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Abstract

An algorithm for decomposing large tally data in Monte Carlo particle simulations is proposed, analyzed, and
implemented/tested in a production Monte Carlo code, OpenMC. The algorithm relies on disjoint sets of compute
processes and servers of which the former simulate particles moving through the geometry and the latter runs
in a continuous loop receiving scores from the compute processors and incrementing tallies. A performance
model is developed and shows that for a range of parameters relevant to LWR analysis, the tally server algorithm
should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm
in OpenMC was tested on the Intrepid and Titan supercomputers and was demonstrated to perform well over a
wide range of the parameters. The tally server algorithm can thus be used to analyze LWR models with a level of
fidelity that was heretofore not possible due to the need to replicate memory across all processors.

Keywords: Monte Carlo neutron transport data decomposition exascale

1. Introduction

A considerable amount of recent research and development in the reactor physics community has focused on
using Monte Carlo methods to directly simulate full-core reactor models. There are a number of motivations for
using Monte Carlo methods over deterministic methods as has been discussed in several recent papers [1, 2].
In summary, many of the approximations made in the use of deterministic methods may preclude their use for
certain classes of problems, e.g. small-modular reactors with high leakage. Monte Carlo, being free from these
approximations, looks attractive if sufficient computing resources are available.

That being said, the availability of any given supercomputer does not necessarily go hand-in-hand with an
implementation of Monte Carlo methods that will be able to fully utilize the resources. In fact, despite the many
advances in Monte Carlo methods over the past few decades, an efficient parallel implementation for large-scale
criticality calculations capable of scaling on modern petascale supercomputers has, until very recently, not been
demonstrated in the literature. There are a number of factors that hinder the parallel performance of these
calculations [1, 3]. However, methods to overcome some of the traditional limitations in parallel implementations
such as synchronization of the fission bank [4, 5] and tallies [6] have now been demonstrated.

At this point in time, the major impediment to using Monte Carlo methods for reactor analysis is the fact
that the parallel algorithms still generally rely on each program instance having the full geometry, interaction
cross section, and tally data in memory. There is of course good reason to use full memory replication – each
process can simulate particles independently1 of one another and the tally results can be collected at the end of
the simulations. For reactor analysis, however, the size of the cross section and tally data can easily exceed the
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memory available on a single node. Siegel et al. [2] estimate that cross section data could hypothetically exceed
100 GB and tally data could exceed 0.5 TB.

In order to treat realistic reactor problems, an algorithm that is capable of dealing with limited per-node
memory must be employed. Two general strategies have been proposed for dealing with limited memory in Monte
Carlo simulations: domain decomposition and data decomposition. In domain decomposition, the physical space
of the problem is divided into subdomains, each of which is assigned to a different processor. When a particle
reaches the boundary of a processor’s subdomain, it is buffered and eventually sent to a neighboring process
whose subdomain includes the region of space the particle is about to enter. In this algorithm, each processor only
has to store in memory the geometry, cross section, and tally data that’s associated with its subdomain. In practice,
cross section data is needed everywhere in phase space, so domain decomposition generally does not help to
alleviate the burden of large cross section storage. However, it does provide a natural means of splitting up a large
tally into smaller chunks, each of which resides in the memory of a different processor. Domain decomposition has
been implemented in an implicit Monte Carlo code [7] and the Mercury [8] and Shift [9] Monte Carlo particle
transport codes. More recently, a theoretical formulation has been developed by Siegel et al. that helps to predict
the performance of domain decomposition algorithms [10, 2].

The work in [2] elucidates some important limitations to domain decomposition algorithms. One of the
classical arguments against domain decomposition has been that a properly load-balanced simulation would be
difficult to achieve for a problem with non-uniform particle densities (such as nuclear reactor). The original intent
of [2] was to simply quantify the penalty from these non-uniform particle densities in a typical light-water reactor
(LWR) simulation. However, in doing so, the theory revealed a related but perhaps more important limitation that
has implications for simulation on large-scale supercomputers. Namely, as the number of processors increases, the
subdomain size on each processor would become smaller and smaller. With an increasingly small domain size,
the leakage rates between neighboring domains will approach unity, implying that communication costs would
increase drastically. Indeed, this argument makes it hard to imagine domain decomposition being performed on
thousands of processors without incurring a seriously penalty.

While a considerable amount of work and analysis has been completed on domain decomposition, very little
work has focused on data decomposition. The basic concept of data decomposition is that a disjoint subset of the
processes in a simulation act as servers, sending and/or receiving data to compute processes as needed. In its most
general form, the data could be geometry, cross sections, and/or tallies. The compute processes handle the actual
transport of particles from birth to death and communicate with the servers as needed. Thus, we see that data
decomposition does have some similarity to domain decomposition in the sense that the compute processes are
still tracking particles independently of one another. However, particles are never transferred from one process to
another.

The potential for data decomposition to alleviate per-node memory restrictions had been identified by Brown
and Martin as early as 2004 [11], but to-date it has not been demonstrated or even analyzed. Some early scoping
work was done to investigate whether remote memory access would be suitable for data decomposition algorithms
[12]. However, these preliminary works focused more on decomposing geometry and cross section data. In this
paper, we take a first look at an algorithm designed not to decompose geometry or cross section data but rather to
decompose large tally data.

2. Tally Server Algorithm

During a Monte Carlo simulation, estimates of physical parameters are made by keeping running sums of
scores from events such as collisions or particle tracks. These running sums are referred to as tallies. For example,
to estimate the flux in closed volume, one could keep a running sum that is incremented by the length of
the particle’s track within the volume each time the particle travels between collisions. The simplicity of tally
incrementing makes it amenable to an atomic fetch-and-add operation (whether this be a CPU instruction or a
remote direct memory access operation). Normally, tallies are stored in memory locally with synchronization
between processes performed after simulating a predetermined number of particles called a batch. However, since
tally data is not needed for determining the random walk of a particle, it can be stored remotely. For the sake of
simplicity, we will look at an algorithm where the tally data is stored in the address space of a process whose sole
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purpose is to receive scores from other processes and increment the tallies accordingly. These processes are called
tally servers due to the similarity of the algorithm to a client-server architecture.

In the tally server data decomposition algorithm, we start with a set of p processes that are divided into c
compute processes and s tally servers. Each of the compute processes is assigned a set of particles that it will
track, one at a time. Within a single particle history, some events will cause scores to be tallied. However, instead
of determining a local memory location to increment for each score, a list of scores that is of size d bytes is sent to
a tally server. Since all tally accumulation is performed on the server, the compute processes do not need to store
the tallies in memory (other than meta-data describing the tally).

To be more explicit on the data requirements, it helps to introduce the notion of filters and scoring functions. A
filter refers to a criterion that limits what events can score to a given tally. The filter criteria generally concern the
properties of a particle. For example, a filter criterion could be that a particle has a collision within a defined mesh
cell, or that a particle’s energy is within a defined range. The scoring functions are the actual physical quantities
to be tallied, such as flux, reaction rates, currents, etc. If an event satisfies all filter criteria for a tally, a tally bin
for each scoring function would be incremented by an estimate of the scoring function. Thus, a single event can
increment more than just a single location in memory. As an example, a tally could specify that the reaction rate
in each of 300 nuclides should be determined. In such a case, each scoring event would have to increment 300
tally bins. We see that the fact that we have d bytes where d ≥ 8 stems from the fact that a single scoring event
may need to score to hundreds of scoring functions. The message sent to a server at a scoring event consists of
the scores for each scoring function.

Each process that has been designated as a server does not track any particles but instead continuously receives
data from the compute processes and increments the appropriate tally bins. The server implementation could use
one-sided operations (remote memory access) or regular point-to-point communication by running a continuous
receive loop. The entire tally data can be divided in any arbitrary manner. In practice, assigning sequential blocks
of the tally data to each server should be sufficient. This could be equivalent to dividing the tallies by spatial
region as in domain decomposition since the tally data itself can be arranged by spatial region. Note again that in
this algorithm, the tally servers only need to store a subset of the tally data; they do not need to store geometry or
cross section data since it is only needed for tracking and physics.

3. Analysis

3.1. Derivation of performance model
Let us now develop a model for estimating the performance of a simulation using tally servers relative to a

simulation where no tally servers are used. As defined earlier, p is the total number of processes, c is the number
of compute processes, and s is the number of servers. It is assumed that there is a one-to-one correspondence
between processes and processor cores, so we may interchangeably refer to compute processes or compute
processors. We shall also define t0 and t as the expected amount of time to simulate N particles on p processes
without and with tally servers respectively. When using tally servers, we can divide t into two components:
the time to simulate particles which we shall call tc and the time to send messages to servers which we shall
call ts. Thus, we have that t = tc + ts. Note that for the purposes of this analysis, we shall ignore all other
communication such as synchronization of global tallies for the effective multiplication factor and fission bank
sites for a criticality calculation. The amount of communication associated with these aspects of the algorithm
will not differ appreciably whether or not tally servers are used.

The actual time to simulate any given particle will vary widely based on the random walk of each particle;
some particles will have many more collisions and tracks than others. We can assume that the time to simulate a
particle is given by a distribution with a known mean µ. This parameter will be influenced by both hardware
and software considerations such as the processor, the cache and memory hierarchy, compiler optimizations, etc.
While it is generally difficult to predict µ a priori, it is very easy to measure it with an actual simulation. Assuming
we know µ, the expected time to complete a batch of N particles is Nµ. Without tally servers, we can assume
perfect parallel scaling within a single batch such that

t0 =
Nµ

p
. (1)
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The time to simulate N particles using the tally server algorithm is generally expected to be larger than that
without tally servers for two reasons: 1) the number of processors available to simulate particles is less (i.e. c < p),
and 2) communicating tally data to the servers will incur some overhead, even if non-blocking communication is
used. The expected time to simulate the N particles over c compute processes is

tc =
Nµ

c
. (2)

The overhead of tally communication will be strongly dependent on the performance of the network interconnect.
Let us assume that the time to send a message with d bytes of data between a compute process and a server
is given by α+ dβ where α is the communication latency and β is the inverse bandwidth. We are implicitly
assuming that the latency and bandwidth are uniform regardless of which compute process and server are
communicating. This is obviously not strictly true since the communication time will depend on the relative
distance between processors in the network topology. However, for the sake of analysis we can assume some gross
average application-level latency and bandwidth to develop an intuition for the performance of the tally server
model. We are also assuming here that the network latency is not a function of the size of the message being
communicated. Again, this assumption is not strictly true, but it should not affect the conclusions drawn from the
model.

Having knowledge of the network latency and bandwidth allows us to determine how long communicating
data to a tally server will take per scoring event. We also need to know how many scoring events occur per particle
in order to determine the overhead from tally servers. Let us call f the expected number of scoring events per
particle. This parameter will depend mostly on what filter criteria are applied to a tally. By definition, f (α+ dβ)
is the expected time to send the tally scores to servers for one particle. If each compute process is simulating N/c
particles, then the expected communication time is

ts =
f N

c
�

α+ dβ
�

. (3)

Combining (2) and (3), we find the expected time to simulate N particles using the tally server algorithm to be

t = tc + ts =
Nµ

c
+

f N

c
�

α+ dβ
�

. (4)

We can now divide (4) by (1) to estimate the overhead from using tally servers:

t

t0
=

p

c

�

1+
f

µ

�

α+ dβ
�

�

. (5)

The term outside the brackets in equation (5) represents the loss in efficiency due to the fact that not all p processes
are available to simulate particles. The term inside the brackets in equation (5) represents the loss in efficiency
due to the need to send messages at every scoring event. One can see in (5) that the tally server overhead will
depend on many parameters. Three of these parameters are constant for a given computer architecture: the
number of particles simulated per second and the network latency and bandwidth. The other two parameters, d
and f , will depend on what tally quantities need to be scored and what estimator is being applied.

It is desirable to further develop equation (5) to eliminate the dependence on p and c. Ideally, one would want
as few servers as possible to maximize the number of compute processes available. However, we need to have at
least enough servers to keep up with the total amount of data being sent. This can be stated mathematically by
saying that the amount of time each server spends receiving messages is less than or equal to the compute time
for each cycle. Since the total time receiving messages is c ts, we have that

c ts

s
≤ Nµ

c
. (6)

Combining (3) and (6), we can define this constraint as being an upper bound on the number of compute
processes that can be supported by one server, which we call the support ratio:
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c

s
≤ µ

f
�

α+ dβ
� (7)

By substituting s = p− c in (7) and rearranging terms, we obtain an expression for the ratio of the number of
total processes to the maximum number of compute processes as needed in equation (5):

p

c
= 1+

f

µ

�

α+ dβ
�

. (8)

Notice that the right hand side of (8) is identical to the expression within the brackets in (5). In effect, the
penalty for using up some of the processes as servers is the same as the penalty for actually sending messages.
Substituting (8) into (5), we see that

t

t0
=
�

1+
f

µ

�

α+ dβ
�

�2

. (9)

3.2. Performance predictions
In order to draw any further conclusions regarding the overhead based on (9), we must develop realistic

estimates for the speed of the network interconnect (α and β), the calculational rate (µ), and the amount and
frequency of data being tallied (d and f ). For the network latency and bandwidth, our systems of interest are two
modern supercomputers: the Blue Gene/P supercomputer (Intrepid) at Argonne National Laboratory (ANL) and
the Cray XK6 supercomputer (Titan) at Oak Ridge National Laboratory (ORNL). For the purposes of estimating d
and f , we will look at solving for reaction rate distributions within fuel pins in the Monte Carlo performance
benchmark [13] using the OpenMC Monte Carlo particle transport code [5]. The calculational rate will depend
both on the computer architecture as well as the specific model chosen.

The Intrepid supercomputer has 40 Blue Gene/P racks with 1024 nodes each. In turn, each node has a
quad-core PowerPC 450 processor and 2 GB of memory. Tests have shown that the average ping-pong message
latency on Blue Gene/P is about 3.53 microseconds and the average ping-pong bandwidth is 0.3852 GB/s [14].
Thus, we can infer that α= 3.53 · 10−6 and β = 2.60 · 10−9 for the Intrepid Blue Gene/P supercomputer. For the
Monte Carlo Performance Benchmark modified to use 320 nuclides in the fuel, our tests using OpenMC show
that Blue Gene/P can simulate about 76 particles per second on each processor, i.e. µ= 0.0132. We have chosen
to use 320 nuclides in the fuel as this is the maximum number of nuclides available in the ENDF/B-VII.0 cross
section library used in the simulation.

The Titan supercomputer has 18,688 Cray XK6 compute nodes, each of which has a 16-core AMD Opteron
6274 processor with 32 GB of memory. The Cray XK6 uses the Cray Gemini interconnect which has slower latency
but faster bandwidth than the interconnect on the Blue Gene/P. The parameters we use here are 1/µ = 140,
α= 1.4 · 10−5 and β = 1.0 · 10−9 (NEED REFERENCE/UPDATED DATA FOR TITAN).

Let us briefly discuss what values are appropriate to use for f , the number of events per particle. For the
purpose of LWR core analysis, we are only interested in integrated fluxes and reaction rates in the fuel and thus
can ignore all events in the cladding, water, and elsewhere. For the Monte Carlo performance benchmark, each
particle has on average 5.7 collisions in fuel and 21.3 total tracks in fuel. As a point of reference, each particle has
about 26 total collisions during its lifetime and makes 132 total tracks2. Thus, the cases of most practical interest
would be using a collision estimator to accumulate scores only in the fuel ( f = 5.7) and using a track-length
estimator to accumulate scores only in the fuel ( f = 21.3). To obtain an upper bound on d, a good reference
point is a depletion calculation where six reaction rates are needed for each of the 320 nuclides in the fuel. In this
bounding case, a compute process would need to send 6 · 320 · 8 bytes= 15.36 kilobytes at each event.

To summarize the preceding considerations, Table 1 shows the parameter space for both the Intrepid and
Titan supercomputers. Using these parameters, we can evaluate the expected overhead incurred due to sending
data to the tally servers based on (9). Fig. 1 shows the estimated tally server overhead as a function of f and
d for the Intrepid supercomputer. Based on our performance model, one can see that the communication will

2These figures were obtained using no survival biasing techniques.
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be latency-dominated for small d and bandwidth-dominated for large d. Our upper bound of 15.36 kilobytes is
clearly in the bandwidth-dominated region. Fig. 2 shows the estimated overhead as a function of f and d for
the Titan supercomputer. While the Cray XK6 has very high bandwidth, the slower latency and faster processors
makes the performance approximately equivalent to that of the Blue Gene/P. For f = 21.3 and d = 15360, the
expected overhead is between 10 and 20 percent of the total running time for both the Intrepid Blue Gene/P and
Titan Cray XK6 supercomputers.

Table 1
Parameters used for tally server overhead model in (9).

Parameter Description Intrepid Titan

α Network Latency 3.53 · 10−6 1.5 · 10−6

β Network Bandwidth (s/byte) 2.60 · 10−9 1.0 · 10−9

1/µ Particles/second 76 140
d Data/event (bytes) 0 – 15,360 0 – 15,360
f Events/particle 0 – 132 0 – 132
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Fig. 1. Estimated tally server overhead for Intrepid Blue Gene/P supercomputer.

We can also use equation (7) to identify the number of compute processors that can be supported by one
server. For our worst case of f = 21.3 and d = 15360, the constraint implies that on the Intrepid supercomputer
we would need one server for every 14 compute processors. On the Titan supercomputer, we would need one
server for every 11 compute processors for the same values of f and d.

The predicted overhead due to tally servers based on the model in (9) is quite modest. In particular, over the
range of parameter space that is of interest in LWR analysis, the overhead is generally less than 10% – a very small
price to pay for the benefit of being able to have tallies of arbitrarily large size. The promising results based on the
theory presented here warrant an actual implementation in a real Monte Carlo code. In section 4, we describe our
implementation of this algorithm in the OpenMC Monte Carlo code. Actual test results using the implementation
in OpenMC are presented in section 5. Before we discuss the implementation and results, however, we first discuss
and analyze several considerations that may have an influence on the achievable performance.
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Fig. 2. Estimated tally server overhead for Titan Cray XK6 supercomputer.

3.3. Implications of total memory requirements

One may have noted in the derivation of the performance model that, even though the entire purpose of the
algorithm is to allow for decomposition of the tally memory, nowhere was the total memory requirement for the
tallies actually mentioned. In fact, one of the alluring aspects of the tally server algorithm is that, in general, its
performance does not depend on total amount of memory. However, we must be careful in interpreting such a
statement too broadly as there are constraints on the memory.

The most obvious constraint is that the memory for each server must not exceed the available memory on a
single node. Let Mt be the total memory required for tallies, Ms be the tally memory on each server, and Mn be
the available memory on a node. This constraint implies that

Ms < Mn. (10)

Another implicit assumption made in the course of the derivation was that the message being sent was small
relative to the tally memory on each server. However, for a fixed tally size, the total tally memory on each server
will be inversely proportional to the total number of processors (assuming a constant support ratio). Thus, as the
total number of processors becomes very large, the total memory on each server could hypothetically become
smaller than the message size for each scoring event. This situation would result in increased overhead as it
would necessitate sending more messages. A reasonable constraint to impose is that the message size for each
scoring event be smaller that the tally memory of each server:

d < Ms (11)

In practice, even d = Ms can cause problems since a single message can still overlap two servers. If we assume
that the total memory required for tallies is split evenly over the tally servers, then the constraints in (10) and
(11) can be written in combined form as

d <
Mt

s
< Mn. (12)

As we saw earlier, the upper limit on d for our cases of interest is 15,360. Let us suppose that the memory on a
single node is Mn = 32 ·109 bytes. If the total memory of the tallies is Mt = 500 ·109 bytes, then (12) implies that
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15.6< s < 3.26 · 106. (13)

Thus, we must have at least 16 servers in order for the memory footprint of each to fit on a single node. This
lower bound is quite easy to achieve even on a small cluster. For the upper bound, if we have more the 3.26
million servers, each server would have too little data compared to the size of a single message. However, having
s = 3.26 · 106 is clearly ludicrous given that no computer in the world even has this many processor cores.

The constraint in (12) can also tell us, given a total number of a tally servers, the range of total tally memory
that can be reasonably accommodated. Let us suppose we wanted to perform a simulation on the entire Mira
Blue Gene/Q supercomputer at Argonne National Laboratory. This supercomputer has 48 racks each having 1024
nodes, each of which in turn has a 16 core processor for a total of 786,432 cores. Each node has Mn = 16 · 109

bytes of memory. Assuming a support ratio of c/s = 15, we would need 49,152 servers. Thus, (12) implies that

755.0 · 103 < Mt < 786.4 · 1012. (14)

For any reasonable simulation, the total memory of the tallies will likely be somewhere between 755 kilobytes
and 786 terabytes.

Admittedly, the foregoing analysis does not take into account the fact that tally servers will have to share the
memory of a single node with compute processors. However, doing so would not change the overall conclusion
that under normal circumstances, the memory requirements are not a formidable challenge to successfully
employing the tally server algorithm.

3.4. Dependence of µ on d

To this point, we have assumed that µ is independent of all other parameters in our model. However, in most
Monte Carlo transport codes, the rate at which particles are simulated will be dependent on how much data
needs to be tallied and hence µ should really be a function of d, i.e. µ= µ(d). In our case, d will vary according
to how many nuclides and scoring functions are being tallied. For every nuclide reaction rate that needs to be
tallied, it is necessary to either calculate or look up a nuclide microscopic cross section at the time of tallying.
Thus, depending on how the look-up is implemented, µ will depend linearly on d. If µ0 is the calculational rate
with no tallies and µ1 is the average time to process tally scores per byte, then we have that

µ(d) = µ0 + dµ1 (15)

Substituting µ(d) for µ in (9), the tally server overhead would then be

t

t0
=
�

1+
f

µ0 + dµ1

�

α+ dβ
�

�2

. (16)

We see that the tendency would be to lessen the overhead as d is increased relative to the overhead in (9). In the
actual performance measurements discussed in section 5, this effect is accounted for explicitly by measuring µ
over a range of d.

4. Implementation

4.1. Description of algorithm

The algorithm described in section 2 was implemented in OpenMC [5], an open source Monte Carlo neutronic
simulation software package recently developed at MIT capable of performing calculations on arbitrary 3D
geometries with continuous-energy cross-sections. OpenMC was written with a focus on scalable algorithms for
leadership-class supercomputers and has demonstrated weak scaling up to hundreds of thousands of processors
on ALCF’s Intrepid and OLCF’s Jaguar supercomputers. The codebase is written in Fortran 2008 with parallelism
provided via MPI and OpenMP.

Modest changes were required in the OpenMC source code to implement the tally server algorithm. At
initialization time, processes are divided into compute processes and servers based on user input indicating how
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many servers to use. If p total processes are used and s servers are specified, then the processes whose MPI rank
satisfies i+ 1 mod s/p = 0 are assigned as servers. Each user-defined tally has an array of score objects whose
length is the product of the number of filter bins multiplied by the number of scoring functions. All scoring bins
from user-defined tallies are concatenated into one “global” tally score array which is then divided equally over
the servers. Finally, a look-up array is constructed that relates indices in the global tally scores array to indices
within the scores array for each user-defined tally. The look-up array enables the compute processes to determine
which server they need to send scores to.

The necessary changes to the actual tallying subroutines that are used during particle tracking follow directly
from the discussion in section 2. As a summary, Algorithm 1 shows a pseudocode outlining the salient points of
the tally server algorithm as implemented in OpenMC. There are a few important points to note regarding this
algorithm. Firstly, the array of scores created when a scoring event occurs contains the scores for all specified
scoring functions. This means that the receiving server will increment multiple tally scores from a single message.
Also note that the servers must be informed of when a batch of particles (or the simulation) has been completed
as the servers are now responsible for computing sums and sums of squares of the tally score bins in order to
calculate variances. At the end of the simulation, the servers must collectively write the tally results to disk. This
can be done efficiently using parallel I/O techniques such as MPI-IO or parallel HDF5.

4.2. Explicit buffering

In Algorithm 1, an array of scores is sent to a server at every single scoring event. If f in (9) is very large, this
would clearly create a large overhead regardless of whether the communication would be latency- or bandwidth-
dominated. One potential workaround for this situation would be to explicitly buffer messages before sending.
Rather than sending a message at every scoring event, we could create a buffer array on the compute process for
each server that is some factor η larger than the total number of scoring functions for a tally. When the buffer
array is full, it would then be sent to the corresponding server. In this case, we have decreased f by a factor of η
and increased d by the same factor. The predicted performance would then be

t

t0
=
�

1+
f

ηµ

�

α+ dηβ
�

�2

=
�

1+
f

µ

�

α

η
+ dβ

��2

. (17)

We see in (17) that the latency term has been reduced by a factor of η, but the bandwidth term is unchanged.
Since the main case of interest (depletion of an LWR model) was shown to be in the bandwidth-dominated region
for contemporary supercomputers, the extra effort of implementing explicit buffering did not seem to justify the
performance benefit for cases that are latency-dominated. This is especially true given that, as we will see in
section 5, the overhead for latency-dominated cases is extremely small to start with.

4.3. Potential optimizations

A small variation on the explicit buffering concept described in the previous section is to combine successive
scores that match the same filter criteria. Let us suppose that for a tally with scoring bins bi , i = 1, . . . , k, we
have n consecutive scoring events that match the same filter criteria. Let x i, j be the ith score for the jth event.
Normally we would send a message containing the values x1, j , x2, j , . . . , xk, j to a server for each scoring event.
Then the server would add each score to the appropriate scoring bin bi ← bi + x i, j∀i. Rather than sending n
messages and having the server accumulate each array of scores, the compute processes can combine consecutive
scores beforehand and subsequently send the sum to a server to be accumulated. Each compute process would
calculate x ′i =

∑

j x i, j , and the server would accumulate bi ← bi + x ′i .
(TODO: Get estimate of improvement by determining how often consecutive events score to same filter bin.)

5. Results

The performance model developed in section 3 was dependent on a variety of parameters. On any given
computer, a number of these parameters will be outside the control of the user such as the network latency and
bandwidth, α and β . The calculational rate µ is also largely out of control of the user so it may considered to be
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Algorithm 1 Pseudocode for tally server algorithm
if compute process then

for i← 1 to M do
for j← 1 to N/p do

while Particle j is alive do
Process next event
if Event satisfies filter criteria then

Create array for scores
for all Scoring functions do

Calculate score
Add score to array

end for
Determine server destination
Send array to server

end if
end while

end for
Send ‘finished’ message to server

end for
else if server then

loop
Receive message
if End of batch then

Accumulate tally scores
else if End of simulation then

Accumulate tally scores
exit loop

else
for Score i← 1 to d do

Determine memory location j to increment
Increment tally j with score i

end for
end if

end loop
Write tally results to state point file

end if
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constant as well. The remaining parameters can be manipulated by varying the definition of the tallies and the
jobs parameters. Thus, to fully test the performance of the tally server implementation, a parameter space study
should be carried out by running a series of simulations varying the parameters p, s, f , and d.

One could argue that based on (9), it should not be necessary to include p, c, or s in the parameter space
study since the overhead does not explicitly depend on those parameters. However, (9) was derived assuming
that the support ratio attains its maximum based on the inequality in (7). In practice, it’s not possible to know a
priori what the maximum attainable support ratio is and thus it is instructive to test the range of support ratios
over which the implementation can be successfully used. While the performance will depend on f in general, our
sole case of interest corresponds to tallying events when particles travel through fuel. As a result, we performed a
parameter space study using the modified version of OpenMC varying p, c/s, and d only.

First, a number of “baseline” simulations of the Monte Carlo performance benchmark were run to determine
how µ varies with increasing d, and hence how t0 varies with increasing d. The baseline simulations were run
without tally servers to capture only the increase in simulation time due to looking up cross sections for tallies.
On both the Titan supercomputer, the baseline simulations were run with 16 processors with a total of 32,000
particles per batch. Ten batches were run both without tallies (referred to as inactive batches) and with tallies
(active batches). On the Intrepid supercomputer, the baseline simulation was run with a single processor with
2000 particles per batch. Again, ten batches were run first without and then with tallies. For each case, a tally was
set up with a mesh filter and a second filter to match only events within the fuel volume. The scoring functions
requested were the flux, total reaction rate, scattering rate, absorption rate, fission rate, and neutron production
rate for varying numbers of nuclides, starting with 5 nuclides and doubling the number of nuclides up to 320.
Thus, the amount of data sent at each event varied from 240 bytes up to 15.36 kilobytes.

The parameter space study using tally servers on the Intrepid supercomputer consisted of 168 simulations
with each combination of the following parameters: p = 16,32,64,128,256,512, c/s = 1,3,7,15, and d =
240, 480, 960, 1920, 3840, 7680, 15360. Like the baseline cases, the runs with tally servers had 10 inactive batches,
10 active batches, and N/p = 500. The effective overhead from tally servers was determined in the following
manner. First, the expected overhead due to looking up cross sections during tallying was subtracted from the
active batch time based on the results from the baseline cases. Then, the adjusted simulation time in active batches
was divided by the inactive batch time to determine the overhead in active batches. This essentially represents
an estimate for the bracketed term in (5), i.e. it does not account for the fact that we have fewer compute
processors. However, if we know p and c, that source of overhead is trivial – it is really the extra overhead from
message-passing that we are interested in. The overhead calculated in this manner for c/s = 1, c/s = 3, c/s = 7,
and c/s = 15 is shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6, respectively.

It is also of interest to observe the behavior of the tally server overhead with increasing numbers of total
processors. Recall that the performance model predicts that the overhead should not depend on the number of
processors used. Fig. 7 shows the overhead plotted as a function of p for cases with d = 15360. We see that
the overhead does not increase appreciably for c/s = 1,3,7. However, for c/s = 15 the performance begins to
degrade. This may indicate that on Intrepid, this support ratio is not quite sufficient for all the servers to keep up
with the messages being sent.

Another parameter space study using tally servers on the Titan supercomputer consisted of 196 simulations
with each combination of the following parameters: p = 16,32,64,128,256,512,1024, c/s = 1,3,7,15, and
d = 240, 480, 960, 1920, 3840, 7680, 15360. Again, the runs with tally servers had 10 inactive batches, 10 active
batches, and N/p = 1000. The effective overhead from tally servers was determined as described for the study on
Intrepid. The calculated overhead for c/s = 1, c/s = 3, c/s = 7, and c/s = 15 is shown in Fig. 8, Fig. 9, Fig. 10,
and Fig. 11, respectively.

Similar to Fig. 7, we can look at the behavior of the tally server overhead on Titan with increasing p. Fig. 12
shows the overhead plotted as a function of p for cases with d = 15360. We see that the overhead is relatively
stable with increasing p. However, the cases with c/s = 1 are clearly outliers with much higher overhead than the
other cases. (STILL NEED EXPLANATION FOR OUTLIERS).
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Fig. 3. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with c/s = 1.
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Fig. 4. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with c/s = 3.
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Fig. 5. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with c/s = 7.
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Fig. 6. Tally server overhead on Intrepid Blue Gene/P as a
function of data per event with c/s = 15.

6. Conclusions

In the present work, an algorithm for decomposing large tally data in Monte Carlo particle simulations was
proposed, analyzed, and implemented/tested in a production Monte Carlo code, OpenMC. The algorithm relies
on disjoint sets of compute processes and servers of which the former simulate particles moving through the
geometry and the latter runs in a continuous loop receiving scores from the compute processors and incrementing
tallies.

The analysis in section 3 showed that for a range of parameters relevant to LWR analysis, the tally server
algorithm should perform with minimal overhead on contemporary supercomputers regardless of the message-
passing semantics. An implementation of the algorithm in OpenMC was tested on the Intrepid and Titan
supercomputers and was demonstrated to perform well over a wide range of the parameters. We can conclude that
even with no further improvements in the algorithm or its implementation in OpenMC, it could be successfully
used to analyze LWR models with a level of fidelity that was heretofore not possible due to the need to replicate
memory across all processors. It is likely that future developments in Monte Carlo methods for reactor analysis
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Fig. 7. Tally server overhead on Intrepid Blue Gene/P as a function of p for d = 15360.

and improvements in computer architectures will only improve the performance of the tally server algorithm over
time.

One point that was made earlier was that the algorithm presented here does not help to reduce the burden
of large cross section data. For realistic reactor analysis, cross section data may well reach into the hundreds of
gigabytes owing to the fact that cross section libraries would be needed at a multitude of temperatures. That being
said, there is a considerable amount of research and development in the area of on-the-fly evaluation of effective
cross sections at any temperature. We mention in passing two promising efforts to that end – the work of Yesilyurt
on on-the-fly Doppler broadening [15] and the work of Viitanen on explicit temperature treatment [16]. The
latter development would enable simulation using 0 K cross sections but with a significant performance penalty.
In general, this and other improvements in physics methods will likely lead to slower simulations but with higher
fidelity. From the perspective of the tally server model, these developments will increase µ and consequently
decrease the overhead.

On the hardware end, improvements in supercomputer architectures will continue to reduce network latency
and improve bandwidth. Again, this will largely benefit the tally server algorithm. Since incrementing tallies
can naturally be expressed as a fetch-and-add atomic operation, there is also potential to exploit remote direct
memory access (RDMA) operations either explicitly (e.g., using MPI-2) or implicitly through a partitioned global
address space (e.g., Fortran co-arrays). Modern network interconnects should be able to take advantage of RDMA
operations.

One potential downside to the algorithm presented here is that it considerably complicates the use of threading
via OpenMP. The most natural means of obtaining thread-level parallelism in a Monte Carlo particle transport
simulation is to divide particles within a batch over multiple threads. Normally, no communication occurs until
the end of a batch when it is necessary to synchronize fission bank sites and tallies. However, with the inclusion of
tally servers, it would then be necessary for each thread to participate in message-passing.

As a final comment, one should recognize the fact that the algorithm presented here has primarily been
presented with a focus and intent on applications in LWR analysis. For other types of analysis performed with
Monte Carlo, it may turn out that the tally server algorithm does not make sense.
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Fig. 8. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 1.
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Fig. 9. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 3.
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Fig. 10. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 7.
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Fig. 11. Tally server overhead on Titan Cray XK6 as a function
of data per event with c/s = 15.
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