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inward physiological states of children that may serve as 
key markers of social engagement. Such technologies may 
not only help characterize qualitative aspects of children’s 
social engagement, but may potentially also assist with the 
identification and quantification of developmental 
delays [22]. This paper explores whether we can 
successfully leverage modern biosensors to identify 
children who have been rated by an adult interactive partner 
as more or less difficult to engage. In particular, we 
monitored the electrodermal activity of 51 child-adult dyads 
during a short naturalistic social interaction (see Figure 1 
for an example of interaction), and used Support Vector 
Machines to automatically differentiate children who were 
rated as easier versus harder to engage.  

The paper is organized as follows. We begin by 
summarizing related research on measuring engagement 
and the use of physiological information in the context of 
social engagement. We then outline our procedure for 
collecting data and rating children’s engagement. After 
explaining how the physiological signals are preprocessed, 
we describe a variety of features to characterize the child 
and adult’s physiological responses. We then report our 
main findings in terms of classification performance of 
combinations of different types of features. We conclude by 
providing some discussion and highlighting future steps to 
push forward this line of research. 

BACKGROUND AND PREVIOUS WORK 

Measuring Engagement 
Analyzing the engagement level of people has been the 
focus of interest in a wide variety of situations. Although 
the definition of engagement is very context-specific, there 
are three well differentiated approaches to measuring it: 
self-reports, external ratings, and physiological information. 

Self-reports can take many forms such as interviews or 
surveys taken during or after a situation of study [27]. This 
method is arguably one of the fastest and most direct 
approaches to gather information but is subjective and can 
suffer from information recall bias. Moreover, self-reports 
are disruptive and are not appropriate for certain 
populations, such as young children who may not be able to 
reflect on and articulate their affective state. An alternative 
method involves having experienced coders review videos 
of recorded interactions to rate the perceived interactive 
experience, or to mark onsets and offsets of individual 
interactive behaviors or engagement states [1]. This method 
is very common in the field of facial expression analysis 
where Facial Action Unit coders [8] annotate the 
appearance of specific facial movements associated with 
basic emotions. Although this approach is useful for the 
development of automatic expression recognition systems, 
it can be relatively time intensive and laborious to train 
coders to reliability [5]. 

A less disruptive approach involves measuring 
physiological signals. A wide variety of signals have been 
used in different settings. In the context of market research, 

for example, researchers have shown that signals such as 
gaze behavior [31], heart rate [20] and EDA [19] can be 
used in laboratory settings as effective indicators of the 
interest levels of people to certain stimuli. For instance, 
Hernandez et al. [14] and, more recently, Silveira et al. [29] 
have shown that physiological metrics such as facial 
expressions and EDA, respectively, can be used to 
recognize the engagement level of TV viewers. In other 
social environments such as conference meetings, head 
pose orientation has been widely used to identify the visual 
focus of attention of participants [30, 32], with the 
underlying assumption that people pay attention to 
whatever they are looking at. Although facial and head 
gestures can be measured at a distance, they are easier to 
voluntarily control and may not always be congruent with 
the internal affective experience.  
Social Engagement and Synchrony 
A key property of engagement during social interactions is 
interactional synchrony [10, 22], which is associated with 
the coordination of behaviors between individuals during 
social interactions. Traditionally, a high degree of 
synchrony indicates a high level of engagement, consisting 
of closely coordinated behaviors and contingent social 
responses [18].  

The synchrony of physiology during social interactions 
(also known as physiological linkage) has been studied in a 
broad set of applications. For instance, Levenson and 
Gottman [21] monitored several physiological signals such 
as heart rate and EDA in 30 married couples to study 
marital satisfaction. They found that greater 
synchronization was associated with more distressed 
interactions. In a different study, Marci et al. [24] analyzed 
EDA to study the empathy between 20 patient-therapist 
dyads. In this case, greater synchronization was associated 
with higher patients' ratings of perceived therapist empathy. 
Physiological synchrony has also been used as a measure of 
the intensity of gaming and social interactions [9, 12], 
irrespective of the emotional valence of the interaction. 

Methodological limitations such as wired and cumbersome 
sensors traditionally have made impractical the study of 
inward responses of children in the context of naturalistic 
interactions. However, the availability of modern wearable 
physiological sensors provides an opportunity to begin to 
study internal physiological markers of social engagement 
in the course of naturally-occurring scenarios. One relevant 
example is the work of Hedman et al [13], which monitored 
and visualized the EDA of 22 children with sensory 
challenges while they used zip lines, jumped in ball pits, 
and otherwise engaged in occupational therapy services. 
More recently, Chaspari et al [7] explored the utility of 
EDA of three children with Autism Spectrum Disorder and 
their therapists to better quantify the quality of 
interventions. In comparison with previous studies, the 
work presented in this paper considers 51 children-adult 
interactions and is the first to explore physiological 
synchrony in automating recognition of social engagement.  

 

 





 

child [25]. The ordering of the different activities remained 
constant for all sessions. 

Engagement Scoring 
Adults were research assistants with extensive experience 
in interacting with young children. Each adult was trained 
to consistently and naturally guide children through the five 
activities, and score child’s engagement for each of the five 
activities. As part of the training, adults were required to 
obtain over 90% agreement for 3 consecutive sets of 10 
sessions previously rated by a clinical consultant.  

Although the definition of engagement varies for different 
settings and studies, our play protocol defined engagement 
as the amount of effort required to engage the child. The 
scoring guidelines used by the adults were as follows: 

• Score 0: The interaction with the child required little 
effort for the adult and/or the child was ready and eager 
to engage. 

• Score 1: The interaction with the child required some 
effort on the part of the adult due to the child’s shyness or 
distractibility. 

• Score 2: The interaction with the child required extensive 
effort and/or the child was highly fussy or refused to 
interact. 

Data Overview 
In this work, we collected and synchronized information 
from 74 sessions. However, 7 of the sessions contained 
abnormally high electrodermal responses (>20 µSiemens) 
and the QTM sensor was unable to record the data without 
quantization problems (e.g., see left in Figure 4). 
Furthermore, 16 other sessions were discarded due to the 
presence of large amounts of artifacts in at least one of the 
sensors. These sessions could be easily characterized by 
long periods of flat responses (i.e., 0 µSiemens) and/or 
abrupt signal drops that were incongruent with the slow 
exponential decays of typical EDA responses [4]. Abrupt 
signal drops such as those observed on the right in Figure 4 
are mostly due to movement of the sensor. The distribution 

of engagement ratings of the excluded sessions was similar 
to the one observed when considering all the sessions.  

After excluding the sessions with quantization and artifact 
problems, the final subset of data contained 51 sessions (27 
females), guided by 4 different adults (all female and right 
handed). For these 51 sessions, the average age of the 
children was 21 months (SD = 5.23), and the average 
duration of the social interaction was 2.72 minutes 
(SD = 1.02 minutes). Furthermore, 79.6% of the individual 
stage engagement rating scores were 0, indicating that most 
children were easy to engage. 

CHARACTERIZATION OF EDA RESPONSES 

Electrodermal Activity and Arousal 
Electrodermal activity, often referred to in earlier work as 
galvanic skin response, has been one of the most widely 
used signals in psychophysiological research during the last 
century [4]. EDA has been commonly measured as skin 
conductance off the finger or palmar surface, which 
provides an indication of the activation of eccrine sweat 
glands. Since this type of sweat gland is purely innervated 
by the sympathetic nervous system, skin conductance has 
been considered as one of the best indicators of sympathetic 
arousal [4]. Increased levels of arousal typically result in 
sensory alertness, increased readiness to respond, and 
mobility. Furthermore, arousal regulates attention and 
emotion, which are critical for successful social interactions 
and daily functioning. 

Preprocessing 
Prior to analyzing physiological responses, the data 
typically undergoes several preprocessing steps. Quick 
sensor movements may introduce signal artifacts in the 
form of high frequency changes that need to be considered. 
This problem is very common in uncontrolled settings such 
as social interactions as these typically involve gestures and 
body movements. In order to attenuate these artifacts, we 
use a Hanning filter with a 1 second window [1].  

      
Figure 4.  Examples of noisy EDA responses: quantization error (left), and movement of the sensor (right). 
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A fundamental challenge when developing algorithms that 
rely on EDA data is the large individual differences 
(e.g., range of values) that appear due to multiple factors 
(e.g., different amount of sweat glands, variable skin 
thickness). This problem is especially relevant when 
building supervised learning tools that infer certain 
information (e.g., engagement levels) from a group of 
people (i.e., training set) with the hope that it would 
generalize to other unseen people (i.e., testing set). In this 
work, we normalize the range of values of each session to 
be between zero and one in accordance with standard 
practice (e.g., [15], [23]). This normalization not only 
amplifies the physiological changes associated with the 
session but also facilitates comparison across people (both 
within training set and between training and testing sets).  

Finally, while common EDA measurements are a one 
dimensional time series signal, there are typically two 
distinct components: a phasic component which shows 
quick changes associated with stimulus-specific or non-
specific responses, and a tonic level which changes more 
slowly and can be observed in the absence of any particular 
discrete environmental event or external stimuli. While 
some studies using EDA in the context of classification use 
the original 1D signal (e.g., [15]), this work explores the 
discriminative power of each of the components separately. 
This approach has the additional benefit of being able to 
better capture complementary aspects of the physiological 
responses. In order to extract the two components from the 
original signal, we utilized the deconvolution approach 
proposed by Benedek and Kaernbach [1]. Figure 5 shows 
an example of the decomposition.  

Features 
Before the physiological responses can be used for 
classification, it is necessary to extract representative 
features. In this work, we explored the utility of multiple 
features, which can be grouped into two categories: 
individual features (IF), and synchrony features (SF). 

From the tonic and phasic components of each child’s EDA 
signal, we extracted the following IF features: mean, 
standard deviation, area under the curve, relative positions 
of maximum and minimum values, slope (estimated by 

linear interpolation), average number of peaks, and average 
of the peaks amplitudes. Peaks were detected using the 
findpeaks MATLAB function and were required to have an 
amplitude of at least 0.01 after normalization and a 
minimum distance between peaks of at least 1 second. 
While some of the features aim to capture the temporal 
aspects of the responses (e.g., slope captures an overall 
increase or decrease of the response), other features aim to 
capture overall activation throughout the period 
(e.g., average number of peaks can be seen as an indicator 
of arousal). 

Motivated by previous research in physiological synchrony 
(e.g., [21], [24]), we also explored several SF features to 
capture the relationship between the EDA responses of the 
child and the adult. One of the most effective and 
commonly used methods is the Pearson product-moment 
correlation (PC), which measures the linear dependence 
between two variables. Although this method works well in 
practice, we also evaluated the following two methods: 

• Canonical Correlation (CC). This method similarly 
measures linear dependence between two variables but 
also tries to represent the information in a different 
dimensional space where the correlation is maximized. 
An important property of this method is that the result is 
invariant with respect to affine transformations of the 
variables. Therefore, we hypothesized that this method 
could address some of the individual differences of the 
signals that could not be corrected by the preprocessing 
steps. To the best of our knowledge, this approach has not 
been previously explored in the context of social 
engagement from EDA. 

• Dynamic Time Warping (DTW). This method utilizes a 
dynamic programming approach to find the similarity 
between two signals. The main advantage of this method 
is that it allows some temporal flexibility in terms of 
signal durations and delayed responses. We hypothesized 
that this method would help align and compare 
asynchronous responses between child and adult, such as 
those that could be observed during turn-taking 
interactions (e.g., ball play interaction).  

As part of the SF features, we also computed the difference 
between some individual features extracted from both the 
adult and the child's responses. In particular, we extracted 
mean, number of peaks, and average amplitude of these 
peaks. Then, we utilized the L2-norm as a distance metric 
to capture the difference between the pairs of features. 
Figure 6 shows an overview of the features we explored, 
grouped into the two categories. Note that the 
dimensionality of each feature is one.  

EXPERIMENTAL SETTING 
The goal of the study is to explore the feasibility of 
accurately and automatically identifying children rated as 
more or less difficult to engage by relying solely on the 
physiological responses of a 5-stage social interaction. 
While the original goal was to provide fine grained 

 
Figure 5.  Normalized skin conductance (top-blue) and its tonic 
(green-dashed) and phasic (red-bottom) components for one of 

the child's sessions. 
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it provides a classification performance that is more 
invariant to unbalanced classes than traditional metrics 
(e.g.  Accuracy, F1 score). Furthermore, this metric 
captures the discriminative power of the classifier for 
several configurations (i.e., different thresholds on the 
probability estimates). Note that a classifier that always 
predicts the most likely class will obtain a performance of 0 
as none of the curves can be computed (i.e., probability 
estimates are always one).  

RESULTS 
In this section we analyze the physiological responses of 51 
children during their interaction with an adult. The first two 
parts of the analysis provide graphical and quantitative 
intuition of the most relevant EDA characteristics, 
respectively. The final part of the analysis provides 
quantitative evaluation of the different types of features and 
recognition performance in the context of social 
engagement recognition. 

Physiological Responses 
In order to provide a preliminary graphical intuition of the 
physiological responses, Figure 7 shows the average 
normalized EDA response and standard error of children in 
the easier (left) and harder (right) to engage groups. Since 
the completion time was different for each session, we 
resampled each response to last the average session time of 
each group, and then computed the average across sessions 
within the same group. While the average session time of 
children in the first group was 2.44 minutes (STD = 0.4), 
the average session time of the second group was 2.93 
minutes (STD = 1.25). This difference is to be expected as 
by definition in the latter group the adults had to spend 
more time trying to maintain the child’s engagement. As 
can be observed in the graph, the average physiological 
responses of each group show distinctive trends. While 
children who were easier to engage displayed a more 
constant response throughout the session (around the 
average), children who were more difficult to engage 
displayed a response that continuously increased over time. 
Note, however, that the distribution of engagement ratings 
throughout the interaction stages varied for each child. 
Figure 8 shows the average engagement score throughout 

the whole interaction for children in the harder to engage 
group. The engagement scores for children in the easier to 
engage group remained constant throughout the whole 
interaction (zero by definition). As can be seen, the ratings 
fluctuate for the different parts of the interactions, 
indicating that children were more difficult to engage right 
at the beginning (corresponding to the adult saying hello to 
the child) and easier to engage by the end of session 
(corresponding to the gentle tickling). Furthermore, the 
lowest engagement scores were achieved between the 60 
and 120 seconds of the session, corresponding to the part 
where the adult and the child looked through pictures in a 
book together. Interestingly, both positive and negative 
fluctuations of the engagement scores seem to be associated 
with EDA increases. In the following sections, we explore 
different EDA characteristics in terms of classification 
performance. 

EDA Characteristics 
In order to further characterize the physiological responses, 
this section quantifies the utility of different features in 
terms of classification performance. In particular, we 
consider each of the individual and synchrony features and 
extract them from both the tonic and the phasic 
components.  

 
 

Figure 8.  Average engagement score (blue) and standard error 
(green) for children in the harder to engage group. Low scores 

indicate easier interactions and high scores indicate more 
difficult interactions.  
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Figure 7.  Average EDA (blue) and standard error (green) of children in the easier (left) and harder (right) to engage groups. 
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Table 1 shows the classification performance obtained for 
each of the IF features extracted from the child’s 
physiological responses. As can be seen, the relative 
position of the maximum tonic value yielded the highest 
classification performance (69.91%), followed by the tonic 
mean and area under the curve (66.23%). For the phasic 
component, the standard deviation yielded the highest 
performance (64.67%). Similarly, Table 2 shows the 
classification performance for each of the SF features. 
While PC yielded the best performance among the tonic 
features (59.38%), the difference between the number of 
peaks of the dyad yielded the best performance above all 
the features, which is 10% higher than the best tonic 
feature. The best result achieved by IF features is 
comparable to the best result achieved by SF features, 
demonstrating that both types are relevant in the context of 
engagement recognition. However, while the tonic 
component may be more relevant when only analyzing the 
responses of children (in accordance with Figure 7), the 
phasic component provides more discriminative 
information when capturing the synchrony of the dyad. 

In order to assess if the decomposition of EDA into the two 
components provided meaningful information, we also 
included a mixed component, which corresponds to the 
original one dimensional EDA response. As can be seen on 
the tables (bottom rows), the best performance achieved 
with this approach is below the best performance achieved 
by the best feature of the other two components. 
Furthermore, extracting the two components can help better 
interpret the results. For instance, higher average peak 
amplitude in the mixed component may correspond to a 
case where there is a high tonic level and small phasic 
peaks, or another case where there is low tonic level and 
large phasic peaks. By looking at features from the two 
components separately, such as mean and average of peak 

amplitudes of the tonic and phasic components, we can 
infer that the tonic component provides more discriminative 
information in this case. These results suggest the 
decomposition of EDA responses is recommended for this 
type of analysis. 
Engagement Recognition 
While the previous section focused on the discriminative 
power of each feature independently, this section explores 
combining several features to determine the best possible 
performance. Furthermore, in order to assess the benefit of 
monitoring both interactive partners, we applied Sequential 
Forward Selection to IF and SF features separately, and 
then combined the two types. 

When considering the IF features extracted from the child 
responses, incorporating SFS during the training phase 
yielded a performance of 74.35%. While different subsets 
of features were selected at each training fold, the top 3 
most selected features were the position of maximum value 
(6 times) and the average peak amplitude (5 times) from the 
tonic component, and the standard deviation from the 
phasic component (4 times). When considering the SF 
features, incorporating SFS yielded a performance of 
76.16%, which is slightly higher than using only individual 
features. In this case, the top 3 features were: DTW 
(8 times) and the differences between the number of peaks 
from the phasic components (6 times), and DTW from the 
tonic components (7 times). Interestingly, DTW were not 
among the best features when considered separately 
(53.12% and 50.52% from tonic and phasic components, 
respectively), but still provided relevant complementary 
information when combined with other features.  

Finally, we examined the recognition value of combining 
both IF and SF features. In this case, incorporating SFS 
yielded a classification performance of 81.03%, 

Component PC CC DTW  Mean  #Peaks  Avg.  Peak 
Amplitude 

Tonic 59.38  54.13  53.12  50.32  45.73  50.45  

Phasic 45.06 55.30  50.52  46.35  69.29 47.09  

Mixed 63.18 50.36 45.64 48.54 43.21 51.79 

Table 2. Classification scores (%) of synchrony features.  (PC: Pearson product-moment 
correlation; CC: Canonical correlation; DTW: Dynamic Time Warping) 

Component Mean STD Area Position 
min. 

Position 
max. Slope #Peaks Avg. Peak 

Amplitude 

Tonic 66.23 44.85 66.23 53.91 69.61 41.59 45.19 58.12 

Phasic 55.33 64.67 50.33 49.50 57.75 53.83 42.10 47.68 

Mixed 60.92 47.34 60.92 49.92 47.18 40.19 46.59 62.30 

Table 1. Classification scores (%) of individual features. (STD: Standard deviation) 

 

 



outperforming any of the previous experiments. In this case 
the top 3 most selected features were the difference 
between the peaks of the dyad (7 times) from the phasic 
component, and the STD and DTW from the tonic 
components (5 times each).  

Figure 9 provides an overall overview of the best results 
achieved by each feature type with and without 
incorporating SFS during the training phase. By combining 
different types of features, we were able to improve the 
recognition performance by 11.42%. Figure 10 shows in 
more detail the traditional ROC and Precision/Recall curves 
of the best subsets of features. Note that the results reported 
above correspond to the average between the two curves. 

DISCUSSION 
Physiological signals have been extensively measured and 
analyzed in short controlled interactions that usually have 
not included spontaneous social interaction. This work is 

novel in examining continuous EDA activation during a 
spontaneous and structured social interaction, and using this 
information to build automated tools for recognizing how 
easy or hard a person is to engage.  

Among some of the main findings, we found that the 
relative position of the maximum tonic value was the most 
discriminative feature to automatically identify easy to 
engage children. Furthermore, we compared several 
methods that captured the physiological synchrony of the 
dyad, and found the difference between the number of 
peaks of phasic components to yield similar performance. 
This finding indicates that both individual and synchrony 
features are relevant to modeling engagement during social 
interaction. However each component captures different 
aspects. While the tonic component is the most relevant 
information when only monitoring the child, the phasic 
component is especially helpful when capturing synchrony. 
Furthermore, we have shown that decomposing EDA 
responses into the tonic and phasic components provides 
some benefits for the analysis, such as improved 
recognition performance (>6%) and increased 
interpretability of the findings. Finally, we showed that the 
combination of two feature types (IF+SF) yielded the 
highest classification performance (11% higher than using 
only the best single feature). In other words, using just the 
child’s physiology to predict the ease of engagement score 
assigned by the adult was not as accurate as when the 
automatic system used both the child’s physiology and its 
synchrony with the adult’s physiology.  

Despite the significant effort to maximize the utility of the 
EDA data – use of gel, a warm-up period to get children 
acclimated to the sensor and to gather extensive baseline 
data – data from 31% participants had to be excluded from 
the analysis due to the presence of large artifacts and 

                                                       
 

Figure 10.  Receiver Operating Characteristic (left) and Precision/Recall (right) curves for the best subsets of features when 
considering different types of features (individual features, synchrony features, and the combination of both). 
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Figure 9.  Top classification performance (%) achieved by 
subsets (left) and single (right) feature types.  

(IF: individual features; SF: synchrony features). 

Best Single FeatureBest Subsets of Features

50

55

60

65

70

75

80

85

90

IF+SF IF SF IF SF

 

 



 

quantization problems in at least one of the sensors. 
Although we preprocessed the data to reduce short and high 
frequency motion artifacts, there were several cases where 
this approach was not enough. This challenge points out a 
limitation of our study but also highlights the great 
challenge of monitoring physiological information in 
uncontrolled environments, especially with small children. 
In our case, one of the main sources of artifacts was due to 
the loss of contact of the sensor to the skin. Although this 
problem can be easily fixed by tightening the Velcro band 
that comes with the QTM sensor, we noticed that doing so 
increased the child’s awareness of the sensor, leading to 
fiddling with the sensor and thus additional motion 
artifacts. Finding the right trade-off between sensor 
tightness and awareness as well as finding the best location 
for the sensor (e.g., wrist vs. ankle) will probably be 
dependent on the age and skin of each person, and promises 
to be a relevant research area in the field of wearable 
computing. 

Our final dataset consists of 51 sessions in which we 
monitored the time-varying physiological signals of both 
the child and the adult. Using this information, the present 
study has taken several steps towards maximizing the 
generalizability of the findings. First, we analyzed the 
recognition value of one single feature at a time, which 
ensures a high ratio between the number of samples and the 
dimensionality of the data. Second, we used an SVM in its 
linear form, which significantly reduces the complexity of 
the model. Third, we used a 10-fold-cross validation 
approach, which is typically used to avoid overfitting of the 
learned models, and ensured that we did not use data from 
the same people for training and testing simultaneously. 
Finally, we incorporated SFS as a feature selection method, 
which tends to find a small subset of features (i.e., reduced 
dimensionality) to help avoid overfitting. In the future, we 
plan to incorporate additional sessions and validate our 
method in similar conditions. 

CONCLUSIONS 
This work extends the possibility of recognizing the ease of 
engagement of children from physiological data during 
naturalistic social interactions that can take place almost 
anywhere. Leveraging modern wearable biosensors, we 
monitored the electrodermal responses of 51 child-adult 
dyads in a semi-structured social interaction. We proposed 
several physiological features to characterize the responses 
of the children and their synchrony with the responses of 
the adults. We found that a combination of features 
extracted from the child's EDA activity and features 
capturing the physiological synchrony between the child 
and the adult resulted in the highest classification accuracy 
in distinguishing children who had been rated as more or 
less difficult to engage by the adult.  

Future efforts may focus on analyzing the correlation of the 
EDA responses with features from other modalities 
(e.g., head pose, voice pitch) as they can provide relevant 
information to further understand and better recognize 

children’s engagement. However, these modalities require 
additional sensors that may not be readily accessible in 
daily life situations. We may also analyze each of the 
different interactive stages independently, as well as taking 
into account the influence of preceding stages and large 
variability of stage durations.  

This study has shown that new biosensor technology can be 
used to capture unobtrusively, in a playful spontaneous 
social interaction, objective physiological time-series data 
that is informative about an individual child’s outwardly 
rated engagement. As such, this work takes an important 
first step towards providing better measures to reliably and 
objectively quantify interactive social behavior, an 
important advancement for the study of human 
development.  
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