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Abstract

Ultra dense electrical memories can be built in which the memory devices utilize direct
electron tunneling through very thin Silicon oxides. To understand the behavior of
such electron devices we provide a comprehensive theoretical framework for modeling
electron tunneling processes in Si/SiO, systems, and back it up with experimental
evidence. We have developed fully self-consistent quantum mechanical models to
calculate tunneling currents through sub-50A4 oxides. Our theoretical model is in
remarkably good agreement with experimental data. We have also formulated a
multiband crystalline WKB approximation that takes into account the correct energy
dispersion relation in the mid-gap region of SiO,. We have also developed a novel
method te study the dynamic response of two dimensional electron gas in MOS Field
Effect devices to external time-dependent perturbations, and we use it to study the
dynamic image potential problem in tunneling. We have also modeled the behavior
of electrons in quantum dots coupled to the channel of MOS devices. Such structures
have the potential for being used in high density multi-state memories. We provide a
theoretical formulation to model the time independent and time dependent behavior
of such devices.
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Chapter 1

Introduction

1.1 Background

Three different types of semiconductor MOS memories are currently in vogue :

° Dynamic Random Access memories (DRAM), that typically read and write in

sub-100 nano seconds time but need to be refreshed in time period of seconds.

e Static Random Access memories (SRAM), that read and write in time period

of nano seconds, and do not need to be refreshed.

e Non-volatile memories (NV-RAM), for example E2PROMs, that also read in

sub-100 nano seconds but write in millj seconds and do not need to be refreshed.

SRAMs are used in computation for local fast memories, such as that required
for caches. Each SRAM cell usually consists of multiple transistors in fiip flop con-
figuration, thus consuming a substantial amount of power and space. This is a major
limitation in portable low power applications.

NV-RAMs are used where data is stored for large periods of time and small writing
times is not a requirement, such as in programmable logic chips. Each NV-RAM cell
may consist of one or more transistors among which at least one transistor is capable
of storing charge in a floating gate embedded in the gate oxide. The floating gate is

charged by electrons tunneling from the substrate. As a result of the large potential
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barrier ( 3eV) due to conduction band offset between silicon and silicon dioxide, the
charge in the floating gate can stay for as long as lo'yea.rs. However, to improve charge
retention thick oxides (few hundred angstroms) are used. Writing is done at high gate
voltages ( 15-50 volts) with large electric fields in the oxide. Tunneling of electrons
takes place in the Fowler-Nordheim regime. In the presence of large electric fields,
electrons gain large kinetic energies and these energetic electrons are the primary
cause of generating defects in the oxide {29]. This hot carrier induced damage limits
the number of times the device can be made to go through write and erase cycles
(typically 10° or 10%). This together with the slow write times do not allow the use
of this device in the temporary storage of information during computation.

DRAMs are almost always the choice where memory is needed for local temporary
storage of information during computation. Each DRAM cell consists typically of a
single transistor and a capacitor. DRAMs have provided the highest densities because
of the relatively small cell size. With continuing increase in densities, the need to
refresh in times smaller than seconds, and reading and writing a large number of bits,
DRAM has continued to increase the power consumption, and its beginning to become
prohibitive for portable applications. For example, the amount of power consumed
by 16 mega bytes, employing 4 mega bit DRAMs, during intensive use is about 12
Watts, and in stand-by condition is about 150 milli Watts [30]. Typical portable
battery energy is about 50 Watt-hour/kg. Thus, a 100g battery, with current state of
technology, would last half an hour of intensive use using 16 mega bytes of memory.

A sub-100 nano second memory with significantly low power consumption and high
density is needed to meet the increasing demands of memory intensive computing.
The development of giga bit levels of integration in a chip occupying area of 1 cm?
requires a bit footprint of less than 0.1 pm?. With conventional silicon technology, the
construction of such a small single cell containing_g pass transistor and a capacitor,
poses a daunting challenge. Even if this were pcssible, another challenge arises from
the sub-threshold current of pass-transistors of gate lengths less than 10064, which
result in loss of capacitor charge, decrease in refresk times and, therefore, increase in

power dissipation.

13
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Figure 1-1: Planar memory cell

It seems that large improvements in current memory device technology may re-
quire revolutionary changes. In order to meet the challenges of the giga bit generation
some ncvel memory device structures and architectures are being explored at IBM.
These devices provide the motivation behind the research being carried out in the

present work.

1.2 Motivation

A major limitation of DRAM in power comes about because of the leakage of stored
charge and the need to refresh. Density limitationsin DRAM and SRAM come about
because of multiple elements employed in a single cell. NV-RAMs have long retention
times but suffer from long write times. A way to attack all these problems is to use
novel single transistor memory cells as shown in figure (1-1) and figure (1-2). The
device in figure (1-1) is almost like a E2PROM but it utilizes ultra thin gate oxide,
typically between 154 and 25A4. Charge can be placed in the floating gate via direct
tunnel injection of electrons from the substrate. The advantage of this over conven-
tional E2PROMs is two fold :

a) Current densities through such thin oxides are large reaching typically around
1-10 A/cm? for 154 oxides with gate voltages between 1-2 volts. Thus to put a charge

of 10'2 electrons/cm? in the floating gate would require a write time of less than 100

14
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Figure 1-2: Vertical memory cell

nano seconds at fairly ow gate voltages. This speed is almost comparable to that of
DRAM. :

b) Current injection takes place via direct tunnel injection (as opposed to Fowler-
Nordheim injection). Electrons thus do not acquire sufficient kinetic energy while
traversing the oxide. It has been experimentally observed that two most common
type of hot carrier related oxide degradation mechanisms are trap creation by re-
lease of mobile hydrogen, and generation of trapped holes via impact ionization [29).
The former process requires electrons’ energies over 2eV, and the later requires en-
ergies cver 9eV. Electrons undergoing direct tunneling are therefore not expected to
contribute significantly to such degradation mechanisms. Preliminary experimental
results on thin oxide memory devices show that they can be cycled (through write
and erase operations) more than 10'° times without any significant oxide degradation
[31].

The advantage over DRAM lies in the use of just a single transistor to store a bit
without the need of a capacitor which usually occupies a large area. In addition
these devices have large retention times (form few tens of seconds to minutes) [31].
Without the nees of frequent refresh, these devices are expected to consume far less

power than conventional DRAM. With short writing and erasing times, it is expected

15



(SIDE VIEW) (TOP VIEW)

gate
source
control
oxide
dot gate
uantum
ot _
drain

Figure 1-3: Quantum dot memory cell

that these DTRAMs (direct tunneling RAMs) may be able tc compete with DRAMs
in the temporary storage of information during computation.

Extensions of the above idea can be used in more useful designs. Two such designs
will be described here. Figure (1-2) shows a vertical DTRAM. The channel is vertical
with a poly-silicon gate surrounding it. This structure can significantly reduce the
area required per transistor, making this device an ideal candidate for the giga bit
generation. Also the subthreshold characteristics are expected to be better than
planar designs, especially at very short channel lengths (less than 0.25 pm). Another
very useful design is shown in figure (1-3). In this device the floating gate is in the form
of a small quantum box (or dot), coupled to the substrate via a thin thermal oxide.
The dimensions of the box are small enough so that effects associated with coulomb
energy are significant. Specifically, it is expected that the number of electrons in the
box will go up with an applied positive bias on the gate in discrete jumps (electron
number quantization). The shifts in threshold voltage, on applying a voltage pulse
on the gate, is also expected to have discrete values, depending upon the magnitude
and duration of the pulse. This device offers the unique possibility of a multi-state

memory cell consisting of only a single device.
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1.3 Research Presented in this Thesis

The operation of DTRAM cells relies heavily on the physical and electronic properties
of thermal oxides. To understand the behavior of DTRAM devices, it is necessary to
study these properties, especially those of ultra thin oxides. The aim of this thesis
research was to study the physics of quantum mechanical tunneling in ultra thin
oxides, develop theoretical models for DTRAM structures, and to verify these models
with experimental data. In modeling DTRAMs we have also focused upon developing
the physics associated with coupling quantum dots with the channel of FETs, since
this has never been studied before. Below we give a brief summary of the problems

we have addressed in this work.

1.3.1 Physics of Tunneling through Ultra Thin Oxides

The physics of tunneling through oxides has been studied previously by many authors
[32]. However, with recent developments in condensed matter physics, the availability
of fast computers for large calculations and the need to predict accurately tunneling
currents in ultra thin oxides it is necessary to develop more accurate models for
tunneling processes. There are many questions related to electron tunneling through
thin oxides that we feel are not answered satisfactorily in the existing literature. Some

of these are :

Self-consistency : The tunneling currents are strongly depended upon the quan-
tity of electron charge present in accumulation or inversion layer, and also the
distribution of these electrons in energy. We know that self-consistent solutions
generally give different results for these quantities than the semi-classical so-
lutions. Therefore, it is necessary to calculate tunneling currents using fully
self-consistent models. In chapter three we present a fully self-consistent model

for calculating tunneling currents.

Transmission probability vs life-times : In present literature all tunneling cur-

rent models use the concept of transmission probabilities. We feel that this

17



concept is meaningless for quasi bound quantum states that are present in the
accumulation and inversion layers. For these states a more useful concept is that
of lifetimes. In chapter three we develop a fully quantum mechanical model to

describe tunneling from quasi-bound states.

Mid gap dispersion relations in SiO, : Exact energy dispersion relation of elec-
trons tunneling through very thin oxides is presently unknown. In chapter five
we present a multiband crystalline WKB approximation to model the mid gap
dispersion relation of SiO, in the presence of an electric field. Our model is

adequate to describe electron tunneling in the direct regime.

Image force corrections : Whether image force corrections should enter the calcu-
lation of tunneling currents has been a debatable issue among physicists. The
fundamental question is whether electrons inside the electrodes can respond
quickly enough to the field created by a tunneling electron. We feel that the
answer depends upon the nature of the electrodes. In chapter five we model the
dynamic response of a two dimensional electron gas to external charge pertur-
bations. We show that the dominant contribution to image force comes from
the static dielectric constant mismatch between Si and SiO,, and also from the
metallic gate electrode, and not from the 2-DEG. The Mechanism of image force

in MOS devices is explained in detail in this chapter.

1.3.2 Tunneling Processes, and Charge Statistics and Fluc-
tuations in Quantum Dots Coupled to FETs

Understanding the operation of quantum dot memories and designing efficient and
useful structures necessitates a good knowledge of tunneling processes, and charge

statistics and fluctuations in these devices. In this context, we have explored the

following :

Tunneling processes, carrier statistics and fluctuations : In order to determine

the speed of these devices accurate calculation of rates of charging and dis-

18



charging of the quantum box are needed. In chapter six we develop appropriate
analytical tools to study the dynamics of tunneling processes in quantum dots
coupled to the channel of MOS devices. Carrier statistics and fluctuations in

the quantum dot are also studied in chapter six.

Effects on conductivity of the channel : In chapter six we also show that charge
fluctuation in single dot devices induce conductivity fluctuations of the inversion
layer underneath. This offers a possibility of experimentally determining the
time scale of charge fluctuations in the quantum dots by looking at the time
scale of conductivity fluctuations of the channel. The physics associated with

these fluctuations is developed in chapter six.

In chapters four and six we discuss the numerical results obtained from the various

analytical models developed and compare these results with experimental data.

1.4 Conclusion

The new DTRAM memory structures developed at IBM offer possibilities for novel
memories for the giga bit generation and at the same time provide an opportunity to
study physics associated with electron tunneling processes in very thin oxides and also
explore the behavior of electrons in nano structures. The research done in this thesis
may also prove useful for the operation of sub 0.1 micron MOS devices which employ
very thin gate oxides to contro! short channel effects. In addition, another object of
this thesis would be to develop theoretical models that may be tested with experiments

and then integrated into DAMOCLES, IBM’s quantum monte carlo device simulator.
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Chapter 2

Semi-classical Theory of

Tunneling Through Oxides

2.1 Introduction

The semi-classical theory of tunneling through Silicon dioxide (SiO) films has a long
history (see [2]). The study of tunneling in solids began with work in late twenties
on field emission from metal surfaces [3] and in the thirties on metal semiconductor
contacts [1]. First theoretical formulations of tunneling in thin insulating films were
published in fifties [4, 5]. A number of experimental results were published in the six-
ties. The first widely accepted results on tunneling through SiO; films were published
in late sixties by Lenzlinger and Snow [6], who showed Fowler-Nordheim tunneling
through relatively thick (~ 1000A4) oxides used at that time in MOS devices. Since
then a large number of papers have been published which present theoretical and ex-
perimental work on tunneling through both thin and thick oxides. We can cite only
a few of them here (2, 7, 8, 9, 10]. Over the years the semi-classical theory of electron
tunneling in thin oxides has evolved considerably. Many variants of the theory have
been presented in literature. With the exception of few, these variants mostly differ
from each other depending upon the nature of approximations made to get simple
analytic expressions. In this chapter we will review the physics associated the semi-

classical model of electron tunneling. We will present a semi-classical model in which
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no analytical approximations will be made. The ﬁne;l results will be obtained through
numerical means. In subsequent chapters we will compare these resuits with those
obtained from a fully self-consistent quantum mechanical model. We will mostly be
concerned with the case when the electrons tunnel from the conduction band of Sili-
con into the gate electrode, rather than vice versa, since this is more relevant to the
memory devices being studied at IBM. However, the opposite case when the electrons
tunnel from the gate electrode intc the conduction band of Silicon can also be han-
dled equally well by our theory. Also since in all the experimental work done at IBM,
the devices had Poly-silicon gates, we will develop the theory for only such devices.

Besides, devices with Poly-silicon gates are technologically more relevant.

2.2 The Physics of the Semi-_-_classical Model

The semi-classical model of electron tunneling in MOS structures makes the following

main assumptions :

1. The occupation statistics for electrons in Silicon are described by the Fermi-

Dirac statistics.

2. The quantization of electron motion perpendicular to the Si-SiO, interface in

accumulation and inversion layers is ignored.

3. The flux of electrons through the oxide is determined by a transmission prob-
ability, which may be calculated by solving the Schrodinger’s equation in the

effective mass approximation.

The two common and most important cases are when the electrons from the
conduction band in Silicon tunnel from either the accumulation layer or the inversion
layer into the gate electrode. Figures (2-1) and (2-2) show these processes in the
energy band diagrams. It may happen that when the oxide is relatively thick (> 754),
and a high bias is applied across the MOS structure, tunneling electrons may enter
the conduction band of the oxide. When this happens, tunneling is said to enter the

"Fowler-Nordheim’ regime. In devices with thin oxides (< 50A), tunneling electrons
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usually never enter the conduction band of the oxide even for high gate biases all the
way up to the point where the oxide breaks down. Tunneling in this regime is called

'direct’. Both direct and Fowler-Nordheim tunneling can be tieated on equal footing
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in the semi-classical model.

Semi-classical calculations for tunneling currents are done in three steps :

Step I : For a given value of gate voltage, the Poisson equation is solved for the

entire structure shown in figure (2-3).

Silicon substrate, in the oxide and in the gate Poly-Silicon.

Step II : For the oxide electric field determined in step I, Schrodinger equation is

solved in the effective mass approximation in each region to obtain the trans-

mission probability.

Step III : Transmission probability found in step II is used to calculate the tunneling

currernts.
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Figure 2-2: Electron Tunneling from Inversion Layer

2.2.1 Solution of the Poisson Equation

Usually analytical analysis of MOS devices is done using the Maxwell-Boltzman occu-
pation statistics for electrons {11]. Even numerical simulators, like IBM’s FIELDAY,
avoids using Fermi-Dirac statistics since this makes the program take longer to con-
verge. However, since we will be primarily interested in tunneling currents from
heavily accumulated or inverted layers where Maxwell-Boltzman statistics do not ap-
ply, it is necessary that we use Fermi-Dirac statistics. Thus the Poisson equation
needs to be solved using Fermi-Dirac statistics. This can accomplished numerically
using the finite difference or the finite element method.

The calculation begins by guessing an approximate form for the potential ¢gyess(2)
in the region —t,; < < L, where L is the thickness of the substrate and ¢, is the
thickness of the oxide. The form of the potential is usually taken to be

Pguess(Z) = Aexp(——x-—) + Bexp(-——z—) for 0<z<L (2.1)
alp Blp

Bguess(z) = ¢(0) — Fozz  for  —1,, <z <0 (2.2)

F,; is the field strength in the oxide and is related to the parameters A, B, a, and
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The values of these parameters are chosen empirically to give the best results and
fastest convergence. lp is the debye length (\/m) of bulk Silicon. €,; and
€,z are the static dielectric constants of Silcon an_c_l Silicon dioxide repectively. Np
is the doping in the Silicon substrate. Local charge density p(z) can be written as
p(z) = e(Np + p(z) — n(z) — Na). Electron density n(z) and hole density p(z) can

be written as [12]
Ef — Ec(z)

n(z) = Ne(T) Frjp(————) (2.4)
(@) = No(T) Ry =B (25)

where Ec(z) = Eco— edgyess(z) and Ev(z) = Evo — eggyess(z), and Eco and Evo are
the conduction band and valence band edges deep in the substrate where p(z) = 0.
p(z) thus obtained can be used to solve the Poisson equation

8 €(@)06(z) _

% o —p(z) (2.6)
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with boundary conditions

¢($ = _toz) = Vgate - Vﬂat—bandy ¢(.’l: = L) =0, and

9¢(z = 0%) 9¢(z =07)

E“_a.'c_ = €oz o (2.7)

to obtain a new potential ¢(z). The procedure can be iterated until ¢g,eq(z) and

@(z) converge. However, a much better approach is to assume that

¢(Z) = Pguess + 0¢(x) (2.8)

Since p(z) is also a functional of ¢(z) we may write to first order in d¢(z)

AO(D)] = lbues(a)] + 35356(2) 29)
dp(z) .
where 36(z) is
é 2 ! Ef - Eco+ ess ! Evo — ¢uess -E
62?::; = KT(N Fl/?( f COKTe¢9“ (z))—NU F1/2( o QI{T (x) f))
(2.10)

The equation that needs to be solved for §¢(x) is then

2 e)088(w) | Sole) s 2

0r Oz 5é(z)

Also d¢(z) satisfies the same boundary conditions as ¢(z) except that 6¢(z = —t,;) =
0. Equation (2.11) for d¢(z) can be solved through finite difference method which

yields the following equation

‘5¢($i+1)_5¢(3i)_ #(z:) — 64(Zi-1) A2(5P($t)

o = ey 09(m) = (212)

A is the length of an element of the mesh. Since we are solving in one dimension

only, it is convenient to use a mesh of uniform size. The finite difference method
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yields a tridiagonal matrix which can easily be solved by forward elimination and
back substitution [13]. Once the equation is solved, a new guess for the potential
#(z) is made

Brew—guess(T) = Potd—guess + 06(x) (2.13)

and the procedure is iterated until ¢(z) becomes less than 5 x 10~° volts for all z.

This procedure is usually found to converge in less than ten iterations.

2.2.2 Calculation of the Transmission Probability

The semi-classical model assumes that in the effective mass approximation the wave-
function of an electron in the substrate and the gate electrode can be described by a
plane wave. The transmission probability is then defined as the ratio of electron flux
transmitted through the SiO; barrier to that incident upon the barrier. Figure (2-4)
shows the approximate potential profile used in the semi-classical picture to solve the

Schrodinger equation

2 T
B %a%meflf(z) 3‘gfv Ly V(=) ¥(e) = B () 214)

The potential V(z) in each region shown in figure (2-4) is
Viz)=0 for —-00<z<0

V(z) =epp—e|F|Jz for 0<z1<t,
V(z) =epp — €|Forltor for t,z <z <00

¢p is the conduction band discontinuity between Silicon and Silicon dioxide. The

corresponding solutions of the Schrodinger equation in each region are
Y(z)=e*T4re™®  for -—00<Lz<0

¥(z) = C Ai(y(z)) + D Bi(y(z)) .‘for 0<z<to
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Figure 2-4: Region in which the Schrodinger equation is solved to get the transmission
probabilities

Y(z) =te*rEt)  for t,.<z<00

3 2 Fo:l: -
W) = \/—m o I(eﬁfFozlE K

In writing the solutions above, we have made an implicit assumption that the trans-

where

verse kinetic energy of electrons is conserved while tunneling. Therefore the problem
is reduced to the single dimension perpendicular to the Si/SiO, interface. With this

assumption we can also write

= 2mEE/h, ;= \[2mE(E + e|Forltor) /B

The boundary conditions on the electron wavefunction are

Pz=0")=9(z=0%), Plz=t;)=v(x=t})

and

1 OY(zx=0") 1 OyY(z=0%) 1 dyY(z =t ) 1 Yz =1tt)

- hnand ’ -
mst Oz moz Oz mos Oz T mi Oz
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These boundary conditions ensure the continuity of the wavefunction and the prob-
ability current across the Si/SiO, and the SiO,/Poly-Si interfaces. Using the above
boundary conditions we can solve for the transmission amplitude t. The transmission
probability T is then defined as :

T= %m?
and is found to be

_ ;‘;azk.- k[
" (Q-P)y+(R-8)

where @, 8, Q, P, R, and S stand for

T

(2.15)

a=m"/mg

2mo=e|F,,
==

a’k,-icf

Q = BBi'(y(z = tes)) At (y(z = 0)) + Bi(y(z = t,))Ai(y(z = 0))

B
a’l;kf Bi(y(z = 0)) Ai(y(z = t.3))

R = ak;Bi'(y(z = t.z))Ai(y(z = 0)) — ak;Bi(y(z = t,z)) A (y(z = 0))

P = B (y(z = 0))A¢'(y(z = toz)) +

S = ak:Bi(y(z = 0))Ai'(y(z = toz)) — ak;Bi'(y(z = 0)) Ai' (y(x = tor))

Note that the transmission probability is only a function of the energy of the incident,
electrons perpendicular to the Si/SiO, interface. This is a result of our assumption
that transverse component of the kinetic energy is conserved during tunneling. We

will say more about this assumption later.

2.2.2 Calculation of the Tunneling Currents

Finally the tunneling current can be written as

3k
(2r)3

J=2 :l’ff T(E;) ( fo(Ey + Es — Efy) - fo(Ey + Es — Efy)) (2.16)
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Figure 2-5: Carrier Pockets in the First Brillouin Zone of Silicon

Integration over k, variable is restricted to the positive half of k. space. After inte-

grating over the transverse channels this reduces to

e, /mimi KT (oo 1 + exp(Eli=E=)
J=X2 T(E,) | dE, 2.17
om2h? -/c; (E=) log 1 + exp(E8Ex) (2.17)

In Silicon there are six carrier pockets in the first Brillouin zone, and assuming a (100]

Surface orientation, we may write the total tunneling current as

2e/miimiKT 1 + exp(EL=Ex

/0 ® TE,) log ——P KL dE, +

szd =

n2h’ 1+ exp(2a75%)
em® KT 1 + exp(EL=Es E_Z:E)

/0 * TVE,) log dE, (2.18)

2R 1+ exp(Elz=Ex)

In above expression the superscript ¢ and [ on T(E.) mean the he effective mass
used in calculating the transmission probability is m? and mj' respectively. Efg and
Efg are the fermi levels on the left (substrate) and right (gate) sides respectively. If
a positive bias Vjae 18 applied to the gate electrode then the splitting of the fermi
levels is Efy, — Efr = €Vate- Note that fermi levels in the substrate and the gate are

measured with respect to the conduction band edge right at the interface with SiOs.
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The integrals in the equation (2.18) can be done numerically to get the magnitude of
tunneling current as a function of the gate bias.

Results of the calculations described in this chabter will not be presented here but
in later chapters when we compare these resvlts with those obtained from the fully
self-consistent quantum mechanical model. We will now discuss the shortcomings of
the semi-classical model, as presented in this chapter, and justify the need for a more

accurate model.

2.3 Discussion

Although the semi-classical model that we have presented above does not suffer from
analytical approximations, it makes a number of physical assumptions that are hard

to justify. We will discuss the nature of these assumptions in this section.

2.3.1 Conservation of Transverse Kinetic Momentum

In deriving the expression for the transmission probability we made an assumption
that the transverse kinetic energy of electrons is conserved while tunneling. In Silicon
the six carrier pockets are ellipsoids located along the six equivalent < 100 > axis (I" to
X direction). The centers of these ellipsoids are at a distance of roughly three-fourths
of the I'-X distance. However, in Silicon dioxide the conduction band minimum
occurs at the zone center (I' point). The question arises whether the transverse
crystal momentum (i.e. momentum measured w.r.t. the zone center) is conserved,
or the transverse kinetic momentum (momentum measured w.r.t. the minimum of
conduction band edge) is conserved, or the transverse kinetic energy is conserved in
tunneling. This question has been a puzzle for a long time (see [8, 9]) and till now
no satisfactory answer is available. However, experimental measurements seem to
suggest that crystal momentum is not conserved while tunneling. The argument is
as follows. Suppose that transverse crystal momentum is conserved. Consider the
six carrier pockets of Silicon shown in figure (2-5), and suppose that the direction

perpendicular to the Si/SiO, interface is the positive x direction. Electrons form the
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carrier pocket [ 010 ] can tunnel provided the total energy inside the oxide is the same

as the initial total energy. Thus we may write

, (hkz)?

2 2
et (h%)? | (k. _

B, - () (K, + ) (hk,)?

2moz 2mo= 2moz

2mt + 2m#*  2mf
where K, (~ 0.75%) is the distance of the pocket at [010] from the zone center, and
K is the decay constant of the wavefunction inside the oxide. Assuming for a moment

that the effective masses in Si and SiO, are roughly equal, we may write for

hikc)? LK, )? ;
o = (B = Beu) + 3ot — B
~ (h'I{ll)2 a1
~ efp+ Dy E; (2.19)

This means that the effective barrier height for electrons has been increased by about
(hK,)

s which is around 3eV. Such a large increase should greatly decrease the trans-
mission probability for all electrons in the four carrier pockets located in directions
parallel to the interface, and should result in very little tunneling current from these
carrier pockets. Such large reductions in tunneling currents are not observed in ex-
periments. Tunneling measurements done for Silicon surfaces with < 111 > and
< 110 > orientations also do not support the conservation of transverse crystal mo-
mentum (8, 9]. The excellent agreement between our calculations and experimental
data also does not support this idea.

However, there also does not seem to be any evidence to support whether trans-
verse kinetic energy or transverse kinetic momentum is conserved during tunneling.
For simplicity, we have assumed throughout this thesis that transverse kinetic energy
is conserved. This assumption reduces the three dimensional problem to a single
dimensional one. Since on average the difference between the effective mass of elec-
trons in Si is almost that in SiO,, we expect that the assumption of conservation of
transverse kinetic momentum should not give results that are much different than

ours.

An exact theory explaining the behavior of electron wavefunctior near the Si/SiO,
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is difficult, if not completely impossible, given the amorphous nature of the axide. The
local order in amorphous thermal oxides resembles that of the crystalline a-quartz
[20). Some physics learned from the structure of a-quartz may be used to understand

the nature of amorphous oxides, but in the end one must rely on experimental results.

2.3.2 The Oxide Effective Mass and the Question of the

Image Force

All calculations done in this thesis assume an oxide effective mass of 0.5m, and a
value of 3.15eV for ¢p (the discontinuity between the Si and SiO, conduction bands).
We have to justify that the energy dispersion relation in the mid-gap region of SiO,
can be modeled by assuming an effective mass of 0.5m,. Also we have ignored the
barrier height reduction effects caused by the image force. We also need to justify

this assumption. We will discuss both these issues more carefully in later chapters.

2.3.3 Quantization of Electron Motion in Accumulation and

Inversion Layers

The semi-classical model ignores the quantization of electron motion perpendicular to
the Si/SiO, interface. The tunneling current is extremely sensitive to the distribution
of incident electrons in energy and the electric field strength in the oxide. From the
self-consistent studies carried out in references (14, 15, 16, 17], it is obvious that
the distribution of carriers in energy as predicted by the semi-classical model is very
different from that obtained from self-consistent calculations, and the distribution of
applied bias between the substrate and the oxide also turns out to be very different.
Therefore it is necessary that experimental data be compared with results obtained
from self-consistent calculations rather than those deduced from the semi-classical
model. Also results from self-consistent calculati;)'ns published recently show oxide
tunneling currents to be roughly two orders of magnitude larger than predicted by
the semi-classical model [18, 19]. This provides additional motivation to develop a

more accurate quantum mechanical model for tunneling currents. In the next chapter
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we will present the details of our self-consistent quantum mechanical model.

2.4 Conclusion

In this chapter we have described in detail the semi-classical model for calculating
tunneling currents. We have also discussed the short comings of the model and the
need to develop a more sophisticated model. In addition, we have also discussed the
assumptions that have been made in deriving the semi-classical model and the need

to justify these assumptions. This justification will be presented in later chapters.
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Chapter 3

Self-Consistent Quantum
Mechanical Model for Tunneling
through Oxides

3.1 Foreword

In the previous chapter we described a semi-classical model for calculating tunnel-
ing currents through oxides. We also mentioned the shortcomings associated with
the semi-classical formulation and justified the need to develop a more rigorous
self-consistent model. The purpose of this chapter is to describe the details of a
self-consistent model which is suitable for calculating tunneling currents from both
accumulation and inversion layers. We will also introduce the concept of electron
lifetime’ to calculate tunneling currents from quasi-bound eigenstates, and describe
various means to calculate these lifetimes.

The calculation of tunneling currents in the self-consistent model proceeds in three

steps :

Step I : For a given value of gate voltage, Poisson and Schrodinger equations are
solved self-consistently in the entire region of interest to obtain the energies of

all the quasi-bound states and the potential drops in the substrate, oxide and
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the gate.

Step II : Using the values of oxide electric field and eigenenergies found in step I,

lifetimes of electrons in each subband are calculated.

Step III : Lifetimes calculated in step II are used to calculate contributions to oxide

tunneling current from each subband.

Details of each step will now be described.

3.2 Self-Consistent Solution of Poisson and
Schrodinger Equations

Self-consistent modeling of inversion layers has received considerable attention in
recent years (see [14, 15, 16]) as a consequence of its importance in transport in MOS
devices. However, self-consistent modeling of accumulation layers has received much
less attention. We are aware of only two publications [18, 19] that have presented
self-consistent results for accumulation layers. However, the method described in
these references used the rather tedious 'shooting’ methods (see for example [13]) to
calculate eigenenergies of various subbands. In this section we will describe a method
that works equally well for both inversion and accumulation layers.

The Poisson and Schrodinger equations are solved self-consistently for the struc-
ture shown in figure (3-1) for both accumulation and inversion layers. Self-consistent
calculations of accumulation layers are more complex than those of inversion layers
due to the absence of a separation region between the bulk extended states and the
quasi-bound states near the interface. In case of inversion layers this separation is
provided by the depletion region. The solution to this problem is to treat both ex-
tended and bound states equally in the case of accumulation layers. The calculation
starts by using a guess for electrostatic potential in the region —t,, < x < L. In case

of accumulation layers, a suitable form for this potential is
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Figure 3-1: Region in which self-consistent solution is sought for accumulation layers

Bguess(T) = Aexp (—a_:;) + Bexp (—ﬂ—::; for 0<z<L (3.1)
Pguess(z) = ¢(0) — Fouz  for —t,;<z<0 (3-2)

where F,, is related to the empirical parameters A, B, a, and § as described in equa-

tion (2.3). For inversion layers near threshold a suitable form for the potential is

Puess(z) =0  for  Taem <z <L (3.3)

_ 2
bpns(@) = TAEZZL por 0. <2 < g (3.4
Pguess(T) = $(0) — Fogz  for —t,; <z <0 (3.5)

T4ept is the length of the depletion region. Schrodinger equation in the effective mass
approximation is solved in the region —t,, <z < L 'using finite element method. The

discretized version of the equation for the n’th eigenstate is

_ _Iz":n,b,,(xiﬂ) — Yn(Zi)  Pn(Ti) = Yn(miz1)

2 m.-_._% mi_%

eAz‘i’gueu(xi)wn (.’l:,,) = A? E, wﬂ(xi)
(3.6)
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The boundary conditions on the electron wavefunction are

YT = ~tez) =Yn(c=L) =0, tu(z=-0")=19u(z=0%) and

1 (e =0%) _ 1 SYn(e=0)

msi oz moz oz (37)
Equation (3.6) results in a tridiagonal matrix. The lowest few eigenvalues of a sym-
metric tridiagonal matrix can easily be found to.very high accuracy using sturm
sequencing and bisection. Search for eigenvalues is done only uptill energies which
are not so high to have a negligible occupancy. The upper limit of the search interval
is usually fixed at about 0.8eV above the fermi level. The eigenvector correspond-
ing to each eigenvalue can be found by performing inverse iteration. The numerical
methods mentioned here are commonly used for the solution of matrix eigensystems
and will, therefore, not be described here in detail (see for example [13]).

Once the eigenenergies and the wavefunctions have been obtained the charge den-

sity (assuming a < 100 > Si surface orientation) can be calculated from the expression

E‘UO - e¢gucu($) - EfL

p(z) = e(Np — Na) + Nu(T) Fy KT )
de st nKT Et
i mﬂh’;‘ 3 log (1 + exp(2L ")) | () I
- HT Tlog (1 + exp(=L BliBa)) | yiay p (38)

The second term on the left hand side is the density of hole charge in the semi-
classical approximation. The last two terms are the electron charge densities. The
superscript ¢(!) on electron wavefunctions and eigenenergies indicate that the electrons
belong to the carrier pocket in which the electron mass perpendicular to the interface
is m#*(m{*). The above expression for the charge density is valid for accumulation as
well as inversion layers.

Charge density obtained from equation (3.8) is used to solve the Poisson equation

using the finite element method with triangular basis functions [13] which results in
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the following equation

Bzin) = 0@) _ #(@) = 8(aict) _ po
-1 =1

; p(z:) (3.9)

i+1 -1

The boundary conditions on the potential are

#(z = —toz) = Vgate — Vytat—tand, ¢(z=L) =0, and

=0t =0
‘"'a¢(za,, 0%) _ e”a¢(zaz 0°) (3.10)

The potential obtairned from Poisson equation (¢(z)) is compared with the potential
used in the Schrodinger equation (@guess(z)). If |#(Z) — Bguess(z)] < 5 x 10~5V for
all z then ¢(z) is the self-consistent solution. Otherwise a new guess for the potential

is made as follows

¢nw-gueu(1') = ¢gucu(z) + r(z)(¢(z) — ¢gueu(z)) (3.11)

The function r(x) is such that 0 < |r(z)| < 1 for all z, and its exact form is chosen
empirically to speed up convergence.

In the self-consistent calculations for accumulation layers the boundary condition,
Yn(z = L) = 0, on the electron wavefunctions produces a net positive charge density
near r =~ L. This artificial pile up of charge is ignored and this does not have any
effect on the results as long as the length, L, of the entire substrate region is chosen
long enough so that there exists a neutral region between the charge density in the
accurnulation layer and the artificial pile up of charge near z =~ L.

Finally, the potential drop in the n* Poly-silicon gate is calculated using the

semi-classical formula with the oxide electric field as the boundary condition

_ (€0z Foz)?

Voaty = 2¢5eNp (3.12)

where N} is the doping density in the n* Poly-silicon gate. The correct value of the
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gate bias Vj,. becomes (compare with equation (3.10))

Vgate - Vﬂat-bami = Vpoly + ¢(Z = -toz) (3'13)

Note that ¢(z = —t,;) is just the potential drop in the oxide and in the substrate. If
doping in the gate is more than 5 x 10%°/cm? then V,qy is usually negligible.

The method for obtaining self-consistent solutions described in this section works
well for both accumulation and inversion layers and is fairly robust. We have tested
our self-consistent solver for both accumulation and inversion layers at 300°K and at
77°K. The number of iterations required to obtain convergence depends upon the gate
bias, and is usually between twenty to hundred. In the next section we will describe
various methods to calculate lifetimes for the quasi-bound states obtained from the

self-consistent solution.

3.3 Electron Tunneling from Bound States

The problem of calculating tunneling currents from quasi-bound states in MOS de-
vices has been to the best our knowledge addressed in two publications [18, 8]. We
believe that methods described in these references are rather awkward and even hard
to justify. For quasi-bound states the concept of transmission probability is no longer
meaningful. Transmission probability is defined as the ratio of transmitted to incident
flux. In case of tunneling from quasi-bound states, there is no incident flux. However,
the lifetime of quasi-bound states can be used to calculate tunneling currents. The

concept of lifetime is useful for a decaying state if the following conditions are satisfied

a) It has a lifetime much longer compared to ¢/k, where € is the energy of the state.
b) The state is coupled very weakly to other states (and hence its long lifetime)

c) The state is decaying into a continuum, or a very large number of final states so

that there is no chance of coherent recurrence.
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All the above conditions are satisfied for quasi-bound states in the accumulation
and inversion layers. The high (~3.15eV) potential barrier provided by the SiO
ensures that the quasi-bound states have a long lifetime, and the very large number
of final states in the gate electrode into which these quasi-bound states decay, implies
that there is almost zero probability for coherent regeneration of the initial state.

In this section we will describe two different methods to calculate lifetimes of
quasi-bound states, and then using non-equilibrium Green function technique we will

show how tunneling currents may be calculated from quasi-bound states.

3.3.1 Calculation of Lifetimes from Path Integral Formula-
tion

Consider the quasi-bound state shown in figure (3-2). Suppose an electron is placed in
this state at time t = 0. The wavefunction of the electron at time t = 0 is ¥(z,t = 0).
If 1(x, t) were an exact eigenstate of the system, then we would expect that at a later

time t the wavefunction would be

i

ba)=e B zt=0)

But as result of the finite thickness of the SiO, barrier the state gets coupled to the
states in the gate electrode, and it is therefore no longer an exact energy eigenstate.
If this coupling is weak, the time development of the state is expected to be of the

form .
) t

Y(z,t)=e h ¢ e_g;xl{(z,t =0)

and therefore the probability P(t) that the electron will be found in the quasi-bound

state at a later time decays exponentially as

P)= [ dzlp(=t)f=e T
Since the coupling with the states in the gate is weak, we can calculate the value of
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Figure 3-2: quasi-bound state decaying into the gate

the lifetime 7 perturbatively.
We define a resolvent G(w) as [21]

(3.14)

Thus the eigenenergies of the hamiltonian H are the poles of G(w). We may also

write G(w) as

ZA

- _LAT
Gw) = —i /ow dT ewT / dr <zle A |z > (3.15)

1
Gw) = ~i /0 * ar T [ 4z, /:‘T’“" D@ PO (316)

(0)=z,
where

S[z(t)] = /0 " (%:E:(t)” - V(a:(t))) (3.17)

is the classical action and the path integral in equation (3.16) is over all trajectories

satisfying £(T') = z(0) = z,. We can expand the action around the classical path
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z4(t) which satisfies the Euler-Lagrange equation

may(t) = =V'(za(t)) (3.18)
with boundary conditions
za(T) = 2a(0) = z, (3.19)
and get
1 _ 3 )
=(T)=2 =S[z(t)] i 8284 7Salzalt)] 7 Salza(t))
h =[/——a———ch =Aeh 2
[:(0)==, Diz(t)le 2nh 0z,0z, € Ae (3.20)

The above expression is exact for potentials linear and quadratic in z. Note that
action Sy[z(t)] is only a function of z, and T. We may define momentum p and a

constant of classical motion € associated with the classical path from the relations
plza(t)] = miu(t) (3.21)

€= -’gid(t)2 +V(za(t) (3.22)

The time period T of the classical trajectory is then

Zo m m
= dr | ————— = ¢ dz — .
T=§ 20— V(@) ¢ (@) (3:23)
The classical action can also be wriiten as [22]
Lo T
Su(zo, T) = f p(z) dz — e(zo, T)T (3.24)
Zo
The expression for the resolvent becomes
]
; =S, t
Gw) = —i /0 * ar T / dz, A ehoalea(d)] (3.25)

The integral over z, can be performed in the stationary phase approximation which
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means that from all possible Sy(z,, T), corresponding to different classical trajecto-
JSd (x.,, T)

5, = 0. This condition gives

ries, keep only those for which

6Sa(@0,T) _ 8SalenT) , 6SalzeT)
8 0za(T) 522(0)

= p[za(T)] — plza(0)] = 0 (3.26)

Thus both the initial and final co-ordinates and momenta are supposed to be equal.
In other words only those classical paths which have periodic trajectories are allowed.

We may write

)
wT + —=Sa(T
G(w) = —i /°° ar 4T+ 50 (3.27)
0
We can again use stationary phase approximation and keep only those terms for whicu

165.4(T)

W= -—— =

<
kT h

(3.28)

In general there will be many classical periodic paths with different time periods
T, such that the energy associated with these paths equals iw. Therefore the final

expression for G(w) will just be the sum over all these paths

Gw)=—i 3" A, eTn+5a(T) = -.—.i T A, eif Pz 3 4g)

When the contour integral § p(z)dz in the above expression passes through a classi-
cally forbidden region where ¢ < V(z) then p(x) becomes imaginary and therefore the
integral § p(z) dz may have imaginary parts. In performing summation over all the
paths in (3.29) the path dependence of the prefactor can be neglected if one observes

the following rule [22] : Whenever a path bounces back from a classical turning point
i
2
back from a classical turning point into a classically allowed region A gets a factor

into a classically forbidden region A gets a factur —, and whenever a path bounces

—1.
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For the problem shown in figure (3-2) we may define the W,; and W,, as

W, = 2/0 | dz\/2m“'(h: - V(z))

(3.30)

W, =2 /0 o dz\/zmw(vfi(;) —hw) (3.31)

Now we can write the summation in equation (3.29) as sum over all trajectories

beginning in either Si or SiO, and containing all combinations of cycles ia each region

Glw) « nioo (—ieiW-"' (—i + ie—Wn + (%)%“Wox + ))n +

2
n=1
n=oo . - . . n
D (-;-e_W“ (% + —ieWei g (—5)2e?3Wai 4 )) (3.32)
n=1

which gives

(1 — 0.25e=Woz)eiWsi 1 0.25(1 — eiWei)e=Wos

G(w) x -
“) (1 +0.25e= Wez) + (1 — 0.25¢=Wez )etWei

(3.33)

The real part of the pole of G(w) can be found by neglecting terms containing e~ Wii
in the denominator giving
1+eWsi = (3.34)

which implies
0 1
W, =2 f pla)de =2m(n+3) n=0,12. (3.35)
Zturning

Equation (3.35) is the just the Bohr-Sommerfield quantization condition, implying
that poles in w plane occur at discrete frequencies w,. These discrete frequencies
correspond to the discrete spectrum of the quasi-bound states. To take into account

the correction terms due to e~ Wor we can expand W,; as

Wii(w) = Was(wa) + Qv-‘%‘w(“’—")Awn (3.36)
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Using equations (3.36), (3.23), (3.30), and (3.33) the value of Aw is found to be

3 e_Woz (wn)

Awp = "R 2T(wn)

(3.37)

where T'(wy) is the time period for classical motion in the n’th quasi-bound state.
Thus it is now obvious that the energy of the quasi-bound state has acquired an

imaginary part and the lifetime of the n’th state is therefore

€. tr | 1/2mo=(V(z) — €,)
L O /0 dz -

= = — (3.38)
7(€n) T(Eﬁ) o d _m
h f{ V20 - V()
We can write this in more suggestive form as
1 2
— = fu x [t(en)| (3.39)

Where f is the classical frequency of oscillation of a confined particle and |t(e,)|? is
the transmission probability in the WKB approximation. Equation (3.39) is the main

result of this section.

3.3.2 Calculation of Current from Quasi-Bound States with

Non-equilibrium Green Function Technique

In the last section we derived a formula for lifetime of quasi-bound states using the
path integral expansion of the resolvent operator. In this section we will use another
technique to get the same result and also calculate the total tunneling current when
the fermi level in the substrate is shifted higher than that in the gate by the application
of a positive bias on the gate. We again consider the situation depicted in figure (3-2).
Using the tunneling hamiltonian formalism [24, 25] we can write the hamiltonian for
the system as

H=H,+Hp+HLpg (3.40)
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where

H;, = z(c,.+eV) ala,
Hp = me crncm

HL.R = ZTmn cfna.,,-i—c.c. (3.41)

nm

The indices n and m label the states on the left and right side of the barrier repectively.
As shown in figure (3-2) the states on the left side of the barrier are the quasi-bound
states.

The total current going from the substrate (left side) into the gate (right side) is

Jon = dN;;(t) 2 Z (Tn < cha(t)an(t) > —Tom < al(t)em(t) >)
= —%E (Tm,,G'zR(n,t; m,t) — TumGgrf (m, t;n, t)) (3.42)

where Gz (n,t;m,t) = i < cl,(t)aa(t) > and Gri(m,t;n,t) = i < al(t)em(t) >.
The order of the subscripts 'L’ and 'R’ on the Green function indicate the regions to
which the states whose indices appear inside the brackets belong. In order to calculate
the current we need analytical expressions for the various Green functions appearing
in equation (3.42). These Green functions can be calculated using non-equilibrium
perturbation technique developed by Keldysh [26].

By doing perturbation expansion in the hamiltonians Hy g and Hp on the
Keldysh contour [23] in complex time it can be shown that [27)

T
T (% dti (9 (n 6, 1) gha(m!, tiym, t) +

Gri(n,t;m,t) = 3

n'm’

gir(n,tin', 1) gri(m’, ti; m, 1)) (3.43)

Tmr n'

Gri(k,tint) =3 5

n'm!

1% dty (gRR(m t,m',t) grf (', t;n, t) +

grR(m,t;m', 1)) g8, (n', ty; n, 1)) (3.44)
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grr and grr represent Green functions of the left and right side in the uncoupled

system, respectively. These are as follows [28]

n t
gl_.lf(n"v L n, t2) = ifD(en E fL) e ( T )Jn',n (345)
en(l
g tyyn,ty) = —i 6(t t)e penlh =) On'in (3.46)
n(tl )
gL, ti;n,t) =10t~ t)) e “h On'n (3.47)

Green functions for the right side can be obtained by substituting R for L and m
for n in the above equations. Using equations (3.43) and (3.44) and the expressions
for Green functions given above, we can calculate tunneling current from equation

(3.42) which comes out to be

2me
Joar= - . |Twnl?® (fo(en — EfL) — fo(em — Efr)) 6(en — €m)  (3.48)
nm
If we define the lifetime of the n’th state on the left side as
—=> Z | Tonn |26 (€n — €m) (3.49)

then in terms of these lifetimes, the tunneling current from the quasi-bound states on

the left side can be written as

Jisr=e¢ E (fD(f-n Eft) — fp(en — Efr)) (3.50)

Above equation is the central result of this section. In the next section we will
describe how to calculate tunneling currents from MOS inversion and accumulation

layers using expression (3.50).

47



We have defined the lifetime of a quasi-bound states as follows

1
Tn

2T
= 5 Z |T,,,,,|26(e,, - €m) (3.51)

Now we will make a connection between lifetime as defined above and its definition
given in equation (3.39)

1

= = fu x [t(en) (352)

n
The coupling constants T;,, used in the tunneling hamiltonian are given by the rela-
tion [24, 25]
Tmn = -

2 .
s [ (90T — w3 - S (3.53)

The above integral is over a surface lying inside the barrier and separating the left
and right hand sides. The left side states 1, are defined for the hamiltonian in which
the barrier extends all the way upto +oo. Similarly the right side states 3, are
defined for the hamiltonian in which the barrier extends all the way upto —oco. If
the eigenstates also have transverse components we can choose a composite labelling
scheme {n,ky} and {m, gy} for the left and right side states respectively. In case of

MOS devices the eigenstates are of the form
Yoi, = Xn(2)eFIT (3.54)

Yma, = Xm(z)e T (3.55)

The coupling constant therefore becomes

h2 . axn . aXM
T{"vk.ll}{m.ﬂﬁ = —2mo¢ (xm or - Xn%) JEII-iII (356)

To get a simple analytical expression for lifetime we suppose that quasi-bound state
in the left side is confined in a square well potential of length I, and the state on the
right side is confined in a macroscopically large box of length L as shown in figure

(3-3). The analytical form of the left and right eigenstates of this system are
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Figure 3-3: Potential for calculating the coupling constants

- /z k(z)dz
Xiest(z) = Asin ki(z + 1)0(~z) + B 7o 8(z) (3.57)
—/: k(z)dx
Xright(%) & CSin k(T — tog — L)O(T — tog) + Bo——r Ot — 7)  (3.58)

V(@)

where A,B,C, and D are appropriate normalization constants. Using these eigenstates

in equation (3.56) and using equation (3.51) we get for the lifetime

1 _ Ik 16(m°’m")2k.-kfn(0)n(to:)e'2/o (e)ds (3.59)
e 2Am* | ((5(0)m*)? + (k;mo=)2)((k(tor)m®)? + (kymo=)?) _

The part outside the paranthesis in the above expression is the classical oscillation
frequency of a particle in the quasi-bound state and the part inside the paranthesis
is just the WKB transmission probability of particle with initial momentum k; and
final momentum k;. Thus we have reproduced the results derived before by a different
method, and this time we even have the correct pre-exponential factor in the WKB

approximation.
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Generalizing from what we have learned we propose the following ansatz for the
lifetime of a quasi-bound state of energy ¢, which is valid even in the Fowler-Nordheim

tunneling regime
1 T(en)

o[ ey

where T'(¢,) is the transmission probability calculated using the Airy functions, z,, is

(3.60)

the classical turning point of the state and the expression in the denominator is just
the time period for one complete classical round trip. In this thesis we have used the

above formula in numerical calculations.

3.4 Calculation of Tunneling Currents in MOS
Devices

In this section we will derive the expression for tunneling currents from accumulation
and inversion layers in MOS devices. In the last section we obtained the following

formula for tunneling currents from quasi-bound states

Jion=e Y Ti (folen— Eft) — folen— Efr)) (3.61)

Taking into account the transverse components of wavefunctions we can write this as

Joor=c¢€ z Tl (fD(E,, + EE” - EfL) - fD(C,. + 6,;'" - EfR)) (3.62)
nk; "

Note that according to our assumptions the lifetime is independent of the transverse
part of the wavefunction. Now assuming a < 100 > surface orientation for the Silicon

substrate we can perform the summation over the transverse channels in the above
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expression and get

— Ef, - €,
_ dey/mfm{KT > l+exp—2m—1 1

om = TR | o Bl | )
KT
2emiKT 1+exp————fl'—£‘ 1
em.
+ =Y log KL | — (363)
nh n 1+ ex JrR— €, Tn(en)
P—RT

where, as before, the superscript t(l) on the energies mean that the state belongs
to the pocket in which the effective mass in direction perpendicular to the Si/SiO,
interface is mJ*(m{*) respectively. In some cases the tunneling currents may have a
contribution from extended states as well. This contribution may be calculated using
semi-classical methods already described in chapter two. Usually, this contribution is
negligible.

In deriving equation (3.63) we have made an important and subtle approximation.
We have assumed that the electrons in the quasi-bound states are in equilibrium
among themselves and, therefore, their distribution in energy is described by a quasi-
fermi level E f;. This assumption needs some justification. In case of tunneling from
inversion layers the electrons are injected into the inversion layer from the source and
drain ends of the device. In practice, the source and drain ends of the device are tied
together at the same potential with respect to the gate for making tunneling current
measurements. Electrons injected from the drain and source travel under the gate
and after some time manage to escape into the gate by tunneling through the oxide.
Tunneling currents from very thin oxides can be very large - reaching upto 1) A/cm?
for 15A oxides. Therefore, at such large current densities the quasi-fermi level in
the source and drain regions is not expected to be the same as in the channel under
the gate. Infact the distribution function of electrons in the channel may not even
be describable in terms of a Fermi-Dirac distribution function with an appropriate
quasi-fermi level. We therefore expect our numerical results for tunneling currents

to be accurate only at relatively small current densities (< 0.1A/cm?). In case of
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accumulation layers the electrons in the channel come from the substrate. What we
have said above for the case of inversion layers applies equally well for the present
case also. The quasi-fermi level for electrons in the substrate may not be the same
quasi-fermi level as that for the electrons in the bo_und states in the channel. And for
very high current densities the distribution functioﬂ of bound electrons may not be a
Fermi-Dirac distribution. However, the situation is not so bleak. In the next chapter
we will show that the lifetime of electrons in MOS quasi-bound states come out to
be very large - much larger than the energy relaxation times. These lifetimes range
from micro-seconds to seconds. The energy relaxation times are of the order of pico-
seconds. Thus we may expect that electrons in the channel are in equilibrium among
themselves. This means that the distribution function of electrons in the channel is
indeed Fermi-Dirac. Long lifetimes also suggest that the sources (e.g. source and
drain in case of inversion layers and substrate in case of accumulation layers) can
supply the replacements for electrons that tunnel out much faster than the rate at
which electrons tunnel out. Therefore, as a reasonably good approximation we may

even take the channel electrons to be in equilibrium with their sources.

3.5 Conclusion

In this chapter we have presented a fully self-consistent quantum mechanical model
to describe tunneling from quasi-bound states in accumulation and inversion layers of
MOS devices. This model overcomes the problems associated with the semi-classical
model by including the effects associated with quantization of the electron motion in
direction perpendicular to the Si/SiO, interface. We have also presented two different
methods to calculate lifetimes of quasi-bound states and showed that both methods
give approximately the same results. However our approach was limited to the WKB
approximation. Based upon the intuition gained from these methods we proposed an
ansatz for the lifetime of quasi-bound states that is valid even when the tunneling
takes place in the Fowler-Nordheim regime.

In the last section we used the non-equilibrium Green function technique to cal-
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culate tunneling currents from quasi-bound states under non-equilibrium conditions.
In the next chapter we will present the results of numerical calculations and also
compare them with the results obtained from the semi-classical methods. We will

also compare the calculations with actual experimental data.
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Chapter 4

Numerical Results and

Comparison with Experiments

4.1 Foreword

In this chapter we will present the results of numerical calculations carried out for
the semi-classical model and self-consistent quantum mechanical model to compute
tunneling currents. We will focus upon tunneling transport through very thin (~
15 — 351:1) oxides. In such thin oxides, tunneling occurs only in the direct regime,
since thin oxides usually break down at large gate voltages much before the Fowler-
Nordheim regime is reached. We will also compare our calculations with experimental
data and show an excellent agreement between theory and experiment. We will
also present self-consistent results for various important device parameters related to

tunneling transport through thin oxides. We start by showing the theoretical results

for the case of inversion layers.
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4.2 Semi-Classical and Self-Comnsistent Results for
Inversion Layers

In this section the numerical results obtained from the semi-classical and the self-
consistent models will be presented for the case of tunneling from inversion layers.
We have carried out these calculations at room temperature for an N-channel device
with a substrate doping of 10'"/cm3. The surface orientation of the substrate is
assumed to be < 100 >. The energy dispersion relation in the oxide is taken to be
isotropic and parabolic with an effective mass of m°* = 0.5m,. The conduction band
discontinuity between Si and SiO, is assumed to be 3.15 eV. The barrier reduction
effects caused by image forces have been neglected. Justification for these assumptions
will be provided in the next chapter. The potential drop in gate n*-Poly-Si will usually
be neglected, unless stated otherwise. As stated earlier, this becomes significant only
when the doping in the gate is less than 5 x 10'9/cm?. Besides, there is no important
physics associated with it, other than the fact that its inclusion is important when
comparisons with actual experimental data are made.

Figure (4-1) shows the calculated results for tunneling currents from inversion
layers obtained from the semi-classical and the self-consistent models for 15, 20, 25,
30, and 354 oxide N-channel MOS devices. The most interesting thing is the fact
that both the self-consistent model and the semi-classical model predict the same
magnitude of tunneling current for all oxide thicknesses over almost the entire range
of gate voltages shown in the figure. This observation deserves some explanation.
Figure (4-2) shows the energies of first five subbands for both the possible values of
effective masses (m{* and m{®) for a 154 oxide as a function of gate voltage. Figure
(4-3) shows the potential drop in the substrate calculated from the self-consistent
and semi-classical models for a 154 oxide as a function of gate voltage. In the semi-
classical model the electron motion perpendicular to the Si/SiO, is not quantized.
Therefore most of the electrons occupy states with very little energy perpendicular
to the interface. However, in the self-consistent model electron energies perpendicu-

lar to the interface are quantized. Therefore, on average, the electrons have higher
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Figure 4-1: Tunneling currents from inversion layer in 15, 20, 25, 30, and 354 oxide
N-channel MOS devices. The substrate doping is. 10'”/cm3. Potential drop in n*
Poly-Si gate is ignored.

energies perpendicular to the interface than as predicted by the semi-classical model.
Since tunneling rates increase exponentially with energy, we might expect the self-
consistent model to predict higher tununeling currents than those calculated from the
semi-classical model. However, figure (4-3) shows that the self-consistent model gives
a larger potential drop in the substrate than that calculated semi-classically. This is a
well known fact [15]. Consequently, the oxide potential drop, and therefore the oxide
electric field, will be smaller in the self-consistent result. This is shown explicitly in
figure (4-4).

Tunneling rates also increase exponentially with increase in oxide electric field.
Therefore, the higher oxide electric field in the semi-classical result will cause tunnel-
ing currents to be higher in the semi-classical solution.

Now at very low gate voltages (less than 0.25 volts) it is reasonable to expect that

the difference in the magnitude of tunneling currents predicted by the semi-classical
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Figure 4-2: Energies of the first five subbands measured w.r.t. the bottom of the
conduction band edge at the Si/SiO, interface. The two different sets of curves are
for two different pockets in which the electron effective mass perpendicular to the
interface is either m{® or m*. The device has an oxide thickness of 154 and substrate
doping of 10 /em3.

and the self-consistent model will be small since quantum mechanical effects are small
(in other words electron density and subband energies are both small), and therefore
the electzon gas must show semi-classical behavior. This is visible in the fact that
potential drop in the substrate and in the oxide are almost the same at low gate
voltages in both the semi-classical and the self-consistent solutions. Therefore, it is
not surprising that tunneling currents predicted by the two models agree at low gate
voltages. As the gate voltage is increased the subband energies increase (see figure
(4-2)). Quantization effects become more prominent, but at t..e same time, and
perhaps as a result, the difference in the oxide electric field strengths predicted by
the semi-classical and the self-consistent model also increases. The net result of these
two effects is that tunneling currents calculated from the semi-classical and the self-

consistent models come out fortuitously to be approximately the same over the entire
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Figure 4-3: The potential drop in the substrate as a function of gate voltage. The
device has an oxide thickness of 154 and substrate doping of 107 /cm?.

range of gate voltages from 0 to 3 volts. We have not yet investigated theoretically
whether this agreement by chance remains at higher gate voltages. However, in actual
experiments the oxides usually break down around 3 volts.

The lifetime of electrons in the lowest two subbands for various oxide thicknesses
are shown in figure (4-5). The two lowest subbands are associated with the two
different effective masses (m{* and m?') of electrons in Silicon. Interestingly, the
lifetimes can vary from a few nano seconds to almost a year (~ 107s) depending upon
the oxide thickness and the applied gate bias. But even for the thinnest 154 oxide
the lifetimes are larger than nano seconds. Thus the assumption made in the self-
consistent model that the electron distribution function for the quasi-bound states
be describable by a Fermi-Dirac function with an appropriate quasi-fermi level is
justified. This is because the energy relaxation times at room temperature are of
the order of 10712 seconds, and the electrons are expected to reach local equilibrium

among themselves at rates much faster than tunneling rates. Even at liquid Helium

58



Solid : Seli-Consistent Pie

Dashed : Classical P

N

Potential Drop Across Oxide
- n

0.5

0 1 ! -1 1 1

2 25 3

1.5
Gate Voltage (Volts)

Figure 4-4: The potential drop in the oxide as a function of gate voltage. The device
has an oxide thickness of 154 and substrate doping of 10'? /cm?.

temperatures, where relaxation times are a few pico seconds, local equilibrium seems
a robust assumption.

Finally, we show the inversion layer capacitance calculated from the self-consistent
and the semi-classical model. Since oxide thicknesses are measured electrically using
capacitance spectroscopy, it is important to kno'u'r how much error is incurred in
such measurements if the quantum effects associated with the inversion layer charge
distribution are neglected. Figure (4-6) shows the capacitances calculated from the
self-consistent and the semi-classical model for various oxide thicknesses. Figure (4-7)
shows the relative error in extracting oxide thickness from electrical methods if the

simple formula
toz = “:oz/C (4.1)

is used to determine thickness from the electrically measured capacitance C' in strong

inversion. The origin of this error lies in the fact that charge distribution in the inver-

59



! Solid : Efiective Mass = mi

Dashec : Effective Mass = mt

Lifetime of Quasi-Bound States (sec)
IS

0 0.5 1 1.5 2 25 3
Gate Voltage (V)

Figure 4-5: The lifetimes of electrons in 15, 20, 25, 30, and 354 oxide MOS devices.
For each oxide thickness, the two sets of curves are for the lowest two subbands
corresponding to effective masses m{* and m?*. The top most set of curves is for the
thickest 354 oxide. The substrate doping is 10'”/cm? in each case.

sion layer calculated self-consistently does not have its peak at the Si/SiO; interface
but at a distance of few (3-5) Angstroms away from it. This is shown in figure (4-8)
which shows the self-consistent charge density profile for a 154 MOS device. Note
that we have not modeled the contribution to the error caused by the depletion region
in the Poly-Si gate. Depending upon the doping in the gate, this contribution may
be large.
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Figure 4-6: Capacitance of 15, 20, 25, 30, and 354 MOS devices calculated from the
self-consistent and the semi-classical model. The substrate doping in each case was
10" /em?.

4.3 Semi-Classical and Self-Consistent Results for
Accumulation Layers and Comparison with

Experimental Data

4.3.1 Theoretical Results for Accumulation Layers

In the last section we presented results of theoretical calculations for the case of
inversion layers. The primary goal of this section is to compare theoretical calcula-
tions with experimental data. However, the experimental measurements were made
on MOS capacitors with n-doped substrates. The tunneling in these devices was
therefore from accumulation layers instead of from inversion layers. The motivation
of performing tunneling measurements from accumulation layers instead of inversion

layers is twofold
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ments performed in the strong inversion regime.

e It is much easier and also it takes much less time to fabricate n-MOS capacitors
which can be used to study tunneling currents from accurmulation layers than
make n-channel FET’s which are necessary to study tunneling currents from

inversion layers.

e The lateral transport in the channel also needs to be carefully modeled for a
complete description of tunneling from inversion layers. Such modeling adds
unnecessary complications and increases the number of unknown parameters in

the theory.

Since experimental data presented in this thesis has been obtained from n-MOS ca-
pacitors, we have also carried out self-consistent and semi-classical calculations for

tunneling currents from accumulation layers. Results of these calculations will now

be presented.
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Figure 4-8: Self-consistent charge density for a 154 MOS device at a gate voltage of
3.0 Volts.

Figure (4-9) shows the calculated tunneling currents from accumulation layers
for various oxide thicknesses. Just like in the case of inversion layers, the tunneling
currents predicted by the semi-classical and the self-consistent model come out to be
almost the same for all values of gate voltage from 0 to 3 volts. Figure (4-10) shows
the capacitance calculated from the semi-classical and self-consistent models, and
figure (4-11) shows the relative error in extracting oxide thicknesses from electrical
methods if expression (4.1) is used to calculate oxide thickness. As before, in all
calculations potential drop in the n+ Poly-Si gate has been ignored.

For completeness, we also present here the plots of the energies of first five sub-
bands for both the possible values of effective masses (m{* and m{') for a 154 oxide
as a function of gate voltage (figure (4-12)), and the potential drop in the substrate
calculated from the self-consistent and the semi-classical model for a 154 oxide as
a function of gate voltage (figure (4-13)). These plots show trends similar to those

observed in case of the inversion layers and these have already been discussed in detail
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Figure 4-9: Tunneling currents from accumulation layer in 15, 20, 25, 30, and 354
oxide n-MOS capacitors. The substrate doping is 10'"/cm3. Potential drop in nt
Poly-Si gate is igaored.

in the previous section.

4.3.2 Comparisons With Experimental Data

Before presenting a comparison of the theoretically calculated currents with experi-
mental measurements, we would like to mention a few things about the experimental
measurement of oxide thicknesses. In practice it is difficult to grow thin oxide of a de-
sired thickness. Usually the grown oxide thickness comes out to be within an error of
2-3A of the desired value. Oxides thicknesses can be measured experimentally using a
variety of methods such as ellipsometery, capacitance spectroscopy, x-ray photoemis-
sion e.t.c.. The interested reader is referred to a recent review article in reference [33).
The thicknesses measured by different methods do not come out to be the same, and
indeed they should not because each of these measurements is sensitive to a different

physical property. For example, whereas capacitance measurements are sensitive to
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Figure 4-10: Capacitance of 15, 20, 25, 30, and 354 n-MOS capacitors calculated
from the self-consistent and the semi-classical model. The substrate doping in each
case is 10'7 /cm3.

the position of the peak of the electron charge density in the channel, ellipsometric
measurements detect the average position of the plane where the dielectric constant
changes fiom 3.9 (bulk SiO; value) to 11.7 (bulk Si value). Given this ambiguity in
the measurement process, the question that arises is which oxide thickness should be
used in the theoretical formulas for calculating tunneling rates. At present we do not
have a reliable answer to this question. However, we believe that thicknesses mea-
sured by ellipsometer may be used as a best first guess. The reason for this is that
the ellipsometer allows one to determine the plane at which the material properties of
the medium change sufficiently so that the effective macroscopic dielectric constant of
the mmedium also switches values. It is reasonable tc assume that this plane may also
be the plane at which the energy dispersion relation of electrons change sufficiently
so that electronic wavefunctions become decaying exponentials from plane waves. All

oxide thicknesses quoted in this thesis have been measured by ellipsometer.
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Figure 4-11: The relative error in extracting oxide thicknesses from electrical mea-
surements performed in the strong accumulation regime.

All experimental measurements were made on MOS capacitors with n-doped Si
substrates having a uniform doping concentration of 10'” /cm? and a < 100 > surface
orientation. The devices had n* Poly-Si gates with dopings ranging from 5 x 10" —

5x10% /cm3. Tunneling current measurements are usually made in two different ways

1. Tunneling currents can be measured by applying a linear voltage staircase across
the gate and the substrate. Such a ramp is characterized by a delay time and
hold time. Delay time is the time during which no current measurement is made
after each small increment in voltage. Hold time is the time during which voltage
is kept constant while several current measurements are made. To avoid errors
caused by displacement (or capacitive) currents, hold times must be chosen
much larger than the RC times associated with the device. Such measurements

can easily be made by a HP4145 Semiconductor Parameter Analyzer.
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Figure 4-12: Energies of the first five subbands measured w.r.t. the bottom of the
conduction band edge at the Si/SiO, interface. The two different sets of curves are
for two different pockets in which the electron effective mass perpendicular to the
interface is either m{* or m{*. The device has an oxide thickness of 154 and substrate
deping of 10'7 /cm3.

2. A much better way of measuring tunneling currents through oxides is to apply
short voltage pulses, and find the total charge that flows in the external circuit
by integrating the current. Contributions from displacement currents, being
equal and of opposite sign at the rising and falling edges of the voltage pulse,
cancel out. In addition, by using very short pulses (a few micro seconds long),
one can avoid sending large quantities of charge through the oxide. Transport
of charge through the oxide causes oxide degradation, leading to breakdown
[29]. Oxides measured with pulsed gate -oltages show the same magnitude
of tunneling currents as those which are measured with ramped gate voltages.
However, they exhibit, on average, higher breakdown voltages than those oxides

which are measured with ramped gate voltages [34].
The experimental data given here were obtained by the pulsed voltage method.
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Figure 4-13: The potential drop in the substrate as a function of gate voltage. The
device has an oxide thickness of 154 and substrate doping of 10'7 /cm3.

Figure (4-14) shows a typical set of measurements on a large number of devices with
oxide thicknesses of 14, 20, 23, 27 and 35A. From the figure one can easily observe the
large amount of variability associated with the oxides’ characteristics. For example,
the 204 devices show breakdown voltages ranging from 2.2 volts to 4.2 volts, even
though all the devices went through the same fabrication sequence. The variability
in the magnitude of tunneling currents from different oxides of the same thickness
can also be as large as an order of magnitude. This much variability represents the
current state of the art in oxides grown at IBM (NY). We believe that the cause of
these variations may be the defects in the thermally grown oxides. Such defects are
usually associated with non-crystalline materials [35]. Given such a large amount of
variability in oxides’ characteristics, we feel that it is absurd to use experimental data
on tunneling currents to extract physical parameters such as barrier height and oxide
effective mass. Indeed, such efforts have been made in literature [7, 10]. They are,

perhaps, more useful in case of thicker oxides than for the case of very thin oxides. In
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Figure 4-14: A typical set of experimental data on tunneling currents from accumu-
lation layers in 14, 20, 23, 27, and 354 oxides. All devices had a n-type substrate
with doping 10'"/cm® and a n* Poly-Si gate with doping 5 x 10'®/cm?®.

this thesis the main aim has been to use theory without any fitting parameters and
find out how far one can go with it in modeling the tunneling characteristics of thin
oxides.

Figure (4-15) shows the tunneling currents calculated from the semi-classical and
the self-consistent model plotted with the experimentally measured data. The ex-
perimental curves were picked from the data shown in figure (4-14). Those curves
were picked which showed a relatively high breakdown voltage, and also represented a
mean of the tunneling currents measured from devices of a particular oxide thickness.
The agreement between theory and experiment is excellent within the error limits
imposed by the uncertainty in the measured thicknesses of oxides. This uncertainty,

inherent in ellipsometric measurements, is expected to be ~ 1A.
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Figure 4-15: Tunneling currents from accumulation layers calculated from the semi-
classical and the self-consistent model for 15, 20, 25, 30, and 354 oxides compared
with the experimental measurements for 14, 20, 23, 27, and 354 oxides. All devices
had a n-type substrate with doping 10'"/cm® and a n* Poly-Si gate with doping
5 x 10'%/cm?3.

4.4 Conclusion

In this chapter we presented the results of numerical calculations based upon the
semi-classical model described in chapter two and the quantum mechanical self-
consistent model developed in chapter three. We showed that despite completely
different physics associated with the two models, the magnitude of tunneling currents
predicted by the two models come out to be almost the same. This was true for
tunneling from accumulation as well as inversion layers.

We also presented experimental data, which in our opinion, was typical of a large
number of measurements performed on many different devices. The experimental data
showed large variations in magnitude of tunneling currents measured from different

devices having the same oxide thickness and fabricated via the same process.
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Finally we showed that within the error limits present due to the uncertainty in
the measured thicknesses of the oxides by ellipsometer, the agreement, between theory
and experiment was very good. Such a good agreement was Surprising. It still remains
a mystery to us whether it was accidental or that crystalline effective mass theory
really captures the physics associated with tunneling in thin amorphous oxides.

In the next chapter we wish to exarine in more detail two assumptions we made in
our theoretical models. We assumed that the transport in the mid-gap region of SiO;
could be described by an effective mass of m°*(= 0.5m,), and that barrier reduction
effects due to image forces can be neglected. We will justify these assumptions in the
next chapter and also shed some more light on the physics of tunneling through thin

oxides.
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Chapter 5

Advanced Issues in Physics of
Electron Tunneling through
Oxides : The Mid-Gap Energy
Dispersion Relation in SiO, and

the Effect of Image Forces

5.1 Introduction

The theoretical models we presented in chapters two and three to describe tunneling

in thin oxides made the following two assumptions :

1. The energy dispersion relation in the mid-gap region of SiO, can be described

by an effective mass m°® = 0.5m,,.
2. The barrier reduction effects due to image forces may be neglected.

In this chapter we wish to justify the first assumption and also explore the physics
associated with the dynamical nature of image forces. We start by discussing the

issues related to the energy dispersion relation in the mid-gap region of SiO,.
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5.2 Energy Dispersion Relation in Mid-Gap Re-
gion of SiO; and the Crystalline WKB Ap-
proximation

In this section we plan to derive a version of effective mass theory valid for the case
of tunnel transport when the tunneling electron’s energy does not fall in any one of
the allowed bands. In the usual effective mass theory the electron wavefunction in
the n’th band is [36]

P(7,t) = f(7, 1)@, 5(7) (5.1)

where the slowly varying envelope function f(7,t) satisfies the effective mass equation
ma—fgﬁ = (Ba(F = i9,) + Vea?) f(70) (5.2)

The Bloch functions ¢y x(7) satisfy the completenggs relation
5 43P iF) = 8~ 7) (5.3)

for each k in the first Brillouin zone. Therefore, we can in principle write the wave-

function describing a tunneling electron as

¢(7 1) = f(P) Y calt)d, z(P) (5.4)

Y

Let the hamiltonian be written as

H = H, + V() (5.5)
Where
- _
Hy = = 5=V + Viattice(F) (5.6)
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Substituting (5.4) in the Schrodinger equation

0yY(7. )

iR = H (7, 1) (5.7)

ih 3 & (t)9 2(F) = L ealt) ((""W;; Ja)i

+ Viattice (T) + Vezt(ﬂ) G0 i (7)

(]

(5.8)
For time independent solutions with energy E we put
Et
cn(t) =che B (5.9)
Using the decomposition [36)
zk T
¢ (M) = \/’—l U, i (7) (5.10)

we can write (5.8) as

- QAP
ch(En(k) —

n

(7)) — E + %.(%6, + hic')) u,z(r)=0  (5.11)

Multiplying from the left by v* .(r) and integratiﬁg over the unit cell located in the

vicinity of 7 we get the matrix equation

)2
cn (Em(k‘) + &0 v - E) - S0 @), [ 0 oy TITED,
(5.12)
From elementary band theory we know that [36]
- - h -
19en(F) = [ I, om0 ey
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Time reversal symmetry implies that [37]
En(—F) = Eq(k) and va(—k) = —va(k) (5.14)

which means that
v(k=0)=0 (5.15)

Therefore if expansion in equation (5.4) is made in terms of Bloch functions at k=0
(or around any point in Brillouin zone where the bands have extrema), only terms
for which n # m will appear on the L.H.S. of equation (5.12). Equation (5.12) is very
general. Suppose the tunneling electron has an energy such that its wavefunction is
describable predominantly in terms of Bloch functions belonging to only two bands
A and B. Such will be the case if the electron has energy in the mid-gap region where
its wavefunction may be expected to be made up predominantly of Bloch functions
belonging to the conduction band and the valence.band edges. For just two bands,

equation (5.12) can be written in matrix form as

=0 L
Ei+ %?+Vu,(ﬂ - F Q(F)KBA Ca
=0 (5.16)
- . 32
Q(‘I-‘)KBA EB + %:1 + Ve::i(ﬂ -F CB
Where E4/p = EA/B(E = 0), and matrix element Rpais
Rpa= / & up 7)o 4(7) (5.17)

From 2-band E.ﬁ theory we know that effective masses for bands A and B at k = 0
are given by the relation [36)

1 0ij + 1 AB 17BA AB B
2 me (B By (KK KK (518)
B A
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This implies that
1 + 1 24
5w

(5.19)

m m,
Above equation must hold at least approximately otherwise a two band model is not
a good approximation. In order to solve (5.16) we put the determinant of the matrix

on the left hand side equal to zero and using (5.18) we get

(EA + 9;%(1? + Vewe(7) — E) (EB + Q-Z.;(n? + Vere(7) — E)
- Q@ (4 - ) Lo el (5.20)

1 ij
Einstein summation convention is used in the above expression. We now specialize
to the case of SiO, in which the conduction and valence bands at k=0 are istropic
with masses m# = m® and m® = m®. The band gap is (E4 — Ep) = (E.— E,) = E,.

Solving (5.20) we get

BVl + BB, SO B gy (Lo L) B oy
Using plus sign in the above equation gives the dispersion relation close to the con-
duction band for small Q(f‘) and choosing negative sign gives the dispersion relation
close to the valence band. Since tunneling transport in SiO, usually occurs closer to
the conduction band edge than the valence band édge we will choose the plus sign.
Since Q(F) has components parallel and perpendicular to the Si/SiO, interface we

can write

3R = @A) + G (5.22)

Now we need to make some approximations. We need to constrain Q||(ﬂ somehow.
In chapter two we pointed out that when an electron tunnels from Si through SiO,
one has two choices available - either conserve transverse kinetic energy or conserve
transverse kinetic momentum (note that transverse direction in chapter two was the
direction prallel to the Si/SiO, interface). We also discussed that in case of tunneling

in Si/SiO, systems both choices are expected to give similar results for tunneling
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currents since on average the effective mass in Si is almost equal to that in SiO,.
Whatever the choice made, Q||(ﬂ will be much smaller than § 1(7). This will be
verified explicitly. We anticipate that the following inequality will always hold in all

practical cases

2mo 2m,, Eq

Therefore, using (5.18) we may expand (5.21) for small QMF) as

E=Vm(f)+(E°;E") il Q17 \/—2+Q2(“)(———) - (629

2m°

The energy of the tunneling electron in Si must be the same as that in SiO,. If the
initial energy of electron in Si is E = E¥ + B+ E,, then using (5.24) and assuming
conservation of transverse kinetic energy (as was assumed in chapter two and three)

we get

(Ec+ E,) QJ_(T:)

Egi -+ E.L == ‘/ezg('r-) + 2 2mo

= 1
2 — s 2
4+Q ( m)4 55)

Note that the superscript si on E, implies the conduction band edge of Si as opposed
to the conduction band edge of SiO,.

Suppose that Q 1(7) is small. If we expand the square root in (5.25) for small
Q.L(7) we get

QL _
= -?J-TnT = (edo + Veat (T) - E,) (5.26)

where eg, is the barrier height (i.e. E, — E? = ed,). For V,y(F) = 0 and electron
energies less than the barrier height, §, () can only take imaginary values, resulting
in a decaying wavefunction inside the oxide. For such decaying wavefunctions we may

write

QL(7) = iy/2me (eghp + Vm(r*) - E,) (5.27)

We have therefore verified that at least, for small Q 1(7) the dispersion relation in the
band gap of SiO, may be described with an effective mass equal to the conduction

band effective mass. However in real situations Q L(7) is not so small. Solving for
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Figure 5-1: Energy band diagram of SiO,.

Q@ .(7) from (5.25) gives

Q.(7) = i Imag (\/ 5 - -—"322’40) = iK(7) (5.28)

where
B=dm, (ed+ Vo) = Eu= 2) = (e~ ) miE,  (529)
C= 4m§ {edo + chl(f) -E, - Eg) (edo + Vere(7) — EL) (5.30)

Equation (5.28) gives the dispersion relation throughout the band gap of SiO; and is
the central result of this section. From (5.4) we may write the approximate form of

the wavefunction of a tunneling electron as

/K(f') dry '-/Qu(ﬂ il

$(Ft)=c h ch(t)cﬁ..,z(f') (5.31)

The above equation shows that transmission probability will be roughly equal to

% / K(7)dr,

. Thus we have shown how the usual WKB approximation may be
generalized to include the full mid-gap dispersion relation.

Figure (5-1) shows the energy band diagram of SiO; [38]. The conduction band
minima occurs at the I' point. The conduction band is isotropic at k = 0 with an

effective mass m® = 0.5m, [38). The valence band is almost flat at k£ = 0 and the
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Figure 5-2: Energy dispersion relation in the band gap of SiO,. The zero of energy
is the conduction band of SiOs.

expected valence band effective mass from the energy band diagram shown in figure
(5-1) is ~ 5m,. The condition (5.19) for the applicability of a two band model is
approximately satisfied. In figure (5-2) we have plotted the dispersion relations given
by the approximate expression (5.27) and by (5.28) for all values of £, that fall within
the band gap of SiO, in the case where V() = 0. Note that in the figure the zero
of E, is the conduction band of SiO,. Interestingly, the approximate relation (5.27)
gives almost the correct dispersion relation for all energies lying in the band gap of
SiO; below its conduction band till about 3eV. This is due to the rather flat nature of
the SiO, valence band and also due to the large band gap of SiO;. Beyond 3eV, the
more accurate expression (5.28) must be used. Since conduction band of Si is lower
than the conduciion band of SiO, by about 3.15eV, the approximate relation (5.27)
will always hold for electrons tunneling from the conduction band of Si. Thus the
assumption made in chapter two and three that the mid gap dispersion in SiO; may

be described by a single effective mass of 0.5m, is justified, and dispersion relation
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(5.27) may be used when tunneling electrons originate from the conduction band
of Si. However, as is clear from figure (5-2), hole tunneling currents through SiQ,
cannot be described by the dispersion relation (5.27), and expression (5.28) must be

used instead.

3.3 The Dynamic Image Force Problem in Tun-

neling

5.3.1 Background

The problem of dynamic image potential experienced by tunneling electrons is rather
an old one. A large number of papers have appeared in literature in the last few
decades [39, 40, 41, 42, 43, 44, 45, 46, 47, 48] which deal with dynamical image
potentials in case of metallic electrodes. In almost all these papers the relevant
physics of the problem is cast in the form of interaction of tunneling electrons with the
surface plasmon modes of the metallic electrodes. The tunneling electron polarizes
these surface modes. This polarization produces a surface charge density on the
metallic electrodes. This surface charge density in turn produces the image potential.
The dynamics of the image potential then dependé upon how quickly these surface
modes respond to the potential produced by a moving electron. As may be expected,
the ability of these surface plasmon modes to track the motion of a tunneling electron
depends on the velocity components of the tunneling electron, both parallel and
perpendicular to the surface of the metallic electrode. We will not describe the
details of the physics here, but only mention a few relevant points. Interested reader
is referred to reference [44] for details. The dispersion relation of surface modes (in

case of single electrode only) is given approximately by the relation

em(k,w) + €5(k,w) = 0 (5.32)
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where e,,,(l-:., w) and cb(l?, w) are the dielectric constants of the metallic electrode and
the region outside the electrode, respectively. If one is interested in the surface
plasmon modes, then the metallic dielectric constant e,,.(E, w) may be approximated

by

- w?
€m(k,w) = €n — ea;% (5.33)
where the bulk plasma frequency wp is
2
W= 2 (5.34)

P e,m’

and ¢, is the contribution to the dielectric constant by the valence and core electrons.
For an insulator surrounding the electrode with a constant dielectric constant ¢, the

surface plasmon dispersion relation becomes

2
2 ne 2
8

w’ = m =w (5.35)

Above equation shows that the dispersion relation is E—independent.
It has been shown in references [39, 40, 41, 42, 43, 44, 45, 46, 47, 48] that the
surface plasmon modes can efficiently screen the potential of a tunneling electron and,

therefore, provide dynamical image potential if the following conditions are satisfied

1. The time taken by the tunneling electron to cross the barrier region is much
larger than w% This is because the time taken by the surface plasmon . .odes

to respond is of the order of wi,

2. For the case of an electron moving with a velocity v parallel to the surface of

the electrode at a distance d from it, the surface modes can provide dynamical

image potential provided

LA (5.36)
Y Wy .

Since plasma frequency for most metals is fairly large, it is expected that most metals

provide efficient dynamical screening for tunneling electrons.
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Figure 5-3: MOS structure with Aluminem gate.

However, in case of tunneling in MOS devices, where electrons tunnel from the
accumulation or inversion layers, the situation is very different from that in case
of metallic electrodes. The response of a two dimensional electron gas cannot be
described in terms of surface plasmons. A new theoretical approach is required to
study the dynamical image potential problem. In the next section we develop such

an approach for the case of a MOS structure.

5.3.2 Dynamical Image Potential Problem in MOS Struc-
tures and the Dynamic Response of 2-DEG

Consider the MOS structure shown in figure (5-3). The electrons tunnel from a two
dimensional electron gas (either accumulated or inverted layer of electrons), tunnel
through the SiO, potential barrier, and enter the metallic gate electrode (which might
be Aluminum). The response of each material present in the structure (i.e. Si, SiO,
and Aluminum) to external pbtential disturbances can be described in terms of its
dielectric response function. We discuss the case of Si first.

The full longitudinal dielectric function of bulk Si without local field corrections
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can be written as [52]

2

E 2¢* L A =GR,
6i(k,w) = co——kTV-Z <Lp+k+Gle |m; P >
I,m
P

E@+k +G) — En(p)
E,, — 5.37
P G- @G Er - By ) O
where
= 3 = =
<15+ K+ Cle™C M lm>= [ d—v’" W s @e O uns®  (538)

and p'is a vector in the first Brillouin zone. For a given f'and E, Gisa unique reciprocal
lattice vector such that p'+ E + G is in the first Brillounin zone. The summation in
above expression is over all ' in the first Brillouin zone, and over all energy bands
labeled by the indices [ and m, and over the two components of spin (o =t %) of
electrons. The summation over m is restricted to all filled bands (because of the
Fermi-Dirac factor fp(E,,(9)). Suppose that the conduction band of Si and all bands
above it are empty, and all bands below it are complately filled (as is the case in

undoped Si at low temperatures). Using the f-sum rule for solids

> ( |< L+E+ éle_ié'F|m;ﬁ>'- (Ez(ﬁ+ k+G) - Em(ﬁ)) fD(Em(ﬁ)))

lym

p,o
2,2
= 35S fo(En(®) (5.39)
iTa
we get for the dielectric function
€ « _Io(En(P)
€si(w) = € — — 2"; (hw)” — BoZ (5.40)
p,o

where Eg,, is the average gap between the m’th filled band and the conduction
band. The above expression has contributions from the core electrons and the valence

electrons. If we are interested in contribution to ¢,;(w) just from the valence electrons
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we can restrict the summation over m in (5.40) to valence band only which gives

hw,)?
E,,'(w) = € (1 - ‘(E(')?_)ng,) (5.41)
where w, is given by
2
nye
Wy = e (5.42)

E, is the band gap of Si, and n, is the number deﬂsity of valence electrons. From the

form of the dielectric function in (5.41) we can extract the following information
1. For w << Ej, €,i(w) is independent of frequency.

2. We can find the time during which the valence electrons provide screening by
finding the frequency of the interband plasma modes by solving the equation
€si(wp) = 0. This gives

=P +uw? (5.43)

For semiconductors like Si and Ge, w? is extremely large (around ~ 10'® /sec). Such a
large plasma frequency means that valence electrons can screen time varying external
potentials extremely quickly. Thus for all practical purposes, the expression (5.41)
can be replaced by its static limit. One can carry out a similar analysis by keeping
contributions from the core electrons as well. The final result is that screening pro-
vided by core electrons and valence electrons as a result of interband transitions is

extremely fast, and one may use the static limit of (5.40) which is

2
€ fp(Em(P))
€5i X €, + 0.44
BT T my ; Eg? (5.44)
po

The above analysis was done to carefully separate out the contributions of valence
and core electrons to the dielectric response function from those of the conduction
electrons. The value of 11.7¢, for ¢,; usually quoted in literature has cont.ributions

only from the valence and core electrons. Now we will discuss the contributions from

the conduction electrons.
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The conduction electrons in accumulation or inversion layer form a twe dimen-
sional electron gas. The dielectric response function of a two dimensional electron gas
embedded in a medium of relative dielectric constant of unity in the plasmon pole

approximation is [49]

w? — wi(k)(1 +£)

ik, w) = € —% (5.45)
w" - wp(k);
where 0
2.y _ NEk
wp(k) = Do (5.46)
and \
2nh%e,
= 5.47
K e2mo ( )

The dispersion relation of plasmons can be found as before by putting e(k,w) = 0,

which gives

L1+ 5) =2+ 5 (5.48)

Notice the important difference between the dispersion relation of surface plasmons
in case of metallic electrodes and plasmons in 2-DEG (compare (5.35) with (5.48)).
Whereas w is k-independent in case of surface plasmons, w(k) goes to zero as the
square root of k for plasmons in 2-DEG. This has drastic consequences. If we introduce
scattering in our model the plasmons will have a finite lifetime. The plasmons with
small wavevector will have a lifetime shorter than their frequency. In other words,
they will not exist as elementary excitations anymore. Their weight in the excitation
spectrum will be washed out. Thus, it is not possible to develop a theory of dynamical
image potential in case of an electron interacting with a 2-DEG by reducing the
interaction to that between the electron and plasmons, since any realistic system
will have finite scattering. For a 3-d electron gas plasmon modes near k = 0 are
particularly important in providing screening [28]. For a 2-d electron gas plasmon
modes for small % disappear, and are replaced by the slow diffusive modes which

provide the screening [50, 51].
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It can easily be shown that in the presence of scattering the dielectric response

function of a 2-DEG in the plasmon pole approximation becomes

wlw + ;) — W2(k)(1+ g)\
E

e(k,w) =¢, (5.49)

wlw+ 2) = (k)

’

Here 7 is a phenomenological relaxation rate. The above expression satisfies all the
sum rules [28] and therefore conserves particle number. From (5.49) we can find the

susceptibility x(E,w) defined as

e x(k,w)
e(k,w) =€ — _2k_ (5.50)
which gives
nk’
- - m‘
X(k,(d) w(w . 1) _ nﬂ,h2k2 (551)
(m*)?

It can easily be shown [14] that charge density p(,w ) induced in a 2-DEG in response

to a net poential ¢(k,w) is

-

p(k,w) = e*x(k, w)(k,w) (5.52)

Equations (5.52) and (5.51) can be used to study the dynamical response of 2-DEG
to external perturbations. Specializing (5.51) to the case of 2-DEG in Si becomes a
little trorblesome since the effective mass in Si is not isotropic. The result is that
2-d plasmons in Si have different frequencies depending upon the direction of travel
of the plasmons. However, at low temperatures almost all the electrons occupy the
two carrier pockets in the first Brillouin zone in which the effective mass in direction
perpendicular to the Si/SiO, interface is m{*. Therefore, for these electrons effective
mass in all directons parallel to the interface is m#'. Thus, in this special case all
we need to do is replace m® in (5.51) with m$. In what follows, we shall restrict

ourselves to this simple case.
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So far we have described how to model the dieléétric response of core, valence and
conduction electrons in Si. In SiO; the response of core and valence electrons can
be modeled by the static dielectric constant ¢,;. Finally, the screening properties of
the Aluminum gate electrode can be described in terms of surface plasmons. Since
these surface plasmons are expected to provide efficient dynamical screening, we may
assume that the gate electrode acts as a perf-ct metal.

Below we will study the dynamic response of a 2-DEG embedded in the geometry
shown in figure (5-3). Suppose that in the structure shown in figure (5-3) we place
a point charge inside the oxide at a distance 2z, from the 2-DEG, and switch it on
at time t = 0. We would like to see how fast the charge gets screened and how its
image potential evolves in time. Since the problem has cylindrical symmetry, it is
useful to work with quantities that have are fourier transformed with respect to the
co-ordinate variables parallel to the Si/SiO; interface and also with respect to time.

We can write the potentials in Si and in oxide as follows
Goz(k, 2,w) = Gezt(Kr 2, w) + A(l:'.‘,w)e"k‘z + B(E,w)ekz (5.53)

$ui(F, 2,w) = C(F,w)ek? (5.54)

where ¢m(i5 , 2,w) is the potential perturbation produced by the external pcint charge.

i
For a point charge located at z, and switched on at time ¢t = 0, ¢eze(k, 2,w) is

i = 1, —e— _klz - ZOI
Peat(k, 2,w) = — s —L (5.55)

Other useful situations may also be realized in this formalism. For example, for a
point charge moving with a velocity v, parallel to the interface in the z-direction at

a distance z, from it, we get

bearleit, 2,0) = 216w — kv.) 5 © ke-klz = 2| (5.56)

ozT

The solution consists of finding the coefficients A,B and C. Using the following bound-
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ary conditions

Goz(k, 2 = toz,w) =0 and ¢og(k, z = 0,w) = ¢i(k, 2z = 0,w) (5.57)

. 0oz (K, 2 = 0,w) . Oui(k,z=0,w)

Lo -
0z 92 plk,w) = ~e“x(k,w)do: (k, z = 0,w)

we find

(e—kz,, _ o—(2ktor - zo))

= o e?x(k,w
plk,w) = ef(k,w) X(k ) "
(éoz(l + €_2kt°z) + 6,,-(1 - e_2ktoz) _Ex\kw (1 _ e—'Zktoz)

k
(5.59)
where
~ 1
k, = — fort tati terral point ch
fk,w) prpraE or the stationary external point charge
= 2mé(w — k;v;) for the external point charge
moving with velocity v, (5.60)

Equation (5.59) can be inverse fourier transformed to get p(7,t) which will give us the
time and space dependent charge density response of the 2-DEG. Also p(E, t) may be
used to find the coefficients A and B

M + (€5i sinh kz, + €47 cosh kz,;) ef (k,?)
k €ozk — okt

B(k,t) = — e (5.61)
(e“(l + e_zkt”) + €,i(1 — e_2kt°=))

and

. - k,t
A(k,t) = —B(k,t)ezkt“ - %ek'z" (5.62)

where

f(k,1)

6(t) for the stationary external point charge

= ¢ thovst for the external point charge
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moving with velocity v, (5.63)

Equ ns (5.59), (5.61) and (5.62) constitute a complete solution for the dynamic
image potential experienced by the external point charge. Results can be obtained by
numerical integration of these equations. However, we present some physical insight
into the nature of the problem below.

Consider first the case where the oxide is extremely thick, so that the gate metal
electrode is very far away from the external point charge. In this case the gate will
provide no screening. Also suppose that there are no conduction electrons in Si. In
this simple case screening will be instantaneous and the image potential experienced

by the charge at a distance z, from the Si/SiO; interface will be

Gimage(t) = — (c" . 6”’).. ° (5.64)

€si + €0z / BTeoz 2,

The expression in the paranthesis is about 0.5. Now suppose the gate electrode
also provides screening but still there are no conduction electrons in Si. The image

potential is again instantaneous and is approximately given by

Pimage(t) = — (e“ _ c"’) © ¢ (5.65)

€si + €0z / BTeorzy 8Tz (tor — 2,)

The exact magnitude of image potential will be a little less than that given by the
above equation since the image charges in Si will induce counter charges in the gate
electrode and vice versa. The minimum value of image potential predicted by (5.65)
. ¢ . L
will occur at z, = . We can use this to calculate the apparent reduction in
°T V21 PP
peak barrier height Ag,

Agy = —F (§ +. \/5) (5.66)

- 8Me€ortor \2
For a 30A oxide this comes out to be about 0.17 Volts, which is a pretty big number
This shows that a substantial amount of screening is provided just by the gate eie. -
trode and the mismatch between the dielectric constants e,; and ¢,,. The conduction

electrons in the accumulation or inversion layer in Si will provide additional screening,
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whose dynamic nature will now be discussed below.
Again suppose that the gate electrode is at infinity and provides no screening. In

this case (5.59) may be reduced to

- - e*x(k,w e~k
ok ) = ef ()Xo ¢ 7 (5.67)
( e x(k,w))
€ox + €4 — ——F——
k
Defining an average dielectric constant €,y as
€or + €44
€avg = — 3 2 (5.68)
(5.67) becomes
= - w2 (k)e k%
plFw) = ef () —— 22— (569)
w(w+ ;) —wy(k)(1 + ;)
where, in comparison to (5.46) and (5.47), wy(k) and & are
2
k
W2(k) = —— 5.70
» 2€5,gm;" (5.70)
and \
2mh €gyq
K= pma (5.71)
Finally, p(7,t) can be found by inverse fourier transformation which gives
PE ) Tt
(7.t) = /—oa 27r/(21r)2 olk ¢ (572)

First consider the case of an external point charge moving with a velocity v, parallel

to the Si/Si0; interface. In tuat case, as shown before, f (E, w), is

fk,w) = 2n8(w — kgv,) (5.73)
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Substituting f(F,w) from above in (5.72) and performing integration over w we get

a2k wz(k)e_kzo eilz.Fe—ikvat
A

(7, 1) = (5.74)

By 2 k
kave(keve + ) — w2R) (14 5)

As v, approaches zero we get. the same results as in the case of static screening. If we
let v, increase then the dymnamic screening will deteriorate when the terms in the
denominator of the integrand in (5.74) containing v, become comparable to w2 (k).
The integral has an upper cut off in k-space at = 31; So that k., k, and k can have
maximum values of = 31; Using this fact, and assuming that %: << -,}:, we can write

the condition for the deterioration of dynamic screening as

U o wp(k = —) (5.75)

2o 2o

The physical interpretation of the above result is simple. The external potential of the
point charge disturbs the 2-DEG at a maximum wavevector of kpazr = zlo The plasma

modes at that wavevector have a frequancy of wy(k = Zlo). So that the time during
1
wp(k = ;—)

density is roughly z,. If the charge has enough f.\arallel velocity to cross a region of

which screening occurs is of the order of . The radius of the induced charge

this size in time much less than ———1— then screening will depreciate. This is
wp(k = _)

exactly what is expressed by the relation (5 75). Notice the strong similarity between
this relation and (5.36) for the case of screening by surface plasmons.

On the other hand if —‘- >> , then screening.will start weakening when

Zruik= —)'r (5.76)

o

In this case we see that the time during which screening occurs is of the order of
1
—7
(k = —)T

For the case when a stationary external point charge is simply switched on at time
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t = 0, approximate analysis, similar to what was doue above, yields the following two

conclusions :

1. When % << wy(k = 'zl—o) screening time is of the order of ——1—1—-
wp(k = ';)
(4
1

wf,(k = Z_O)T

2. When % >> wp(k = 'zl—o) screening time is of the order of

Here we also present the results of numerical simulations showing the response of
a 2-DEG to a stationary external point charge placed inside the oxide between the
Si substrate and the gate electrode and switched on at time t = 0. We have inverse
fourier transformed (5.59) numerically. The results in figure (5-4) are shown for the
case when z, = 12.54, t,; = 304, density of the 2-DEG is 10'2/cm?, and 7 = 10~ 3sec.
From the figure it can be seen that, as expected, the radius of the screening charge
is &~ 2z, = 12.54, and the time taken by the 2-DEG to screen the external charge

is ~ —1—1—— = .01 x 10~'?sec. Note that the peak of the screening density is

wp(k = Z_o)

larger than the number density assumed for the 2-DEG. Since the screening charge
is positive, this means the total charge density of the 2-DEG is becoming positive.
This is impossible. What is happening is that our linear theory is breaking down, and
the external point charge is strong enough to produce a completely depleted region
underneath it. Another interesting thing to notice that is that the screening charge
overshoots in the beginning and the extra charge later disperses away in the form of
cylinderical charge density waves. Figure (5-5) shows the image potential felt by the
external charge as a function of time. As expected, the image potential starts off from
about 0.14 Volts, which has no contribution from the conduction electrons, and as
the conduction electron screening charge density builds up, the image potential also
increases. The image pote...ial also overshoots a little, and settles to its final value of
about 0.165 Volts in about .0% x 10~ '2sec, which is about —51— We may also

wp(k = Z_o)
mention here that value of 12.54 for z, was chosen so that 2z, is the point where the

image potential is minimum, therefore the image pbtential at this point will allow us

to calculate the pealk: barrier height.
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Figure 5-4: Dynamical screening charge density of a 2- DEG shown as a function of

time and radlal distance from the position of the external point charge. z, = 12.5A
and t,; = 304

Figure (5-6) shows the time dependent image potential felt by the external charge

in the case when 2, = 6A and t,; = 154. Notice that because of the proximity of the

gate electrode and the Si/SiO, interface to the charge, the image potential is much
larger.

Having discussed the dynamic response of the 2.DEG to external perturbations,
we move on to discuss the effect of image forces in tunneling. From the discussion
above, it is obvious that screening of charges which move with a velocity parallel to the
interface is a sufficiently complicated process and depends on the parallel velocity of
the charge and also on its distance from the interface. The actual tunneling scenario is,

however, more complicated. The tunneling electron starts off from the 2-DEG. When
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Figure 5-5: Dynamical image potential felt by an external point charge shown as a
function of time. 2, = 12.54 and t,, = 304

inside the 2-DEG it has a correlation hole around it (i.e. a region in which the electron
density is less than the average density as a result of many-body exchange correlation
effects [14]). As the electron leaves the 2-DEG and enters the oxide region, it leaves
behind its exchange correlation hole (see [42] for details). The exchange correlation
hole has a net positive charge density and it provides a non-local image potential.
As the electron moves away from the Si/SiO, interface, the exchange correlation hole
spreads out and provides the usual local image force. Thus, a complete theory of
image potential must be able to provide a complete dynamical description of this
process starting from when the electron resides inside the 2-DEG and till it reaches
the gate electrode. In such a theory the component of the velocity of the tunneling
electron perpendicular to the Si/SiO; interface will also play an important role.

A qualitative description of this process may be as follows. As the electron leaves
the 2-DEG at the Si/SiO, interface, its correlation hole is able to follow its mo-

tion parallel to the interface since the electron, being very close to the 2-DEG, is
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Figure 5-6: Dynamical image potential felt by an external point charge shown as a
function of time. z, = 6A and ¢, = 154

able to excite plasma modes of arbitrary high frequency. However, as the electron
moves further away from the 2-DEG, the response of the 2-DEG becomes more and
more sluggish. We expect the dynamic image potential to depend on the velocity
components of the tunneling electron both parallel and perpendicular to the Si/SiO,
interface. Tunneling currents measured experimentallly have contributions from elec-
trons that have velocity components parallel to the interface ranging from zero to the
fermi velocity. This poses a daunting challenge to anybody interested in calculating
transmission probabilities since the transmission probability will then also become
dependent on the energy of tunneling electrons parallel to the interface. However,
things can be simplified. We have showed that for thin oxides almost all the image
potential contribution comes from the gate electrode and the dielectric constant mis-
match between Si and SiO,. In the examples discussed above in which an external
stationary point charged was placed in the oxide region, only about 18 percent of the

total image potential was from the conduction electrons in case of a 304 oxide. In
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case of a 154 oxide this contribution was only about 12 percent. Thus, as a first ap-
proximation, the contribution of the conduction electrons can even be ignored. This
simplifies things a lot.

Our numerical analysis, although far from providing a complete description of

dynamic image potential in tunneling, had the following objectives

1. To check our qualitative estimate on the time required for the 2-DEG to respond

to perturbations.

2. To provide a comparison between the magnitude of the image potential con-
tributed by the conduction electrons in Si and that contributed by the gate

electrode and the dielectric constant mismatch between Si and SiO,.

We may also mention here that the formalism developed here is capable of handling
the complete dynamic image potential problem as described in the paragraph above.

In (5.59) if we let z, go to zero and modify f (E, w) as follows

flk,w) = ( d ! ) (5.77)

w — kzvz + tkv, T w-— k v, + ikv,

then these changes describe a situation where an electron is moving with a velocity
v, inside the 2-DEG for all negative times, and for positive times it develops an
additional component of velocity v, perpendicular to the Si/SiO interface and shoots
out from the 2-DEG into the oxide towards the gate electrode. We have not carried

out numerical simulations with these changes in this thesis.

5.3.3 On the Neglect of Image Potential Corrections in Cal-

culating Transmission Probabilities

Finally, we would like to provide justification for ignoring the contribution of image
forces in our calculations of transmission probabilif;ies in chapter two and three. This
may perhaps seem a bit strange at first, given that image potential contribution
to reduction in peak barrier height may be as large as 0.28 Volts for a 154 oxide.

However, our argument will be presented from an experimental measurement point
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of view. Of course, we do not intend to argue that image force is negligible since this
is certainly not the case, as already shown above.
The transmission probability for an electron, with energy F, through an oxide of

thickness t,; is roughly given by the expression

_2/ o . \/Zm"’(eqbo —eF,;z - E)
T(E)~e J0 h (5.78)

In case of thin oxides, where WKB approximation.i's quite adequate (since tunneling
occurs in the direct regime and never in the Fowler-Nordheim regime), (5.78) holds
approximately for even relatively large electric fields (~ 107V/cm). In chapters two
and three we had m®® = 0.5m, and ¢, = 3.15 Volts. Since bulk of the electrons lie
in the two lowest states whose energies are roughly around 0.2eV, we will assume
FE =~ 0.2eV in (5.78). In actual experimental situations the oxide thickness is known
with an uncertainty of about 1 — 24. The determination of oxide thicknesses by
ellipsometery induces an error which is expected to be at least 1 — 24. Infact, it
is not even possible to define even theoretically the exact location of the Si/SiO,
interface with an accuracy greater than ihis [33).

The magnitude of experimentally measured tunneling currents give a rough esti-
mate of the entire expression in the exponential but does not yield information about
each parameter present in the expression. Suppose one is interested in finding out by
making tunneling current measurements whether the image force correctien to barrier
height of 0.3 Volts is present for a 154 or not. To be able to extract such information
from tunneling current measurements one must know apriori the magnitude of other
parameters in the expression in the exponential in (5.78) to a sufficient accuracy. The
error dt,; in oxide thickness which will exactly produce the same results for tunneling
currents as those produced by an image potential correction of d¢, to the barrier

height can be calculated from (5.78) and comes out to be

ot,, =
* Zo — to::

F,,, (5.79)
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Figure 5-7: §,, needed to give the same results for tunneling currents as would a3
Volts reduction in barrier height.

where
e¢o - E
o = .80
T o (5.80)
Above equations imply that roughly
Otor O,
—= 5.81

Figure (5-7) shows the values of §t,, needed to give the same results for tunneling
currents as would « 0.3 Volts reduction in barrier height for different values of electric
field strength. We see that 6t,, is much less than 1.54 for aj| values of electric
field upto 10'V/em. But 1.54 is well within the..uncerta.inty in the knowledge of

oxide thickness. Also since 0t,- seems largely independent of electric field, we can

between effects produced by image potential or those that result from inaccurate

knowledge of the oxide thickness. In al] the calculations carried oyt in chapter two
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and three we neglected image potential corrections. In comparing our calculations
with experimental data we used oxide thicknesses obtained from ellipsometery. If it is
the case that ellipsometery yields oxide thicknesses t'  are always in error by 0.8 —
i.5A then just by doing tunneling current measu: ' it is not possible to confirm
experimentally the presence or absence of image potcuvial corrections. We know from
chapter four that our theory without image potential corrections agrees very well
with experimental data provided we use oxide thicknesses that were determined using
ellipsometery. Thus we have two options available to us - either adopt a theory that
has image potential corrections and postulate that ellipsometery gives values of oxide
thickness that are slightly smaller than actual thicknesses, cr adopt a simple theory
that neglects image potentials corrections but accepts oxide thicknesses measured
using ellipsometery as correct. We have chosen the second option just because it keeps
the theoretical model simple. We have also shown that image potential corrections
can be fairly large. Clearly more work, both theoretical and experimental, is required
here to understand the error induced in ellipsometeric measurements and this may

perhaps tie the remaining loose ends in our modeling.
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Chapter 6

Moeodeling of Electronic Processes
in Quantum Dots Coupled te
FET’S

6.1 Introduction

In chapter one of this thesis we introduced the idea of building few electron memory
* devices using quantum dots coupled to the channel of MOS FET’s. Figures (6-1)
and {6-2) show two possible ways of making such devices. Figure(6-1) shows nano
crystals, either of Si or Ge, about 50A in radius, embedded in the gate oxide of an
MOS transistor. These nano crystals can be deposited by CVD and they subsequently
nucleate on the surface of the wafer to form small clusters. Very crudely speaking,
these nano crystals behave rather like the floating gate of EZPROMS. They can store
electrons and thereby change the threshold voltage of the MOS device. However, the
smail size of the nano crystals results in large coulomb energies. As a result it is
expected that the mean number of electrons in these nano crystals will increase with
the magnitude (and/or duration) of the write pulse in discrete sieps. The shifts in
threshold voltage of the MOS device is, therefore, also expected te gn up in discrete

steps with the magnitude (and/or duration) of the write pulse. Thus the devive has
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Figure 6-2: Single quantum dot memory cell

a potential for being used as a multistate memory cell. Figure (6-2) shows a single
quantum dot coupled to the channel of a MOS device. Such a device can be made by
lithography at IBM. Research is currently being done at IBM to make them smaller
than 20 x 20 nm?.

The purpose of this chapter is to lay down a theoretical framework which can
describe electron tunneling processes, aid charge statistics and fluctuations in devices
containing quantum dots coupled to the channel of MOS devices. We will also be
interested in the write times and erase times of these devices and the effect of charge

fluctuations in the dots on the channel conductivity. The main object will be to
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develop simple models that capture the essential physics and that may be incorporated

into a device simulator like IBM’s DAMOCLESE.

6.2 On the Nature of Coulomb Energy

Before describing the details of modeling electronic processes in quantum dot memo-
ries, we consider it important to spend sometime on the nature of coulomb energy in
mesoscopic devices. Although this is an extremely common and well known concept,
it is unfortunately poorly understood by many in the field. Consider a system of free

electrons and metallic conductors. The total electrostatic energy E, of the system is
E, = g / &7 B(7).E( (6.1)

Since E(7) = —VV() we may write

B, = - / &7 B(7).9,V(7)
= - [#rV.vRED) + > [EFvOvER
= SYWQ + o [dFV@Ee@ (62)

The sum on n is over all the conducting bodies with potentials V, and total charges
@n, and the in the last integral p(7) is the volume charge density residing in the space
between the metallic conductors. Note that V(7) satisfies the Poisson equation

VIV (F) = —”—(CQ (6.3)

with the boundary conditions such as to match the potentials V,, on the conductors.
The last term in (6.2) is a little problematic. It contains electron self-energy con-

tributions. To see that suppose p(7) = ¥; €;63(F — ), then assuming there are no
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metallic conductors, we have

€
|7~ 73

1
=—— | &3 4
VE) =4 [ 7S (6.4)
Using above expression for V(¥) in (6.2) gives terms that are infinite. In practice,
one is only interested in changes in the total electrostatic energy, so that self-energy

terms cancel out. A better way is to write (6.2) as
1 1 3=
E=53 V@ + 53 [Erv@n® (6.5)

where p;(7) = €;6%(7 — 7;) is the charge density due to the i'th charge and we have

defined V/(7) as the potential that satisfies the modified poisson equation

vy = - 3 290 (6.6)
i# €

and satisfies the same boundary conditions as V(7). By defining V;(7) in this way
we have eliminated the unphysical self-energy contributions. It is very important
to mention here that a charge is only affected by the potential produced by other
charges, the image charges on the electrodes of other charges, and its own image
charges. Its not affected by the potential it produces itself, and all we have done
above is taken this unphysical contribution out from (6.2). We may also mention
here that the usual numerical methods to perform self-consistent Hartree calculations
(e.g. IBM’s SCRAP), which are accurate for structures containing a large number of
electrons, will not be accurate for strutures containing a small number of electrons
(two or three e.t.c.) since these methods do not take into account the fact that a
charge is not affected by its own potential.

If we write V() as
V(7) = Vine() + Vear(7) (6.7)

where V;;,(7) is the part contributed by p(7) and is given exactly as in (6.4), and

Veze(7) is contributed by charges on the metallic conductors, then it follows from
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(6.2) that

€i€;

1
= -_— t -
E, = (self — energy terms ) + 3 > e — 7] 7

1<)

b oY eVl (68)

The above equation shows the relationship between the electrostatic interaction be-
tween charges and the total coulomb energy of the system. Of course, V() will
be affected by the charges e; since it will have contribution from the image charges
of all the charges e; of the system. This makes (6.8) difficult to use in calculations.
However, equation (6.2) is ideal for performing numerical calculations. In case there
are no metallic conductors in the system (e.g. this will be the case if the gate elec-
trodes in devices shown in figures (6-1) and (6-2) are made of lightly doped Foly-Si
and are therefore not treated as perfect metals) the change in electrostatic energy 6 E;
following any event which causes electrostatic potential and charge density to change

from V*(7) and p'(7) to V/(7) and p/ (), respectively, is simply
=L [ ervs S W
0E, = 5 [EFVIWMI @) - 5 [dFViem) (6.9)

Above equation is suitable for implementation in a numerical simulator like IBM’s

DAMOCLES. In the presence of metallic electrodes the additional term
1 1 .
SEVIQL - STvigk (6.10)
n n

must be added to the left hand side of (6.9).

6.3 Quantum Kinetic Equations For Modelling
Tunneling Processes in a Quantum Dot Cou-
pled to an Inversion Layer

In this section we will drive a set of quantum kinetic equations in the quantum

Markoff approximation (53] which will enable us to model the charging and discharging
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processes and carrier statistics and fluctuations in quantum dots which are coupled
to a 2-D electron gas.

Consider the structure shown in figure (6-3). Suppose an electron makes a tran-
sition from an energy level ¢, in the 2-DEG to a level ¢, in the dot, increasing the
number of electrons inside the dot by one. During this transition the voltage source
does some work, dW. Let the change in electrostatic energy of the system (which may
be calculated from any one of the formulas given in the previous section) following
this transition be J E;. Since the work done by the voltage source will result only in
increasing the energy of electrons (assuming there is no dissipation) we may write the

condition of conservation of energy as

{initial energy of system} + {work done by bettery } = {final energy of system }
(6.11)

Assuming that energies of all other electrons do not change before and after this
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transition, we may write

€n + W =€, + 6F; (6.12)

It can easily be shown by simple calculations that work done by the Lattery is simply
the potential diffe ence between the dot and the 2-DEG before the trap-ition took
place and assuming there were no ciher electrcas in the dot pricr to this transition.
0E; is, however, more difficult to calculate. If we assume a simple two capacitor
model for our structure, then using the formulas given in the previous section, it can
be shown that Es depends only on the total number o. electrons in the dot and is

given by the expression

2
E. - % (6.13)
Where
1 1 1
= = 6.14
c-ute (6.14)
and
€0z A
or ) €si
Cr~ — 6"’360: (6.16)
(to:: 5;)

OF,, for the case when the number of electrons inside the dot increases from N by

one, becomes
Ne?  ¢?

(6.17)

We expect that the above model for electrostaic energy is a little too simplified for
the devices under consideration and more careful calculations using equations given
in the previous secton are needed to get more accurate results.

The hamiltonian of the entire system can be written as

H = Hy_pp¢ + Hpor + Hr (6.18)
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where

Hy ppc =Y (en +€V)ala, (6.19)
n

Hpor = Z Gmbjnbm 4+ E,(N) (6.20)

Hr =Y Tumalb, + cc (6.21)

V is the potential difference between the 2-DEG and the dot, assuming there are no
electrons in the dot. For simplicity, we have assumed that E, depends only on the
total number of electrons N inside the dot.

Let at time t, the system be described by a density matrix P. We wish to study
its time development for times greater than t,. In the Heisenberg representation we
have the equation of motion,

0Py (t)

ih—== = [H, Py (t)] (6.22)

We may write H = H, + Hr, where H, = Hy_pz¢ + Hpor. If we define a density

matrix £ (t) in the interaction representation as

ot
t /

y t
X[ H,a

~ T Ho .
Py(t) = eh Jta Py(t)e hJi (6.23)
we get the following equation of motion for Py(t)
L OF(t -
n 218 _ (h1r0), (o) (6.24)
where )
it 1 [t
— | Hydt'! —— [ H,dt
Hrp(t) = efi Jto Hye hJi (6.25)
Solution of (6.24) to first order in Hrp(t) is
v » it ! N p
Pi(t) = Pi(to) - 1 [ dt [Hr(t), Pr(t) (6.26)
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Substituting (6.26) in (6.24) yields

dPy(t)
ot

= o, B+ () [ @ .00, BE) 620

In the quantum Markoff approximation the density operator inside the integral, P,(t’),
is replaced by the density operator Isl(t) at time ¢. This approximation is valid
provided the coherence times are very small compared to the time taken by Pi(2)
to change significantly. For further justification of this assumption see [53]. We will
work in the gantum Markoff approximation.

Let the many body state of the entire system be described by the quantum state
l{nn}, {nm} >. This state is characterized by a particular configuration of occupation
numbers {n,} and {n,} of the 2-DEG and the dot. Let p({nn})(t) be the probability
that the dot is described by occupation numbers {n,} at time t. p({nm})(t) may be
calculated from the density matrix P;(t) by taking the trace over the states belonging

to the 2-DEG.

p({nm})(@®) = X < {na}, {nm}|Pr(B){nn}, {nm} > (6.28)

{na}
p({nm})(t) contains a lot more information than needed to mcdel the system. Usually,
one would only be interested in the probability py(t) that the dot contains a total
of N electrons at time ¢. This can be obtained from p({n})(t) by summing over all

possible configurations with occupation numbers {n,} such that  n, = N. Thus
m

p(t) = {Z}p({nm})(t) 0% nm=N

= Tin Pi(t)] ) 3 6.29
I T < (PO (> By (629

We can now substitute for P;(t) from (6.27) in the above equation and perform the

indicated summations. After a lengthy and tedious algebra we get the following
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stochastic equation

Opn(t
pgt( ) = WN+1—>NPN+l(t) + WN-I_'NPN_I(t)

~Wnontipn(t) — Waon-ipn(t) (6.30)

Wn_ M are the transition rates for going from the state of the dot with NV electrons
inside it to the state where there are M electrons inside it. These transition rates are

given as follows

Wrsion = %” S [ Tnmi? 6(en + Eo(N +1) + eV — em — Ey(N))
x (1= folen — Ey)) fren(6m)
Wroion = %’r Y ITamp 8(en + Eo(N — 1) + eV — em — Ey(N))
X folen — Ep)(1 ~ f-1(em))
Wrnong = 2% E {Tnm|? 6(e, + Es(N) + eV — € — E,(N + 1))
X folen — Er)(1 - fw(em))
Wrony = %” S [ Tnmi? 8(en + Eo(N) + €V — em — Eo(N — 1))
x (1= folen— E))frlem)
(6.31)

fp is the Fermi-Dirac distribution function for electrons in the 2-DEG. E is the fermi
level of the 2-DEG. In the above equation fy(€y,) is the probability that the state
with energy ¢, in the dot is occupied given that there are total of N electrons in
the dot. Since the lifetimes of electron in the dots are expected to be much larger
than the relaxation times, we may compute fy(es) for a canonical ensemble with N

electrons. Note, that since the system is not attached to a particle reservoir, usual
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Fermi-Dirac statistics are not applicable. Thus we may write

1
—_—— €Em! Myn?
(E)e o (52," o=t
frlem) = . m (6.32)
P AT
(ne} Zn =N

Yor a dot with few electrons, fy(er) can be calculated numerically.
Equations (6.30), (6.31), and (6.32) comprise a complete set of equations needed

to describe the behavior of electrons in quantum dots coupled to 2-DEG's.

6.4 Carrier Statistics and Fluctuations Inside the

Dot

Consider equation (6.30). We can write it as

a};—gt) =W.P(t) (6.33)
Where the vector P(t) is [py(t), p1(t), ......pn, ()], and W is the transition matrix of
dimension N, x N,. We have turncated the matrix W so that the maximum number
of allowed electrons inside the dot is N,. This is done for computational ease. The
matrix W is expected to have all positive eigenvalues and tlle solution will therefore
reach a stationary value P*. This can be found by setting Q%Q = 0. The stationary

probabilities for V # 0 are found to be

Wk_15k

. ko1 Wkoak-
v = Nol @ Wy 1,k
1 + —_— R
QZ=1 ,!-:[1 Wk k-1

(6.34)

110



and
1
o= 6.35
pO No—1 Q WK__I_’K ( )
1+ K
oo k=1 Wk—k-1

From knowledge of the probabilities p};, one can find the mean number of electrons

and the the variance in the number distributicn by the expressions

No
my =<N>= Y Npy (6.36)
N=0
No No z
oy =< N?*> - < N>’= ZN%;,—(Z Np;,) (6.37)
N=0 N=0

The spectrum of number fluctuations S,(w) inside the dot, can be found from the

expression

Sn(wits) = % / T d(t—1,) €9~ t) (< N(©)N(to) + N(to)N(8) > =2 < N(t,) >?)

0

(6.38)
where
No,No
<N@ON(t)>= Y N M p(N,t|M,t,) p(M,t,) (6.39)
N=0,M=0

p(M,t,) is the probability that the dot has M electrons at time ¢, and p(N, t|M,t,)
is the conditional probability that the dot will have N electrons at time ¢ given that
it had M electrons at time £,. It seems that that S,(w;t,) depends on the artificial
time parameter £,. This is, however, not the case as we will show here. We expect

all the averages to have time translational invariance, i.e.
< N()N(t,) >=< Nt +t')N(t, +t') > (6.40)

and if we choose t' big enough so that p(M,t, + t') = p}, we get

No,No
< N@)N(to) >= Y. NMp(N,t|M,t,) pi (6.41)
N=0,M=0

Time translational invariance implies p(N, t|M,t,) depends upon ¢t — t,. Therefore
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p(N,t|M,t,) = p(N,t|M,0). Finally we can write Sy(w) as

1 oo i No,Ns
Svw) = 5 [ dee®t | S NM p(N,tiM,0)ph6(2)
2J-00 N=0,M=0
No.No No
+ Y. NMp(N,0|M,t)py 0(—t) - 2> Np?v)z) (6.42)
N=0,M=0 N=0

The quantities p(NV, t|M, 0) and p(N, 0| M, t) can easily be found by solving equation

(6.30) as will be shown below for a simple case.

6.4.1 A Two Level Model

Here we will present a simplified two state model of a quantum dot. Suppose we
apply a certain gate voltage to the single quantum dot device shown in figure (6-2)
such that the stationary probabilities pj, are all aimost zero for all N < K and for all
N > K + 1. Thus a’ that gate voltage the dot has a high probability for containing
either K or K + 1 electrons. Such a situation arises in actual devices at that gate
voltage at which the mean number of electrons inside the dot is ~ K + % At this
gate voltage the dot may modeled as a two level system with the two states being
those in which the number of electrons inside the dot is either K or K + 1. We may

write the stochastic equations that follow from (6.30) for this case as

a px(t) _ | 7w v pi(t) (6.43)
ot u v || prs(t) .

Pr+1(t)
where u = Wy, k41 and v = Wi, k. The matrix can be solved by diagonalization

giving

u 5 v
utv VKT ut

P(K, YN, 0) = ——+ e—(u+)t ( JN,KH) (6.44)

u u v
K +1,¢|N,0) = — ‘(“+”)t( - ) .
p(K + 1,t|N,0) ut o e u+v5N,K u+v5N,K+1 (6.45)
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Ast > oo
v

p(K,tIN,0) = pjc = — o (6.46)
u
3 —_—
p(K +1,t|N,0) = pk 4y — (6.47)
Also
my =< N >= (K)—— + (K + 1) —— = K + — (6.48)
N= T Y a4 utv u+v '

Foruxv, my= K+ % The variance in electron number is
2 _ N2> 2 WY 6.49
oy =<N°>-<N> (at o) (6.49)

For u = v the variance in electron number is about % The results in (6.44), (6.45),
(6.46) and (6.47) can be plugged in (6.42) to give the spectrum of number fluctuations

which comes out to be

u+v 2

SN(W) = maN (650)

The number fluctuation spectrum gives information about the rates at which number
fluctuations take place. We see that for our two level model Sy(w) is a lorentzian
with a width equal to the sum of the two important transition rates characterizing

the system.

6.5 Quantized Threshold Voltage Shifts

The storage of electrons inside the quantum dots will result in shifts in the threshold
voltage of the MOS devices shown in figures (6-1) and (6-2). For the case of the single
dot device shown in figure (6-2) the threshold voltage shift AVy(N) when the dot

contains N electrons may be given by the approximate expression

Ne (de,rz
AVr(N) = P (26 : +to,) (6.51)
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A is the area of the dot, and d and t, are as shown in figure (6-3). For the nano

crystal device shown in figure (6-1) the threshold vcltage shift can be written as

AVi(N) = T Ve (df"’ + t;_,,) (6.52)

€oz 2¢,4

where ny is the number density of nano crystals per unit area and N is the number
of electrons per dot. From the analysis carried out in the last section it is obvious
that if a voltage pulse is applied to the gate of the device then the mean number
of electrons my inside the dots at the end of the pulse will depend on both the
magnitude and duration of the applied pulse. As a result of the coulomb energy
associated with charging the dots we expect the mean number of electrons in the
dots to increase in discrete steps with the magnitude of the gate voltage pulse. It
follows that the threshold voltage shifts will also increase in discrete steps with the
magnitude of the gate voltage pulse. Thus these devices offer the novel possibility of

realizing multi-state memory devices using just a single transistor.

6.6 Channel Conductance Fluctuations

In the last section we showed the relationship between the number of electrons inside
the dots and the threshold voltage shift of the device. For a MOS device the channel

current for small values of Vpg is given approximately by the relation [11]
Ips = K(Vgs — Vr)Vps (6.53)
Therefore the channel conductance G becomes
G = K(Vgs — V) (6.54)

The mean value of drain current m;,; and mean value of channel conductance m¢
will be

Mips = Mg Vps (6.55)
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mg =< G >= K(VGS—- < Vr >) (656)

From (6.36), (6.51) and (6.52)

_ mpye [de,x |,
<Vr>=Vro+ Ac.. ( %.. + to,) (6.57)

for a single dot device and

d
< Vp >= Vpo + RaTNE ( oz t,',x) (6.58)
€ox 2¢,i

for a nano crystal device. The variance of fluctuations in current o;,,; and conductance
oc can be also be written as a function of variance in fluctuations of the threshold

voltage oy,

o =05 Vis (6.59)
0% =Ko} (6.60)

From (6.37), (6.51) and (6.52) we have

o2 = ("”6)2 deor o )’ (6.61)
VT - AEoz 263, or )
for a single dot device and
2
2 n.,,owe)2 deor .,
= t 6.62
JVT ( €ox (2 €si + oz ( )

for a nano crystal device. The experimentally relevant quantity is the spectrum of
current fluctuations Sy, ¢(w). This can also be related to the spectrum of conductance

fluctuations S¢(w) and spectrum of threshold voltage fluctuations Sy, (w) as follows

Sips(W) = Sg(w) Vs (6.63)

Se(w) = K2 Sy, (w) (6.64)
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Again, we can relate Sy,.(w) to Sy(w) given in equation (6.42)

Sur(w) = (S Zﬁ‘fe)z (‘;Zj ¥ t:,)2 (6.65)

for a single dot device and

ndSn(W)e) ? (deoz

) = ( oz t:,)2 (6.66)

€oz

for a nano crystal device. The spectrum of current fluctuations is thus related to
the spectrum of number fluctuations. Current fluctuation spectrum can be measured
experimentally at low temperatures. Such measurements can provide valuable infor-
mation about the rates of charging and discharging these devices as already shown

by the two level model of the dot discussed in the last section.

6.7 Calculation of Coupling Constants

We have defined the transition rates W in terms of the coupling constants T}, between
state 9y, inside the dot with state 1, inside the 2-DEG. These coupling constants
were introduced in the hamiltonian. | Here we will describe briefly how to calculate
these coupling constants. We will explicitly focus upon the single dot device shown
in figure (6-2). As shown in chapter three, T,,, is given by the expression

h2

Tnn = _2moz

[ @ Y9u(?) — 9uFY T3 () .45 (667)

The above integral is taken over a surface lying in the middle of the injecting oxide.
We assume the co-ordinate axis to be oriented as in figure (6-3). The states in the 2-
DEG are labeled by the components of momenta parallel to the interface (which are g,
and g;) and the energy ¢, of the subband. Thus inside the oxide region we may write

the wavefunction of an electron belonging to the 2-DEG in the WKB approximation
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3 TEY e )u B(z') dz'
. g:.m-e ox
b 2 a0 LI oo

V(meip(—tL))? + (mozq,)?

In the above expression

\/2m;"en
qI = -T (6-69)

ms* = either m:* or m{* assuming a < 100 > crystal orientation (6.70)
L,, = approximate width of the well confining the 2 — DEG (6.71)

A = arbitrary area of a region in which the wavefunctions are normalized (6.72)

\/ 2mf(e¢o —eF,r—¢,
z) =

i :

(6.73)
F,; = electric field inside the oxide (6.74)

As long as electron tunneling occurs in the direct regime, WKB approximation is an
excellent approximation.

The states inside the dot may be computed accurately in the Hartree approxi-
mation. However, we expect that for the purposes of calculating coupling constants
choousing aproximate wavefunctions of an infinite 3-D quantum box will make little
difference in the final result. Therefore to keep analysis simple we chcose the following

form for the wavefunction of the state of the dot inside the oxide region

(0 o /z a(z') dz’
3 E}E% k. m®* eJo
Uk, ky ke (F) = 1/ LIL.L sin (k,y) sin (%,2) (6.75)

V(msia(0))? + (mezk,)?

2 81 z
fy = Y2 (6.76)

T h
Lg, L,, L, =x,y,z dimensions of the dot (6.77)

where
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J/2m¥ (ego — eFosz — €2)
h

az) = (6.78)
€; = energy associated with motion in the x — direction inside the dot (6.79)

The total energy Ek, x, k. oOf this state is simply

hk2 N Rk BPk?

31 81
y 2m;

(6.80)

kz ky,kz = 2msi 2m
I

Using the wavefunctions (6.68) and (6.75) we can compute the coupling constant
T(n.qy.qs )1k ky ks ) which comes out to be
T R 16
(rava:hlkekuksd = Tomes \ ALy Lz LyL.
\a(0)B(0) kz g:(m")’
Jms Bt + (m#=q:)?  (mEa()) + (mekz)’
a(—t‘P,p) ﬂ(—t‘f:ﬂ) )
X +
( ﬁ(—to:/?') a(_toz/z)
—tL=/2 _t!:z
( / a(z')dz' + / B(z") dz')
e 0 _th/2

x ( /0 " dy etV sin(k,,y)) ( /0 " 4z €192 sin (k,z))(6.81)

Transition rates W can be calculated numerically using this expression for the
coupling constant and equations (6.31). Also note that the expression for coupling
constant above holds irrespective of whether the state inside the dot is coupled to
a state in the 2-DEG (which is confined in one dimension) or a to state in a 3-D
continuum. However, the difference comes when the summations are peiformed in

the calculation of transition rates W using equations (6.31).

118



6.8 Numerical Results

6.8.1 Numerical Results for the Steady State

To test our theoretical model we have carried out calculations for a single quantum
dot coupled to an inversion layer as shown in figure(6-3). Our calculations are carried

out in the following steps

1. For a given number of electrons N inside the dot and a gate voltage, Poisson
equation is solved numerically for the structure shown in figure (6-3) to calculate

the potential distribution.

2. Equations (6.31) are used to calculate transition rates Wy_,n41 and Wy_n_y

using coupling constants given by (6.81).

3. For the same gate voltage the number of electrons N inside the dot is varied
from 0 to some upper number N,(~ 3 or 4) and for each value of N steps (1)

and (2) above are repeated.

4. Once all the transitions rates have been obtained, equations (6.34), (6.35), (6.36)
and (6.37) are used to obtain the stationary probabilities p},, mean number of

electrons and the variance in the electron number.

5. The gate voltage is varied and steps (1), (2) and (3) above are repeated for each

value of gate voltage.

Here we present the numerical results for dot of dimensions L, = 60;1, L, = 100A,
and L, = 100A. The thickness t!_ of the injecting oxide is 154, and the thickness t7_
of the control oxide is 50A. The substrate doping is 10'”/cm?® p-type. The threshold
voltage Vo of the device without any electrons inside the dot is about 0.3 Volts. We
assumed that both the substrate and the dot have < 100 > crystal orientation. This
assumption is not valid in actual devices since the dots are deposited by CVD and
therefore have no fixed crystal orientation. Infact, they are perhaps not even single

crystal but poly-crystalline.
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Figure 6-4: Mean number of electrons in the dot as a function of gate voltage.

Figure (6-4) shows the mean number of electrons inside the dot as a function of
the gate to substrate voltage. Notice that the first electron does not appear inside
the dot until the gate voltage exceeds the threshold voltage Vro and an inversion
layer is formed to supply that electron. The presence of one electron inside the dot
shifts the threshold voltage by AVr(N = 1) whose value is given in (6.51). For this
device AVr(N = 1) comes out to be about 0.3 Volts. Thus to put a second electron
inside the dot the gate voltage needs to be increased by at least AVy(N = 1) beyond
the voltage needed to put in the first electron, which is approximately Vro. We
say ‘at least’ because the electron already present inside the dot will try to occupy
the lowest available states, leaving the higher ones for the second electron. Thus
the second electron can be put in at a gate voltage which is little higher than just
Vr + AVp(N = 1). Generalizing this we can say that to put the N’th electron in the
dot requires a gate voltage of approximately V3o + AVr(N — 1). This trend can be
clearly seen in figure (6-4).
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Figure 6-5: Threshold voltage shift AV as a function of gate voltage

Figure (6-5)’shows the threshold voltage shift AVy(N) as a function of gate volt-
age. Equation (6.51) was used to calculate AVy(N). Figure (6-6) shows the variance
{or the root mean square value or RMS value) of electron number as function of gate

. voltage. We see that at gate voltages where the mean electron number is an integer
plus a half, the variance in ele.ctron number is also a half. This implies that the
two level model presented in the last section captures the essential physics at gate

‘ voltages at which the mean number of electrons in the dot is an integer plus a half.

Thus we expect that at these gate voltages the spectrum of number fluctuations will
be a lorentzian given by (6.50). In our simulations we have fixed the upper limit on
the number of electrons inside the dot to three (i.e. N, = 3) for computational ease.
Therefore, figure (6-4) shows the mean number of electrons leveling off around a gate

voltage of 1.2 Volts, and the fluctuations in.electron number in figure (6-6) dying off

at the same voltage. This is, of course, unphysical.
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Figure 6-6: Variance of electron number in the dot as a function of gate voltage

6.8.2 Numerical Results for the Time Dependent Case

In practice a gate voltage pulse is applied to charge the dot. Our analysis above has
assumed that the pulse is sufficiently loné so that the time dependent solution of equa-
tion (6.30) reaches its stationary value, and we have used the stationary probabilities
P given by equations (6.34) and (6.35) to calculate the mean number of electrons
and the variance in electron number as a function of gate voltage. However, our
formalism is sufficiently powerful to incorporate pulses of arbitrary short duration.
Suppose a square voltage pulse is applied to the gate at time ¢{ = 0 of duration T.
The coupled equations in (6.30) can be solved with appropriate boundary conditions
to yield the time-dependent probabilities py(t). If the dot at time ¢ = 0 was empty
then boundary conditions would be py(t = 0) =1 and py(t =0) =0 for N # 0. The

time dependent mean number of electrons my(t) inside the dot is

ma®) = 5 N pw(t) (6.82)
N=0
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The mean number of electrons at time ¢ = T is my(t = T). Thus, the threshold
voltage shift at the end of the pulse is AVr(N = my(t = T)). In general, therefore,
the threshold voltage shifts would depend upon the magnitude and also the duration
of the pulse.

Here we first present time dependent results for the case when a 3.0 Volt square
pulse at time t = 0 is applied to the gate of the single dot device which has been
described above. Figure (6-7) shows the mean number of electrons in the dot as a
function of time following the application of the gate pulse. It can be seen from the
figure that it takes longer and longer time to put more and more electrons in the
dot. This can easily be understood from the fact that initially when the pulse is
applied there are no electrons inside the dot. Consequently, the potential drop across
the injecting oxide is large and the electric field in the injecting oxide is also large
resulting in large coupling constants. Electrons are injected into high energy states
of the dot, and the density of states at high energies is also large and also these
states are all empty. Thus the rate of injecting electrons into the dot is also large.
As the dot gets filled up with electrons, the potential drop across the injecting oxide
becomes smaller and the coupling constants become smaller. Injection also now takes
place in relatively lower energy states of the dot, where the density of states is lower
and some of them are, of course, occupied by the electrons already present in the
dot. In addition, the presence of electrons inside the dot also changes the threshold
voltage of the device, which means that there are also less electrons available in the
channel that can tunnel into the dot. All these factors add to make the injection
of additional electrons more and more slower. Figure (6-8) shows the corresponding
threshold voltage shift as a function of time.

Figure (6-9) shows the mean number of electrons inside the dot when a gate voltage
pulse of -3.0 Volt is applied to remove the charge stored inside the dot. The various
curves are for different initial number of electrons inside the dot. From the figure it
is obvious that the rate of discharge is higher if the dot initially contained a larger
number of electrons. This is because more charge inside the dot results in higher

electric field inside the injecting oxide when a negative gate voltage is applied to
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Figure 6-7: Mean number of electrons in the dot as a function of time on application
of a 3.0 Volt pulse at the gate.
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Figure 6-8: Shift in the threshold voltage of the device as a function of time.

discharge the device. Consequently, the ejection rate is higher. However, irrespective
of the initial number of electrons in the dot, it takes about almost a micro second to
completely discharge the device.

From the time dependent results presented here it is seen that if the dot is to be
charged with one electron then this can be achieved by applying a pulse of 3.0 Volts
at the gate for just 20ns. But discharging the dot will require a pulse of -3.0 Volts at
the gate for at least 2us.

6.9 Conclusion

In this chapter we have presented a comprehensive analytical treatment of tunneling
processes that take place when quantum dots is coupled to a two dimensional electron
gas. We derived a set of coupled differential equations (6.30) for the probabilities pn(t)
for the dot to contain N electrons. These probabilities depend upon the transition

rates in (6.31). The transition rates in turn depend upon device dimensions like the
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Figure 6-9: Mean number of electrons in the dot as a function of time on application
of a -3.0 Volt pulse at the gate. The four curves are for different initial number of
electrons in the dot.

dot size, oxide thickness e.t.c. and also on the applied gate bias. We showed that the
coupled differential equations for py(t) could be solved for any given initial conditions
and applied gate voltage, and their solution completely described the time dependent
behavior of the device. Thus these differential equations provide an important tool,
not only to model the charging and discharging of the dots when write and erase
pulses are applied to the gate, but also to study the charge retention abilities of these

devices.
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Chapter 7

Conclusion

In this thesis we have presented a comprehensive theoretical treatment of tunneling
processes in Silicon/Silicon-dioxide systems. In chapter one we described the semi-
classical model for calculating tunneling currents through oxides. We mentioned the
shortcomings of that model and in chapter three we presented a fully aelf-consistent
quantum mechanical model for describing tunneling in MOS devices. We introduced
the concept of electron life times and showed how they may be used in computing
tunneling currents from quasi bound states. In chapter four we presented the results
of our numerical calculations and compared them with experimental measurements.
We showed that our theoretical calculations agreed remarkably well with experimental
data. Our calculations showed that very large tunneling currents (> 5A/cm?) can be
obtained in very thin (~ 15A4) oxides.

In chapter five we discussed two important issues related to modeling of electron
tunnel transport in oxides : the mid-gap dispersic.)ﬁ relation in SiO,, and the effect
of image forces. We presented a crystalline WKB approximation which generalized
the usual WKB approximations to account for the complete mid-gap dispersion re-
lation. We presented a novel method to describe the time-dependent response of a
two dimensional electron gas. We also showed in the same chapter that barrier re-
duction effects due to image forces are certainly not negligible in MOS devices but
the uncertainty in the experimental determination of oxide thicknesses by state of

the art techniques make the experimental verification of image force effects almost
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impossible.

Finally, in chapter six we presented a theoretical analysis of quantum dots coupled
with the channel of MOS devices. We developed theoretical models to predict the
time-independent and time-dependent behavior of- i:hese devices. These models have
not yet been tested against experimental data.

The work done in this thesis certainly does not exhaust all possible research av-
enues. Further research in theoretical modeling of tunneling processes in Si/SiO;

systems may be directed along the following lines :

e The correct boundary conditions on the electron wavefunction at the Si/SiO,
interface are presently not known. It might be possible to obtain an accurate

theoretical formulation of these boundary conditions from first principles.

e It remains unclear whether bulk effective mass theory may be used for very thin
(a few atomic layers wide) oxides. The mid-gap dispersion relation in SiO, may
change as the oxide thickness becomes too small. Clearly more work remains

to be done to study such effects.

e The effective mass theory for SiO, has been formulated on the basis of the
band structure of crystalline a-quartz. SiO, in MOS devices is amorphous. It
remains unclear how well does the crystalline formulation work for amorphous

thin films.

e We showed in chapter five that in MOS devices image force correction to bar-
rier height is not small, specially as the oxide thicknesses become small. Our
formulation for describing the time-dependent response of 2-DEG was not self-
consistent (i.e. we did not take into account the effect of the induced charge
density in the 2-DEG on the motion of the point charge). Given the rather large
correction to barrier height that comes from the image potential in MOS devices
with thin oxides, it is important that a self—cqpsistent theory for dynamic image

potential be developed for MOS devices.

e In modeling quantum dots we have used a two capacitor model for calculating
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coulomb energy. This expression may not yield accurate results for the quan-
tum dot memory devices. More accurate numerical calculations based upon

equations described in chapter six are desired.

e In calculating the energies and wavefunctions of electrons in quantum dots we
did not use a self-consistent formulation. A fully self-consistent solution which
solves for the energies and wavefunctions iu the 2-DEG as well in the dot may
be interesting. Moreover, such a methodology will also be useful in calculating

coulomb charging energies more accurately, as described in chapter six.

We are certain that with the recent advances in nano technology and with the
innovations of quantum effect structures in Silicon, the research done in this thesis
would prove to be valuable, and will motivate additional research in the yet unexplored

area.
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