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Single-Cell Migration in
Complex Microenvironments:
Mechanics and Signaling
Dynamics
Cells are highly dynamic and mechanical automata powered by molecular motors that
respond to external cues. Intracellular signaling pathways, either chemical or mechani-
cal, can be activated and spatially coordinated to induce polarized cell states and direc-
tional migration. Physiologically, cells navigate through complex microenvironments,
typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic
cancer, they invade across physiological barriers and remodel their local environments
through force, matrix degradation, synthesis, and reorganization. Important external fac-
tors such as dimensionality, confinement, topographical cues, stiffness, and flow impact
the behavior of migrating cells and can each regulate motility. Here, we review recent
progress in our understanding of single-cell migration in complex microenvironments.
[DOI: 10.1115/1.4032188]

1 Introduction

Cells are a fundamental unit responsible for enabling complex
functions in living organisms. Their ability to migrate is critical
in development, normal physiological functions, and disease.
Cell migration is driven by intracellular biochemical and
biomechanical organization that is sensitive to extracellular cues.
In particular, mechanical signals have been implicated in cancer
progression, stem cell differentiation, and tissue morphogenesis
[1–3]. In vivo microenvironments, such as the extracellular matrix
(ECM), are complex, with numerous mechanical features includ-
ing 3D nature, fibrillar architecture, and flow that can influence
cell polarization and motion. Here, we review recent findings and
models of cell migration in complex microenvironments. We
focus on two key areas of interest—(1) intracellular biochemical
signaling pathways and their mathematical representations that
drive polarized cell states and directed migration and (2) extracel-
lular mechanical cues that modulate migratory behavior.

2 Intracellular Signaling

Cell migration is intrinsically a mechanical phenomenon
involving internal molecular actuators displacing a complex mate-
rial. The key mechanical machinery consists of myosin motors
that enable contractile force generation and assist in cytoskeletal
crosslinking, adhesion complexes that interface the cell to its
external environment and enable force transmission, and polymer-
izing and depolymerizing actin filaments that drive forward pro-
trusions and facilitate internal remodeling. The coordination and
spatial organization of these mechanical parts are regulated by
interconnected signaling pathways and feedback mechanisms,
conferring cell polarity, and modulating cell migration modes and
kinetics. Canonical signaling molecules include Rho GTPases that
modulate the activity levels of the mechanical machinery.

2.1 The Internal Polarization of a Single Cell and Directed
Cell Migration. To migrate persistently and in a directed manner
in response to external stimuli, a migrating cell requires an inter-
nal machinery which defines the directionality of migration. This
machinery consists of an interplay of biochemical and mechanical
factors which polarize in such a way that forces are generated in a
specific direction to move the cell forward. The classical picture
from migration on substrates is that actin-driven protrusions hap-
pen primarily at the front, and myosin-driven contractile forces
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that lead to detachment are generated at the rear, causing the cell
to move forward [4,5]. Typical scenarios tested in many in vitro
experiments involve the exposure of cells to a gradient of a
growth factor (chemotaxis) [6], a gradient of ECM ligands (hapto-
taxis) [7,8] or a stiffness gradient (durotaxis) [9,10]. For instance,
if the cell is placed in a chemoattracting growth factor gradient, a
typical response seen is the activation of molecules such as PI3K
and PIP3 [11,12] or the GTPases Rac and Cdc42 [13] which drive
actin polymerization at the front of the cell. Rac is associated with
lamellipodia [14], which are broad, flat protrusions, and Cdc42 is
associated with filopodia [15], which are finger-like protrusions.
In migration on a two-dimensional substrate, Rho is upregulated
at the back of the cell [13]. Rho will then activate ROCK and ulti-
mately myosin motor activity [16], leading to contractions at the
rear and subsequent detachment. The combined effect of protru-
sions and firm adhesions at the front and contractions and detach-
ment at the rear is what makes the cell move forward. Cell
migration guided through mechanical factors such as stiffness or
geometry of the environment involves similar, but not necessarily
identical molecular pathways; we will discuss some key work in
this direction in Sec. 2.3 and Sec. 3. Figure 1 shows a schematic
of such a signaling cascade. It is highly simplified and the precise
details depend on the cell type and context. For instance, GTPases
alone are regulated by dozens of GEF, GAP, and GDI molecules,
leading to far more complex interactions between Rac, Rho, and
Cdc42 than shown here [17]. Also, in migration in 3D, there are
some important differences which we highlight in the following
sections. Furthermore, in both 2D and 3D, the complete actin and
myosin regulating pathways involve many more regulators than
those discussed here, and we refer readers to Refs. [18–20] for
excellent reviews of these topics.

Numerous mathematical models have been employed in recent
years in an attempt to understand and predict gradient sensing,
polarization and migration. Most of these models make use of
techniques which have been successfully applied in many areas of
biology, such as continuous, mixture theory partial differential
equations [21–23], stochastic models [24–28], or agent based
models [29–31]. The scope of many of the cell polarization mod-
els is to explain how the cell senses gradients or how it polarizes.
Local-excitation-global inhibition models [32] explain how polar-
ization can arise through an interplay of a fast diffusing inhibitor
and slowly diffusing activator, and wave-pinning models [33]
explain polarization in terms of the fixation of propagating waves

of molecules involved in polarization. The general idea behind
many of those models of cell polarization is that a receptor-
mediated stimulus activates internal biochemical reactions. Then,
diffusion mediates intracellular communication to weaken or
enhance force-regulating molecules at the front or back, and hence
define front and back states. Some models incorporate the dynam-
ics of many of the molecules mentioned above [34–38]. Other
modeling approaches focus on aspects such as thermodynamic
considerations [39], the interplay of biochemistry and mechanics
on polarization [34], or stochastic effects on cell polarization
[40].

2.2 The Physical Intracellular Machinery. Signaling path-
ways ultimately lead to the activation and dynamic coordination
of the physical machinery of the cell in order to drive mechanical
motion. This machinery is primarily engaged in the actions of pro-
trusions, adhesions, and contractions. Protrusions are driven by
the polymerization of actin filaments, in which monomer subunits,
G-actin, are added to the ends of existing filaments, F-actin. In
particular, at the leading edge of cells, Cdc42 and Rac signaling
activates actin nucleation promoting factors (WASP/Wave) and
subsequently Arp2/3, which direct the branching and enhanced
polymerization of F-actin preferentially on the “barbed end” of
the filament [4,41]. Actin filaments are dynamic and can undergo
turnover, with faster depolymerization at the “pointed end.”
Asymmetric polymerization and depolymerization lead to tread-
milling of actin filaments [42], which along with other actin turn-
over processes such as severing [43,44] enables protrusions to
occur dynamically.

At the leading edge, new adhesions form in order for cells to
adhere to their new positions. These adhesions can be very
dynamic and turn over quickly—nascent adhesions—so that cells
may dynamically sense the environment without committing to
those positions, or they can form complexes that become more
stable—mature or focal adhesions—that enable cells to maintain
firm attachments [45]. Adhesions are composed of transmembrane
protein complexes, such as integrins, which bind to extracellular
ligands, such as ECM or basement membrane proteins [46]. Inside
the cell, these transmembrane adhesion complexes are connected
to the actin cytoskeleton, enabling outside in and inside out signal-
ing and force transmission. Tension generated in the cytoskeleton
by myosin II motors can lead to the clustering of adhesion pro-
teins, enhanced adhesion binding through catch bond behavior
[47,48], and reinforcement of mature adhesions [49,50].

Finally, at the rear of the cell, contractile forces from myosin II
motors, activated by RhoA, and the turnover of old adhesions lead
to net forward movement [4]. Myosin II motors form minifila-
ments with many myosin heads that bind to actin filaments [49].
These myosin heads walk along actin filaments in different direc-
tions, generating contractile forces in the crosslinked actin
network.

2.3 Impact of Dimensionality and Geometry on Cell
Polarization. Most of the observations discussed in Secs. 2.1 and
2.2 were obtained from experiments where cells are plated on 2D
substrates. There are similarities as well as key differences in the
behavior of signaling molecules in cells embedded in 3D matrices.
It was found that in 3D environments, Rac levels are generally
lower than in 2D, and this reduced total level is associated with
rapid, directional migration. Also, Cdc42 and its crosstalk with
Rho are important in 3D migration [51]. However, the role of
Rho-mediated contractility is more complex in 3D than in 2D. For
instance, in fibrous matrices, contractility is important to align
matrix fibers [52,53], and myosin-mediated blebs plays an impor-
tant role in amoeboid migration through matrices [54,55].

In parallel with the development of 2D in vitro cell migration,
computational models have initially mainly focused on 2D. How-
ever, even in 2D, the cell itself will have a complex shape, which
can only be captured accurately by a 3D model of the cell. For

Fig. 1 Growth factors (GF), ECM ligand binding, or mechanical
stimuli through integrins initiate an intracellular signaling cas-
cade, which leads to regulation in actin and myosin activity.
The molecules and interactions shown here are only a small
selection of the full cascades, focusing on some key players
which are necessary to regulate directed cell migration.
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instance, Meyers et al. [56] argued that changes in the ratio of
membrane surface area to cell volume can lead to differences in
the signaling of membrane-bound signaling molecules. Using
reaction–diffusion systems to simulate internal signaling mole-
cules including Rho GTPases and Phosphatidylinositols in a 3D
model of a cell, it was shown that cell shape can affect the
response of the cell even to a purely 1D stimulus [57]. For
instance, it is shown in Fig. 2 that cells which are thin in the center
can maintain polarization whereas otherwise identical symmetric,
cylindrical cells lose their polarization. This is due to the fact that
the thinning prevents effective diffusion-mediated communication
of signals between the two halves of the cell. Likewise, cell
migration in vivo is influenced by 3D geometry effects even when
the cells migrate on 2D surfaces, as these surfaces are typically
not flat but curved, such as the lumens of endothelial cells or in
the ECM, and this surface geometry can have a crucial effect on
spreading and migration [58].

Cell geometry also characterizes different modes of migration.
On the one hand, amoeboid cells, which are typically roundish,
are known to migrate fast and adapt quickly to changes in stimuli
directions [59]. On the other hand, mesenchymal cells, which are
typically more elongated, are slow and migrate persistently
through 3D matrices [60,61]. An evolving body of experimental
studies explains differences in amoeboid and mesenchymal migra-
tion in terms of changes in biochemical signaling such as altered
expression of matrix metalloproteinases (MMPs) [62] or Rho and
ROCK [63], as well as changes in the mechanical environment

due to shear stress [64]. Furthermore, confinement was shown to
induce a transition from mesenchymal to amoeboid migration
under conditions of low adhesion, and two modes of amoeboid
migrations emerged [65]. The faster, more persistent mode of
those two depends on myosin induced contractility and results in
more elongated cell bodies than the slower of the two modes.
Compatible with the above observations, theoretical work indi-
cates that roundish cells adapt faster to new stimuli than elongated
cells, even when their biochemical pathways are unaltered, and
elongated cells can maintain their polarization against changes in
stimuli direction [57].

These results are in line with a large number of recent results
implicating an important role of cell shape in affecting cell behav-
ior such as proliferation and apoptosis [66,67] or stem cell differ-
entiation [2,68]. Interestingly, the signaling pathways leading to
those different phenotypes also involve many of the key mole-
cules regulating cell migration, such as Rho and its downstream
effectors [69].

3 Extracellular Mechanical Cues

The previous section (Sec. 2) discussed the canonical pathways
associated with cell polarization and migration, which have been
confirmed mainly in 2D studies. Recent work in more physiologi-
cal, 3D environments demonstrates that these pathways may be
altered and migration mechanisms may be highly context depend-
ent. In particular, mechanical features of the environment appear

Fig. 2 Time evolution of active Cdc42 on the membrane for two cells. The top row shows a symmetric cell which loses polariza-
tion quickly after an initial stimulus at the front. The cell in the bottom row, which is very thin in the center, stays permanently in
a polarized state. Both cells have the same length (40 lm) and would hence appear identical in a 1D model, confirming that their
3D shape plays an important role in determining their polarization state. All simulations were performed with the 3D
reaction–diffusion model described by Spill et al. [57].
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to modulate cell migration in prominent ways and noncanonical
mechanisms emerge. A schematic of various migratory signals in
3D matrices is illustrated in Fig. 3.

3.1 Dimensionality of the Environment and Mechanical
Architecture of the ECM. A vast majority of studies on cell
migration has been on 2D substrates, where model cells typically
form well-defined structures including filopodia, lamellipodia,
stress fibers, and focal adhesions. There is also distinct front to
back asymmetry, where actin polymerization drives leading edge
protrusion and myosin II contractility drives retraction of the
cell rear [4,70]. Cells embedded in 3D ECM, however, appear to
display morphological phenotypes distinct from 2D, as stress
fibers and focal adhesions are less prominent [71,72]. Signaling
and roles of adhesions are altered in 3D, and focal adhesion pro-
teins modulate cell migration speeds via protrusion dynamics
and matrix deformations [71]. Intracellular fluctuations driven by
molecular motors are also altered in 3D due to a change in the
cytoskeletal geometry [73]. Micropatterning and microfluidic
methods have shown that dimensional cues and modulation can
guide cell migration. On micropatterns interfacing 1D (thin
adhesion sites �10 lm) and 2D (wide adhesion sites �50 lm)
features, cells preferentially stayed on 2D regions in a myosin
II-dependent manner [74]. In microfluidic paths, migrating
cells preferred wider channels compared to subnucleus-scaled
constrictions in a myosin II and path alignment-dependent
manner [75].

In addition, the 3D physiological environment is highly com-
plex, typically involving dense fibrillar matrices composed of pro-
teins such as collagen and fibrin. The fibrillar architecture enables
new physiologically relevant ways to interface with migrating
cells. For instance, cells can migrate along matrix fibers. Along
thin fibronectin lines mimicking 1D ECM fibers, cells have been
shown to migrate at higher velocities than cells on uniformly
coated 2D substrates and, with diminished velocities after disrupt-
ing myosin II and microtubules, in a manner comparable to cells
embedded in 3D ECMs [76]. This has pathophysiological implica-
tions, as certain tumor microenvironments have increased align-
ment of matrix fibers [77,78]. Tumor invasion experiments in
aligned 3D matrices show a strong preference of cells migrating
along the aligned axis [52]. Tumors can align collagen through
Rho kinase-mediated contractility, while this pathway becomes
less prominent in driving tumor invasion in pre-aligned matrices
[52]. Additionally, the fibrillar architecture of the ECM is condu-
cive to long range force transmission by contractile cells [79,80],

potentially leading to mechanotransduction in distal cells [81,82]
and modulating binding kinetics of matrix proteins such as fibro-
nectin [83,84].

The ECM can be proteolytically degraded via MMPs, which
can lead to the generation of cell-scaled tracks [85]. Migration in
intramatrix tracks has been shown to be enhanced, as in 1D migra-
tion in microchannels [86]. Cell phenotypes also appear distinct
when migrating in tracks rather than through randomly oriented
ECM networks [87,88]. For instance, cells are highly motile in
tracks independent of collagen concentration, and actin- and
myosin-targeting drugs more effectively reduce motile cell popu-
lations in random matrices than in tracks. In the absence of pro-
teolytic activity, cells undergo drastic deformations in order to
squeeze through small ECM pores in 3D matrices. This occurs in
a Rho kinase-mediated, actomyosin, and b1 integrin-dependent
manner in which the ECM and cell nuclei are deformed via cell-
generated forces [89,90]. The cell nucleus is the largest organelle
in the cell and is stiffer than the cytoskeleton. In order for cell
translocation to occur through tight spaces, the nucleus must
deform substantially, which may rate limit invasion speeds
[91–93]. Deformation of the nucleus has been shown to occur in
collagen matrices, in highly confined microfluidic channels, and
during transendothelial invasion [94]. During the squeezing pro-
cess, it is shown that various mechanical strategies are employed.
As the cell senses a constricted region in a subnucleus-scaled
microchannel, it undergoes transition dynamics that can include
initial slowdown, contraction, back extensions to deform the
nucleus, and rotations of the nucleus as it squeezes through the
physical barrier [93]. Extensions and protrusions are typically
associated with actin polymerization activity [42,95], while
contractions are typically affiliated with myosin II [96]. The actin
cytoskeleton is linked to the nucleus via the LINC (linker of
nucleoskeleton and cytoskeleton) complex, possibly enabling cell
extensions and contractions to transmit force directly to the nu-
cleus [97,98]. Furthermore, rotations of the nucleus have been
shown to be regulated by dynein [99] and proteins of the LINC
complex [100,101]. Further investigations are necessary to probe
how different mechanical invasion strategies can be modulated
via molecular targeting.

Interestingly, in confined environments, microtubules appear to
play a prominent role in driving cell migration [93,102]. Stabiliza-
tion of microtubules via paclitaxel reduces migratory persistence
and abolishes the capability of cells to maneuver through tight
constrictions, suggesting that persistent force generation is
required to deform cells into contorted shapes. Furthermore,
microtubules themselves might have propulsive capabilities in
advancing cells through highly constrictive microchannels, while
disruption of myosin, Rho, b1 integrins, and actin does not fully
suppress migration [102]. Recent work also shows that water per-
meation across the cell membrane can drive directional migration
under confinement [103]. These findings suggest that canonical
Rho GTPase signaling pathways discussed previously and studied
heavily in 2D migration may not fully or accurately explain
migration in 3D and 1D environments.

It is noteworthy, however, that in vivo environments are
diverse, and 1D, 2D, and 3D model systems may each be relevant
in different contexts. For example, nerve fibers are typically long
and thin with high longitudinal-to-transverse aspect ratios in pro-
trusion geometry and thus may be effectively modeled as 1D
[104]. Additionally, cancer cells migrating along aligned tumor
ECM fibers [52] or in proteolytically degraded ECM tracks
[87,105] may also be better captured by 1D geometries. Endothe-
lial cells and many types of epithelial cells typically form hollow
tubes, which consist of a 2D planar geometry folded into a cylin-
der, and wound healing can be mimicked by 2D cell monolayers
[106,107]. 3D geometries, in which cells are fully embedded in a
hydrogel, are often more suitable for modeling cells migrating
through interstitial space, e.g., invasion of individual cancer cells
in the tumor stroma [108,109] or migration of immune cells in tis-
sue [110].

Fig. 3 Schematic of various signals in the 3D microenviron-
ment. A cell migrating in physiological environments may be
subject to numerous cues, including small pores that require
deformation of the nucleus, aligned ECM fibers, interstitial flow
through the porous ECM, and gradients of chemotactic factors
(gradient profile).
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3.2 Stiffness and Crosslinking. Substrate stiffness has been
shown to guide stem cell differentiation in a manner that depends
critically on nonmuscle myosin II activity [2], and stiffness
gradients can induce directional migration via focal adhesion
kinase-dependent durotaxis [9]. Furthermore, in 2D, substrate
stiffness can drive malignant transformation in breast epithelial
cells via integrin-mediated signaling and force generation [1]. In
3D, the role of stiffness is less clear, particularly due to coupled
mechanical properties including pore size, ligand density, and
matrix architecture. Recent studies developed ways of increasing
matrix stiffness via crosslinking mechanisms, including glycation
via ribose [111], adding an interpenetrating alginate network
[112], and using transglutaminase [113]. Crosslinking via trans-
glutaminase has been shown to be a characteristic feature in some
cancers [114]. Lysyl oxidase-mediated crosslinking of collagen
enhances cell invasion in 3D and tumor progression in vivo [115].
Crosslinking of fibrillar matrices can increase stiffness and also
alters other properties such as strain stiffening, plasticity, and hys-
teresis [116]. Stiffer matrices may increase the difficulty for cells
to deform the local pores, requiring larger cell deformations for
MMP-independent translocation. While stiffness remains a funda-
mental property of any material, additional mechanical features
need to be considered in 3D physiological environments in order
to conclude that stiffness is the fundamental causal factor in any
3D cell phenomena.

3.3 Flow. Flow is a common feature in many physiological
environments, from blood and lymphatic vessels to interstitial
matrices and leaky tumor vasculatures [117]. For endothelial cells
in 2D, shear flow has been shown to align cells, inducing stress
fibers to form and the cells to elongate in the direction of flow,
and altering the anisotropy of intracellular rheological properties
[118,119]. Many sensing mechanisms exist, including integrins
that cluster and receptor tyrosine kinases and G proteins that are
activated under shear stress [119]. In 3D, interstitial flow can drive
autologous chemotaxis in cancer cells, in which cell-secreted
chemoattractant profiles of CCR7 ligands are biased by flow
[120,121], and activate mechanotransduction and rheotaxis, lead-
ing to asymmetric distribution of cytoskeletal proteins, such as
actin and adhesion complexes, and upstream migration [122].
Transmural and luminal flow in blood vessels can lead to endothe-
lial cell sprouting into the ECM, dependent on a threshold shear
stress and MMP upregulation [123]. Flow conditioning of micro-
vascular networks also appears to decrease endothelial permeabil-
ity and extravasation of tumor cells [124]. The physiological
environment is conducive to fluid flow because of its porous na-
ture or vessel networks, high fluid content, and actuating mecha-
nisms such as heart beats and pressure gradients. This renders
flow an important consideration in in vivo migration phenomena,
particularly in metastasis, vascular formation, and diseases.

4 Conclusion

Cell migration is governed by a host of mechanochemical sig-
naling mechanisms, including intracellular Rho GTPases that
modulate actin and myosin activity, extracellular growth factor
signaling that polarizes intracellular concentration profiles, inter-
stitial, and shear flows that bias chemoattractant profiles and apply
mechanotransductive stresses, ECM mechanical properties that
modulate cell force generation, migratory persistence and speed,
and cell–cell mechanocommunication. How all of these signals
and mechanisms integrate in vivo to produce complex cell behav-
ior is still largely unknown. Integrated computational models that
take into account biochemical signaling, cytoskeletal mechanics
and dynamics, and 3D ECM mechanics can help elucidate a more
comprehensive and rigorous picture of the cell migration machin-
ery. Recent modeling approaches of cell signaling and mechanics
at multiple scales are reviewed in Refs. [84,125]. In particular,
in vivo conditions often have a combination of biochemical and
mechanical cues, but competing or synergistic effects from

simultaneous cues are not well characterized. Combining models
with experiments that explore these complex signals and
responses can further reveal physiologically relevant cell migra-
tion phenomena.

Recent microfluidic experimental platforms have enabled the
simultaneous generation of multiple cues to investigate the impact
of multiple extracellular signals. For instance, stiffness gradients
can be generated orthogonal to chemical gradients [126], or com-
peting chemical gradients can be generated to gauge cell preferen-
ces [127]. Competing mechanical cues can also be generated, for
instance dimensionality versus directionality of confined cell
paths [75]. Computational models of cell movements are begin-
ning to integrate multiple migration cues [128–130]. For instance
in Ref. [129], bias from interstitial flow is incorporated with stiff-
ness sensing of the environment. Future studies that controllably
measure the relative sensitivity of cells to different mechano-
chemical cues can help guide the development of computational
models that simulate and attempt to predict cell behavior in
in vivo scenarios, which may have more complex boundary condi-
tions, gradient profiles, or signaling content.
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