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Abstract

Thermal barrier coatings (TBCs) are applied to superalloy turbine blades to provide thermal insulation and
oxidation protection. A TBC consists of an oxide/metal bilayer: the outer oxide layer (top-coat) imparts
thermal insulation, while the metallic layer (bond-coat) affords oxidation protection through the formation
of a thermally-grown-oxide (TGO) at elevated temperatures. The TGO layer possesses significantly different
elastic, thermal expansion, and creep properties than the surrounding top-coat and bond-coat layers. An in-
trinsic mechanism which controls the long-term stability and mechanical integrity of a TBC is the volumetric
change accompanying the oxide formation, and the attendant locally large stresses that can arise due to the
geometrically uneven development of the TGO layer. In this paper we focus on modeling the response of
the bond-coat material and its oxidation, and present a new continuum-level thermodynamically-consistent,
large-deformation, fully three-dimensional theory which couples high-temperature elastic-viscoplastic defor-
mation of the material with diffusion of oxygen, eventually leading to an oxidation reaction in which the
reaction-product causes permanent swelling.

The theory is chemo-thermo-mechanically coupled and complex, and at this point in time the list of
material parameters appearing in the theory are not fully known. Once the material parameters in our
theory are calibrated from suitable experiments, and the theory is numerically-implemented and validated,
then the numerical simulation capability should provide an important ingredient for analyzing the evolution
of the local stress and strain states which are important ingredients for the life-prediction and performance-
improvement of TBCs.

Keywords: Chemo-thermo-mechanics; Diffusion; Chemical reaction; Viscoplasticity; Thermal barrier coat-
ings

1 Introduction

Turbine inlet temperatures in the gas path of modern high-performance gas turbines operate at ≈ 1400◦C.
In the high-temperature regions of the turbine, special high-melting-point nickel-based superalloy blades and
vanes are used, which retain strength and resist oxidation and hot corrosion at extreme temperatures. These
superalloys melt at ≈ 1300◦C, which means that the blades (and vanes) closest to the combustor may be
operating in gas-path temperatures which far exceed their melting point, and the blades must therefore be
cooled to acceptable service temperatures, ≈ 1050◦C (a homologous temperature of about ≈ 0.8) in order to
maintain integrity. Accordingly, modern turbine blades subjected to the hottest gas flows take the form of
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Figure 1: (a) Coated turbine blade (adapted from Besmann, 2009); (b) Schematic of turbine blade cross
section with a magnification of the surface region (adapted from Evans et al., 2008).

elaborate single-crystal superalloy investment castings that contain intricate internal passages and surface-
hole patterns, which are necessary to channel and direct cooling air within the blade, as well as over its
exterior surfaces. After casting, the exposed surface of a high-temperature turbine blade is also typically
coated with a thermal barrier coating (TBC), approximately 100–250µm thick, which acts as a thermal
insulator and oxidation inhibitor, and serves to increase the life of the blade. The current generation of
TBCs can accommodate surface temperatures up to ≈ 1275◦C. A TBC consists of two layers: (a) a metallic
layer, or bond-coat (BC), deposited on the superalloy — the bond coat is typically an alloy based on Ni(Al)
with various additions (such as Cr, Co, Pt, Y, and Hf); and (b) an yttria-stabilized-zirconia (YSZ) top-coat
deposited on the bond-coat (Feuerstein et al., 2008). The top-coat imparts thermal insulation, while the
bond-coat affords oxidation protection through the formation of a second oxide, primarily α-Al2O3, as well
as plastic accommodation of misfit strains (Padture et al. 2002; Evans et al., 2008). A coated turbine blade,
along with a schematic of the cross section, is shown in Fig. 1.

One of the problems limiting the use of TBCs is their long-term durability. The main intrinsic mechanisms
which control the long-term stability and mechanical integrity of a TBC system are (a) the oxidation of the
bond-coat; and (b) the time-dependent deformation and degradation processes in the multi-layered system.
The exposure of the bond-coat/YSZ interface to high temperatures and high oxygen concentration leads to
the development of a thermally-grown α-Al2O3 layer (TGO). When the effects of property mismatch are
combined with the volumetric changes associated with the oxide formation, especially when the latter are
accompanied by a constrained expansion of the TGO, large local stresses can develop. The location and
magnitude of these stresses strongly depend on the thickness and morphology of the TGO layer. Such stresses
often lead to the nucleation of microcracks at or near the oxide interfaces. As emphasized by Evans et al.
(2008), it is growth of the TGO layer which is directly responsible for all the intrinsic failure mechanisms of
TBCs. Failure of a TBC system often occurs either by debonding at the TGO/bond-coat interface, or the
YSZ/TGO interface (cf., e.g., Sridharan et al., 2004, 2005; Evans et al., 2008).

From a Mechanics and Materials point of view, TBC systems involve complex interplay among numerous
phenomena: diffusion, oxidation, coupled thermo-elasto-viscoplastic deformation, and damage. It is difficult
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to experimentally isolate and determine the relative effects of all the variables on TBC life, due to the fact
that these mechanisms are strongly coupled. Further, the driving forces for these various processes are time-
dependent and highly heterogeneous. Thus, to gain an understanding of the local stress/strain/damage con-
ditions responsible for ultimate failure of TBCs requires studies which are underpinned by mechanism-based
constitutive models that incorporate time-dependent diffusion, oxidation, elastic-viscoplastic deformation,
and realistic interfacial behavior. Although several important contributions to modeling the deformation and
failure of TBCs have been reported in the literature in the past decade (cf., e.g., Mumm and Evans, 2000;
Busso et al., 2001, 2006, 2009, 2010; Evans et al., 2001; Padture et al., 2002; Karlsson et al., 2002; Xu et al.,
2003; Clarke and Levi, 2003; He et al., 2003; Davis and Evans, 2006; Evans and Hutchinson, 2007; Mercer
et al., 2008; Evans et al., 2008; and the references to the substantial literature therein), much experimental,
theoretical, and computational research still needs to be done to develop a robust and validated simulation
capability for elucidating the relative importance of the large variety of coupled phenomena, and their effects
on TBC life.

The purpose of this paper is to make a contribution to the broader overall effort that is needed. Specifi-
cally, with a focus on modeling the response of the bond-coat material and its oxidation, we present a new
continuum-level, thermodynamically-consistent, large-deformation, fully three-dimensional theory which cou-
ples high-temperature elastic-viscoplastic deformation of the material with diffusion of oxygen, eventually
leading to an oxidation reaction in which the reaction-product causes permanent swelling. The theory is
chemo-thermo-mechanically coupled and complex, and at this point in time the list of material parameters
appearing in the theory are not fully known. Once the material parameters in our theory are calibrated
from suitable experiments, and the theory is numerically-implemented and validated, then the numerical
simulation capability should provide an important ingredient for analyzing the evolution of the local stress
and strain states which are important ingredients for the life-prediction and performance-improvement of
TBCs.
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Figure 2: Schematic of TBC system with SEM micrograph of a TGO scale. Inward-growing oxide has
columnar structure, while equiaxed grains near the top of the scale are the result of a small amount of
outward growth (adapted from Clarke, 2003).

Regarding the mechanism of oxidation in a TBC system, it is important to note that in general, growth
of an α-Al2O3 scale on an Al-containing alloy may occur by both the inward diffusion of oxygen and the
outward diffusion of aluminum through the oxide scale. However, bond-coat alloys invariably contain reactive
elements such as yttrium and hafnium, and it has been experimentally observed that the presence of such
reactive elements even in a trace amount (a few hundredths or tenths of a percent), can significantly increase
the oxidation resistance of the alloy by improving scale adherence and reducing scale growth by suppressing
the outward diffusion of Al and Cr (cf., e.g., Hou and Stringer, 1995; Yang, 2008). Specifically, in TBCs,
the presence of such reactive elements suppresses the outward transport of aluminum, and favors the inward
transport of oxygen along the grain boundaries of the thermally-grown oxide — leading to an inward-growing,
columnar oxide scale at the TGO-BC interface (cf., e.g., Haynes et al., 1999). A micrograph of a mainly
inward-growing oxide scale on a bond-coat alloy, taken from Clarke (2003), is shown in Fig. 2. Based on this
experimental observation, in the development of our theory
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• we limit our considerations to the inward diffusion of oxygen anions, and neglect the outward diffusion
of aluminum cations.

As a result, the theory developed here will not be applicable to situations where outward diffusion of metallic
cations represents the dominant transport mechanism, which is the case for oxidation of many pure metals.
However, there are other situations in which the inward diffusion of oxygen is the major transport mechanism.
Examples include: (a) Oxidation of silicon (cf. e.g., Rank and Weinert, 1990); and (b) Oxidation of solid-
oxide fuel cell (SOFC) interconnects made from reactive element containing Ni(-Fe)-Cr alloys (cf. e.g., Yang,
2008; Saillard et al., 2011). Our theory should be useful in modeling such phenomena.

Finally, we emphasize that the purpose of this paper is only to report on the formulation of the theory.
We leave a report concerning its numerical implementation and validation to a future paper.

2 Kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a fixed reference
configuration, and denote by X an arbitrary material point of B. A motion of B is then a smooth one-to-one
mapping x = χ(X, t) with deformation gradient, velocity, and velocity gradient given by1

F = ∇χ, v = χ̇, L = gradv = ḞF−1. (2.1)

Following modern developments of large-deformation plasticity theory (cf., e.g., Anand and Gurtin, 2003;
Gurtin and Anand, 2005), we base our theory on the Kröner (1960) – Lee (1969) multiplicative decomposition
of the deformation gradient,

F = FeFi. (2.2)

As is standard, we assume that

J
def
= detF > 0, (2.3)

and hence, using (2.2),

J = JeJ i, where Je def
= detFe > 0 and J i def

= detFi > 0, (2.4)

so that Fe and Fi are invertible. Here, suppressing the argument t:

(i) Fe(X) represents the local deformation of material in an infinitesimal neighborhood of X due to stretch
and rotation of the microscopic structure;

(ii) Fi(X) represents the local deformation in an infinitesimal neighborhood of material at X due to the
two major micromechanisms for inelastic deformation under consideration: (a) isochoric viscoplastic
deformation due to motion of dislocations, and (b) permanent volumetric swelling due to a chemical
reaction.

We refer to Fe and Fi as the elastic and inelastic distortions, and we refer to the local space at X represented
by the range of Fi(X), as a local structural space.2

The right polar decomposition of Fe is given by

Fe = ReUe, (2.5)

where Re is a rotation, while Ue is a symmetric, positive-definite tensor with

Ue =
√

Fe⊤Fe. (2.6)

1Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration; grad and div denote these
operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material time-derivative.
Throughout, we write Fe−1 = (Fe)−1, Fe−⊤ = (Fe)−⊤, etc. We write trA, symA, skwA, A0, and sym0A respectively, for
the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and
B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.

2Also sometimes referred to as the intermediate local space at X.
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As is standard, we define
Ce = Ue2 = Fe⊤Fe. (2.7)

By (2.1)3 and (2.2),
L = Le + FeLiFe−1, (2.8)

with
Le = ḞeFe−1, Li = ḞiFi−1. (2.9)

As is standard, we define the elastic and inelastic stretching and spin tensors through

De = symLe, We = skwLe,

Di = symLi, Wi = skwLi,

}

(2.10)

so that Le = De + We and Li = Di + Wi.
We make the following additional kinematical assumptions concerning inelastic flow:

(i) We denote by ξ(X, t),
0 ≤ ξ(X, t) ≤ 1,

the local volume fraction of oxide at X at time t, and assume that the inelastic stretching Di is
additively decomposable as

Di = Ds + (1 − ω)Dp
bc

+ ωDp
ox
. (2.11)

Here, Ds represents an inelastic stretching resulting from the oxidation reaction, and is given by

Ds = ξ̇ S, ξ̇ ≥ 0, (2.12)

where S gives the direction and magnitude of the swelling due to the oxidation reaction. Further,

Dp
bc

with trDp
bc

= 0, (2.13)

represents an incompressible plastic stretching due to viscoplastic flow of the unoxidized bond-coat,
while

Dp
ox

with trDp
ox

= 0, (2.14)

represents an incompressible plastic stretching due to viscoplastic flow of the oxide. Note that a central
underlying modeling assumption of our theory is the treatment of “oxidation front” as a thin transition
layer containing a mixture of oxide and bond-coat with volume fraction ξ ∈ [0, 1].3 Finally,

ω = ω̄(ξ) with ω ∈ [0, 1], (2.15)

represents a function that characterizes the relative extent of plastic flow in the bond coat and oxide
in the “oxidation front.”

(ii) Second, from the outset we constrain the theory by limiting our discussion to circumstances under
which the material may be idealized as isotropic (cf. § 7.3). For isotropic elastic-viscoplastic theories
utilizing the Kröner decomposition, it is widely assumed that the plastic flow is irrotational, in the
sense that4

Wi = 0. (2.16)

Then, trivially, Li ≡ Di and
Ḟi = DiFi. (2.17)

3Our approach is distinct from the recent approach of Saillard et al. (2010) who consider a sharp interface theory for
modeling the “oxidation front.”

4This assumption is adopted here solely on pragmatic grounds: when discussing finite deformations the theory without
plastic spin is far simpler than one with plastic spin.
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For later use we define a scalar plastic flow rate and the direction of plastic flow of the unoxidized
bond-coat by

dp
bc

def
= |Dp

bc
| ≥ 0, Np

bc

def
=

D
p
bc

d
p
bc

(when dp
bc
> 0), so that Dp

bc
= dp

bc
Np

bc
. (2.18)

Similarly, we define a scalar plastic flow rate and the direction of plastic flow of the oxide by

dp
ox

def
= |Dp

ox
| ≥ 0, Np

ox

def
=

Dp
ox

dp
ox

(when dp
ox
> 0), so that Dp

ox
= dp

ox
Np

ox
. (2.19)

3 Frame-indifference

A change in frame, at each fixed time t, is a transformation — defined by a rotation Q(t) and a spatial point
y(t) — which transforms spatial points x to spatial points

x∗ = F(x), (3.1)

= y(t) + Q(t)(x − o), (3.2)

with o a fixed spatial origin, and the function F represents a rigid mapping of the observed space into itself.
By (3.2) the transformation law for the motion x = χ(X, t) has the form

χ
∗(X, t) = y(t) + Q(t)(χ(X, t) − o). (3.3)

Hence the deformation gradient F transforms according to

F∗ = QF. (3.4)

The reference configuration and the intermediate structural space are independent of the choice of such
changes in frame; thus

Fi is invariant under a change in frame. (3.5)

This observation, (2.2), and (3.4) yield the transformation law

Fe ∗ = QFe. (3.6)

Also, by (2.9)2
Li is invariant, (3.7)

and, by (2.9)1, Le∗ = QLeQ⊤ + Q̇Q⊤, and hence

De∗ = QDeQ⊤, We∗ = QWeQ⊤ + Q̇Q⊤. (3.8)

Further, by (2.5),
Fe∗ = QReUe,

and we may conclude from the uniqueness of the polar decomposition that

Re∗ = QRe, and Ue is invariant, (3.9)

and hence also that
Ce is invariant. (3.10)
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4 Balance of forces and moments

Throughout, we denote by P an arbitrary part (subregion) of the reference body B with nR the outward unit
normal on the boundary ∂P of P.

Since time scales associated with species diffusion are usually considerably longer than those associated
with wave propagation, we neglect all inertial effects. Then standard considerations of balance of forces and
moments, when expressed referentially, give:

(a) There exists a stress tensor TR, called the Piola stress, such that the surface traction on an element of
the surface ∂P of P, is given by

tR(nR) = TRnR. (4.1)

(b) TR satisfies the macroscopic force balance

DivTR + bR = 0, (4.2)

where bR is an external body force per unit reference volume, which, consistent with neglect of inertial
effects, is taken to be time-independent.

(c) TR obeys the symmetry condition
TRF⊤ = FT⊤

R
, (4.3)

which represents a balance of moments.

Further, under a change in frame TR transforms as

T∗

R
= QTR. (4.4)

Finally, as is standard, the Piola stress TR is related to the standard symmetric Cauchy stress T in the
deformed body by

TR = J TF−⊤, (4.5)

so that
T = J−1TRF⊤; (4.6)

and, as is also standard, under a change in frame T transforms as

T∗ = QTQ⊤. (4.7)

5 Balance law for the diffusing species

As discussed in the Introduction, the presence of small amounts of reactive elements such as yttrium and
hafnium in the bond coat suppresses the outward transport of aluminum, and favors the inward transport of
oxygen along the grain boundaries of the thermally-grown oxide — leading to an inward-growing, columnar
oxide scale at the TGO-BC interface. Based on this experimental observation, in the development of our
theory we limit our considerations to the diffusion of single species — oxygen.

Let
cR(X, t) (5.1)

denote the total number of moles of diffusing species (that is, oxygen) per unit reference volume which can
cause a chemical reaction. Note that the quantity cR includes the amount of moles of diffusing species that
have already undergone the chemical reaction.

Changes in the number of moles of diffusing species in P are brought about by the diffusion across the
boundary ∂P, which is characterized by a flux jR(X, t), the number of moles of diffusing species measured
per unit area per unit time, so that

−
∫

∂P

jR · nR daR

7



represents the number of moles of diffusing species entering P across ∂P per unit time. The balance law for
the diffusing species therefore takes the form

˙∫

P

cR dvR = −
∫

∂P

jR · nR daR, (5.2)

for every part P. Bringing the time derivative in (5.2) inside the integral and using the divergence theorem
on the integral over ∂P, we find that ∫

P

(ċ
R

+ Div jR) dvR = 0. (5.3)

Since P is arbitrary, this leads to the following local balance:

ċ
R

= −Div jR. (5.4)

6 Balance of energy. Entropy imbalance

Our discussion of thermodynamics follows Gurtin et al. (2010, § 64) and involves the following fields:

εR the internal energy density per unit reference volume,

ηR the entropy density per unit reference volume,

qR the heat flux per unit reference area,

qR the external heat supply per unit reference volume,

ϑ the absolute temperature (ϑ > 0),

µ the chemical potential.

Consider a material region P. Then, consistent with our omission of inertial effects, we neglect kinetic energy,
and take the balance law for energy as

˙∫

P

εR dvR =

∫

∂P

(TRnR) · χ̇ daR +

∫

P

bR · χ̇ dvR −
∫

∂P

qR ·nR daR +

∫

P

qR dvR −
∫

∂P

µjR · nRdaR, (6.1)

where the last term in (6.1) represents the flux of energy carried into P by the flux jR of diffusing species.
Applying the divergence theorem to the terms in (6.1) involving integrals over the boundary ∂P of P, we
obtain ∫

P

(

ε̇R − (DivTR + bR) · χ̇ − TR : Ḟ + DivqR − qR + µDiv jR + jR · ∇µ
)

dvR = 0, (6.2)

which upon use of the balance laws (4.2) and (5.4), and using the fact that (6.2) must hold for all parts P,
gives the local form of the energy balance as

ε̇R = TR : Ḟ + µċR − DivqR + qR − jR · ∇µ . (6.3)

Also, the second law takes the form of an entropy imbalance

˙∫

P

ηR dvR ≥ −
∫

∂P

qR · nR

ϑ
daR +

∫

P

qR

ϑ
dvR, (6.4)

in which case the local entropy imbalance has the form

η̇R ≥ −Div
(qR

ϑ

)

+
qR

ϑ
. (6.5)
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Then, in view of the local energy balance (6.3),

−Div
(qR

ϑ

)

+
qR

ϑ
=

1

ϑ
(−DivqR + qR) +

1

ϑ2
qR · ∇ϑ,

=
1

ϑ

(

ε̇R − TR : Ḟ− µċR +
1

ϑ
qR · ∇ϑ+ jR · ∇µ

)

,

and this with the local entropy imbalance (6.5) implies that

(ε̇R − ϑη̇R) − TR : Ḟ− µċR +
1

ϑ
qR · ∇ϑ+ jR · ∇µ ≤ 0 . (6.6)

Introducing the Helmholtz free energy
ψR = εR − ϑηR, (6.7)

(6.6) yields the following local free-energy imbalance

ψ̇R + ηRϑ̇− TR : Ḟ − µċR +
1

ϑ
qR · ∇ϑ+ jR · ∇µ ≤ 0 . (6.8)

6.1 Stress-power

The term TR : Ḟ represents the stress-power per unit reference volume. Using (2.2), (4.5), and (2.9)2 the
stress-power may be written as

TR : Ḟ = TR : (ḞeFi + FeḞi),

= (TRFi⊤) : Ḟe + (Fe⊤TR) : Ḟi,

= (JFe−1TFe−⊤) : (Fe⊤Ḟe) + (CeJFe−1TFe−⊤) :Li. (6.9)

In view of (6.9), we introduce two new stress measures:

• The elastic second Piola stress,

Te def
= JFe−1TFe−⊤, (6.10)

which is symmetric on account of the symmetry of the Cauchy stress T.

• The Mandel stress,

Me def
= CeTe, (6.11)

which in general is not symmetric.

Note that on account of the transformation rule (3.6) for Fe, and the transformation rule (4.7), the elastic
second Piola stress and the Mandel stress are invariant under a change in frame,

Te∗ = Te and Me∗ = Me. (6.12)

Further, from (2.7)
Ċe = Ḟe⊤Fe + Fe⊤Ḟe . (6.13)

Thus, using the definitions (6.10), (6.11) and the relation (6.13), the stress-power (6.9) may be written as

TR : Ḟ = 1
2
Te : Ċe

︸ ︷︷ ︸

elastic power

+ Me :Li

︸ ︷︷ ︸

inelastic power

. (6.14)

Further, use of the assumptions (2.11), (2.12), (2.13), (2.14), and (2.16) concerning plastic flow gives

TR : Ḟ = 1
2
Te : Ċe + (1 − ω)Me

0 :Dp
bc + ωMe

0 :Dp
ox

+ ξ̇Me : S. (6.15)

Using (6.15) in (6.8) allows us to write the free energy imbalance as

ψ̇R + ηRϑ̇− 1
2
Te : Ċe − (1 − ω)Me

0 :Dp
bc − ωMe

0 :Dp
ox
− ξ̇Me : S − µċR +

1

ϑ
qR · ∇ϑ+ jR · ∇µ ≤ 0 . (6.16)
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Finally, note that ψR, ηR, ϑ, ξ, and cR are invariant under a change in frame since they are scalar fields,
and on account of the transformation rules discussed in § 3, and the transformation rules (6.12), the fields

Ce, Dp
bc
, Dp

ox
, S, Te, and Me, (6.17)

are also invariant, as are the fields

qR, ∇ϑ, jR, and ∇µ, (6.18)

since they are referential vector fields.

7 Constitutive theory

7.1 Basic constitutive equations

Next, guided by the free-energy imbalance (6.16), we first consider the following set of constitutive equations
for the free energy ψR, the stress Te, the entropy ηR, and the chemical potential µ:

ψR = ψ̄R(Λ),

Te = T̄e(Λ),

ηR = η̄R(Λ),

µ = µ̄(Λ),







(7.1)

where Λ denotes the list
Λ = (Ce, ϑ, cR, ξ). (7.2)

Substituting the constitutive equations (7.1) into the dissipation inequality, we find that the free-energy
imbalance (6.16) may then be written as

(∂ψ̄R

∂Ee
− 1

2
T̄e

)

: Ċe +
(∂ψ̄R

∂ϑ
+ η̄R

)

ϑ̇+
(∂ψ̄R

∂cR
− µ̄

)

ċR

− (1 − ω)Me
0 :Dp

bc
− ωMe

0 :Dp
ox
−

(

Me : S − ∂ψ̄R

∂ξ

)

ξ̇ +
1

ϑ
qR · ∇ϑ+ jR · ∇µ̄ ≤ 0 . (7.3)

This inequality is to hold for all values of Λ. Since Ċe, ϑ̇ and ċR appear linearly, their “coefficients” must
vanish, for otherwise Ċe, ϑ̇, and ċR may be chosen to violate (7.3). We are therefore led to the thermodynamic
restriction that the free energy determines the stress Te, the entropy η, and the chemical potential µ through
the “state relations”

Te = 2
∂ψ̄R(Λ)

∂Ce
,

ηR = −∂ψ̄R(Λ)

∂ϑ
,

µ =
∂ψ̄R(Λ)

∂cR
.







(7.4)

We are then left with the following reduced dissipation inequality

(1 − ω)Me
0 :Dp

bc
+ ωMe

0 :Dp
ox

+ F ξ̇ − 1

ϑ
qR · ∇ϑ− jR · ∇µ ≥ 0 , (7.5)

where
F def

= A + Me : S (7.6)

represents a dissipative thermodynamic force conjugate to the oxide volume fraction ξ, with

A(Λ)
def
= −∂ψ̄R(Λ)

∂ξ
, (7.7)
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an energetic constitutive response function, which we call the affinity of the chemical reaction; as we shall
see, the dissipative force F plays a fundamental role in the theory.

Henceforth, for brevity and whenever convenient, we write

Dp
α, α = 1, 2, (7.8)

with the understanding that
D

p
1 ≡ Dp

bc
, and D

p
2 ≡ Dp

ox
. (7.9)

Also, to account for the strain-hardening characteristics typically observed during plastic deformation, we
introduce a pair of scalar hardening variables

Sα, α = 1, 2, (7.10)

to represent important aspects of the microstructural resistance to plastic flow. Since Sα are scalar fields,
they are invariant under a change in frame. Then, guided by (7.5), and experience with plasticity theories
we assume that

Dp
α = D̄p

α(Me
0, ϑ, Sα),

Ṡα = hα(Dp
α, ϑ, Sα),

S = S̄(Me, ϑ),

ξ̇ = ¯̇
ξ(F , ϑ, ξ).







(7.11)

To the constitutive equations (7.1) and (7.11), we append a Fourier-type relation for the heat flux, and a
Fick-type relation for the flux of the diffusing species,

qR = −K(Λ)∇ϑ,
jR = −M(Λ)∇µ,

}

(7.12)

where K is a thermal conductivity tensor, and M is a mobility tensor.
Using (7.11), (7.12), (2.18) and (2.19), the dissipation inequality (7.5) may be written as

(1 − ω)(Me
0 : N̄p

bc
)d̄p

bc
+ ω(Me

0 : N̄p
ox

)d̄p
ox

+ F ¯̇
ξ +

1

ϑ
∇ϑ · K∇ϑ+ ∇µ · M∇µ ≥ 0. (7.13)

Henceforth, we write

τ̄α
def
= Me

0 : N̄p
α (7.14)

for the Mandel stress resolved in the direction of the plastic flow. We also assume that the material is
strongly dissipative in the sense that

τ̄α d
p
α > 0 for dp

α > 0, (7.15)

F ξ̇ > 0 for ξ̇ 6= 0, (7.16)

∇ϑ ·K(Λ)∇ϑ > 0 for ∇ϑ 6= 0, (7.17)

∇µ · M(Λ)∇µ > 0 for ∇µ 6= 0. (7.18)

Thus note that the thermal conductivity tensor K and the mobility tensor M are positive-definite.
Note that on account of the transformation rules listed in the paragraph containing (6.17) and (6.18),

the constitutive equations (7.1), (7.11), and (7.12) are frame-indifferent.

7.2 Further consequences of thermodynamics

In view of (7.1), (7.4) and (7.7), we have the first Gibbs relation,

ψ̇R = 1
2
Te : Ċe − ηRϑ̇+ µċR −A ξ̇, (7.19)
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which, with (6.7), yields the second Gibbs relation

ε̇R = ϑη̇R + 1
2
Te : Ċe + µċR −A ξ̇. (7.20)

Using balance of energy (6.3), the stress-power relation (6.15), the second Gibbs relation (7.20), the consti-
tutive equations (7.1)2,3 and (7.11), and equations (7.15) through (7.18) we arrive at the entropy balance

ϑη̇R = −DivqR + qR + (1 − ω) τ̄bc d
p
bc

+ ω τ̄ox d
p
ox

+ F ξ̇ + ∇µ · M∇µ. (7.21)

Granted the thermodynamically restricted constitutive relations (7.4), this balance is equivalent to the
balance of energy.

Next, the internal energy density is given by

εR = ε̄R(Λ)
def
= ψ̄R(Λ) + ϑη̄R(Λ), (7.22)

and, as is standard, the specific heat is defined by

c
def
=

∂ε̄(Λ)

∂ϑ
. (7.23)

Hence, from (7.22)

c =
(∂ψ̄(Λ)

∂ϑ
+ η̄(Λ) + ϑ

∂η̄(Λ)

∂ϑ

)

, (7.24)

and use of (7.4) gives

c = −ϑ ∂
2ψ̄(Λ)

∂ϑ2
. (7.25)

Next, from (7.4), (7.7), and (7.25),

ϑ η̇R = −ϑ ∂
2ψ̄(Λ)

∂ϑ ∂Ce
: Ċe + c ϑ̇− ϑ

∂2ψ̄(Λ)

∂ϑ ∂cR
ċR − ϑ

∂2ψ̄(Λ)

∂ϑ ∂ξ
ξ̇

= − 1
2
ϑ
∂Te

∂ϑ
: Ċe + c ϑ̇− ϑ

∂µ

∂ϑ
ċR + ϑ

∂A
∂ϑ

ξ̇, (7.26)

Then, using (7.25) and (7.26) in (7.21) gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR + (1 − ω) τ̄bc d
p
bc

+ ω τ̄ox d
p
ox

+ F ξ̇ + ∇µ · M∇µ + 1
2
ϑ
∂Te

∂ϑ
: Ċe + ϑ

∂µ

∂ϑ
ċR − ϑ

∂A
∂ϑ

ξ̇.

(7.27)

7.3 Isotropy

The following definitions help to make precise our notion of an isotropic material (cf., Anand and Gurtin,
2003):

(i) Orth+ = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group GR, is the group of all rotations of the reference configuration that leaves the
response of the material unaltered;

(iii) the symmetry group GI at each time t, is the group of all rotations of the intermediate structural space
that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transformations, granted the
physically natural requirement of invariance of the stress-power (6.15), or equivalently, the requirement that

Te : Ċe, Me : S, and Me
0 :Dp

α be invariant. (7.28)
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7.3.1 Isotropy of the reference configuration

Let Q be a time-independent rotation of the reference configuration. Then F → FQ, and hence

Fi → FiQ, and Fe is invariant, and hence Ce is invariant, (7.29)

so that, by (2.9) and (2.11),
Ċe, Dp

α, and S are invariant.

We may therefore use (7.28) to conclude that

Te and Me are invariant. (7.30)

Thus

• the constitutive equations (7.1) and (7.11) are unaffected by such rotations of the reference configura-
tion.

Turning our attention next to the constitutive equation (7.12)1 for the heat flux, a standard result from the
theory of finite thermoelasticity is that under a symmetry transformation Q for the reference configuration,
the temperature gradient ∇ϑ and the heat flux qR transform as (cf. Gurtin et al. (2010), § 57.8)

∇ϑ → Q⊤∇ϑ, qR → Q⊤qR.

Hence, from (7.11)1 the thermal conductivity tensor K must obey

K(Λ) = Q⊤K(Λ)Q for all rotations Q ∈ GR. (7.31)

By an analogous argument, the mobility tensor M must obey

M(Λ) = Q⊤M(Λ)Q for all rotations Q ∈ GR. (7.32)

We refer to the material as initially isotropic (and to the reference configuration as undistorted) if

GR = Orth+ (7.33)

so that the response of the material is invariant under arbitrary rotations of the reference space. Henceforth

• we restrict attention to materials that are initially isotropic.

In this case, the thermal conductivity and the mobility tensors have the representations

K(Λ) = κ(Λ)1, with κ(Λ) > 0 (7.34)

a scalar thermal conductivity, and

M(Λ) = m(Λ)1, with m(Λ) > 0 (7.35)

a scalar mobility.

7.3.2 Isotropy of the intermediate structural space

Next, let Q, a time-independent rotation of the intermediate space, be a symmetry transformation. Then F

is unaltered by such a rotation, and hence

Fe → FeQ and Fi → Q⊤Fi, (7.36)

and also
Ce → Q⊤CeQ, Ċe → Q⊤ĊeQ, Dp

α → Q⊤Dp
αQ, S → Q⊤

SQ. (7.37)

Then (7.37) and (7.28) yield the transformation laws

Te → Q⊤TeQ, Me → Q⊤MeQ. (7.38)
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Thus, with reference to the constitutive equations (7.1) and (7.11), together with (7.34) and (7.35) we
conclude that

ψ̄R(Λ) = ψ̄R(Q⊤ΛQ),

Q⊤T̄e(Λ)Q = T̄e(Q⊤ΛQ),

η̄R(Λ) = η̄R(Q⊤ΛQ),

µ̄(Λ) = µ̄(Q⊤ΛQ),

Q⊤D̄p
α(Me

0, ϑ, Sα)Q = D̄p
α(Q⊤Me

0Q, ϑ, Sα) ,

Q⊤
S̄(Me, ϑ)Q = S̄(Q⊤MeQ, ϑ) ,

hα(Dp, ϑ, Sα) = hα(Q⊤DpQ, ϑ, Sα),

κ(Λ) = κ(Q⊤ΛQ),

m(Λ) = m(Q⊤ΛQ),







(7.39)

with
Q⊤ΛQ = (Q⊤CeQ, ϑ, cR, ξ),

must hold for all rotations Q in the symmetry group GI at each time t.
We refer to the material as one which is continually isotropic, if in addition to the referential isotropy

discussed in the previous subsection,
GI = Orth+, (7.40)

so that the response of the material is also invariant under arbitrary rotations of the intermediate space at
each time t. Henceforth

• we restrict attention to materials that are not only initially, but also continually isotropic.

In this case,

(‡) the response functions ψ̄R, T̄e, η̄R, µ̄, D̄p
α, S̄, hα, κ, and m must also each be isotropic.

7.4 Isotropic free energy

An immediate consequence of the isotropy of the free energy is that the free energy function has the repre-
sentation

ψ̄R(Ce, ϑ, cR, ξ)) = ψ̃R(ICe , ϑ, cR, ξ), (7.41)

where
ICe =

(

I1(C
e), I2(C

e), I3(C
e)

)

is the list of principal invariants of Ce. Thus, from (7.4)1, it follows that

Te = T̄e(ICe , ϑ, cR, ξ) = 2
∂ψ̃(ICe , ϑ, cR, ξ)

∂Ce
, (7.42)

and that T̄e is an isotropic function of Ce. Then since the Mandel stress is defined by (cf. (6.11))

Me = CeTe,

we find that Te and Ce commute,
CeTe = TeCe, (7.43)

and hence that the Mandel stress Me is symmetric.
Next, the spectral representation of Ce is

Ce =

3∑

i=1

ωe
i r

e
i ⊗ re

i , with ωe
i = λe 2

i , (7.44)
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where (re
1, r

e
2, r

e
2) are the orthonormal eigenvectors of Ce and Ue, and (λe

1, λ
e
2, λ

e
3) are the positive eigenvalues

of Ue. Instead of using the invariants ICe , the free energy ψ̄R for isotropic materials may be alternatively
expressed in terms of the principal stretches and temperature as

ψR = ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ). (7.45)

Then, by the chain-rule and (7.4)2, the stress Te is given by

Te = 2
∂ψ̆R(λe

1, λ
e
2, λ

e
3, ϑ, cR, ξ)

∂Ce
= 2

3∑

i=1

∂ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ)

∂λe
i

∂λe
i

∂Ce
=

3∑

i=1

1

λe
i

∂ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ)

∂λe
i

∂ωi

∂Ce
.

(7.46)

Assume that the squared principal stretches ωe
i are distinct, so that the ωe

i and the principal directions re
i

may be considered as functions of Ce; then

∂ωe
i

∂Ce
= re

i ⊗ re
i , (7.47)

and, granted this, (7.47) and (7.46) imply that

Te =

3∑

i=1

1

λe
i

∂ψ̆R(λe
1, λ

e
2, λ

e
3, ϑcR, ξ)

∂λe
i

re
i ⊗ re

i . (7.48)

Further, from (6.10),

T = J−1FeTeFe⊤ = J−1ReUeTeUeRe⊤ = J−1Re
( 3∑

i=1

λe
i

∂ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ)

∂λe
i

re
i ⊗ re

i

)

Re⊤. (7.49)

Next, since Me = CeTe, use of (7.44) and (7.48) gives the Mandel stress as

Me =

3∑

i=1

λe
i

∂ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ)

∂λe
i

re
i ⊗ re

i . (7.50)

Let

Ee def
= lnUe =

3∑

i=1

Ee
i re

i ⊗ re
i , (7.51)

denote the logarithmic elastic strain with principal values

Ee
i

def
= lnλe

i , (7.52)

and consider an elastic free energy function of the form

ψ̆R(λe
1, λ

e
2, λ

e
3, ϑ, cR, ξ) = ψ̌R(Ee

1 , E
e
2 , E

e
3 , ϑ, cR, ξ), (7.53)

so that, using (7.50),

Me =

3∑

i=1

∂ψ̌(Ee
1 , E

e
2 , E

e
3 , ϑ, cR, ξ)

∂Ee
i

re
i ⊗ re

i . (7.54)

Withe the logarithmic elastic strain defined by (7.51), and bearing (7.53) and (7.54), for isotropic elastic
materials we henceforth consider a free energy of the form

ψR = ψ̂R(IEe , ϑ, cR, ξ) (7.55)

with IEe a list of principal invariants of Ee, or equivalently a list of principal values of Ee. The Mandel
stress is then given by

Me =
∂ψ̂R(IEe , ϑ, cR, ξ)

∂Ee
, (7.56)

and using (7.49) the corresponding Cauchy stress is given by

T = J−1ReMeRe⊤. (7.57)
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7.5 Plastic flow rule for isotropic materials

Recall the constitutive equation (7.11)1 for the plastic stretchings Dp
α,

Dp
α = D̄p

α(Me
0, ϑ, Sα) = d̄p

α(Me
0, ϑ, Sα) N̄p

α(Me, ϑ, Sα). (7.58)

We now make two major assumptions concerning the plastic flow for isotropic materials:

(1) Codirectionality hypothesis:

Guided by (7.13), we assume henceforth that each direction of plastic flow N̄p
α is parallel to and points

in the same direction as Me
0, so that

N̄p
α =

Me
0

|Me
0|
. (7.59)

Further, note that on account of the isotropy of D̄p
α, the scalar flow rate function d̄p

α(Me, ϑ, Sα) is also
isotropic, and has the representation

dp
α = d̄p

α(IMe
0
, ϑ, Sα) ≥ 0, (7.60)

where IMe
0

is the list of principal invariants of Me
0.

Note that in our homogenized model, on account of (7.59) the plastic flow directions for the bond-coat
and the oxide are identical

N̄p
bc

= N̄p
ox

=
Me

0

|Me
0|

≡ Np, (7.61)

and henceforth denoted by Np. A further consequence of (7.59) and (7.61) is that from the definition
(7.14) for the resolved Mandel stress, we have that the resolved stresses in the bond-coat and the oxide
are also the same,

τ̄ bc = τ̄ ox = Np :Me
0 = |Me

0| ≡ τ̄ . (7.62)

(2) Strong isotropy hypothesis:

We also assume that each scalar function hα(dp
α,N

p, ϑ, Sα) characterizing the evolution of the scalar
internal variable Sα is independent of the flow direction Np, so that

hα(dp
α, ϑ, Sα). (7.63)

Henceforth, for convenience, we replace τ̄ = |Me
0| by

τ̄
def
=

1√
2
|Me

0|, (7.64)

and call this newly defined quantity an equivalent shear stress. We define equivalent plastic shear rates for
the bond-coat and oxide by

νp
α

def
=

√
2 dp

α. (7.65)

Then, using (7.64), (7.65), and (7.59), the plastic stretchings Dp
α in (7.58) may be written as

Dp
α = νp

α

(
Me

0

2τ̄

)

, (7.66)

with
νp

α = ν̄p
α(IMe

0
, ϑ, Sα) ≥ 0. (7.67)

In accordance with prior experience, we henceforth neglect any dependence of viscoplastic flow on detMe
0 ,

and assume that the equivalent plastic shear strain rates are given by

νp
α = ν̄p

α(τ̄ , ϑ, Sα) ≥ 0. (7.68)
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Further, in view of (7.63) and (7.65), the evolution equations of the resistances Sα are taken to be given by

Ṡα = hα(νp
α, ϑ, Sα). (7.69)

Finally, since the directions of plastic flow are identical, it is suitable to introduce an overall equivalent
plastic shear strain rate

νp = ωνp
ox

+ (1 − ω)νp
bc
, (7.70)

and an overall equivalent plastic shear strain

γp =

∫ t

0

νp(τ)dτ. (7.71)

7.6 Stress-modulated swelling due to the oxidation reaction

The spectral decomposition of Me is given by

Me =

3∑

i=1

σi r̂i ⊗ r̂i (7.72)

where {σi|i = 1, 2, 3} are the principal values. We assume that the principal stresses are strictly ordered
such that

σ1 ≥ σ2 ≥ σ3.

We allow for a possibility of unequal rates of swelling with respect to the principal directions of stress, and
assume that

S =

3∑

i=1

βir̂i ⊗ r̂i, with βi = β̂i(σi). (7.73)

For future use, we write

β
def
= 1

3
trS = 1

3
(β1 + β2 + β3), (7.74)

as a mean volumetric strain due to swelling. This mean volumetric strain may be related to the classical
Pilling-Bedworth ratio in the Materials Science literature, as follows.

Consider an element M whose oxide has composition MaOb. The Pilling-Bedworth ratio (Pilling and
Bedworth, 1923) for the oxide is defined as

JPB
def
=
VMaOb

aVM

=
MMaOb

ρM

aMM ρMaOb

, (7.75)

where VMaOb
is the molar volume of the oxide, and VM is the molar volume of the element M . Also, MMaOb

is the molar mass of MaOb, MM is the molar mass of M , and ρMaOb
and ρM are the mass densities of the

oxide MaOb and the element M , respectively. For Al2O3,

JPB =
VAl2O3

2VAl

= 1.28, (7.76)

a value which is well in excess of unity. The mean volumetric strain, β, is related to Pilling-Bedworth ratio,
JPB, by

β = 1
3

ln (JPB) . (7.77)
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8 Summary

In this section we summarize our isotropic chemo-thermo-mechanically coupled theory. The theory relates
the following basic fields:

x = χ(X, t), motion;

F = ∇χ, J = detF > 0, deformation gradient;

F = FeFi, multiplicative decomposition of F;

Fe, Je = detFe > 0, elastic distortion;

Fi, J i = detFi > 0, inelastic distortion;

Fe = ReUe, polar decomposition of Fe;

Ce = Fe⊤Fe = Ue 2, elastic right Cauchy-Green tensor;

Ue =
∑3

α=1 λ
e
αre

α ⊗ re
α, spectral decomposition of Ue;

Ee =
∑3

α=1 (ln λe
α)re

α ⊗ re
α, logarithmic elastic strain;

T = T⊤, Cauchy stress;

Te = JFe−1TFe−⊤, elastic second Piola stress;

Me = CeTe, Mandel stress;

TR = JTF−⊤, Piola stress;

ψR, free energy density per unit reference volume;

ηR, entropy density per unit reference volume;

ϑ > 0, absolute temperature;

∇ϑ, referential temperature gradient;

qR, referential heat flux vector;

cR, molecular concentration per unit reference volume;

µ, chemical potential;

∇µ, referential gradient of chemical potential;

jR, referential species flux vector;

ξ ∈ [0, 1], local volume fraction of oxide;

Sbc, Sox, scalar hardening variables.

8.1 Constitutive equations

1. Free energy

ψR = ψ̂R(IEe , ϑ, cR, ξ), (8.1)

where IEe represents a list of the principal invariants of the elastic strain Ee.

2. Cauchy stress. Mandel stress

The Cauchy stress is given by

T
def
= J−1 (ReMeRe⊤), (8.2)

where

Me =
∂ψ̂R(IEe , ϑ, cR, ξ)

∂Ee
, (8.3)

is the Mandel stress, which, on account of the isotropy of ψ̄R is symmetric. The spectral decomposition
of Me is given by

Me =

3∑

i=1

σi r̂i ⊗ r̂i, (8.4)

where {σi|i = 1, 2, 3} are the principal values and {r̂i|i = 1, 2, 3} are the corresponding orthonormal
principal directions. We assume that the principal stresses are strictly ordered such that

σ1 ≥ σ2 ≥ σ3.

18



Further, the equivalent shear stress is defined by

τ̄
def
=

1√
2
|Me

0|, (8.5)

and the elastic second Piola stress is given by

Te = Ce−1Me . (8.6)

3. Entropy. Chemical potential. Affinity

The partial derivatives of the free energy

ηR = −∂ψ̂R(IEe , ϑ, cR, ξ)

∂ϑ
,

µ =
∂ψ̂R(IEe , ϑ, cR, ξ)

∂cR
,

A = −∂ψ̂R(IEe , ϑ, cR, ξ)

∂ξ
,







(8.7)

respectively, represent the entropy, chemical potential, and a thermodynamic force related to the oxide
volume fraction ξ, which we call the affinity of the oxidation reaction.

4. Flow rule

With ξ(X, t) ∈ [0, 1] the local volume fraction of the oxide at X, the evolution equation for Fi is

Ḟi =
(

Ds + (1 − ω)Dp
bc

+ ωDp
ox

)

Fi, (8.8)

where

(i) Ds is given by
Ds = ξ̇ S, ξ̇ ≥ 0, (8.9)

where

S =

3∑

i=1

βir̂i ⊗ r̂i, with βi = β̂i(σi), (8.10)

gives the direction and magnitude of the swelling strain accompanying the chemical reaction.
Further, with

F def
= A + Me : S, (8.11)

where the transformation rate ξ̇ is given by a constitutive equation

ξ̇ = ¯̇
ξ(F , ϑ, ξ) ≥ 0, (8.12)

with F ξ̇ > 0 whenever ξ̇ > 0.

(ii) D
p
bc is given by

Dp
bc

= νp
bc

(Me
0

2τ̄

)

(8.13)

with νp
bc given by a constitutive equation

νp
bc

= ν̄p
bc

(τ̄ , ϑ, Sbc) ≥ 0, (8.14)

with τ̄ νp
bc > 0 whenever νp

bc > 0.
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(iii) Dp
ox

is given by

Dp
ox

= νp
ox

(Me
0

2τ̄

)

(8.15)

with νp
ox

given by a constitutive equation

νp
ox

= ν̄p
ox

(τ̄ , ϑ, Sox) ≥ 0, (8.16)

with τ̄ νp
ox
> 0 whenever νp

ox
> 0.

(iv) ω(ξ) represents a response function that characterizes the nature of plastic flow during the oxida-
tion reaction and is given by

ω = ω̄(ξ) (8.17)

with ω̄(0) = 0 and ω̄(1) = 1.

5. Evolution equations for internal variables Sbc and Sox

Ṡbc = hbc(ν
p
bc
, ϑ, Sbc), and Ṡox = hbc(ν

p
ox
, ϑ, Sox). (8.18)

The evolution equations for Fi, ξ, Sbc, and Sox need to be accompanied by initial conditions. Typical
initial conditions presume that the body is initially (at time t = 0, say) in a virgin state in the sense
that

F(X, 0) = Fi(X, 0) = 1, ξ(X, 0) = 0, Sbc(X, 0) = Sbc,0 (= const.), Sox(X, 0) = Sox,0 (= const.)
(8.19)

so that by F = FeFi we also have Fe(X, 0) = 1.

6. Fourier’s Law

The heat flux qR is presumed to obey Fourier’s law,

qR = −κ∇ϑ, (8.20)

with κ(IEe , ϑ, cR, ξ) > 0 the thermal conductivity.

7. Fick’s Law

The species flux qR is presumed to obey Fick’s law

jR = −m∇µ, (8.21)

with m(IEe , ϑ, cR, ξ) > 0 the species mobility.

8.2 Governing partial differential equations

The governing partial differential equations consist of:

1. The local force balance (4.2), viz.
DivTR + bR = 0, (8.22)

where TR = JTF−⊤ is the Piola stress, with T given by (8.3) and (8.2), and bR is the non-inertial
body force.

2. The local balance of energy (7.27), which, together with (8.20) and (8.21), gives the following partial
differential equation for the temperature

cϑ̇ = Div(κ∇ϑ) + qR + (1 − ω) τ̄ νp
bc

+ ω τ̄ νp
ox

+ F ξ̇ +m|∇µ|2 + 1
2
ϑ
∂Te

∂ϑ
: Ċe + ϑ

∂µ

∂ϑ
ċR − ϑ

∂A
∂ϑ

ξ̇,

(8.23)

in which

c = −ϑ ∂
2ψ̂(IEe , ϑ, cR, ξ)

∂ϑ2
(8.24)

is the specific heat.
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3. The local balance equation for the concentration of diffusing species (5.4), which, together with (8.21),
gives

ċR = Div (m∇µ). (8.25)

9 Specialization of the constitutive equations

The theory presented thus far is quite general. Since the precise nature of the various coupling effects have
not been completely elucidated in the existing literature, we now introduce special constitutive equations
which should provide a suitable beginning for analysis and future refinement.

9.1 Free energy

We consider a separable free energy of the form

ψ̂R(Ee, ϑ, cR, ξ) = ψe(Ee, ϑ, ξ) + ψchem(ϑ, ξ) + ψdiff(ϑ, cR). (9.1)

Here:

(i) ψe is a thermo-elastic energy given by

ψe(Ee, ϑ, ξ) = G|Ee|2 + 1
2
(K − 2

3
G)(trEe)2 − (ϑ−ϑ0)(3K α)(trEe) + c (ϑ−ϑ0)− c ϑ ln

(
ϑ

ϑ0

)

, (9.2)

which is a simple generalization of the classical strain energy function of infinitesimal isotropic elastic-
ity5 combined with an entropic contribution. The parameters

G(ϑ, ξ) = (1 − ξ)Gbc(ϑ) + ξ Gox(ϑ) > 0,

K(ϑ, ξ) = (1 − ξ)Kbc(ϑ) + ξ Kox(ϑ) > 0,

α(ϑ, ξ) = (1 − ξ)αbc(ϑ) + ξ αox(ϑ) > 0,

(9.3)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and c > 0 is a
constant specific heat. Also, ϑ0 is a reference temperature, which is to be taken as a nominal elevated
temperature of interest in the range ≈900–1100◦C.

(ii) ψchem is a chemical energy related to the oxidation reaction, taken to be given by

ψchem = 1
2
H(1 − ξ)2, (9.4)

where the parameter H(ϑ) > 0 is a chemistry modulus. This term in the free energy favors the local
state ξ = 1.6

(iii) ψdiff is another chemical energy related to species diffusion, taken to be given by

ψdiff = µ0 cR +Rϑ cR (ln c̃R − 1), (9.5)

where µ0 is a reference chemical potential, c̃R is a normalized oxygen concentration given by

c̃R
def
=

cR

Nbc

(9.6)

with
Nbc

def
=

ρbc

Mbc

(9.7)

the initial number of moles of bond coat material per unit reference volume and Mbc the molar mass
of the bond coat, and R is the universal gas constant.

5This is a useful free energy formulation for moderately large elastic stretches (Anand, 1979; Anand, 1986).
6This special form for ψchem is motivated by the paper of Ulm et al. (2000) on chemo-mechanics of alkali-silica reactions

and their effects on deterioration of concrete structures.
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Thus

ψR = G|Ee|2 + 1
2
(K − 2

3
G)(trEe)2 − (ϑ− ϑ0)(3K α)(trEe) + c (ϑ− ϑ0) − c ϑ ln

(
ϑ

ϑ0

)

+ 1
2
H(1 − ξ)2 + µ0 cR +Rϑ cR(ln c̃R − 1). (9.8)

Then, by (8.3) and (8.7), the Mandel stress, the entropy, the chemical potential, and the affinity are given
by

Me = 2GEe
0 +K(trEe)1− 3Kα(ϑ− ϑ0)1,

ηR = c ln

(
ϑ

ϑ0

)

+ 3Kα(trEe) − 1

2

∂H

∂ϑ
(1 − ξ)2 −R cR(ln c̃R − 1) −A,

µ = µ0 +Rϑ ln c̃R,

A = H(1 − ξ) −B,

(9.9)

where

A =
∂G

∂ϑ
|Ee|2 +

1

2

(
∂K

∂ϑ
− 2

3

∂G

∂ϑ

)

(trEe)2 − 3(ϑ− ϑ0)

(
∂K

∂ϑ
α+K

∂α

∂ϑ

)

(trEe) (9.10)

and

B = (Gox −Gbc)|Ee|2 +
1

2

(

(Kox −Kbc) −
2

3
(Gox −Gbc)

)

(trEe)2

− 3(ϑ− ϑ0) ((Kox −Kbc)α+K(αox − αbc)) trEe (9.11)

account for the variation of the thermoelastic moduli with temperature ϑ and the volume fraction of oxide
ξ, respectively.

9.2 Viscoplastic deformation of the bond-coat and the oxide

For the flow functions (8.14) and (8.16) which specify the equivalent plastic shear strain rates, we choose
thermally activated relations with power-law stress dependence,

νp
bc =







0 if τ̄ = 0,

ν0
bc

exp

(−Qbc

Rϑ

) (
τ̄

Sbc

)nbc

if τ̄ > 0,
(9.12)

for the bond-coat, and

νp
ox =







0 if τ̄ = 0,

ν0
ox

exp

(−Qox

Rϑ

) (
τ̄

Sox

)nox

if τ̄ > 0,
(9.13)

for the oxide. In (9.12) and (9.13), ν0
α are reference shear strain rates, Qα are activation energies, nα are

creep-exponents, respectively, and R is the universal gas constant. The stress-dimensioned variables Sbc and
Sox represent creep strengths.

If we neglect primary creep, and accordingly assume that the internal variables Sbc and Sox are constants,
then equations (9.12) and (9.13) represent steady-state creep rates. Under these conditions the relations
(9.12) and (9.13) may be written as

νp
bc =







0 if τ̄ = 0,

Cbc exp

(−Qbc

Rϑ

)

(τ̄ )nbc , with Cbc

def
=

νp
bc

Snbc

bc

, if τ̄ > 0,
(9.14)
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for the bond-coat, and

νp
ox =







0 if τ̄ = 0,

Cox exp

(−Qbc

Rϑ

)

(τ̄ )nox , with Cox

def
=

νp
ox

Snox

bc

, if τ̄ > 0;
(9.15)

for the oxide. The constants Cα have units of 1/(s MPanα), and the activation energies Qα have units of
kJ/mol.

Finally, we need to specify the response function ω(ξ) (cf. (2.15)) in the transition zone where the
oxidation reaction is in progress. The simplest assumption would be to set ω = ξ. However, in this case
since the metallic bond-coat material has a much higher propensity to creep than the oxide, the contribution
from the viscoplastic shearing rate of the bond coat, νp

bc, will dominate the overall viscoplastic shearing rate,
νp (cf. (7.70)). As a result, the inelastic swelling deformation due to oxidation can easily be “compensated”
for by the corresponding viscoplastic deformation of the bond-coat/oxide mixture, and this would not lead
to the development of significant stresses due to the oxidation reaction — which is in disagreement with
the well-documented development of significant growth stresses which are produced due to the volumetric
expansion from oxidation (cf., e.g., Tolpygo and Clarke, 1998.) To the knowledge of the authors, the nature
of viscoplastic deformation at a material point that is in the process of oxidizing is not well-known. However,
it is clear that when the material point has fully oxidized it will have the creep properties of the oxide. For
this reason, and for simplicity, we assume that as soon as a material point starts to oxidize, its creep rate is
determined by that of the oxide. Accordingly, we assume that

ω =

{
0 if ξ = 0,

1 otherwise.
(9.16)

9.3 Oxide growth. Evolution of ξ

A fundamental open physical question in bondcoat oxidation is the directionality of the oxidation, that is
in a specification of the tensor S. A specification of the growth-direction tensor S and its dependence on
the local stress and microstructural state has been a topic of research in the past decade (cf., e.g., Huntz
et al., 2002; Clarke, 2003), and there is some indication in the literature that the oxide growth occurs in a
fashion such that that β1 6= β2 6= β3, and that the local microstructure also has a significant influence on S.
However, such evidence is sparse, and not conclusive. Here, for simplicity, we ignore any anisotropy due to
microstructural effects, and also assume that7

β1 = β2 = β3 ≡ β > 0 (constant).

Therefore
S = β 1, (9.17)

and hence
Ds = ξ̇ β 1, ξ̇ ≥ 0. (9.18)

From (7.77) and (9.17) we note that

β =
1

3
ln(JPB), (9.19)

where JPB is the Pilling-Bedworth ratio for the oxidation reaction.
Next we specialize the evolution equation (8.12) for ξ̇. First, from (8.11), (9.9)3,4, and (9.17), the

dissipative force F is given by
F = H(1 − ξ) −B + β trMe. (9.20)

Further, let R denote the amount cR (per unit reference volume) of the diffusing species consumed by the
complete chemical reaction. Thus, when ξ = 1 we have cR = R , and ξ̇ is non-zero only as long as

ξ ≤ cR

R , (9.21)

7This assumption may be modified as more tangible physical evidence becomes available.
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and
F > 0. (9.22)

Accordingly, we assume a simple thermally-activated relation for ξ̇ with power-law dependence on F :

ξ̇ =







Cξ exp

(−Qs

Rϑ

)

(F)nξ if ξ < cR

R
and F > 0,

0 otherwise.
(9.23)

Here the constant Cξ has units of 1/(s MPanξ), Qs is an activation energy for swelling with units of kJ/mol,
and nξ > 0 is a power-law constant for the reaction rate.

9.4 Heat flux. Species flux

From (8.20), we have that the heat flux is given by

qR = −κ∇ϑ, (9.24)

with κ(IEe , ϑ, cR, ξ) > 0 the thermal conductivity. At this point in time the dependence of the thermal
conductivity on the elastic deformation and species concentration is not well understood, and we ignore any
such dependence here and assume that

κ = (1 − ξ)κbc + ξκox, (9.25)

where κbc(ϑ) > 0 and κox(ϑ) > 0 are the temperature dependent thermal conductivities of the bond-coat
and the oxide, respectively, which presumably are experimentally measurable.

Further, from (8.21) we have that the species flux is given by

jR = −m∇µ, (9.26)

with m(IEe , ϑ, cR, ξ) > 0 the species mobility. Thus, with the chemical potential µ given by (9.9), we may
write (9.26) as

jR = −D(IEe , ϑ, cR, ξ)∇cR, with D(IEe , ϑ, cR, ξ)
def
= m(IEe , ϑ, cR, ξ) ×

Rϑ

cR
, (9.27)

where D represents the diffusivity. As for the thermal conductivity, the dependence of the species diffusivity
on the elastic deformation is not well understood; accordingly, we ignore any such dependence. Next, the
diffusivity of the oxygen in the bond-coat is much smaller than that in the oxide,

Dbc ≪ Dox, (9.28)

where, Dbc and Dox are the species diffusivity in the bond-coat and the oxide, respectively, which presumably
are experimentally measurable. In the transition zone, where the reaction is in progress and 0 < ξ < 1,
species diffusion is similarly small. Accordingly, we assume that

D(cR, ϑ, ξ) =

{
Dox(cR, ϑ) if ξ = 1,

Dbc(cR, ϑ) if ξ < 1.
(9.29)

These diffusivities typically exhibit an exponential dependence on temperature

Dα(cR, ϑ) = D0,α(cR) exp

(

−Qd,α

Rϑ

)

, (9.30)

where Qd,α represent the activation energies for diffusion of the species in the bond-coat and the oxide.
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10 Governing partial differential equations for the specialized con-

stitutive equations. Boundary conditions

The governing partial differential equations consist of:

1. The local force balance (8.22), viz.
DivTR + bR = 0, (10.1)

where TR = JTF−⊤ is the Piola stress, with T given by (8.2) and (9.9)1, and bR is the non-inertial
body force.

2. The local balance of energy (8.23), which, together with (9.9)3 and (9.27), gives the following partial
differential equation for the temperature

cϑ̇ = Div(κ∇ϑ) + qR + (1 − ω) τ̄ νp
bc + ω τ̄ νp

ox +F ξ̇ +D
cR

Rϑ
|∇µ|2 + ϑ 1

2

∂Te

∂ϑ
: Ċe − ϑ

∂A
∂ϑ

ξ̇ (10.2)

with ω given by (9.16).

3. The local balance equation for the concentration of diffusing species (8.25), which, using (9.27), may
alternatively be written as

ċR = Div (D∇cR), (10.3)

with the diffusivity D given by (9.29) and (9.30).

We also need initial and boundary conditions to complete the model. Let S1 and S2 be complementary
subsurfaces of the boundary ∂B of the body B in the sense ∂B = S1 ∪ S2 and S1 ∩S2 = ∅. Similarly let ScR

and SjR be complementary subsurfaces of the boundary: ∂B = ScR
∪ SjR and ScR

∩ SjR = ∅, and finally, let
Sϑ and SqR

be complementary subsurfaces of the boundary: ∂B = Sϑ ∪ SqR
and Sϑ ∩ SqR

= ∅. Then for a
time interval t ∈ [0, T ] we consider a pair of boundary conditions in which the motion is specified on S1 and
the surface traction on S2:

χ = χ̆ on S1 × [0, T ],

TRnR = t̆R on S2 × [0, T ],

}

(10.4)

another pair of boundary conditions in which the concentration is specified on ScR
and the species flux on

SjR

cR = c̆R on ScR
× [0, T ],

−D(∇cR) · nR = j̆R on SjR × [0, T ],

}

(10.5)

and a final pair of boundary conditions in which the temperature is specified on Sϑ and the heat flux on SqR

ϑ = ϑ̆ on Sϑ × [0, T ],

−κ(∇ϑ) · nR = q̆R on SqR
× [0, T ],

}

(10.6)

with χ̆, t̆R, ϑ̆, q̆R, c̆R, and j̆R prescribed functions of X and t, and the initial data

χ(X, 0) = χ0(X), cR(X, 0) = cR,0(X) and ϑ(X, 0) = ϑ0(X) in B. (10.7)

The coupled set of equations (10.1), (10.2), and (10.3), together with (10.4), (10.5), (10.6), and (10.7), yield
an initial boundary-value problem for the motion χ(X, t), the temperature ϑ(X, t), and the chemical species
concentration cR(X, t).
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11 Concluding Remarks

In this work, we have formulated a chemo-thermo-mechanically coupled theory that accounts for elastic-
viscoplastic deformation, diffusion of a chemically reacting species, and volumetric swelling due to the chem-
ical reaction. We are in the process of (i) conducting a literature search, as well as performing our own
experiments (as needed) to determine the material parameters appearing in our theory, and (ii) numerically
implementing our theory in a finite-element program. Once the theory is numerically implemented and
validated, then the numerical simulation capability should provide an important ingredient for analyzing
the evolution of the local stress and strain states which are important ingredients for the life-prediction and
performance-improvement of TBCs.
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