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Abstract -

This thesis describes a new adaptive approximation technique called high resolution
pursuit (HRP), and demonstrates how HRP can be used to extract features that are .
suitable for object recognition. Recently, adaptive approximation techniques have
become popular for obtaining representations of large classes of signals. These tech-
niques include method of frames, matching pursuit, and basis pursuit. In this work,
HRP is developed as an alternative to existing function approximation techniques.
Existing techniques do not always efficiently yield representations that are sparse
and physically interpretable. HRP is an enhanced version of the matching pursuit
algorithm that overcomes its shortcomings by emphasizing local fit over global fit at
‘each stage. Furthermore, the HRP algorithm has the same order of computational
complexity as matching pursuit.

To demonstrate the utility of HRP for feature extraction, we develop a technique
based on HRP features for the recognition of airplanes from silhouettes. Features
extracted by HRP are shown to be robust to boundary perturbations, scale variations,
small orientation variations, and variations due to occlusion. Furthermore, the HRP-
based technique is shown to surpass the traditional Fourier descriptor techniques in
the presence of occlusion.
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Chapter 1
Introduction

This thesis describes high resolution pursuit, a new adaptive approximation tech-. -
nique, and demonstrates how high resolution pursuit can be used to extract features
which are suitable for object recognition. The high resolution pursuit algorithm, like.
other adaptive approximation techniques, is a method to decompose a function as

the weighted sum of elements from a redundant dictionary. The high resolution pur-

suit decomposition also yields a set of geometric features which are ideal for object -

recognition. Thus, this thesis contributes to the areas of adaptive approximation and
object recognition.
1.1 Adaptive Approximation Motivation

Recently, adaptive approximation techniques have become popular for obtaining par- -
simonious representations of large classes of signals. In these adaptive approximation

techniques, the goal is to find a representation of a function f as a weighted sum of

21



22 Chapter 1. Introduction

elements from an overcomplete dictionary. That is, f is represented as

f= Z /\'yg'y (1.1)

~vel

where the set {g,|y € T'} is a redundant dictionary spanning the space of possible
functions. If very few of the coefficients A in (1.1) are non-zero, then the decomposition
is said to be sparse.

Redundant dictionaries are used since they are flexible enough to match many of
the important structures of the function. As a result of this flexibility, decomposi-
tions over redundant dictionaries may have very few non-zero coefficients (i.e. sparse
representationis are possible). Of course, the decomposition problem would be sim-
pler (trivial) if orthogonal dictionaries were used. The main drawback of orthogonal
dictionaries is that they may not be flexible enough to include the different types of
structures present in avfﬁnct"ion, énd thérefore it mé.y not be possible to obtain sparse
decompositions. For example, suppose f was the sum of a sinusoid and a single Dirac.
Two possible orthogonal dictionaries are the Fourier and Dirac dictionaries. A decom-
position of f over either the Fourier dictionary or Dirac dictionary would not yield a
sparse description of the function since neither dictionary-contains all the structures

of the function. Borrowing from the analogy used in [26], these dictionaries are like a

language with a very limited vocabulary. It is still possible to express all ideas using

this limited vocabulary. However, full sentences must be used to replace unavailable
words. A better dictionary for decomposing f would be a redundant dictionary which
contains both the Fourier and Dirac bases.

Since many possible representations of f of the form of (1.1) exist in a redundant
dictionary, the price of using a flexible redundant dictionary is the ambiguity asso-
ciated with determining the “optimal” decomposition. Several methods have been

suggested for determining the “optimal” decomposition. These include the method
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of frames [9], best orthogonal basis (8], matching pursuit [26], and, most recently,
basis pursuit [6].

Intuitively, the “optimal” decomposition should have the following characteristics :

e Sparsity A sparse representation is one in which a minimum number of dictio-
nary elements are used to represent any function. In particular, if a function is
synthesized as the sum of dictionary elements, the “optimal” adaptive approx-
imation representation would be precisely those elements used to construct the

function.

¢ Super-Resolution A closely related concept is that of resolution. The decom-
'position of a function which is the sum of two closely spaced dictionary elements .=

should show the presence of both elements.

¢ Physical Interpretation A physically interpretable decomposition is one in -
which each term of (1.1) relates to the geometric (e.g. size and location) char-

acteristics of the function.

e Hierarchy The “optimal” decomposition should have a corresponding hierar-
- chy so that a few elements of sum in (1.1) yield a coarse approximation to the

function.

e Stability In the case where f is corrupted by noise, the “optimal” decompo-
sition should be stable so that small perturbations in the underlying signal do

not drastically change the representa,tioh.

e Computationally Tractability To be practical, the decomposition should be

obtained in a manner that is computationally tractable.

Existing adaptive approximation techniques do not always yield representations

with all of these desired characteristics. The method of frames [9] chooses the de-
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composition which minimizes the ¢ norm of the coefficients, Ay, in (1.1). As a result,
the method of frames tends towards solutions which are not sparsity-preserving. In
contrast, basis pursuit [6] chooses the decomposition which minimizes the ¢! norm
of the coefficients in (1.1), a criterion that has been shown to yield sparse represen-
tations. However, to find this optimal solution, the minimization problem is trans-
lated to an equivalent large scale linear program, which is know to be computation-
ally complex. Thus, basis pursuit produces representations which preserve sparsity
and resolve closely spaced features, but is computationally complex. Finally, match-
ing pursuit [26] addresses the sparsity issue directly by bulldmg the decomposition

n (1.1) up one element at a time. At each step, the dictionary element chosen is
the one which yields a maximum reduction in residual power. However, the ma.jor
drawback of matching pursuit is that it is unable to resolve closely spaced elements.
The greedy nature of matchmg pursmt can in fact lea.d to the introduction of artifacts
which in turn lead to the extraction of features Wthh are not physically meaningful.
Both matchlng pursuit and basis pursuit will be further explored in Chapter 2.

In light of the desired representation characteristics outlined above, high resolu-
tion pursuit is developed in this the31s as an alternative to ex1st1ng function approx-
imation techqueé ngh resolutlon pursult is an enhanced version of the matching

pursuit algorithm which overcomes the shortcomings of the original matching pursuit

~algorithm by emphasizing local fit over global fit without significantly increasing the

computational complexity over that of matching pursuit. In particular, high resolu-
tion pursuit decompositions frequently rival those of basis pursuit in terms of sparsity

and resolution, but require much less computation.
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1.2 Silhouette Recognition Motivation

Humans have the ability to analyze visual scenes, localize and recognize objects, and
make decisions based on our visual observations. A computer vision system that could
emulate these tasks, which are simple for a human, would have numerous industrial,
military, and medical applications. Model-based object recognition [3,15] from images
is currently the focus of much work in computer vision and is performed by comparing
features extracted from a given data image to features extracted from a predefined set
of model images and determining which model the data image most closely resembles.

One specific computer vision “problem that will be of interest in this work is the

recognition of airplanes from silhouettes. Since humans have the ability to recognize

objects from only silhouette or boundary curves, there is a widely-held intuition in- - =

computer vision [3,13,16, 19,24, 30,40] that these object boundaries contain much

of the Signiﬁcant information required to recognize objects. For a computer vision
algorithm for recognizing objects from silhouettes to be of practical importance, the
algorithm must perform well under a number of possible variations in the image, such
as scale variation, orientation variation, boundary perturbations, and variation due
to occlusion. Further, features should be quickly computable.

| Previous Workv in I;lodel-based object recognition from silhouettes has focused on
fea_,ture matching where the features were of two distinct types : global and local.
- Global features are those constructed from the entire object; some examples of global
features are Fourier descriptors and moments (e.g: area). Some relevant benefits of
global features are the following. First, object recognition is carried out simply by
matching these global features. That is, it is clear which model feature to compare
to which image feature so that a correspondence problem does not arise. Second,
one can envision a clear hierarchy in the object recognition phase. For example, in

recognition based on moments, a match of the lower order moments would be more
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significantly weighted than a match of the higher order moments. On the other hand,
global features also have the following drawbacks. First, object recognition based
on global features does not handle occlusion well. Second, the entire set of features
(i.e. the overall representation) may be drastically changed by a local change in the
underlying object.

In contrast, local features, as the name iinplies, are determined by local image
properties. Some commonly used local features include edges [20], vertices [7,32],
and curvature extrema [31]. Again, there are both benefits and drawbacks to using
local features. Ob Ject recogmtlon based on local features performs well in cases of par-
tial occlusion since only a subset of the object features are changed by a local change
in the object. On the other hand, determining the correspondence between model
features and object features may present a large computational burden. In addition,
local features may not be not 1ntr1n81ca11y geometrlc Certain geometric properties of
the object may be dedu;ec?from an aggregatlon of local features, but the individual
features do not yield size, orientation or elongation information. Geometry is in-
stead introduced by imposing geometrically based constraints in the correspondence
search [21]. There is generally no hierarchy among the set of local features (i.e. there
is no way to deti‘;,té‘r;i—ne wh?ch features are more important than others). Finally, local

features niay not be robust to errors introduced by unstructured noise. For example,

- the presence of noise in an image may greatly distort the edge locations.

In this thesis, high resolution pursuit is proposed as a means of extracting features
that are robust to the presence of boundary perturbations and variations due to occlu-
sion. The features extracted by high resolution pursuit quantify the size and location
of subparts of the object, and therefore represent a new class of features for object

recognition. This new class of features are robust to both boundary perturbations

and perturbations due to occlusion.
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1.3 Contributions

This thesis contributes to the areas of adaptive approximation and object recogni-

tion. The characteristics of the “optimal” adaptive approximation decomposition

are desirable qualities in feature extraction for object recognition as well. Thus, the -

parameters of the elements extracted by high resolution pursuit are attractive as
candidates features for ob ject recognition.

First, this thesis contributes to the area of adaptive approximation. The technique
developed in this work, high resolution pursuit, is a new adaptive approximation
teehnique. The decompositiohs obtained using high resolution pursuit are sparsity-
- preserving, exhibit super—resolution,y and have an inherent hierarchy. Further, high
resolution pursuit produces decompositions which are stable in the presence of small

perturbations in the underlying function and does so in a computationally tractable

way. This thesis contains a thorough investigation of high resolution pursuit as .a -

general adaptive approximation procedure. Two distinct interpretations of the high
resolution pursuit algorithm are described. The first description gives a geometric
interpretation of the high resolution pursuit algorithm, while the second gives a con-
strained maximization interpretation. In addition, the convergence properties and
computatienal complexity of the high resolution pursuit algorithm are studied. Fi-
nally, the high resolution pursuit algorithm is demonstrated on several 1D signals

" using the cubic b-spline and wavelet packet dictionaries.

Second, this thesis contributes to the area of object recognition from silhouettes. .

In the object recognition context, the elements extracted by high resolution pursuit
are a new class of features that describe geometric (i.e. size and location) properties of
subparts of the object. The features based on elements extracted by high resolution
pursuit exhibit some qualities typically associated with global features and some

qualities typically associated with local features. Like global features, the features
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based on high resolution pursuit are robust to variations due to noise and exhibit
a hierarchy. Like local features, the features based on high resolution pursuit are
robust to variations due to occlusion. Since a small number of high resolution pursuit
features can be used to describe an object, there is only a small correspondence
problem which must be solved in comparing data and model silhouettes. As we
demonstrate in Chapter 4, this new class of features can be used to recognize objects
in the presence of scale variation, orientation variation, and boundary noise, as well as
occlusion. This is an improvement on existing techniques which are often not robust

to both boundary noise and occlusion.

1.4 Organization

The organization of the thesis is as follows. Chapter 2 describes two techniques from
adaptive approximation, maféhingv vpu.rs.uit and basis pursuit. This chapter also in-
cludes a description of the cubic b-spline dictionary which will be useful in this work.
In Chapter 3, the high resolution pursuit algorithm is developed and demonstrated.
Chapter 3 also presents a geometric interpretation and a constrained maximization
interpretation of the high resolution pursuit algorithm. Chapter 4 demonstrates how

the elements extract by the high resolution pursuit algorithm can be used for the

recognition of airplanes from silhouettes. Finally, Chapter 5 summarizes the conclu-

sions of this work and presents some ideas for future research.




Chapter 2

Background:Adaptive

Approximation

Recently, adaptive approximation techniques have become popular for obtaining rep- . .....

resentations of large classes of functions. In adaptive approximation, the goal is to
find the representation of a function f as a weighted sum of elements from a redundant

(overcomplete) dictionary. That is, f is represented as

f= Z AvGy , (2.1)

~yel

~where the set {g,|y € I'} is a dictionary which spans the space of possible functions
but is redundant. Many possible representations of f exist in this redundant dictio-
nary. Several methods have been suggested to find the “optimal” representation of
the form of (2.1). These methods include the method of frames [9], best orthogonal
basis [8], matching pursuit [26], and, most recently, basis pursuit [6]. Matching pur-
suit (MP) and basis pursuit (BP) will be particularly relevant in this thesis. In this

chapter, we summarize some relevant topics from adaptive approximation techniques.

29



30 Chapter 2. Background:Adaptive Approximation

2.1 Dictionaries

An important issue in using these adaptive approximation techniques is the choice of
the dictionary. Adaptive approximation techniques are used to determine the “opti-
mal” decomposition of f of the form (2.1) from a redundant dictionary. Redundant
dictionaries are used since they can easily accommodate elements that have a wide
range 6f time-frequency characteristics and match the important structures of the
function to be decomposed. Of course, the decomposition problem would be sim-
pler (trivial) if orthogonal dictionaries were used. The main drawback of orthogonal
dictionaries is that they may not be flexible enough to include the different types
of structures present in a function. For example, suppose f was the sum of a sinu-
soid and a single Dirac. Two possible orthogonal dictionaries are the Fourier and
Dirac dictionaries. A decomposition of f over either the Fourier dictionary or Dirac
dictionary would not yield a sparse description of the function since neither dictio-
nary contains all the structures of the function. Borrowing from the analogy used
in [26], these dictionaries are like a language with a very limited vocabulary. It is still
possible to express all ideas using this limited vocabulary. However, full sentences
must be used to-replace-unavailable words. A better dictionary for decomposing f

would be a redundant dictionary which contains both the Fourier and Dirac baseé.
| To summarize, the dictionary should be chosen to contain elements which match the
important structures of the function to be decomposed and often redundant dictio-
naries are required to fulfill this requirement. Two redundant dictionaries that will
be particularly useful in this thesis are the cubic b-spline dictionary and the wavelet

packet dictionary, though many others can be imagined.
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Figure 2-1: Box Splines.

2.1.1 The Cubic B-spline Dictionary

The cubic b-spline dictionary consists of cubic b-splines over an appropriate range
of scales and translations. This section will describe the cubic b-spline dictionary
structure and highlight properties that will be important in this thesis.

A cubic b-spline is a box spline convolved with itself three times. Figure 2-1 shows
a box spline b(z) and the resulting cubic b-spline g,(z). The analytic forms for b(z)

and gy(z) are

1 -1<z<1
b(z) = - _ - : (2.2)
0 otherwise

gu(z) = bxbxbxb(x) (2.3)
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So(@® + 1227 + 4874+ 64)  for —4 <z < -2

J 5 (—3z% — 1222 + 32) for -=2< <0 (2.4)
L(32° — 1222 + 32) for0< z <2 '

| 3(—2® + 1207 — 482+ 64) for2<z<4

Let g(z) = gu(z)/||gu(z)||- A cubic b-spline at scale j and translation ¢ will be denoted
g;.:(x) and is given by

gi(z) = V2ig(2(z - 1)), (2:5)

As j — oo, the cubic b-splines become finer in scale and approach Diracs. In this
work, we Will‘often use -y to denote the pair (j,?) so that g,(z) = g;.(z). The cubic
b-spline dictionary then contains a set of functions g;.(z) over an appropriate range
of scales and translations. For example, Figure 2-2 shows some elements at different
scales from a cubié b-spline dictionary. Note that the elements of the dictionary are
normalized so that ||g;.|| =1 for all j and all ¢.

The following property of cubic b-splines will be conceptually important for the
work in this thesis. Any cubic b-spline may be written as the sum of finer scale cubic
b-splines which are also dictionary elements. For example, g;; may be written as the
weighted sum of finer scale cubic b-splines which are all at the same scale, j + k; that
is,

L
9it =D Ciljtht- (2.6)
i=1
Note that the sum in (2.6) is unique and finite. This is illustrated in Figure 2-3 for
k =1 and k = 2. Following this idea, and for convenience later, let us define for each

element in the cubic b-spline dictionary, g,, an associated set of indices, IL(k). The

functions which are indexed by I,(k) are the dictionary elements at the finer scale
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Figure 2-2: Some samples of cubic b-splines, g;;, for several values of j.

7 + k which when properly weighted and summed yield g, plus - itself. That is,

Ik = {<j k)

=3 Gt } U, (27)

The index v has been included in the family I,(k) because it will be useful in Sec-

tion 3.3. Thus, (2.6) can be written equivalently as

9y = Z CiJi- (2.8)

iEI-r(k)/’Y
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Figure 2-3: Weighted sum of cubic b-splines at scale j + k yields a cubic b-spline at
scale 7.

2.1.2 The Wavelet Packet Dictionary

The wavelet packet dictionary is a redundant dictionary consisting of the functions
used to generate the wavelet packet decomposition. This section highlights the struc-
ture of the wavelet packet dictionary that will be important in this thesis. More de-
tailed descriptions of Wavelét and wavelet packet transforms may be found in [22,36].

The wavelet packet decomposition is an extension of the wavelet decomposition.
As described in [22,29, 33|, the wavelet transform of a function is the projection of

that function onto translated, scaled versions of a mother wavelet, ¥(x). Let
Wi(z) = VI (z — 1)) (2.9)

The set of wavelet functions at a given scale j and translates t = 279, with [ € Z

forms an orthogonal basis for a space that is denoted W;. The scaling function that
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accompanies ¥(z) is denoted ¢(z). Scaled and translated version of ¢(z) are denoted
b;.4(z) = VP (P (z - 1)). (2.10)

The set of scaling functions at- a given scale j and translates t = 279, with [ € Z
- forms an orthogonal basis for a space that is denoted V;. The space W; contains
high frequency elements, the space V, contains low frequency elements, and the two
spaces are orthogonal to one another. Linear combinations of the scaling functions at
scale j yield the wavelet and scaling functions at the next coarser scale, 7 — 1. These

linear combinations are specified by the conjugate mirror filters ! A; and hy. That is,

400
d)j—l,O(I) = _Z— hl [n](bj’z—jn(fl') (211)
’(/)_/,'_1'0(117) = jZio /12 [n]gbj’z—jn(l'). (212)

The set of coarser functions {1, 1 o-i-1; }iez and {@;_1 o--1, }iez are bases for W;_4

and V;_y, respectively. The spaces W;_; and V;_; are contained in V; and thus or- -

thogonal to W;. The wavelet transform is constructed by projecting onto spaces
that are formed by repeatedly dividing the low frequency spaces V. As a result, the
~ wavelet transform yields poor frequency resolution for high frequencies. In contrast,
- the wavelet packet transform is constructed by dividing Wj as well as V. Generaliz-
ing the wavelet notation, the wavelet packet decomposition of a function is the projec-
tion of that function onto a set of spaces W, where j is scale and w is a frequency
index. Each space W, has a corresponding orthogonal basis {%;:.()}i=2-iyez.

Linear combinations (specified by hy and hy) of the basis functions of the space W,

!We have used h; and h; to refer to the conjugate mirror filters which are usually [22] referred
to as h and g. This notation was used to avoid confusion with our dictionary elements g.
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Figure 2-4: Representative elements of Haar wavelet packet dictionary. Note that the
finest resolution has been designated j = 0.

yield the basis functions of the spaces W;_; 5, and W;_; g,+1. That is,

+o0
Yi—1020(T) = _2: hl[n]’d}jﬂ"jn,w(x) (2.13)
- ;;00
Yic100w1(2) = Y ha[n]v;a-in(). (2.14)

n=—00

Figure 2-4 shows sample elements from a wavelet packet dictionary based on the Haar

wavelet.

In this work, we will denote elements of the wavelet packet dictionary g, = ;.
where v = (j,¢,w) is now a joint index over scale, translation, and frequency. This
is in contrast to the cubic b-spline dictionary which was indexed only by scale and
translation. Also in this work, it will be convenient to use the time-frequency plane

to represent the support of wavelet packet dictionary elements. Figure 2-5 shows
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the time-frequency plane representation of elements from a wavelet packet dictio-
nary based on the Haar wavelet; wavelet packet dictionaries based on other wavelets
exhibit similar time-frequency behavior. Each rectangle in the time-frequency plane
represents the area over which the energy of the function is concentrated. The scale of
the element determines the size of the rectangle and the translation and frequency of
the element determine the location in the time-frequency plane. Note that Figure 2-5
shows that the wavelet packet transform divides the frequency axis into intervals of
different sizes in a way that does not depend on the frequency. This is in contrast to
the wavelet transform which divided the frequency axis into large frequency intervals
at high frequencies and small fréquency intervals at low frequencies.

Note the following importé,nt properties of the wavelet packet dictionary. First,

the wavelet packet dictionary is redundant. The collection of functions of the same

scale (size) is a basis for IR”; where P is the length of f [22]. The entire dictionary is - ..

a collection of bases and is therefore redundant. Second, equations (2.13) and (2.14)

imply that each dictionary element is the weighted sum of dictionary elements at a

- finer scale. Thus, just as was the case for the cubic b-spline dictionary, it is possible -

to define for each element, g,, an associated set of indices I, (k) where the functions
indexed by I,(k) are the function g, and the dictionary elements at scale j + k which

when properly summed yield g,. That is,

L(k) = {(j+k,t.i,w/2)

L
Gy=>_ Cigj-l-k,t.-,w/?,} U {7} if w even (2.15) .
i=1

L(k) = {(j +k, i, (w—1)/2)

L -
=2 Cigj+k,ti,(w—1)/2} U {7} ifwodd (2.16)

=1

Again, v has been appended to I,(k) for convenience later. This definition for I,(k)
is analogous to the definition for I, (k) for the cubic b-spline dictionary given in (2.7).

This property is will be important when we define the new similarity measure in
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Figure 2-5: Time Frequency representations of the Haar Wavelet Packet Dictionary.
Each rectangle represents the area over which the energy of the function is concen-
trated. For each dictionary element, scale determines the size of the rectangle and
translation and frequency determine the location.

Section 3.1.

2.2 Matching Pursuit

Matching pursuit (MP) is an iterative, adaptive algorithm for signal decomposi-
tion [26]. The original signal is decomposed as the sum of the most contributive
elements from a dictionary set. In MP, elements are chosen one at a time. At each
iteration, the most contributive element is defined to be the one which minimizes the
L? norm of the fit error, or equivalently, has a maximum inner product with the last

residual. The underlying goal of the matching pursuit algorithm is to extract local
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physical features of the signal. For certain basic examples, MP yields un-intuitive
results because of the greedy nature of the algorithm. In this section, we describe
the matching pursuit algorithm for signal decomposition and provide examples where
this algorithm fails to extract local physical features of the signal.

The matching pursuit algorithm is defined as follows. Let f be the function to be
decomposed and D = {g,|y € I'} be the set of dictionary vectors with g, || = 1. The

first element g, € D is chosen such that
9o = argmax| < f,g, > |. (2.17)
The-function f is then decomposed as

f =< f: v = Gy + Rf (2'18)

where Rf is the residual. It is easy to show that 9vo» the element with the largest
inner product with £, also yields the smallest residual energy. An energy conservation

equation follows :

IFIP = 1< £, 95 > + | REI (2.19)

Subsequent elements are chosen similarly to be the best fit to the previous residual.
That is,
| Gy, = argr%axl <R"f g, >| (2.20)
il
where R™f is the n-th residual. This yields a cumulative decomposition of
m—1

f=> <R‘fg, > G +Rmf (2.21)

n=0
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and a cumulative energy equation of

m—1

117 = > | < R"f, 95 > P+ [|R™ £ (2.22)

n=0

Further, Mallat and Zhang [26] show that if f and g, € D are discrete functions with
a finite number of samples, then ||R"f|| decays exponentially.

In the matching pursuit algorithm, the inner product is used as the measure of
correlation or similarity between a function and elements of the dictionary. It is
well known [14] that the inner product may not be a good measure of similarity

between two signals. As we show in Section 2.2.2, the inner%i)'roduct—based similarity

* measure makes MP a greedy algorithm which yields un-intuitive decompositions for

some simple examples.

2.2.1 Computational Complexity

The MP algorithm can be efficiently implemented so that the number of operations
required for each iteration is proportional to the size of the dictionary. Let Q be
the number of elements in the dictionary. To begin, compute and store < f,g, >
for all g, € D and < g,,93 > for all g,,95 € D. This requires O(Q*P) (where

P is the léngth of the signal) operations, although this initial computation can be

-significantly reduced by taking advantage of specific dictionary structures. These

initial computations reduce the computational requirements for subsequent iterations.
Since

R f = R"f— < Rf, 0y > gy (2.23)

we know that

< R™f, gy >=<R'f,gy > = < R"f, 0y, >< gy., 97 > . (2.24)
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Each term on the right hand side of (2.24) has been stored at the previous iteration;
therefore, the computation of < R™*!f, g, > for all g, € D requires O(2@Q) operations.
In [26], the authors show that computational complexity may be further reduced by
performing MP at each step over a subdictionary and then refining the estimate
using a Newton search strategy. Thus, there exist implementations of MP where the

computational burden is reasonable.

2.2.2 Drawbacks of MP

The MP approach works well for many types of signals. It has been shown to be
especially useful for extracting structure from signals which consist of components
with widely varying time-frequency localizations [26]. MP is a greedy algorithm in
the sense that the element. chosen at each step is the one which absorbs the most
remaining energy in the signal. In practice, this results in an algorithm that sacrifices
local fit for global fit, as illustrated by the following example.

The twin peaks function, f, illustrated in Figure 2-6, is the sum of two cubic
b-splines at the same scale but different, ﬁearby translates. Let the dictionary D
consist of cubic b-splines at a wide range of translates and scales, including those used
to construct f. This dictionary is well suited for the signal under consideration. For
the twin peaks example, the first element chosen by MP is one which does not match
- either of the two functions which are the tfue components of f. This is illustrated
in Figure 2-6 which shows the original function and the first element chosen by MP,
0y We can gain insight into the behavior of MP for the twin peaks example by
studying the projection graph which is defined to be the inner product of f with
each dictionary element as a function of the scale and translation of the dictionary
element. A contour plot of the projection graph is shown in Figure 2-7. The proximity

of the two components of f leads to a maximum of the similarity function (the
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Figure 2-6: The twin peaks function and first element chosen by MP.

inner product) which is not at thé correct translation and scale of either element.
The first MP residual is shown in Figure 2-8. The residual has a large negative
component at ¢ = 0 where the original function was positive. Thus, instead of finding
significant features of the signal, MP has effectively introduced new artifacts which
the algorithm will have to account for by fitting additional elements. This problem
is further compounded as subsequent ’elements are chosen by MP in an effort to
correct the initial mistake. .Figure 2-9 shows the first ten elements chosen by MP to
represent f. Here, note that the elements chosen by MP do not correspond to the

physical features of the function. In fact, many of these are “non-features” which

“only serve to correct mistakes from previous stages.

2.3 Basis Pursuit

The basis pursuit (BP) principle [6] is to find the decomposition given in (2.1) which
minimizes the £'-norm of the coefficients A,. The examples presented in [6] indicate

that basis pursuit yields decompositions which are sparse and show super-resolution.
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~

Thus, in general, BP does not exhibit problems highlighted by the twin peaks exam-
ple. An important drawback in the implementation of BP is that of computational
comple}dty; Since basis pursuit decompositions are based on solving a large-scale
optimization problem, there exist examples where the decomposition may not be
completed in a reasonable amount of time, as stressed in [6].

To implement the basis pursuit principle, an equivalent linear programming prob-
lem is solved. The basis pursuit principle is to find the decomposition of the form (2.1),
which minimizes the ¢*-norm of the coefficients \,. Equivalently, in matrix notation,

the basis pursuit problem statement is
min ||Af]; subject to f = ATG (2.25)

where G is a matrix of all the vectors in D, f € RP, A € R7, and G € RP*9. The
solution to (2.25) is found by formulating and solving an equivalent standard form
linear program.

Two algorithms from linear programming are proposed in [6] to implement the

basis pursuit principle : the simplex method and interior point methods. For a signal
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of length P and a dictionary of @ elements, the BP principle implemented using the
simplex method requires an average of O(Q?P) calculations, though it could require
as many as O(2” — 1)O(QP) calculations. The complexity of interior point methods
depends on the implementation.’ Interior point methods are typically polynomial in
Q@ and P [11,17]. Thus, the implementation of BP is computationally complex,.as .
compared to MP.






Chapter 3
High Resolution Pursuit

The objective of high resolution pursuit (HRP) is to combine the computational speed . . -

of MP and the super-resolution of BP. The HRP algorithm, developed in this chaptér,

is similar in structure to the MP algorithm and in fact has the same computational - ..

complexity as MP. In contrast to MP, HRP employs a similarity measure which
emphasizes local fit over global fit, and is thus able to achieve super-resolution similar
to that exhibited by BP.

The organization of this chapter is as follows. Section 3.1 describes the HRP
similarity measure and the basic algorithm. In Section 3.2, two interpretations of
the HRP .algorithm are described. We show a geometric interpretation as well as va
- constrained maximization interpretation of the HRP algorithm. In Section 3.3, the
convergence properties of HRP are discussed. Next, Section 3.4 describes the HRP

computational complexity. Then, the HRP algorithm is demonstrated in Section 3.5.

47
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3.1 The HRP Algorithm

Let us begin by developing our intuition about the MP similarity measure using cubic
b-spline dictionaries. For the case of cubic b-spline dictionaries, the inner product
(the MP similarity measure) of f with dictionary element g, can be shown to be
a Weighted average of the inner products of f with finer scale dictionary elements.
Recall the notation introduced in Section 2.1.1, where elements of the cubic b-spline
dictionary at scale j and translation ¢ are denoted g;;, or, equivalently, g, where v
is a joint index over scale and translation. Any cubic b-spline may be written as the
sum of finer scale cubic b-splines composing g, which are also dictionary elements,
as expressed in (2.8). Since g;; may be represented as the weighted sum of cubic
b-splines that are k scales finer, the inner product < f, g;: > may also be expressed

in terms of finer scale inner products,

L
< frgie>= D¢ < [, Givns > (3.1)
=1
or, equivalently,
<figy>= D, a<fg> (3.2)
i€ I (k)

~ where I, (k) is as defined in (2.7). In other words, the inner product of f and g, may

~be interpreted as the weighted average of the inner products of f with high resolution

dictionary elements.

This interpretation of the MP similarity measure yields intuition about what form
a new, more locally-sensitive similarity measure might take. Even though each of the
high resolution correlations in (3.1) (i.e. {< f, g >}ier,)) is sensitive to local struc-
ture, the (weighted) averaging process of (3.1) renders < f, g, > relatively insensitive
to local structure. One can imagine that some other combination of the high resolu-

tion correlations, {< f, gi >}ier k), might yield a new measure of similarity between
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f and g, which is more sensitive to local mismatch. Intuitively, this new similar-
ity measure should be dominated by worst local fit. For example, the minimum of
{< f, 9i >}ier, k) is dominated by worst local fit.

The similarity measure we propose is essentially the minimum over {I<f,g:> 1|}

for all 4 € I,(k). Our new similarity measure, S(f, g,), is given by

S(fag“y’) = m(f: g7)s(f1 g’)’) (33)

_ . | < fa i > I
s(f,9y) = igflvl(r}d | < gi, 94 > | (3.4)

+1if ZhE2 > 0 for all ¢ € I (k)

m(f,gy) = § -1 if =L8= < oforall i€ I,(k) (3.5)

<g~;:gfy>

0 otherwise

where I,(k) is given in (2.7) for cubic b-spline dictionaries. In this work, we will
sometimes refer to the elements indexed by I, as the subfamily associated with dic-

tionary element g,. The denominator of s(f, g,) is a normalization factor which yields

S(g+, 94) = 1. The term m(f, g,) is included to assure that oscillatory functions yield .. .-

similarity measures of zero with coarse scale dictionary elements. That is, if the scale
of ¢, is coarser than the scale of the oscillations of f, then m(f, g,) will force S(f, g,)
- to be zero. This implies that for an oscillatory f the coarsest cubic b-spline element
~ to yield a non-zero similarity measure would be the one whose scale matches the scale
of the oscillations of f.

The HRP algorithm follows essentially the same procedure as the MP algorithm.
In HRP, the elements are chosen one at a time. At each iteration, the element chosen

by HRP is the one which maximizes the HRP similarity measure with the previous

S _— e vr— e & e v 4 mm 3 mepwi e e SsEmG—— e e e+
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residual. That is, the element chosen at the n-th step, g,, is given by

9y, = argmax|S(R"f, g,)] (3.6)

where the similarity between the n-th residual, R"f, and a dictionary element, g,
is given by S(R"f,g,) = m(R"f,g,)s(R"f, g,) as defined in (3.4) and (3.5). In the
HRP algorithm, the n + 1-st residual is then generated as

R = B = S(Rf, g2 ). (3.7)

One further note about the parameter £ which essentially controls the depth of the
resolution of the HRP algorithm. The HRP decomposition will change as a function of

k, as will be illustrated in Section 3.5: When £k is set to zero, the HRP decomposition

-~ will be identical to the MP decomposition. At the other extreme when £ is very large,
the fine scale elements of I, (k) will approach Diracs and the HRP decomposition will

be highly sensitive to noise in the signal. For our work & has been chosen empirically.

~ig

iy

In general, & should be regarded as a means to incorporate prior knowledge.
Although our discussion has concentrated on cubic b-spline dictionaries, the HRP
algorithm and the iﬁfui%ion behind it extend in a straightfdrward way to other dic-
tionaries where coarse scale elements may be written as the weighted sum of fine
- scale elements. The HRP algorithm in these more general dictionaries is exactly the
same as before, but with the set I,(k) defined to be analogous to (2.7). That is, the
functions indexed by I,(k) are g, and a set of functions & scales finer which yield g,
when properly weighted and summed. For example, in the wavelet packet dictionary
which has the property that coarse scale elements are the sum of fine scale elements,
the analogous definition for I,(k) is given in (2.15) and (2.16).

A related pointed that we should mention is that we have chosen to use a particular
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structure for I, (k), namely that 7, (k) indexes the set of functions & scales finer which
can be summed to yield g,. Many other choices of I, might also be appropriate. For
example, one could imagine using combinations of finer scale cubic b-splines that are
not all at the same scale which also sum to g,. In some cases, this may be a way to
incorporate prior knowledge.

Finally, note that the HRP algorithm is not limited dictionaries where coarse
scale elements may be constructed as the weighted sum of finer scale elements. For
dictionaries where it is not possible to represent coarse scale elements exactly as
the sum of finer scale elements, it would be necessary to specify for each dictionary
element g, a local family I, which consists of finer scale functions which somehow

captlire the local structure of g,.

3.2 HRP Interpretations

In this section, two interpretations of the HRP algorithm are described. First, for
the case where the functions under consideration are 2-D vectors, the HRP similarity
measure may be interpreted geometrically as an oblique projection of f onto g, and
| the magnitude of the oblique projection is deterﬁined by the associated set I,(k).
This is in contrast to MP where the similarity measure is an orthogonal projection
~of f onto g,. Second, we show that the element which maximizes the HRP similarity
measure, |S(R"f, g,)|, is the same one which solves a constrained mazimization of
||R"f — R™*f||. This mirrors the development of MP in Section 2.2 where we noted
that the element which maximized the inner product similarity measure,

| < R"1f,g, > |, is the same one which solves an unconstrained minimization of

IR"f1]-
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3.2.1 Geometric Interpretation

Tn the following discussion, we use a vector example to illustrate the differences be-
tween MP and HRP and to show a geometric interpretation of the HRP similarity
measure. The goal of the following discussion is to illustrate two points. First, HRP
is better than MP at preserving sparsity. That is, given a function which may be
syntheéized as the sum of n dictionary elements, often the MP algorithm yields a de-
composition of m > n elements. On the other hand, by emphasizing local over global
fit, HRP yields decompositions which preserve sparsity. Second, the HRP similarity
measure, S(f, g,), is a projection of f onto g,. The magnitude of this projection is
determined by the associated subfamily I,.

This discussion will be based on the following simple, two-dimensional vector ex-
ample. Consider the decomposition of the vector f € IR? over the dictionary consist-
ing of {g1, g2, 83}, where ||g,|| =1 for v = 1,2, 3. For this example, we use boldface
notation to emphasize that f and g, are vectors. These vectors are illustrated in

Figure 3-1 and are given by

gt = [1 0] | (3.8)
g = [0 1] (3.9)
g = [2 L] (3.10)
£ = (1 2] (3.11)

The following scale structure, which will be useful for applying HRP to this example,
is imposed in this vector dictionary. The elements g; and g, are finest scale elements,
and are similar to Diracs, which were the finest scale elements in the cubic b-spline
dictionary. The element g3 is a coarse scale element. In this vector dictionary,

the coarse scale element (g;) may be constructed as the weighted sum of fine scale



Section.3.2. HRP Interpretations 53

- gl
Figure 3-1: The function f and the dictionary {g1,g2,83}. -

elements (g; and g;). Thus, the scale structure of this simple vector dictionary is
similar to the scale structure of the cubic b-spline dictionary.

We begin by examining the performance of MP. The first element chosen by MP
is the dictionary element which maximizes the inner product | < f,g, > |. The
projections of f onto each of the dictionary elements are shown by the dashed lines
~in Figure 3-1 and are also given in Table 3.1. Therefore, the first element chosen
by MP is gz. The resulting residual is shown in Figure 3-2. To achieve an exact
decomposition, a total of three elements must be used : the second element chosen
by MP is g, and the third element is g;.

For this example, the MP algorithm does not preserve sparsity. That is, the MP
decomposition requires three elements to decompose a function that could have been

represented with two. In effect, MP has introduced an artifact in Rf. That is, Rf has
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<f, g > 0.5
<f, g > 0.75
<T g, > | 08339

- ' Table 3.1: Projection of f onto each dictionary element

B

- 8,

Figure 3-2: The MP residual Rf and the dictionary {g;, g2, g3}-
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a negative component in the direction of g; which did not exist in f, and which will
have to be corrected for in subsequent stages. This is a parallel to the introduction
of artifacts illustrated in the twin peaks example of Section 2.2.2.

In contrast, consider the performance of HRP. To apply HRP, we must specify
a set I, associated with each dictionary element. Since we have been given a scale -
- structure that is similar to that of the cubic b-spline dictionary, we can define the
sets I, to have a similar structure to that in the cubic b-spline dictionary. That is,
the associated subfamily for a finest scale element is just itself, and the associated
subfamily for a coarse scale element is the element itself plus the set of finer scale

elements which when properly weighted and summed yield the coarse element. This

implies I; = {1}, I, = {2}, and I5 = {1,2,3}. Applying (3.3),

S(f,g1) = <fg> (3.12)

S(f,g) = <f,g> | (3.13)
] <tem>]| | <fg> )

S(f, = min , <t gy > 3.14

(1, 8) (<g37g1> Stezlicrg>l) e

It is instructive to show how S(f, g,) for v = 1,2, 3 may be determined graphically.
Clearly, S(f,g1), S(f, g2), and the last term in on the right-hand side of (3.14) can be
determined graphically. The first two terms in (3.14) may be determined graphically

as follows. Let r = ags denote the vector which satisfies
<r,g >=<f,g > (3.15)
for some value of . This equality is shown in Figure 3-3. Equivalently,

<f g >=a<gsg > (3.16)
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£3

8 1
Figure 3-3: A geometric interpretation of the HRPVsimilarity measure.

Since ||gal| = 1, it follows that [ir|]| = lfg%%g%l which is precisely the first term
in (3.14). This term is the magnitude of the oblique projection of f onto g3 generated
by the orthogonal projection of f onto g;. Similarly, the second term in (3.14) is equal
to the magnitude of the oblique projection of f onto g generated by the orthogonal
projection of f onto g. Thus, S(f, g3) is the minimum of the three projections of f
onto g3 shown in Figure 3-4.

The first element chosen by HRP is the one which maximizes [S(f,g,)[. For
“the example illustrated in Figure 3-1, the values of |S(f, g,)| are listed in the first
column of Table 3.2. Thus, the first element chosen by HRP is g;. The resulting
residual, Rf, is [ 1 0 ]. The values of |S(Rf, g,)| are listed in the second column
of Table 3.2, indicating that the second element chosen by HRP is g;. Thus, an
exact decomposition is achieved with two elements and sparsity of the synthesis is

preserved.
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Figure 3-4: Projections of f onto g3

v | S(f,8y) S(Rf: g'r)
1 0.5 0.5
2 0.75 0
31 0.7071 0

Table 3.2: HRP similarity of f and Rf with each dictionary element.
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3.2.2 A Constrained Maximization Interpretation

Additional insight may be gained through the following alternative interpretation
of the HRP algorithm. This section shows that the element which maximizes the
HRP similarity measure, |S(R""'f, g,)|, is the same one which solves a constrained
mazimization of |R"f — R f||. This discussion mirrors the development of MP
in Section 2.2 which noted that the element which maximized the inner product
similarity measure, | < R""'f, g, > | was the same one which solves an unconstrained
minimization of || R™ f||.

Let us begin by introducing some notation and mathematically describing the

. interpretation of HRP as a constrained maximization. In the interest of cleaner

notation, we will restrict our discussion to the case of the first element chosen by
HRP. That is, we will show that the element which maximizes |S(Rf, g,)| is the same
one which solves a con‘strqin"e‘d”Kmaximization of ||Rf — f||. The discussion that follows
immediately extends to subvsequent stages. Suppose that the first residual generated

by any dictionary element, g,, is denoted R,f and is of the form

R.f=f- c(f, 97)9’7 A (3.17)

AN

where C( f, g,) is an unknown scalar. It follows that

IRy f — fll =1C(f, g4)l- | (3.18)

Now consider the maximization of |R,f — f|| or equivalently |C(f,g,)| under the

following constraints :

| <R, f,:>| < |<fg>| for all 7 € I,(k) (3.19)
sign(< R, f, g >) = sign(< f,g:>)  forallie L(k). (3.20)
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We will show that for any R, f to meet constraints (3.19) and (3.20) |C(f, g,)| must
be less than or equal to |S(f, g,)| as defined in (3.3). Also, the maximum value of any
particular R, f which meets the constraints occurs when C(f, g,) = S(f, g). Further,
we will show that the dictionary element which solves this constrained maximization

problem is the same as the first element chosen by HRP. In equation form,

9o = argmax|S(f, g, (3.21)
= argmax |k, — fl subject to (3.19) and (3.20). (3.22)
Y

~ Before shéWiﬁé‘ that the element which solves the constrained maximization is the
same as the first element chosen by HRP, we will discuss the constraints in (3.19)
and (3.20). The constraint in (3.19) captures the idea that the magnitude of the
residual projection onto any element should decrease both globally and locally. In
other words, if g, is well matched to f, then the projection of the residual onto g,
should decrease, and the projection of the residual onto all the local structures which
make up g, (i.e. g; for i € I,(k)) should decrease. The constraint in (3.20) is motivated
by the shortcomings of the MP algorithm. Recall that in the MP decomposition of
the twin peaks example, Rf had a large negative component at ¢ = 0 where the
original function was positive. This negative component was not a feature of the
function, but rather an artifact introduced by MP. Thus, constraint (3.20) steers
| the decomposition away from including artifacts such as those introduced by MP in
the twin peaks example. It is important to note that the two constraints effectively
balance one another and together imply that the projection onto all local structures
of g, must decrease, but not so much that the sign of the projections onto local
structures change.
We can also illustrate the effect of these constraints in bterms of the simple example

shown in Figure 3-1. Recall that for this example the function f is to be decomposed

| mEh EmEE: i B AEGSEEcasesmemmmm s C B 4 = i g n e
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over a dictionary set {g1, g2, g3}, g1 and g, are finest scale elements (i.e. they have no
associated subfamilies), and gz has an associated subfamily indexed by I3 = {1,2,3}.
Figure 3-5 shows the residuals generated for dictionary element g3 by three different
values of C(f,gs). Figure 3-5a shows the residual that results when C (f,g3) = 1.5.

In this case,

Rsf =[ —0.5607 —0.3107 |. (3.23)

This residual violates both constraints (3.19) and (3.20), since | < Raf, g, > | =
0.5607 while | < f,g, > | is only 0.5 and since both < Rsf,g; > and | < Rsf, gy > |
are negative while < f;g; > and < f;g, > are positive- Figure 3-5b shows the

residual that results when C(f, gs) = 1.0. In this case,

Raf =[ —0.2071 0.0429 | (3.24)

This residual violates only constraint (3.20), since < Raf,g; > is negative while
< f,g1 > is positive. Finally, Figure 3-5¢ shows the residual that results when
C(f, gs) = .7071 which is precisely the value of S(f, g3) in Table 3.2. In this case, the
residual is given Rsf = [ 0 0.25 ]. This residual does not violate either constraint.
In fact, this value of C(f, g3) is the maximum weight that can be given to g; and still
produce a. residual which does not violate the constraints.

Returning to the general case, we now show that the element which maximizes
|S(f,94)| is the same as the one which maximizes |R,f — f|| subject to (3.19)
and (3.20). Assume for now that

<f1g'i>

>0 for all g, € L, (k). 3.25)
< vy Gi > ! (

Some simple algebraic manipulation yields a sequence of alternative forms for con-
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g, g, g,
R, f
£ = g,
g, &,
3
g, g, g
(a) Rof for O(f,g5) = 1.5.  (b) Raf for C(f, &5) = 1.0. 5207‘1‘3‘5 for C(f,gs) =
Figure 3-5: A geometric interpretation of the constraints.
straint (3.19) as follows
| <R f6>| < | <figi>] (3.26)
| < fi9:>=C(f,0) <9y 0:>| < | <frgi>| (3.27)
< g’}') Gi >
1-C(f,g9)—————| < 1 3.28
(f g’)’) < f; g > — ( )
2< fa gi >
0< C(f, < 22D 3.29
<C(f,9y) < < 900 > ( )

where the last line follows because of (3.25). Similarly, alternative forms for con-

straint (3.20) are obtained as follows

sign(< Rf,g;>) = sign(< f,g: >) (3.30)

<Rf,;><f, s> > 0 (3.31)
(<f,9:>-C(fi9y) < 90,00 >) < fr9.> > 0O (3.32)
Cf.g) < =182 (3.33)

< g'wgi >
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where the last line follows because of (3.25). Combining (3.29) and (3.33), we have

<f: i >
0<C(f,g,) < =P

. 3.34
- < vy Gi > ( )

The same derivation can be followed through for the case where %% < 0 for all

g: € 1,(k) yielding

< J,q; >
OZC(f,g7)>-——fg—

> . 3.35
< 9y, Gi > ( )

For the case where the ratio %% does not have the same sign for all g; € L,(k), the
only value of C(f, g,) which meets both constraints for all elements in the subfamily
I, is zero. Thﬁs, for each dictionary element, C(f,94) = S(f,g,) as defined in (3.3)
maximizes ||R,f — f|| under constraints (3.19) and (3.20). Further, the single dictio-
nary element which maximizes ||R,f — f|| under constraints (3.19) and (3.20) is the

same one which maximizes |S(f, g,)|-

3.3 HRP Convergence Properties

In this section, the properties of the HRP algorithm for finite discrete functions
f[t] for 0 < t < P are studied. The main result of this section shows that if the

dictiona,ry‘ I' is complete then the HRP algorithm produces residuals whose norms

~decay exponentially.

To prove the exponential convergence of the norm of the residuals produced by
HRP, the following lemma is needed. This lemma proves fhat at each step the sim-
ilarity function must be bounded below by a fraction of the energy of the current
residual. A crucial element of this proof is the assumption that the dictionary con-

tains all elements g, [¢] of the form :

g/(t] =6[t—r]for0<r <P (3.36)
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where

1 fort=0
0 otherwise

Note that by definition S(f,§[t — r]) = f[r].

Lemma 1 For a dictionary T’ which contains elements of the form given in (3.36),

IS(R™, 93)] > %IIR”fll- (3.38)

Proof : The similarity function will always be greater than the value of R™f at any

particular point. That is,
|S(R*f, gy.)| = |R"f[r]] foramyr. (3.39)

This follows because, by definition,

9. = argsup |S(R"S, )l (3.40)
vE

and [t —7] € T and S(R"f,6[t — r]) = R™f[r]. This implies

[S(R™ £, gv)| 2 sup |E" f[r]]- (3.41)
Further,
P
IR*FI? = > IR [P (3.42)
r=1

IR fII* < Plsup |R"fIr]])* (3.43)
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which implies

sup [R"fI7]] > %nwn. (3.44)

It follows that,
IS(R £, 9,0)] > %IIR"fII- (3.45)
O

The following theorem shows that for a complete dictionary which contains ele-
ments of the form given in (3.36), the HRP algorithm yields residuals whose energies

decay exponentially.

Theorem 1 For a dictionary I' which contains elements of the form given in (8.36),

IR < (1= ) IR,  (3.46)

Proof : Note that
VR I = R = 25(R" S, 02,) < B, 6 > +SH RV f,0). (3.47)
From the deﬁnitioh of the similarity function, we know

| <R"f, 9% >| = S(R"f, 94.) (3.48)

sign(< Rf,g,, >) = sign(S(R™/, g5,). (3.49)

This implies
IR < R fIP — S*(R™f, gya). (3.50)
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Lemma 1 then implies

B < B - SR (351)
” 1

= B PG - B) (352)

O

3.4 HRP Computational Complexity

The HRP algorithm may be efficiently implemented so that the number of opera-
tions required for each iteration is proportional to the size of the dictionary. Further,
the computational complexity of HRP may be reduced by using a ‘subdictionary :
constructed by sampling the scale/shift space. In this section, we discuss the compu-
tational complexity of HRP for the cubic b-spline and wavelet packet dictionaries.
We begin with the cubic b-spline dictionary. Recall that the notation for the dic-
tionary is {g,|v € I'}. Suppose we construct a reduced dictionary {g,|y € T's}. For
the cubic b-spline dictionary, the reduced dictionary has scales 7 which are integers
in the range 0 < j < log,(P), where P is the length of the signal, and 27 evenly
spaced translations. This reduced dictionary has a total of C' = 2P ~ 1 elements. Let
H be the set of functions which form the subfamilies for all elements of the reduced
~dictionary, H = {g;} for < € I, and v € I'y. The HRP algorithm is instialized by
computing < f,g; > for all g; € H and < g,,¢; > for all v € " and all g; € H. This
initialization requires a one-time computation of O(P?(log,(P))?) operations using
the FFT. The HRP similarity measure S(f, g,) for v € I'r may then be computed in
O(KC) operations where K is the cardinality of the set I, (k). The element which
maximizes |S(f, g,)| over the reduced dictionary is an approximation to the element

which maximizes |S(f, g,)| over the unreduced dictionary. The element which max-
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imizes |S(f,g,)| unreduced dictionary could then be found using a Newton search
strategy. Let g, be the element which maximizes [S(f, g,)| over the unreduced dic-
tionary. Using (3.7), the inner products < Rf, g, > for all g; € H can be computed

as

< Rf, gy >=<f 94> —S(f, 9v0) < Gyor Gy > - (3.53)

The inner products < Rf,g; > for all g; € H can then be computed using (3.53).
Since each of the terms on the right hand side of (3.53) has been previously stored,
the calculation of < Rf,g; > for all g; € H takes O(KC) operations. Extending
this argument, we see that each iteration takes O(KC) = O(2PK ) operations. The
number of itefations will typically be much smaller than P.

For the wavelet packet dictionary, the size of the reduced dictionary is C =
Plog,(P). This reduced dictionary has scales j which are integers in the range
0 < j < log,(P), 277 P-frequency-bins-for scale j, and 27 evenly spaced translations
for every scale and frequency bin. HRP using the wavelet packet dictionary can be
. initialized in O(P?log,(P)) operations by computing < f, g >. Each iteration for
HRP with the wavelet packet dictionary requires the computation of S(R"f, g,), the

computation of < g,,5gi->, and.the computation of < R f,.g; >. This is a total of

O(KC) = O(K Plog,(P)) operations per iteration where K is the cardinality of the

set I,(k). Again, the number of iterations will be much smaller than P.

3.5 Demonstration of HRP

In this section, we show that HRP is able to extract signal structure using some
simulated examples. As discussed in Chapter 2, the two dictionaries which are of
particular interest for this work are cubic b-spline and wavelet packet dictionaries. In

this section, we investigate the performance of HRP on some simulated examples for
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both the cubic b-spline and wavelet packet dictionaries.

3.5.1 HRP with Cubic B-spline Dictionaries

In this section, the performance of HRP using cubic b-spline dictionaries is explored.
We return to the twin peaks example introduced in Section 2.2. HRP is able to resolve
the two closely spaced elements used to construct the function. We also investigate
the performance of HRP on the so-called gong signal used in [6]. This is an example of
the performance of HRP on a function that is not constructed as the sum of dictionary

elements.

Twin Peaks Revisited

Recall the twin peaks example of Section 2.2 for which MP yielded unintuitive results.
- The twin peaks signal is constructed as the sum of two dictionary elements at scale
32 and translation ¢ = £0.3281. The contour plot of the HRP similarity function for
fitting the first element is shown in Figure 3-6 and clearly shows two maxima at the
séale and translations which correspond to the features of the original signal. This
is in contrast to the. analogo'us contour plot for. MP, which was originally shown in
Figure 2-7 and is repeated in Figure 3-7. As this figure shows, the MP similarity
measure has a single maxima at scale 40 and translation ¢ = 0.

The coherent structures of this signal are captured by the first two elements of the
HRP approximation. The first ten elements of the HRP decomposition are shown in
Figure 3-8. Since HRP chooses two reasonable elements in the first stages, subsequent
elements serve to refine the fit rather than to correct mistakes from previous stages.
One can imagine that, in a feature extraction setting, the first two elements would
provide a good approximation to the signal and could be used as features of the signal.

As discussed earlier, the HRP decomposition will be affected by the depth at which
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Contour of HRP simitaril of f with each dictionary element
T T T T T T

Fine

Scales

of

-1F
Coarse
-2 L L s . " L L
-4 -3 -2 -1 0 1 2 3
Translation

Figure 3-6: The HRP similarity graph is the HRP similarity measure between the
function and each dictionary element which is indexed by scale and translation. This
figure shows the contour of the HRP similarity graph. O marks location of true
elements of the function which are the same as the maxima of the HRP similarity

graph.

Contour of inner product of f with each dictionary element
T T T

W
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Scales

1t
Coarse

-2 1
Z4 -3
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Figure 3-7: Contour of MP projection graph for the twin peaks example. This graph
is also shown in Figure 2-7 and repeated here for comparison
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Firstien elements of HRP
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Figure 3-8: First ten elements for twin peaks example using HRP.

the family I, (k) is constructed. Figure 3-9a-d show the coherent features of the HRP .

decomposition with depths zero, one, two and three, respectively. At a depth of zero,
HRP reduces to MP and the signal is decomposed as a coarse scale feature plus a
negatively weighted fine scale feature near the center. At a depth of one, HRP gives
the decomposition in Figure 3-9b which may be interpreted as a coarse scale feature
plus fine scale details at ¢ ~ 4:0.25. Finally, at a depth of two or higher, HRP gives |
the decomposition shown in Figure 3-9c¢-d, which is interpreted as the sum of two
positively weighted fine scale features. In real data applications, the depth of L(k)
may be used to incorporate prior knowledge into the decomposition. ’ _
Figure 3-10 compares the residual norms for MP and HRP for the twin peaks
example up to 1024 elements. We can identify three distinct regions of convergence.
In the first region, from approximately element 1 through 10, both algorithms generate
residuals whose norms decay quickly and at a very similar rate, but the decompositions
for the two algorithms look very different. MP is behaving in a greedy way by picking
coarse features instead of fine features. On the other hand, HRP is behaving in a

slightly less greedy way and only picks coarse features when they match the signal
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a. HRP resolution depth 0 b. HRP resolution depth 1
1 1
0.5 0.5 ﬁ ’
Q 0
0.5 -0.5
-5 0 5 -5 0 5
c. HRP resolution depth 2 d. HRP resolution depth 3
1 1
05 0.5
0 0
-0.5 -0.5
-5 Q 5 -5 0 5

Figure 3-9: Changes in the HRP decomposition of the twin peaks signal as the resolu-
tion depth (i.e. the value of k) is changed. Each subfigure shows the first few elements
of the HRP decomposition for a different value of k. (a) k= 0. (b) k=1. (c) k = 2.
(d) k=3.

structure locally as well as globally. In the next region, from approximately element 10
to 200, the rate of decay of the residual norms for both decrease slightly from the rate
in the ﬁ;st region. In this second region, the MP residual norms are slightly smaller
than HRP residual norms. This is to be expected since the MP criterion is to minimize
the norm of the residual at each step. The final region starts at approximately element
200. In this final region, the MP residuals continue to decay at an exponential rate,
but the HRP residuals decay at a rate much faster than exponential. In this region,
the residuals only have structure at the finest scale (i.e. Diracs). HRP will only
extract Diracs at this stage; MP, on the other hand, will continue to extract coarser
features. This behavior is simply an extension of the behavior shown in Figure 3-11
which shows that MP often extracts coarse scale structures from signals which have
only fine scale structure, but HRP extracts fine scale structure. The implication of
this behavior is that once HRP attains the Dirac extraction mode, the residual will

converge to zero in N iterations, where NV is the number of samples of the signal.
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Norm of Residuals for MP and HRP
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Figure 3-10: Comparison of MP and HRP residual norms for twin peaks example.
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Figure 3-11: Comparison of MP and HRP on a residue with only fine scale structure.
(a) Sample Residual. (b) MP chooses an element with coarse scale structure when
the signal has only fine scale features. (c) HRP chooses an element with fine scale
structure.
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The Gong Signal

The next signal we consider is the one illustrated in Figure 3-12 which has a sharp
attack at £ = —2 followed by a slow decay. This is the envelope of the gong signal used
in [6]. The ideal decomposition for this Signal would capture the attack with elements
well localized in time and would not place elements prior to the attack of the signal.
We will compare the results of the MP algorithm with those of the HRP algorithm
when k = 2. Figure 3-13 shows the first element picked by the two algorithms. As
was with the case with the twin peaks example, the first element chosen by the MP

algorithm is one which introduces an artifact (i.e. energy prior to the attack of the

signal). This artifact will have to be corrected for in subsequent stages. In contraSt,
the ﬁrst eleme;t chosen by HRP does not have a significant amount of eneréy prior
to the attack of the signal. Figure 3-14 shows the first ten elements chosen by the two
algorithms. Since the first element of the MP decomposition has significant energy
prior to the attack of the signal, three of the subsequent nine elements are used to
correct for this initial mistake. On the other hand, HRP captures the attack of the
signal \with elements well localized in time and does not place elements before the
attack. Finally, Figure 3-15 shows the sum of the first ten elements for the two
algorithms. Note that the MP approximation has some ringing prior to the attack

of the gohg signal and that the HRP algorithm has only a small error prior to the

- attack of the signal.

Figure 3-16 compares the norms of the MP and HRP residuals. Once again, three
regions of convergence are evident. The first region, which extends from element
1 through 10, both algorithms decay at similar rates. However, while MP extracts
elements which fit the signal well globally, HRP only extracts elements which fit
well locally as well as globally. In the second region, from element 10 to 500, both

algorithms show exponential convergence. In the final region, above element 500,
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The envelope of a gong signal
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Figure 3-12: Envelope of the gong signal.

a. Firsl elemenl for MP

b. First elemant for HRP

) -3 -2 -1 o 1 2 E) 4

Figure 3-13: First element picked by MP and HRP for the gong example. The dashed
line is the gong signal.
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A, Firs! ten alemants for MP

y
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Figure 3-14: First ten elements picked by MP and HRP for the gong example. The
dashed line is the gong signal.

a. Sum of e frst ten elements for MP

b. Sum o tha first ten elemants for HRP

0.5

Figure 3-15: Sum of the first ten elements picked by MP and HRP for the gong
example. The dashed line is the gong signal.
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Norm of Residuals for MP and HRP

-- MP
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Figure 3-16: Comparison of MP and HRP residual norms for the gong example.

HRP shows a convergence rate much faster than exponential: ‘Again, this results = .

from the fact that HRP enters a mode where it extracts only Diracs.

3.5.2 HRP with Wavelet Packet Dictionaries

In this section, we show that HRP with wavelet packet dictionaries is able extract
signal structure and able to resolve two elements which have the same scale and
. frequéncy characteristics but differ in translation. However, because of the particular
structure we have chosen for the family I,, the HRP algorithm will not be able to

resolve two elements which have the same scale and translation characteristics but

- differ in frequency. In this section, we highlight the strengths and weaknesses of HRP

with wavelet packet dictionaries.

Super-Resolution Examples

Just as was the case for cubic b-spline dictionaries, HRP using wavelet packet dictio-
naries is able to resolve elements in translation. Figure 3-17 shows the signals fi, fa,

and f = f1 + f; and their corresponding ideal representations on a time-frequency
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plane. The functions f; and f, have the same scale and frequency characteristics
but differ in translation and are elements of a wavelet packet dictionary based on the
Symmlet wavelet described in [6]. The signal f will be decomposed over the Symm-
let wavelet packet dictionary which contains each of the elements used to construct
the signal f. Thus, the signal and the dictionary are well-matched. This example
is analogous to the twin peaks example which was the sum of two cubic b-spline
elements at the same scale but different, nearby translates and was decomposed over
the cubic b-spline dictionary. Figure 3-18 shows the time-frequency representations
of the MP, BP, and HRP decompositions. The HRP decomposition uses k = 2. The
MP decomposition is unable to resolve the two elements aﬁd gives the appearance of
a complicated signal structure. On the other hand, both the BP and HRP decom-
positions are able to resolve the two elements and yield a sparse representation for
this signal. Even though the BP and HRP decompositions are identical, HRP has an
advantage over BP in terms of computational complexity.

Because of the particular structure we have chosen for the family I,(k), the HRP
algorithm will not be able to resolve two elements in frequency. In the wavelet packet
dictionary, we can construct a signal that is the sum of two dictionary elements
which share scale and translation characteristics but differ in frequency. This type of
a construction was not possible in the cubic b-spline dictionary since all cubic b-spline

dictionary elements share basically the same frequency characteristics. We construct

" another signal f = f1+f, where f; and f, are elements of the Symmlet wavelet packet

dictionary as shown in Figure 3-19. Figure 3-19 also shows the ideal time-frequency
plane representations for f,, f; and f. For this example, the functions f; and f; have
the same scale and translation characteristics but differ in frequency. The signal f will
be decomposed over the Symmlet wavelet packet dictionary. Again, the signal and the

dictionary are well-matched. Figure 3-20 shows the time-frequency representations
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Signal f1 Signal f2 Signal f=H1 + f2
1 1 1
0.5 05 0.5
0 0 0
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Phase plane, f1: Phase plane, f2: Phase plane, f:
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Figure 3-17: The signal f is the sum of f; and f, which are both elements of the
Symmlet wavelet packet dictionary. The signals f; and f, have the same scale and
frequency characteristics but differ in translation. The time-frequency plane repre-
sentations of f;, f3, and f are also shown.
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Figure 3-18: The time-frequency plane representations of the MP, BP, and HRP

- decompositions.
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of the MP, BP, and HRP (with k = 2) decompositions. For this example, the both
the MP and HRP decompositions are unable to resolve the two elements and give
the appearance of a complicated signal structure. In contrast, BP is still able to
resolve the two elements. The sub-optimal behavior of HRP for this example can be
attributed to the structure we have chosen for the subfamily I,(k). Compared to the
t-ime-frgquency support of the function g,, the functions included in the subfamily
I, (k) have a narrower support in time and therefore a wider support in frequency. It
follows that the HRP similarity measure based on this particular structure of I, (k)
is a minimum over inner products with elements with a wider support in frequency

and therefore will not be able to distinguish two elements closely spaced in frequency.

One can imagine, however, developing an HRP algorithm to resolve elements close in -

frequency where the family I, is defined to consist of elements with finer frequency - - -

resolution and therefore coarser time resolution. That is, the subfamilies in this case
are, in a sense, the “duals” of those used in this section.

Finally, consider the signal f shown in Figure 3-21a which is the sum of four
elements : a Dirac, a sinusoid, and 2 Symmlet wavelet packet dictionary elements
which are closely spaced in translation. The signal is decomposed over the Symmlet
wavelet packet dictionary and the results of the MP, BP, and HRP algorithms are
~shown in Figure 3-21b-d. The MP decomposition clearly resolves the Dirac and the
sinusoid but is unable to resolve the other two elements. Both BP and HRP resolve all

~ four elements, but HRP improves on the computation time of BP by a factor of four.

The signal f is very similar to the carbon signal introduced in [6] which included two -

additional Symmlet wavelet packet elements that were closely spaced in frequency.
We have chosen to delete those additional elements for this example since, as we have
already pointed out, HRP, as we have configured it here, will not always be able to

resolve elements closely spaced in frequency.
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Signal f1 Signal f2 Signal f=f1 + {2
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Figure 3-19: The signal f is the sum of f; and fy which are both elements of the
Symmlet wavelet packet dictionary. The signals f; and f, have the same scale and
translation characteristics but differ in frequency. The time-frequency plane repre-

~ sentations of fi, fo, and f are also shown.
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a. MP Phase Plane b. BP Phase Plane
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Figure 3-20: The time-frequency plane representations of the MP, BP, and HRP
- decompositions.
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Figure 3-21: Results for the carbon signal. (a) The carbon signal which consists of
~ the sum of four dictionary elements. (b) The MP decomposition. Note that nearby

elements are blurred. (c) The BP decomposition. Note that all four elements are

resolved. (d) The HRP decomposition. Again, all four elements are resolved.
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The Gong Signal

Figure 3-22a shows a gong signal. As was mentioned in Section 3.5.1, this type of
signal has a sharp attack followed by a slow envelope decay. Again, the ideal de-
composition would capture the attack with elements well localized in time and would
capture the correct frequency of the modulation. Further, the ideal decomposition
would not introduce elements prior to the attack of the signal. That is, it would not
introduce a pre-echo effect which is particularly disturbing for audio signals.

Figures 3-22b-d show the time-frequency plane results for MP, BP, and HRP,
respectively. The partial reconstructions for three, five and ten elements for each of
the three methods are shown in Figure 3-23. The signal was analyzed using a wavelet
packét dictionary constructed from the Daubechies six tap wavelet [10]. MP captures-
the point of the attack and identifies the correct frequency, but introduces several
elements prior to the attack of the signal which results in the addition of subsequent
artifacts in the reconstruction. Although the elements before the attack have a small
weight, they significantly impact the reconstruction. Thus, the MP reconstruction
exhibits this pre-echo effect. BP performs very well since it captures the attack,
does not place elements prior to the attack of the signal, and captures the correct
frequency of the modulation. HRP captures the point of the attack and does not
introduce elements prior to the attack of the signal. However, HRP does not do as
well as BP in capturing the correct frequency of the modulation. Comparing the
rates of decay of the three methods (see Figure 3-24), we see that BP decays at a rate
slightly faster than HRP. In conclusion, HRP does not surpass BP in the quality of
the decompositions. However, HRP provides decompositions without artifacts prior

to the attack of the signal and does not require the intensive computation of BP.
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Figure 3-22: (a) The gong signal. (b) Time-Frequency plane for MP. (c) Time-
frequency plane for BP. (d) Time-Frequency plane for HRP.
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MP : Fhat 3

BP : Fhat 3

HRP : Fhat 3

0 0.25

0.25 0.8

0, 0.25

0 0.25 0.8

0.25 0.8

Figure 3-23: Partial reconstructions for MP, BP, and HRP with 3, 5 and 10 elements.
In the MP reconstruction, we see the elements prior to the attack of the signal have
a significant impact on the partial reconstruction.
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Comparison of Compression Numbers
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Figure 3-24: Rates of decay of the three methods.




Chapter 4

Recognition of Airplanes from

Silhoﬂé't“tes

4.1 Introduction

Humans have the ability to analyze visual scenes, localize and recognize objects, and

make decisions based on our visual observations. A computer vision system that could -

emulate these tasks, which are simple for a human, would have numerous industrial,

military, and medical applications. Of course, computer vision is an immense field

- encompassing a vast array of research [2,21,28]. In this chapter, we investigate the

application of HRP to one very specific computer vision problem, namely, model-
based object recognition from silhouettes. _

Model-based object recognition [3,15] is performed by comparing features ex-
tracted from a given data image to features extracted from a predefined set of model
images and determining which model the data image most closely resembles. Since
humans have the ability to recognize objects from only silhouette or boundary data,

there is a widely-held intuition in computer vision [3,13,16,19,24,30,40] that these

87
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object boundaries contain much of the significant information required to recognize
objects. Silhouettes may be generated from gray scale images using any one of a num-
ber of edge detectors [5,12,18,27], segmentation algorithms [38], or active contour
models [1]'.

For a computer vision algorithm for recognizing objects from silhouettes to be of
practical importance, the algorithm must perform well under a number of possible
variations in the image. | Since it is not always feasible to control the spatial relation-
ship between the object and the imaging senor, a computer vision system must be
robust to variations in scale, orientation, and translation. Further, imaging conditions
such as lighting, reflectance, and haze may result in object boundaries which appear
pertirbed from their original position. These imaging conditions or the positioning of
the object in the scene may also cause portions of object boundaries to be occluded.
That is, a portion of the object boundary may be missing entirely. In addition, the
algorithm should be robust to variations within the object class?.

A number of algorithms have been investigated to recognize objects from their sil-
houettes under scale variations, orientation variations, boundary perturbations, and
occlusion. In [23,30},the authors use Fourier descriptors to recognize silhouettes. The

benefits of these techniques based on Fourier descriptors is their small computational

" burden, robustness to scale and orientation variation, and their relative robustness

to boundary perturbations. On the other hand, these techniques deteriorate rapidly

when occlusions are present. In [24], the authors investigate a technique to classify
partial boundaries based on Fourier descriptors. The basic idea behind the technique
is to estimate the Fourier descriptors of the complete boundary by minimizing a cost

function which is the sum of the least square fit to the Fourier descriptors of the

10f course, this does not imply that recognition from silhouettes is applicable in all settings since
it may not always be possible to binarize a scene to obtain a silhouette as pointed in [21].

2In the airplane data set that we investigate in this chapter, the presence or absence of under-wing
stores (e.g. missiles) would be an example of such variations within the object class.
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partial boundary and a compactness measure. The authors show that their technique
is able to distinguish some rather broad classes of objects, rather than individual
shapes. In contrast, the technique that we describe in this chapter will be able to
distinguish individual shapes. In [25], the authors segment the object boundaries and
compare two boundaries based on the ratio of the lengths of consecutive segments.
This technique was demonstrated on occluded boundaries but no results were pre-
sented showing the performance under boundary perturbations. In [39], the authors
present a technique based on the chord length distribution, i.e. the normalized set
of chord lengths between all pairs of boundary points. The main drawback of the
technique outlined in [39] is the computational complexity. Because of the large com-

putational burden imposed by their algorithm, the authors of [39] test their method

~ under boundary perturbations as well as noise, but only use a very small sample size..

In this chapter, we propose an algorithm based on HRP to recognize airplanes--- -

from their silhouettes. Since a number of researchers [3,13,23,30] have based their

recognition schemes on a 1D representation of the silhouette, we propose to use HRP

to extract elements from a 1D representation of the silhouette, namely the centroidal -

distance profile [3,13,23]. The parameters of the HRP elements are organized into
. a feature vector. - Recognition is performed using this feature vector and an M-ary
hypothesis testing scheme. Our experimental results show that this approach is robust
to boundary perturbations, scale variations, and small orientation variations. Further,
our approach is also robust to variations due to occlusion. This is in contrast to the
basic technique based on Fourier descriptors [23,30] which cannot accommodate both
boundary perturbations and variations due to occlusion. Moreover, in contrast to the
technique for recognition of partial boundaries based on Fourier descriptors in [24],
the HRP based technique we describe in this chapter is able to distinguish individual

shapes rather than broad classes of objects.
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4.2 Background

In this section, we discuss methods for extracting 1D profiles from silhouettes, some
models used to create noisy silhouettes, and a classical classification technique based
on Fourier descriptors, and give a brief survey of the current literature.

The data set of interest for our work consists of the silhouettes of seventeen mili-
tary airplanes shown in Figure 4-1. Similar data sets have been used in [4,19,23-25].
This data set is a fairly challenging one since it contains some planes which are very
similar, for example, Planes # 2, 9, and 10 are similar to one another and Planes #4,
15 and 16 are similar to one another. Planes # 7, 12 and 17 are considered swept

wing aircraft.

4.2.1 1D Profile Extraction

A number of methods for extracting 1D representations of silhouettes are considered
in [3,23]. These include the centroidal distance profile, the complex coordinate profile,
and the curvature prvoﬁle. These techniques often depend on not just extracting
boundary curves but extracting ordered points from boundary curves. Such a set of
ordered points may be obtained as a byproduct of the curve extraction (e.g. active
contours {1]) or from some other technique (e.g. chain codes [3]). The centroidal
distance profile is the distance from the points along the object boundary to the
object’s centroid. That is, if (z(m),y(m)) are an ordered sequence of boundary

points then the centroidal distance profile f(m) is given by

f(m) = /((m) — X)2 + (y(m) - Y.)? (4.1)

D Emee——— e 4 - —— e ey g} e w5 ivm wnt ™ GEEMEIMRTN  FRESP Yoo - el ————
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Plane 1, a-10 Plane 2, a-4 Plane 3, a-7 Plane 4, b-13
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Figure 4-1: Silhouettes of 17 military airplanes which make up the data set.
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where (X,,Y.) is the centroid of the object and is defined as

Yo 2y Bz, y)z
Y. Ly Blz,y)
P Zy B($7 y)y
Tz 2y Bz, v)

X, (4.2)

Y., =

(4.3)

where B(z,y) is set to 1 for points inside the object boundary and 0 for points
outside the object boundary [3]. The complex coordinate profile [23] is a complex
representation of points along the object’s boundary. If (z(m), y(m)) are an ordered

sequence of boundary points then the complex coordinate profile z(m) is given by

z(m) = (z(m) — Xe) +j(y(m) - ¥o) | (4.4)

where (Xc, Y.) is the centroid of the object as defined in (4.2) and (4.3). Finally, the

i

curvature profile, for boundary pomts (z(m), ( ), is given by c(m) [23] where

o(m) = arctan (y(m) —y(m - ’w)) _ retan (y(m 1) —y(m—w— 1)) (4.5)

z(m) — z(m — w) z(m—-1)—z(m—w—1)

where w is a constant:
For this work, we will use the centroidal distance function to represent the silhou-

ettes in our airplane database. We have chosen to use the centroidal distance function

~ since it is fairly robust to noise, as shown in [3,23], and it is well matched to the cubic

bQSpline dictionary which was investigated in Chapter 2.

There are two schools of thought on how to extract the centroidal distance profile
from a silhouette : equiangular spacing and equidistant spacing. In [13], the authors
calculate the centroidal distance profile at the points of intersection of the boundary
with equiangularly spaced radius vectors, as illustrated in Figure 4-2. In [3,23], the

authors calculate the centroidal distance profile using points which are equidistant
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Figure 4-2: Equiangular spacing for extracting the centroidal profile. The numbers
indicate the angle in degrees.

along boundafy as illustrated in Figure 4-3.

Since equiangular spacing leads to non-uniform sampling of the boundary and - .

ambiguity when the radial vector intersects the boundary more than once (e.g. the ..

vector at 60° in Figure 4-2), we will use equidistant spacing to calculate the centroidal -~

distance profile in this work. Figure 4-4 shows the centroidal distance profile, f,
corresponding to equidistant spacing for Plane #1. This centroidal distance profile
starts at the tip of the nose and proceeds in a counter clockwise direction. Note
that the centroidal distance profile will be periodic. From this figure, we note that
the physical features of the plane are clearly identifiable in the centroidal distant
profile. The first peak in f (which is Wrapped around the interval) corresponds to
the nose of the aircraft. Similarly, the next peak corresponds to one wing, the third
peak corresponds to the tail, and the last peak corresponds to the other wing. In
this work, the first point in the centroidal profile will be the one corresponding to
6 = —m /2. Figure 4-5 shows the centroidal distance profile calculated at equidistant
points extracted for each of the planes in the data set under consideration.

One drawback of the centroidal distance profile is that it essentially discards angu-

lar information. Clearly, it is not possible to reconstruct the original boundary from
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Figure 4-3: Equally spaced points along the boundary.
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Figure 4-4: The centroidal distance profile, f, for Plane #1 calculated at equally
spaced points along the boundary.
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Figure 4-5: The 1D centroidal distance function extracted from each plane in the
data set. The points used are equispaced along the boundary.
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Figure 4-6: The angular profile accompanying the centroidal distance profile in Fig-
ure 4-4. ‘

the centroidal distance profile alone. The additional information needed to construct

the original boundary is the angular profile, #(m). For boundary points (z(m), y(m)),

the angular profile f(m)-is given by .~ *
_ y(m) - Y.
6(m) = arctan (a:(m) — Xc) : (4.6)

The centroidal distance ngqﬁle_gnd t_];__e_.angtll_a; profile are just the representation of
the boundary in polar coordinates centered at the centroid of the silhouette. As an

example, .Figure 4-6 shows the angular profile accompanying the centroidal profile

. shown in Figure 4-4. This angular information will be useful in Section 4.4.

4.2.2 Silhouette _Variations

For an algorithm for recognizing objects from silhouettes to be of practical impor-
tance, the algorithm must perform well under a number of possible variations in the
silhouette or boundary curve. The algorithm must be robust to variations in scale

and orientation since it is not always possible to control the spatial relationship be-
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Figure 4-7: The centroidal distance profile of Plane #3 at different scales.

tween the obje‘ct' and the imaging system. Certain imaging conditions may cause
“the perturbations in the boundary or even occlusions. In this section we illustrate
- some of these possible variations; their effects on the centroidal distance function, -
- and describe models used in the literature to create these silhouette variations.

The scale of the silhouette changes as a function of the distance between the
object and the imaging system. The resulting centroidal distance profile shows a
change in amplitude. Figﬁre 4-7 shows the centroidal distance profile for Plane #3 at
two different scales. The peaks in the cenﬁroidal distance profile corresponding to the
nose, wings, and tail are still identifiable. Next, consider rotation of the object, where
the axis.c_)f rotation is perpendicular to the imaging plane. Suppose the centroidal
distance profile f is always extracted starting at fixed angular position, then this
" rotation results in a circular shift of the céntroidal distance profile. Figure 4-8 shows
Plane #4 at different rotations and the corresponding centroidal distance profiles,
where the starting point for the centroidal profile is at § = —7/2.

Imaging conditions such as lighting, reflectance, and haze may cause perturbations
in the boundary curve itself. We will model these boundary perturbations using the
technique adopted in [3,23,39]. In [3,23,39], p percent of the boundary points are

perturbed by Gaussian noise which is perpendicular to the boundary. That is, the
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Figure 4-8: Plane #4 at two different rotations and the corresponding centroidal
distance profiles.

m-th boundary point goes from (z(m),y(m)) to (z.(m), yn(m)) where

z,(m) = z(m)+ drcos(é(m)) (4.7)

_ ya(m) = y(m)+ drsin({(m)) (4.8)

where d is the distance between boundary points m and m+1, r is a random variable
chosen from N (0, s?), and £ is the angle between the z-axis and the direction normal
to the boundary at 'pv_(_)i_nt m. F}gure 4-9a shows the points in Figure 4-3a perturbed
according to (4.7) and (4.8) with p = 40 aﬁd s = .9. By connecting the perturbed

points, we obtain the noisy boundary given in Figure 4-9b. The noisy 1D centroidal

~profile in Figure 4-10 is then generated from the unperturbed centroid and points

that are equally spaced along the noisy boundary. This requires resampling the noisy
boundary. This type of boundary perturbation also causes a change in the object’s
centroid. While other papers [3,23] have ignored this secondary effect, we will include
it in our experimentation.

Occlusion may be caused by changes in lighting, reflectance, haze, or the presence

of other objects in the image. In [25], occluded boundaries are created by replacing
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{(b) Noisy boundary formed
by connecting the mnoisy sil-
houette points.

(a) Noisy silhouette points.

Figure 4-9: Generating Gaussian perturbations perpendicular to the object contour..

20

S0 100 150 200 250

Figure 4-10: Noisy 1D centroidal distance function.
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Plane 1 without occlusion Plane 1 with 10% occlusion

Figure 4-11: Plane #1 with and without occlusion. The plane on the right is generated
with ¢ = 10%.

a rér_ldom, coﬁsecutive set of ¢ percent of the boundary points in a silhouette with
a straight line. Figure 4-11 shows occluded version of Plane # 1 with ¢ = 0 (i.e. no
occlusion) and ¢ = 10 and Figure 4-12 shows the corresponding centroidal distance
profiles. Occlusion causes two types of distortion in the centroidal distance profile. -
First, since a portion of the boundary is missing more boundary points will be devoted
to the remaining airplane features. As a result, the scale of the remaining features
has changed. For example, in the occluded centroidal distance profile in Figure 4-12,
since the first wing is occluded the second wing appears wider than in the unoccluded
profile. Second, the occlusion also causes a shift in the centroid which leads to a

significant warping in the centroidal distance profile.

4.2.3 Fourier Descriptors

One classical technique used to recognize silhouettes is based on Fourier descrip-
tors [23,30,40]. The benefits of these techniques is their small computational burden,
robustness to scale and orientation variation, and their relative robustness to bound-
ary perturbations. On the other hand, these techniques deteriorate rapidly when

occlusions are present.
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Figure 4-12: Corresponding centroidal distance profiles for Figure 4-11.
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In [23], the authors construct a feature vector based on the normalized magnitude
of the centroidal distance profile of a silhouette. If the centroidal distance profile of
a silhouette has NV samples and is given by f, and the discrete Fourier transform of

f is given by F', then the feature vector y is given by

|F1| |[Fyel
[|Fo| 7o (4.9)

where F; denotes the i-th component of F. The classification of silhouettes based on

their Fourier descriptors is done using a K nearest neighbor procedure [14].

4.3 Detection Theory Background

As we have already mentioned, the basic approach in this work is to extract HRP
features from a 1D representation of the airplane silhouettes and use these features
to identify the plane. The search engine we will be using in this work is the M-ary
hypothesis test and the generalized likelihood ratio test. In this section, we describe

these two general concepts from detection theory.

4.3.1 Hypothesis Testing

The M-ary hypothesis testing problem is an extension of the binary hypothesis testing

| problem so we begin by considering the binary hypothesis test. Suppose we are given

a vector of measurements y whose probabilistic behavior is determined by one of
two hypotheses, Hy and H;. We are also given the following information regarding
the measurements and hypotheses. First, we are given the probabilistic relationship

between y and each of the hypotheses, i.e. Py (Y| Hpm) for m = {0,1}. Second, we

are given P,,, the probability that hypothesis m is true. Third, we are given Ci,y,,

the cost associated with choosing hypothesis m if hypothesis n is true. The decision
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rule, D(Y) which minimizes the expected value of Bayesian risk [14,37] is stated as

follows:
. Pyiay (Y|H1) (C10—Coo)Po
_ Pyao(Y[Ho) = (Coi-Cu )P
D(Y) 0 if Py]Hl(Y|H1) < (C10—Coo) Po (410)
Py H,(Y|Ho) (Co1—C11)P1

where the term on the left hand side of the inequality in (4.10) is referred to as the . .

likelihood ratio. For the case where the cost associated with correct decisions is zero,
the cost associated with incorrect decisions is one, and the hypotheses are equally

likely, this decision rule reduces to

1 if pyjm, (Y|Hy) > pyIHo(Y|H0)
0 if pym, (Y| Hy) > pyia, (Y| Ho)

D(Y) = (4.11)

That is, the choice which minimizes the Bayesian error criterion is the hypothesis with

-the maximum likelihood. In the M-ary hypothesis-test, the set of possible hypotheses. - -

is given by {H1, ..., Huy}. The Bayes minimum risk decision rule for the case where
the cost associated with correct decisions is zero, the cost associated with incorrect

decisions is oné, and the hypotheses are equally likely is given by
D(Y) =m if pya,.(Y|Hn) > pyu, (Y|H,) for all n # m. (4.12)

Although we have shown the more general case with arbitrary values for P, and
‘ Coun, we will assume in the remainder of this chapter that the cost associated with
correct decisions is Z€ro, the cost associated with incorrect decisions is one, and the
hypotheses are equally likely.

Reiterating, our proposed approach is to use the M-ary hypothesis test to deter-
mine which plane is most likely given a set of features based on the elements extracted
by HRP from a noisy 1D representation of a silhouette. In this proposed approach,

y will be a feature vector based on the HRP decomposition and each hypothesis Hy,
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will correspond to one of the planes in the database.

4.3.2 Generalized Likelihood Ratio Test

The hypothesis testing problem can also be extended to include more complex hy-
potheses, typically referred to as composite hypotheses [34]. A composite hypothesis
is one which depends on another unknown value. That is, pyja,, (Y|Hm) actually de-
pends on some other unknown value § and should be rewritten as py H.5(Y |Hnm, B).
The parameter 3 is often referred to as a “nuisance” parameter since the objective is
to choose a hypothesis, regardless of the actual value of .

The generalized likelihood ratio test (GLRT) suggests that a logical approach
to this problem is to replace the unknown parameter with its maximum likelihood
estimate and continue with the hypothesis test previously outlined. In this case, the

M-ary hypothesis testing decision rule becomes D(Y) = m if

maxg py|Hm,ﬁ(Y|Hm; :8)
maxg Py, s(Y |Hn, B)

> foralln#m (4.13)

where v is some threshold. In the specific case where the cost associated with the
correct decision is zero, the cost’associated with an incorrect decision is one, and all
hypotheses are equally likely, v is equal to one.

The following examples serve to illustrate the generalized likelihood ratio test.
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