that perform the computations based
on the data layout. In this strategy, shape is specified as a side effect of location.
Subspace transformations reduce computation and communication by determining
the right shape explicitly first and only then determining the location of the correctly
shaped object. Also the strategy of scalar replication on those same systems uses
the declared shape of the object to determine if it is to be replicated or distributed.
Subspace transformations reduce computation and communication by applying this
distinction to the determined subspace rather than the declared shape.

If the input is explicitly parallel, subspace analysis performs the optimizations
just described, possibly increasing parallelism in the process. If the input is scalar,

subspace analysis also acts as the parallelization phase.

1.1 The Problem: The Current State-of-the-Art

To illustrate the role of shape in the current state-of-the-art, we focus initially on loop-
based MIMD systems. There are two main models for loop based MIMD systems:
the operation-centric model, exemplified by the KSR Fortran and PCF Fortran, and
the data-centric model, employed by Connection Machine Fortran, Rice University’s
Fortran-D, High Performance Fortran (HPF) and Vienna Fortran. In both models,
we must determine where the data resides and where the operations are performed.
In the operation-centric model the primary focus is on the operations; where the data
resides follows as a consequence. In the data-centric model the focus is reversed.
The operation-centric model groups all the operations within an iteration of a

loop, or more likely, some number of consecutive iterations, and assigns them to a
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processor. Consider

doi=1, imax
a(i) = ..
= a(i -1) ...

enddo

Iterations 1 through n might be assigned to processor one, iterations n+1 through
2#*n to processor two, etc. The location of the data is a consequence of this decision,
since the value of, say, a(10) will exist, at least for some time, on the processor that
defines it, that is, the processor that executes iteration 10. Some communication
may be required since iteration n, for example, defines the value of a(n) which is
referenced by iteration n+1 on a different processor.

One obvious problem with this model becomes clear if we make the left hand side

of the second assignment abcve explicit.

do i =1, imax
a(i) = .
x(i-1) = a(i - 1) ...

enddo

Here the communication between the iterations may be unnecessary. If we are allowed
to determine the location of each statement differently, we can align the two assign-
ments so that the definition «nd the use of any element of a are on the same processor.
This eliminates the communication. The apparent problem with the operation-centric
model is that the granularity of the placement decision is too coarse. The decision is
made for an entire iteration as opposed to a single statement.

However, the real problem with this model is more serious. Consider this next

example.
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doi=1, imax
do j = 1, jmax
do k = 1, kmax
a(i, j, k) = b(i, j, k) + sin(d(j) * <(j))
enddo
enddo

enddo

Here, if we distribute iterations, each operation is performed imaxr * jrnar * kmax
times. But the subexpression sin(d(j) * c(j) depends only on the index j. The
shape of the computation is wrong. The * and the sin should be performed once
for each value of j, and the result should be distributed across the i and the k axes.
This reduces the computation for the subexpression by a factor of imaz * kmaxr and

reduces the communication by a factor of two, communicating the one result rather

than the two operands.
Using the wrong shape for an operation is a more serious problem than using the
wrong location. The granularity of the decision process is not the first order problem.
Now we turn to the data-centric model. It distributes the data first. The locations

of the computations are a consequence of the location of the data. Consider again

doi=1, imax
a(i) = ...
x(i-1) = a(i-1)

enddo

Suppose the data is distributed so that x(1:n) and a(1:n) are on processor one,
x(n+1:2#n) and a(n+1:2#%n) are on processor two, etc. In the data-centric Sin-
gle Program Multiple Data model (SPMD) [12] used by High Performance Fortran
(HPF), the processor that performs the computations is determined by the owner-
computes rule. This rule states that the processor that holds the data being modified
by the assignment executes all the operations in the assignment. Notice that this

solves the granularity problem of the operation-centric approach. The location of the
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two statements above may now be different. Detractors of this approach often point
to examples such as
do i =1, imax
a(i + 1) = b(i) » c(i)

enddo

Here if the data layout is a straightforward one, then the operands of b(i) *
c(i) are aligned on one processor but a(i + 1) may be on a distinct processor.
Performing the * locally on the processor holding its operands and communicating
the result, would cut the communication cost in half. Again it appears that the
granularity of the decision is still too large. We would do better to focus decision
making at the expression level.

But again the real problem with this model is more serious. Consider this next
example.

doi=1, imax
do j =1, jmax

d(i) = e(i) + £(i, j)

= d(i)
enddo

enddo

Here, during distinct ite12tions of the j loop, we are rewriting the same location
d(i). This means that we must define and use this value for one iteration of the
j loop before we rewrite it in the next iteration. Reuse of the same location for
multiple values is unnecessarily inhibiting the parallel execution of the j loop. The
shape of the data is too small. The object, d, has only imaz distinct locations to
hold imaz * jmax distinct values. If the shape of the data is too small, parallelism
may be unnecessarily inhibited. Again the granularity of the decision process is not
the first order problem.

In the operation-centric model, an operation in a shape that is too large may
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result in too much computation and too much communication. In the data-centric
model, data in a shape that is too small may inhibit parallelism.
In this section we have illustrated the key role of shape in parallel systems. Now

we will present our new shape-based approach.

1.2 The Solution: The Subspace Model

Instead of determining the location of the data first and then the operations or de-
termining the location of the operations first and then the data, the subspace model
takes a different approach. First it determines the shapes of both the data and the
operations. Only after it gets the shapes right does it determine the location of the
data and the operations. In other words, it gets the big picture right across the board

before addressing details.

1.2.1 Natural Subspaces

Within a 3-dimensional iteration space with axes, i, j and k, each reference and
each operation has a natural subspace which is a subspace of this iteration space. A
subspace is a subset of the set of indices in the iteration space. An index in the
iteration space, say i, is in the natural subspace of a reference or an expression if,
for different values of i, the value of the expression or reference may vary. As shown
in Figure 1-1 there are eight distinct subspaces for a 3-dimensional iteration space,
{i,j, k). They are {}, {i}, {j}, {k}, {i:5}, {#,k}, {4, k} and {¢, ), k}.
Consider the following loop nest.
doi=1, imax
do j =1, jmax
do k = 1, kmax
a(...) = b(k) + c(i)
enddo
enddo

enddo
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Figure 1-1: Natural Subspaces

In this example, assume the subspace of the reference b(k) is {k} ard the subspace
of c(i) is {t}. Then the subspace of the operation b(k) + c(i) is {i,k}. The natural
subspace of the right hand side of this assignment is {i,k} regardless of whether
the left hand side is a, a(i), a(i, k) or a(j, k). Natural subspace analysis will
determine this. If the left hand side is not consistent with the natural subspace of
the RHS, subspace analysis may alter this object (and the reference). For example,
if this left hand side reference is a(i), the subspace compiler will convert it to a(i,
k).

The subspace algorithm determines a mapping from each reference in the source
program to a reference in a new program. Given a set of dimensions in the source
program, the subspace compiler may add a dimension that was not in the source (as
in this example), it may remove a source dimension, or it may simply maintain a
dimension from the source to the target.

The algorithm for determining subspaces propagates information from one refer-
ence to another. For a flavor of the propagation algorithm we reexamine the example
above. As we have seen, the fact that k belongs to the subspace of the reference to
b(k) on the RHS is propagated to the LHG, and means that k belongs to the subspace
of the reference on the LHS. Suppose the reference on the LHS were a(j, k). If k
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belongs to the subspace of this reference, this tells us that the second dimension of a
is one that we should not remove in the transformed code. The fact that we should
not remove the second dimension of a in this LHS reference is then propagated to
RHS uses of a, indicating that we should not remove the second dimension of those
references. This, in turn, helps in determining indices that belong to the subspace of
each RHS reference. Then the propagation continues.

This algorithm determines the subspace of each reference to a named variable. It
also determines how each reference is transformed into a reference in the generated

program.

1.2.2 Operational Subspaces

Given the subspaces of all the named variables in an expression tree, the subspace of
an intermediate result is simply the union of the subspaces of its operands, since if
any of the operands vary as some index varies, then the result of the operation varies
with that index as well. This is how we determined that the natural subspace of b(k)
+ c(i) was {i,k} in the example above.

If the natural subspace of the + is {i,k} then the operands of the + must be in
that subspace for the operation to be performed. b(k) in natural subspace {k} must
be expanded across the {i} axis, resulting in an object in {, k} before the addition
can take place. Similarly c(i) must be expanded across the k axis. {7, k} is called the
operational subspace of these operands because they must be expanded from their

natural subspace to this space to perform the operation.

1.2.3 Expansions

The subspace abstraction is a two-part abstraction. In addition to the concept of
subspace, the abstraction includes the concept of expansions. The expansion concerns
how the values of elements of the object in some subspace become available. When an
object in a given subspace is allocated storage, the values of the elements are undefined

(empty). Ultimately, the elements become defined (full). During the computation,
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> Serial s = func(s)

/ Parallelprefix s = s + a(i)

el

# Parallel s(i) = a(i) + b(i)

LU IAIIHIIT

Figure 1-2: Expansion Categories

the defined portion expands along each axis. The notion we are attempting to capture
here is how (in what order and at what speed) the object fills up with values along
each axis. The three possibilities, serial, parallel and parallel-prefix, are called natural
erpansion categories. They describe how the values ezpand to fill the object along an
axis. A natural expansion category is associated with each index of a subspace. This
expansion category

Figure 1-2 shows the three potential expansion categories. Consider the object s.
In all three cases s in subspace {i}, assuming each statement is in a loop on i. Even
though s is written as a scalar in some cases, the value varies with the index i in all
three examples.

In the first case, the value of s for each value of i depends on the value of s for
the previous i. This expansion must occur serially. If the extent of the i loop is
imax then this expansion requires O(imaz) time. In the second case the values of s
depend on earlier values of s but the operation is such that a parallel-prefix expansion

is possible. Here the time required is O(log(imaz)). In the last example, all values
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Figure 1-3: Transformations based on Expansion Categories

can be computed in parallel, requiring O(1) time.

In these examples, the object is 1-dimensional. For multi-dimensional objects,
an expansion category is determined for each axis in its natural subspace. A 3-
dimensional object may, for example, expand along two dimensions in parallel and
along the last via a parallel-prefix expansion. Also notice that for serial and parallel-
prefix expansions, more than one object may be involved in an expansion, if, for
example, t(i) is defined in terms of s(i) which is defined in terms of t(i) for the
previous i.

Loop nest a in Figure 1-3 shows two perfectly nested serial loops with six opera-
tions within them. The indices are not specified. As a result of expansion analysis,
loop nest a might be converted to the loop nest b. The first thing to notice here is
that the subspaces of the operations have not been altered. Each operation in nest a
is doubly nested. Each operation in b is also doubly nested. Next notice that some
computations that were serial along some index in a have some degree of parallelism

in b. Also a given serial loop may be converted to several distinct loops, each with
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possibly different expansion categories.

Expansion determination uncovers loop level parallelism (both parallel and parallel-
prefix). The system also uncovers non-loop parallelism. In fact, what the subspace
compiler generates is not b but rather ¢ which indicates the partial orderings among
fragments of code of various granularities from fine-grain instruction level to coarse-
grain task level. In c we see that the two outer level loops from b can run concurrently.
Within the first (left) outer loop, the two inner loops can run concurrently. And fi-
nally, within the second (right) loop, the two operations can run concurrently.

To summarize, the two aspects of the subspace abstraction are the natural sub-
space of an object and, for each index in the natural subspace of an object, the natural
expansion category of that index.

One way to understand this approach is that it distinguishes between two types

of communication at the subspace level.

e Expansion to natural subspace

Communication is required to determine the value of an element from a previous

element in the same object. This is due to a serial or parallel-prefix expansions

described above.

e Expansion to operational subspace

Communication is required when an object in its natural subspace is expanded
to its operational subspace. If an object in subspace {i} is added to an object in
subspace {7,j} the object in {i} must be expanded across {j} for the operation

to be performed.

The subspace level communications are determined by the subspace compiler.
They are inherent in the computation itself. They are not an artifact of the config-
uration (i. e., the number of processors or the arrangement of the processors) of the
target.

The subspace level communications are used as input to the data and code layout
phase to help determine layout. The layout generated determines actual communica-

tion of three types.
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e Expansion to natural subspace

An axis with subspace level communication caused by an expansion to natural
subspace will require actual communication if it is at least partially distributed

across the processors.

e Expansion to operational subspace

An axis with subspace level communication caused by an expansion to oper-
ational subspace will require actual communication if it is at least partially

distributed across the processors.

e Alignment

Actual communication may be required to align two objects within the same

subspace.

If an object in subspace {i,j} is added to another object in subspace {,j},
communication may be necessary if, as a result of layout decisions, correspond-
ing elements of these objects do not reside in the same processor. This type of
communication is totally outside the realm of subspace analysis and only comes

into being as a result of layout.

1.3 Subspace Analysis in the Context of Full Com-
pilation

This section addresses how subspace compilation fits in to a heavily optimizing target-
specific parallel compiler. Such compilers, the Rice Fortran D compiler and the
Stanford SUIF compiler for example, are typically divided into a front, middle and

back as follows.

e The front handles parsing, semantic analysis, and classical scalar optimizations.

e The middle performs target-specific parallel optimizations. These include inter-

changing loops to move parallelism inward or outward depending on the target
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architecture, tiling to maximize locality, data layout, code layout and schedul-
ing.

e The back emits code for individual processors. It either emits scalar source code

which is subsequently compiled or it emits machine code directly.

Basically the front is target independent, the middle is based on the type and con-
figuration of parallelism available and the back is based on the processor instruction
set.

At a high level, all subspace processing (subspace analysis, expansion analysis,
optional subspace optimizations, intermediates and restructuring) fit between the
front and middle. Although this subspace processing assumes a parallel target, it is
irdependent of the type of parallelism.

At a lower level, of course, there are a few details. The choice of scalar optimiza-
tions is modified by the existence of subspace analysis. (See Appendix A for details.)
The existence of subspace analysis changes the way we think about the middle of the

compiler.

e Some transformations in the middle are no longer required. For example, pri-

vatization and parallelization are subsumed by subspace analysis.

e Some of the algorithms in the middle may generate better results because the
improved input to these algorithms increases their options. For example, axes
that were not explicit in the input are now available to data and code layout

algorithms for distribution.

e Some of the algorithms in the middle can be simplified because of the intermedi-
ate form subspace analysis emits. Each array and each operation is in is natural
subspace. Each operation is within its appropriate expansions. Potential for

concurrency is explicit.

e Sonie of the algorithms in the middle can be improved by having them use cost

information available as a result of subspace analysis. The distinction among
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serial, parallel and parallel-prefix computation is now explicit as are expansions

to operational subspace.

Subspace analysis transforms the code to a form in which cach reference is in its
natural subspace and its natural expansions. One concern that may arise is that this
approach may actually cause inefficiency by being overly aggressive in uncovering
axes and in distinguishing among fragments. The concern is that we may actually
be increasing memory requirements or incurring excessive overhcad. But subspace
analysis simply uncovers potential. It passes on the transformed code with all the
potential exposed to downstream target-specific analyses. If the potential is not used
in some case, the target-specific compiler is free to undo any transformation performed
here. Let's examine the three cases: natural subspaces, operational subspaces and

fragmentation.

o Natural Subspaces

The concern here is that adding an axis to an object may increase memory re-
quirements. The transformed program may no longer fit in the available space
or, even if it fits, it may make more references deeper into the memory hicrarchy
degrading performance. Subspace analysis provides the information that values
vary along some axis, possibly one that was missing in the source. Subsequent
transformation phases may make use of that information for some target by
distributing that axis intelligently. If the downstream analyses determine that
the values along that axis are all local to a processor, then there is no reason
to actually expand the axis in the generated code. If the axis is partially dis-
tributed, for example 128 values per processor across 64 processors, then the
axis is partially expanded, one element in each of 64 processor where that one
element takes on 128 successive values. The extent of the axis in the generated

code is determined by its distribution.

The process of eliminating axes that are not useful will occur downstream from
the subspace compiler because it depends on the results of target-specific anal-

yses. This elimination process need not be cognizant of whether an axis was
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visible in the source or was the result of our analyses. Therefore axis elimina-
tion may well eliminate (partially or totally) some axes that were explicit in the
original source. In this case, it is even possible that the resulting code may use

less memory than the original.

Operational Subspaces

Expansions to operational subspace may raise similar concerns about mem-
ory. Consider a distributed memory machine performing the operation b(i) +
c(i,j) described above. Assume that after subspace analysis, ihe layout phases
determine that the i axis of ¢ will be distributed but the j axis will be serialized.
Actually expanding b to its operational subspace is not onlv unnecessary. it will
require execution time and will increase memory requirements. This expansion,
inserted during the subspace analysis, enables the layout phases to accurately
account for the time and space required for various layouts. But if the j axis
is not distributed, there is no reason to actually perform the expansion. The
requirement is that a value of b(i) is available on each processor that uses it.
If c is partially distributed across the j axis, say 128 elements to a processor,
then b is partially expanded as well requiring one element per processor (not
one element per value of j). In fact, this distinction in costs enters into the

layout decision.

Fragmentation

Another concern may be that this model fragments the code into chunks that
are smaller than necessary, resulting in unnecessary inefficiency. Again, these
transformations are for analysis purposes only. Two distinct fragments can
be later combined by target-specific phases. For example, if subspace analysis
generates two distinct fragments because one is in {7} and the other is in {/,j},
we may want to combine them if the j axis is serialized (stored within the
memory of a given processor as opposed to across processors). Consider two
fragments that are distinct because their expansions are independent. If the

target-specific layout decisions in the back-end cannot take advantage of the
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potential concurrency uncovered between them, it is free to combine them to
reduce overhead.

In conclusion, where the potential uncovered by the subspace model can not be
exploited by the target, the subspace transformations can be reversed. The apparent

inefficiencies are not actually incurred.

1.4 Contributions

This section identifies the two claims concerning the subspace model that we will
defend for this thesis.
The Primary Claim is:

The notion of shape is central to many optimizations, strategies and language
concepts for parallel systems. The subspace model unifies, generalizes, simplifies and
improves a variety of these shape-related approaches.

We will show, for example, that the subspace model

e improves and unifies two parallel models, one that focuses on data distribution

and the other that focuses on code distribution.
e unifies and generalizes invariant code motion and privatization.
e improves the SPMD strategies: owner-computes and the replication of scalars.
e provides more flexibility to data layout, code layout and VLIW scheduling.

These improvements result in a cleaner and simpler compiler. All the usual soft-
ware engineering benefits accrue throughout all phases of the software life-cycle.
The Secondary Claim is:

The subspace modzl is an architecture-independent parallelism analysis.

Loop parallelism is uncovered by the subspace compiler as a direct result of deter-
mining subspaces and expansions. Non-loop parallelism is uncovered by the partial

ordering of fragments both within loop bodies and at the top level.
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Subspace compilation is not directed at any particular architecture. It does not
include target-specific transformations to maximize the type of parallelism handled by
a specific target. Following the subspace compiler, downstreamn analyses determine
how the application’s available parallelism can best be mapped to the particular
target architecture. For example, the subspace model may determine which loops
in a generated loop nest are parallel, parallel-prefix and serial. The target-specific
transformations for SIMD and vector systems will attempt to move the parallel loops
inward while the target-specific transformations for SMPs will attempt to move the
parallel loops outward.

The discussion under the primary claim focussed on software engineering gains
within a given compiler for a single target. For the secondary claim, the improvements
accrue between distinct compilers for distinct targets.

In the current state-of-the-art, a programmer at an installation of a particular
architecture writes a program tailored to that architecture which is then compiled
by a compiler that optimizes for that architecture. Meanwhile the programiaer’s
counterpart at an installation with a different architecture is working on the same
application, but it must be written and compiled with a distinct target in mind.

A long term goal of the subspace model is to modify this scenario. A programmer,
who is savvy about parallel algorithms and about the application domain, writes a
program without considering the distinction among various parallel targets. This
program is compiled by a two-part compiler. Part one, the subspace compiler, deals
with issues of parallelism in general, ignoring distinctions among different parallel
targets. Part two, deals with all the issues specific to the target at hand. A company
with a product line that includes a variety of parallel architectures would then use a
single subspace compiler with multiple back-ends, one for each target architecture. A
user with a major application can implement it once and port it smoothly.

Although there may always be certain situations (determined by both application
characteristics and performance requirements) that elude these goals, we hope to
widen the scope of applications that can be handled in this way, moving us closer to

this ideal.
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1.5 Organization

This section presents the organization of both the compiler and the remaining chap-
ters.

The overview of the compiler structure is presented in Figure 1-4.

In addition to the usual lexing, parsing, semantic analysis, and error detection,
the Front-end includes conversion of the code to static single assignment form.

The two major analyses in the subspace compiler, subspace analysis and expan-
sion analysis, determine the subspaces and expansions for named references. These
are presented in Chapters 2 and 3. These are together in the figure because their
interaction is complex. As presented in this thesis the interaction between these two
analyses is not strictly linear. But even as presented, the result is more conserva-
tive than neccssary. A more aggressive solution calls for more complex interaction
between these phases as described in Appendix C.

The Intermediates phase determines the subspaces and expansions for interme-
diates from the subspaces and expansions of their operands. This phase breaks up
expression trees into fragments that are consistent with respect to subspace and ex-
pansions. This allows each fragment to be executed in its appropriate subspace and
with the appropriate level of parallelism. This approach also maximizes opportunities
for concurrent execution of distinct fragments. Intermediate processing is addressed
in Chapter 4.

The restructuring phase uses tables built up during analyses to incorporate frag-
ments in loops that correspond to their subspace and natural level of parallelism.
Code fragments that form the body of a loop (or the body of tle top level of the
routine) are partially ordered, uncovering non-loop based parallelism. Chapter 5 de-
scribes the information collected by previous phases and shows how that information
is used to generate the output of the subspace compiler. These phases, natural sub-
space analysis, natural expansion analysis, intermediate processing, and restructure,
addressed in chapters 2 through 5, constitute the basic subspace compiler.

In Chapter 6, we introduce a set of optional optimizations specific to the subspace
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abstraction. These are based on the results of the subspace and expansion analy-
ses. If included, they must precede intermediate processing since one effect of these
optimizations is to alter the shape of the expression trees.

The Back-end might include target-specific transformations to improve parallelism
for a specific architecture, target-specific analyses such as data layout, code layout,
and VLIW scheduling, and a full code generator. In fact, the goal is a set of Back-
ends for a set of targets. However, for this thesis the Back-end generates Connection
Machine Fortran, based on Fortran 90, to run on the CM-5. The subspace compiler
does not strictly include the Back-end and nothing relevant to the subepace model
occurs there so it will not be discussed further in the thesis.

Chapter 7 presents some experimental results. Chapter 8 defends our primary and
secondary claims. In dcfense of the primary claim, this chapter compares the subspace
model with a variety of existing techniques. In the process, this chapter constitutes a
discussion of related works as well. Chapter 9 addresses future possibilities uncovered
by the subspace model. Chapter 10 concludes. Appendix A summarizes the compila-
tion phases presented. Appendix B describes the current status of the implentation.
Appendix C explains why the approach presented is overly conservative in some cases

and how this could be remedied. Appendix D is a glossary of terms.
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Chapter 2

Natural Subspaces

The subspace compiler will determine the natural subspace for every reference in
the program. This includes references to user-declared objects and to intermediate
computations. This chapter presents a global analysis which determines the natural
subspace for references to user-declared objects only. Subspaces for intermediates are
addressed in Chapter 4.

As a result of natural subspace analysis each reference in the source is converted to
a reference in the target. There are three possibilities for conversion at the dimension
level. The conversion may maintain a dimension from the source to the target. It
may delete a dimension from the source in the target. Or it may add a dimension to
the target that was not in the source. A reference mapping is associated with each
reference indicating how each reference in the source is mapped to create a target
reference.

The input to the natural subspace algorithm is described in Section 2.1. The
natural subspace algorithm itself is presented in several steps. The core algorithm is
presented in Section 2.2. It operates on a very restricted input language called the
core language. Section 2.3 shows how relaxing the language restrictions impacts the
algorithm. This presentation order allows us to introduce the basic terminology and

the fundamental ideas while allowing us to postpone some of the complexities.
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2.1 Input

This section addresses the one restriction in the form of the input to the natural
subspace algorithm.

The input must be in static single assignment (SSA) form. This means that there
is at most one textual assignment to each scalar [18] and to each array. This restriction
is ensured by the Front-end.

Conversion to SSA form occurs prior to subspace analysis. Multiple assignments
are given distinct names. At merge points the names are merged via a phi operator.
For example

doi=1, imax
do j = 1, jmax
if (bool(i,j)) then
x(i,j) = RHSI

else
x(i,j) = RHS2
endif enddo
enddo
becomes

doi=1, imax
do j = 1, jmax
if (bool(i,j)) then
x1(i,j) = RHSI

else
x2(i,j) = RHS?
endif enddo

enddo

x3(:, :) = phi(bool(:,:), x1(:,:), x2(:,:))

Here x3 takes on the values of x1 or x2 depending on the associated value of bool.
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SSA form allows us to trivially identify the single definition associated with each

use.

2.2 Core Natural Subspace Algorithm

First we present the basic idea of the subspace determination algorithm. We do this
by restricting the input language and presenting only those aspects of the algorithm
required for this restricted input. This allows us to delay presenting some of the
details until the basics are clear.

This section presents the natural subspace algorithm for the core language. Sec-
tion 2.2.1 specifies the core language. Section 2.2.2 introduces concepts and termi-
nology. Section 2.2.3 describes the basic flow of the core algorithm. Section 2.2.4

presents the details of the core algorithm at a lower level.

The language restrictions for the core algorithm are listed below.

e Assignment statements and do loops are the only statement types considered.

e For each reference, its reaching definition is unique and trivially determined.

This is guaranteed by SSA from. Notice that for globals and arguments, the
entry to the routine constitutes the single assignment. They are not redefined

within the routine and all references to them within the body of the routine are

to their value on entry.

e Expressions are composed of constants, scalars and arrays. Function calls are

not allowed.
o The following array reference restrictions hold.

~ Each subscript of an array reference is a single loop index.
— Within a given array reference, a given loop index appears in at most one

subscript.
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do i = imin, imax
s4: s =58+ 1
do j = 1, jmax
do k = 1, kmax

89 : a(1, j) =8 * e(k) + 1
86 : ... =a(i, j)
sT: ... = a(i, k)
enddo
s8: ... = a(i, j)
enddo
enddo

Figure 2-1: Core Language Example

The array references a(i), b(j,i) and c(i,k) satisfy these restrictions. The
array references a(k+1), b(i+j), c(j,j) and d(i,v(j)) do not satisfy these

restrictions.

Notice that the question of data types is totally orthogonal to subspace and need
not be restricted in any way. Section 2.3 will show how these language restrictions

are relaxed.

2.2.2 Core Concepts and Terminology

This section introduces the concepts and terminology needed for the core algorithm.
The discussion relies heavily on the example in Figure 2-1. Assume e in that example

is a global.

The term named object denotes any scalar or array that is given a name in the
source (8, a, e, i, and kmax). Unnamed objects are the results of computations (the
result of the * or the +). An object is either a named or an unnamed object. An index
is the variable controlling a loop. For example, i is an index in our example.

A definition is an occurrence of a named object on an LHS. A definition modifies
values. A reference is an occurrence of a named object on either the RHS or the LHS.

In compiler literature, the term iteration space is normally assumed to be re-

stricted according to the bounds of the iterations. Here we are not concerned at all
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with these bounds. The axes are critical but the extents are ignored. Therefore we
represent the iteration spaces simply as sets of indices. A subspace is a subset of the

iteration space.

Definition 1 An index, say i, belongs to the natural subspace of a reference if the

value of the reference may vary as i varies.

Consider the space Z" with basis vectors {e;, ez, ...€,} where each e; is an index
in the iteration space. This set has 2" subsets. Each subset is a subspace of the
iteration space. For example, objects defined within loops on i, j and k may be in
one of the eight distinct subspaces of the iteration space corresponding geometrically
to the origin of the cube ({}), the axes of the cube ({i}, {5}, {k}), the faces of the
cube ({i,7}, {i,k}, {j, k}) and the whole cube ({z, j, k}).

To avoid confusion, let’s compare this with several other related concepts.

o The subspace abstraction is distinct from dimensionality in that it distinguishes
among, for example, the 3 different 2-dimensional planes that have different

orientations.

e The subspace abstraction is also distinct from the notion of a virtual processor.
The notion of virtual processors is used in compilers for distributed memory
systems before the restriction to the actual number of physical processor is taken
into account and before the code or data distribution is analyzed. The notion
of virtual processors distinguishes among different positions on a given axis
via the details of subscrint expressions. For example, x(i), x(i+1), x(i*2),
x(8in(i)) and x(v(i)) are considered to be in distinct virtual processors, but

they are all in subspace {i}.

e The subspace abstraction as used here is slightly more abstract than the normal
definition of iteration space (or subspace of the iteration space) in that we do
not consider an axis to be restricted by an upper or lower bound. The axis
is either part of the subspace or not. A subspace is therefore simply a set of

indices not a set of points in a multi-dimensional space.
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The subspace compiler will transform the source code to target code, the architecture-
independent output of the subspace compiler. As a result of the natural subspace
algorithm, the set of objects in the source will be transformed to a different set of
objects in the target. The references to these objects will be transformed accordingly.

The transformations we allow iuclude only the following three possibilities:

e A dimension of the source may be maintained in the target. The subscript in

the target will be identical to that in the source.
o A dimension in the source may be deleted.

e A dimension not in the source may be added in the target. Such a dimension

will be subscripted by a loup index (not a function of a loop index) in the target.

A dimension appearing in the source is a source aimension. Source dimensions
are either maintained source dimensions or deleted source dimensions. A dimension
not appearing in the source but added to the target is called an added dimension.

The reference mapping notation indicates the relationship between a reference in
the source and the associated reference in the target. A reference mapping is asso-
ciated with each reference since the mapping may be different for distinct references
of the same source object. The form of the reference mapping is < SA > where S
and A are sublists of source and added dimensions respectively. Elements of A are
enclosed in square brackets to distinguish them from elements of S.

An element in S or A indicates the disposition of the associated dimension. Lach
is a set of indices called potentially contribuiing indices. In addition, each element
in S or A may be attributed as a contributing dimension. These related notions of

potentially contributing indices and contributing dimension are discussed below.

Definition 2 An index i belongs to the set of poteatially contributing indices of a
dimension, ¢, of a reference, if modifying the value of i may modify the value of the

subscript expression at d.

The potentially contributing indices of a dimension of a reference are those indices

in the natural subspace of the subscript expression for that dimension. Notice that
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in the core language, since a subscript is simply an index, the natural subspace of the
subscript is available immediately by inspection.

For example, in Figure 2-1, S for the reference to a in statement 86 is < {7}, {j} >
indicating that the first dimension potentially contributes i and the second dimension
potentially contributes j. If the set of potentially contributing indices is a singleton
set it may be represented without the enclosing curly braces. < {i},{j} > may be
expressed as < t,j >.

Although for the core language, the potentially contributing indices are available
by inspection, this will not always the case when the restrictions are relaxed. Consider
areferencea(s, k), where 8 is a scalar but not an iidex. The potentially contributing
indices of the first dimension cannot be detcrmined by inspection. (See Section 2.3.1.4
for further details.)

Each element in the list A is a single index because each added dimension is
associated with a single index. For example, in Figure 2-1, A for the LHS reference
to a in 85 might be [k] indicating that the reference has an added dimension, k. The
indices of A are always ordered in canonical order according to the loop depth of the
associated loops.

In addition, a dimension (and its associated position in either S or A) may or may

not be attributed as a contributing dimension.

Definition 3 A dimension in a reference is a contributing dimension if it contributes

to the subspace of the reference.

A dimension contributes to the subspace if changing the value of the subscript in
that dimension possibly alters the value of the reference. If i and j are loop indices
in a reference x(i, j) with natural subspace {i}, the value of the reference varies
as i varies but not as j varies. In this case, as we vary the subscript in the first
dimension, say from x(12, 6) to x(13, 5), the value of the reference may change.
However, as we vary the subscript in the second dimension, say from x(12, 5) to
x(12, 6), the value of the reference does not change. Therefore, the first dimension is

a contributing dimension but the second dimension is not. A contributing dimension
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is indicated in the reference mapping by underlining. The reference mapping for x is
therefore < ¢,j >.
Added dimensions may also be contributing. If s in 84 has a contributing added

dimension on i then its reference mapping would be < [z] >.
Definition 4 The contributing indices of a dimension are defined as follows:

o If d is a contributing dimension, then the contributing indices of d are the

potentially contributing indices.

e If d is not a contributing dimension, then the contributing indices of d are the

empty set, {}.

Consider the reference, x(i, j, 3). The initial reference mappings show the poten-
tially contributing indices would be < 1,7, {} >. Suppose the first and third dimen-
sions are actually contributing. This is indicated in the modified reference mapping
<t ﬂ >. This results in the contributing indices for each dimension indicated in

the reference mappings < i, {}, {} >.

Definition 5 The contributing indices of a reference are the union of the contributing

indices of all the dimensions in S and A.

The contributing indices of a reference with reference mapping < i, , {}, [k] > are
{i,k}.
Each contributing dimension of a LHS object will become a dimension of the

generated target object.

2.2.3 Core Algorithm: High level Description

Now we can introduce the algorithm to determine a subspace for each textual occur-
rence of a named object when the source is restricted to the core language.

Briefly, after an initialization phase, the algorithm propagates indices from the
RHS of an assignment to determine the subspace of the LHS. The indices of the sub-
space of the LHS determine the contributing dimensions of the LHS object, that is,
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the reference mapping. The contributing dimensions of the LHS object are propa-
gated to determine the subspace of RHS references to that object. This propagation
continues until there are no further changes. The algorithm is executed in worklist
style. A reference is inserted onto the worklist when its current state changes. A
reference is pulled off the worklist to propagate its change. No particular order of
processing, such as inner loops first, is necessary.

An index, i, belongs to the natural subspace of a referencc if its value may vary

as i varies. There are two distinct ways that this may occur.

e Via cyclic ezpansion: The object is defined in terms of itself (either directly

or indirectly) in a previous iteration of the i loop.

o Via propagation: The object is defined in terms of some reference which has i

in its natural subspace.

Indices involved in cyclic expansions are uncovered in the process of discovering the
expansion categories (see Chapter 3). Such indices are simply incorporated directly
at initialization as we see in section 2.2.3.1.

The remainder of this chapter focuses on how we add indices to subspaces via

propagation.
2.2.3.1 Initial Information
Before we describe how information is propagated, we begin by identifying what is

known before propagation begins.

e Constants are in the null subspace since they do not vary with any index.

For example, the constant 7 in 2 RHS expression is in subspace {}.

e Loop indices are in their own subspace.

Consider the expression a(i) + j, in loops on i and j. The term j is known

initially to be in subspace {j}.
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e All potentially contributing indices can be determined by inspection. Note that
this is due to the array reference restrictions in force for the core algorithm and

is not true in general.

In a(i, j) the potentially contributing indices are {i} for the first dimension
and {j} for the second dimension. This results in an initial reference mapping

for this reference of < i,j >.

e For each reference to a global or an argument, all source dimensions are con-

tributing and there are no added dimensions.

Based on the core language restrictions (see Section 2.2.1), all references to
globals and arguments refer to the object available at routine entry. Based on
the conservative assumption that all the elements in the array as declared may
have been assigned distinct values by the calling routine, we must assume that
all the source dimensions are contributing. According to these restrictions, these
objects are not defined within the routine. Since added dimensions only arise
from definitions within loops, this restriction implies that there are no added

dimensions.
A reference a(i, j) where a is a global or an argument is given the reference
mapping < &,] >.

e For each object that is part of a cycle based on index, i, as determined by

expansion category analysis (See section 3.1.1), that object has i in its subspace.

Consider the examples below.

do i = imin, imax do 1 = imin, imax
s =g + 1 s = func(s)
=8 ... .. ®= 8 ..,
enddo enddo

In these examples, the first assignment defines s as a function of s on a previous
iteration of the loop. This means that it may have a distinct value for each i

and therefore has i in its subspace. The reference to s in the second assignment
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is there simply to indicate that we might want to refer to the interim values,
not just the end result. If the cycle were longer, say s is defined in terms of ¢
which is defined in terms of s, both s and t would include i in their subspaces.
Objects in cycles must be included explicitly at the start of the algorithm. The
propagations discussed below will not uncover i as part of the subspace in the

examples above, even though they will in the following case:

doi=1, imax
s =38 + a(i)
=98 ...

enddo

2.2.3.2 Propagation within Assignments

In brief, the subspace of the LHS object is determined by the subspace of the RHS
expression. The subspace of the LHS is used to determine which dimensions of the

LHS are contributing dimensions. This is explained in more detail below.

Subspace: If an index, i, is part of the subspace of one of the references on the RHS
of an assignment, then it is part of the subspace of the LHS object. In other words if,
as i varies, the value of the RHS may vary then we will ensure that the LHS object

will be generated in such a way as to have an axis associated with varying i.

In the assignment, ¢ = d(i+1, j) * e(i), if the RHS is in subspace {i,j}, then
c is also in subspace {i,j}. These two indices may be propagated to the LHS one at
a time in either order. Regardless of whether the LHS in the source were written as
¢, (i), c(i,j) or c(i,k), its natural subspace will be {z,;} upon termination.
Reference mapping: The reference mapping for an LHS reference specifies the
mapping of the LHS source object to a generated subspace object. This mapping is
determined by the indices in the subspace of the LHS object. If an index, i, is part of
the subspace of the LHS and if i is a potentially contributing index for a dimension

then that dimension is a contributing dimension. The core language restriction that
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within a given array reference, a given loop index appears in at most one subscript
implies that there is at most one dimension that potentially contributes i. If i is not
a potentially contributing index for any dimension then an added dimension based

on 1 is created.

Consider the LHS, a(i, j). The reference mapping begins as < ¢,j > indicat-
ing the potentially contributing indices, no contributing dimensions and no added
dimensions. When the index i is added to the subspace of this LHS reference, the
first dimension becomes a contributing dimension and the reference mapping becomes
< t,j >. When the index k is added to the subspace, an added dimension is added
and the reference mapping becomes < ¢,7,[k] >. If the algorithm terminates with-
out adding j, the final subspace for this reference is {i,k} with reference mapping

< iaj’ [&] >.

2.2.3.3 Propagation across Assignments

In brief, the contributing dimensions of the LHS of an assignment propagate through
a dependence to determine the contributing dimensions of an RHS reference. The
contributing dimensions of an RHS reference determine its natural subspace. This is
explained in more detail below.

The situation is slightly different for source dimensions and for added dimensions

so we discuss them separately.

o For each contributing dimension, d, that is a source dimension of an LHS

Reference mapping: If dimension, d, in an LHS reference is contributing, then

dimension d contributes in any RHS reference reached via a true dependence.

In our example in Figure 2-1, assume the reference mapping for the LHS of 85 is
< 1,7, [k] >. When propagating from the LHS to an RHS, for source dimensions,
it is the positions of the contributing dimensions that are relevant. We then

transfer these contributing dimensions by position through the dependences to

the RHS references in both 86 and 87 to indicate that the first dimension in
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both of these references is contributing. The third dimension is not a source

dimension.

Subspace: If a dimension of a reference is contributing, the potentially con-

tributing indices of that dimension are in the subspace of the reference.

If the first dimension of the RHS reference in 86 is contributing, the potentially
contributing indices in that dimension, i, actually contribute to the subspace.

i is therefore in the subspace of the RHS reference in s6.

For each added dimension of an LHS

Reference mapping: If there is a true dependence from some LHS reference,
L, to an RHS, R, and there is an added dimension on index, i, associated with
L, then that added index is transferred to R exactly when R is within the loop
i.

The LHS reference to a in s5 has reference mapping < i, j, [k] >, with an added
dimension on k. This reference reaches three RHS references, in 86, s7 and s8.
The contributing added dimension on k propagates to both 86 and s7. However,
since the reference in 88 is not within the loop on k, the added dimension on k
cannot be propagated there. The reference mapping for 88 includes an added
dimension on [kmax]. Since kmax is a scalar, this dimension has no potentially

contributing indices.

Subspace: An added dimension contributes its index to the subspace.

The reference mapping,< i, j, [k] >, for the reference to a in 86 indicates that
this reference is in subspace {1, k} whereas the reference mapping for the refer-

ence in 88 is < i, j, [kmaz] > and therefore in subspace {i}.

Figure 2-2 shows our example program indicating final reference mappings as

they will be determined by this algorithm.
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do i = imin, imax
s4: s =38 +1
<[gJ>= <[i]>+<>
do j = 1, jmax
do k = 1, kmax

85: a(i, j) = s * e(k) + i
<tLlk]>=<[i]>*<k>+<i>
s6 : . = a(i, j)
= <ij (k] >
87: ... = a(i, k)
= <k [k]>
enddo
s8: ... =a(i, j)
<i,J,|kmaz] >
enddo
enddo

Figure 2-2: Core Language Example with Reference Mappings

2.2.4 Core Algorithm

The high level structure of this core algorithm is found in Figure 2-3. The algorithm
is a worklist algorithm. Assertions about what is known are put on the worklist.
When these assertions on the worklist are processed further assertions become known.
Recall from section 2.2.3 that an index is determined to be part of a subspace in
two ways: cyclic expansion and propagation. The code in this figure contains four
statements. The first statement initializes the worklist with assertions known via
cyclic expansion. The next two initialize the worklist with assertions known at the
start of the propagation algorithm. The last one begins the propagation algorithm.

This high level describes the insertion and deletion of assertions in the worklist.
The actual effect of these assertions is described in Figure 2-4. The access routines for
the program graph and the reference mappings used in these two figures are described
in Figure 2-5.

One of the two types of assertions corresponds to the propagation from RHS to
LHS within a statement. The other corresponds to propagation from LHS to RHS

through dependences. These two items are mutually recursive.
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For each LHS reference (LHS-ref) that defines an object
that is in a cycle based on an index (i)
Add to the worklist:
index-is-in-LHS-subspace(LHS-ref,i)

For each RHS reference (RHS-ref) to a global
For each dimension (d) in RHS-ref
Add to the worklist:
dimension-of-RHS-contributes(RHS-ref ,d)

For each RHS reference (RHS-ref) that is an index (i)
Add to the worklist:
index-is-in-LHS-subspace(get-LHS-ref (RHS-ref),i)

While (worklist is not empty)
Remove and execute any item on the worklist

Figure 2-3: Main Routine

The assertion index-is-in-LHS-subspace is the result of a propagation of an
index from the RHS to the LHS of an assignment. The impact of this assertion
(the result of processing this item when it is removed from the worklist) is to find
the dimension of the left hand side reference, LHS-ref, that potentially contributes
index, i. Given the array reference core language restrictions there is at most one
such dimension. If there is no source dimension that potentially contributes i, then
an added dimension on i is created. In either case, the result is that a dimension in
the LHS-ref is determined to contribute.

The assertion dimension-of-RHS-contributes is the result of a propagation of
a contributing dimension from the LHS through a true dependence to a RHS. The
impact of this assertion (the result of processing this item when it is removed from
the worklist) is to determine the index that is contributed by this dimension and

asserting that that index is in the subspace of the associated left hand side.

2.2.5 Core Algorithm: Analysis

This section addresses complexity and termination of the natural subspace determi-

nation algorithm.
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e index-is-in-LHS-subspace(LHS-ref,i)
If (there is a source dimension (d) of LHS-ref whose subscript is a function of
i)
mark-as-contributing(LHS-ref,d)
For each RHS reference (RHS-ref) in get-RHS-ref-1ist (LHS-ref)
If not is-contributing?(RHS-r >f,d)
Add to the worklist:
dimension-of-RHS-contributes (RHS-ref,d)
Endif

Else
If not is~added?(LHS-ref,i)
mark-as-contributing(
LHS-ref,
add-dimension-on-index(LHS-ref,i))
For each RHS reference (RHS-ref) in get-RHS-ref-list(LHS-ref)
If (RHS-ref is within the scope of t*¢ i loop)

Add to the worklist:
dimension-of-RHS-contributes (RHS-rer,d)
Else
add-dimension-on-index (RHS-ref,last(i)))
Endif
Endif
Endif

e dimension-of-RHS-contributes (RHS-ref,d)

mark-as-contributing(RHS-ref,d)
Add to the worklist:
index-is-in-LHS-subspace(
get-LHS-ref (RHS-ref),
find-contributing-indices (RHS-ref,d))

Figure 2-4: Worklist Items
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e get-LHS-ref (RHS-ref)

This function returns the left hand side reference associated with a particular
right hand side reference, RHS-ref.

e get-RHS-ref-list (LHS-ref)
This function returns a list of right hand side references that are reached through
a true dependence from LHS-ref.

e find-contributing-indices(RHS-ref,d)
This function finds the contributing indices of a dimension, d, of a right hand
side reference, RHS-ref. The array reference language restrictions in the core
algorithm imply that this routine returns either the empty set or a singleton set
in the core algorithm.

e add-dimension-on-index(ref,i)
This function modifies the reference mapping for ref by adding a dimension
on index, i, in canonical order to the list of added indices and returns that
dimension.

e is-added?(ref,i)
This boolean function indicates whether there is currently an added dimension
based on index i in reference ref.

e mark-as-contributing(ref,d)
This routine modifies the reference mapping for dimension, d, of ref by marking
it as contributing.

e is-contributing?(ref,d)
This boolean function indicates whether dimension, 4 of reference ref is marked

as contributing.

o last(i)

This function returns the last iteration of the i loop to be executed. For the
core language this is the upper bound specified by the do statement.

Figure 2-5: Access Routines
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2.2.5.1 Complexity

This algorithm is O(D * L) where D is the number of true dependences and L is the
maximum loop depth.
Consider the processing of the true dependence on x in the following code within

loops on 1, j and k

sl13: R T

Suppose at some point during the propagation, {i} is added to the subspace of
the LHS reference in s12. If the subspace of x did not already include i then i
is propagated through the dependence to the reference in s13. (This corresponds
to one instance of the worklist item: dimension-of-RHS-contributes.) At some
later time, {7} is added to the subspace of the LHS reference in s12 then j is prop-
agated to the subspace of x on the RHS reference in s13. (This corresponds to a
second instance of the worklist item: dimension-of-RHS-contributes.) The de-
pendence may be processed a third time for index k. (This corresponds to a third
instance of the worklist item: dimension-of-RHS-contributes.) The dependence
is processed for a given index only when that index is first added to the subspace
of the left hand side. Consider the processing of a dependence to include both
the propagation required from an LHS to an RHS (one instance of the worklist
item: dimension-of-RHS-contributes) and from that RHS to its own LHS (one
instance of the worklist item: index-is-in-LHS-subspace). In the worst case each
true dependence is processed once for each enclosing loop index. Anti- and output-

dependences are ignored.

2.2.5.2 Termination

The algorithm is guarenteed to terminate. We add a dimension-of-RHS-contributes
to the worklist only if its subspace is modified. This can occur only once for each
loop enclosing the (single) definition of the object as in the complexity discussion

above. So the number of additions to the werklist is bounded. For each object on
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the worklist, we propagate the added indices along each true dependence to a RHS
by adding one instance of dimension-of-RHS-contributes. At most, this results
in adding one instance of index-is-in-LHS-subspace. Termination is guarenteed
because the number of dependences processed is bounded and the number of items

added to the worklist per dependence is bounded.

2.3 Relaxing the Language Restrictions

Section 2.2 addressed the natural subspace analysis with respect to the tiny core lan-
guage. This section addresses the incorporation of additional language features into
the model. These features include more flexible array subscripting (Section 2.3.1), 1/0
(Section 2.3.2), intrinsics (Section 2.3.4), alternate looping constructs (Section 2.3.5)

and predicates (Section 2.3.6).

2.3.1 Array Subscripts

In the core language, array subscripts are restricted as follows:

e Each subscript of an array reference is a single loop index.

e Within a given array reference, a given loop index appears in at most one

subscript.

In this section, we show the impact of relaxing these restrictions.

2.8.1.1 Subscript may be a function of a single index and constants

In the core algorithm, each subscript was a simple index. Allowing subscripts such
as i+ 1and 2 * i + 3 changes nothing in the original algorithm. The function
find-contributing-indices can still be performed by inspection locally. Consider
a(i+1, j) = i
b(j, i+3) = a(2*j, i) ...

The initial reference mappings for this example are
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<i,j>= {i}

<)Hht>= < )1 >

Here the fact that i is in the subspace of the RHS means that the first dimension
of a on the LHS must contribute even though the subscript is i+1 rather than i. If
the first dimension of a contributes in the first statement then the first dimension of
a contributes in the second statement. This implies that j is in the subspace of the
RHS reference to a even though the subscript is 2*j rather than j. If j is in the
subspace of the RHS, it is in the subspace of the LHS which implies that the first
dimension of b contributes. The final reference mappings are

<ij>= {i}
<hi>= <j,i>

2.3.1.2 Subscripts on the RHS may include more than one index

Here we allow subscripts such as (i + j) or (2#i + j) in a RHS reference. Such a
dimension has multiple potential contributing indices. Consider
a(i, j) = {i}
= a(i + j, k)

The notation on the RHS of the first assignment simply refers to an arbitrary expres-
sion in subspace {i}. The initial reference mappings for this example are
<ij>= {i}
= <{i,j},k>

The first dimension of the RHS reference has a set of potential contributing indices
that contains more than one index. When such a dimension becomes a contributing
dimension all potentially contributing indices become contributing indices and must

be added to the subspace of the RHS reference. From there they will all propagate
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to the LHS. The routine £ind-contributing-indices(RHS-ref,d) may now return

multiple indices. The definition of the worklist item:
dimension-of-RHS-contributes(RHS-ref,d)
is modified to
mark-as-contributing(RHS-ref,d)
For each index, (i) in find-contributing-indices (RHS-ref,d)
Add to the worklist:
index-is-in-LHS-subspace(get-LHS-ref (RHS-ref),i)
The reference mappings that result from the example above are:
<ij>= {i}

{i' J} - <ii9_jl1k>

We will mzintain the language restriction that for LHS references, at most one

index may be involved in a given subscript.

2.3.1.83 A given index may appear in more than one subscript

Here we allow a given index to appear in more than one subscript for a given reference.

The issues are slightly different for the RHS and the LHS.

o For a RHS reference

Consider

x(i, j) = ...

= x(i, i) ...

We will determine the contributing dimensions of the RHS reference to x in the
norma! way. Assume there are no added dimensions. The contributing dimen-
sions will propagate to an RHS. If the first dimension of the RHS reference is
contributing, then i is in its subspace. If the second dimension is contribut-

ing, i is in its subspace. If both are contributing, then the definition defines
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a 2-dimensional object but the reference is only referring to a 1-dimensional
object, the diagonal. The subspace of this reference is the union of the indices

contributed by all the contributing dimensions: i.

For LHS references

If a given index may appear in more than one subscript of an LHS reference,
when we ask for the dimension that contributes some index, there may be more

than one.

Recall that on the LHS at most a single index is involved in a given subscript.
The system will simply choose one. This will be a contributing dimension. The

other will not.

Given the static single assignment requirement, the LHS in question is the only

assignment to the object. Consider
a(i’ i*1. j) = ¢ o 0

within loops on i and j. The only values defined are those whose first two di-
mensions have the stated fixed relationship to each other. Given one subscript,
the other is determined. RHS references to that object may only refer to ele-
ments whose subscripts conform to this relationship. Otherwise the reference is
to undefined elements. Therefore, in a semantically correct program, the RHS
reference may be a(i, i+1, ...), a(i-1, i, ...), a(6, 6, ...) or a(j,
j+1, ...) but not a(i, j, ...). In other words, the index contributed by
the RHS will be the same regardless of which dimension on the LHS was chosen

as contributing.

2.3.1.4 Subscripts may be objects other than loop indices

In the core algorithm, we associated a reference mapping with each array but not

with subscripts. These were not necessary since the only allowable subscript was

an index and the potentially contributing indices for such a subscript are trivially

available by inspection. When we allowed expressions involving constants or even
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multiple indices, the potentially contributing indices were still trivially available by
inspection. But a subscript may be a reference to an object whose subspace is not
available by inspection. Such subscripts require reference mappings.

Consider
s = ...

x(...,...) = ...
= x(8, i+1)
in loops on i and j, where s is a scalar but not a loop index.

Here the subspace of the subscript, s, in the first dimension of x, is not available
by inspection so it requires a reference mapping.

The Reference mappings actually return values. The value of a reference mapping
is the set of contributing indices it indicates.

There are four possibilities for the subspace of s: {}, {i}, {j}, or {i,j}. During
the propagation algorithm, s used as a subscript is handled just like any other RHS
reference to s with respect to receiving indices in its subspace. And the first dimension
of x is handled just like any other dimension in a RHS reference with respect to
determining that it is a contributing dimension. If the subspace of s is fully known
by the time the first dimension of x is determined to be contributing, this is processed
just like the case where the potentially contributing indices are known. That is, if
the subspace of s is known to be {i,j}, when the first dimension of x is determined
to contribute, we can propagate i and j to the LHS as for the core algorithm.

The issue is that there are two requirements for a dimension, d, of an array to

contribute an index, i.
e Dimension, d, must be a contributing dimension and
e Index, i, must be a potentially contributing index of dimension d.

Since the potentially contributing indices are no longer trivially available by in-
spection but require propagation, these pieces of information can arrive in any order,

For example, if the algorithm

1. first discovers that i is in the subspace of s then
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2. discovers that the first dimension of x is contributing, and finally

3. discovers that j is in the subspace of s.

The reference mappings at each step are:

l. <a,i>

where a is not a simple index but rather the reference mapping < [¢] >

2. <B,i>

where J is not a simple index but rather the reference mapping < [i] >

3. <7,1>

where 7 is the reference mapping < [g], [j] >

Since the reference mappings return sets of indices, these are equivalent to

l. <a,i> whereais < [§] >

2. <1,1>

3. <{i,j},i>
Therefore we can propagate i to the LHS at step 2 and we can propagate j to the
LHS at step 3.

This language feature raises one additional concern about the correctness of the
algorithm. In the core algorithm, information, once discovered, could propagate im-
mediately. Here, the subspace of a subscript is not available immediately by inspec-

tion. For example, to propagate i to the LHS in the example above, we need to

know

1. i belongs to the subspace of s.

2. The first dimension of x in the RHS reference contributes.
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We might be concerned that the propagation gets stuck in such a way that, al-
though i really is in the subspace of the LHS, i never propagates to the LHS because
propagation to this LHS is exactly what enables us to determine either 1 or 2 above.

But notice that if this is true, then there is a path in the dependence graph as

follows: (assume the LHS in question is a definition of y.)

(LHS def of y) — (RHS ref to y) — ... (LHS def of s or LHS def of x) — (RHS
ref to x(s, ...)) — (LHS def of y)

But such a path constitutes a cycle. i will be added to the subspace on the basis of

this cycle during the algorithm’s initialization phase.

2.3.2 I/O

I/O statements are easily incorporated into the natural subspace computations. In-
put statements act as definitions of objects and output statements act as references.

Consider the read statement

doi= ...
do j= ...
dok= ...
read x(j)

enddo
enddo

enddo

The x(j) clearly may have a distinct value for each value of i, j and k. The
reference mapping is therefore < j, [], [k] > and acts just like a definition of x with
respect to the rest of the algorithm.

A write statement acts as a RHS reference and receives propagated information

as any RHS reference.
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2.3.3 Explicit parallelism

The Fortran 90 triplet notation provides a mechanism for representing unnamed in-

dices. For example,
x(1:n) = y(2:n+1) + z(1:n)
based on a single unnamed axis is equivalent to

doi=1i,n, 1
x(1) = y(i+1) + z(i)

enddo

with respect to subspaces. The subspace analyzer simply generates index names in
these cases and initializes these dimensions to be contributing and to potentially
contribute the generated index. In other words, the reference mapping for one of the

above references might be:

< genindezl >

2.3.4 Intrinsics

There are a wide variety of intrinsic functions that may be called from Fortran rou-
tines. This section describes how these functions are incorporated into the subspace
determination algorithm.

Many intrinsics are simply unary operators from the perspective of the subspace
calculation. For example, the sin function returns an object that is in exactly the
same subspace as its argument. So the sin function in the first assignment below is

handled identically to the unary minus in the second statement.

do i =1, imax
do j =1, jmax
sl = sin(a(i,j)) + b(i)
82 = (- a(i, j)) + b(i)
enddo

enddo
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The sin function takes a real argument and returns a real result. Other intrinsics
behave identically with respect to subspaces even though the type of the argument
and result may differ. aimag, for example, takes a complex argument and returns a
real result.

Not all intrinsics behave like unary operators with respect to subspace analysis.
Let’s examine some of the Fortran 90 intrinsics. Fortran 90 reduction functions such
as all, sum or minval take an array and return a scalar. If they have a dim argument,

the reduction occurs along a specific dimension only. For example,

do i =1, imax
do j = 1, jmax

a(i,j) = {i, j}

enddo
enddo

x(:) = sum(a, dim = 1)

In this example there is a dependence between the LHS that defines a and the
reference to a outside the loop nest. Based on this dependence, the subspace aralyzer
determines that both dimensions at the reference are contributing dimensions. With
respect to subspace determination, these two parallel dimensions behave just as if
they were each specified by a loop construct. We therefore simply create internally
generated names, say genindex1 and genindex2 for these indices.

Since the effect of the sum function is to eliminate some dimensions, we do not
simply propagate genindex1 and genindex2 to the subspace of the LHS. In this
example, the first dimension is ehminated. Only the second dimension, genindex2
propagates to the LHS.

It is not always possible to determine the shape of the result at compile time.
For example, the reshape intrinsic takes an array argument whose values specify the
shape of the result. Since these values may be determined at runtime, this intrinsic

is not analyzable at compile time.
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2.3.5 Alternate looping constructs

The only loops addressed in the algorithm above are do loops. Loops can also be
created from while constructs, from repeat-until constructs and from backward
gotos. Notice that the subspace algorithm makes no reference to loop bounds or loop
counts even for do loops. In general, these quantities are symbolic. The question
we do care about here is whether or not the value of some object may vary across
iterations. Such variations may occur within the context of any looping construct.
One major difference betweein a do loop and other loops is that the do loop has
a named index and that index may appear in constructs within the loop. Other
looping constructs do not have a named index and therefore the associated index can
not appear in a subscript expression in the body of the loop. A subspace compiler
therefore simply generates an index name. Consider:

while (bool)

m = func(m)

endwhile

The subspace compiler may generate the index, genindex1, for this example. The
subspace of m is {genindez1} because m is defined in terms of itself in previous itera-
tions of the loop on genindex1.

genindex1 might also be in the subspace of an object not defined in terms of itself
as in the following example.

while (bool)

m = func(m)

P=m+ ...

endwhile

Since p is defined in terms of m which has genindex1 in its subspace, p will also
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have genindex1 in its subspace. In this case genindexi is an added dimension.
However, consider

10 continue

m = func(m)

p(m, ...) =m+ ...

if (bool) goto 10

Here again p will have genindex1 in its subspace. In this case however, genindex1
is associated with a source dimension, not an added dimension.

Sometimes recursion is used as an alternate looping structure. Under restricted
conditions recursion could be handled simply as an alternate looping construct by the
subspace analyzer. But recursion can be used in more flexible ways that are, at least
at the current time, outside the scope of this work. Recursion will not be further
addressed here.

One might argue that loops formed from these alternate looping constructs are
often simply convergence tests that must be computed serially. We might just as well
ignore the subspace analysis for them. After all, the argument might go, subspace
analysis will simply result in adding this additional index to all the objects assigned
within this scope and since each iteration depends on the previous one, no additional
parallelism will be found.

Some reasons for actually performing subspace analysis on these loops follow:

e Some of the operations may not have the generated index in their subspace.

These can be removed from the serial loop and executed just once.

e Some of the operations within that loop may be parallel or parallel prefix across
the generated index. These can removed from the serial loop and put in a

separate parallel or parallel prefix loop.

e Even if all the operations are serial in the generated index, they may be involved
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in several distinct cycles across the generated index. This means that we may

be able to improve performance by performing these distinct cycles in parallel.

e Consider the assignment a = func(a) + b(i). func and + are both computed
serially. But assume that b is defined by a parallel computation and all uses of a
are parallel. A data layout phase may well decide that distributing a across i is
worthwhile even though it is computed serially. This decision is in the domain
of the data/code layout phase or the VLIW scheduling phase and should be
based on the cost model of the target architecture. The goal of the subspace
model is simply to uncover the fact that the generated index is, in fact, in the
subspace of a and that a is computed serially across that index. However, the
subspace analyzer is obliged to present the distribution across this index as one

of many options to the data layout phase.

2.3.6 Conditional Execution

Here we address the impact of conditional execution on the subspace of an assignment.
We will show that an index in the subspace of a predicate affects the values of objects
whose definition is controlled by the predicate. That index is therefore in the subspace
of those objects as well.

In the alternate loop structures above, an if statement controlling a backward
branch determined the number of consecutive iterations (possibly zero) of a loop.
However, the value of definitions within the loop did not depend on the predicate.
When we consider incorporating if statements that control the execution of assign-
ments within their scope, that situation changes. In this case, the body is executed
on arbitrary, possibly non-consecutive, iterations of enclosing loops. This changes the
role of the predicate in subspace calculations.

A predicate itself, of course, is simply an expression and its subspace is determined

as we determine the subspace for any expression. For example, consider the code
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do i =1, imax
do j = 1, jmax

if (a(i) .gt. ©b(j)) then

endif
enddo

enddo

If a(i) is in subspace {i} and b(j) is in subspace {j}, the predicate is in subspace
{i,7}. Full details of subspace determination for expressions are found in chapter 4.
Since a predicate has no explicit LHS, it might seem that the propagation of subspaces
would stop at the conditional expression itself. This is not true. Consider
doi=1, imax
do j =1, jmax
x=8+]
. =x ...
enddo

enddo

Assume s is in subspace {}. Since the value generated by this assignment depends
only on j, not on i, x is in subspace {j}. Now consider the same assignment controlled
by a predicate in subspace {i, j}.

do i =1, imax

do j =1, jmax

s9 if (a(i).gt.b(j)) then
s10 xX=38+j
endif
sll . ®X L.,
enddo
enddo

The discussion of this example is illustrated in Figures 2-6, 2-7 and 2-8. The three
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figures show the values of three objects:

first the predicate, (a(i).gt.b(j)), in statement s9, then the expression, s + j,
in s10 and finally the values referenced by x in s11. These figures do not show all
the values of these objects. We are only concerned with determining the values of x

in s11 where j is 48, indicated by the | on the j axis and where i is 3, indicated by

the — on the 1 axis:

The values of the predicate, as shown in Figure 2-6, vary arbitrarily, that is, both
i and j are in the subspace of the conditional.

For each i, j pair for which the assignment is executed, the value of x depends only
on j. This means that, for a given column of the expression 8 + j (Figure 2-7), all
values are the same since this figure indicates only those values actually evaluated. In
particular, where j is 48, for iterations of the i loop where the assignment is actually
evaluated, the value of the expression is 3. For i equal to one or two, for example,
the value of x is 3.

However, consider the value of x in statement sl1 for some iteration, (i, j), for
which the assignment is not executed. (3, 48) is such an iteration. Since x is not
assigned on this iteration, its value on that iteration will be the value of its most recent
assignment. We find this value by looking back along the j axis in the predicate for
the most recent true value (Figure 2-6). This is found three columns back at j is
45. We then inspect Figure 2-7 to find that the value of x at iteration (3, 45) is 7.
Figure 2-8 shows us the values of x for each point in the column where j is 48.

Notice that it is no longer true that all the values in a given column are the same
which means that it is no longer true that the values depend only on j. These values
depend on i to determine the iteration, (i, j/), in which the assignment was last

executed.

x clearly varies as i varies so, by the definition of subspace, i is clearly part of the
subspace of x. This is true even though, whenever the assignment to x is executed,
the value does not depend on i. In general, indices in the subspace of a predicate
controlling an assignment to an object contribute to the subspace of the object.

Predicates in if statements are incorporated into the subspace determination
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Figure 2-8: Values of the RHS Reference: x outside the scope of the if
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algorithm as follows:

e Each predicate that is not simply a reference to a name, is given a generated

name, with the expression as its RHS. The example above becomes

do i =1, imax
do j = 1, jmax
gentemp = a(i).gt.b(j)
if (gentemp) then
xX=38+ j
endif
enddo

enddo

o The named conditional controlling an assignment acts simply as an additional

RHS cperand in the subspace propagation algorithm.

Subspaces propagate from the definition of a to the use of a on the RHS of the
assignment to gentemp. They may propagate to the definition of gentemp on the LHS.
They may propagate to the use of gentemp in the conditional. Now, in addition, the
subspace of gentemp will propagate as a use to the RHS of the assignment to x. A
complete discussion of how predicates are incorporated into RHS expressions is found
in Section 4.5. At this stage, it suffices to know the impact of predicates on global
subspace analysis. They act as RHS references in assignments they control.

There is a possible optimization of predicate processing. Consider the distinction

hetween the two examples below.
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doi=1, imax
do j = 1, jmax
if (a(i).gt.b(j)) then
xX=8+3j
endif
=x ...
enddo
enddo
doi=1, imax
do j =1, jmax
if (a(i).gt.b(j)) then
x=8+j
=x ...
endif
enddo

enddo

In the first example, the reference to x is executed on iterations where x is not
defined and the discussion above applies. However, in the second example, x is
referenced only on iterations where it is actually defined. In this case, the subspace
of the predicate is not relevant. The subspace of x in this case is simply {¢}. Vor this
optimization, if the references, both LHS and RHS, involve subscripting, they must
be interrogated to be sure the value referenced is always defined. '

Remember that the predicate processing described here only applies to predicates
of if statements that control the execution of assignment statements. It does not
apply to predicates of if statements that control backward gotos or predicates of
while statements. These are simply alternate looping constructs. The predicates in
these cases impact the number of iterations executed but not the subspace.

The termination and complexity analysis above remain accurate if the term RHS

is taken to include both the actual RHS of an assignment and the conditionals con-

trolling that assignment. For examgle, the objects contributing to the RHS of the
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assignment to x above are s, i and gentemp. Note that this may significantly increase

the number of true dependences indicated in the complexity measure.

2.3.7 Calling with Accurate Arguments

So far we have only shown the processing for leaf routines since we have not yet
included the processing for function or procedure calls. First, we will assume no
interprocedural analysis. This implies that the shape of objects visible between calls
are not affected by subspace analysis. The processing for the core language assumes
that the incoming arguments and globals are as declared in the source. We must
ensure this on the calling side.

There are two possible problems

e There is a dimension in an argument that we have removed.

o There is & dimension in an argument that we have added.

The first can be dealt with simply by a replication. The user-declared x as two di-
mensional and calls user-func(x(:,:)). We determine that only the first dimension
contributes. x is converted in the transformed program to x1 which is 1-dimensional.
This implies that all the values along the removed axis are identical. The called
routine expects a 2-dimensional argument. This is an example of an operand in a
subspace that is smaller than required by its operation. As usual, this situation
requires an expansion across operational subspace.

The second case is more interesting. The user-declared x as two dimensional. We
transform this to x2, a 3-dimensional object with an added dimension across k. To
process a call to user-func(x) we must convert this to user-func(x2(:,: ,current-k))
which passes all elements along the first and second axes but only the current slice

along the k axis.
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2.3.8 Returning Modified Arguments

One of the language restrictions we included as part of the static single assignment.
is that globals and arguments are not modified. Essentially their only assignment
is from outside the routine. Sometimes Lowever, we need to actually modify these
values. We relax this restriction simply by allowing a block of assignments to these
objects immediately prior to return. These assignments cannot reach any use in the

routine and do not participate in the subspace analysis.

2.4 Summary

The subspace analysis presented in this chapter determines which loop indices affect
the value of each reference, both RHS and LHS, to each user-declared object.

It uses this information to transform the shape of the objects to ensure that
distinct values (assigned in distinct iterations of some loop) are written to distinct
elements in the object.

Notice that the program started in static single assignment form so an object,
say x, is modified by only one assignment. We then transform the program so that
if the assigned values vary with some index, say i, then i is a subscript of some
dimension of x in the assignment, for example, x(...,i,...) = .... The program
is now dynamic single assignment at the element level, that is, during execution of
the program each element is assigned to at most once. This form eliminates both
anti- and output-dependences. Since these dependences restrict reorderings, this new

from simplifies downstream analyses.
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Chapter 3

Natural Expansions

The subspace abstraction includes two notions: the subspace of an object, addressed
in Chapter 2, and how the values of elements of the object become available with
respect to the subspace, the topic of this chapter. When an object in a given subspace
is allocated storage, the values of the elements are undefined (empty). Ultimately, the
values of all the elements are determined (full). During the computation, more and
more of the values become defined. The notion we are attempting to capture here
is how (in what order and at what speed) the object fills up with values. A natural
expansion category is associated with each index of a subspace. This expansion
category describes how the values ezpand to fill the object along an axis.

Notice that expansion as used here is not to be confused with the term scalar
expansion. Scalar expansion refers to the compilation process of taking a scalar
variable supplied by the user and converting it (expanding it) to an array object in
the generated code. (This is an added dimension in our terminology.) We use the
term expansion to refer to a runtime phenomenon occurring within an object of fixed
size. Expansions should not be confused with dynamically allocated objects that
expand (actually increase in size) at runtime. Here the object is already allocated
and it is simply a question of the evaluation order of the elements within the object.

Consider an object defined within a nest of three loops. If the source code is
scalar, it appears that the object fills up (expands) with values serially through the

three loops, evaluating one element at a time. But in the same way that we determine
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the natural subspace by analysis, instead of taking the subspace to be that given in
the source, we will also determine the natural expansion category by analysis instead
of assuming it is given by the source. Expansion analysis may determine that as a
result of the outer loop, one dimension of the object expands serially; as a result of the
middle loop, another dimension of the object expands in parallel; and as a result of
the inner loop a third dimension of the object expands via a parallel-prefix operation.
(See Chapter 1 and Figure 8-1 for an introduction to these three expansion categories.)
Expansion analysis is applied to every axis in the runtime object, regardless of whether
the axis was declared in the source or uncovered by natural subspace determination.

We have said that these expansion categories capture the notion of how (in what
order and at what speed) the object fills up with values. They are called to as natural
cxpansion categories in that the speed and order referred to here are not those on
any specific target architecture but rather those that arise directly as a consequence
of the computation itself.

Section 3.1 introduces the basic idea of expansions. Section 3.2 presents the al-
gorithm that identifies expansions and determines their categories. These ideas are
presented with respect to the limited language of do loops and assignment statements.
Section 3.3 shows how additional language constructs are incorporated into this al-
gorithm. Section 3.4 discusses the integration of subspace analysis and expansion

category analysis within the compiler.

3.1 Concepts and Terminology

One way to view expansion analysis is as a generalization of privatization. When an
object, s, is privatized [37, 44} along a loop index, i, two things happen. The object
is given an additional dimension subscripted by i and the definition of s is asserted
to be parallelizable along that dimension.

We extend this notion in two ways.

o First, we analyze all the indices in the natural subspace of this object. We are

not limited to those that were missing in the source.
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e Second, we determine which one of three expansion categories is the natural

expansion category for each axis. We are not limited to parallel expansions.

The idea is introduced via a restricted language! that includes only do loops and
assignments.
Below we introduce the three natural expansion categories. The examples are for

both source and added dimensions.

o Parallel - the value of each element along an axis is not based (either directly or
indirectly) on previous elements along that axis. The anticipated communica-
tion costs are O(1) for parallel axes. s is expanded in parallel across i in both

examples that follow.

do i1 =1, imax do i=1, imax
=g = 8(i-1)
s =x * y(i) s(i) = x * y(i)
=g ... = 8(1)
enddo enddo

Our definition of parallel is similar to that used for privatization but differs in
two important ways. First, it does not require that all references to an element
be in the same loop iteration as long as the definition of an element does not
depend on previous elements along that axis. In the first statement, the use of
s defined on the previous iteration does not prevent the i axis from having a
parallel expansion category though it would prevent the object from being priva-
tized. In addition, as mentioned above, it applies to existing source dimensions

as well as to added dimensions (dimensions added by subspace analysis).

The identification of an axis as parallel does not mean that the operations along
that axis will be performed “at the same time”. For example, if the values of y
are not available all at the same time, then, on some targets, they can be used

as they become available.

1This is not as restrictive as the core language described in 2.2.1 for subspace analysis. In
particular, the restrictions on subscripts do not apply here.
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e Serial - the value of an element is potentially based on the value of elements
earlier aloug that axis. The anticipated communication costs are Q(N) where

N is the extent of the axis. s in the following code is serially expanded across

i.
do i = 1, imax do i =1, imax
s = userfunc(s) s(i) = userfunc(s(i-1))
enddo enddo

o Parallel-prefiz - the value of an element is based on the value of elements earlier
along that axis but the operations can be converted to parallel-prefix form with
communication cost of O(log N). s in the following code is a parallel-prefix

expansion across i.

doi=1, imax do i =1, imax
s =8 + b(i) s(i) = s8(i-1) + b(1i)
enddo enddo

The examples above are simplified in that in each, the axis in question corresponds
to the innermost loop. In fact, an expansion category is determined for each index.
In the following code, s is in subspace {¢,j} and is parallel-prefix along j but parallel
along i.

do i =1, imax

s =0

do j = 1, jmax
s =8+ b(i, j)
enddo

enddo

3.1.1 Cyclic Expansions

For the serial and parallel-prefix expansions in the examples above, there is a cycle

of nodes involving a loop-independent dependence from an LHS to an RHS and a
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loop-carried dependence from that RHS to the LHS within the same statement. The
term cyclic expansion refers to an expansion that is either serial or parallel-prefix. A

given cycle may involve more than one object and more than one statement as in

do 1 =1, imax
x(i) = y(i-1) + b(i)
y(@) = x(i) + c(i)
enddo
In fact, we do not distinguish between distinct cycles if they are strongly connected.

Consider

doi=1, imax

x(i) = y(@i-1) + z(i-1)

y(i) = x(i) * b(i)
z(i) = x(i) * c(i)
enddo

This code has one cycle between x and y and another cycle between x and z. Since
the goal is to keep all statements involved in both cycles as part of the same cyclic
loop, we will focus on finding strongly connected components (SCCs) as opposed to
cycles.

We do, however, distinguish between distinct SCCs. For example, consider

do i=1, imax
x(i) = y(i-1) + a(i)
y(@i) = x(i) * b(i)
z(i) = z(i-1) * c(i)
£(i) = 2(i) + x(i)
g(i) = £(i) * 2%i

enddo

We will uncover two SCCs, one defining x and y, and another defining z. FEach
of these is called an ezpansion. So x and y are part of the same expansion while

z is part of another. These distinct expansions might have the same or different
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expansion categories. f and g are not part of any SCC and are therefore distinct
parallel expansions.

This information will allow the restructuring phase (see Chapter 5) to generate
the following loops.?

do i=1, imax

x(i) = ...
y@ia) = ...
enddo

do i=1, imax

z(i) = ...
enddo

do 1 =1, imax

£f(...) = ...
enddo

do i =1, imax

gl...) = ...

enddo
The first two loops will be cyclic. The last two will be parallel.

A cyclic expansion is a set of assignments together with an index. In static
single assignment form, this is equivalent to a set of objects with an index, since
each object is associated with exactly one assignment. We therefore identify a cyclic
expansion by the index and one of the objects in the set. An expansion is written as
(object — index), for example, (x — ), which is read as “the expansion of x across
im. \

If the expansion contains more than one object, we choose a representative object
for its identification since each object may be part of at most one expansion with
respect to a given index. Notice, however, that the same object will be part of an
expansion, possibly a cyclic one, with respect to each index in its subspace. So x may

well be part of one expansion, say (r — i), across i and some other expansion, say

2The ordering among these loops is determined by the restructuring phase.
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(y — ), across j. This notation does not distinguish between serial and parallel-
prefix expansions. In fact, we use the same notation to indicate a parallel expansion.
The expansions above are (z — 1), (¢ —= 1), (f —= ), (9 — ).

At this point we can summarize the goals for expansion analysis as follows:

e to determine the natural expansion category of each loop we generate.

A parallel loop is more efficient than a parallel-prefix loop which is in turn more

efficient than a serial loop.

e to isolate separable components of a loop into distinct loops, so that some loops

can be performed via more efficient expansion categories.

A loop containing both a serial expansion and a parallel expansion must be per-
formed serially. But, if separated into two distinct loops, one can be performed

in parallel.

e to isolate separable components of a loop into distinct loops so that even if
these components are performed via the same expansion categories, they can

be performed concurrently.

A single loop containing two distinct SCCs both of which are serial might be

faster run as two distinct, serial loops run concurrently.

3.1.2 LHS and RHS References

Consider a cyclic expansion (b — ¢). The effect of this expansion is to fill in values
along the i axis of b. We must now determine which dimension of b corresponds to
the i axis. The reference mapping for the LHS of the assignment to b indicates which
dimensicn contributes i. If the reference mapping for the LHS reference defining b is
< i,j,[k] >, the expansion (b — #) will fill in values along the first dimension of the
generated object. If the reference mapping is < £, j, [¢] > it will fill in values in the
third dimension of the generated object, an added dimension in this case.

By focusing on the LHS references, the process appears to be at the assignment

statement level which is at odds with our general expression level philosophy. Now we
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address RHS references in order to support expression level analysis. (See Chapter 4
for a discussion about expansions of intermediates.)

Consider

do 1 = imin, imax
sl: a(i) = a(i-1) + b(i) * .
82 ... = a(i)
enddo
Here the two references to a in sl are in an SCC on i, (¢ — ). However, neither
the reference to b in S1 nor the reference to a in s2 are part of that SCC. The use of
a in s2 can be separated into a distinct expansion and accessed in a parallel loop if
appropriate for its operation. In fact, the * in s1 can also be separated and performed
in parallel.

It is easy to confuse the role of the index and the role of a dimension when
discussing cyclic expansions. The expansion is represented with reference to the
index, say as (a — ), because the expansion loop iterates over this index but the
effect of the expansion is to fill in values along a specific dimension. The importance of
this distinction was not that clear when we were looking at an LHS reference because
the relevant dimension was the one which contributed the relevant index. But notice
that this is not necessarily true for a RHS reference within cyclic expansion.

Assume sl in the example above is replaced by s3 in the example below.

s3: a(i) = a(k) + b{i) = ...

Here a cyclic expansion, (a — 1), expands a across the first dimension. The RHS
reference to a is part of that expansion (assuming apparent dependences). But i is
not even a potentially contributing index of the first dimension of the RHS reference.
In fact, i does not even belong to the subspace of the RHS reference.

The specific expansion identified with an index is associated with a specific di-
mension and propagates from an LHS through a dependence to the same dimension
of an RHS. This positional aspect to cycles is similar in flavor to the positional aspect
of contributing dimensions of RHS references in subspace analysis.

This example raises an interesting issue which we refer to as the subspace of a
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dependence addressed in Appendix C.

3.1.3 Loop Nests

So far we have considered only the innermost loop. Once we have analyzed the
innermost loop, we will examine the loop enclosing it. This section examines issues
relevant to processing multiple loops in a loop nest. Consider the two loops in the

two cases below

doi=... doi= ...
xX=2z ... y=z ...
doj=... do j =
a=b+x ... a=b+x ...
b=a+y ... b=a+y ...
enddo enddo
z=Db ... z=a...
enddo enddo

Assume each named reference is subscripted so that ail RHS references have depen-
dences to the appropriate LHS definitions. In each case we first process the inner loop
on j and discover the cyclic expansion (¢ — j) that includes a and b. We process
the i loop after completion of the j loop. During i loop processing, we consider the
loop-carried dependences on i and loop-independent dependences.

in the example on the left, we find a cycle that includes x, a, b and z. This is
a correct expansion. However, the example on the right has a prcblem. There is no
path from the y reference on the RHS to the a reference on the LHS without following
the loop carried dependence on j. But, on the other hand, if we simply include all
the loop carried dependences on j we will find the cycle that includes a and b. But
we already knew there was a cycle here from our previous processing of the index j.

The solution is to collapse the cyclic expansion, (a — j), to a single composite
assignment. This composite assignment includes all the RES references in the cyclic

expansion as RHS references of the composite and includes all the LHS references in




between the composite assignment and other assignments remain but those within
the composite are suppressed. So in the graph for finding SCC's for index 1, we can
reach any LHS reference from any RHS reference but this path does not appear to
contain any cycles. While processing the index i, the graph for example above on
the right is as if produced from a program like the one below.
dois= ...

y=2z ...

{a, b} = {a, b, x, ¥y, ...}

z=a ...

enddo

3.2 The Algorithm

Here we present the algorithm for expansion analysis. The top level structure is

/* Locate cyclic (parallel-prefix or serial)

as opposed to acyclic (parallel) references ™/

For each source loop index, index, in post-order
Find all the SCCs with respect to index

Collapse each SC( into a con..osite assignment

/™ Distinguish parallel-prefix from serial references */
For each SC'(', S,
Determine if S is parallel-prefix or serial
Ad.i entry to SC(' table that includes
identifier
index
set of objects
expansion category

Annotate each named reference that is part of S as belonging to S
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/* References that are not cycl'c are parallel */
For each object, obj
For each index, index, in the subspace of obj
If obj is not expanded cyclically over index

Annotate it as parallel

The distinction between serial and parallel-prefix expansions depends on the de-
tection of recurrences. See [11, 9, 22] for more on parallel-prefix computations.

We now address the location of SCCs. The analysis of the SCCs with respect to
a given loop, say i, begins with the graph whose nodes are the program nodes within

the i loop. The edges among these nodes include

e the expression tree edges
e the loop-independent dependence edges
e the loop-carried dependence edges that are carried by the i loop

e the control dependence edges

We then apply an SCC algorithm [16] to this graph, recording all references. RHS
and LHS, that belong to this SCC as part of the same cyclic expansion.

Since each loop is processed once and for a given loop, the algorithm to determine
the SCCs terminates, this algorithr. terminates.

The SCCs algorithm is linear in the size of the graph (V+E). We apply this
algorithm to the body of each loop. Since each element of the program graph is
processed via at most one SCC algorithm for each loop enclosing it, the algorithm is
O(L * N) where L is the maximum loop depth and N is the size of the whole progran:

graph.

3.3 Relaxing the Language Restrictions

The previous discussion focussed on determining expansions for the restricted lan-

guage of do loops and assignments. This section shows how predicates and 1/0 are
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incorporated into expansion analvsis.

3.3.1 Predicates

Here we consider the addition of conditionals (structured if statements). We have
already seen that predicates affect the subspace of objects (see Section 2.3.6). Predi-

cates can also affect expansions by creating cycles. Consider the following example
doi=1, imax
83 if (b.eq. ...) then
do j =1, jmax

s if (a .gt. ...) then

85 b=t(...) +u(...)
s6 : a=y(...) +2z(...)
endif
enddo
endif
enddo

Here the value of a in s4 depends on the assignment to a in s6 via a data de-
pendence. But the value of a in s6 depends on the predicate in s via a control
dependence. These two dependences create a cycle within the j loop. To incorporate
predicates into the expansion analysis, we therefore require control dependence edges
in the graph.

Notice that b is involved in a cycle on i but cannot be part of a cycle on j since

the cycle is broken when the only nodes considered are within the loop on j.

3.3.2 I/O

I/O operations can also be incorporated into the natural expansion analysis. Input
statements act as definitions of objects and output statements act as references. Un-

like definitions via assignment, input statements have no RHS objects. However, they
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may be involved in cycles as in the following example

do i=1, imax
if (a ...) then
read x
endif
a=x ...

enddo

Output statements can not cause cycles.
Notice that expansion analysis uncovers information that would be useful in de-

termining when parallel /O would be effective.

3.4 Phase Integration

The expansion analysis as presented in this chapte appears to be totally independent
of the subspaces algorithm presented in Chapter 2. One might assume that we know
the indices in a subspace before we determine the expansions ovei these indices. How-
ever, this is not necessary. Expansion analysis uncovers references that participate in
cycles over an index, say i. We don’t need to know before expansion analysis that
i is part of a subspace of an object. But if that object is involved in a cycle on i.
we can conclude, as a result of expansion analysis, that i belongs to its subspacc.
Performing expansion analysis before the subspace analysis will enable us to initialize
the subspace calculation (see Section 2.2.3.1) with objects expanded cyclically. Some
of these cases are outside the realm of the subspace propagation.

For example, consider 8 = 8 + 1 in a loop on i. Subspace propagation alone
will never uncover that i is in the subspace of s. However, expansion analysis will
discover the cycle and will determine that i is in the subspace of 8. A cycle across an
index means that the value may vary along that index, and that that index is part
of the subspace. With this in mind, execution order for the subspace compiler is as

shown in Figure 1-4.

As with most interesting compiler work, however, we find that the interaction
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For each index, index, in pre-order
Find the SCCs with respect to index.
Use the SCCs to initialize the subspace algorithm.
Complete the subspace algorithm.
Given the subspaces and the SCCs, determine all the expansion categories.

Figure 3-1: lutegration of Expansion and Subspace Analyses

among phases is complex. A further discussion of this topic is found in Appendix (.

3.5 Summary

This chapter presented the analysis to determine the expansions associated with each
dimension of each object and to isolate distinct expansions. An object may expand
along an axis via serial, parallel-prefix or parallel expansions. An object may expand
differently across each axis. The expansion of some object may bound with the
expansion of some other object. A loop that includes several definitions may be
transformed into several distinct expansions.

This approach removes as much as possible from each loop, optimizes the loop
type supporting each expansion and maximizes potential concurrercv among distinct

expansions.

This chapter aiso addressed the relationship between subspace analysis and ¢x-
pansion analysis and identified some issues that complicate that relationship.

The approach presented here has the same flavor as parallelization algorithms,
but is different in several ways. Its focus is on expansions of objects rather than on
parallelization of loops. It is performed in the context of natural subspace analysis
which alters some of the considerations. Its goal is not statement level but expression

level analysis and, in fact, expression level optimization.
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Chapter 4

Intermediates

We have shown algorithms for determining subspaces and expansions for references
to named objects in the program. This chapter discusses issues relating to these
attributes for unnamed objects, i.e., the results of intermediate arithmetic expressions.

This finer-grained analysis enables transformations at the expression level. kx-
pressions will be computed in their appropriate subspace not necessarily the subspace
of their LHS. This minimizes the computation and communication required. Expres-
sions will be computed as part of appropriate expansions, not necessarily the expan-
sions of their LHS. This minimizes the computations within cycles, moving some of
these computations to parallel computations.

We show here how the natural subspace of an intermediate is computed locally
from the natural subspace of its operands (Section 4.1), assuming that global subspace
analysis has already Jetermined the natural subspace of each named reference. The
natural subspace of an operand may be different from the natural subspace of an
operation it participates in. This results in an inconsistency which must be reconciled
(Section 4.2).

We show here that the expansions of an intermediate are determined locally from
the expansions of its operands (Section 4.4) assuming that global expansion analysis
has already determined the assignments that participate in each expansion. For
example, in the assignment a(i) = a(i-1) + (b(i) * 8),the +is part of the cyclic

expansion (a — i) but the #* is not.
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We begin by assuming a language of assignments and do leops. but predicates in
if statements are incorporated smoothly (Section 4.5). The expansions and subspaces
of intermediates are used to fragment expressions (Section 4.6) so that the fragments

can later be executed in the appropriate subspaces and expansions.

4.1 Natural Subspace of Intermediates

Recall that the subspace of an LHS reference is determined by the subspace of the
RHS references used to compute it. For example, if the subspace of x(i) is {/} and

the subspace of y(j) is {j} then the subspace of a in
a = x(i) * y(j)
is {i.J} with reference mapping < [i].[j] >. In the same way the subspace of an

intermediate is determined by the subspace of the operands (children) that compute
it. Therefore the subspace of the result of the * in

a=b(i, j, k) + x(i) = y(j)
is also {7, j}. Since there is no distinction between source and added dimensions for
intermediates, we simply write the reference mapping as < ¢, >. The subspace of the
+ is the union of the subspaces of its operands. one of which is itself an intermediate.
The computation of subspaces for intermediates follows the global natural subspace
analysis. The local analysis is simply a bottom-up walk of cach expression tree which
sets the subspace of each intermediate to be the union of the subspaces of its operands.

We could have chosen to incorporate the subspace determination for intermediates
directly into the global natural subspace algorithm. In such an integrated algorithm.
when an index becomes part of the subspace of an operand, it propagates to the
subspace of the operation that uses that operand. Instead of propagating directly to
the LHS, it propagates through the expression tree step by step ultimately reaching
the LHS. However, there are two reasons we choose to separate the local natural
subspace analysis for intermediates from the global natural subspace analysis for

named objects.
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o To keep the compiler design clean especially in the presence of expression re-
ordering optimizations.
In chapter 6, we present some optimizations involving expression reordering.
In performing these optimizations, we compute the subspaces of the intermedi-
ates for a variety of orderings. Reordering does not impact the propagation of
subspaces from an RHS to an LHS but may invalidate work done to determine

subspaces for intermediates.

o 'To minimize the cost of the global natural subspace computation.

Incorporating each index of each operand of an operation individually into the
subspace of the operation can be more expensive than performing the union
“of sets of indices of its operands only once. This improves the design even if

expression reordering were not an issue.

4.2 Operational Subspace of Intermediates

Operations occur between two operands of the same subspace. Corresponding cle-
ments are combined to produce a result. In the expression tree in Figure 4-1, consider
the operation a(i) + b(j) in loops on i and j. Assume that the natural subspace of
a(i) is {i} and the natural subspace of b(j) is {j} then the + operation occurs in its
natural subspace {i,j}. Therefore a and b must both be made available in subspace

{i.j} before the operation can be performed.

Definition 8 The operational subspace of an operand is the subspace of the operation

in which it is involved.

Since th » subspace of an operation is the union of the subspaces of its operands.
the natural subspace of an object is always a subset of its operational subspace.

The expansion from natural subspace to operational subspace is always simply a
replication of existing values and can be performed via a parallel-prefix operation in
logarithmic time. Note that this is distinct from an expansion across natural subspace

whose expansion categury depends on the computation involved.
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Figure 4-1: Operational Subspace

The explicit expansion to operational subspace applies to all machines that exploit
spatial (not just hierarchical) memory locality including distributed memory systems
with both separate address spaces and shared address spaces (NUMA machines). The
expansion to onerational subspace is always performed on NUMA systems whether
or not it is explicitly represented in the compiler. One advantage to explicitly repre-
senting this as an expansion is so that it can benefit from compiler optimization. In
addition to the obvious optimizations, it turns out that the expansion may be redun-
dant even when the specifics of the communications involved are slightly different.
This optimization is addressed in chapter 6.

At first glance, expansions to operational subspace would not secem to apply 1o
uniform memory access machines in which all processors can access all memory lo-
cations with equal cost (UMA machines). But even on UMA machines, expansions
to operational subspace might be beneficial in reducing contention. We will simply
assume expansion to operational subspace applies to some, but not all targets. In
this thesis, we will not look at the benefit of performing it on some but not all uses
within a target.

This discussion only applies to expansions to operationa! subspace. Expansions

to natural subspace apply to all these machines.
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Figure 4-2: Implicitly Distributed Objects
4.3 Implicitly Distributed Objects

Some expressions can be computed locally (without communication cost) in any space
that is a superset of the expression’s natural space. Although the natural subspace
of a constant is in the empty subspace, it is available in any subspace without com-
munication cost. In the expression a(i, j) + 1, 1 <oes not require communication
to expand to its operational subspace {i,j}. Similarly, in the expression a(i, j) +
i, the term 1 is available in any subspace containing i, without communication. In

particular, it is available in {7, j}, its operational space.

Definition 7 Any object whose operational subspace is larger than its natural sub-
space but is available without communication in that larger subspace is implicitly

distributed since it need not be distributed explicitly.

Not just leaves of expression trees siich as constants and indices, but interme-

diates that are functions of constants and indices, e.g., i + j*2, may be implicitly
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distributed. An intermediate is implicitly distributed if all its operands are implicitly
distributed.

Consider Figure 1-2. Expression tree 4-2:a shows a normal expression with three
operands, a(i), b(j) and c(k) in subspaces {i}, {j} and {,} respectively. Here the
usual rules apply. The mmltiplication is in subspace {j,k}. The sum is in {i, ).k}
and all operands require explicit expansion to their operational subspace.

The next two expression trees are both for the expression:

a(i) + (j * k)

The shapes of these expression trees and the subspaces for the leaves are identical
to those in expression tree 4-2:a. However, the multiplication can now be implicitly
distributed.

To minimize communication, we perform the multiply and the sum in {i,j, k} as
shown in expression tree 4-2:b. No communication is required.

To process implicit distribution in the compiler, during the bottom-up walk of the
expression trees that determines subspaces of intermediates, we keep track of nodes
that are implicitly distributed, i. e., those whose children are implicitly distributed,
and delay the determination of thei1 subspaces. In Figure 4-2:b, j and k are implicitly
distributed. So the * is determined to be implicitly distributed. The + is not implicitly
distributed because of its left operand.

In a subsequent top-down walk, at a node that is not implicitly distributed but
that has at least one child that is, the subspace of each implicitly distributed child is
determined to be the subspace of its parent. The * in Figure 4-2:b is therefore deter-
mined to be in subspace {i, j, k}. Once the subspace of an implicitly distributed node
is determined, this subspace is propagated down its entire subtree. This propagates
subspace {i, j, k} to operands j and k.

Unfortunately, this approach performs more operations (in this case, more multi-
plies by a factor of the extent of the i loop) than is really required. On most current
systems this is not as critical as minimizing communication. But if this is a critical
issue for the target system, we could determine the subspace for each operation in

the normal way so that no operation is performed in a subspace that is larger than
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necessary. This approach is shown in expression tree 4-2:c. Notice that the result of
the multiply must be explicitly distributed to its operational space in this case. But
the leaves of the expression tree can still be implicitly distributed. This still saves an
expansion of j across the k axis and an expansion of k across the j axis but minimizes

computation at the cost of some communication.

4.4 Expansions of Intermediates

Each LIS and RHS reference is associated with an expansion for each index in its
subspace. Global expausion analysis determines these expansions for each named
reference in each assignment.

Suppose, for example, the LHS of some assignment is in a cyclic expansion across
index i, and that some but not all of the RHS references in the assignment are part of
that cyclic expansion. In such a case, some but not all of the intermediate operations
may be part of the cyclic expansion. Intermediate operations that are not part of a
cyclic expansion along some axis can be removed from the cyclic expansion and can
be computed in parallel along that axis.

We will now show how the expansions of an intermediate are determined from the
expansions of its operands.

A cyclic expansion identified by global expansion analysis must include a reference

on both the RHS and the LHS. Consider the following example.

do i =1, imax
a=0
do j = 1, jmax
a=a+c(i, j) *d(i, j)
enddo

enddo

Here global expansion analysis determines that the LHS reference is part of two
expansions (a — j) and (a — i). The first is cyclic. The second is parallel. Both

references to a in the inner loop are part of the cyclic expansion, (a — j). The other

95



references are not part of any cyclic expansion.

An intermediate is part of a cyclic expansion if and only if any of its children are.

This means that the + operation is part of the cyclic expansion (¢ — j). All
other axes and other references are separable and parallel. In particular, the * can be
computed in parallel across both i and j. The loops that result from restructuring
this code are

do-parallel i = 1, imax

do-parallel j = 1, jmax

temp(i, j) = c(i, j) * d(@i, j)
enddo
enddo
do-parallel i = 1, imax
a(i,0) = 0
enddo

do-parallel i = 1, imax
do-parallel-prefix j = 1, jmax
a(i, j) = a(i-1, j) + temp(i, j)
enddo

enddo

Local propagation of expansions for intermediates is not incorporated into the
global expansion propagation algorithm in order to keep the compiler design clean in

the presence of expression reordering optimizations.

4.5 Incorporating Predicates

Recall that predicates impact the subspace of named objects, as addressed in Sec-
tion 2.3.6. Predicates impact the expansions of named objects as addressed in Sec-
tion 3.3.1. These discussions of predicates were at the assignment level. At that level
we indicated that a predicate was processed as part of the RHS of an assignment.

This section addresses how the impact of predicates actually shows up at the level of
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individual operations within the statement.

Here, since we will distinguish among distinct operations on the RHS, we need
a more detailed discussion of exactly how predicates are incorporated. A predicate
is treated as a binary operation on a boolean and an arbitrary object. Where the
boolean is true the result is the value of the object. Where the boolean is false
the result is a reserved value, NIX. NIX combined in any way with any value returns
NIX.

Predicates in this model behave much like where statements in Fortran 90, like
masks in intrinsics, also in Fortran 90, or like context bits in SIMD systems. This
handling of predicates facilitates their use in these systems but we use them also for
MIMD and VLIW targets as well.

Chapter 6 addresses the reordering of expressions in order to optimize with respect
to subspace and expansion category. In the absence of reordering optimizations, we
will simply apply the predicate at the point of the assignment, that is, at the root of
the expression tree.

Consider

if (a(i) .gt. b(j)) then
x(i, j, k) = c(d, j, k) +d(3d, j)

endif

This code will be converted to

temp(i, j) = a(i) .gt. b(j)
x(i, j, k) = temp(i, j, k) ? (c(i, j, k) +d(i, j)) : NIX

endif

In this formulation, the ? operator is simply an intermediate that takes two
operands, a boolean object and an arithmetic object (the NIX is assumed). The
previous discussion of subspaces, expansions, operational subspaces and implicit dis-

tribution apply to all operators including this one.
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4.6 Fragmentation

Fragmentation breaks up the expression trees when the expression is inconsistent with
respect to either subspaces or expansions. Prior to fragmentation, the named refer-
ences and the intermediates in each assignment hzve been annotated with subspaces
and expansions.

The goal of fragmentation is to break expression trees into smaller expression trees

with the following properties.

e Al]l assignments are either normal assignments or expansions to operational
subspace (assignments with a RHS that is a single named reference, replicated

across one or more axes).

e All normal assignments are consistent with respect to subspaces.

An assignment is consistent with respect Lo subspaces if all the named references
and all the intermediates have the same subspace. This subspace is called the

subspace of the assignment.

o All normal assignments are consistent with respect to expansions.

An assignment is consistent with respect to expansions if all the intermediates
are members of the same expansions. These are called the erpansions of the

assignment.

These consistency goals are not always achievable. (See the discussion of subspaces
of dependences in Appendix C.)
Fragmentation due to inconsistent subspaces and fragmentation due to inconsis-

tent expansions are addressed in separate serctions below.

4.6.1 Inconsistent Subspaces

Fragmentation will break off a subtree of an expression tree where the subspaces
are inconsistent. This allows subexpressions to be performed in subspaces that are

smaller than the subspace of the LHS. Consider
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x(i) = y(i) - s
If the subspaces of the leaves are the obvious ones, the subspace of the - is {i}.
Since the subspace of the s in this statement is {}, this statement is inconsistent with

respect to subspaces. Fragmentation will generate

temp-i(i) = spread(s across i) ; expand from {} to {}

and

x(i) = y(i) - temp-i(i) ; in {1} space
Now consider

a(i, j) = b(i, j) + (c(i) * d(i))

If the subspaces of the leaves are the obvious ones, the subspace of the + is {7, j}
and the subspace of the * is {i}. The * is a child of the + in the expression tree.
We break the expression tree at the point of inconsistency, and add the expansion
to operational space. Unless the object in the smaller subspace is a leaf, it must be
named. An assignment is added to name it. If the object in the smaller subspace
is a leaf, the name given it by the user is adequate. In this example, fragmentation

creates
temp-i(i) = c(i) * d(i) ; in subspace {7}

temp-ij(i,j) = spread(temp-i across j) ;expand from {i} to {,;}

and

a(i, j) = b(i, j) + temp-ij(i,j) ; in subspace {1, j}

4.6.2 Inconsistent Expansions

Another reason to break up an existing expression tree is inconsistent expansions.
This allows subexpressions to be computed in more effective expansions than the

expansions of the LHS. Consider

a(i) = a(i-1) + b(i)
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Here, although the object b is not part of the expansion (a — i), the + is part of
that expansion. This statement is consistent with respect to expansions. however,

consider
a(i) = a(i-1) + (b(i) * c(i))

Here both operations are in subspace {i} but the * operation is not part of any cyclic
expansion whereas the + is part of (a — ). We replace this statement with the

following two statements.
temp(i) = b(i) * c(i) ; expanded in parallel across i
and

a(i) = a(i-1) + temp(i) ; expanded cyclically across i

4.6.3 A Distinction Between these Inconsistencies

Notice that the two types of consistency described abo.e are not totally analogous.

Consider again two examples from above.

doi=1, imax do 1= 1, imax
a(i) = a(i-1) + b(d) x(i) = y(i) - s
enddo enddo

In the example on the right the two leaves of the RHS expression are in distinct
subspaces. In the example on the left the two leaves of the RHS expression are in
distinct expansions. The two situations seem analogous. However, fragmentation
behaves rlightly differently in the two cases. The example on the right is inconsistent
with respect to subspaces but the example on the left is not inconsistent with respect
to expansions.

Subspace consistency requires that all named references and intermediates are in
the same subspace so for the example on the right, we will fragment the reference to s
and expand it to its operational space. However, expansion consistency requires only
that the intermediates are in the same expansions so the left example is consistent

and will not be fragmented.
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4.7 Algorithm for Processing Intermediates

Each named reference, LHS and RHS, is associated with a reference mapping and a
set of expansions it participates in.

A bottom-up walk propagates subspaces, expansions and an attribute indicating
whether it is implicitly distributed. This walk computes subspaces, expansions and
implicit distribution for the intermediates. A top-down walk propagates subspaces
for implicit distributions.

In a subsequent walk, expressions are fragmented where inconsistencies (either
subspace or expansion) are located. Expansions to operational subspace are gener-
ated if the inconsistency was with respect to subspaces. Names are generated where
necessary. These generated names are associated with nodes in the expression tree.
Expansions and subspaces for these names are determined, as usual, from their chil-
dren in the expression tree.

Regardless of the reason for fragmentation, when an expression is fragmented, the

data structures must be updated to reflect

o the removal of the initial assignment
e the addition of the new assignments

e the addition of any internally generated name and the associated information

about this name

4.8 Summary

This chapter presented the analysis of assignments required to determine the subspace
and expansions of intermediates given the subspaces and expansions of the references
to user-declared objects.

It also addresses the fragmentation of the assignments to create a set of fragments
where each fragment consists of operations that are all within the same subspace

and the same expansions. This optimizes program execution by minimizing com-

101



putation and communication and by maximizing parallelism. It also allows for a

finer-granularity of downstream analyses.

102



Chapter 5

Restructure

Previous chapters describe how we analyze the program. This chapter addresses the
mechanics of using the resulting information to generate a new program.

On entry to this phase, subspace and the expansion information is associated with
every object, that is each named reference, and each reference to an intermediate
computation. We use this information to transform the input program into a new
program such that each operation is within a set of loops consistent with its natural
subspace and its natural expansions.

This chapter includes a description of the information used by the restructuring
phase (Section 5.1), the form of the generated code (Section 5.2), and the process of

using the information to generate the new program (Section 5.3).

5.1 Subspace Information

This section describes the information available to the restructuring phase. This
information is collected by previous phases so first a quick summary of the previous

phases.
e The natural subspace of each named reference is determined (see Chapter 2).

e For each index in the natural subspace of a named reference its expansion is

determined (see Chapter 3).
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e Finally, the subspaccs and the expansions for intermediates are determined and
the expressions are fragmented based on inconsistent subspaces and inconsistent

expansions (see Chapter 4).

The information available froin these analyses follows. Figure 5-1 shows an exam-

ple of these structures.

e Objects: a set of named objects and for each such object:

— Assignment: the assignment that defines it, that is, its static single as-

signment

-~ Expansions: the expansion associated with each index in the subspace of

this object
e Expansions: a set of expansions and for each expansion:

— Index: the loop index

— Rep: the representative object for this expansion. This object is one of

the objects defined by this expansion.
- Xcat: the expansion category, parallel, parallel-prefix or serial.

— Objects: the set of objects defined by the expansion. Given SSA form,
each object implies one assignment. If the expansion category is parallel
the representative object will be the only object in the set. Parallel-prefix

and serial expansions may include multiple objects.
Access to the expansions is by index.
e Assignments: A set of assignments and for each assignment:

— Map: each named and unnamed reference is associated with a reference
mapping which indicates the subspace.

— Expansions: each named and unnamed reference is associated with a set
of expansions of which it is part. There will be one expansion for each

index in its subspace.
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Figure 5-1: Subspace Informati-n

5.2 Subspace Normal Form

The restructuring phase will generate subspace normal form. This section lists the

characteristics of Subspace Normal Form.

e Subspace normal form is a partial ordering of fragments where each fragment is
a loop or a single operation. The body of a loop fragment is a partial ordering

of fragments.

e The ordering of loops in a generated loop nest is consistent with the ordering
of loops in the source.! However, in any given generated loop nest, some source
loops may be missing and each source loop may appear multiple times in the
generated code. For example, a source loop nest with nesting of indices: (i (j

(k)))? might generate an intermediate form with all the following nestings (i

1Reordering of loops is target-specific and so is not part of our analysis. If 1 _ordering is appro-
priate it will be performed after the subspace transformations presented in this tnesis.

2This notation indicates the obvious nest of three loops. The notation (x (i j) y z) would
indicate three top level loops, x, y and £ where loop x has two consecutive loops, i and j, nested

105



(GN,G K),GE G )i (G)),G &) (G),and (i i i). It could not,

however, generate (j (i)).

e Each loop is parallel, parallel-prefix or serial. Parallel loops may include multi-
ple operations but only a single assignment. Parallel-prefix and serial loops may
include multiple assignments. The operations within a given parallel-prefix or

serial loop are part of the same cycle across the associated axis.

e All expansions to operational subspace are explicit.
The goal® is to ensure that

o each operation is within a set of loops consistent with its natural subspace and

o the expansion category of each loop is consistent with the expansion category

of the operations within it.

5.3 Restructuring

Before presenting the algorithm, we introduce some concepts and terminology.

The restructuring algorithm is driven off of the inder tree, a structure that indi-
cates the nesting of loops. Each node in the index tree corresponds to a loop in the
program. In the source, these loops were either do loops with user specified indices
or alternate looping constructs with compiler generated indices (see Section 2.3.5).
The node corresponding to the loop on index j is a child of the node corresponding
to the loop on index i in the index tree if and only if the loop on j is nested inside
the loop on i in the source. Consider the following source loop structure.

do i1l

do j1
enddo

do j2

within it.
3Appendix C discusses why current system is slightly conservative with respect to this goal.

106



do ki
enddo
enddo
enddo
do i2
enddo

The source structure above generates the following index tree

(i1 (31 j2 (k) ) ) (i2)
The processing is performed via a post-order walk of the index tree. For the source
above, post-order is

j1 k j2 it i2

5.3.1 The Algorithm

This section introduces the restructuring algorithm.

We begin with a pool of assignments. This pool is simply an unordered set. We
will be removing assignments from the pool and wrapping them in loops whose indices
belong to the subspace of the assignment. For each index, the loop type (parallel,
parallel-prefix or serial) corresponds to the expansion category of the assignment
across that index. Parallel-prefix and serial loops may include more than one assign-
ment in their body since they are formed by SCCs in the dependence graph and these
components may involve more than one assignment. The process of wrapping a new
loop around one or more fragments is called augmenting the fragments. Augmented
fragments are returned to the pool. At any time during this process, code may be
augmented by some subset (including none or all) of its required loops. Such code is
referred to as a partial fragment. Code enclosed in all its required loops may also be
called a completed fragment. Processing for each index completes before processing
of the next begins.

If the expansion category for the current expansion across index i is parallel

then the relevant partial fragment is removed from the pool of partial fragments,
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For each index, ix, in post-order of the index tree nodes
For each expansion, exp, across ix
If exp is a cyclic expansion then
PFS = the set of all partial fragments participating in exp
Remove all partial fragments in PFS from the pool
new-PF = augmented (partially ordered (PFS))
Throw new-PF back into the pool
Else
PF = the partial fragment participating in exp
Remove PF from the pool
new-PF = augmented (PF)
Throw new-PF back into the poo!
Endif
Next exp
Next ix
completed-PFS = the set of all fragments remaining in the pool
Remove completed-PFS from the pool
final = partially ordered (completed-PFS)
Throw final back into the pool

Figure 5-2: Restructuring Algorithm

augmented by enclosing it in a parallel loop on i and returned to the pool. If the
expansion category is either parallel-prefix or serial, then all the partial fragments
involved in the SCC are removed from the pool, joined in a partially ordered graph
indicating the ordering as required by the dependences among them, augmented by
a parallel-prefix or serial loop on i and returned to the pool. Figure 5-2 presents this
algorithm.

The issue of joining partial fragments into a partially ordered graph is addressed

in Section 5.3.3. But first we will demonstrate the process via an example.

5.3.2 An Example

Upon entry to the restructuring phase we have completed subspace analysis, expan-
sion analysis and fragmentation. There is a pool of assignment statements each of
which is consistent with respect to both subspaces and expansions. This pool might

contain the following:
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1. a(i,j) = tempi(i,j) + temp3(i,j)
a is in subspace {¢,j}
(a — 1) is parallel
(a — j) is parallel

2. temp = 8 * 2

temp is in subspace {}

3. temp1(i,j) = (replicate temp across {i, j})
temp1 is in subspace {z,j5}
(templ — 1) is parallel-prefix .
(templ — j) is parallel-prefix

4. temp2(i) = t(i) + parai(i)
temp2 is in subspace {i}

(temp2 — 1) is parallel

5. temp3(i,j) = (replicate temp2(i) across {j})
temp3 is in subspace {,7}
(temp3 — 1) is parallel
(temp3 — j) is parallel-prefix

#2 is a completed fragment. If j is the inner loop then after restructuring com-

pletes processing of j, the pool of partial fragments is:

1. do-parallel j
a(i,j) = temp1(i,j) + temp3(i,j)
enddo j

2. temp = 5 * 2

3. do-parallel-prefix j
tempi(i,j) = (replicate temp across {i, j})

enddo 3
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4. temp2(i) = t(i) + parami(i)

5. do-parallel-prefix j
temp3(i,j) = (replicate temp2(i) across {j})
enddo j

No additional partial fragments become complete after processing of index j. After

processing index i, the pool of partial fragments is:

1. do-parallel i
do-parallel j
a(i,j) = tempi(i,j) + temp3(i,j)
enddo j

enddo i
2. temp = 8 * 2

3. do-parallel-prefix i
do-parallel-prefix j
temp1(i,j) = (replicate temp across {i j})
enddo j

enddo i

4. do-parallel-prefix i
temp2(i) = t(i) + parami(i)

enddo i

5. do-parallel-prefix i
do-parallel-prefix j
temp3(i,j) = (replicate temp2(i) across {j})
enddo j

enddo i

These are all complete fragments with the following partial ordering.
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5.3.3 Ordering Fragments

When augmenting by a parallel loop, the body is a single partial fragment. However,
when augmenting by a parallel-prefix or serial loop, the body is based on a SCC and
therefore may well contain several distinct partial fragments. This section addresses
the question of how to order these partial fragments within the new loop.

In particular, we must show that there always exists a legitimate ordering. Source

order is not always a possibility. Consider the source

do i
do j
a=.
b= ...
c= ...
d= ...
enddo

enddo

Suppose we are about to create a serial loop on i which we have determined includes

the following two distinct serial loops on j.

do-serial j do-serial j
a= ... b= ...
d= ... c= ...

enddo enddo

We now want to include these two partial fragments in a single cycle within a loop

in i. There are two possible total orderings of these two partial fragments. Neither
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corresponds to source ordering. We must prove that there always is a legitimate
ordering.

Notice that it is not a goal of the subspace phase to create a total ordering. The
subspace level of ahstraction is supposed to be target- and configuration-independent.
If we choose a specific total order without taking the target and the configuration into
account, we may make bad decisions for some target or configuration. Therefore our
goal is to generate the partial ordering that captures the semantic requirements.

To show that, during the augmentation process, we can always find a legitiinate

ordering between two statements, S1 and 52, we must show three things.

1. In working bottom up on the index tree, these two statements begin as two
separate partial fragments each of which is simply a statement with no loops. If
these partial fragments are not part of the same SCC with respect to any loop,
then they need never be ordered within a loop and are simply ordered at the
outermost level. We need to show that, if this is the case, a partial ordering is

always possible.

2. However, if at some point during the processing of an index, i, an SCC includes
both statements, the two partial fragments containing these statements become
part of the same (serial or parallel-prefix) loop. We need to show that when

this is the case, a partial ordering is always possible.

3. An ordering set between partial fragments when they first hecome part of the
same partial fragment, fixes that ordering for all subsequent augmentations. So
we must show that this partial ordering remains acceptable through subsequent

augmentations.
More formally, we need to prove the following theorem.

Theorem 1 The restructuring algorithm can always find a legitimate partial order-

ing of partial fragments.

‘The theorem follows from the following lemmas.
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Lemma 1 There is a path in the dependence graph from any statement within a

partial fragment to any other statement within the same partial fragment.

This lemma is trivially true for a partial fragment that consists of a single state-
ment with no loops. We show that if it is true for partial fragments at some point in
the restructuring process, it remains true for each new partial fragment created by
augmenting existing partial fragments with an additional loop.

Each time a new partial fragment is created there are two possibilities.

o It is a parallel fragment.

In this case we have created a new partial fragment by added a loop around
a single existing partial fragment. If the lemma held for the existing partial

fragment, it holds for the new one.

e It is a cyclic fragment.

In this case the new partial fragment may combine several existing partial frag-
ments. But these partial fragments were determined to be within this single
cyclic fragment because they were part of an SCC in the dependence graph.
So there is also a path between any two partial fragments within this cyclic
fragment. We assume the lemma was true within each of these exi-ting partial
fragments. So there is a path from any statement to any other statement within

the new fragment.

Lemma 2 If two fragments are not combined into any common loop during restruc-

turing, there is always a semantically valid partial ordering between them.

We will show this by contradiction. Considcr two fragments f1 and f2. Of the
four possible partial ordering requirements between them, the only illegal one requires
both f1 < f2 and f2 < f2.

To show that this case cannot arise, we assume it does and show a contradiction.

f1 < f2 impliesthat there is a path in the dependence graph from some statement,

St1-4a1, in the fragment f1, to some statement, Sy2-42, in the fragment f2. Likewise
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f2 < f1 implies that there is also a path from some statement, Sy;_,1, in the fragment
f2, to some statement, Sy;_,3, in the fragment f1. But lemma 1 tells us that there
is also a path from Sy;_,3 to Syi_,1 and from Sy;_,2 to Syz2-,. These four partial
paths form a dependence cycle. But a cycle among these four nodes would result in

a cyclic expansion, contradicting the premise.

Lemma 3 When two partial fragments are combined to become part of a common
loop during restructuring, a semantically valid partial ordering within that loop can

always be found.

First consider their ordering within a single execution of the loop being added. We
only need to consider loop-independent dependences. Since there can be no cycles in
this dependence graph (by an argument identical to that presented for lemma 2), the
graph is a directed acyclic graph (DAG). This DAG represents a semantically valid
partial ordering for code within a single iteration.

Now consider the ordering across distinct iterations. These will be properly or-
dered if the iterations are executed in order regardless of the order of the statements

within the iteration.

Lemma 4 If the bottom-up restructuring algorithm creates a partial ordering be-
tween two partial fragments when they are combined to become part of a common
loop, this partial ordering remains semantically valid as this partial fragment is aug-

mented by subsequent loops.

There is a DAG, d1, of loop-independent dependences used to create the partial
ordering with respect to the inner loop. There is another DAG, d2, used for the outer
loop. There are two possibilities.

o dl =d2

In this case the partial orderings are identical and the lemma holds.

e dl Cd2
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In this case assume statements sl and s2 have some partial ordering with respect
to d2 that is inconsistent with their ordering when dl is considered. Without

loss of generality assume this ordering requirement with respect to d2 is sl > s2.

This implies that there is a path s1 > s3 > s2 where s3 is in d2 but not in
dl. This can not be the case. When the inner loop containing sl and s2 was
created, it would have contained s3 since if sl and s2 were in an SCC then
s3 would have been included in the same SCC. This contradiction proves the

lemma.

Now returning to our theorem, consider two statements S1 and S2. There are

two possibilities:

o The two share no common loops in the generated code, in which case lemma 2

applies and a partial order can be found.

¢ They share a common loop. In this case, during restructuring, at some stage
they will be merged into a single loop. At this stage, an appropriate partial
ordering can be found according to lemma 3. If this is the case, the partial

order for that loop will be adequate for later loops according to lemma 4.

This completes the proof of theorem 1.

5.4 Summary

Previous phases annotate the named references and the intermediate operations with
subspace and expansion information. The restructuring phase, described in this chap-
ter, uses these annotations to create a new program such that each operation is within
a set of loops consistent with its natural subspace and its natural expansions. This

chapter described the mechanics of this process.
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Chapter 6
Optimization

This chapter discusses a variety of optimizations enabled by the subspace abstraction.
On one hand, the subspace abstraction is distinct from scalar code. On the other
hand it is also distinct from target-specific code that might include, for example,
details of code and data layout. It therefore provides a distinct opportunity. Some
of the optimizations presented here are simply not available at other levels. Other
optimizations use existing techniques but get different (better) results because they
are applied at this level.

Some of the optimizations presented here rely on the observation that given an
expression tree, several distinct variants of that expression tree may compute the same
result. Some of these variants may be more costly than others. In particular, since the
subspace of an intermediate is determined by its operands, expression reordering can
alter the amount of computation performed. Since the expansions of an intermediate
are determined by the expansions of its operands, reordering can alter the critical
path length in cyclic expansions. So uncovering the variants and choosing intelligently
among them can have important ramifications for efficiency.

The analyses addressed in previous chapters have all been architecture- and configuration-
independent. ! Within this chapter identifying distinct ways of representing a compu-

tation is target- and configuration-independent but choosing among these alternatives

with a few exceptions including expansions to operational subspace and implicit distributions
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involves target-specific costs related to the memory system, the communication sys-
tem, the extent of parallelism the target can exploit, etc.

The optimizations presented here are performed after global natural subspace
determination and expansion analysis since the optimizations rely on the results of
these analyses. These optimizations may reorder expression trees, so they must occur
prior to determining the subspace and expansions for intermediates which depend on
fixed expression trees.

The optimizations presented here include the following:

e redundant expansion elimination (REF)

REE eliminates expansions to operational subspace that are redundant. This
optimization catches redundant expansions not noticed as redundant by other
compilers. It replaces a replication by a reference to a previously replicated
value and possibly a shift (Section 6.1).

e generalized common subexpression elimination (GCSE)

We view intermediate objects as in the same class as user named objects. GCSE
(Section 6.2) is one optimization that arises from a reexamination of classical

approaches in this new light.

e a number of optimizations performed via expression reordering including:

— minimizing subspaces of intermediates
— minimizing operations within cyclic expansions
— maximizing potential REEs

— maximizing potential GCSEs

Since fixing the ordering of the expression tree fixes subspaces, expansions,
REEs and GCSEs, all of the optimizations must be addressed together (Sec-
tion 6.3). Section 6.4 discusses how predicate processing is integrated with

expression reordering.
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6.1 Redundant Expansion Elimination

Expansions to operational space are performed on NUMA systems whether or not they
are explicitly represented in the compiler. One advantage of explicitly representing
them is to enable optimizations on them. Existing compilers may represent these
expansions at the level of specific processor addresses. This allows them to be found
redundant if the specifics are identical.

Assume the code is within loops i, j, k and m in the following examples.

= x(m,i,j,k) * v(i,j,k)
"'Y("i:jpk) * v(iojsk)
+z(m,i,j,k) * v(i,j,k)

Assume x, y and z are all in subspace {m, i, j,k} and that v is in subspace {i, j, k}.
Assume the obvious layout, with x, y and z aligned. The specific communication
to expand v to its operational subspace for each of the three multiplications will be
exposed after subspace analysis and after layout analysis. Two of the three expansions
can be eliminated as redundant by existing technijues after specific communication
operations are exposed. However, consider the trivial modification to the code above.
This example below is a simplification of an assignment in APPLU from the NAS

parallel benchmarks. This benchmark is a lower/upper triangular solver.

= x(m,i,j,k) * v(i+1,j,k)

+y(m,i,j,k) * v(i,j+1,k)

+z(m,i,j,k) * v(i,j,k+1)
With the same layout of these objects, where the objects x, y and z align, the actual
communication to expand v for each of these operations will differ. So the expansion
cannot be detected as redundant by existing compilers at the level of explicit com-
munication based on a specific layout. Nor can it be detected as redundant before
these compilers make the communication explicit. The expansion is not even explicit
at that point. However, we represent expansions to operationa! space at the inter-
mediate level of natural and operational subspaces. At this level the communication,

expressed as an abstract expansion of v across the axis m, is identical for all three
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multiplications and is therefore redundant for two of them. At the subspace level,
we expand v across m once. At the location level, we simply adjust the alignment of
this expanded object by one (perform a shift) for each of the subsequent operations.
Notice that the same argument would apply if the indices of v were identical but
either the subscripts or the layout of z, y and x were distinct. Although this example
is within a single expression and might be handled by statement-level communica-
tion optimization, this type of redundancy is more common between than within
statements.

The elimination of redundant expansions of an object to its operational space ig-
noring details of indexing and layout is called redundant ezpansion elimination (REE)

Predicates are most likely to be improved by REE. In the subspace abstraction,
predicates expand to the subspace of all the operations they control. This optimiza-

tion will ensure that a predicate s a.tually expanded across each axis at most once.

6.2 Generalized Common Subexpression Elimi-
nation

The result of an intermediate computation is an object in some subspace, but the usual
common subexpression elimination algorithm is unnecessarily restrictive in that there
are many recomputations of already computed elements that it is unable to detect as

redundant.
The problem stems from different treatment of named and unnamed objects. First,

consider the common view of named objects.

sl:x(i) = ... ;in a loop on i

s2:... = x(i) ; in the same loop on i
83:... = x(i-1) ; in the same loop on i
s4:... =x(j) ; in a subsequent loop on j

sl is the first (only) computation of the named object x. s2, s3 and s4 are uses

of previously computed values of the named object x.
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The four equivalent situations for unnamed objects would be:

s5:... = x(i) + y(i+1) ;in a loop on i

s6: ... =x(i) + y(@i+1) ; in the same loop on i
s7:... = x(i-1) + y(i) ; in the same loop on i
s8: ... =x(j) + y(j+1) ; in a subsequent loop on j

s5 is the first computation of the unnamed object formed by the +. 36 is a second
computation of the same unnamed object and will be found to be redundant by the
existing common subexpression elimination (CSE) technique. This technique will
convert the computation in 36 to a use of a previously computed value. However,
classical CSE will not notice that s7 also corresponds to a previously computed value
of an unnamed object. But the distinction between s6 and s7 is exactly the same as
the distinction between s2 and s3. Nor will the classical CSE technique notice that
s8 corresponds to previously computed values in a distinct loop. But the distinction
between s6 and s8 is exactly the distinction between s2 and s4.

The generalization of CSE to handle references to unnamed objects that are not
textually identical and may refer to elements computed on different iterations or in
different loops is called generalized common subezpression elimination (GCSE).

The key is the correct representation of the unnamed object. The CSE approach
represents the unnamed object by its exact textual representation. If it is represented
by the relationships among the indices and in a canonical form, it will recognize x(i)

+ y(i+1), x(i-1) + y(i) and even y(i) + x(i-1) as the same.

6.3 Optimization via Expression Reordering

In the preceding chapters we have shown how to compute the natural subspace and the
natural expansions for intermediates given fixed expression trees. However, for some
expressions, the same result can be computed in several different ways. Expressions
can be reordered, for example, via commutative and associative laws, via factoring
and the distributive law and, for logical expressions, via DeMorgan's law. Some

orderings may be more expensive than others.
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Recall that

e The natural subspace of an intermediate is determined from the subspaces of

its children.

e The expansion categories for an intermediate are determined from the expan-

sions of its children.

e Expansions to operational space depend on the natural subspace of parent and

child.

For these reasons expression reordering can impact subspaces and expansions of

intermediates and the expansions to operational subspace all of which impact the cost
of the expression.

Therefore each of these three aspects of intermediates is amenable to optimizing
via expression reordering as shown below. We will discuss each issue separately before
addressing their integration. The issues are introduced within the context of a single

assignment but, in fact, we will show global consideration and therefore a global

algorithm.

6.3.1 Minimizing Subspaces
Some of the legal expression reorderings will reduce the subspace of the intermediates.
For example, consider the following expression with the apparent subspaces.
a(i) + b(i,j,k) + c(i)
If the expression is evaluated as
(a(i) + b(i,j,k)) + c(i)
both + operations will be in subspace {1, j, k} but by reordering the expression as

(a(i) + c(i)) + b(i,j,k)

the first + is now in subspace {¢}. This reordering results in fewer operations for that +
by a factor of jmaz*kmaz and also less communication since it requires the expansion

of a single value instead of two values across {j, k} to the operational subspace of
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{¢,7,k}. This optimization is similar in flavor to transformations performed in APL
compilers to limit the computations required in the presence of subspace changes [24].
This optimization has the same functionality as loop invariant code motion combined
with loop interchange and loop distribution but it is more direct. It is similar in flavor
to transformations performed in APL compilers to limit the computations required
in the presence of shape changes [24]. This optimization roughly corresponds to

minimizing total work.

6.3.2 Minimizing Expansions

Reordering of expressions can improve performance by minimizing the numbcr of
operations involved in a cyclic expansion or, in other words, reducing the expansion

category of an intermediate. Consider the statement
a(j) = a(j-1) + b(j) + <(j)

where the two references to a are part of a cycle but neither b nor c is part of that

particular cycle. If this is computed as
a(j) = (a(j-1) + b(3)) + c(j)
then both + operations are within the cycle. However, if we reorder it as
a(j) = a(j-1) + (b(j) + c(3))
then the sum of b and ¢ is computable in parallel outside the cycle. Notice that all the
intermediates in both cases are in subspace {j}. None of the computations are loop

invariant. We have simply made the expansion category of one of the intermediates

more efficient. This optimization roughly corresponds to minimizing critical path.

6.3.3 Maximizing the Potential for REE

We have shown above (Section 6.1) that redundant expansions to operational subspace

can be eliminated. However, we can go one step further and reorder the expressions to

minimize the total cost of expansions to operational subspace. Consider the following

two statements.
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s9: co. = a(i) + b(§) + c(k)
s10: ... = a(i) * d(i, j)

Looking at S9 alone, we have no reason to choose any one of the three possible
expression orderings over any other, however, s10 requires the expansion of a across j.
This means that a expanded across j is available for free in statement s9. Therefore,
in 89, adding a(i) and b(j) in {7, ;j} space will be less expensive than the other two
possibilities. Here, we go one step further than eliminating redundant expansions. We
determine an expression ordering that maximizes the impact of eliminating redundant
expansions.

One further complication is that we will allow the subspace of an interinediate to

be larger than (a superset of) the union of the subspaces of its operands. Consider

= a(i) * b(j) + c(k)

= a(i) * y(i, j, k)

= b(j) / z(i, j, k)
Here we can not reorder the first expression because it would alter the semantics, but
we can determine that since a and b are both available in subspace {, j, k} (due to
the last two statements) and since the result is needed in that space, w> can include
the additional possibility of performing a(i) * b(j) in {¢,4,k} even though it is
larger than the union of the natural subspaces of its operands. Although this will
result in more computations, it will eliminate the need to expand an intermediate in

subspace {1,j} across {k} space.

6.3.4 Maximizing the Potential for GCSE

We have shown above (see Section 6.2) that generalized common subexpressions can
be eliminated. However, we can go one step further and reorder the expressions to
minimize the total cost of the computations given that we will be performing GCSE.
Consider the following statements.

= x(i) * y(i,j) + z(i)

= x(i-1) * y(i-1,j)
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The first statement would minimize subspaces by combining x and z first and then
adding in y. However, by reordering differently, the sum of x and y will be found

redundant with the computation in the next statement.

6.3.5 Integration of the Reordering Optimizations

The optimizations above are not disjoint. In fact, they are very tightly intertwined
since once we fix the expression trees, the subspaces, expansions, and the opportuni-
ties for REE and GCSE have been determined.

Although minimizing subspace and minimizing expansions appear to be local anal-
yses within each statement, when we consider REE and GCSE as well, then it is clear
that determining the optimal ordering is a global problem. For systems where expan-
sions to operational space are not performed, REE is not relevant but even on such
systems global analysis is relevant for GCSE.

The goal of the global analysis is to find orderings for all the expression trees that
minimize the global cost with respect to subspaces, expansions, REE and GCSE.

We model this problem as a 0-1 integer programming problem [45].

Below we present a 0-1 integer programming formulation of the example in Sec-

tion 6.3.3:

sl1 co. = a(i) + b(G) + c(k)
s12 ... = a(d) *a@, j)

All the variables mentioned below are 0-1 except for the costs. The equations
below are written as booleans for clarity. The conversion to integers is straightforward.

For example, (and z y z) becomesz + y + 2z = 3. (or a b) becomesa + b >= 1.

6.3.5.1 0-1 Variables
Here we introduce the variables used in the integer programming system. Names arc

given to named objects, intermediate computations and expansions as shown below.

e Variables
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We create a variable, V;, corresponding to each variable. In the example above

we have V,, W, V., and V,.

Notice that at this stage there is no distinction between user variables and

compiler generated variables.

Intermediate computations

We create a variable T; for each intermediate that is used to compute at least
one of the V;’s for at least one of the ways of computing it. Expansions to
operational space are considered intermediate operations for this process. T

will be true if and only if it is computed. In our example above we have:
The intermediate values for s11

Ta4b<ij> ;Given a and b in {i,j} add them

Tasc<in>

Toyccin>

Tus4cciji> ;Given a plus b in {i, 7, k} and c in {7, j, k}, add them
Tacsbeijh>

Tasbecijh>

The intermediate values for s12

Taud<is>

Expansions

We create a variable T,_,; if there is some expression ordering that requires the
expansion of an object (named variable or intermediate) a across axis j to its

operational subspace.

The expansions for sl11
T.—; ;Expand a across {j}
Tk

Toi
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i

Te—i

T-;

Tus—x ;Expand a plus b across {k}
Toc—;

The—i

Tajr

To—ir

Teessi;

We don't need to include any additional expansions for s12 since T,_.; was
already included for sl1

6.3.5.2 Constraint Equations

Given the variables described above, we now show how to express the con-
straints. The least cost program is clearly the program that computes nothing.
These constraints are to ensure that the variables that need to be computed are
computed by at least one legal expression ordering.

Expressions

For each expression, we include an equation for each possible way of computing
it.

512 has exactly one way of computing it

Todcij> = (and Tomsj Taed<sj>)

s11 has three ways of computing it.

Tiat)e<ijk> = (and Tascij> Tav—k Temij Tavtc<ijn>)

Tlacpp<iji> = (8nd Taccik> Tac—j Tomik Tactbcisks)

Taey<iik> = (and Thecji> Toemi Tomjh Tatbeciiun)
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where
Tacij> = (and Toesj Tii Tasocij>)
ch<ik> = (Md Tc-ok Tc—-i T¢+c<ik>)

Ticcjr> = (and Took Teeej Tipecjn>)

¢ Statements

Equations are included to indicate that each variable is computed if it is com-

puted by at least one of its possible evaluations.
Ve = (or Tiatyeciin> Tacppeiji> Tagpe)<iji>)

Vi = Tadcis>

e Program
We include the following constraint:
(and V; V; ...)
This ensures that we account for the cost of all computations in the program
by ensuring that we include computations involved in defining any variable.

Variables that are not modified within the routine are not included in this

constraint.

6.3.5.8 Cost Functions

We have claimed that for the optimizations presented in this chapter, identifying
distinct ways of representing a computation is target and configuration independent
but choosing among these alternatives involves target specific costs. These costs are
enccded in the cost function, C,,, for each computation. For conjunctions, the cost
can be computed directly. For disjunctions, the cost depends on which of the options
is actually chosen. The details of the cost function depend significantly on the target
(and sometimes on the configuration and even the application), but the cost function

does need to reflect the following:

e An operation in {i,} is less expensive than that operation in {1, j, k}.
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o An expansion of an object across i is less expensive than an expansion of that

object across i and j.

e The cost of an operation in space, S, that is parallel along i is less expensive

than the same operation in the same space, S, that is parallel-prefix along i.

e The cost of an operation in space, S, that is parallel-prefix along i is less

expensive than the same operation in the same space, S, that is serial along i.

These costs will be computed within the compiler for input as constants in the

objective function of the 0-1 programming problem given to the integer programming

solver.

The two obvious metrics are total work and critical path. Using total work as
a global cost metric corresponds closely to minimizing subspaces locally. The one
caveat is the global cost of expansions to operational space is not the sum of the local
costs. Using critical path as a global cost metric correspo:ads closely to minimizing
tlie work within cycles. The one caveat is the global additicns to the critical path of
expansions to operational space are not the sum of the local additions.

Notice that the cost of a variable is incurred once no matter how often the result is
used. This implies a fized charge integer programming problem. Each computation,
whether an arithmetic computation or an expansion, is assumed to be computed either
zero times or once. This approach computes the least-cost result assuming redundant

expression elimination on both the expansions and on the arithmetic computations.

6.3.5.4 The Objective function

The objective function (the function to minimize) is

Zb.’*c,'

where b; is the boolean indicating wether or not a computation, E; will be executed
and c; is the cost of executing that computation assuming the cost for computing its

operands has already been accounted for.
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We return to our example. Let’s assume that the costs are identical if we vary the
axis and that the costs are identical if we vary the program variable. We can name
these costs as

Cr41<a> = the cost of Topbcijn>r Tase<iks and Thyecjis

Ca41<a> = the cost of Toappccijnsy Tactbeijk> 8N Toybecijis

Ci—1 = the cost of To_.j, Tk, To—i: Toaky Te—i and T._;

(31 = the cost of Top—ky Tac—; and Tho;

"1~z = the cost of T._._,'k, Ti—ix and Tc_..'j

Caca> = the cost of Tupcij>y Tuccir> and Ticcjn>

Now consider s11 alone. It can be computed in three ways with identical costs:

Cica> + Cat + Ciaa + Clyacay + 2C1y + Cryicas

s12 alone can only be computed in one way with cost:

Ci—1 + Cicas

However,when considered together the cost is not simply the sum of the two individual
costs. In fixed charge integer programming, the cost of a computation is assessed once
even if it is used multiple times. In our example, the cost of C,_,; accounts for the
cost of T,,;. In one of the three ways of computing s11:

Tiab)e<ijk> = (8nd Tupcij> Tap—k Temij)
where

Tus<ij> = (and Tosj Tosi Tasocij>)
one of the C;_,; terms also accounts for the cost of T,—;. The integer programming
system will account for this cost only once. Therefore this option will be found to be

cheaper than the other two.

6.3.6 Maximizing the Reordering Potential

The discussion above describes a global reordering analysis using global costs but
notice that the reordering itself is limited to within assignment statements. How the
programmer decides to break up statements is sometimes fairly arbitrary. Sometimes

an expression simply feels too long so the programmer breaks it up. Sometimes a
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subexpression has meaning in the application domain, so the programmer gives it a
mnemonic name. Sometimes the user sees locally that a subexpression is invariant
and names it to pull it out of a loop.
We can increase the potential for reordering by variable subsumption to increase
the length of expressions and reduce the number of assignments. For example,
doi=1, imax
temp(i) = b(i) + c(i)
do j = 1, jmax
a(i, j) = temp(i) + x(i, j)
enddo

enddo
would become

do i =1, imax
do j =1, jmax
a(i, j) = b(i) + c(i) + x(i, j)
enddo
enddo
to maximize the reordering options.
One other transformation that may uncover additional reordering options is con-
version of non-commutative binary operations to a commutative form. For example,
a(i) = b(i) + c(i) - d(i)
can not be reordered but
a(i) = b(i) + c(i) + (- d(i))
can participate in reordering. If these transformations are to be incorporated they

are performed prior to subspace and expansion analysis.

6.4 Predicates

The basic view of predicates (Section 4.5) incorporates them into each assignment

statement immediately prior to the assignment operation essentially predicating the
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assignment. Since predicates can be combined with any the result of any operation
or with any leaf, they can participate freely in reordering. Since they may have to
be expanded to operational space, they can participate in REE. Since their operands
are indexed just like operands of arithmetic operations, they can also participate in
GCSE.

Predicates have two characteristics that distinguish them from other operands.

e It is legal for them to be incorporated at more than one point in an expression

tree,

o When predicates are involved, some evaluation orders may result in speculative

execution.

This speculative aspect can be controlled by controlling when predicates are in-
corporated in the expression. Consider
do i =1, imax
do j = 1, jmax
if (bool(i, j)) then
a(i, j) = b(i) + c(i)
endif
enddo
enddo
The subexpression b(i) + c(i) could be computed in subspace {i} as long as the
boolean is incorporated prior to the assignment. In other words, we might compute
this as
doi=1, imax
temp1(i) = b(i) + c(i)
temp2(i, j) = (replicate temp1(i) across j)
do j =1, jmax
if (bool(i, j)) then
a(i, j) = temp2(i, j)

endif

132



enddo
enddo
Note that this reduces the number of + operations and communications in the same
way that using the natural subspace of intermediates as opposed to the subspace of the
owner usually does. However, some + operations may now be performed speculatively
since if ALL bool(i, j) are false for some i we will be performing the + for that i
when it is not necessary.
In this case there was an operation to be performed in a subspace smaller than
the subspace of the boolean. But the reverse can happen. Consider
do i= 1, imax
do j =1, jmax
if (bool(i)) then
a(i, j) = b(i) + c(d, j)
endif
enddo
enddo
Here the natural subspace of the + is {i,j} but the boolean can be combined with
the operand b both in subspace {i}. The result of combining b and bool in subspace
{¢} is an object in subspace {i} whose value at each point is either the value of b at
that same point (if bool is true at that point) or a reserved value NIX (if bool is

false at that point).

There are two possible concerns about speculative execution:
e They incur a cost.
o They may generate error conditions, e.g., overflow.

We simply allow predicates to freely participate in the reordering. The result will
depend on how well the cost function accurately predicts the cost of speculation in

addition to the other usual costs.
If error conditions are a serious problem for the target, we simply limit the ex-

pression orderings under consideration to those that do no speculative execution.
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6.5 Summary

This chapter presented a variety of optimizations made possible in the subspace
model. Some of these are a direct result of the fact that the subspaces and expan-
sions for intermediates are based on the subspaces and expansions for their operands.
Expression tree transformations then can impact these attributes in ways that can
impact efficiency. Some optimizations presented here arise from that fact that within
this level of abstraction some details are missing. This enables us to see computations
as the same even though they appear distinct downstream. Finally, some optimiza-
tions presented here arise by taking seriously the notion that intermediates are objects
and participate in the optimizations that user-declared objects do.

The optimizations presented here uncover distinct ways to encode the same com-
putation. This aspect of the work is target independent. However, choosing among

these options is based on a target dependent cost model.

134



Chapter 7

Experiments

The main benefit of the subspace model, as presented, is as a clean abstraction that
subsumes a variety of shape-based technologies. The compiler has been implemented
largely to ensure that there are no major unforeseen problems. This chapter describes
several experiments, some of which rely on the implementation. The first experiment,
described in Section 7.1, compares the results of subspace compilation with naive data-
centric and naive operation-centric compilation. This experiment studies loop-based
parallelism in the subspace model. The second, described in Section 7.2, studies non-
loop concurrency in the subspace model. The third, described in Section 7.3, provides

evidence for the effectiveness of the subspace optimization phase.

7.1 Loop-based Parallelism

Here we compare subspace compilation with naive data-centric and naive operation-
centric compilation.

The data-centric model distributes the data first. The location of the code is
simply a consequence of the location of the data according to the owner-computes
rule. But if the shape of the data is too small, this approach may inhibit parallelism.
The operation-centric model distributes the code first. The location of the data is
simply a consequence of the location of the code that defines it. But if the shape of

an operation is too large we may incur the cost of too much computation and too
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much communication.!

The subspace model takes a different approach. It focuses first on the shapes of
both the data and the operations. Only after it gets the big picture right does it look
at the details, that is, the location of the data and the operations.

We have compiled TOMCATYV with the subspace compiler. TOMCATYV, from
the SPECfp92 Suite, is a Mesh generation with Thomson solver written in serial form
with neither data-centric nor operation-centric targets in mind. We compile this
naive code by the subspace compiler. For the subspace compilation of TOMCATYV,
we used a problem size of 129, the largest of three suggested problem sizes and
ran the code on a 32 processor CM-5. The average busy time for several runs was
67.85 seconds. Below, we compare code generated by the subspace version with what
would be straightforward compilation for a data-centric target and straightforward
compilation for an operation-centric target. We will show that subspace compilation
adds missing axes to expose additional parallelism and removes superfluous axes that
unnecessarily participate in computation and communication. The discussion below
rompares naive subspace compilation (without the subspace optimization phase) to
naive data-centric and operation-centric compilation (without privatization, invariant

code motion, loop interchange and loop distribution).

First we compare the subspace model with the data-centric model to show that
the subspace model removes unnecessary limits on parallelism in this model.

Table 7.1 compares the results of the subspace model with the data-centric model
for TOMCATYV. The second column indicates the indices that are explicit in the
source subscripts of the LHS object. A dash in this column indicates that the LHS
is a scalar. The third column indicates the natural subspace of the LHS object as
determined by subspace analysis. Distinct statements with the same values in the
second and the same values in the third columns are grouped together in a row of this

table. The number of statements grouped together is indicated in the first column.

'There are systems [7] that attempt to give more even-handed attention to both data and com-
putation in addressing layout decisions. That approach improves the resulting layout but does not
improve the situation we address. The input to that approach has explicit parallelism and the
approach does not alter the shape of either the data or computation.
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Number of | Explicit | Natural
statements | subscripts | subspace
2 - i

5 - i

16 - k

14 - ijk

-3 i ik

2 ij ik

13 ij ijk

Total number of statements = 67
Number of unchanged statements = 12

Table 7.1: Comparison of Subspace Model with Data-centric Model on TOMCATV

Consider, for example, the row pointed to by the arrow in this table. This row
indicates that there are three statements in which the LHS is explicitly subscripted
by the index, i, (e.g., a(i+1) = ...) but where the natural subspace of the LHS is
{i,k}. In a data-centric model, if i is the only index explicit in the subscripts of an
LHS, then the only parallelism on that statement can occur across the i loop. All
other loops must be executed serially over this statement.

But the natural subspace for each of these three assignments is {i, k}. Each index
in the natural subspace that is not an explicit subscript in the source (i.e., each index
in column three but not in column two) indicates a potential loss of parallelism.

The indices in column three of Table 7.1 that are missing from column two of that
table correspond to axes added by the subspace compiler for TOMCATYV. Subspace
analysis also determines the expansion category for each axis in the natural subspace
of an object. In TOMCATYV, all the axes, existing or added, on i and j are parallel.
The k axes of all the objects are serial. The k axes are therefore not privatizable by
traditional means. Although in theory, there are potential benefits (see Section 8.1.3)
for adding these serial k axes, none of these benefits accrue for this particular example.
Downstream analyses such as data and code layout should undo the addition of the
k axes in TOMCATYV but the addition of indices i and j is critical.

Now we examine how subspace analysis of this program affects the two main
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Number of | Within [ Natural
statements loops | subspace
9 k -

-5 ik )

2 ijk i

6| ijk k

2 ijk -

Total number of statements = 67
Number of unchanged statements = 43

Table 7.2: Comparison of Subspace Model with Operation-centric Model on TOM-
CATV

data-centric compilation strategies, owner-computes and the replication of scalars.

The subspace model improves the effectiveness of the traditional owner-computes
rule for this code by increasing the subspace of the owner. Each index in column three
of Table 7.1 that does not appear in column two of that row means that that index
is added to the subspace of the owner by the subspace model. When the subspace
model added an i or j axis, the owner-computes rule resulted in increased parallelism
along those axes.

The top four rows of Table 7.1 indicate that 8 statements in TOMCATYV assign
to scalars whose natural subspace is not, in fact, {}. For this application, replication
of scalars would mean that each distinct value of each of these scalars is distributed
to each processor. The number of distinct values is implied by its natural subspace
in the third column. Since all processors own each of these scalar objects, the owner-
computes rule means that all processors receive all the operands for all the modifi-
cations and perform all the computations. Subspace analysis inhibits the replication
of many source scalars by making the axes in their natural subspace explicit. This
transformation reduces the computation and communication.

Table 7.2 compares the subspace model with the operation-centric model to show
that the subspace model reduces the computations and the communication.

The second column indicates the loop nesting. The third column indicates the

natural subspace. Again, distinct statements with the same values in the second
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column and the same values in the third column are grouped together. The first col-
umn indicates the number of statements grouped in each row. For example, the row
pointed to by the arrow indicates that there are five statements that appear within
loops j and k whose natural subspace is really just {k}. In the operation-centric
model, all operations within those statements are performed in subspace {j, k}. This
means that too much computation is being performed (by a factor of the extent of
the j loop). It also means that there is too much. communication. Both operands of
the computation are expanded across the j axis, not just the result. An index that
appears in the second column of this table but not in the third implies too much com-
putation and too much communication. These table entries indicate whole statements
that are loop invariant. The invariants in this program are whole statements rather
than expression level. The subspace compiler finds all loop invariants in TOMCATV
indicated in this table. In the code emitted by the subspace compiler, each operation
is in a loop nest that exactly corresponds to its subspace.

In TOMCATYV, the source code is written cleanly with respect to the application
algorithm but naive use of either the data-centric or the operation-centric model is

very inefficient compared to the subspace model.

7.2 Non-loop Concurrency

This set of experiments shows the potential of the subspace form as generated by the
restructure phase. Phases prior to restructure uncover parallelism based on loops.
The restructure phase generates a partial ordering of these loop-based parallel frag-
ments. The partial ordering indicates distinct parallel fragments that may run con-
currently as shown in Figure 1-3. Connection Machine Fortran is not able to express
this non-locp concurrency so its potential is not realized by our compiler generating
CMF.

These experiments were run on the J-machine, a machine designed by the Concur-
rent VLSI Architecture (CVA) group at MIT. The J-machine is a fine-grained concur-

rent message-driven computer organized as a 3-dimensional deterministic wormhole-
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routed mesh. Qur current configuration has 1024 nodes. The experiments were hand
coded in J, a C based language with explicit remote blocking and non-blocking func-
tion calls.

Consider the following code.

do i = 1,imax
do j = 1,jmax

b(i,j) = a(i) ...

In the standard SPMD model, a(i) must be available to the owner of b(i,j)
for each value of j. Assume that a has a natural subspace of {i,;} and is expanded
serially across j.

We consider two communication patterns for this example.

o If a(i) is naively stored as a 1-dimensional object in {i} space, the processor
owning a(i) executes a loop which sends consecutive values to each of (up to)
jmax prccessors, those holding b(i, j) for j = 1 to jmax. So processor 0 sends a
value to processor 1. Processor 0 modifies the value and sends the new value to
processor 2. Processor 0 modifies the value and sends the new value to processor
3. Etc.

e On the other hand, if a is stored as a 2-dimensional object in subspace {i,;},
then the location of a(i) will depend not only on i but also on the current
value of j. Because a is cyclic across j, it will hop from the processor holding
b(i,j) for some j to the processor holding b(i,j) for the next value of j. So
processor 0 sends a value to processor 1. Processor 1 receives the value, modifies
it and sends it on to processor 2. Processor 2 receives the value, modifies it and

sends it on to processor 3. Etc.

Below we will refer to these two approaches as {i} and {i,j}.
The code
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Machine size: | 8x8x1 | 8x8x2 | 8x8x4 | 8x8x8

{i, j}:
{i}:

4234 ms
3228 ms

8463 ms
6450 ms

2117 ms
1620 ms

1060 ms
816 ms

Table 7.3: Single Serial Expansion
doi=1,imax
it a(i)
do j = 1,jmax

b(i,j) = ...

leads to the same two communication patter:s.

Below we present three smail experiments comparing these two communication

pattern in three differeut situations.

e in 1solation - This corresponds to a single serial expansion.

e concurrently with other local background computations - This corresponds to

a serial expansion and a parallel expansion running concurrently.

e concurrently with another communication of the same type - This corresponds

to two serial expansions running concurrently.

All times are for 1000 iterations each waiting for the previous to complete.

7.2.1 Single Serial Expansion

The results for this experiment are shown in Table 7.3. The {7} approach is
faster because, although it sends the same number of mnessages, it can issue the next
message sooner than the {i,j} approach. In the {i} case, processor 0 may send the
next message as soon as the previous one is sent, it need not wait until that message

is actually received which is required in the {i,j} case.
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Background computation: | 816 ms
{i} communication: | 816 ms
Both: | 1611 ms

Background computation: | 816 ms
{i, j} communication: | 1060 ms
Both: | 1186 ms

Table 7.4: Concurrent Serial and Parallel Expansions - Machine size: 8x8x1

7.2.2 Concurrent Serial and Parallel Expansions

Notice that in the {i} case above, all the work is being done by one processor. The
{i,J} approach exhibits better load balancing of the communication. This implies
that if there is other independent work performed by each processor, the total time
may be smaller. This next experiment demonstrates this by adding some synthetic
background work. The original communication corresponds to a serial expansion. The
local parallel background work is exactly what we see for a parallel expansion, each
element along an axis is updated in parallel. Combining the two corresponds to two
concurrent expansion, one serial and one parallel. Table 7.4 and Table 7.5 show the
results for this experiment for two distinct machine sizes. The first number is the time
for the synthetic background work (the parallel expansion) by itself. The second is
the time for the communication of the two different styles (the serial expansion). The
third is the time required to do both the background work and the communication
concurrently. For the {i} case, the time is basically the sum of the two other times. In
the {i, j} case it is closer to the maximum of the two other times. Distribution across

both axes significantly reduces the total cost by providing better load balancing.

7.2.3 Two Concurrent Serial Expansions

In the experiment above, the background work consists of purely local computations.
Below we consider what happens if the other work is other communications of the

same type.
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Background computation: | 3228 ms
{i} communication: | 3228 ms
Both: | 6415 ms

Background computation: | 3228 ms
{i, j} communication: | 4234 ms
Both: | 4700 ms

Table 7.5: Concurrent Serial ard Parallel Expansions - Machine size: 8x8x4

{i} {i, j}

816 ms | 1060 ms
1628 ms | 1072 ms
312438 ms | 1096 ms

N =

Table 7.6: Two Concurrent Serial Expansions

In tue {i} case, we have a series of iterative loops on the same processor. In the
{t,7} case, that processor starts one hopping chain and then can start the other.
Here the communications can pipeline through the processors as demonstrated by
the timings shown in Table 7.6 on an 8x8 machine.

Column 1 indicates the number of distinct elements starting from the single owning
processor. 1 means a single hopping chain across 64 processors for the {i, j} case or a
single local loop on one processor with iteration count of 64 for the {i} case. 2 means
two hopping chains starting at the same processor one after the other or two local

loops on the same processor.

In the {1} case, the times for two (or three) expansions is two (or three) times the
cost of one expansion. In the {i,j} case, however, each additional expansion causes
only a very small increment in the cost because the communications are running in

parallel pipelining through the processors.
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# naive - owner computes
@ naive - nat subspace

Secs
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B CSE on expansions
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0 no expansions
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Figure 7-1: Optimizations
7.3 Subspace Optimizations

This experiment is designed to confirm the value of one of the subspace optimizations,
redundant expansion elimination. We will see that redundant expansion elimination
is more important than data layout in improving performance for the kernel analyzed
and, furthermore, these eliminated expansions are not detected by standard common
subexpression elimination.

We analyze a kernel from hydro2d, a SPECfp92 benchmark. This kernel computes
diffusion through a membrane. The code is largely 2-dimensional. The results are
shown in Figure 7-1. The three distinct clusters of bars represent the three major dis-
tributions of a 2-dimensional array, parallel-serial, serial-parallel and parallel-parallel.
These are indicated by the icons below each cluster.

Within each cluster we show the performance of five different versions of the

program.

o The first bar on the left indicates the naive code using the owner-computes rule
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to determine both the location and the shape of the operations.

e The second bar indicates a program in which the shape is determined by the

natural subspace analysis.

o The third indicates the classical common subexpression elimination on expan-
sions to operational space. Here, in order for the expansion to be comnmon, the

details of the processor address must be exactly the same.

o The fourth bar indicates redundant expansion elimination. Here, the expansion
may be found redundant even if the details at the processor address level are

different. This bar shows the impact of the new optimization introduced here.

o The last bar is shown just for comparison and does not correspond to a legal
program. For this version of the program, we removed all the expansions to op-
erational subspace (not only redundant ones) to determine a lower bound on the
performance we might achieve with this optimization. This program performs
all the computations and all other types of communication (i.e., communica-
tion required by cyclic expansions within the natural subspace of an object and
communication required to align two objects of the same subspace). This pro-
gram may reference undefined values so we do not expect its performance to be

achievable in a correct program.

The optimizations indicated by the third, fourth and fifth bar are currently im-
plemented by hand.

It is clear from this figure that data layout is important. As we move from a
parallel-serial distribution indicated in the first cluster to the serial-parallel distri-
bution in the second cluster and finally to the parallel-parallel distribution in the
third cluster the performance improves noticeably. But it is also very clear that as
we add optimizations within a given distribution, the performance improves. In fact,
the largest improvement is between standard CSE and our newly introduced REE

optimization.
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There is one other important thing to note in this graph. Assume we start with
the parallel-serial distribution, the distribution represented by the leftmost cluster,
and we use one of the first three levels of optimization (naive owner-computes pro-
cessing, natural subspaces or standard CSE optimization). Upgrading to redundant
expansion elimination within this distribution is much more important than improv-
ing the distribution but staying with the same level of optimization. If we start with
the serial-parallel distribution (the middle cluster) the same is true. Again, upgrading
to redundant expansion elimination within that distribution is more important than

improving the distribution but maintaining the same level of optimization.
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Chapter 8

Contributions

This chapter defends the claims of the thesis as presented in Chapter 1. Since the pri-
mary claim concerns improvements over existing optimizations and strategies, these
optimizations and strategies are addressed in some detail. This chapter therefore also
constitutes the related work discussion.

At the current state-of-the-art, a programmer with a data-centric target in mind
writes a data-centric version of a program which is then compiled by a data-centric
compiler that generates code for the data-centric target system. Meanwhile, a pro-
grammer with an operation-centric target in mind writes an operation-centric version
of a program which is then compiled by an operation-centric compiler that generates
code for the operation-centric target system. The two source codes are distinct. The
two compilers are distinct.

The long term goal of this work is to facilitate a different scenario. A programmer,
who is savvy about parallel algorithms and about the application domain, writes a
program without considering the distinction among various parallel targets. This
program is compiled by a two-part compiler. Part one, the subspace compiler, deals
with issues of parallelism in general, ignoring distinctions among different parallel
targets. The second part deals with all the issues specific to the target at hand. A
company with a product line that includes a variety of parallel architectures (or a
single architecture at any given time but different architectures over time) would then

have a single subspace compiler and multiple second parts, one for each architecture.
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The subspace compiler unifies and generalizes much that is common across the
distinct targets from the distinct compilers as we will show below. A compiler for a
given target is cleaner and simpler. Furthermore, more of the compiler is independent
of the target architecture. All the usual software engineering benefits accrue. This is a

high-level statement of the contributions. The next two sections discuss the specifics.

8.1 Primary Claim

Primary Claim:

The noti

concepts for parallel systems. The subspace model unifies, generalizes, simplifies and
improves a variety of these shape-related approaches.

First we present a very brief survey. Then a larger discussion of each of these
issues is presented in the subsections that follow.

The subspace approach

e unifies the data-centric and code-centric models

Instead of focusing on the location of the data first and then dealing with the
location of the operations (or vice versa) the subspace approach first determines
the shapes for both the operations and the data. Only then does it address

locations.

e unifies and generalizes invariant code motion and privatization

Invariant code motion reduces the dimensionality of operations. Privatization
increases the dimensionality of data. The subspace model unifies these two
approaches by simply finding the right dimensionality for both the data and

the operations via a single algorithm.

Privatization only adds an axis if it is computed totally in parallel and only
examines axes that are missing in the source. The subspace model generalizes

over privatization by relaxing both of these restrictions.
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Invariant code motion must be performed in conjunction with loop interchange

and loop distribution to achieve the results of the subspace analysis.

e unifies data flow and control flow

At the level of the subspace abstraction, control flow is converted into data flow
similar to the use of masks in the vector and distributed memory libraries. This
approach facilitates analysis. Decisions based on this analysis such as serializa-
tion/distribution decisions, made downstream in the compiler, determine where

data flow is converted back to control flow.

o generalizes conformance

The Fortran 90 definition of conformance requires either that the operands of a
parallel operation are of identical shapes or one is scalar. The subspace model’s
notion of operational, as opposed to natural, subspace is a generalization of

conformance.

e improves owner-computes and replication of scalars

The owner-computes rule and the replication of scalars are strategies that are
designed to work well in general. The subspace model replaces these strategies
by analyses of the natural subspace. If the natural subspace is distinct from the
apparent subspace, the results are improved.

e improves data layout and code layout

These phases are downstream of the subspace com.piler. The input to these
phases is altered by subspace compilation in ways that give these analyses more

flexibility and that provide information on which to base their decisions.

Each subsection below presents one of these issues in greater depth.

8.1.1 Data-Centric and Operation-Centric Models

The data-centric model distributes the data first. The location of the code is simply

a consequence of the location of the data according to the owner-computes rule.
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The operation-centric model distributes the code first. The location of the data is
simply a consequence of the location of the code that defines it. Neither approach
addresses shape at all. A shape that is too small may unnecessarily limit parallelism.
This is normally addressed by privatization. A shape that is too large may result in
too many operations and too much communication. This is normally addressed by
invariant code motion.

Chapter 7 discusses at length how the subspace model improves over both naive

data-centric and naive operation-centric models be-ause it always get the shape right.

8.1.2 Invariant Code Motion

The classical optimization called invariant code motion [3] has the effect of removing
an index from the subspace of a computation. Consider
doi=1, imax
a(i) =b(i) +s * t ; + and * effectively in {7}
enddo
Invariant code motion will move 8 * t out of the loop as follows
temp = 8 * ¢ ; *in {}
do i =1, imax
a(i) = b(i) + temp ; +in {i}
enddo
The * will then be performed once as opposed to once for each value in the range
of i. In our terminology s * t was transformed from subspace {i} to its natural
subspace, {}. Consider a slightly more complex example
doi=1, imax
do j = 1, jmax
sl: a(i, j) = b, j) + s(j) * t(j)
s2:
enddo

enddo
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Here the expression 8(j) * t(j) is not invariant in the inner most loop j. So it can
not be moved out of this loop. Some compilers try to interchange the i and the j loop
to enable invariant code motion to move the expression out of the i loop which would
then be innermost. Sometimes this interchange is not possible because some other
computation within the loops, say in statement s2, requires the loops to be in the
order specified. One further option is loop distribution, which converts the example
above with statements sl and s2 in the same loop nest to two distinct loop nests with
one statement in each. If this is possible, the loops around sl may be interchanged
leaving the loops around s2 unmodified.

This approach requires the interaction of three distinct transformations, loop in-
variant code motion, loop interchange, and loop distribution. Subspace analysis is a
more direct approach. Furthermore while invariant code motion removes an operation
from a loop (removes an index from a subspace of an operation), it does not remove
an index from a named object nor does it add an index to either a named or unnamed
object. Subspace analysis is more general in that it removes and adds indices to both

named objects and intermediates with a single unified approach.

8.1.3 Privatization

Privatization literature distinguishes between scalar [44] and array [37] privatization.
Scalar privatization is an older and simpler technique.

Both types of privatization add an axis that was missing in the source but only if
that axis is totally parallel. Subspace analysis is more general in that it analyzes all
the axes, whether they were explicit or missing in the source. It is not restricted to
parallel axes but identifies all axes as parallel, parallel-prefix or serial.

Consider the following source code where a scalar is used as a temporary to hold
a local value within an iteration.

doi=1, imax

s = b(i) + c(i)
a(i) = s * d(i)

enddo
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Here s may be stored in a single location, or, if the “scalars are replicated” rule is
employed, it is stored on all processors. Both approaches imply too much commu-
nication and unnecessary serialization. Privatization creates a “private” value for
each iteration reducing the communication and eliminating the serialization. This
technique detects when there are no loop-carried dependences on the object for the
relevant loop. It requires that the iterations be totally independent and therefore

parallel. The subspace model generalizes over this approach in two ways.

e First, we do not require that the iterations be parallel. We identify the axis as

parallel, parallel-prefix or serial.

e Second, we do not restrict ourselves to analyzing axes that are missing in the

source. We analyze all axes of the object.

Consider the following minor modification to the example above.

doi=1, imax
=8 ...
s = b(i) + c(i)
a(i) = s * d(i)
enddo
There is a loop-carried dependence on s which implies that the iterations are not
totally independent. However, the dependence is not involved in a cycle, that is, the
value of s computed on one iteration is used on the next iteration but that value
does not impact the value of s that is subsequently computed in this next iteration.
The apparent serialization can be handled either by loop alignment [10] which will
move the first statement to the last statement of the previous iteration (adjusting any
indices accordingly) or by data layout techniques that align the definition and all the
uses of a single value on a single processor regardless of which iteration they are on.
We identify these non-cyclic patterns as parallel and add the appropriate axis.
In fact, we even add parallel-prefix axes in the presence of dependence cycles.

Consider the following
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doi=1, imax
s =8 + b(i) * c(i)
=8 ...

enddo
Here we want to add an i axis to s providing a location for the value computed by
each iteration even though a value in one iteration is used to compute subsequent
values.

The subspace approach even identifies serial axes. Some advantages of identifying

all axes, not just parallel ones, are listed below.

o This approach enables us to identify operations that do not have the index in
their subspace. These can be removed from the loop and executed just once.

This is true for serial and parallel-prefix loops as well as parallel ones.

e Some of the operations within a serial loop may be parallel or parallel-prefix
across the associated index. These can removed from the serial loop and put in

a separate parallel or parallel-prefix loop.

e Even if all the operations are serial in the associated index, they may be in-
volved in several distinct cycles. This means that we may be able to improve

performance by executing these distinct cycles concurrently.

o The existence of an axis is critical for downstream analyses such as data layout,
even if the axis is serial. Consider a = func(a) + b(i). A data layout phase
may well decide that distributing a across i is worthwhile even though it is
computed serially, for example, if b is defined by a parallel computation and all
uses of a are parallel. This decision is in the domain of the data/code layout
phase or the VLIW scheduling phase and should be based on the cost model of
the target architecture. The goal of the subspace model is simply to uncover
the fact that the generated index is, in fact, in the subspace of a and that a
is computed serially across that index. The subspace analyzer is obliged to
present the distribution across this index as one of many options to the data

layout phase.
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For these reasons, the subspace model generalizes privatization by adding an axis
to an object, not only if computation is parallel along that axis but if it is parallel-
prefix or even serial.

The other way in which the subspace model generalizes standard privatization is
that standard privatization looks only for missing axes. The subspace model analyzes
each axis in the natural subspace of the object, whether it was there in the source or
was added, and determines if that axis is parallel, parallel-prefix or serial.

Array privatization is more complex than scalar privatization. An assignment to
a scalar kills any previous value of that scalar. However, for an array, an assignment
kills some elements but others are still visible. (See [19)] for a discussion of the critical
value of array privatization with respect to the Perfect Club benchmarks.) The two
restrictions that applied to scalar privatization (only parallel axes and only axes
missing in the source) also apply to array privatization. Again the subspace model

relaxes these restrictions.

8.1.4 Owner-Ccmputes

In the Single-Program Multiple-Data (SPMD) model [12], the owner-computes rule
specifies that intermediates are computed in the location of the owner. The subspace

model improves on this strategy in two ways.

o If the natural subspace of an operation is smaller than the subspace of the owner,
it will perform the operation in the smaller subspace, reducing computation and

communication.

o If the natural subspace of the owner is larger than specified in the source, it will

increase the shape of the owner, potentially increasing parallelism.

In the code below, assume that a, b and c are aligned, that is, that a(i, j), b(i,

j) and c(i, j) are all in the same processor for a given i and j.
dois=1, imax

do j =1, jmax
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a(i, j) = b(i, j) + c(i, j-1)
enddo

enddo

The owner-computes rule specifies that for specific values of i and j, the + is per-
formed in the location of the owner of a(i, j), requiring communication of c. This
makes sense in this example. Detractors of the owner-computes rule might point out

the slight modification

do i =1, imax
do j = 1, jmax
a(i, j) = b, j-1) + c(i, j-1)
enddo

enddo

In this case, if the two operands of the + are aligned the + can be performed in
place. The only value that needs to be communicated is the result. However, the
real problem with the owner-computes rule is not one of location, but one of shape.

Consider

doi=1, imax
do j =1, jmax
a(i, j) = b(i, j-1) + sin(x(i)) * y(i)
enddo

enddo

Here, owner-computes specifies that the sin and the # are computed in the location
of a(i, j). But the location of the owner also impiies the subspace of the owner.
The subspace has much more significant cost ramifications than the location alone.
Performing the computation in the subspacc of the owner means that the sin and
the * are computed in {i,j}, performing a factor of jmax more computations than
necessary. This approach also involves communicating both arguments instead of just

the single result, performing much more communication than necessary.
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In the subspace model, statements are fragmented so all the operands within a
statement in the transformed code are in the identical subspace. The owner-computes
rule applied to this transformed code merely indicates location and no longer affects
the subspace of the operation.

Another impact of the subspace model on the owner-computes rule is that the
subspace compiler may modify the shape of the owner. In the example above the
subspace of the owner was too large for some of the computations on the RHS. If
the subspace of the owner is too small then different problems arise. Consider the

following.

do i =1, imax
do j = 1, jmax

d(i) = e(i) + £(i, j)

= d(i)
enddo

enddo

Here owner-computes implies that the owner, in subspace {i}, computes the +
and the assignment which are in subspace {i,j}. This requires serialization of the
computation along the j axis. By changing the subspace of the owner from {i}
to its natural subspace, {i,j}, the subspace analysis enables parallel execution of
these computations. Although for references to d outside the loops we only need the
values computed for the last iteration of the j loop. However, all the values of d are
referenced on the RHS within the loop.

The owner-computes rule is a strategy of the data-centric approach. One might
think that the operation-centric approach deals better with this issue. However, the
owner-computes rule in the data-centric world determines the processor that will
perform the operations within a statement whereas the assignment of a chunk of
the iteration space to a processor in the operation-centric models constitutes the
operation-centric equivalent of the owner-computes rule. Because the granularity is

larger the inefficiency created may well be worse.
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8.1.5 Replication of Scalars

In the SPMD model, arrays are distributed, but scalars are replicated, that is, owned
by all processors. This strategy stems from the observation that scalars are often
used in conjunction with all elements of an array and by all iterations of a loop and

so are likely to be needed by all processors.

The subspace model improves over this strategy in two ways.

o It distinguishes between objects that have a single value throughout the program
from those whose value varies across iterations of some loop. For objects whose

value varies, the subspace model avoids sending every value to every processor.

e It determines the subspace of the operations that the scalar is used in. In
systems with many processors, communication of the scalar to its operational

subspace may be cheaper than communication to all processors.

The subspace model determines if an object that appears as a scalar in the source
program actually is a scalar, i.e., is in subspace {}. If it is a scalar, it will be replicated
across its operational subspace, not necessarily across the entire machine.

On the other hand, suppose an object appears as a scalar in the source but is
determined to be in a non-empty natural subspace. For example,

doi=1, imax

s = a(i) + b(d)
do j =1, jmax

= x(i, j) + 8
enddo

enddo

Replication of scalars in conjunction with the owner-computes rule implies that
since all processors own s, all processors will compute each new value of s. This means
that all processors need to receive a value of a and b for each of imax iterations. This
is much more communication than necessary.

The subspace model will transform s to its natural subspace {i}. This 1-dimensional
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object will be expanded to its operational subspace, {t,7}, in preparation for its 2-
dimensional + operation. The data layout will determine a layout for each of these

objects.

8.1.6 Conformance

Fortran 90 [38] defines the concept of conformance. The two operands of an array
operation must conform. To conform, the sections referenced must have the same
number of dimensions and corresponding dimensions must have the same extent. For

example, the following operations all have conforming operands

a(1:n) + b(1:n)

a(i:n) + b(n:1:-1)

a(1:n) + b(2:n+1)

a(i:n) + b(2:2*n:2)

a(1:n) + c(i:n, 1)

c(i:n, 1:m) + d(1:n, 5, 1:m)

Notice that the underlying arrays need not have the same shape. Fortran 90 has one
additional ad hoc rule. A scalar is assumed to conform to a section of any shape
essentially by expanding the scalar to exactly the needed shape. For example, the
operands in

a(i:n) + s
are considered conforming. s is made available to each element of a.

The notion of expansion to operational subspace (see Section 4.2) is a generaliza-
tion of this ad hoc rule. Not only is an object in subspace {} expanded to be available
for an operation in any subspace (really any subspace that includes {}) but an object
in any subspace, 5}, is expanded to be available for an operation in any subspace S5;
that includes S;.

Consider the following simple modification of the expression above.

a(i, 1:n) + s8(i)
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This is not even a legal Fortran 90 statement. The subspace model would handle
this by a generalization of the Fortran 90 conformance rules as follows. s(i) in
subspace {i} expands to conform to subspace {i,j}, the natural subspace of the +

and therefore the operational subspace of s(i).

8.1.7 Control Flow and Data Flow

The treatment of predicates in the subspace model unifies control flow and data flow.
(See Section 2.3.6, 4.5 and 3.3.1 for a treatment of predicates with respect to natural

subspaces, expansions and intermediates, respectively.) Consider

do i =1, imax

do j =1, jmax

if (bool(i, j)) then ;in {i,5}
= x(i, j) + y(i, j) ;in {i,5}
endif
enddo
enddo

Here the predicate bool in subspace {i,j} is incorporated into the assignment in
subspace {i,j} based on the correspondence of elements much like any arithmetic
operand. If the subspaces of the predicate and the arithmetic expression are distinct
as in

doi=1, imax

do j =1, jmax

if (bool(i)) then ;in {1}
= x(i, j) + y(@i, j) pin {4, 5}
endif
enddo

enddo
or
dois=1, imax
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do j =1, jmax

if (bool(i, j, k)) then ;in {¢,7,k}
= x(i, j) + y(i, j) ;in {#,5}
endif
enddo
enddo

then one or the other (or both !) are expanded to the operational space before the
predicate and the arithmetic result are combined. In the first example, bool(i) in
{1} is expanded across the j axis to produce an object in {¢,j} which is combined
with the result of the + also in {i,j}. In the second case the result of the + in {3, j}
is expanded across the k axis to produce an object in {i,j,k} which is combined
with bool(i, j, k) also in {i,j,k}. This approach is used within the subspace
abstraction even when the predicate is in subspace {} as in the following example.
do i=1, imax

do j =1, jmax

if (bool) then ;in {}
= x(i, j) + y(@i, j) yin {3, 7}
endif
enddo
enddo

Here, bool in {} is expanded across axes i and j to produce an object in {#, 7} which
is combined with the result of the + also in {i,j}. In other words, in all cases control
flow is converted to data flow within the subspace model.

Let’s now consider what happens later in the compiler, after data and code layout
have been determined. First consider the handling of arithmetic operands at this
stage.

dois=1, imax

do j = 1, jmax

'Both may need to be expanded if one is in {i} and the other is in {j} resultiug in an operational
subspace of {i, j}.
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= b(i) + x(i, j) + y(@i, j) ;in {i,j}
enddo

enddo

If the j axis is serialized in this example, then the expansion of b in subspace {i} to
its operational subspace {1, 7} is suppressed since this would simply create duplicates

of the same value in the same processor. The subspace compiler would generate

do-parallel i = 1, imax
do-serial j = 1, jmax
= b(i) + x(i, j) + y(i, j) ;in {i,j}
enddo-serial

enddo-parallel

If we examine the same distribution but the arithmetic operand b(i) is replaced

with a predicate bool (i) then similarly

do i=1, imax

do j =1, jmax

if (bool(i)) then ;in {1}
= x(i, j) + y(i, j) yin {1,5}
endif
enddo

enddo
does not require an expansion to operational subspace. It becomes
do-parallel i = 1, imax

do-serial j = 1, jmax

if (bool(i)) then ; in {7}
= x(i, j) + y(G, j) vin {i, j}
endif
enddo-serial
enddo-parallel

To summarize, within the subspace abstraction all control flow is converted to
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data flow. Later in the compiler, some data flow is converted to control flow. But
this conversion to control flow is only performed as a result of the decision to serialize
data and code.

Other work [21] represents data and control flow dependences in a unified program
graph, allowing them to be used in a uniform way to control program transforma-
tions. However, the distinctions between data flow ard control flow in the source
are maintained in this graph. The subspace model goes further in unifying these two

concepts.

8.1.8 Common Subexpression Elimination (CSE)

Common subexpression elimination (CSE) [3] is a classical scalar optimization that
replaces redundant instances of an expression by references to the already computed
result.

The subspace model relates to this optimization in two ways.

o First, we generalize this technique by relaxing the usual restriction that all

values are computed at the same point in the iteration space.

e Second, we apply CSE analysis to eliminate redundant expansions to operational
space. By performing this within the subspace abstraction, we can ignore details

of location. This provides the potential for finding additional redundancy.

Given the expressions below within a loop on i, standard common subexpression
elimination finds the first two to be common and eliminates the second. Generalized
common subexpression elimination (see Section 6.2) will also discover that the third
expression is simply the same expression computed on an earlier iteration of the
loop and can also be eliminated. GCSE would also find the fourth to be the same
expression in a distinct loop and the fifth is also an alternate representation of the

same expression.
1. x(i) + y(i+1)

2. x(i) + y(i+1)
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3. x(i-1) + y(i)

4. x(3) + y(3+1)

5  y(@i) + x(i-1)

Redundant expansion elimination (REE) uses standard CSE techniques but ap-
plies them to expansions to operational space. This optimization is performed at a
stage in the compiler when the expansions to operational space are expressed in terms
of expansions across axes without reference to specific processor addresses. This al-
lows us to uncover redundancies that are visible at the subspace level but are later
obscured by details of processor locations. We can replace an expansion by a shift of
an object that is already in the right shape but just in the wrong location. This is
typically a much cheaper communication.

Therefore the standard CSE techniques will uncover as common some expansions
that are not common at the processor level. The following example has three ex-
pansions of v from subspace {i,j, k} to subspace {m,1,j,k}. However, because the
subscripting varies, the specifics at the processor level are not identical. The redun-
dancy is visible at the subspace level but is obscured later by details of processor
locations. Code generated by the subspace compiler will perform one expansion (and

possibly two shifts if necessary to adjust for location).

= x(m,i,j,k) * v(i+1,j,k)
'.'Y(‘aioj’k) * V(i.j“'l,k)
"'z(moiaj :k) * V(i,j,k"’l)

Although a full scale assessment of the value of these optimizations is left for future
work, we provide some evidence for their potential value. The experiment described
in Chapter 7.3 shows an example where standard common subexpression elimination
provides little benefit but where redundant expansion elimination is critical, even

more so than data layout.
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8.1.9 Data Layout

Data layout analysis [14, 31, 33, 36, 41, 5, 30] is performed after the transformations

presented here. Subspace analysis improves data layout ? in two ways:

e Without modifying the data layout analysis algorithms, the input generated by
the subspace model provides layout analysis with additional flexibility.

o It simplifies the data layout phase by providing answers to questions arising in

that phase.

Currently data layout analyses are naively based on the data as declared in the
source. In the subspace model, however, subspace analysis determines the natural
subspace of the data. An axis added by subspace analysis, i.e., an axis not explicit
in the object as declared in the source, provides the data layout phase with the

opportunity to answer the following questions.

e Should this axis be serialized or distributed?
o If distributed, should the distribution be block, cyclic or block-cyclic?
e What are the parameters of the distribution?

e What is its alignment?
On the other hand, if the axis is not visible to the data layout phase, there are two
possibilities.
o It is serialized by default.
In this case, subspace analysis provides more flexibility to the data layout phase
by making the axis visible.
e A naive attempt is made at determining the nature of this axis.

In this case, subspace analysis simplifies the data layout phase by providing

complete accurate information about the nature of each axis.

2In fact, it was my own experience with data layout[31, 33] that initially led me to consider a full
fledged analysis of the data to be laid out.
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8.1.10 Code Layout

Analogous arguments apply to code layout. Traditional code layout algorithms 1, 2]
naively take iterations in the source as the code to be distributed. By isolating the
distinct expansions within a single source loop, we provide the code layout phase the
option of distributing these distinct expansions differently. In the absence of this
isolation, distinct expansions are distributed together by default. This argument ap-
plies not only to scheduling code on distributed memory systems, but also to VLIW
scheduling [34]. By isolating distinct expansions we may improve the quality of soft-
ware pipelining by allowing different decisions for the distinct expansions. In the
absence of this isolation, these distinct expansions are pipelined together by default.
This isolation may also limit the negative impact of predicates to some but not all

the distinct expansions.

8.2 Secondary Claim

Secondary Claim: The subspace model is an architecture-independent parallelism
analysis.

To justify this claim, we first examine various types of parallelism, introducing
the terminology and concepts. This discussion uses Figure 8-1 and 8-2.

The base case is a serial loop containing some operations. One form of parallelism
is called Very Long Instruction Word (VLIW). Since several distinct instructions can
execute at the same time, it could be possitle to execute the eight operations in the
serial loop in four clocks instead of eight as long as we obey the partial ordering based
on the dependences among operations. Notice that the loop itself is still serial. Com-
piler technology for VLIW targets includes software pipelining [34] and the Multiflow
trace scheduling ccmpiler [20].

Vector systems, such as the Cray C90, and Single Instruction, Multiple Data
(SIMD) systems, such as Thinking Machine’s CM-2 and MasPar’s MP-1, are similar
in that they both focus on a single static operation, but over all the iterations of

a loop. A vector system may be able to execute a single instruction that performs
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Figure 8-1: Various Types of Parallelism

T

Figure 8-2: Types of MIMD Parallelism

64 additions, one for each of 64 values of the loop index. But SIMD systems are
more flexible in that they can process multiple dimensions in parallel. Notice that
the figure introduces a new icon for loops that can be executed in parallel.

Many systems, such as the MasPar-1 and the CM-5, support parallel-prefix op-
erations either through hardware or libraries. These operations are tree-based and
logarithmic in their complexity. The icon used to indicate the parallel-prefix loop is
reminiscent of a tree.

MIMD systems have multiple processors, each with its own instruction stream.
These systems achieve parallelism based either on loops or on large-grained tasks as

shown in figure 8-2.
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In summary, if we focus on parallelism from the software perspective 3, parallelism

supported by these architectures can be classified as

e loop-based parallelism

e concurrent execution of distinct code fragments at various granularities, ranging

from individual operations to large tasks.

There are three possible ways that loops can be processed with respect to paral-

lelism
e serial
e parallel-prefix
e parallel

Non-loop parallelism arises from the partial orderings among fragments of code.
The granularity of the fragments includes instruction level, thread level and task level
parallelism.

The categorization of the parallelism available in existing parallel systems exactly
matches the parallelism uncovered by the subspace model.

The subspace compiler distinguishes among the three levels of loop parallelism as
distinct expansion categories. It is not restricted to a single expansion per source loop
but also isolates distinct expansions within a source loop. This allows each expansion
to generate its own optimal level of parallelism.

The output of the subspace model captures partial orderings among fragments
at all granularities, within loop bodies for loops at all nesting levels and also among
operations or loops at the outermost level.

The parallelism uncovered by the subspace model supports the range of existing
architectures. This approach will uncover parallelism for some future architecture to
the extent that the parallelism in that architecture is based on the two major types

and the three levels of loop parallelism mentioned above.

3This view clearly ignores many other important software issues and many hardware distinctions.
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Notice that some target-specific transformations result in contradictory changes
for different targets. For example, moving parallel loops inward improves perfor-
mance on vector or SIMD systems whereas moving parallel loops outward improves
performance on MIMD systems. The subspace model does not attempt to address
target-specific issues. However, by removing all anti-dependences, the subspace com-
piler simplifies the analysis to determine if some target-specific transformation, such
as loop interchange, is legal.

The following sections reexamine some of the systems introduced above in light

of the subspace model.

8.2.1 Vector Systems

Vector systems are designed for inner-loop parallelism. They typically also support
a set of parallel-prefix reduction operations, the use of boolean masks to suppress
operations on specific elements, and gather/scatter operations. We address each of

these below.

e inner-loop parallelism

The subspace compiler uncovers and identifies all loop-level parallelism. Some
target- specific work remains to convert loop-level parallelism to inuer-loop par-

allelism.

For example,

doi= 1, imax
do j = 1, jmax
c(i, j) = c(i, j-1) + b(i, j)
enddo

enddo

In this example, the j loop is serial and the i loop is perallel. The loops must
be interchanged to uncover the vector operation. Note though that we have

already identified the i loop as parallel and that anti-dependences that prevent
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interchange have been removed. This will be converted to

do j =1, jmax
c(:a J) = C(:, J-l) + b(:p J)

enddo

e masks

Vector operations can accept masks that suppress application of the operation
based on a boolean. The subspace handling of predicates translates nicely to

masks.

e reduction operations

Vector systems often include reduction operations such as the scalar sum of
all the elements in a vector. Some of the parallel-prefix operations may be

translated to reductions. Two situations occur that prohibit use of reductions

~ The specific operation may not be available.

— If the current running sum (or other operation) is referenced within the
loop in a context other than computing the entire sum, the reduccion
operation may not make intermediate results available. For example,

do j =1, jmax
s =38 + a(j)
\ enddo

can be converted to a sum reduction, but

do j =1, jmax
s =8+ a(j)
=5 ...

enddo

can not.

e gather/scatter operations
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Lastly, indirect addressing can be handled on vector machines via gather/scatter

operations. This enables parallel execution of either of the references below.

do j = 1, jmax
a(s(j)) = ...
= b(s(j))

enddo

8.2.2 SIMD Systems

SIMD systems, much like vector systems, are designed for inner loop parallelism.
SIMD systems, however, can process multiple parallel inner loops. They also support
a set of parallel-prefix reduction operations, the use of boolean masks (sometimes
called context bits in this environment) to suppress operations on specific elements,
and the ability of each processor to compute the address of another processcr as the
source or target for data communication. Although the architecture, especially the
memory system, is very different, the issues with respect to parallelism are surprisingly
similar.

One difference is that SIMD systems such as the CM-2 provide scan operations

which provide intermediate results for reductions.

8.2.3 VLIW Systems

VLIW systems are: designed to exploit instruction-level parallelism.

The subspace compiler exposes instruction-level parallelism. The code within a
loop is organized as a partial ordering of the fragments. When the loop is an inner
loop, the fragments are individual instructions.

In addition, the subspace compiler converts complex single loops into distinct loops
if they are distinct expansions. This provides additional options to the scheduler.
Parallel and parallel-prefix expansions are candidates for software pipelining. If a
single loop is converted to three independent smaller loops, software pipelining has

the option of processing each of them separately. It might be able to merge two in
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a single pipeline leaving the third by itself to run separately. Subspace analysis thus
provides additional options.

One difficult area for software pipelining is conditional execution. The subspace
compiler helps with this in two ways. First, if a source loop contains a conditional,
the subspace compiler may determine that this single loop is really three distinct
expansions, and convert it to several distinct loops. The condition may not impact all
these loops. The damage is isolated. Second, as emitted from the subspace compiler,
control flow is converted to data flow. This may be a more effective approach for

some code on VLIW systems.

8.2.4 MIMD Systems

MIMD systems are designed to exploit large-grained parallelisin. This includes both
outer-loop parallelism and the processing of distinct tasks on distinct processors.
With respect to loop-based parallelism, the subspace model uncovers and identifies
parallel loops. The target specific task for MIMD systems is to move these parallel
loops outward. One can then distribute the loops across the processors. Alternately,
for smaller collections of MIMD processors, one might focus on the partial ordering
of fragments within some outer loop and distribute these fragments among the pro-
cessors. Data then streams among the processors according to the partial ordering

and, if the outer loops are not totally parallel, according to iterations of the loops.

8.3 Comparison to Specific Systems

This section discusses how subspace compilation relates to several well known com-

pilation systems.

8.3.1 Rice University Compiler Technology

Rice group under Ken Kennedy is known for its work on ParaScope {15] a parallel

programming environment and in the data-centric model [12]. Their focus is scientific
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code, both regular and irregular problems targetted to distributed memory systems,
parallelization [10], data layout [30] and in optimizing communication [25).

The Rice Fortran D compiler [27, 43] is the predecessor of HPF and is the classic
SPMD compilation system based on the strategies of owner-computes and scalars
are replicated. Optimizations such as data layout analysis improve on these basic
strategies. After data locations are determined either by analysis or by directives,
The code is lowered from its source form to a form where the specifics of location and
communication are explicit. This structure does not allow for redundant expansion
climination (REE) (See Section 8.1.8).

The ideas presented in this thesis were developed as a reaction to some of the
inefficiencies in this compilation style and would fit well as an early phase of this

compiler.

8.3.2 Stanford University Compiler Technology

The Stanford SUIF compiler group under Monica Lam focuses on compilation tech-
niques for physically distributed memory systems with either logical shared or log-
ically distributed memory. They perform analyses that minimize execution time
including global parallelism and locality analysis [5], array privatization [37] and
communication optimization (4]. They distinguish between location-centric analyses,
based on old style dependence analysis, and their improved value-centric, based on
data flow analysis.

The ideas presented in this thesis would also fit well as an early phase of the SUIF
compilation system. Subspace analysis subsumes array privatization and is what they
would call value-centric.

If subspace analysis were to be incorporated into either the SUIF compiler or the
Rice compiler, the optimizations they perform would be part of what we refer to as
the Back-end in Appendix A and, in particular, in Figure A-1. Some of these analyses
could be simplified in the presence of subspace analyses. Others would produce better
results. These compilers both include significant interprocedural analysis. So incor-

porating subspace analysis into either of these systems would provide an opportunity
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to extend subspace analysis across procedure boundaries. Preliminary investigation
indicates that interprocedural subspace analysis could be implemented at the various

different levels seen for other interprocedural analyses.

8.3.3 MIT Dataflow Technology

The MIT Dataflow group under Arvind focuses on languages like Id [39] which are
dynamic single assignment languages. Dataflow systems [6] use I-structures to im-
plement dynami.c single assignment. Such systems claim significant increases in par-
allelism by allowing operations to fire whenever their operands are available. One
way of viewing the subspace model is as a way of converting sequential languages like
Fortran to a dynamic single assignment intermediate form. Although the subspace
compiler shares some characteristics of the intermediate form with dataflow compil-
ers, they differ significantly in the source languages, the target machine model and
the general focus. The main focus of the Dataflow work is implicit parallelism for
irregular or dynamic problems that are difficult to analyze at compile time. The focus

of the subspace model is compile time analysis.

8.3.4 Compass Compiler Technology

The subspace model grows out of experience on the Compass Fortran compilers [32)
for Thinking Machines [26], MasPar [8] and Sarnoff among others. The exposure to
a range of architectures, the pivotal role of representation (see [40] for a discussion of
the representation of data spaces and iteration space in the Compass compiler) and
early work on data layout [31, 33] in the context of that compiler all played a key roic
in motivating this work.

During the data layout effort, an interesting question arose. Consider aligning
relerences to a and b within loops i and j when their use is of the form a(i) +
b(i, j). For a given i, a(i) must align with b(i, j) for each value of j. The
alignment requirements are clear but how best to achieve this alignment is not so

clear. That question hinges on whether a is modified within the j loop and also on
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how it is modified. If a is not modified within these loops then it should simply be
replicated on entry to the loop nest. If a is independently computed for each j then
no communication is necessary. But if the value of a for one j depends on the value
for the previous j then communication is required at each iteration to get the value
from the previous iteration.

This specific issue led to a serious investigation of the actual (as opposed to the
declared) shape of the data.

The questions raised by the example above, couched in terms of subspaces, follow.
e Is j in the subspace of a?

e If not, it is in the subspace of the + so we must replicate a to its operational

space.

e If j is in the subspace of a then is it expanded via a parallel or serial expansion?

(Parallel-prefix was not in question above.)

The question of how to achieve the required alignment for the example above is
answered by the results of subspace analysis.

Although alignment is clear for the expression above, the distribution is not.
Whether the j axis of a and of the + should be serialized or distributed across pro-
cessors depends directly on the answers to the questions above.

The subspace model meshes well with the philosophy of the Compass compiler.

However, it would improve that compiler in all ways addressed in this chapter.

8.4 Summary

This chapter compares the subspace model to a variety of other strategies, optimiza-
tions and models for parallel systems and defends the contributions of the subspace
model. Its primary contribution is that it. generalizes and unifies aspects of many of
these distinct techniques. All the usual software engineering advantages of unification

and generalization accrue.
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Chapter 9

Futures

This chapter documents ideas for future work stemming from the subspace model.
Subspace compilation produces an intermediate form that is ideal for subsequent
analyses. Some of the analyses that are currently being performed (see Section 9.1)
might be improved by reexamining them in light of this new input form. We might
achieve improved results using the same algorithms or we might be able to simplify
the algorithms without degreding the results. This form also enables new compiler
analyses (see Sections 9.2, 9.3 and 9.4). Lastly, we identify two analyses that are not
actually part of a compiler but might be very useful for application development (see

Sections 9.5 and 9.6).

9.1 Data and Code Layout and VLIW Scheduling

Given a subspace analysis that reshapes the data and the code, we should revisit the
existing algorithms for data layout, code layout and VLIW scheduling. These existing
algorithms should provide better results given improved input.

This study might also lead to alternate approaches to these analyses. Several

aspects of subspace analysis might impact these algorithms. Some examples follow.

e Data layout is currently done on the basis of an axis of an array. If the code is
in the subspace intermediate form, a single decision for each expansion might

be more appropriate. To the extent that multiple objects belong to a single
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expansion, there are fewer decisions to make. This reduction in problem size

might make it feasible to use a more expensive algorithm.

e Subspace normal form specifies a partial ordering cf the code to facilitate concur-
rent execution of fragments. Actual concurrent execution depends on the result
of data and code layout. New layout algorithins would attempt to optimize per-
formance by a balance between parallelism within fragments and concurrency

among them.

9.2 Fragment Merging

The subspace model creates minimal fragments, isolating operations in independent
cycles, distinct subspaces and distinct expansion categories. This maximizes the
potential for parallelism. But on some targets there is sometimes an advantage to
merging these minimal fragments. Several reasons for merging fragments are listed

here.

e If two fragments are both of the same expansion category and the same sub-
space, overhead can be reduced by merging. Loop overhead can be reduced by
merging distinct parallel fragments. Communication overhead can be reduced
by merging distinct parallel-prefix or serial fragments. Merging, in this case,
might facilitate combining distinct messages. Merging decisions are directly

related to layout and should be made in that context.

e Data and code layout ma;y serialize some axes. Two fragments that were in dis-
tinct subspaces may become, in effect, in the same subspace after serialization.
These fragments then fall into the category above by virtue of this serialization.
For example, a fragment in {i,j} with the j axis serialized could be combined

with a fragment in {i}.

e Two fragments that were distinct because they were in distinct expansions might

be combined even though their expansion categories differ. For example, if
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distinct serial and parallel-prefix fragments are laid out in such a way that there
is no possibility of concurrency between them and if the communication they

require can be combined, they may be more efficient combined than separate.

9.3 Memory Minimization

Analysis and transformation to minimize memory requirements can be critical on
some systems. First, some programs simply don’t fit in memory if compiled naively.
But, in addition, such transformations might keep values at higher levels of the mem-
ory hierarchy and therefore improve performance in the process.

There are several possibilities here.

o We could schedule definitions and uses to minimize the number of names live

at any given time.

e Compiler optimizations to replace redundant computations by saved values,
optimize processor computations at the expense of memory. One might perform
the reverse optimization, that is, eliminate a named object and replace it by

recomputations.

o It might be valuable to create chunks (strips) of fragments and schedule execu-
tion of these chunks to minimize memory requirements. Such a chunk defines
a set of values and uses a set of values. The goal here is to schedule chunks
so that the values defined by one chunk are used quickly by others so that the
space required is reduced from the size of the whole array to the size of a chunk

(or a small number of chunks).

9.4 Hybrid Targets

The subspace model is ideally suited to studying hybrid targets such as MIMD systems
with SMPs at each node or MIMD systems with VLIWs at each node. Since the
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subspace model provides a target-independent way of expressing various types of

parallelism it provides a vehicle for studying the complex trade-offs in hybrid systems.

9.5 Determining an Appropriate Configuration

Given an architecture, say distributed memory MIMD systems, for example, and an
application, we would like to know the best configuration (number and arrangement
of processors) of that architecture for this program. ! Subspace analysis generates
an ideal intermediate form for performing this analysis. The result could be used in
several ways, to guide purchase decisions or to guide processor allocation when many

applications are vying for limited processor resources.

9.6 Characterizing Available Parallelism

A generalization of determining an appropriate configuration within an architecture
(see Section 9.5) is to actually choose the architecture. One might use the subspace
model as a basis for a way to characterize programs with respect to the type of
parallelism they exhibit. Some programs have significant instruction-level parallelism
but almost none of it could be used by a vector or SIMD system, for example. This
characterization might lead to a good choice among existing architectures for an
application or a class of applications. In fact, such an analysis might lead to the

identification of some new point in the architectural design space.

o

"The idea of using the subspace compiler for this purpose is due to Sue Graham (private
communication).
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Chapter 10

Conclusions

We have presented the subspace model, a shape-based, target-independent parallel
compilation technique. Many aspects of parallel compilation are related to shape.
Parallelization itself is shape-based. Optimizations such as invariant-code motion
and privatization are shape-based. Compilation strategies such as owner-computes
and scalar replication impact shape. Some language concepts such as conformance in
Fortran90 are shape-based. Subspace compilation subsumes and generalizes all these

shape-based approaches. Several aspects are addressed below.

1. The subspace model unifies, generalizes, simplifies and improves a variety of ex-
isting optimizations and strategies for parallel systems. This claim is discussed

at length in Chapter 8. Briefly,

e It unifies the data-centric data view of distributed memory systems and

the operation-centric view of shared memory systems.

o It unifies and generalizes existing shape-related optimizations such as invariant-

code motion and privatization.

o It replaces ad hoc shape-related strategies such as owner-computes and

scalar replication by analysis.

o It generalizes the notion of conformance in Fortran 90.

2. The subspace model is an architecture-independent parallelism analysis.
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Given scalar input, in addition to the optimizations above, subspace analysis
uncovers loop parallelism (see Chapters 2 and 3) such as required for vector,
SIMD and MIMD systems, as well as fine-grained (instruction-level), medium-
grained (thread-level) and coarse-grained (task-level) concurrency (see Chap-
ter 5). Given explicitly parallel input, it acts as a parallel target-indeprident

optimization phase and may also increase the parallelism.

3. The subspace model enables new optimizations within the subspace ibstraction.

e Redundant expansion elimination reduces the communication.

e Generalized common subexpression elimination improves the effectiveness

of common subexpression elimination for parallel systems.
e Minimizing subspaces reduces the total work.

e Reducing expansion categories reduces the critical path.

These subspace optimizations are addressed in more detail ia Chapter 6.

. The subspace model improves the result of existing subsequent analyses.

These subsequent analyses include data placement, code placement and instruc-
tion scheduling, providing them additional flexibility by modifying their input.
Although this remains to be proven via experimentation, the rationale for this
claim is that subspace analysis increases the flexibility of downstream analyses
by providing them both with more options and with more information about

the costs of these options.
. The subspace model provides an improved foundation for more advanced down-
stream analyses.

Some of the possibilities in this domain are addressed in more depth as future

work in Chapter 9. A few possibilities are listed below.

o Because the model is target architecture-independent, it provides an ideal

basis for hybrid systems.
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o The form generated is an ideal basis for memory minimization and locality

enhancing transformations.

o The result of subspace analysis may be used to provide input into decisions

about the ideal target configuration (e.g., number of processors).

e Subspace analysis might be used as a basis for a new technology that
characterizes an application with respect to the types of parallelism it

exwn:bits.

In conclusion, compilers based on the subspace model are simpler, more powerful,

and apply to a wider range of targets.
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Appendix A

Summary of Phases

he body of this thesis has provided details of each phase of the subspace compiler.
This appendix summarizes all the phases at a very high level. The block diagram
of the compiler is shown in Figure A-1. Thc status of the current implementation is

described in Appendix B.

1. Front-end

The Front-end ensures the following.

All assignments, scalar and array, behave according to static single assign-
"

ment restrictions.

Each index name is associated with a unique loop.

Dependence information is available.

o Each reference that is live-on-entry is identified as such.

Classical scalar optimizations are performed.

With respect to classical scalar optimizations, the choice of which optimizations
to perform is dictated by the needs of the subsequent subspace analyses. Some,
such as constant propagation and folding and dead code elimination, will im-
prove the results of subspace analysis and are included in the front-end. Some,

such as invariant code motion, are subsumed by subspace analysis and should
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Figure A-1: Compiler Design

not be performed in the front-end. Some, such as redundant code elimination,
depend on a specific ordering of the intermediate computations and should
not be performed if the optional subspace optimization phase is included in
the subspace conpiler. All the processing mentioned above constitute required

front-end processing.

In addition. when the subspace optimization phase is included. the following
two transformations, designed to improve the results of these subspace opti-

mizations, are performed by the front-end.

e Variable subsumption replaces a reference by its definition. It maximizes

the size of expression trees considered during expression reordering.

e Non-commutative binary operations are converted to a commutative form,
e.g.. subtraction is converted to addition with unary minus. This also

increases reordering potential.

Phase ordering issues: Required front-end processing should e performed

before any subsequent phases. The two optional transformations, if performed.
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should be performed prior to the optional subspace optimization phase. They
are included in the front-end so they can be flexibly ordered with respect to the

other scalar transformations.

Expansion Analysis Part 1: SCCs

This phase uncovers distinet strongly connected components with respeet to

cach loop index.

The SCCs uncovered are used for two distinet purposes by two distinet phases,

e SCC('s are used by natural subspace analysis to initialize the subspace of

some objects.

T VI N
T ITeN TSt mavy

Any
that index in its subspace.

e SCCs are used by part Il of expansion analysis to determine the expansion
category for an index in a subspace
If an index is in the subspace of an object, part 1l of expansion category
analysis will deterinine whether the object is expanded across that index
via a parallel, parallel-prefix or serial expansion. 1 part 11 of expansion
analysis, parallel expansions are distinguished from the other two by the

absence of any cycles with respect to that index.

Phase ordering issues: As indicated above, the SCC's are needed for subspace

analysis and for part Il of expansion analysis.

Natural Subspace Analysis

!

This phase performs the subspace propagation algorithm to determine the ref:
erence mapping that indicates how each reference is transformed from its sonree

representation to the new subspace representation.

The reference mapping identifies the indices that are in the subspace of cach

RHS and each LHS reference. It identifies the source indices that contribute to
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the dimensionality of the resulting object. It also identifies the added dimen-

sions.

Phase ordering issues: The subspace information determined in this phase
is used by part II of expansion analysis, subspace optimizations, intermediates,

and restructure phases.

Expansion Analysis Part II: Expansion Categories

For each axis in the subspace of each object, the appropriate expansion category
is determined. If it is part of an SCC (has “cyclic” expansion category). this
phase determines if it is parallel-prefix or serial. If it is not part of an SC'(', it

is identified as parallel.

Phase ordering issues: The expansion categories determined by this phase

are used by subspace optimizations, intermediates, and restructure phases.

Optimizations

This phase is optional. The transformations performed in this , "ase leave the
subspaces and the expansions of the references to named references unmodi-
fied. They identify possible reorderings of the expression trees and choosc one
based on cost. This process reduces the subspaces of intermediates, reduces
the strength of natural expansions of intermediates, reduces the operational ex-
pansions, reduces the number of computations and/or reduces the number of

expansion.

Phase ordering issues: This phase optional. If p1. ‘ormed, it should be per-
formed prior to intermediates and restructure phases.

Intermediates

Whether or not the expression reorderings in the optional optimization phase
are performed, the expression trees are assumed to be fixed on entry to this

phase. This phase then processes the intermediates as follows:
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e All intermediates are annotated with their reference mappings and their

expansions. Implicitly distributed intermediates are identified.

o The expression trees are fragmented to ensure consistency with respect to

both subspaces and expansions.
o Expansions to operational space are inserted were necessary.

e Names are created where fragmentation converts an unnamed object to a

named one. These names are incorporated into the tables as appropriate.

Phase ordering issues: Intermediates must be performed prior to restructure
so that all statements processed by restructure are consistent and expansions

to operational space are explicit.

Restructure

This phase generates a new internal form by augmenting fragmented expression
trees with the appropriate loops according to subspace and expansion informa-
tion thus making loop-based parallelism explicit. Bodies of loops are partially
ordered according to dependences thus making concurrency at the instruction-

level, the thread-level or the task-level explicit.

Phase ordering issues: Restructure creates the intermediate form required

for use by the Back-end.

Back-end

Strictly speaking, the Back-end is not part of subspace compilation. But here

we address how Back-end processing is effected by subspace compilation.

Subspace compilation is a very early phase, so anything except for parsing,
semantic analysis and scalar optimization, that was performed in a parallel
compiler and is not subsumed by subspace compilation is considered here a
Back-end processing.

In particular, this includes any target-specific processing. Target-specific phases

Lse the results of subspace analysis to determine the best strategy for the specific
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target. Such analyses may include data layout, code layout, loop interchange
and tiling. Based on these analyses, the Back-end may then reverse some of the
transformations made by subspace compilation. For example, where the layout
phases generate distributions that do not make use of the potential parallelism

uncovered by subspace compilation it may be appropriate to

e convert data flow back to control flow.
¢ merge distinct fragments.

e eliminate axes of objects.

Notice that the Back-end may generate parallel source code, source code for a

each processor in a parallel system or target code.
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Appendix B

Implementation Status

This appendix desribes the capabilities of the subspace compiler as currently im-
plemented. The phases of the subspace compiler are shown in Figure B-1. The
implemented phases are those that appear in bold boxes in the figure.

The Front-end is not yet implemented. Processing currently begins on an internal
form in which dependences and static single assignment form have been generated
by hand. The optional optimization phase is not implemented. All other phases are
implemented.

The current compiler

o processes do loops, assignments and if statements.
e determines subspaces of named references
e isolates distinct expansions within each loop

e distinguirhes between cyclic and parallel expansions but does not distinguish

between cyclic expansions that are serial and those that are parallell-prefix.
¢ identifies subspaces and expansions for intermediates

o fragments statements to ensure that the resulting statements are consistent with

respect to subspaces and expansions
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Figure B-1: Implementation Status by Phase

e uses the results of these analyses to reconstruct the program into subspace

normal form

o generates Connection Machine Fortran for the CM-5

In the current implementation, subscripts can be arbitrary expressions but only

on a single index and each index may only appear in one subscript.
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Appendix C

Phase Integration

The integration of expansion analysis and subspace analysis as presented in the body
of this thesis (See Section 3.4 and Figure 3-1) is slightly more conservative than it
needs to be in some cases. This appendix identifies the issue and points toward a
more aggressive approach.
Consider the following two examples for this discussion.
do j =1, jmax
x(j) = .
= x(j) + b(i) * ...
enddo
do j = 1, jmax
x(j) = ...
= x(1) + b(d) * ...
enddo
The graph processed by expansion analysis is composed of two types of edges, de-
pendence edges and expression tree edges. A dependence edge connects the definition
and the use of x. An expression tree edge connects b(i) with the *. If we say that
i is in the subspace of b(i) we are saying that as i varies the values along this edge
vary and O(extent_of(i)) distinct values flcw along this edge.
Dependence graphs, however, don’t actually give us this level of information.

Consider the dependence edge in the first example. The values that flow along the
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dependence edge vary as j varies and O(erxtent_of(j)) distinct values flow along this
edge. If this is the case, we will say that j is in the subspace of the dependence.

Now consider the second example. Here, j is not in the subspace of the depen-
dence. It is not true that there are O(extent_of(j)) distinct values flow along this
edge. j is not in the subspace of this dependence.

These two cases are very different from our perspective and yet dependence anal-
vsis simply tells us the same thing in both cases, that there is possibly some overlap
in the elements referenced. In the first case, where j is in the subspace of the depen-
dence, if that dependence edge is part of an SC(C' with respect to j, we generate a
cyclic loop on j and that is the appropriate code. In the second case, even though
the dependence is part of an SCC, there is only one value flowing from the definition

to the use. If this is do, we can split the range into subranges around the dependent

element as follows.

x(1) = ...
= x(1) + b(i) * ...

do j = 2, jmax

x(j)

x(1) + b(i) * ...

enddo

In the transformed code the first iteration is isolated from the rest of the loop.
The loop from 2 to jmax can be processed in parallel.

In this example above, it is clear from inspection that, when processing index j,
the index is not in the subspace of the dependence. For examples like this one. we
could incorporate the process of splitting the range and suppressing the dependences
that are not relevant directly into part I of expansion analysis (finding SCCs).

However, the subspace of a dependence may not always be clear from inspection.
Let us look more closely at some different cases. In each example below we will be
looking at the true dependence between the assignment to x in the first line and the

use of x in the second. We want to know if j is in the subspace of that dependence.
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In all the examples the second assignment is to y(j) and y(j-1) is referenced on the

RHS of the first assignment. Case 1 and 3 below correspond to the two cases just

discussed.
Lo x() = y(G-1) + ...
y() = x(j) + ...
2. x(j) = y(j-1) +
y(j) =3 + ...
3. x(j) = y(G-1) + ...
y() = x(1) + ...

4. x=y(j-1) + ..
y(j) = x + ..

+

5. x[j] = y(j-1)
y@i) = x[3j]1 + ...

6. x(s8)
y(3)

L]
+

y(j-1)

x(s) + ...

In the first example, clearly there is a cycle based on j as discussed above. The
values transmitted from the definition of x to the use of x and back to the definition
all vary with j.

In the second example, clearly there is no cycle. There is not even a dependence
between the LHS of the first statement and the RHS of the second. The value used
in the second statement is constant as j varies.

In the third case, the value x(1) does not vary with j. However, there is a
dependence from the definition of x(j) to the use of x(1) because there is an overlap
of one element. j is not in the subspace of that dependence and we can see that x
and y are not expanded cyclically. However, there is a cycle in the dependence graph
and the system, as described, will determine that this is a cyclic expansion. This is

overly conservative.
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In the fourth case, however, subspace analysis will determine that j is in the
subspace of the object x and will add a j axis to both the definition and the use
converting the fourth example into the fifth. Here j is in the subspace of that de-
pendence. A cycle will be found by the analysis which, in fact, corresponds to a real
cyclic expansion. But notice that the distinction between the third and fourth cases
requires subspace information. If subspace information were available, we might be
able to improve the code generated for case three by splitting the loop into distinct
ranges as discussed above.

The sixth case also depends on subspace analysis. Assume that s is a scalar i the
source. Subspace analysis may determine that s is in subspace {}, {¢}, {7}, or {7,/}-
If j is not in the subspace of s then j is not in the subspace of the dependence and
we will be able to split the range of j around the dependent element and make the
computation more effective. Notice that the subspace of s determines whether x and
y are cyclically expanded across j which may determine whether some subsequent
variable which is defined in terms of x has j in its subspace. This implies that
performing subspace analysis and expansion analysis in either order is wrong.

In each example below we will be looking at the true dependence between the
assignment in the first line and the use in subsequent lines. The natural subspace of
the explicit subscript in the source is indicated as {5}, {—7}, {?} or {...} meaning that
the subspace definitely includes j, definitely does not include j, is totally unknown, or
it doesn’t matter respectively. The subspace of the subscript is known by inspection
if it is a function of loop indices and constants. It is not known by inspection if it
contains a reference to an object whose subspace is determined by subspace analysis,

e.g., x(8) where s is some local scalar. There are three cases.

1. x({-j) = ...
= x({...}) + .

j is definitely not in the subspace of the subscript in the definition. This is the
caseof 8 = s + 11naloop on j. A cyclein the dependence graph for j causes

j to be in the subspace of x.
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2. x({7Hh = ...
= x({j}) + ...
If j is in the subspace of the subscripts in both definition and the use then a

cycle in the dependence graph for j causes j to be in the subspace of x.

3. x({jph=...
= x({-j}) + ...
If j is definitely in the subspace of the subscript at the definition but j is
definitely is not in the subspace of the subscript at the use then j is definitely
not in the subspace of tiic dependence. This is the case where we can split the

range of the loop around the dependent element.

The three cases above cover all the actual cases. However, during analysis, we
may not yet have the total information about the subspace of the subscripts. So we
may not know which of these actual cases pertains. What we see might, in fact, be

one of the following.

° x({?}) = ...
= x({-5}) + ...
For this case, to determine if this is case 1 or case 3 above, we need to know

the subspace of the subscript at the definition.

o x({jh)=...
=x({?7}) + ...
For this case, to determine if this is case 2 or cz.c 3 above, we need to know

the subspace of the subscript at the use.
o x({?Hh = ...
=x({?}) + ...

For this case, to determine if this is case 1, 2 or 3 above, we need to know the
subspace of the subscript at both the definition and the use. Note that in this

particular case we may not know the subspaces of the subscripts but we may
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know that they are the same, e.g., both references are x(8). This eliminates

case 3 which is all we need to know.

For these cases we need to determine the subspace of the subscript by subspace
analysis before we can find the cycles. But, as we already know, we need to find the
cycles to initialize subspace analysis.

Notice that we need to know whether j is in the subspace of the subscripts to
determine the cycles with respect to j. This means that the solution is not a question
of ordering the processing of indices correctly. The problem is within each index.

We have concluded that we cannot process the entire program by one of the two
analyses, then process the entire program by the other. Nor can we process the entire
body of each loop by one of the two analyses, then process the entire loop body by
the other. We must go down one more level of granularity.:

Consider the situation after SCCs have been found with respect to a given index,
j in this case. We have a number of SCCs, a number of computations that are not
in any SCC. The computations that are not within SCCs are either parallel across j
or j is not in their subspace but we are not yet able to distinguish these two cases.
Therefore we will consider each SCC and each computation not in an SCC as an
expansion (possibly a null expansion). We can determine the partial ordering among
these expansions since there can be no cycles among them.

This is an initial conservative approximation to the expansions for the loop. Each
of these initial conservative expansions is then processed in order by both analyses.
Results of subspace analysis from expansions early in the partial ordering can be used
by subsequent ones for improved (less conservative) analysis on those.

The processing of an expansion across j will determine if j is in the subspace of an
object it defines. If this object is then used as a subscript in a subsequent expansion,
we will know if j is in the subspace of that subscript or not. This enables us to locate
expansions that, in our conservative approximation, appeared to be part of an SCC
requiring serial processing but which we can actually compute in parallel by splitting
the loop over its original range into multiple loops over subranges.

This achieves our goal. This integrated analysis is shown in Figure C-1.
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Routine Integrated-alg-for-one-index()
Initialize expansion list to whole source loop
vhile expansion list is not empty

Find-SCCs()
SS-for-expansion()
endwhile

End Routine

Routine Find-SCCs()
Remove top existing expansion (OLD-EXP) from the expansion list
Perform SCC analysis on OLD-EXP
Set of new expansions =
each SCC and each object defined in OLD-EXP that was not in an SCC
Add new expansions to the expansion list according to their partial order
End Routine

Routine SS-for-expansion()
Remove top existing expansion (EXP) from the expansion list
Perform SCC analysis on EXP

End Routine

Figure C-1: Integration of Subspace and Expansion Analyses

This approach may seem expensive but notice that we only recompute the SCCs

if earlier processing reduced the size of the SCC.

This level of integration decreases the number of instances for which the subspace

of a subscript is unknown. It therefore increases the number of times we can clearly

identify case 3 to break apparent cycles. This allows more aggressive handling of

some situations.
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Appendix D
Glossary of Terms

Composite assignment: A composite assignment is constructed during the expan-
sion determination. It stands for a set of assignments and summarizes their

characteristics for processing at a higher level in the looping structure.

Consistent with respect to subspaces: An assignment is consistent with respect

to subspaces if all the named references and all the intermediates have the same
subspace.
Consistent with respect to expansions: An assignment is consistent with respect

to expansions if all the intermediates are members of the same expansions. In

this case the named references need not be members of the expansions.

Contributing indices of a dimension: The contributing indices of a dimension

are

o if the dimension is a contributing dimension then:

the set of potentially contributing indices.

o if the dimension is not a contributing dimension then:

the empty set.

Contributing indices of a reference: The contributing indices of a reference are

the indices in the union of the contributing indices of all its target dimensions.
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Dependence: Here we are only concerned with true dependences. These indicate

the flow of data from a definition to a use.

Dimension: The subspace compiler transforms source objects to target objects.

Both the source and the target have dimensions.

Added: An added dimension is one that occurs in the target but not in the

source.

Deleted: A deleted dimension is one that occurs in the source but not in the
target.

Maintained: A maintained dimension is one that occurs in both the source
and the target.

Source: A source dimension is a dimension that is explicit in the input to
subspace analysis.

Target: A target dimension is a dimension that is explicit in the output of

subspace analysis.

Expansion category: An expansion category indicates how (in what order and at

what speed) an object fills up with values along a particular axis.

- Parallel: If the expansion category for some axis across some object is paral-
lel, the none of the values along that axis depend on any others. There is
no inherent reason for serializing computation along that axis. The time

requirements are O(1) if we do not take machine size into account.

- Serial: If the expansion category for some axis across some object is serial,
then some values along that axis depend on other values along that axis.

The time requirements are O(n) where n is the extent along that axis.

- Parallel-prefix: If the expansion category for some axis across some object
is parallel-prefix, then some values along that axis depend on other values
along that axis. This is different from serial in that there is a way of com-
puting the values along a tree rather than linearly. The time requirements

are O(log n) where n is the extent along that axis.
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- Cyclic: Serial and parallel-prefix computations are uncovered by cycles in
the dependence graph and so are termed cyclic expansions to distinguish

them from parallel expansions.

Implicitly distributed objects: Some objects whose natural subspace is, say S
are available without communication in other subspaces that are supersets of
S. For example, the expression i+3 is in natural subspace {i} but is available in
{i,j} without communication. These are called implicitly distributed because

they do not require explicit distribution.

Fragment: Subspace normal form is a partial ordering of fragments where each
fragment is a loop or a single operation. The body of a loop fragment is a

partial ordering of fragments.

Completed fragment: During or after the restructuring phase, code enclosed
in all its required loops is called a completed fragment.

Partial fragment: During or after the restructuring phase, code enclosed in
some subset (possibly none and possibly all) of its required loops is called

a partial fragment.

Augmenting a fragment: The restructuring phase begins with a fragment
(without any loops around it) and wraps it in the appropriate loops. If a
loop is for a cyclic expansion, the loop body of the loop may contain be
formed from multiple fragments. The process of wrapping a loop around

one or more fragments is called augmenting the fragments.

Subspace of a fragment: If a fragment is consistent with respect to sub-

spaces, the subspace of all of the named references are the same. This

subspace is the subspace of the fragment.

Expansions of a fragment: If a fragment is consistent with respect to ex-

pansions, the expansions of all of the intermediates are the same. These

are the expansions of the fragment.
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Generalized common subexpression elimination: (GCSE) Generalized common
subexpression elimination is a variant of classical CSE that finds a(i) + b(i,
j) and a(i-1) + b(i-1, j) common because the second is available from the

execution of the first on an earlier iteration of the i loop.
GCSE: Generalized common subexpression elimination

Index: An index is the index of a loop iteration, e.g.,indo i = 1, imax, the i is

the index.

Index tree: An index tree is a tree that represents the looping structure of the
program. An index, i, is a child of index, j in the index tree if the loop on i is

nested immediately within the loop on j.

Invariant code motion: Invariant code motion is a classical optimization which
removes an operation out of a loop if it produces the same result each time it

is executed within the loop.

MIMD: Multiple Instruction Multiple Data. MIMD refers to machines composed of
multiple processors each of which can be executing its own stream of instructions

on its own local data.

Object: An object is data determined by a reference. An object can be named,
unnamed, RHS or LHS. (See reference.) A RHS named object is the data
fetched by the reference. An unnamed object is the data computed by an
operation. A LHS object is the data defined by the assigninent.

Owner computes: A rule used in SPMD systems that states that the computations
specified on the RHS of an assignment are executed on the processor holding
the owner (LHS).

Phi operator: In SSA form, when a name is assigned to multiple times in the source,
ezch assignment is given a distinct name. At merge points in the control flow,
a new object is created with the merged values. This merging is performed by
a phi operator.
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Pool of assignments or pool of fragments: During the restructuring phase, as-
signments and partial fragments sit in an unordered pool. They are taken out
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