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SCIENCE FORUM

Viral factors in influenza
pandemic risk assessment
Abstract The threat of an influenza A virus pandemic stems from continual virus spillovers from

reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no

pandemic emergence of a new influenza strain has been preceded by detection of a closely related

precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding,

prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be

to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza

viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such

evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify

progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin

receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that

contribute to pandemic risk.
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Introduction
Aquatic birds are the main reservoir of influenza

A viruses in nature (Krauss and Webster, 2010).

Influenza viruses from aquatic birds sporadically

enter terrestrial bird and mammalian host popu-

lations and achieve sustained circulation in these

new hosts (Vandegrift et al., 2010), sometimes

after reassortment with influenza viruses already

circulating in the new host (Webster et al.,

1992). Adaptation of viruses from aquatic birds

to mammals involves a change in tissue tropism

from intestinal to respiratory epithelia

(Hinshaw et al., 1979; Hénaux and Samuel,

2015).

Multiple influenza A subtypes—defined by

the patterns of antibody recognition of two sur-

face proteins, hemagglutinin (HA) and neuramin-

idase (NA)—circulate in avian species and swine

at any given time. Among these, a number are

known to cause sporadic zoonotic infections in

humans (Peiris, 2009). More than one thousand

human infections with avian influenza viruses

were detected in the last decade, for example

H5N1 and H7N9 (Qin et al., 2015) as well as

swine influenza viruses, e.g. an H3N2 variant

that spilled over into humans attending agricul-

tural shows in the early 2010s, H3N2v

(Jhung et al., 2013). In addition, zoonotic infec-

tions with other viruses from poultry or wild

birds have occurred, including for example

H7N7 (Fouchier et al., 2004), H10N8

(Wohlbold et al., 2015), H6N1 (Wei et al.,

2013), H9N2 (Butt et al., 2005), and H5N6

(Yang et al., 2015); for more examples and a

fuller discussion see (Short et al., 2015). The

severity of zoonotic influenza A infections ranges

from clinically inapparent (Gomaa et al., 2015;

To et al., 2016) to fatal (de Jong et al., 2006;

Gao et al., 2013).

Although secondary transmission can occur

following some of these spillover events

(Kucharski et al., 2014), only a very small pro-

portion of them—four in the last hundred years,

which seems to be close to the historical aver-

age (Patterson, 1986)—led to sustained per-

son-to-person transmission with global spread
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(Box 1). There are 18 known HA types and 11

known NA types (Tong et al., 2013), which

could theoretically be found in any combination.

So far, sustained spread in humans has been lim-

ited to the H1N1, H2N2, and H3N2 subtypes

(Kuiken et al., 2006), though it is possible that

other subtypes circulated prior to 1918, the year

of the first pandemic from which viruses are

available for study (Worobey et al., 2014). Mul-

tiple virus–host interactions are necessary for

replication and onward transmission; the differ-

ences in the genetic requirements to accomplish

each of these interactions in humans versus

other animals provide a barrier to sustained

transmission following spillover (Russell et al.,

2014).

Experiments in ferrets have been used to

measure viral transmissibility via respiratory

droplets (in this review we use this term to refer

to any transmission through the air between fer-

rets that are not in direct or indirect physical

contact). Droplet transmission in ferrets is a use-

ful, albeit imperfect, correlate of the potential of

influenza strains to transmit efficiently in human

populations (Buhnerkempe et al., 2015). For

this reason, some have argued that there is a

Box 1. Steps in pandemic emergence.

For an avian-adapted strain of influenza A to become a pandemic strain, several events are

required:

1. The avian-adapted strain must become sufficiently widespread in wild or domestic birds,
swine or other reservoir species to expose at least one human to infection.

2. One or more humans must acquire infection from the reservoir species.

3. The infection must replicate sufficiently in a zoonotic case to produce infectious virus in
respiratory or other secretions.

4. The infection must be transmitted to additional humans, avoiding an "early" termination
of the transmission chain due to chance. Such early termination is a significant risk given
the relatively low infectiousness of influenza and the moderate degree of overdispersion
in the number of secondary cases infected by each case, both of which contribute to the
probability that a transmission chain will terminate by chance (Lloyd-Smith et al., 2005;
Lipsitch et al., 2003). It must also avoid extinction due to deliberate control efforts put
in place by public health authorities (Ferguson et al., 2006; Merler et al., 2013).

5. Finally, the infection must spread beyond the local area to infect members of distant
populations, a process accelerated by modern global travel (Cooper et al., 2006). This
step and the one before are enhanced if the level of population susceptibility is high, as
occurs when the surface proteins of the new strain are dissimilar to those on any cur-
rently or recently circulating human influenza A strains.

We know from serologic studies and human infections that several different influenza A viruses

have achieved steps 1 and 2 at any given time (Gomaa et al., 2015; To et al., 2016). Steps 3

and/or 4 appear to be the rare, rate-limiting steps; that is, the conditional probability of achiev-

ing step 3 and 4 given the previous steps is low, so that sustained human-to-human transmission

of a novel strain occurs a few times per century while zoonotic infections must occur thousands

or more times per year. No case is known in which an influenza A strain has reached stage 4 but

failed to reach stage 5, although it may have happened undetected.

The appearance – by mutation or reassortment – and selection of genetic changes that encode

human-adaptive viral traits may be seen as a process that can accelerate or increase the proba-

bility of one or more of these steps (though there is no guarantee that a given change that

enhances one of these steps will enhance all of them. This is why the detection of phenotypes

associated with human adaptation in avian or zoonotic isolates of novel influenza A viruses is

thought to correlate with increased risk of pandemic emergence. As we describe throughout

the paper, the process of human adaptation need not be complete to initiate a pandemic, so it

may continue to occur at various stages throughout this progression.

DOI: 10.7554/eLife.18491.002
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general phenotype of ’transmissibility by respira-

tory droplets in mammals’ such that experiments

to select for such transmission in droplets in fer-

rets are important models of the process of

adaptation to human transmission (Imai et al.,

2012; Herfst et al., 2012). This view is not uni-

versally shared (Palese and Wang, 2012). Start-

ing from an zoonotic highly pathogenic avian

influenza isolate from a human case of infection

(or a reassortant of the HA from a different zoo-

notic H5N1 highly pathogenic avian influenza

isolate, with the other segments from the 2009

pandemic H1N1 strain), it was shown that certain

specific traits that had been previously associ-

ated with mammalian host adaptation were

required to achieve respiratory droplet transmis-

sion. These ferret-transmission phenotypes in

turn were associated with certain genetic

changes relative to the original avian viruses

(Imai et al., 2012; Herfst et al., 2012;

Linster et al., 2014). These specific changes

occur both in HA and in polymerase-complex

proteins.

The rationale for these experiments was

that, because the ferret model recapitulates

many features of human infection, changes

identified in adaptation to ferret transmission

would also be important for adaptation to sus-

tained transmission in humans (Davis et al.,

2014; Schultz-Cherry et al., 2014), though

this can never be known with certainty

(Palese and Wang, 2012). Notably, viruses iso-

lated from humans who were infected by con-

tact with birds show some of these changes

(Russell et al., 2012; Bi et al., 2015), particu-

larly the change at amino acid 627 of the PB2

gene (Jonges et al., 2014; Chen et al., 2014;

Fonville et al., 2013), which often affects poly-

merase complex efficiency (see below). This

indicates that even the first generation of

human infection from nonhuman hosts can initi-

ate a process of host adaptation. It also indi-

cates that not all the human-adaptive changes

must be in place in the avian reservoir to initi-

ate this process. Some human infections,

including some zoonotic cases (de Jong et al.,

2006; Chen et al., 2014, 2006; Sha et al.,

2016) and some cases early in a pandemic

(Rogers and D’Souza, 1989; Connor et al.,

1994; Stevens et al., 2006; Glaser et al.,

2005; Pappas et al., 2010), involve viruses

that are not yet fully human-adapted (see

below and Tables 2–4). The interpretation of

some of these isolates is complicated by uncer-

tainty about whether they were passaged in

hen’s eggs at some point in their history.

Certain types of countermeasures against an

influenza pandemic are effective only against

one lineage of viruses – for example, creating

stockpiles or seed stocks of vaccines against a

particular subtype, or culling poultry infected

with that subtype. It is not currently feasible to

invest in such countermeasures against all

viruses circulating in avian or other reservoirs,

or even against all those causing known zoo-

notic cases. Therefore, there would be value in

an accurate system to assess the relative pan-

demic risks posed by each virus and prioritize

them for the development of such strain-spe-

cific countermeasures, while directing fewer

resources to strains of lower concern

(Kaplan et al., 2016). This consideration has

motivated calls for comprehensive analysis of all

available data to assess the threat to public

health posed by these strains. One response is

the CDC’s Influenza Risk Assessment Tool

(IRAT) (Trock et al., 2015), which incorporates

elements including properties of the virus, field

and epidemiological findings, and attributes of

the human population to provide a framework

to differentiate among novel influenza viruses

thought to possess pandemic potential. Such

risk assessments can help focus pandemic pre-

vention and response efforts on the viruses

thought to pose the highest risk of pandemic

spread (Davis et al., 2014), in the most worri-

some cases providing a rationale for costly

measures such as poultry culling or vaccine

seed stock development, or even stockpiling of

large quantities of vaccine. A guiding question

of this article is to examine the degree to which

it is justified to rely on measurements and pre-

dictions of viral genetic and phenotypic traits in

prioritizing responses to particular viral sub-

types and within-subtype lineages.

There are several hurdles to evaluating the

accuracy of such predictions (Russell et al.,

2014). Factors limiting our ability to identify

high-risk viruses and predict the risk they pose

include:

. limited surveillance of nonhuman influenza
viruses, such that high-risk viruses may not
be detected and hence cannot be
assessed (Butler, 2012). Limitations
include both the number, geographic and
species diversity of hosts sampled, and the
difficulty in sampling all genetic variants
present in a given infection (Poon et al.,
2016; Varble et al., 2014);

. failure to fully characterize some viruses
that are detected (Hoye et al., 2010);
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. imperfect public health systems lacking
capacity to detect zoonotic infections pre-
senting in patients (Sanicas et al., 2014;
Simonsen et al., 2013);

. epistasis and other complexities that pre-
vent straightforward prediction of viral
traits from genotype (Russell et al., 2014;
Kryazhimskiy et al., 2011; Gong and
Bloom, 2014; Bloom et al., 2010;
Wu et al., 2016; Raman et al., 2014;
Tharakaraman et al., 2013; Gong et al.,
2013);

. technological limitations in molecular
modeling and phenotypic assays that limit
confidence in predicting and measuring
viral traits (Russell, 2014);

. uncertainties about the taxonomic level at
which risk predictions should be made
(Box 2);

. practical, ethical and cost limitations of
animal transmission experiments, as well
as some exceptions to the correlation
between human transmissibility and drop-
let transmissibility in nonhuman animal
models (Buhnerkempe et al., 2015);

. lack of data on immediate animal precur-
sors of viruses that caused previous
pandemics;

. multiple scales at which viral strains com-
pete and hence experience selection (i.e.
replication within hosts, transmission
between hosts). Evolutionary theory for
such multi-scale selection is incomplete.
Viral fitness components are rarely mea-
sured at both scales for the same strain
and are imperfectly correlated across
scales (Gog et al., 2015; Park et al.,
2013; Beauchemin and Handel, 2011);

. the role of stochastic events in the ecology
and evolution of influenza viruses during
and after host-switching to humans
(Gog et al., 2015; Lloyd-Smith et al.,
2015), including the potential for transmis-
sion bottlenecks to either promote or
inhibit emergence of human-adapted
viruses (Varble et al., 2014; Moncla et al.,
2016; Wilker et al., 2013; Zaraket et al.,
2015).

These difficulties are exacerbated by the fact

that influenza pandemics are rare events, and

that risk assessments are not yet made with

enough quantitative precision to formally evalu-

ate their practical application. Even perfect infor-

mation about the viral determinants of

pandemic risk might only be enough to distin-

guish between strains with a low risk of causing

a pandemic (say, 0.1% per year) and those with

an extremely low risk (say, less than 0.01% per

year), with unpredictable ecological or

evolutionary contingencies determining which of

these low-probability events will actually occur.

One such contingency is that an avian influenza

virus could acquire one or more of the determi-

nants of pandemic potential by reassorting with

a human seasonal influenza virus.

With only one pandemic every few decades,

the data set for testing the prediction of such

rare events is inadequate, a problem that chal-

lenges predictions in many fields beyond infec-

tious diseases (King and Zeng, 2001;

Hansson, 2006). Evolutionary events in which a

strain increases human-to-human transmissibility,

but not enough to spark a pandemic, are

extremely hard to observe, but if we could do so

it would increase our ability to characterize the

process of adaptation (Kucharski et al., 2015).

Despite these challenges, there has been tre-

mendous interest and investment in making and

using such predictions, and a number of new

ideas to improve predictions are in various

stages of development (Box 3). Building on the

findings of a previous workshop (Russell et al.,

2014), we considered in detail the present state

of knowledge concerning three phenotypic

traits: HA receptor binding specificity, and HA

pH of activation, and polymerase complex activ-

ity, (Figure 1). These were chosen from a longer

list of candidate traits (Table 1) because they

span the viral life cycle (Figure 1) and their role

in host adaptation has been extensively studied.

All three are believed to be required for an influ-

enza virus to cause a pandemic; consistent with

this assumption, all three traits have been pres-

ent to some degree in the earliest viruses iso-

lated in pandemics since the 20th century,

though some have been enhanced by subse-

quent evolution during seasonal transmission in

humans. Moreover, for each of these three traits,

viruses isolated from avian hosts typically do not

show the mammalian-adapted phenotype,

reflecting divergent selection pressures in the

two classes of hosts (Tables 2, 3, and 4). All

three traits changed in the adaptation of zoo-

notic H5 influenza viruses to droplet transmission

in ferrets (Imai et al., 2012; Linster et al.,

2014). We emphasize that each of these traits is

quantitative, and that human-adaptation is not a

threshold criterion but a continuum; in this

review when we speak of human adaptation we

mean a tendency to be better adapted to

humans, rather than an absolute yes-or-no

property.

This review starts with a summary of our

knowledge about the role of each of the three
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functional traits in conferring pandemic potential

on a virus strain. Following these case studies,

we draw some generalizations about the pros-

pects of predicting pandemic risk from virus

genotype or from assays of particular viral traits.

For each trait we present a table showing the

degree to which the sequence changes or phe-

notypic properties associated with avian or

human adaptation are present in isolates from

birds and humans, respectively. If the avian traits

were always found in avian isolates and human

traits always in human isolates, only the shaded

cells on the main diagonal would be filled. In

such a case, however, it is hard to see how

viruses would ever make the jump from birds to

humans, since so many traits would have to

change simultaneously, and indeed the off-diag-

onal cells are not empty. Finding avian-adapted

traits in viruses isolated from humans most often

occurs in zoonotic cases, showing that not all

human-adapted traits are required for the first

human infection. In some cases there are also

Box 2. Granularity of pandemic risk prediction – for what

taxonomic level does it make sense?

Determining the appropriate taxonomic level for influenza virus risk assessment is a challenging

endeavor. Influenza virus subtype is a convenient classification but there can be substantial vari-

ation in estimable risk within subtype. For example, H5N1 viruses can be roughly segregated

into high pathogenicity and low pathogenicity phenotypes with the high pathogenicity variants

generating substantially greater concern for both human and animal populations. Even within

the high pathogenicity H5N1 variants, risk to animal populations and potential for adaptation to

humans is likely to vary by phylogenetic lineages or clades of viruses. Much of the difficulty for

predicting the threat posed by subtypes or coarse grained concepts of virus variants stems from

two factors: first, a lack of understanding of how genetic context affects the ability of a virus to

adapt for efficient spread in humans; and second, the critical, and geographically variable, role

of ecology in determining likelihood of cross species transmission.

Phylogenetic clade is a practical unit for risk prediction. However, in species where reassortment

is frequent, phylogenetic clade must be considered on a gene by gene basis. The definition of

phylogenetic clades can be challenging and arbitrary, but recent efforts to develop a unified

nomenclature for highly pathogenic H5N1 viruses may offer a transferrable framework for the

classification of other viruses (Smith and Donis, 2015; WHO/OIE/FAO H5N1 Evolution Work-

ing Group, 2008). Clades of viruses circulating in poultry, swine or other domestic animals with

extensive human interactions should be prioritized for surveillance and further study. Founda-

tional efforts are required to assess the diversity of viruses present in these animal populations,

particularly for low pathogenic avian influenza viruses. Further study will then be required to

assess the abundance and prevalence of different virus subtypes and clades, along with geo-

graphic spread and overlap with ecological risk factors(Hill et al., 2015; Gilbert et al., 2014),

e.g. live animal markets, cohabitation of humans and animals, and biosecurity in animal process-

ing facilities.

Antigenic characterization of animal influenza viruses should form part of a comprehensive risk

assessment, particularly of viruses from swine and possibly dogs. Swine influenza virus diversity

is driven in large part by introductions of viruses from humans to swine (Nelson et al., 2015,

2014; Lewis et al., 2016). The substantial antigenic diversity of viruses circulating in swine and

antigenic differences with viruses circulating in humans poses an ever increasing risk for re-intro-

duction into humans. Much of the antigenic variation in swine has a strong relationship to phylo-

genetic clade (Lewis et al., 2016). Similarly, the high contact rates between humans and dogs,

combined with increased circulation of H3N2 canine influenza viruses, may present increasing

opportunities for reassortment (Na et al., 2015) and for zoonotic infections (Flanagan et al.,

2012).

DOI: 10.7554/eLife.18491.003
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viruses isolated from humans after a pandemic

starts that retain some degree of avian-like

traits, and we discuss these in more detail in the

text – these represent the greatest challenge to

use of genotypic or phenotypic information for

pandemic prediction because they run the risk

of false negatives. The other off-diagonal cell,

which represents avian isolates with some

human-like traits, simply shows that some circu-

lation of viruses in birds is possible without the

classical ’avian’ phenotypes. How this happens is

a phenomenon worthy of further study. We con-

clude with some recommendations for future

research and for the practice of pandemic risk

assessment.

Trait 1: Hemagglutinin receptor
binding specificity

A. Definition of the trait

Attachment of an influenza virus to a host cell

requires binding of the viral HA to a sialylated

glycan receptor (sialic acid) on the surface of the

host cell. Cells of the avian gut and a minority of

cells in deep lung in mammals predominantly

express receptors terminated with an a2,3-

linked sialic acid: hereafter, a2,3 glycans or avian

receptors (Russell et al., 2006;

Gambaryan et al., 1997; van Riel et al., 2006;

Shinya et al., 2006). By contrast, in humans and

other mammals, upper respiratory epithelial cells

express mainly glycan receptors terminated by

a2,6-linked sialic acid: a2,6 glycans or human

receptors (Stevens et al., 2006; Shinya et al.,

2006; Chandrasekaran et al., 2008). The human

upper respiratory epithelium is the primary tar-

get site for infection of human-adapted viruses,

and infection at this site is thought to be a pre-

requisite for efficient human-to-human transmis-

sion via respiratory droplets. Thus, it appears

that human adaptation of an HA is associated

with a switch in its binding preference from avian

to human receptors. Receptor binding is not

either-or; human-adapted influenza virus HA

may show some binding to avian receptors, and

vice versa.

Receptor binding preference is defined as the

ratio of affinity (or avidity) of an HA molecule for

an a2,6 glycan relative to that for an a2,3 gly-

can, with higher values associated with greater

human adaptation. The evolution of receptor

binding specificity is driven by the host environ-

ment, with selection for specificity during the

infection process within a host and during the

process of transmission. The error-prone

replication of influenza genomes can facilitate

rapid emergence of viruses with amino acid sub-

stitutions that alter the receptor binding charac-

teristics of the HA (Lakdawala et al., 2015).

Increased transmissibility may result from mam-

malian receptor adaptation, either because the

virus shedding form the infected donor host is

increased, or because the ability of virus to infect

the recipient host at a low dose is enhanced, or

for both of these reasons. Recent experimental

evidence in ferrets implicates the soft palate as

an important site of selection for a2,6 specificity

(Lakdawala et al., 2015).

B. Genetic and structural determinants of
hemagglutinin-receptor interactions

Preference for binding human or avian glycan

receptors is determined by the structure of the

viral HA. Except for a few conserved amino acids

in the sialic acid receptor binding pocket, the

influenza HA has considerable structural plastic-

ity to evolve variation at the rim of the pocket to

engage different sialic acid linkages. Impor-

tantly, antigenic regions of the HA are located

nearby regions that determine receptor-binding

preference, meaning that selection for antigenic

escape may be constrained by the need to main-

tain receptor preference (Koel et al., 2013).

More speculatively, selection for changes in

receptor preference might also alter recognition

of the HA by host antibodies.

Conformation of hemagglutinin as a determi-

nant of receptor binding preference. Although

the co-crystal structures of HA and sialylated gly-

cans have not been solved for all pairs, there is evi-

dence that avian- or human-adapted HA bind to

different conformations of the avian and human

receptors: the cis conformation of human recep-

tors and the trans conformation of avian receptors

(Stevens et al., 2006; Ha et al., 2001,

2003; Gamblin et al., 2004; Liu et al., 2009;

Xu et al., 2010; Yang et al., 2010; Lin et al.,

2012; Yang et al., 2012; Zhang et al., 2013). This

finding has led to the concept of “hallmark” resi-

dues within the receptor-binding site of avian-

and human-adapted HAs. Avian-adapted HAs

typically carry Glu at position 190, Gln at position

226, and Gly and position 228 (H3 numbering),

and the Gln226->Leu, Gly228->Ser substitutions

have been associated with a switch to human

receptor preference in HAs of H2, H3

(Matrosovich et al., 2000), and H5

(Chutinimitkul et al., 2010) viruses. In H1 HA,

Glu190fiAsp and Gly225fiAsp have been con-

sidered as hallmark amino acid changes to switch

receptor specificity leading to greater human

Lipsitch et al. eLife 2016;5:e18491. DOI: 10.7554/eLife.18491 6 of 38

Feature article Science Forum Viral factors in influenza pandemic risk assessment

http://dx.doi.org/10.7554/eLife.18491


Box 3. Novel approaches to identifying genomic predictors

of traits and transmission phenotypes.

The advent of inexpensive, large-scale sequencing, combined with improved computing power

and novel algorithms to interpret nucleotide and protein sequences, have generated new

approaches to characterizing the genotype-trait and genotype-transmission phenotype maps in

influenza viruses. Some are well-established, while others are under active development. They

include:

Protein structural analysis to identify properties of individual amino acid residues and pairs of

residues. A number of approaches have been devised to make use of databases of genome

sequences and inferred protein sequences of influenza virus isolates, alone or in combination

with metadata on the source (species), date of isolation and passage history of the isolates.

Characterizing the predictors – at the level of individual amino acid residues within a protein –

of variability or conservation can assist in identifying the major selection pressures on that pro-

tein. Evolutionary analysis of the predictors of high rates of nonsynonymous substitutions within

HA showed solvent accessibility and proximity to the sialic acid receptor binding site are the

strongest predictors of high nonsynonymous evolutionary rates (Meyer and Wilke, 2015). Com-

parisons of residue-specific evolutionary rates in avian and human lineages can help to assess

which sites are specifically involved in human adaptation and which may be evolving in avian res-

ervoirs with potential consequences for human adaptation (Meyer et al., 2013).

Innovative use of metadata associated with sequences deposited in databases will be required

to ensure that computational inferences from these databases are reliable. For example, meth-

ods that aim to identify sites under positive selection in the HA protein frequently find regions

or sites that seem to contradict experimental evidence (Meyer and Wilke, 2015; Tusche et al.,

2012; Kratsch et al., 2016). Several of these apparent contradictions can be resolved by

accounting for viral passaging. For example, passaging in regular MDCK cells produces a strong

signal of positive adaptation underneath the sialic-acid binding site; this signal is entirely absent

in unpassaged virus or virus passaged in SIAT1 MDCK cells (McWhite et al., 2016). At the same

time, passage bias mutations are assumed to increase fitness of the strain in the respective spe-

cies and are often necessary to grow in culture at all. Therefore, sites associated with isolates

passaged in mammalian cultures vs. those passaged in embryonated hen’s eggs have the

potential to further identify sites associated with mammalian or human adaptation.

Metadata can also help to point to individual amino acids associated with human adaptation.

For example, one proposed computational approach is to find potentially zoonotic human-iso-

lated sequences when the majority of their database hits from preceding years were of animal

origin. This serves, on one hand, as systematic survey to derive lists of times and places of likely

zoonotic events and, on the other hand, provides close sequence pairs of zoonotic human and

their putative animal precursors. In those pairs, common sites that repeatedly changed from the

animal to the human zoonotic isolates could be reasoned as being involved in human adapta-

tion. Combining these sites with those from passage changes, provides strong evidence for the

involvement of a particular site in host adaptation.

Network analysis of the level of sequence covariation of pairs of residues among protein

sequences in the database has led to the identification of groups of mutually covarying sites,

which have been used to define features of the HA protein that play a role in determining gly-

can receptor usage (Kasson et al., 2009; Kasson and Pande, 2009). Complementary to such

covariation analysis is the analysis of predicted molecular interactions. Using X-ray co-crystal

structures or modeled structural complexes of HA-glycan receptors, molecular features have

been defined as distinct networks of inter-residue interactions involving key residues that make

contacts with the different glycan receptor topologies. These features go beyond hallmark resi-

due analyses and more accurately predict how amino acid variations in the receptor binding site

impact the inter-residue interactions and glycan receptor binding specificity (Raman et al.,

2014). Similarly, network analysis of amino acid residues predicted to have significant interac-

tions has shown that antigenic sites on the HA interact with residues controlling glycan receptor
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binding specificity, and that changes in these antigenic residues can then lead to changes in

receptor-binding affinity (Soundararajan et al., 2011).

It seems likely that as these different lines of evidence – structural location, biophysical interac-

tion, sequence covariation, sequence evolutionary rates, association with zoonotic or in vitro

adaptation, etc.—begin to be understood at the resolution of individual amino acids within an

influenza protein, such overlapping approaches will yield clearer understanding of the genetic

and structural bases of host adaptation to human infection and transmission. A significant step

toward such integration is the recent release of the FluSurver online tool which automatizes

influenza sequence and structure analysis and highlights mutations that could alter the discussed

traits based on extensive literature-derived genotype to phenotype lists, structural visualization

of the mutation positions and their geographic and temporal frequency of occurrence and co-

occurrence for epidemiological relevance (http://flusurver.bii.a-star.edu.sg and directly from

within GISAID http://www.gisaid.org). In particular, the tool has been successful in picking up

mutations affecting host receptor binding (Maurer-Stroh et al., 2014) as well as pH depen-

dency (Cotter et al., 2014; Maurer-Stroh et al., 2010). However, also in this approach, annota-

tions of the effects of mutations are based on inference from similarity to mutations studied in

specific sequence contexts, which in most cases will not be identical to the investigated input

sequences.

Association studies. Understanding the genetic basis of adaptive phenotypic change is a central

goal in biology, and influenza poses special challenges and advantages relative to other organ-

isms. Association studies have begun mapping the genomes of Arabidopsis thaliana to over 107

quantitative traits and the genomes of humans to over 100,000 (Bergelson and Roux, 2010;

Leslie et al., 2014). These studies often investigate genetic variation at the scales of single

nucleotide polymorphisms, alleles, and loci. Motif-based approaches have already proven useful

in influenza (e.g., the insertion of multiple basic amino acids indicates highly pathogenic H5 and

H7), and such simple, robust correlations simplify the prediction of phenotypic traits. Recent

investigations of influenza (Thyagarajan and Bloom, 2014; Ashenberg et al., 2013;

Pinilla et al., 2012) have shown that many mutations have roughly consistent impacts across

diverse backgrounds. A complication of all association studies is confounding from genetic link-

age and diverse environmental selective pressures. Although influenza’s genes might be tightly

linked over short time scales, the virus evolves quickly, and many traits can be assumed to be

under stabilizing selection. Thus, association studies that appear statistically impractical now

may be feasible with a few more years of expanded surveillance.

As reviewed here, however, influenza often breaks simple genetic rules, perhaps due to epista-

sis (e.g., [Bloom et al., 2010]). High-dimensional genotype-phenotype relationships obscure

simple correlations from association studies. A relevant lesson comes from The Cancer Genome

Atlas (TCGA), which amassed sequences from thousands of diverse tumors to investigate the

mutations leading to different cancer types. Although metastatic cancers are typically conceptu-

alized as possessing six main phenotypic traits (Hanahan and Weinberg, 2011), TCGA revealed

that the genetic commonality among tumors of any given type is shockingly low

(Kandoth et al., 2013; Ledford, 2015). Human genomes are much larger and more complex

than influenza’s, however, and so it is possible that an influenza atlas might reveal more pat-

terns, which could inspire hypothesis-driven experiments (Weinberg, 2010).

High-throughput, large-scale screens of mutational effects on hemagglutinin receptor binding.

Binding of upper-respiratory-tract glycans by the influenza virus hemagglutinin is one of the

best-understood ingredients in making a virus capable of efficient human transmission. Yet the

viral sequence determinants of this trait have been mapped only for a limited number of var-

iants. A systematic screening strategy to scan the genetic “landscape” for sequences with a

preference for human glycan receptors might include four components: (1) selection of viral

genetic background, (2) large-scale mutagenesis, (3) screening and selection, and (4) confirma-

tory assays. Because both mutations near and far from the sialic-acid-binding site on hemagglu-

tinin have been shown to alter glycan specificity, this should be based on a minimally biased

approach to mutagenesis: screening combinations of all possible substitutions at all hemaggluti-

nin residues that are not absolutely conserved across known subtypes. Critical considerations

include choice of viral genetic background (both subtype and strain identity), extent of

combinatorial screening (if conserved sites are omitted, every mutant containing changes at up
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adaptation (Glaser et al., 2005; Tumpey et al.,

2007). The determinants of specificity are

reviewed in much more detail in (Paulson and de

Vries, 2013).

Additional structural features involved in

receptor binding preference. The cis and trans

definition of glycan conformation does not fully

describe HA binding to a range of structurally

diverse glycans displayed on human respiratory

cells and tissues (Chandrasekaran et al., 2008).

This limitation motivated studies that revisited

the definition of glycan conformation, extending

the conformational analysis beyond the terminal

sialic acid linkage to describe overall topology

and dynamics of the glycan receptor upon bind-

ing to the receptor-binding site of avian and

human-adapted HAs (Chandrasekaran et al.,

2008; Xu et al., 2009). HA sequence determi-

nants of preference for the “cone”-like topology

of avian receptors, versus the “umbrella”-like

topology of human receptors, are still being

defined (Raman et al., 2014).

C. Experimental assays to measure
hemagglutinin receptor binding
specificity

Experimental evidence on differential binding of

avian and human viruses to sialic acid receptors

in avian and human conformations, respectively,

was first obtained by hemagglutination assays

with erythrocytes whose surfaces had been

chemically modified to display glycans terminat-

ing with either homogeneous a2,3 or homoge-

neous a2,6-linked sialic acids (Paulson and

Rogers, 1987). Subsequent analysis of the rep-

ertoire of glycan structures in erythrocytes of

various animal species informed the use of cells

from different species as probes of HA receptor

binding preference in hemagglutination assays

(Ito et al., 1997).

Greater precision and reproducibility has

been achieved with the use of purified sialylated

glycans to create solid-phase binding assays

with fluorogenic or enzymatic detection

(Gambaryan et al., 2006; Gambaryan and

Matrosovich, 1992). With these assays, it is pos-

sible to characterize the relative direct binding

of whole virions or recombinant trimeric HA

oligomers to glycans attached to a solid phase

or the competition of such glycans with binding

to a generic glycoprotein attached to the solid

phase (Gambaryan and Matrosovich, 1992). In

recent work, biosensor interferometry and ther-

mophoresis have been used to measure glycan-

binding avidities and affinities in a more precise

manner and to relate the two (Xiong et al.,

2013a). The development of glycan microarrays

represented a turning point in the analysis of

influenza virus receptor binding specificity,

because it allowed simultaneous evaluation of

virion or recombinant HA binding to a large rep-

ertoire of sialoglycans (Stevens et al., 2006;

Blixt et al., 2004; Childs et al., 2009). Several

measures of preference for an HA molecule or

whole virus have been defined, including the

ratio of the number of a2,6 to a2,3 glycans

bound (Stevens et al., 2006a, 2006b) or the

corresponding ratio of binding affinity or avidity

(Imai et al., 2012; Xiong et al., 2013a). A limita-

tion to predictive power is that glycans tested

on current arrays may not match those present

in the human respiratory tract (Walther et al.,

2013). These arrays may also not present gly-

cans in the same fashion as respiratory epithelial

cells, so strategies such as measuring the bind-

ing of labelled viruses to human respiratory tis-

sues (Chutinimitkul et al., 2010) or explant

cultures (Chan et al., 2013) may be promising

alternatives, although challenges remain in stan-

dardization and quantification of such assays.

Structural studies of wild-type and mutant HA in

complex with representative sialoglycans pro-

vide the ultimate level of detail by characterizing

interactions at the atomic level. X-ray

to 4 simultaneous sites could be screened with substantial effort), and design of highly parallel

screening, selection, and confirmatory assays. The mutagenesis and screening involved would

be extremely large in scope: (before eliminating conserved residues, all 4-site mutnats ~[550

residues x 20 amino acids]4 = 1.4 x 1016 variants for each subtype tested). However, some

computational pre-screening to narrow the set of residues tested combined with contemporary

mutagenesis and screening technologies such as deep scanning codon mutagenesis

(Thyagarajan and Bloom, 2014; Bloom, 2015; Fowler and Fields, 2014) make such an

endeavor feasible.
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crystallography advances in recent years have

accelerated structural determination, and similar

progress in recombinant protein purification

techniques combined with robotic crystal screen-

ing have reduced the amount of protein and

labor required.

In summary, genetic and protein sequence

analysis, glycan arrays, and X-ray crystallography

studies provide complementary data towards

understanding the sialoglycan interactions of

emerging viruses, with tradeoffs of equipment

and reagent costs and throughput against level

of precision and detail provided.

D. Receptor binding preference as a
predictor of host adaptation of influenza
viruses and pandemic risk

At present, estimating the contribution of recep-

tor specificity to the pandemic risk posed by a

novel virus relies primarily on the similarity

between the receptor binding characteristics of

the emerging virus and that of the most closely

related HA with known transmissibility among

humans or a surrogate animal model.

As noted above, hallmark residues have sub-

stantial predictive power. These distinct sets of

hallmark residues in the H1, H2 and H3 subtype

(Paulson and de Vries, 2013) correlate with

human-adaptation in known sequences collected

from birds or humans (Connor et al., 1994;

Paulson and de Vries, 2013); they induce

changes in receptor-binding specificity when

introduced experimentally (Chen et al., 2012;

Leigh et al., 1995); and experimental selection

for receptor binding in vitro (Chen et al., 2012)

or in ferrets (Imai et al., 2012) cause these

changes to appear.

However, hallmark residue predictions of

receptor-binding specificity are imperfect, as

evidenced by a failure to switch in vitro recep-

tor-binding preference from avian to human

when changes observed in H5N1 strains after

selection in ferret gain-of-function experiments

were introduced to other H5N1 viruses

(Tharakaraman et al., 2013). The involvement

of other features in human adaptation, such as

the topology of the bound HA-receptor com-

plex, further complicate the genetic prediction

of human adaptation, as the residues involved in

these features are less well characterized

(Shriver et al., 2009).

In principle, phenotypic assays that directly

measure the receptor-binding preference of HA

– if performed under realistic conditions that

capture the interaction of the HA trimer with the

receptor (Gambaryan et al., 1997;

Takemoto et al., 1996; Collins and Paulson,

2004)—may better capture the trait of interest

than genetic predictions of this preference.

However, even here, a simple equivalence

between binding preference for a2,6-linked gly-

cans and pandemic risk could be misleading.

Several viruses circulating in humans during the

early phase of previous pandemics were found

to show either a preference for avian receptors

(Rogers and D’Souza, 1989; Connor et al.,

1994) or a mixed preference for both human

and avian receptors (Rogers and D’Souza,

1989; Glaser et al., 2005; Childs et al., 2009).

In the case of early 2009 pandemic viruses, find-

ings are mixed (Childs et al., 2009; Chen et al.,

2011). Some of the findings of dual or avian

specificity may reflect artifacts introduced when

human isolates were passaged in eggs before

receptor specificity was assayed; alternatively,

they may genuinely reflect a transitional stage in

the evolution of HA genes in human populations

after transmission from other species

(Connor et al., 1994; Stevens et al., 2006;

Glaser et al., 2005; Stevens et al., 2010),

(Table 2). Consistent with this latter possibility,

an H5N1 virus isolated from a human zoonotic

case in Vietnam displayed strong avian receptor

preference (Yamada et al., 2006). This prefer-

ence changed in the course of experiments to

adapt it to respiratory droplet transmission in

ferrets (Imai et al., 2012). Taken together, these

findings confirm that there is a strong correlation

between measured receptor preference and the

host from which a virus is isolated. However,

they raise questions about the predictive value

of human receptor binding preference. Indeed,

the examples of mixed receptor preference in

human isolates from the early phase of the H1 or

H2 pandemics suggest that the ability to evolve

human receptor specificity over a chain of

human infections, which may be present in many

avian-receptor-adapted viruses, may be suffi-

cient for pandemic emergence.

In summary, detection of a human receptor

preference in a spillover virus may be an indica-

tion of increased risk, but exclusive human

receptor preference is probably not necessary

for an influenza A virus to initiate a pandemic.

With several possible exceptions noted above,

most viruses isolated to date fall within the

shaded cells in Table 2, which indicates concor-

dance between the source of the isolate and the

virus trait. Thus, prioritizing pandemic counter-

measures against virus lineages with inferred or

measured human receptor preference will likely

lead to better targeting of such
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Figure 1. Key phenotypic traits for the adaptation of avian influenza viruses to replicate efficiently in humans. (A) A

switch in receptor binding preference from avian-like (a2,3-linked sialic acid) to human-like (a2,6-linked sialic acid)

receptors. The human form on the left shows the typical distribution of human adapted influenza viruses

determined by their receptor binding preference for a2,6, linked SA that is predominantly expressed in the upper

respiratory tract but also in the lungs. The human form on the right shows that infection with avian influenza

viruses is concentrated in the lungs where their preferred a2,3 linked SA receptor is expressed. (B) Lower HA pH of

activation and increased polymerase complex efficiency. Free-floating viruses that enter the human respiratory

tract (upper part of figure) encounter mucus and a mildly acidic extracellular environment that act as innate

barriers to virus infection. If NA is able to desialylate decoy receptors on mucus and HA has a sufficiently low pH

of activation, then the virus particle may reach the apical surface of the respiratory epithelium intact. There

through a multiplicity of interactions between HA and cell-surface sialic acid, the virus enters the target cell. After

the virus is internalized, it passes through the endosomal pathway where the pH is progressively decreased. The

low pH of the endosomal environment triggers an irreversible conformational change in HA that fuses the viral and

endosomal membranes and ultimately results in the release of virus genetic material in the form of the viral

ribonucleoprotein complex (vRNP) into the cell cytoplasm. The eight vRNPs are subsequently imported into the

cell nucleus by interactions between the vRNPs and cellular nuclear import machinery. Inside the nucleus the virus

polymerase complex replicates the virus genome in conjunction with co-opted cell proteins.

DOI: 10.7554/eLife.18491.005
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Table 1. Influenza virus adaptations that appear to be required for human-to-human transmission.

Trait Adaptation

HA receptor binding
specificity

Preference for a2,6-linked mammalian sialic acid receptors over a2,3-linked avian ones
(Russell et al., 2006)

HA pH of activation HA avoids extracellular inactivation and undergoes conformational changes leading to
membrane fusion at appropriate pH for human cells (5.0–5.4 or perhaps 5.5)
(Russell, 2014)

Polymerase complex
efficiency

Efficient replication in human cells (Cauldwell et al., 2014; Naffakh et al., 2008)

Virus morphology Filamentous morphology associated with several adaptations to mammals (Seladi-
Schulman et al., 2014; Seladi-Schulman et al., 2013; Campbell et al., 2014;
Beale et al., 2014)

Length of NA stalk Longer stalk of NA required to penetrate human mucus and deaggregate virions
(Blumenkrantz et al., 2013)

Antagonism of interferon
production

Species-specific binding of the NS1 protein to host factors (Rajsbaum et al., 2012)

HA-NA “balance” Substrate selectivity and catalytic rate of NA are calibrated to “balance” avidity of HA
for the cell-surface glycan receptor (Zanin et al., 2015; Baum and Paulson, 1991;
Yen et al., 2011; Handel et al., 2014)

DOI: 10.7554/eLife.18491.006

Table 2. Hemagglutinin receptor binding preference and examples of viruses isolated from avian and

human hosts showing preference for human or avian receptors, or mixed preference. Yellow-shaded

cells show concordance between expected and observed properties.

Avian receptor preference Mixed receptor preference Human receptor preference

Expected sequence,
trait. Hallmark
residues HA 190, 225
(H1,H3), 226 (H3);
many others

Preferential binding to a2,3
sialylated glycans. HA
190Glu, 225Gly, 226Gln

Similar binding to both
classes of glycans

Preferential binding to a2,6
sialylated glycans. HA
190Asp, 225Glu, 226Leu

Found in avian isolates Many examples: many avian
isolates of subtypes H5N1
(Russell et al., 2012;
Yamada et al., 2006), H2
(Connor et al., 1994) and H3
(Connor et al., 1994)

avian isolates of H5N5
(Li et al., 2015), North
American H7 (Belser et al.,
2008), H7N9
(Schrauwen et al., 2016), as
well as examples from H2
(Connor et al., 1994;
Liu et al., 2009) and H3
(Connor et al., 1994)

Some H9N2 avian isolates
(Matrosovich et al., 2001;
Li et al., 2014)

Found in human
isolates

H5N1 zoonotic isolate
(Imai et al., 2012;
Yamada et al., 2006); one
H1N1 isolate from 1957
(Rogers and D’Souza, 1989)
*; some early H2N2
pandemic/seasonal isolates
(Connor et al., 1994;
Pappas et al., 2010;
Matrosovich et al., 2000)*

Early H1N1 pandemic
isolates from 2009
(Childs et al., 2009) and
1918 (Stevens et al., 2006;
Glaser et al., 2005); several
H1N1 from the 1918-1956
period (Rogers and
D’Souza, 1989)*; early H2N2
isolate from 1958
(Pappas et al., 2010); human
isolate of zoonotic H7N9
(Xiong et al., 2013b)

Many examples: H1N1 post-
1977 (Rogers and D’Souza,
1989); early H1N1 pandemic
isolates from 2009
(Chen et al., 2011) and 1918
(Stevens et al., 2006;
Glaser et al., 2005); most
human H2 and H3 seasonal
isolates (Connor et al., 1994;
Matrosovich et al., 2000)

*These anomalous results are speculated by the authors to be possibly, or even probably the result of laboratory

adaptation to egg passage and may not reflect the properties of the primary isolate. A possible counter to this

interpretation is that it is seen only in the earliest isolates from human pandemic viruses, while nearly all isolates

from after the pandemic year, which should also have been passaged in eggs, show human-adapted phenotypes.

DOI: 10.7554/eLife.18491.007
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countermeasures on average – that is, increase

the chance of taking countermeasures against a

strain that truly poses pandemic risk. However,

the counterexamples of human-to-human trans-

mission of incompletely adapted viruses (bottom

left and middle cells of Table 2) suggest that in

particular cases, reliance on this trait as a neces-

sary condition to justify countermeasures may

not identify all virus lineages that are in fact

capable of causing a pandemic.

Trait 2: Hemagglutinin pH of
activation

A. Definition of the trait

After entry into the cell, influenza viruses are

internalized into endosomes, where the pH is

progressively decreased. The pH of early and

late endosomes, as well as lysosomes, varies

between cell types, tissues, and host species.

The HA must undergo a low-pH triggered con-

formational change to a state capable of fusing

the viral and endosomal membranes. For

human-adapted viruses, HA activation typically

occurs between pH 5.0 to 5.5. HA variants that

undergo this transition at a higher pH, as is typi-

cal for avian influenza isolates, are poorly

adapted to infect human cells because the tran-

sition can happen prematurely, leading to extra-

cellular inactivation in the mildly acidic

mammalian respiratory tract (Di Lella et al.,

2016; Zaraket et al., 2013a) The pH of activa-

tion can be defined as a continuous measure-

ment representing the least acidic (highest) pH

at which a particular HA molecule is triggered.

Table 3. Hemagglutinin pH of acivation.Yellow-shaded cells show concordance between expected

and observed properties.

Avian-adapted for transmissibility Human-adapted for transmissibility

Expected
trait

pH of fusion >5.4 (Reed et al., 2010) pH of fusion 5.0-5.4 (5.5 for early
H1N1pdm) (Russier et al., 2016)

Found in
avian
isolates

Avian H1-H4, H11 isolates (Galloway et al., 2013;
Russier et al., 2016; DuBois et al., 2011; Reed et al.,
2010)

Avian H5, H8, H9,H10,H14,H15 isolates
(Galloway et al., 2013)

Found in
human
isolates

H5N1(Imai et al., 2012; Linster et al., 2014) and H7N9
(Schrauwen et al., 2016) human zoonotic isolates with
pH �5.6. One human H1N1 (2008) isolate.

Human isolates of H1N1 (1918 and 2009
lineages), H2N2, H3N2 (Galloway et al.,
2013)

DOI: 10.7554/eLife.18491.008

Table 4. Polymerase complex efficiency; entries list amino acid at PB2 627, though other residues are

clearly relevant to this trait.Yellow-shaded cells show concordance between expected and observed

properties.

Avian-adapted Human-adapted

Expected
trait

Low efficiency in mammals, PB2 590/591 G/Q, 627E,
701D

High efficiency in mammals, PB2 590/591 S/
R, PB2 627K, 701N;

Found in
avian
isolates

Nearly all avian sequences in databases as of 2005
(Chen et al., 2006)

A few entries in databases show sequences
associated with human adaptation as of 2005
(Chen et al., 2006)***

Found in
human
isolates

zoonotic H9N2 (Chen et al., 2006); some zoonotic
H5N1 (de Jong et al., 2006; Chen et al., 2006); some
zoonotic H7N9 (associated with milder course)
(Sha et al., 2016); one zoonotic H5N6 (Zhang et al.,
2016)**

Pandemic and seasonal H1N1, H2N2, H3N2
from 1918-2008 (Cauldwell et al., 2014);
some zoonotic H5N1 (Chen et al., 2006);
some zoonotic H7N9 (associated with more
severe course) (Sha et al., 2016); H1N1pdm
(Herfst et al., 2010)*; one zoonotic H5N6
and one zoonotic H10N8 (Zhang et al.,
2016)

* the role of amino acids 590 and 591 in adaptation was not recognized until after the 2009 strain had already

emerged (Mehle and Doudna, 2009); it has the residues associated with avian adaptation at sites 627 and 701

that were known at that time (Herfst et al., 2010).

** complete sequence information not given in the paper

*** the rarity of these raises questions about possible sequencing errors.

DOI: 10.7554/eLife.18491.009
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Greater acid stability (lower pH of activation) is

associated with greater human adaptation.

B. Functional, structural and genetic
determinants of hemagglutinin pH of
activation and its consequences

The HA is synthesized and folded such that the

fusion peptide is buried and inactive until spe-

cific activation signals are provided. The struc-

tural changes that expose the fusion peptide

and lead to fusion have been described in detail

(Skehel and Wiley, 2000). If the virion is

exposed to sufficiently low pH outside of a host

or host cell, the HA protein undergoes irrevers-

ible structural changes too early and is unable to

mediate virus entry; such virions become inacti-

vated. Thus the term acid stability is more

broadly used to define the threshold for

acidification that triggers membrane fusion (in

the endosome) or inactivation (if triggered out-

side of the cell for an HA that is not sufficiently

stable). During endocytosis, an influenza virion is

exposed to sequentially lower pH values in early

endosomes (pH 6.0–6.5), late endosomes (pH

5.0–5.5), and lysosomes (pH 4.6–5.0)

(Mellman et al., 1986). If the HA is too stable,

and fusion is not triggered in the acidic endo-

some of the host cell, further traffic into lyso-

somes results in virus inactivation by lysosomal

proteases (Skehel and Wiley, 2000).

Based on surveillance studies, human-trans-

missible influenza isolates appear to have HA

proteins that are more acid stable (have a lower

activation pH) than avian influenza viruses (Rus-

sell, 2014). The HA activation pH values for

H1N1, H2N2, and H3N2 seasonal viruses during

Figure 2. Influenza A polymerase complex from structure PDB:4WSB (Reich et al., 2014) consisting of PA (grey),

PB1 (cyan), PB2 (green) and bound vRNA promoter (purple). Key host adaptation sites are indicated as red balls.

Sites for importin-alpha interaction are shown as blue balls. Structure visualized with YASARA (Krieger and

Vriend, 2014).

DOI: 10.7554/eLife.18491.010
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Box 4. Ferret model: validity and limitations in pandemic

risk assessment.

The use of small mammalian models in influenza virus pathogenesis and transmission has proven

invaluable for the study of these complex, polygenic traits. The ferret model is particularly valu-

able, as ferrets are highly susceptible to most influenza A viruses without the need for prior host

adaptation. However, even this gold-standard model is not a true substitute for humans. Below,

we summarize the benefits, drawbacks, and alternatives to the ferret model for the study of

influenza.

Validity. Influenza is a respiratory pathogen in humans, and employing mammalian models that

possess comparable lung physiology permits a greater extrapolation of results from the labora-

tory. Importantly, the linkage types and distribution of sialic acids throughout the ferret respira-

tory tract are generally comparable to humans (Jayaraman et al., 2012; Jia et al., 2014): like

humans, ferrets express the sialic acid N-acetylneuraminic acid (Neu5Ac), but not the sialic acid

N-glycolylneuraminic acid (Neu5Gc), on respiratory epithelia. As a result, ferrets are uniquely

suited for the study of influenza viruses compared with other small mammalian models which

express Neu5Gc (Ng et al., 2014). Furthermore, human and avian influenza viruses exhibit com-

parable binding to upper and lower respiratory tract tissues in ferrets and humans (van Riel

et al., 2006; Shinya et al., 2006).

Secondly, ferrets infected with influenza viruses demonstrate numerous clinical signs and symp-

toms of infection associated with human disease. Ferrets infected with human influenza viruses

often exhibit transient weight loss, transient fever, and sneezing, whereas infection with selected

HPAI viruses in this species can lead to pronounced weight loss, sustained fever, lethargy, dys-

pnea, and neurological complications (Belser et al., 2009). Thus, ferrets represent a preclinical

model to assess the ability of novel vaccine and antiviral treatments to mitigate influenza virus.

As ferrets are a suitable model for the coincident study of pathogenesis and transmission, this

model allows for a greater understanding of virus-host interactions and the interplay between

both of these parameters.

Finally, the ferret model can yield valuable insights about the potential human-to-human trans-

missibility of influenza viruses – the critical determinant of pandemic risk. A recent meta-analysis

showed that estimates of transmissibility derived from ferret respiratory droplet transmission

studies could explain 66% of measured variation in human transmissibility, for influenza subtypes

that have been detected in humans (Buhnerkempe et al., 2015). Furthermore, there is a strong

statistical relationship between the attack rates measured in particular ferret experiments and

the probability that the influenza strain in question is capable of sustained transmission among

humans: if two-thirds or more of contact ferrets become infected via respiratory droplets, then

the strain is likely to have pandemic potential (see figure). However, extrapolation of this rela-

tionship to novel strains is inherently risky, and variable outcomes observed for H7N9 influenza

transmission in ferrets highlight the potential for false alarms. Further analysis of ferret transmis-

sion experiments, ideally in concert with molecular and virological research, could raise their

sensitivity and specificity for identifying pandemic threats.

Limitations. There is no ‘perfect’ small mammalian model for influenza. A longstanding chal-

lenge of the ferret model has been limited availability of ferret-specific commercial reagents

compared with other models, though recent sequencing of the ferret genome should improve

this situation (Peng et al., 2014). Ethical considerations, and the size and cost of ferrets, neces-

sitate generally small sample sizes in ferret experiments, limiting statistical power (Belser et al.,

2013). Like other vertebrate models, the ferret is not appropriate for high-throughput screens,

so research in the ferret model is most potent when complemented with in vitro and computa-

tional approaches. Finally, ferrets are not well suited to model the multiple influenza exposures

over several years that may be experienced by humans and may mold their immune responses

in ways that affect the infection risk with subsequent viruses (Andrews et al., 2015). Studies of

first influenza infection in ferrets may thus overestimate infection and/or transmission risk rela-

tive to that in populations with a history of prior infection with related viruses (Belser et al.,

2016).
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the 20th Century range from pH 5.0 to 5.4

(Galloway et al., 2013). In 2009, emerging pan-

demic H1N1 viruses had HA activation pH values

of approximately 5.5, but numerous subsequent

isolates have acquired mutations that lower the

activation pH to the range of the 20th Century

human influenza viruses (Cotter et al., 2014;

Maurer-Stroh et al., 2010; Russier et al.,

2016). Broad surveys of avian and swine influ-

enza isolates have shown that HA activation pH

can vary substantially with a range from pH 4.6–

6.0 (Galloway et al., 2013; Scholtissek, 1985).

Among avian viruses, low-pathogenic duck

viruses appear to range in acid stability from pH

5.3–6.0 and highly pathogenic avian viruses

range from 5.6–6.0 (Galloway et al., 2013).

Consistent with observed patterns in natural

isolates, some experimental evidence indicates

that within the range of natural variation, lower

activation pH is adaptive for mammalian replica-

tion while higher activation pH is adaptive for

replication in avian hosts. For isolates of H5N1

Alternatives. The ferret is but one of several well-characterized mammalian models for influenza

virus. Mice are widely used in the field as they offer a greater availability of commercially avail-

able species-specific reagents, permit studies with greater statistical power due to larger sam-

ple sizes, and offer the advantage of transgenic animals. However, not all human influenza

viruses replicate well in mice without prior adaptation due to a predominance of avian-like

receptors in the murine respiratory tract; also mice do not display clinical signs and symptoms

of influenza that mimic humans, and are not a reliable model for virus transmission studies. The

guinea pig is another model, and offers several comparable advantages to ferrets, including

generally similar lung physiology to humans and potential for transmission studies. Experiments

in guinea pigs are often less expensive than in ferrets, because of lower husbandry costs and

reduced drug costs when dosing is based on body weight (Lowen and Palese, 2007). However,

guinea pigs do not exhibit clinical signs and symptoms of infection similar to humans, and do

not exhibit severe disease following infection with HPAI or pandemic influenza viruses, limiting

their utility for viral pathogenesis studies.

Box 4-figure 1. Ferret respiratory droplet transmission experiments predict the potential for sustained

human-to-human transmission of influenza viruses.

The solid line shows the weighted logistic regression relationship predicting the probability that a given

strain is supercritical (i.e. capable of sustained spread among humans), and the dashed lines show the 95%

confidence interval for the prediction. Filled circles show the measured secondary attack rates (SAR) in ferrets

for influenza subtypes that are known to be subcritical (blue) or supercritical (red) in humans. The filled pink

area shows the range of SAR for which the virus is significantly likely to be supercritical. Reprinted from

(Buhnerkempe et al., 2015).

DOI: 10.7554/eLife.18491.012

DOI: 10.7554/eLife.18491.011
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Box 5. Role of seroepidemiology in pandemic risk

assessment.

Pandemic threat assessment can also be enhanced by immunological surveys of human popula-

tions in geographical area where strains of concern are known to be circulating (Van Kerkhove

et al., 2011). Serological surveys can help to estimate the frequency of spillover infections from

non-human to human hosts and also to assess the degree of cross reactivity arising from

endemic human strains that share recent genomic ancestors with non-human strains of concern

(Figure for Box 4).

Attempts have been made to use serological surveys to estimate the rate of spillover infections

to humans for recent strains of concern (Wang et al., 2012; Van Kerkhove et al., 2012). Some-

times blood samples are obtained from the general population (Chao et al., 2011) and other

times only high risk individuals are tested. Inherent measurement error and cross-reactivity

between human and non-human strains make the measurement of low rates of incidence prob-

lematic (Van Kerkhove et al., 2012). Confidence that serologic responses truly reflect zoonotic

transmission, rather than cross-reactivity with antibodies generated in response to human influ-

enza infection, may be enhanced by comparison of high-risk persons to those without known

exposure to zoonotic sources (Huang et al., 2015; Gomaa et al., 2015). Although there is evi-

dence of exposure of poultry workers to H5N1 influenza viruses in China, rates are much lower

than for other endemic non-human influenza viruses(Kim et al., 2011), such as H9N2

(Blair et al., 2013). More recent studies of exposure of high risk workers to the H7N9 lineage

suggest even higher rates of exposure to this new strain than has been observed in similar stud-

ies of H5N1 or H9N2 (Wang et al., 2014).

Even when rates of spillover can be estimated accurately, the use of such information in pan-

demic threat assessment is not obvious. Clearly, the first detected presence of human infections

for a given strain is of concern because the degree of transmissibility among humans is

unknown. Should the emergent strain fail to achieve sustained transmission, it is not immedi-

ately clear how best to use further information on the frequency of human spillover infections.

For example, should we interpret high sustained levels of human spillover as evidence of

increased risk because of the number of human infections, or as evidence of decreasing risk

because of the number of times the strain has failed to achieve sustained transmission?

Cross reactivity between non-human and human influenza strains has implications beyond the

measurement of spillover infections. Often levels of cross reactivity in humans may indicate

some degree of reduced population susceptibility (Worobey et al., 2014). All else equal, such

evidence of lower population susceptibility should reduce our level of concern about a pan-

demic threat from a particular virus, because even if it gains efficient human-to-human transmis-

sibility, its effective reproductive number and the proportion of the population at risk will be

less than for a virus to which there is no cross-reaction in the population. For example, older

individuals are thought to have been far less susceptible to pandemic H1N1 than were younger

individuals, because they had previously been exposed to similar strains early in life (Yu et al.,

2008). The low average age of infection with a swine variant form of H3N2 (H3N2v) in North

America (Jhung et al., 2013) is likely driven by reduced susceptibility in adults because of early

exposure to similar strains. Such immunological overlaps are likely to be a general feature of

influenza emergence because human strains frequently emerge into swine populations

(Nelson et al., 2015).

Data on reduced human susceptibility due to cross-reactivity must be synthesized with other

data used for threat assessment. In some cases, the aging of the part of the population with

prior exposure to a closely related strain could be the most important known factor increasing

the risk of an emergence event. Mechanistic models could be used to estimate the degree of

increased risk of emergence due to the aging of partially immune cohorts.
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highly pathogenic avian influenza virus, an

increase in HA activation pH within the range of

5.2–6.0 has been associated with increased repli-

cation and pathogenicity in chickens

(DuBois et al., 2011). Conversely, a mutation

that decreased the HA activation pH of A/

chicken/Vietnam/C58/2004 (H5N1) from 5.9 to

5.4 has been shown to attenuate virus growth

and prevent transmission in mallard ducks

(Reed et al., 2009) but increase virus growth in

the upper respiratory tracts of mice and ferrets

(Zaraket et al., 2013a, 2013b). Therefore, for

H5N1 viruses, a higher HA activation pH (5.6–

6.0) has been associated with a component of

fitness in birds, and a lower HA activation pH

(pH 5.0–5.4) has been linked to greater replica-

tion in the mammalian upper respiratory tract.

Two H5N1 viruses were adapted to transmit by

the airborne route between ferrets (Imai et al.,

2012; Herfst et al., 2012). After a switch in

receptor-binding specificity from avian to human

receptors (as described above) and deletion of a

glycosylation site, in both studies a final

mutation that decreased the HA activation pH

was shown to be necessary for airborne trans-

missibility in ferrets. However, these and other

studies have shown that this acid stability

change is not sufficient in the absence of human

receptor-binding specificity (Zaraket et al.,

2013a; Shelton et al., 2013). Recently, an HA

protein whose activation pH was 5.5 or lower

was shown to be required for the pandemic

potential of 2009 pH1N1 influenza virus

(Russier et al., 2016).

Nearly 100 mutations have been described

to alter the HA activation pH values of various

influenza A virus subtypes (Russell, 2014;

Mair et al., 2014). These acid stabilizing/desta-

bilizing residues are located throughout the

HA1 and HA2 subunits and tend to be posi-

tioned in regions of the molecule that undergo

large-scale changes in structure during pH-acti-

vated protein refolding (Russell, 2014;

Bullough et al., 1994; Wilson et al., 1981).

Mutations that modify the activation pH do not

appear to alter the prefusion HA protein

Box 5-figure 1. Transmission genomics of non-human transmission (top), spillover transmission (middle) and

sustained human transmission (bottom).

Haemagglutinin and neuraminidase gene segments have been color-coded to show an example shared

infection history in humans who are current spillover hosts for H7N9 and H9N2. These shared evolutionary

histories make it challenging to interpret serological studies of human spillover infections. Humans infected

by H2N2 or H3N2 will likely have cross-reactive antibodies to H9N2, because of the similarity between the

neuraminidase in those viruses. Because incidence of spill-over infection is likely to be low, even low-levels of

cross-reactivity can make the interpretation of serological studies of the general population challenging.

DOI: 10.7554/eLife.18491.014

DOI: 10.7554/eLife.18491.013
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backbone in X-ray crystal structures

(DuBois et al., 2011; Weis et al., 1990;

de Vries et al., 2014). Therefore, an experi-

mental determination or modeling of intermedi-

ate structures may be required in order to

reliably predict HA pH of activation. Further

complicating genetic prediction of HA activation

pH values are observations that the NA and M

proteins can also modulate HA acid stability in

some cases (Huang et al., 1980; Su et al.,

2009; Reed et al., 2010; O’Donnell et al.,

2014).

C. Experimental assays to measure
hemagglutinin activation pH

A variety of experimental techniques have been

developed to measure the activation pH of the

HA protein, quantified as the highest pH at

which the HA protein is activated to undergo

the irreversible structural changes that mediate

membrane fusion (Hamilton et al., 2012), or

alternatively the highest pH at which, in the

absence of a membrane with which to fuse, the

HA protein is inactivated (inactivation pH). Clas-

sical membrane fusion assays have measured

the property in bulk (Hoekstra et al., 1984).

The pH of inactivation can be measured using

aliquots of virions that are exposed to buffers of

progressively lower pH and, after restoration to

neutral pH, assayed for retention or loss of

infectivity (Scholtissek, 1985). In many classical

fusion assays, fluorescent probes are used to

label virions, HA-expressing cells, and/or target

liposomes or cells. In these in vitro assays, HA-

bound target cells are typically exposed to buf-

fers of various pH values and then lipid and/or

contents mixing are measured by fluorescence

(Loyter et al., 1988; Hoekstra and Klappe,

1993). Alternatively, cell monolayers expressing

cleaved HA proteins can be pulsed by low-pH

buffers and then incubated to readout HA-

mediated cell-to-cell fusion either microscopi-

cally by syncytia formation or by reporter gene

expression. If HA conformation-specific mono-

clonal antibodies are available for the subtype

being studied, HA-expressing cells can be

pulsed with low pH and then analyzed for con-

formational changes by flow cytometry

(Reed et al., 2009). If such antibodies are lack-

ing, HA-expressing cells can be assayed for

trypsin susceptibility after low-pH exposure,

with prefusion HA being resistant and postfu-

sion HA susceptible to trypsin degradation

(Steinhauer et al., 1996). Recently, methods

have been developed to study HA activation

and membrane fusion by individual virions,

including single virion fusion using total internal

reflection fluorescence microscopy

(Hamilton et al., 2012).

Although the biological trigger for HA’s con-

formational change is a drop in pH, HA refolding

can also be triggered by other destabilizing

agents such as heat and urea (Scholtissek, 1985;

Ruigrok et al., 1986; Carr et al., 1997). Stability

at a lower pH is associated with stability at

higher temperatures and higher urea concentra-

tions, permitting the use of these agents instead

of, or in addition to, pH in assays of stability.

Thermal stability has been determined by mea-

suring the threshold temperature at which dena-

tured HA protein loses its ability to bind

erythrocytes and cause hemagglutination

(Linster et al., 2014).

D. Role of hemagglutinin activation pH in
pandemic risk prediction

Many questions remain regarding whether HA

activation pH plays a similar role in all influenza

subtypes isolated from a wide variety of avian

species. For early isolates of the H1N1pdm line-

age in 2009, the HA protein has an activation pH

of 5.5, which appears intermediate between the

canonical human (lower) and avian (higher)

ranges. Subsequent H1N1pdm isolates have HA

activation pH values ranging from 5.2–5.4, sug-

gesting pH 5.5 may be the upper limit for human

pandemic potential and a lower value may be

preferred. Indeed, a destabilizing HA mutation

in the background of H1N1pdm results in a loss-

of-function of airborne transmissibility in ferrets

and has been reported to be followed by re-

gain-of-function by mutations that lower the HA

activation pH to 5.3, a value representative of

human-adapted H1N1pdm viruses

(Russier et al., 2016). For the moment, it

appears that while HA pH of activation that is

shown experimentally to be suitable for human

infection is highly typical of isolates from human

pandemic and seasonal influenza (Table 3, bot-

tom right) (Galloway et al., 2013), it is possible

for humans to have symptomatic infection with

(though not extensively transmit) viruses with

activation pH closer to the range associated with

terrestrial birds (Table 3, bottom left). Con-

versely (Table 3, top right), there are avian H9,

H10, H14, and H15 isolates that display activa-

tion pH typical of human viruses

(Galloway et al., 2013). The existence of these

human-like avian viruses is perhaps unsurprising,

as they may lack other essential adaptations for

human transmission. As in the case of receptor

binding, reliance on this trait to prioritize
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pandemic prevention measures should consider

this property in conjunction with other proper-

ties associated with pandemic potential and will

likely enrich the coverage of truly high-risk

strains on average.

Systematic assessment of the predictive

value of HA activation pH will require broad

empirical testing, since nearly 100 residues

throughout the HA molecule have been impli-

cated in regulating HA pH of activation. Pre-

dicting activation pH from sequence will

therefore require more extensive data. To

address this issue, sequencing studies com-

bined with phenotypic assays could be per-

formed on a large range of HA variants to

determine the effects of pH-altering mutations

in different HA subtypes. High-resolution deter-

mination of HA structural intermediates may

assist in developing molecular modeling

approaches to calculate HA stability from

sequence. In the interim, there is a pressing

need to develop high-throughput assays for HA

pH of activation, along with other properties

believed important to interspecies adaptation,

in the thousands of surveillance samples

obtained annually.

Trait 3: Polymerase complex
efficiency

A. Definition of the trait

The heterotrimer of influenza polymerase subu-

nits (PA, PB1, PB2 gene products, together

forming the RNA-dependent RNA polymerase)

and the nucleoprotein (NP gene product) is

required to transcribe and replicate the viral

genome (Huang et al., 1990). The polymerase

genes of viruses isolated from avian hosts show

a number of genetic differences from their coun-

terparts in viruses isolated from humans

(Chen et al., 2006), and avian virus polymerase

typically performs inefficiently in replicating the

viral genome in human cells (Cauldwell et al.,

2014; Naffakh et al., 2008). Adaptation to effi-

cient human-to-human transmission requires effi-

cient activity of this complex of proteins, which

we refer to as the polymerase complex, in

human cells (Cauldwell et al., 2014;

Naffakh et al., 2008).

B. Genetic basis of polymerase complex
efficiency

Some mutations in PB2 are consistently associ-

ated with efficient function of the polymerase

complex in mammalian cells (Figure 2). As long

ago as 1977, it was shown that an avian influ-

enza virus could achieve efficient replication in

mammalian cells by acquiring mutations solely

in the PB2 subunit of the viral polymerase

(Spooner and Barry, 1977). The most famous

of these mutations was later described as PB2

residue 627 (Subbarao et al., 1993), which is a

glutamic acid (Glu) in avian influenza viruses but

a lysine (Lys) in human-adapted viruses, includ-

ing those that emerged in the pandemics of

1918, 1957 and 1968, and their seasonal

descendants. An important exception is the

virus that sparked the pandemic of 2009. In this

virus, the PB2 segment had been introduced

from an avian precursor into swine viruses in

the 1990s, and mammalian adaptation had

been achieved by a different set of PB2 muta-

tions including changes at residues at 271, 590

and 591 (Mehle and Doudna, 2009). Now that

the 3-dimensional structure of the viral polymer-

ase has been elucidated, we can see that resi-

due 627, 271, 590 and 591 lie on the same

external surface. Mammalian-adapting muta-

tions increase the positive charge of this

domain, suggesting that they either adapt the

virus for interaction with an enhancing host fac-

tor or enhance its ability to repel a restriction

factor (Mehle and Doudna, 2009). Recently a

host factor, ANP32A, that differs between

mammals and flighted birds was shown to be a

cofactor of the influenza polymerase, and the

species specific difference could explain the

inefficient function of avian virus polymerase

and the stringent selection for the 627Glu->Lys

adaptive mutation in mammals (Long et al.,

2016).

Another residue implicated in mammalian

adaptation of the polymerase is residue 701 of

PB2, which lies close to but is distinct from the

627 cluster. It has been suggested that this

mutation and others in this domain at residues

702 and 714 affect the interaction between PB2

and importin-alpha isoforms either in a way that

enhances nuclear import of newly synthesized

PB2 or that affects polymerase function once

inside the nucleus, the site of viral RNA replica-

tion (Resa-Infante et al., 2008; Gabriel et al.,

2005; Sediri et al., 2015). Other mutations have

been described that adapt PB2 for the mamma-

lian nucleus (for example the triplet threonines

at positions 147, 339 and 588) but whether they

affect interaction with ANP32A, importins or as

yet unidentified host factors is not yet

elucidated.

The adaptive value of these mutations is

shown by experimental or observational data in
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which a mammalian host is infected with a virus

whose PB2 is not adapted for efficient mamma-

lian replication, but such a mutation becomes

common in the virus population over the course

of infection. Such evolution has been observed

in a fatal human case of influenza A/H7N7

(Jonges et al., 2014) and in mouse experiments

following serial lung passage using an isolate

from this outbreak (de Jong et al., 2013). Lys at

position 627 has also been associated with

greater severity in zoonotic H7N9 (Sha et al.,

2016) and H5N1 (de Jong et al., 2006) cases

However, reverse genetics experiments show

that certain strains of avian influenza may be less

able to accept these mutations than others

(Long et al., 2013).

C. Experimental assays to measure
polymerase complex efficiency in human
cells

Polymerase complex efficiency in human cells

can be measured by an in situ assay in which the

influenza polymerase is reconstituted from

cloned cDNAs in plasmids and then coexpressed

with “minigenome,” a viral-like RNA encoding a

reporter, such as luciferase. By measuring the

rate of reporter accumulation in the transfected

human cell line, specific combinations of RNA

sequences for the polymerase-complex viral

genes can thereby be screened directly for their

efficiency in producing the mRNA encoding the

reporter gene product, providing a measure of

human adaptation of the polymerase complex

(Moncorgé et al., 2010).

The original form of the in situ reconstituted

polymerase assay requires expression of just the

minimal set of four viral proteins to replicate the

minigenome RNA: PB1, PB2, PA and NP. How-

ever, recent work showed an important addi-

tional role for another protein, the nuclear

export protein (NEP), which is translated from a

spliced mRNA derived from RNA segment 8

(that also encodes the major interferon antago-

nist NS2) (Robb et al., 2009). In human H5N1

isolates that do not contain PB2 host-adapting

mutations, the inefficient activity of these avian

polymerases in human cells could also be com-

pensated for by certain mutations in NEP

(Mänz et al., 2012). It appears that NEP is an

important regulator of the balance between

transcription and replication (Chua et al.,

2013Paterson and Fodor, 2012), and can thus

enhance fitness in viruses containing otherwise

inefficient polymerases. The mechanism of this is

as follows: the polymerase-enhancing domain of

NEP is masked when NEP is folded in one

conformation. However, mutations that increase

the ability of NEP to rescue avian polymerase

function allow more ready unfolding of the pro-

tein, unmasking the “activating” domain at the

lower temperature of the mammalian respiratory

tract. Interestingly, NEP overexpression in cells

in which human-adapted polymerase is reconsti-

tuted is inhibitory because excess complemen-

tary RNA accumulates at the expense of

messenger RNA and further viral RNA replica-

tion (Robb and Fodor, 2012). Thus although a

short-term adaptation of avian virus polymerase

to mammalian cells can be achieved in this way,

it may be that further compensatory changes

rebalance NEP function in the face of polymer-

ase adaptation during continued circulation in

humans, although direct evidence for this selec-

tion is lacking. Indeed, although the rescue of

low polymerase activity by NEP may explain the

human infections by H5N1 viruses that lack other

polymerase adaptations, it is not clear that such

rescue is sufficient to create a level of transmissi-

bility consistent with pandemic spread. None-

theless, this finding shows that the minimal

polymerase assay is not always sufficient to pre-

dict viruses that have functionally adapted poly-

merase activity to human cells and that a role for

other viral proteins including at least NEP should

also be considered in assessment of polymerase

function.

Alternatively, polymerase activity could be

measured in the context of viral infections

(although this will require proper containment).

This could be achieved by measuring intracellu-

lar levels of viral transcripts using transcriptomics

or qRT-PCR. Such experiments would provide

important information if they are performed

using appropriate cell lines (or respiratory

explants) at the temperature of the human air-

way (33˚C). It has been suggested that plaque

size at 33˚C can be used as a surrogate measure

of polymerase function but plaque size is a mut-

ligenic trait. The predictive value of such assays

for transmissibility is limited.

Ultimately, it would be valuable to develop a

simple screen to assess the ability of a viral poly-

merase to support replication and transmission

in humans. This phenotype is influenced by at

least 4 different viral genes and involves interac-

tions with several different human host factors. If

all the relevant host factors were enumerated,

one could imagine quickly converting sequence

information into an assay that tested for interac-

tions that should support activity. Along these

lines the recent description of a host factor,

ANP32A that differs between flighted birds and
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mammals and explains the poor activity of avian

polymerase in mammalian cells is a step forward

(Long et al., 2016).

D. Role of polymerase complex efficiency
in pandemic risk prediction

The inefficient polymerase of avian influenza

viruses in mammalian cells is one of the host-

range barriers that likely diminishes pandemic

risk. Unlike the requirement for adaptive muta-

tion in the novel HA, this polymerase barrier can

be rather readily overcome by reassortment in

which an avian virus with novel antigenicity can

acquire one or more polymerase genes from

mammalian-adapted viruses. In addition, adap-

tation of avian virus polymerase by accumulation

of adaptive mutations in either the polymerase

genes or possibly in other viral genes such as

the NS segment encoding NEP can enhance

avian virus polymerase function sufficiently to

support a host range jump.

Many H5N1 viruses that circulate today in the

avian reservoir already have mutations in PB2 at

627 (Long et al., 2013) or 701 (de Jong et al.,

2006), likely resulting from the reintroduction of

mammalian-adapted strains back into the wild

bird reservoir. These have been associated in

human infections with more severe cases

(de Jong et al., 2006). The fact that these

strains have not achieved sustained human-to-

human transmission demonstrates that while

polymerase adaptations to humans are likely

necessary, they are not sufficient for a strain to

spark a pandemic. Moreover, the absence of the

signature PB2 627K mutation in the 2009 H1N1

pandemic strain demonstrates the limitations of

relying on any single mutation for risk prediction

(Herfst et al., 2010); viruses with the avian-like

residue have also been isolated from zoonotic

human cases of H5N1, H7N9, and H9N2 infec-

tions (Table 4, bottom left). On the other hand,

the concept that adaptation of the polymerase is

necessary for sustained human transmission is

validated by findings that the 2009 pandemic

strain had adapted to replication in human cells

by changes other than E627K within the poly-

merase (Mehle and Doudna, 2009). Identifica-

tion of biophysical mechanisms common to

mammalian-adaptive mutations may in the

future provide the basis for new biological or

biophysical assays of polymerase function to

inform risk predictions.

In summary, no single polymerase mutation

appears to be predictive of pandemic risk for all

viruses, but the concept that the polymerase

must adapt to human cells before it can cause

extensive human-to-human transmission appears

consistent with the four pandemic jumps that

have occurred in modern times.

Discussion
There has been tremendous progress in under-

standing the traits involved in the adaptation of

avian influenza viruses for efficient human-to-

human transmission and the genetic and struc-

tural basis of each of these traits. While the abil-

ity to use virus sequence data to inform risk

assessment of pandemic potential is improving,

it remains essential to consider these data along-

side other experimental and epidemiological

data. For example, in 2013 there was a substan-

tial increase in the number of human infections

with A/H5N1 viruses in Cambodia. The increase

in infections was cause for substantial concern

by itself. Enhancing the level of concern was the

finding that some of the viruses collected from

infected humans contained previously identified

genetic mutations suggestive of human adapta-

tion (Davis et al., 2014). These findings led to

extensive epidemiological and experimental

investigations and then to the decision to pro-

duce a candidate vaccine virus from a virus rep-

resentative of the 2013 Cambodian outbreaks.

While predictions of virus phenotypes from

sequence data can be informative, they are not

infallible, for several reasons, notably the large

number of sites involved in determining such

traits (Raman et al., 2014; Russell, 2014;

Cauldwell et al., 2014; Mehle and Doudna,

2009; Mänz et al., 2012; Herfst et al., 2010),

the important role of epistasis (dependence of a

mutation’s effect on the genetic background in

which it appears) in determining these traits

(Russell et al., 2014; Kryazhimskiy et al., 2011;

Gong and Bloom, 2014; Bloom et al., 2010;

Wu et al., 2016; Raman et al., 2014;

Tharakaraman et al., 2013; Gong et al., 2013),

and the consequent imperfections in our ability

to map single sequence polymorphisms to a trait

value. For example, the hallmark HA amino acid

residues 190, 226 and 228 are important to

human adaptation, but “human-adapting” muta-

tions at these residues do not always change

receptor-binding specificity; it depends on the

genetic background. Similarly, amino acid resi-

dues 627 and 701 of the PB2 protein are often

involved in human adaptation, but both carried

the “avian-adapted” residue in the 2009 H1N1

pandemic strain. When these changes were

introduced individually or together in the labora-

tory, the resulting polymerase showed greater
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activity in a minigenome assay, but replication

was unchanged or attenuated in vitro, in mice,

and in ferrets (Herfst et al., 2010; Jagger et al.,

2010). After the pandemic strain was identified

and its anomalous residues at these sites noted,

other sites within PB2 were identified and found

to be responsible for human adaptation

(Mehle and Doudna, 2009; Yamada et al.,

2010).

Based on the evidence to date, it seems clear

that all three of the traits considered in this

review, and possibly others in Table 1, must be

simultaneously present at least to some degree

for a strain to cause a pandemic. Yet with only a

few instances of pandemic strains emerging per

century, it should not be surprising that a new

pandemic strain would violate an apparent rule

of human adaptation that applied perfectly to

previous pandemic strains, as in the case of the

PB2 residues associated with human adaptation

in 2009, or as in the case of activation pH of HA

in early 2009 isolates (Russier et al., 2016),

which had a value outside the range previously

seen in human influenza viruses. It is unclear

whether the list of sites and phenotypic traits

associated with human adaptation is nearly com-

plete or will continue to grow as we experience

additional pandemics. At least for the traits of

receptor binding (Childs et al., 2009) (Table 2)

and acid stability (Russier et al., 2016) (Table 3),

full human adaptation may not be required to

initiate a pandemic in a virus that is otherwise

well-adapted for humans. Thus, whether or not

the list of traits required for pandemic is now

complete, our understanding of where the

threshold lies for being sufficiently human-

adapted continues to change.

There are three complementary approaches

to address these limitations: improving genetic

prediction of biological traits, improving assays

of these traits, and improving animal models of

human transmission; all approaches are currently

progressing in parallel (Holder et al., 2011;

Simon et al., 2011). The first approach aims to

further refine our understanding of sequence-to-

trait relationships by continued studies of

diverse, naturally or artificially produced muta-

tions and their effects on the traits of interest.

Such research could use all of the approaches

described above and higher-throughput assays

that could be developed with improved technol-

ogy, for example as described in Box 3. This will

include generating mutations not found in

known strains in nature to probe for those that

could be involved in human adaptation in the

future (Hanson et al., 2015; Thyagarajan and

Bloom, 2014). The goal would be to identify

classes of functionally equivalent substitutions,

sufficient individually or in defined combinations

to confer a trait of interest when introduced into

a defined, avian-adapted genetic background.

Use of in vitro approaches with noninfectious

viruses or viral components, or infectious viruses

containing surface proteins to which there was

already population-wide immunity would reduce

the possible biosafety and biosecurity risks of

such studies (Lipsitch and Inglesby, 2014).

The second approach is to develop and

improve the throughput and accuracy of bio-

chemical and cell-biological assays of these

traits, so that virus isolates can be characterized

phenotypically in a routine manner, reducing

reliance on sequence-based predictions. It

seems feasible to develop high-throughput ver-

sions of many of the assays described in this

review for each of the three traits discussed,

which could then be routinely run on surveillance

isolates to contribute to risk prediction. For

none of these three traits is there a single gold

standard assay, and different assays may provide

different estimates of risk.

The third approach is to improve animal mod-

els to more precisely study phenotypes that are

important for human adaptation, and to clarify

whether the notion of ’mammalian adaptation’ is

in fact a valid category. Ferrets are the closest

known model for human transmission (see

Box 4). Respiratory-droplet transmission studies

in ferrets, and potentially in other animal mod-

els, have shown a remarkably strong correlation

with human transmissibility of influenza A strains

(Buhnerkempe et al., 2015). While these assays

are not perfectly predictive, they may be the

most reliable way at present to assess the trans-

mission potential of a virus in human popula-

tions. Here a partial counterexample to their

overall strong predictive value is H7N9 avian

influenza isolates from human zoonotic cases.

These viruses transmit in ferrets, albeit less effi-

ciently than human seasonal strains, yet human-

to-human transmission has been extremely rare

in the hundreds of human zoonotic cases caused

by H7N9 (Buhnerkempe et al., 2015). A chal-

lenge is the expense and practical challenge of

using large enough numbers of ferrets

(Buhnerkempe et al., 2015; Belser et al., 2013;

Nishiura et al., 2013) to assess transmissibility;

this will remain a technique of limited through-

put for the foreseeable future. Nonetheless, the

value of ferret testing for risk assessment can be

enhanced in at least two ways: first, by standard-

izing the conditions for ferret transmission
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experiments, so these can be more confidently

compared between laboratories; and second, by

continuing to combine ferret studies with studies

of viral traits and sequence/structural studies to

further identify correlates of transmissibility in

ferrets.

While the biological properties of a virus cer-

tainly play a large role in determining the pan-

demic risk posed by a strain, it is possible that

even a virus perfectly adapted for human-to-

human transmission might fail to transmit exten-

sively, due to ecological factors, chance, or

both. Initiation of a pandemic requires not only

a well-adapted virus but ecological opportunity

to spill over into humans (perhaps multiple times

if the first introduction is not “successful”

[Mills et al., 2006]), as well as a human popula-

tion that is immunologically susceptible and suf-

ficiently connected to establish ongoing

transmission (Box 5). Additional complexity

arises from the fact that selection pressures for

within-host proliferation and competition may

diverge from those needed for efficient trans-

mission (Park et al., 2013). Genetic bottlenecks

at the time of transmission (Poon et al.,

2016; Varble et al., 2014; Zaraket et al., 2015)

may further enhance the role of chance, as a

highly adaptive variant arising in a host may not

get transmitted in a particular event. However,

selective bottlenecks, which have been observed

in experimental transmission of H5N1 and avian-

like H1N1 viruses in ferrets, could lower the bar-

rier to emergence of human-adapted viruses

(Moncla et al., 2016; Wilker et al., 2013). Both

ecological and host factors are considered in the

CDC’s IRAT (Trock et al., 2015).

Evolutionary factors also play a role in pan-

demic risk evaluations. Even with excellent sur-

veillance, we may never isolate exactly the virus

that is destined to cause a pandemic from an

animal reservoir or a zoonotic human case;

rather, we may isolate its evolutionary precursor.

Understanding the potential of a strain to pro-

duce pandemic-capable progeny is yet a further

scientific challenge. Perhaps the most startling

finding of the gain-of-transmissibility experi-

ments with H5N1 avian influenza viruses was

that so few mutations were required to convert

a strain circulating in birds to mammalian trans-

mission. This concern was reinforced by a finding

that many of these mutations, including combi-

nations of some of them, were already present

in strains isolated during surveillance

(Russell et al., 2012). The interpretation of the

latter finding, however, is complicated by the

problem of epistasis: the effect of these

mutations in the genetic background of field

strains may or may not be the same as in the

strain studied in the laboratory.

It seems clear that a pandemic risk assess-

ment informed by genetic sequence data is bet-

ter than one uninformed by such sequence data,

but the thought experiment of considering the

2009 swine-origin virus, had it been seen prior

to initiating the pandemic, shows that such

efforts may fail to identify the risk posed by

strains that subsequently cause a pandemic.

According to the knowledge at the time, early

human isolates of 2009 (and presumably their

swine precursors) would have had an HA inter-

mediate between human and avian adaptation

in terms of receptor binding. They had an activa-

tion pH outside the range previously seen in

human viruses and more typical of avian viruses.

Moreover, these viruses lacked the amino acid

residues then thought to confer human adapta-

tion for the polymerase complex. We must imag-

ine that had this strain been detected in swine

surveillance prior to the pandemic emergence,

genetic as well as phenotypic considerations

would have marked it as low risk, creating a

false-negative risk assessment. Given that this

virus did in fact create a pandemic, it is evident

that failure of a nonhuman influenza virus to fully

meet the three criteria discussed in this review

does not disqualify it from posing a significant

risk of a pandemic.

Whether false positive predictions of high

pandemic risk are also possible is more difficult

to determine, because even a strain that is truly

high risk may fail to cause a pandemic for any

number of reasons; thus it is challenging to

prove that an assessment of high risk for a par-

ticular strain was erroneous. From a decision-

making perspective, a false positive is perhaps

less worrisome than a false negative, as a false

positive may motivate expenditure on preven-

tion measures directed at a strain that would not

have caused a pandemic, while a false negative

may lead to a failure to respond to a strain that

would.

As we seek to improve our understanding of

genetic and phenotypic bases of efficient human

transmission of influenza viruses, there are multi-

ple possible approaches. One approach that has

received considerable attention recently is to

perform gain-of-transmissibility studies in highly

pathogenic avian viruses; this has been contro-

versial because of concerns about the unusual

biosafety and biosecurity risks entailed in such

studies (for contrasting perspectives on these

risks, see the exchange in 2014–5 between
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Lipsitch and Inglesby, and Fouchier

[Lipsitch and Inglesby, 2014,

2015; Fouchier, 2015]).

There are alternative approaches to ferret

gain-of-transmission experiments in highly path-

ogenic avian influenza viruses, though disagree-

ment remains about the level of evidence such

alternatives provide. One alternative is to per-

form similar experiments starting from avian

viruses that are not highly pathogenic in mam-

mals, and/or are related to currently circulating

human seasonal viruses, so that immunity would

already be present in the population. Such

experiments can provide the same degree of

causal rigor as gain-of-function in highly patho-

genic avian viruses with novel surface antigens

and can elucidate general principles of mamma-

lian adaptation, but they cannot confirm that the

same changes would be observed in other

strains that are not used in the experiment. A

recent report shows a related way forward: the

recreation of the steps of mammalian adaptation

using viruses whose HA and NA are already cir-

culating in humans (Lakdawala et al., 2015).

Such loss+gain-of-transmissibility experiments

reconstruct the properties of naturally occurring

seasonal human strains, from laboratory-gener-

ated, avian-adapted (or at least human-dead-

apted) precursors. Reconstructing such seasonal

strains should pose a risk similar to that of work-

ing with the seasonal strains themselves, less

than that of a novel subtype. A 2011 report

employed a similar strategy, demonstrating the

importance of HA activation pH in mouse adap-

tation by selection experiments on a live attenu-

ated H5N1 vaccine strain lacking the NS1 gene

(Krenn et al., 2011). More recently, a 2009

H1N1 pandemic virus was modified to express a

mutation that increased pH of HA activation,

then selected in ferrets for droplet transmission,

and it was found that a second site mutation

partially restored the lower pH of activation of

the selected virus (Russier et al., 2016). One

limitation of de-adaptation strategies is that the

acquisition of transmissibility is perhaps most

likely to evolve by reversion of the de-adaptation

changes. As with all gain-of-function and loss-of-

function studies, epistatic effects of other loci in

the genetic background of the viruses used in

such studies set limits to the generalizability of

such experiments. Another kind of alternative is

simple characterization of ferret transmissibility

of naturally occurring highly pathogenic strains

without selection for airborne transmission. This

approach can provide correlative evidence for

the importance of genetic differences but

cannot prove the mechanistic role of any particu-

lar change.

Even if strain-based assessment methods

were much better, surveillance would be a key

rate-limiting step for pandemic risk assessment

to direct countermeasure development. If a

virus about to cause a pandemic is not found in

surveillance it cannot be assessed. The fact that

we have yet to identify a pandemic strain in

nonhuman hosts or in human spillover cases

before the pandemic starts indicates there is

much work to be done. Although surveillance

has expanded since the 2009 pandemic, it has

not been designed to optimize the chances of

detecting a pandemic strain before it becomes

pandemic; indeed, how to do so is not clear at

present. Some possible considerations would

be to maximize the diversity of isolates col-

lected, to preferentially sample strains that are

known to cause human infections, and to feed

back information from risk assessments to

inform choice of sampling. Rapid sequencing

and phenotypic characterization of strains and

dissemination of this information, along with

interpretations of the risk profiles implied, is

also important to maximizing the value of sur-

veillance. Further thought should be given to

the possibility of using high-throughput

sequencing as a screen for which viruses should

be subjected to phenotypic testing, which for

the moment is typically more costly, slower, and

lower-throughput than sequencing. More delib-

erate approaches to the design of surveillance

systems would also depend on answering the

question addressed in Box 2: how different

must a virus be from previously characterized

viruses to merit separate evaluation of its pan-

demic risk? The uncertainties noted above

about the phenotypic characteristics of viruses

isolated from previous pandemics (which may

have been present in the primary isolate or may

have arisen during egg passage in the labora-

tory) underline the need for careful attention to

passage histories of surveillance isolates to

avoid altering their genotype and phenotype

post-isolation (Bush et al., 2000). Expanding

and rationalizing surveillance in this way would

require overcoming political, logistical and

financial constraints that vary between countries

and regions.

Even with all of the foregoing suggestions in

place, it may be improbable that we can reliably

identify the ’needle in the haystack’ that is the

next pandemic influenza strain. Ultimately, the

goal is not risk assessment for its own sake, but

preparedness and early response to pandemic
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threats. In other areas where security is at stake,

it has been argued that making and improving

predictions should be accompanied by a sys-

tematic effort to design responses that will not

fail even if the predictions are wrong (Dan-

zig, 2011). In the influenza context, the value of

some countermeasures is strongly reliant on our

ability to identify truly high-risk prepandemic

threats: notably, preparation of seed vaccine

stocks for candidate pandemic strains, stockpil-

ing of subtype-specific vaccines, and culling of

poultry infected with such strains. Other types

of countermeasures, ranging from strengthening

local public health departments to stockpiling

antivirals or ventilators to developing faster pro-

cesses for vaccine manufacture to universal vac-

cines that should be effective against any

influenza A strain, should provide benefits

whether or not we have advance notice of the

strain causing the next pandemic. A comprehen-

sive assessment of priorities to prevent or miti-

gate the next influenza pandemic should

consider the balance between improving our

risk assessment capacity and developing

responses robust to the possibility that we will

once again be caught by surprise.
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