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ABSTRACT

This thesis is a study of the electronic energy levels associated
with vacancies in PbTe using the Green's function method of Koster and
Slater, and using unperturbed Bloch functions obtained from a relativ-
istic K*n-APW energy band calculation.

APW one electron energies were obtained at I' and the corresponding
eigenfunctions were used to obtain matrix elements of the relativistic
momentum operator T betwgeg states at I'. These energies and matrix
elements were used in a Ke¢w secular equation to obtain energies and
wavefunctions at approximately 4300 points in the Brillouin zone. With
11 relativistic bands at T, excellent results were obtained.

Localized Wannier functions were then constructed by taking suitable
linear combinations of the unperturbed Bloch functions, and these Wannier
functions provided the basis in which the energy levels in the presence
of the perturbing impurity potential were found. We have solved the
vacancy problem using Wannier functions from 9 bands (5 valence and 4
conduction) and 13 lattice sites.



The results obtained from this calculation show that Pb vacancies
produce p~type PbTe, whereas Te vacancies produce n~type PbTe, and in
both cases, carriers are present at all temperatures. If it is assumed
that Pb vacancies are the major defect in Te-rich material and Te
vacancies are the major defect in Pb-rich material, our results are in
agreement with the experimental observations and explain why carriers
in PbTe cannot be "frozen out" even at low temperatures.
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CHAPTER I

INTRODUCTION

The purpose of this work is to study the electronic energy levels
assoclated with vacancies in PbTe using the Green's function method of
Koster and Slaterol In this scheme the perturbed wave-function is
expanded in terms of Wannier functions of the unperturbed case, which
are written in terms of the unperturbed Bloch functions. In our case,
the latter functions are obtained from a relativistic ;°; - APW energy
band calculation.* The importance of this study is that it explains
some of the very interesting properties of PbTe to be discussed below.

Lead Telluride has been the subject of considerable experimental
and theoretical investigations for several years. It is knbwn to have
a NaCl crystal structure with a lattice constant of 6.452 X (12.193
atomic units)2 and to be a semiconductor with a direct gap of about
0.3 eV at room temperature..3 The gap is located at the point L in the
Brillouin zone. The measured and calculated electronic properties of
the lead salts have been recently reviewed by Prakash,4 in his work on

the measurements of the optical absorption edge of these salts and its

variation with temperature and pressure.

* -

ﬁ is not to be confused witg the magnetic momentum (; + Eé), where ;
is the linear momentum and A is the vector potential. In the case of
non-relativist c+bands T is equal to the linear momentum and the method
is called the K+P method.
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A very interesting property of the lead chalcogenide group of semi-
conductors is that they have ranges of non-stoichiometry, the lattice
incorporating either excess lead or chalcogen with the corresponding
defects. While excess lead produces a n-type semiconductor, excess
chalcogen gives rise to a p-type material. Both cases are characterized
by high mobilities at liquid helium temperatures and it is not possible
to freeze out the carriers at low temperatureso5 The concentration of
the excess component can be controlled by equilibrating the solid with
the vapour pressure of that component and the variation of this
equilibrium with the vapour pressure has been carried out for all lead
salts. It has been found out that for excess chalcogen the principal
defect is a singly ionized lead vacancy while for excess Pb, the
situation is not yet clear: for PbSe it seems that the principal defect

is a doubly-ionized insterstitial Pb,6’7

while for PbS, a singly
ionized sulfur vacancy appears to be the primary donor defect, although
an appreciable concentration of doubly ionized interstitial Pb also
exists.8 On the other hand, a singly ionized tellurium vacancy is
probably the most important defect in PbTe.9 The theoretical study of
vacancies in PbTe, therefore, presents the possibility of explaining
the behavior described above.

The defect problem associated with a Pb- and a Te-vacancy is solved
here in a manner similar to that used by Callaway and Hughes10 for
single and di-vacancies in silicon, that is, by applying the Green's
function method of Koster and Slater, which has also been successfully

used in connection with the study of impurities in metals,ll The
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effect of the vacancy is treated as a time-independent localized
potential and the perturbed wave-functions are expanded in terms of
Wannier functions of the unperturbed lattice. Because the latter
functions are defined as linear combinations of Bloch functions, the
knowledge of those wave-functions, on a reasonable mesh of points in
the Brillouin zone, is necessary.

The one-electron energy bands of PbTe were obtained by Conklin,12
through a first principle relativistic APW calculation, and by Lin
and Kleinman,13 using a pseudopotential approach. Conklin's calcula-
tion is briefly discussed in Chapter II, in conjunction with the APW
method. Some experimental results can be very well explained by his
bands12 and the effective-~massesl4 and deformation potentials15 ob-
tained with these bands are in good agreement with the experimental
values.

In principle, we can use the APW method to calculate the eigen-
functions and eigenvalues of the one-electron Hamiltonian at every
point in the Brillouin zone, although the program for a low symmetry
point will not fit our computer systems. Even if this were not the
case, the computation time involved would make these calculations
prohibitive. As shown in Chapter II, the eigenfunctions of the one-
electron Hamiltonian are expanded in terms of symmetrized APW (SAPW),

and the number of SAPW necessary to obtain a good energy convergence

increases rapidly as the number of symmetry operations of the group of
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the wave-vector decreaseso* The energy levels and wave-functions are
calculated only for the high symmetry points and for one or two points
in the symmetry axes of the Brillouin zone. The energy bands are then
sketched along these axes using the compatibility relations between the
groups of the wave-vector at these different points.

As we mention before, in order to explain and calculate many of
the experimentally observable properties of the material it is desirable
to know the eigenvalues and eigenfunctions of the one-electron
Hamiltonian at every point in the Brillouin zone. In Chapter III we
show how to do this by a first principles E°: interpolation scheme. In
this method, if the energies, wave-functions and momentum matrix ele-
ments between these functions are known at a particular point in k-
space, §O say, the energies and wave-functions can be obtained at every
other point. This method involves no approximation if all energy bands
at EO are included in the calculations. For a semiconductor, however,
we are mainly interested in the conduction and valence bands, and we
expect that bands with energy far away from these bands will give a
small contribution in the calculations. Thus, if a reasonable number
of bands around the conduction and valence bands is used in the E-:
calculation, we expect good results for bands near the Fermi level.

>
The choice of ko is based on the following considerations. If we

o
choose ko to be a point of low symmetry, two difficulties arise: first,

*
For more information in the convergence of the energy and momentum
matrix elements in PbTe-APW calculation, see reference 16.
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it is difficult to calculate momentum matrix elements at points of low
symmetry, and second, when going from ;o to a point of higher symmetry,
the symmetry enforced degeneracies are not built in the calculations.
It is wise, therefore, to choose as Eo the point of highest symmetry
in the Brillouin zone, bécause there we can perform a very good energy
band calculation and the symmetry properties of each point in the B.Z.
(except the zone faces) are automatically satisfied. In Chapter III
we also discuss how such a calculation was performed by us for PbTe,
using 11 relativistic bands at T', obtained from a relativistic APW

calculation.

> >
The K¢ method was first used by Cardona and Pollack17

for germa-~
nium and silicon. The values for some of the energy gaps and momentum
matrix elements were obtained from the experimental data on cyclotron
resonance and optical measurements. The remaining parameters were
assigned values suggested by the OPW calculation of Hermanl8 and pseudo-
potential calculation of Brust:19 and were then adjusted until the
calculated energy bands agreed with the ultraviolet reflection data.
Qur calculation, however, differs from that of Cardona and Pollack in
that in ours the relativistic bands at I' and all momentum matrix ele-
ments between these bands were calculated. The information was used in
a E-; secular matrix and the bands were obtained in a mesh of points in
the Brillouin zone. The results were surprising: it was necessary to
change only one of the non-relativistic momentum matrix elements by

2,5% in order to fit the experimental gap, and at the points where

Conklin performed his calculations, our results differ little from his.
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CHAPTER II

APW ENERGY BAND CALCULATION FOR PBTE

The APW energy band calculation of PbTe was performed by Conklin

12 In order to present his

in 1964 as a Ph.D. dissertation at MIT.
results, let us briefly discuss the APW method.

In the APW method the periodic potential in the crystal is
assuméd to be of the muffin-tin type which 1s obtained by placing
touching spheres around the atoms in the lattice. The potential is
taken to be spherically symmetric inside the spheres and constant in
the region outside them. The spherically symmétric part of the
“potential is made of the atomic potential at the site under consid-
eration plus the spherically averaged contribution of the neighboring
atoms. The constant potential is chosen by linearly averaging the
spherically symmetric potential in the region outside the spheres.
The construction of the potential will be discussed in more detail in
Chapter 1V. o

The solution of the Schrodinger equation can be broken up into
two separate parts. In the region outside the spheres, where the
potential is constant, the solutions are plane waves. Since tﬁe'

potential is spherically symmetric inside the spheres, the solutions in

this region can be expanded as the sum of the products of radial wave-
(r) '

functions uk,E and spherical harmonics Ym(6,¢), i.e.
m )
Y(E) = % Ay m U, g(D) Y (6,4) (2.1)
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where u, E(;) must satisfy the following radial equation
’
2
-+
[ - g—§'+ V(r) + &S&Ell ] r uy E(r) = Eruy E(r) (2.2)
dr r ' ’

The coefficients Az n 3 chosen so that w(;) be continuous with
?
the plane wave at the surface of the spheres. The resulting function
is called an augmented plane wave (APY) and can be written in the

following fashion

%
> > > > I’ -
VIR D =5 IR 4, o2R Ry D 1 emiti(lk] R) X
L=0 m=-{
u (r'") *
ababe o [v0(0,,0,01" Y7(6",4") 2.3
P>2,E D
where S = 1 outside the sphere

0 inside the sphere

1 inside the sphere

0 outside the sphere
In (2.3), ek and ¢k are the spherical coordinates of the k-vector;
jz(r) are spherical Bessel functions and the primed coordinates
refer to a coordinate system having its origin at the center of the
sphere situated at §?. The radial functions up,l,E are subscripted
by the additional index p because the crystal potential may differ in
different spheres if the solid contains more than one kind of atom.

It is easy to prove 12 that the APW functions satisfy the Bloch

condition, 1i.e.
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VR, T + R ) = IR APV 2y 2.4

where ﬁ; is a lattice translation.

In setting up the secular equation for the eigenvalues and
eigenfunctions at a particular point ﬁo of the first Brillouin zone
only APW functions corresponding to Ed+ ii, where Ki are the various
reciprocal lattice vectors, need be considered. A sufficient number
of reciprocal lattice vectors must be used to adequately approximate
the eigenfunction. The number of reciprocal lattice vectors
necessary depends on the desired accuracy and can be determined
empirically.

Computation is simplified by considering the group of the wave
vector which describes the rotational properties of the wave-functions.

Under the operation R of this group, these functions transform like

the partners of one of its irreducible representations, i.e.,

e r e
RS ED = ] fam, | WEED 2.5)
i »
where wga (ﬁ,:) is said to transform like the jsh'partner (or

column) of the I'g irreducible representation of the group of the
k~vector. In (2.5) ra(R)i,j is the (1,j) element of the matrix
that represents R in the [y irreducible representation. The trans-
formation properties of the wave-functions will be considered in
some detail in Chapter III.

To accomplish the objective expressed by (2.5), projection

operators are formed for each irreducible representation and these
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operators are used to project out of the augmented plane waves,
functions that transform according to that representation. These
functions are referred to as symmetrized augmented plane waves (SAPW),

and have the form

T
230

@, D) = % I’a(R);’z RV R D) (2.6)
where R are the operations of the group of E. The SAPW in (2.6) is
said to transform as the jsh partner of the I'y irreducible represen-
tation. Because for the same j and different %, different functions
may be obtained, the column index % is used as a subscripted index
in the SAPW. The Bloch functions are then written as a linear com-
bination of SAPW with different K.
Let us consider now the one-electron relativistic Hamiltonian
derived from the Dirac equation by decoupling large and small com-
ponents of the four component wave-function by means of successive
applications of the Foldy-Wouthuysen unitary transformation.zo In
the abseﬁce of a magnetic field, and for coupling terms between the

large and small components of the order of (v/c)s, where v and ¢ are,

respectively, the velocities of the electron and of light, we obtain:

+2 2 “h
§y = P > A >, h 2 __3._._
Ho 2m.+ v(r) + 4m2c2 (Vvxp) o + 8m2c2 (V°v) 8m3c2 2.7

The first two terms are the kinetic and potential energies;
the third is the spin-orbit coupling and the two last are the Darwin

and mass-velocity corrections.
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*
In Conklin's relativistic APW calculation , the solution for the

non-relativistic bands, i.e., the eigenvalues and eigenfunctions of

42 )
2, V(r), are first obtained. The Darwin and the mass-velocity cor-

2m

rections are then considered as perturbations and new energies and
wave-functions are obtained. These corrections do not lead to
splitting of the single group levels because they have the same
symmetry as the non-relativistic Hamiltonian. They will, however,
mix levels with the same symmetry and will impart an unequal shift
to then,

The last step in the calculations involves the inclusion of the
spin-orbit term. At this point, spin must be introduced in the wave-
functions, which then will transform as basis functions for the
double~group irreducible representations.

Figures (2.1), 2.2) and (2.3) show the relativistic energy bands
obtained by Conklin along the three major symmetry directions. These
results show a small band gap occuring at L which is responsible for
most of the observed electronic properties of Pbte.

Since the two levels which mark the forbidden gap at L are very
close together, the calculated gap is the difference of two very
large numbers and is therefore very sensitive to slight changes in
the position of these levels. Since the Lé non~relativistic band

which is the major contributor to the bottom of the conduction band

T ‘
Another way of including the relativistic effects in the APW forma-
1ism has been carried out by Loucks2l, In this case we solve
directly the Dirac equation based on the muffin-tin potential.
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has a large part of its charge density concentrated in the plane wave
region, the position of this level is very sensitive to the value of
the constant potential in this region. Then, a slight change in this
value results in a large relative change in the size of the energy
gap, and can even lead to a reversing of the order of the conduction
and valence bands at L. This reversing was indeed obtained by
Conklin and a perturbation analysis performed by him showed that a

small variation in the constant potential leads to the right gap.
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CHAPTER III

> >
THE Ke+w SCHEME

3.1 - INTRODUCTION

Before 1955, two complete sets of orthonormal functions were
largely used for solving problems connected with the behavior of
electrons in solids: the Bloch functions, eigenfunctions of the
one—eiectron Hamiltonian, and characterized by a band index n* and
wave vector ﬁ, and the Wannier functions defined in terms of the
Bloch set and characterized by a band index n and a lattice site
im' The representations generated by these two sets, namely the
crystal momentum representation (CMR) and crystal coordinate
representation (CCR), will be discussed later, in Chapter IV, in
connection with the study of localized defects in solids.

In 1955, however, a new complete set was introduced. Luttinger
and Kohn22 showed that if the Bloch functions are known at a parti-
cular point in E?space, ﬁ; say, it is possible to construct a new
complete set of functions, characterized by a band index n and wave
vector ﬁ, but different from the Bloch set. These functions, which
we shall call Kohn-Luttinger functions, have been used in the
establishment of the expressions for the effective-mass and g~factor

tensors in solids. The effective-mass tensor is normally obtained

*
If the energy band is degenerate, n also includes the partner
index.
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by constructing the so called E°;—effective Hamiltonian through
Brillouin-Wigner perturbation theory and, in this scheme, the g-
factor tensor can be obtained using the method introduced by Rotho23

Assume that the eigenfunctions and eigenvalues of the one-
electron Hamiltonian are known at §o° We can construct the Kohn-
Luttinger set and expand the Bloch functions at every ﬁ in terms
of this set. The coefficients in the expansion are determined by
solving a secular equation and if all bands at ﬁ; are included in
the secular matrix the result is exact. In practice we are limited
to a finite number of bands at io which limits the accuracy of the
calculation. However, reasonably accurate calculations can be made
for the conduction and valence bands using a manageable number of
bands at i; on either side of the gap.

In the case of non-relativistic bands, the off-diagonal terms
in the secular matrix are given by the matrix elements of the
operator %~§'; between the Bloch functions at ﬁo, ; being the
linear momentum and E;(ﬁ;ﬁg). However, when relativistic corrections
are taken into account, the appropriate operator iscg'ﬁ';, where ;
is equal to ; plus other terms due to the relativistic corrections.
This method of obtaining energy bands will be referred to as the
K+T method.

The idea of using the E-; scheme for the calculation of energy
bands at every point in the Brillouin zone was first put in prac-
tice by Cardona and Pollack17, for germanjum and silicon. We will

see later that to determine the energy levels at any point in



k-space it is necessary to know only the energy levels at ﬁo and
the momentum matrix elements between states at ﬁ;. As we men-
tioned in Chapter I, Cardona and Pollack treated the energy gaps
and momentum matrix elements as adjustable parameters., The values
for some of them were obtained from the e*perimental data on
cyclotron resonance and optical measurements. The remaining
parameters were assigned values suggested by the OPW calculation

of Herman18 and the pseudopotential calculation of Brust19 aﬁd were
then adjusted until the calculated energy bands agreed with the
ultraviolet reflection data. Although this empirical method can
in principle be used for any material, it requires the knowledge of
sufficient experimental data to choose at least the initial trial
values for the energy gaps and momentum matrix elements and does
not provide the wave-functions at i, unless the wave-functions at
ﬁ; are known.

However, the success of Cardona and Pollack in obtaining the
energy levels suggested to us that perhaps the Rew scheme could be
used as a reliable first principles method for determining the
energy levels and wave-functions in a solid., Suppose, for a certain
material, the energies and wave-functions are known at certain
points in k-space through a first principles energy band calcula-
tion such as the APW or OPW schemes. Suppose that the energy
levels and momentum matrix elements calculated at a particular
point i; are used in the K°7 secular matrix to evaluate the energy

> >
levels at other points in the zone. If the K*T results at those
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other points are compared with the first principles results how good
is the agreement? In the following sections, this question is
answered for PbTe, where the energies and wave-functions at ﬁ; were
obtained by a relativistic APW calculation.

Section 3.2 is devoted to the general theory of the 4
scheme in the case where relativistic corrections are taken into
account. There, an expression for the T operator is derived and
the difference between this expression and that obtained for the
corresponding operator in the i-; perturbation theory is discussed.

Due to the reciprocal lattice symmetries, the electronic
energy levels and wave-functions are calculated only in a small
region A of the Brillouin zone, every 'Y in A being associated with
a set of k's in the remaining region. This set is called "star
of k" and the wave-functions in the star are defined in terms of
the wave~functions at ﬁ, In section 3.3 we present the tréns-
formations properties of Bloch functions and derive, in the ﬁ';
scheme, the expressions for the wave~functions in the star. The
Bloch functions obtained in this case, however, do not vary
smoothly in the Brillouin zone and the resulting Wannier functions
will not be properly localized. Iﬁ that section we also show how
to obtain smooth Bloch functions near ﬁc for degenerate bands and
in the case of non-degenerate bands our results are identical to
that obtained by Callawayza.

> -
In section 3.4 we apply the Ke*m scheme to PbTe. The results

are compared with Conklin's results at symmetry points and with
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some of the experimental data available for PbTe.

3.2 — GENERAL THEORY
Let us consider the one-electron relativistic Hamiltonian

(2.7), which is rewritten below.

*2 2 *4
B =2 4 () + —b W) 3 + B (viyy- —2— (3.1)
o 2m 22 22 32
4m ¢ 8m ¢ L 8mc
(k)
The eigenfunctions of H are Bloch functions o > >
o bn,i (k,r),

which transforms like the i-partner of the double-group irreducible

-
representation Fa(k) of the group of the wave vector ﬁ. They form

a complete set of orthonormal functions for every E, band index n

and partner i.r (g) v (g)

o <> > - Q <> -
Ho bn,i (k,r) = En(k) bn,i (k,r) (3.2)
(®)
According to Bloch's theorem, Pa + 5 can be written as
: b (k,r) ‘
n,i
-
ra(k) - - iﬁ-; - -
bn,i (k,x) = e un’i(k,r) (3.3)

where un’i(E,;) is a periodic function with the periodicity of
the lattice,

Any eigenfunction which belongs to the Hilbert space of
eigenfunctions that characterize the one-electron states of the
crystal can be expanded in terms of this complete set. Two other
complete sets can be obtained from Bloch functions, namely the

Wannier and the Kohn-Luttinger sets. In this section we are parti-

cularly interested in the last one.
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The Kohn-Luttinger functions are of the form

»T) (3.4)

-
yhere k / 1s any particular point in k-space.

Now suppose that the Bloch functions and energy levels are

)
-+ rB ° 4 o >
known at ko (i.e., bm&j (ko,r) and Em&ko), which are solutions of
the Schrodinger equation
) (k)
H er T&Lr (x br Ko P (3.5)
o mj (ko'r) = B o) m}j ( °’r) .

are known). Suppose now that we wish to sol&e the stationary

Schrodinger equation (3.6) at another point, g.
- +>
a > > -> o -
Ho bn,i (k,r) = En(k) bn,i (k,r) (3.6)

As the Kohn~Luttinger set is complete; it can be used as a basis

for ex d (*)
panding Pa > o 1eeo,
bn,i (k,r)
®)
fa g2 cl @) X,t 3.7
bn,i (k’r) - E“j n’m,( Xm,,j K’r) ( 4 )

vhere K = (k-k ). If Eq. (3.7) is substituted in Eq. (3.6) we

obtain
)
T 3 2 4
a o 1,52, 1K't 32 _h' 24 h
Habn’i (k,r) = m'jcn’“"(K)e (B (k )+--K —-——-i<8m3c2 + K 7] X
T (Eo) -IE* PB(EO) > >
by P =B @ ] i@t T o B @D (3.8)
’ ,j
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where
’ 2 ,
' 1 3 >2 h >2
Fedetu@ o mw - g - R
4me 2m ¢ 2m ¢ 4m-c
- -————ﬁz 2 (E.;]; (30903)

*
If we multiply both sides of Eq. (3.8) by xn,i(ﬁ,;) and
b 4

integrate over the whole crystal we obtain

2 4
> L B2 B p_.,jij_
m;j{[Emﬁko)+ 7o ;;EZEK E (k)]d ’j i+ o K ™ }C {K) 0 (3.10)

which is true for all n. In Eq. (3.10) we have written
*
o faret &DTe KD (3.11)

In order for the system (3.10) to have a solution, it is

necessary that

22 h* a4

ha >, 3
detl[E (k) -2-1< ;-;{EK-E (k)]s,m,lj+;lxn =0

(3.12)
Because the off-diagonal terms are of the form §°%, as we mentioned
earlier, this method of extrapolation of the energy bands is
> >
referred to as the K*7m scheme.
A confusion, without major consequences, has been made in
reference 17 between the expression (3.9.a) for T and the expression
> - > >
for the operator T, analogous to T in the KeT perturbation theory.
In the latter case we are mainly interested in the region near E;,

- ‘h++
i.e., in the region where K is small. The term ;‘K‘ﬂ in Eq. (3.8)
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is considered as a perturbation in the Brillouin-Wigner scheme and

2 i
terms in K” or higher are not considered in the expression for T.

Thenla
T o=+ 2@ x W) - 132 i iR ‘2‘ SIK-31p (3.9.b)
4mc ’ 2m ¢ im ¢ 2m" ¢

A comparison between Eq. (3.9.a) and Eq. (3.9.b) shows that the

2
tern in ﬁz, namely —-%—5'*2; is missing. But this term is azﬁz
2m ¢
times smaller than the momentum term and can be completely

neglected if K is small (a? - AE = (137.08)“2 in atomic units).
c

No approximations have been made until this point. Solving
Eq. (3.12) is completely equivalent to solving Eq. (3.6). As we
mentioned earlier, however, the secular matrix (3.1ﬁ) has infinite
dimension and for practical purposes has to be truncated at some
point. Because we are mainly interested in the valence and con-
duction bands, it is reasonable to expect that if a certain number
of enefgy bands at ﬁ; both above and below the conduction and
valence bands is used in the expansion, good results will be
obtained for these important bands. The dimensionality of the
secular equation is chosen by considering the computational com~
plexity versus the expected accuracy of the calculated energies
and wavefunctions. Of course, the accuracy obtained with the Kew
scheme depends not only on the number of bands used at i&, but also
on the accuracy of the calculated energies and momentum matrix

elements.
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Before we consider the practical application for PbTe, let
us discuss more carefully the symmetry properties of Bloch functions

. +> >
and the Ke7 scheme.

3.3 - TRANSFORMATIONS PROPERTIES OF BLOCH FUNCTIONS AND THE K-T
S CHEME

The effect of a general operation of the crystal space group
on Bloch functions has been discussed by various authorszs, but we
will;summarize the important results here.

Let us denote an operation in the space group G of the crystal
by {alza + E;}, where o is a rotation or reflection, ?a is a non-
primitive translation associated with a, and §g is a lattice trans-
lation. Associated with each one of these operations there is an
operator that commutes with the one-electron Hamiltonian. No dis-
tinction will be made here between the operations and corresponding
operators. Let ; be an arbitrary vector. If such an operator

L -
acts on r, a new vector r' is obtained such that

->'= -> <> > -1 -> >
r {alta + Rh} r=a (r+t, +R) (3.13)

We recall that the unit operator is given by {e|0}, where € is
the identity rotation, and that the inverse operator {a|z& + ﬁg}-l

is defined as
> — -1, =1~ > '
{alta + Rn} = {a |-a (e, + Rh)} (3.14)

The group multiplication is given by Eq. (3.15).
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{ali'a + 'ﬁn}{BIZB + 'ﬁm} - _{aBla(?B +R) + ?a +R) (.15

Generally speaking, we are interested in obtaining the irre-
ducible representations of the space group G of the crystal, because
the eigenfunctions of the one-electron Hamiltonian will transform
like partners of these irreducible representations. It can be
easily shown that every space group contains a group of pure lattice
translations {elih} as an invariant subgroup. The irreducible
representations of this Abelian subgroup are one~dimensional and
each one is characterized by a wave vector k. We Qhall call this
subgroup 1. Every one-electron wavefunction is thus characterized
by a wave vector k and must transform like Eq. (3.16) under an

operation belonging to T.

ike

>
{el'ﬁm} ¥, T) = ¥(K,T+R ) = e R“‘W(ﬁ,'r') (3.16)

This condition is known as the "Bloch Theorem” and the basis
functions are called Bloch functions.

Two other important groups are connected with the space group
G: the point group p, and the group of the wave vector ﬁi, which
we shall call k. The first group is constituted by the rotational
parts a of all operators {alz& + ﬁg} in G, and the second is formed
by all elements {B|b} of G, with b= :B +‘§§, which has the proﬁerty
that exp(iﬁﬁi'ﬁﬁ) = exp(iﬁi'ﬁg) for all iﬁ. ‘This last condition can

also be written as
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Bk, = k, + K (3.17)

where ﬁa is a reciprocal lattice vector.

Of course, K must be one of the possible space groups, and
if G is symmorphic*, then p is a subgroup of G. It is also easy
to observe that the rotational parts of the operators in k must
form a subgroup of p. We shall call this subgroup p(ﬁ), indicating
that it is the point group associated with the space group K.
Evefy operation of the space group G can be written as the product
of a pure translation and an operation of the type {al?a}, as can

be seen by considering the law of multiplication (3.15):

{e|R Halt } = {eale(®) + R } = {oft, + R } (3.18.a)

{alz&}{ela-lﬁh} - {usla(aflﬁa) + ?&} = {alz& + §h}(3.18,b)

In Eq. (3.18.b) we have made use of the fact that a-lﬁn is g lattice

translation if ﬁ is.
n ©

4 Assume that we know n orthonormal functions b? 1 (;);....

(k) ’

bM (;), which satisfy Bloch condition with wave vector k and

n,1 >
transform like partners of the irreducible representation M(k) of

the group of k. Consider now the set of q operations {ai[;i} with

> - - -»> -»>
a = tai + Rn, such that aik = ki’

its star. Let us call Ko this set of operations. It follows then

i.e., sends ﬁ in one member of

that the set of (nq) functions

*
The group is called symmorphic if ta is zero for all operations of
G.
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@ 3
b?’i @ = {a3,} b?gl @ (3.19)

form a basis for an irreducible representation of 626, with
3

(k) .
{allzl} = {e|0}. That b? { () satisfies the Bloch theorem with
9

wave vector aiﬁ can easily be verified by using Eq. (3.18). We

have: - -
(k) (k)
M >
elR} by o (@ = {e|R ) {o,]3) b?,l *) (3.20)
But

{elR ) {o,]3,) = (e]R ) {ai|‘£ai} (ela, " % }
- {ailzai} telo, 7R ) fefa, 'R )
= {o,]3;} {elo, 'R }

which allows us to write Eq. (3.20) as

Loy® L R TR, kR
{eIRm} bj,i (r) = e bj,i (r) = e bj,i (r)
& (3.21)
because we have assumed at the beginning that b?,l (;) satisfies

the Bloch condition with wave-vector Eo

Now if E is allowed to vary over the interior and surface of
the Brillouin zone, all the irreducible representations of G can
be obtained by finding irreducible representations of the space
group K associated with ia Let us consider points in the interior
of the Brillouin zone first. For these points the only value of E&

-
for which BE = ﬁ#ﬁq is E§=O° Let F(k) be one irreducible represen-



-36-

tation of p(-lz)° It can be easily shown that we get an irreducible

>
representation M(k> of K by defining

-+ T
u® (g3} = P 1 gy (3.22)

Let us now consider a point on the surface of the zone. It is
possible that, for some of these points, ﬁé in Eq. (3.17) is a non-
vanishing lattice vector in which case Eq. (3.22) does not hold in
general, It does hold, however, if the space group is symmorphic,
which means that the a's and b's are pure translations. In what

follows we will deal with points in k-space where condition (3.22)

holds.
We are now in a position to study the transformations proper-
®)
ties of Bloch functions. Let us consider the function PY > >
bn 1 (k,r)
’

which is characterized by wave vector k and which transforms like
-
the i-partner of the irreducible representation FY(k) of p(ﬁ),

i.e., if B belongs to Q(K) then

) . @
Y Ty (k) Y >
Bbo ', ) = JTV@) b T (k1) (3.23)
@ #: e
Let us write .Y >+ in the form e u_ . (k,r), where
’

> >
u i(k,r) is a periodic function such that
L

- > =1~ - =
u“’i(k,r + 0 Ta) = un’i(k,r) R (3.24)

@

where {al;} is an element of G, In this case, bnyi (ﬁ,;) also
b

transforms like the i-partner of the irreducible representation
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Mw(’k) of the group of K because
p @ ) v ®
> > > - . > -
@Ry o), @D =Y @@ = P, &6
. ()
) r\(rk) ®, b, @D (3.25)
j 14 H

In order to complete the study, let us analyze the functions

(k)
obtained from bPY (g ;) using Eq. (3.19), {.e.,
n,i i
p @®
{alej} bnti (k,7) (3.26)

As discussed above, the function given by Eq. (3,25) is a partner of
an irreducible representation of G, It can be shqwn26 that for a
given {a|a} in G, there exist the elements {thzﬁ} and {ajlzj} in

K,» and an element {Blg} in Kk, such that

{ala} {aa,} = {o [} {8]E) (3.27)
From Eq. (3.27) it can be seen that
3) ()
T > > -+ T
-+ -+ Y > + - ik+*b (k) Y -
{a]a} {ajlaj} by,g (ke¥) = e § Iy (B)j’1 {a_]a_} LA (k,r)
(3.28)

-
Now, because the operation {aj I.aj}is applied to a Bloch function
and it can be written as the product of a pure translation by

{aj]z& } it is clear that we have to consider only the properties

5 r @®
of {ajl'c’a } bn‘:i k,1).

3
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)
Eq. (3.21) shows that {ajlta } bnYi (ﬁ,?) gsatisfies Bloch's
j ?
theorem as if it had a wave vector ajﬁc Thus

Y

(k) >

r i6 (k)

{ajli’a } bn‘fi &,0) =e % B(ajit,'{) (3.29)

3

k and 8_ (k)
h| o,
is a real function of k. But {ajlza } being a space group operation

3

leaves the crystal lattice and the electron charge density unchanged.

whereBQ%E;:)is a Bloch function with wave vector o

Then, {03|2& } will interchange members of the star of k. The phase

factor exp (iﬁa ®) brought in by the symmetry operation {alea }

] h|
has to be specified and also one must express the function
-+ >
B(ajk,r) on the right-hand side of Eq. (3.29) in terms of the
functions in the star of E.
For a non-degenerate band, it is reasonable to define
bn(ic',aj'l‘;) - bn(ajic','i) and in this case
> >
io ket
> > > j o > >
{ajlta }b (k,r) = e 3 bn(ajk,r) (3.30)

3
Recently, however, Callaway and Hugheslo, when studying bound
states associated with localized defects in silicon, showed that
if only non~degenerate bands are considered it is necessary to
define

> >
r ioket :
Ll @D =xP@e b (a&,D (3.31)

in order that the periodic part of the Bloch function associated with

B

band n vary smoothly in k-space. In Eq.(3.31)

() is the character of one
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of the one~dimensional representation PB of the point group and can
only have the values + 1. This point is important in all problems
where localized Wannier functions have to be defined. because the
latter are localized at lattice sites only if the neriodic parts of the
Bloch functions vary smoothly in the Brillouin zone.

Later, Callaway24 showed that Eq. (3.31) is a consequence
of the K-P perturbation theory near k=0 for a non-degenerate band.
If Eq. (3.31) is satisfied at k=0, it will be satisfied for .all k
for which the perturbation series converges. In this case FB(a)
is the character of the irreducible representation of the band at
k=0,

Let us determine the properties of the Bloch functions
obtained in the K*T scheme. We will limit ourselves to the case
where the group of io is the point group of the crystal. 1In the
E°; scheme, a Bloch function at Kk is written, according to Eq.

&)

(EQ,?) (3.32)

(3.7) >
"o ® > > 1,12, KT
bnYi &7 = E j cn:i(x) KT

Tg

m, }

Let {al;} be a general operation of the space group. In this

case (ﬁ) . s (i: y
@3 efy &b -1 ci;ﬂ,&)e“‘“"m’%rs "y, X
PB(-IZO) > > ’
byg (k) (3.33)

At ok the Bloch function for the same band n is given by Eq.

(3.34).



-40-

-
¢ L2 PB(ko)
Y - - - j_,j > oKe*r > >
bn,i (ok,r) Cn,m (oK) e bm,j (ko,r) (3.34)
m, j
>
where we made use of the fact that Otk°=ko° In order to relate
Eq. (3.33) and Eq. (3.34) it is necessary to obtain the relation
1,32 1,302
between Cn,m(K) and Cn’m(aK).
The general term in the KT secular matrix is given by Eq.

(3.35.a) at ﬁ, and by Eq. (3.36.a) at aﬁ

-

(& ) (ko)
W222 , r. \¥o rg"fo
K h K h*. B' > >
[E (k )T - 3.2 -E (k)]an 01,5l Py g (k ,r)lwlb m, 1 (k,,r)>
(3.35.a)
(kg) (ko)
2.2 o4 4 . T, 0 Ly o
> hK° hK h, =+ °B' > -
[E (k )+ — - 432 -E (ak)]Gn o 1,3*5(“K) by (k ,r)Inlb m, § (k,,1)>
(3.36.a)
But because
r (ko) (k ) p (k) (k )
B' s' > >
by (e, ,r)l'rr]b o1 (k_,r)>=<ob " (k_,7)|(@ 7 3|ab e k_,r)>
(3.37.a)
then -
) T fko) (k ) fko) r (k )
o <bnf"i &, ,r)l'nlb g &, D)>=<b_ B &, D@ 1r)|b (k°,¥)>
(k ) (k )
= < lb &, D o™ Bj &, 5> (3.37.b)
In this case, Eq. (3.36.a) can be written as
%82 _h 4gh h (k ) ()
> ]
(e, Gy - 5y 2, 0018, 8 <™, B kD) ﬂa’b B @ 5>

(3.36.b)



and the same coefficients are obtained using Eq. (3.36.a) or Eq.

%)
(3.36.b), the basis in the secular matrix being 10K * PB > >
e b k_,r)

('l':o) n,1i o
(f ;) in Eq. (3.36.b).
i o’

&> T
n,
Suppose we diagonalize Eq. (3.35.a) in a new basis, namely
> > T (KO)
iKer --1b B > -
e a b ", (ko,r). The general term in the secular matrix is
]

now (ky) (k.
By I YA : r,; e r
Ty h K _hK o hx -1 B > > 1B > >
[Em(ko)"—i_tr 8m3c2 En(k)lsn,msi,j";i sa lbn,i (ko.r)l‘lﬂa lbm,j (ko’r)>
(3.35.b)
the Bloch function (3.32) being given by
®) (ky)
T - T 0
Y 3o olbew) 3 KT 1B @
by'y (k, 1) Ezc“"“ K) e ‘o b1 (k1)
-
(ko)
v A,knew) 3 v (K, -1 i£er Tg % o
E,,fn-m (K) § rg o (a )j’z e by g (koD (3.38.a)
From Eq. (3.32) and Eq. (3.38.a) we obtain
1,32 o 7 clolmew) 2 (ko) , -1
Carn® % Corm R Tg @™, o (3.39.a)
But Eq. (3.36.b) and Eq. (3.35.b) are identical. Then
ci:f‘(“e") ®) = ci:i(al?) (3.39.b)

-
and taking into account the unitary nature of réko) (a-l) we

conclude that

@ e (@ (3.40)

1,3¢02) = 1,2
Cnam(aK) z € j,l
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Comparison between Eq. (3.39) and Eq. (3.33) gives
“‘l L ar O
{a]a} b ; k1) =e b_Y, (k) (3.41)
?

which shows us that the application of one operation of the space
group to a Bloch function at kK will produce a Bloch function in

the star, corresponding to the same band and partner as the original
Bloch function at k. The K-7 method, however, does not produce
Bloch functions that vary smoothly in the Brillouin zone. We can
easily verify this by considering, for example, the region near

ﬁ;. Consider a point k and a band n and assuye that at ﬁ;, the
i-partner of this band corresponds to the i'-partner of band n',

i.e' ’

1,300y =
Cn:m(o) = Gm,n' 5j,i' (3.42)

If we are seeking for a smooth function, then Eq. (3.42) must hold

approximately near Eo’ which means that if K = 0

i i!
'(K)

“an (3.43)

,C: i(K) =0 ,forj#1i' orm#n' :

Consider now the Bloch function at ak. According to Eq. (3.40)
i,j,.2 i, > (ﬁ )
’ = ’ (o]

Cn,m(aK) % Cn,m(K) r

W)

=t @ 1@, e (3.44)

where we have made use of Eq. (3.43). Thus
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e, oy = 10 (@

n n 3,1 for all j

(3.45)
1,3, 2y = '
Cn’m(dK) ~ 0, for m#n

From Eq. (3.43) and Eq. (3.45) we can conclude that the periodic part
of the Bloch function will not vary smoothly near ﬁ;.

For the purposes of obtaining localized Wannier funections we
are interested in generating Bloch functions that exhibit reasonable
continuity near ﬁo' One way of doing this is to considef. for every
o, a new set of values for the coefficients , which we will call

Cn’i (mod)(aK), such that they vary smoothly near k Define

Cn’g(mOd)(aK) z {r(k°la) l}j q n n,(aK) (3.46)
In this case
-
1, k k
Cn’gsmod) ((;IE) = 2:1 [I‘é o) (a) Z In( )(a')q’g > n' (K)
- ’ - ’j
X %0 n,n'(K) Carar ® (3.47)

The transformation we have performed is unitary, because the

- .
matrices for the representation at ko are unitary, If bands n and

L4

n' are one-dimensional, then

r (&)

:]{ Ill mod) (¥ = y B () cl 1 + (0F) | (3.48)

which is similar to the result obtained by CaIlawayzl’.

When |§¥§°l is large, probably other bands besides n’ contribute
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significantly to band n at k. In this case the coefficients
corresponding to these bands will not be continuous with the above
transformation. Further considerations about the proper choice of
the phases of Bloch functions will be made in section (4.3) in
connection with the study of Wannier functions in PbTe.

Now, 1£f ﬁ is a symmetry point, i.e., there exist operations
a other than identity such that

ak=k (3.49)
Bloch functions at this point have to transform under o like
partners of the irreducible representations of the group of k
p @ p ()

. B > > B -
ab " (k) = % Tg (0 4 by (&, (3.50)

In this case by means of suitable rotations of the basis functions
the E'% matrix can be factored, each block corresponding to a
certain irréducible representation of the group of ﬁo Only part-
ners of the irreducible representations of the group of ﬁ; com-
patible with partners of a certain irreducible representation of
the group ﬁ.will enter the block corresponding to the latter
representation. Examples of this and also of the special points
on the zone faces where aﬁ = ﬁ + ﬁi, will be discussed in section

(3.4).
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3.4 RKeT - APW RESULTS FOR PBTE

Let us now apply the theory of section 3.2 to PbTe. Point ﬁ;
is chosen to be the point T in k-space and in this case the group of
io is the point group of the crystal.

As mentioned in Chapter 2, the first step in the APW calcula-
tion consists of obtaining the non~-relativistic bands, i.e., the
eigenfunctions and eigenvalues of Ho-32/2m + V(;), where V(;) is the
periodic potential. The Darwin and mass-velocity corrections are
introduced next and because they have the full crystal symmetry
only a mixing between eigenfunctions of Ho with the same symmetry
occurs. Although there is a considerable change in the energy
eigenvalues, the eigenfunctions are almost the same, i.e., the
mixing between them is small. The change in energy is essentially
due to the diagonal matrix eléﬁents of the Darwin and mass-velocity
corrections, rather than to matrix elements between different bands.
Spin-orbit interaction is finally taken into account and the double
group irreducible representations have to be considered.

Fig. 3.1 shows schematically the non-relativistic and full

2

relativistic bands obtained by Conklin 1 at '. In this figure

and in the subsequent considerations we will represent the energy
bands by the corresponding irreducible representations. Because

this labelling is not unique, an extra index m is introduced. Thus

Bp will represent the i-partner of the mth band which transforms
n,i P

like the irreducible representation Pn. Fig. 3.1 also shows the
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*
unnormalized energies in atomic units.

2r
1 1 0.90630 2.+ 1 0.84236
8
r
12§ 0.86838 2.+ t 0.76205
3 6
r
2 | 0.71345 - t 0.71544
I‘/
25 | 0.67443 r+T+ + 0.65688
7t
2p )
15 | 0.60947 T~ t 0.53923
2
GAP T~ t 0.41076
1p GAP
15 | o0.17921 S PP
1 )
1 0.10285 Te- 1 0.06586
Irr 1 0.20857
3 3
1 ~0.53758 Tgt 1 0.67639
a) non~relativistic a) relativistic

Fig. 3.1 - Schematic representation of the energy levels
at ' for PbTe (after Conklin)

Due to the fact that I' is a point of high symmetry, only a few
SAPW's are necessary in order to obtain a reasonable energy conver-
gence. In fact, Conklin used 9 SAPW's for I',-levels, 11 for
I, .~levels, 7 for P{S-levels, and 4 for F;F and Flz—levels. The

15
transformation properties of the partners of the single-group

In order to obtain the correct or normalized energies the value of
the constant potential (~0,80138 a.u.) must be added.



47

irreducible representations are shown in Table 3.1, where a system
of coordinates with axes in the (100), (010) and (001) directions
is considered.

TABLE 3.1 - Transformation properties of the single-group
irreducible representations at I,

Representation ' Transformation
Partner properties
I'l s
1St x
nd
15 2 y
3rd z
r 18 t 73 (x2_y2)
12
znd 3z2-r2
) xXyz
15t ye
r 25 an Xz
3rd xy

Table 3,2 shows how to write the partners of the double-
group irreducible representations in terms of the single-group
irreducible representations. In that table, Pn i(I‘m) represents

2

the i-partner of the Fn-double-group irreducible representation



TABLE 3.2 - Relations between partners of the double-group and

single~-group irreducible representations at T.

+
Te,1T1) = T1 54
+
r6,2(r1) =T S
1 . .

(rzs) =3 [(HATgg 1+ Ty5,2)8g = 1 Tyg 35,]
It Tz = & [(~1T7 )S, + 175 ]
7,2v25" ° 25,1 25,2 25,358
¥ () = & [Ur: )S, + 21 T; ]
8,1T25) =/& [y 1+ Tss 5 25,353
rt (rz) [(~iTZ )Sg + 21 T, ]
8,4 25 JB‘ 25,1+ 252 25,35
¥ () = A& @rZ. -T2 s
8,34 25 Ty 25,17 25,27%
+ » i - - - -
Tg,2(T2s) =/7 (-1T35 1= Ta5 5)Sg
- _ 1 - _
Tg,1{T15) =5 [(-1Ty5 4 + Tyg ;)85 -1 Ty5 45,1
- 1
Tg,2Tys) =& [T 15 4 = Tyg 5)S, +1 Ty5 3Sg]
Iy, 1(F ) =T58,
Ig,1(T15) ‘J?( “iTy5.1 + Tys5,205,
Ts,4(Tq5) ’ﬁ‘ (”15,1 +Ti5,2)5
- 1
Tg,3(Tys) =5 (M5, 1 + T15 )8, + 2445 5541
- 1
Tg,201s) =g [(-ATy5 1 + Tyg 5)Sg + 24T 5 55.]
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coming from the I‘m-single-group irreducible represen;ation atI'
and S, and SB are the common "spin-up" and "spin-down' functions.

It can be observed that the partners of the double-group repre-
sentations form Kramers pairs. For two-dimensional representations
rn,Z'Krn,l’ where here K is the time-reversal operator and for four-

dimensional representations, Fn’4=KFn’1 and rn,Z'Krn,3°

The coefficients of the mixing between the non-relativistic
bands due to the relativistic corrections at I' are shown in Table
3.3. For the bands not shown in that table the coefficient is 1.0.

TABLE 3.3 - Mixing between the non-relativistic bands due to the
relativistic corrections, in Conklin's calculation.

+1 +,2 +,3 -1 -2 -1 -2
Tg (T Tg (T) T CT)) Tg (Ty5) Ty ("T35) Tg ((Ty5) Tg (°Tyg)

1r6+ 0.9833 0.1622 +0.0821 0.0 0.0 0.0 0.0
2r6+ -0.1686 +0.9826 0.0776 0.0 0.0 0.0 0.0
3r6+ 0.0681 0.0902 -0.9936 0.0 0.0 0.0 0.0
lrﬁ- 0.0 0.0 0.0 +0,9963 0.0861 0.0 0.0
2r6— 0.0 0.0 0.0 0.0861 -0,9963 0.0 0.0
lre; 0.0 0.0 0.0 0.0 0.0 +0.9996 0.0287
2r8- 0.0 0.0 0.0 0.0 0.0 0.0287 -0.9996

> >
As we have seen in section 3.2, in order to obtain the K7

secular matrix elements it is necessary to calculate the matrix
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elements of T between Bloch functions at r, T being given by (3.9.a).
Because the relativistic bands are written in terms of the non-rela-
tivistic bands (multiplied by appropriate spin functions) we have

to determine, first, the matrix elements of T between the non-
relativistic bands.

The calculation of the matrix elements of the first three terms
in (3.9.a), which are.E:independent, can be performed by a computer
program originally written by Dr. L. G. Ferreira and modified by
us in order to make it applicable to the I point. As it happens at
the L pointla, the second and third terms give matrix elements which
are 10_3 to 10-6 smaller than the corresponding momentum matrix
elements and can be disregarded. The three other terms in (3.9.a),
which are'ELdependent, and do not enter in the effective-mass cal-
culations, where-i is assumed small, were studied by us. A com-
puter program was written in order to calculate the matrix elements
of these terms between the non-relativistic bands. Results at T
showed that they are also of the order of 10-3 to 10-6 compared
with any other term, 1f‘E is limited to the first Brillouin zone.
These considerations show us that only the momentum matrix elements
themselves are important in the calculations. This does not mean
that we are disregarding the relativistic corrections. What have
been disregarded are the contributions of these terms to the T
operator. Observe that Ho in (3.5) contains all relativistic

corrections.
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Let us determine the expressions for the momemtum matrix elements
between single-group representations at I'. This cam be easily done
by noting that'E‘transforms like rlS and using the transformation
properties of table 3.1. Because the group of I' (point group) con-
tains inversion, then the only non~zero matrix elements are those
relating bands with different parities. The results are shown in
table 3.4, where the three expressions for each matrix element

corregspond to the matrix elements of Pys P and Pys respectively.

y

The momentum matrix elements between double-group representa-
tions can be obtained through tables 3.2 and 3.4, They are shown
in table 3.5 for one member of each Kramers pairs.

The matrix elements between different partners are not all

independent but are related by

-> -+ *
<rn,2 |P| rm,l> - <rn,1 IPl I‘m,l> (3,51.a)

-> -> *
Tap [Pl Ty > = =<Ty 4 [Pl T, 5> (3.51.b)

We recall that for four-dimensional double-group representations
there are two Kramers pairs and the results are valid for each

pair separately,
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TABLE 3.4 - Momentum matrix elements between single-
group irreducible representations at I,

Ty 15,1 15,2 Tis,3
0 My 0 0
r, 0 0 M1 0
0 0 0 My 1s
0 Myz;05 | O 0
F12,119 0 M5 O
0 0 0 0
0 -1
Ph2:150 o 0
T5,2( 0 0 7?]5“12;15 0
2
0 0 0 Bh2;1s
Mys.p] O 0 0
r5s . | © 0 0 Mys.1s
0 0 Mys. 15 0
0 0 0 Mys. 15
Tas,2 | Ma5;2] © 0 0
0 Mys.1s | O 0
0 0 Mas515 | O
Ta5,3 | © Mys:15 | © 0
Mys.p| O 0 0




PSS

SRV e

i T e

' . . 4_
L e N R b X e

el 4«’».4¢WL£- Sty S

TABLE 3.5 - Momentum matrix elements between double-group representations at [,

(@a=1/3; b= 1/¥2; ¢ = 1/J6; d = 1/3)
]PG,I(PIS) 2T18) | T7,109) | T3 20 [T 119 [ Tg 5(Ty5) [Tg 3(Tys) [Ty 4(Ty5)
0 ~tay 15 fo 0 -bMy 4o |0 i, 5
4
I‘6’1(I‘1) 0 aMl,ls 0 0 le,lS ) °M1,15 0
- 0 21 0
1 45 | 0 0 0 S [
0 0 0 aMys 2 |1My5,35 | O 1My 15 |°
+ P
Ty,1T25)) 0 0 0 aMy5.2 | Mps,15 | © M5 15 O
0 0 tays , | 0 0 0 0 24y, )
~ibMy5 45| © Mys5 2| 0 0 0 0 aMys 15
(rzs) bMy5 15] © My5.2] 0 0 0 0 M5 15
0 0 0 -21cttys f -tamyo (o0 0 0
. iy 15 | 0 biys | 0 0 -tatys 1 |0 0
Tg,3{Ta5) | ~Myg 15 | O - bMy5 51 0 aMys5 15 |© 0
0
24aty; 1o |0 0 0 0 atys 15 [0
] tary, ;5 | 0 0 0 0 My, 15 [0 by,
g 1(T12)| a3 35 | © 0 C 0 Mp,15 |° 515,15
0 0 0 0 0 0 0 0
) 18, 55] 0 0 0 0 ~idviy, o 1My, 1o
Ig,3(Tp) M3 45] 0 0 0 0 bMy9.15 {0 M5 .15
0 —ZidMlz,ls 0 0 0 0 -liidlez,ls 0

.-E S'._
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The eleven independent momentum matrix elements were calculated
using Conklin's non-relativistic bands at T. Although a good energy
convergence was obtained, the same was not true for all momentum
matrix elements, as it can be observed in figure 3.2, where the
dependence of the matrix elements on the number of SAPW's is shown.
In that figure the SAPW's are included in the order of decreasing
magnitude of their Kq-vector. It can be easily seen that some of
the momentum matrix elements present a good convergence, but others
do not. For all of them a tentative extrapolation based on the
behavior of the curves was performed* and the extrapolated values
used in the solution of the KT secular equation for the symmetry
axes. The values of the matrix elements calculated with the maxi-
mum number of SAPW's available and the extrapolated values are
shown in table 3.6.

As we mentioned at the end of section 3.3, the compatibility
relations between the irreducible representations of the various
groups of k-vector and the transformation properties of their
basis functions can be used to factor the Kem secular matrix along
the symmetry axes, Table 3.7 shows the compatibility relatioms
between the important irreducible representations of the group of
I' and the groups of A, A and z, respectively.

Suppose we wish to obtain the energy bands on the A-axis.

*
In this extrapolation we did not take into consideration the
dashed-line part of the curves.
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TABLE 3.6 - Matrix elements of %?between basis functions
- m
p| T.>

]

at . In this table we represent <nI‘i ';
by o M‘::?. The calculated values refer to the
1

values calculated with the maximum number of SAPW's

available.
Conklin's New
lilatrix Ref. No. on bands calculation
€ e::e:ts Figs. 3.2 & calcu- extrapo- calcu- extrap-
ﬁ-——(-—-)—' 3. lated lated lated  lated
|1 :
N ’
L Mi;ls 9 1.029  1.045  0.969  0.969
152
: Myits 4 0.261  0.250  0.250  0.250
.1
— » - - - - -
: Mi;ls 3 0.269 =0.270 =0.155 -0.155
.2
— »
: Mi;ls 8 0.830  0.790  1.180  1.180
h 331
e M0 2 0.421  0.418  0.437  0.437
h \3s2 -1 -0.213 =0.212 -0.225 -0.225
m 1;15
hodsl 6 6 0.516  0.496  0.534  0.534
32 No - - - -
m Miz;ls 2 7 1.381 -1.350 -1.456 =1.456
by 10 0.929  0.926  0.949  0.949
m M25;2
h i1 3
s Mpis's 11 1.038  1.021  1.068  1.068
*\ 1;2 E
=it 5 0.442  0.448  0.460  0.460



A
0.70}- 1.40!}- | (1
0.60}- 1.30}-
N
AN
b,
0.50}- Sy TTTTL20F ‘"'""”"‘\\ \C;)\ ---------
) ; N
0.40}- 1ok
0.30 1.oo}
0.20} / @'~ “““““ 090}
I /
oio- ! | 0.801
' ° .
N PN N IS I NN SR E N B B N U R A NN SN T R N B
Il 2 3 4 5 6 7 8 9 10 Il I 2 .3 4 5 6 7 8 9 10 11

FIGURE 3.2 - Momentum matrix elements at ' obtained with the non-relativistic bands of Conklin's
APW calculation plotted against the number of SAPW's constituting the wave-functions.

The dashed-line parts of the curves correSpond to the matrix elements calculated con-
sidering the variation of the number of SAPW's of only one wave-function (the wave-

functions have been calculated with different number of SAPW's)

>
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TABLE 3.7 - Compatibility relations between the interesting
irreducible representations of the group of T
and the groups of A, I and A respectively.

P-potnt T, T, i, Ty Tys re I3 Ty
B-axis &) ApHA, Ay A) AkA B, A, A,
-axts I} IpHT, DML, I, DML, Lo Iy Dol
A-axis A A, L T VT .

The A6 levels are obtained by diagonalizing the K*T secular matrix
that contains only the P: and Fz bands, because only they are
compatible with A6. This conclusion could be also obtained from
table 3.5 remembering that on the <100> axis only the x component

of ; is non-zero. Further simplifications can be achieved by using
the fact that due to time reversal symmetry the two partners of the
A6 levels must form a Kramers pair. The diagonalization is then
performed for each partner separately, thereby reducing the dimension
of the secular’matrix by half. From table 3.5 and relations (3.51)
we obtain thét the first partner of A6, for example, is given by

1/2 1/2

+ + o+ 2, .2 .
(clg o = blg /(™ b5 5T

rﬁ,l;

- - 2.2
6.2° (bF8’1-cI‘8’3)/¢:+b )

while the second partnér is obtained from
1/2 1/2

_ ot 2,,2 -
-cP8’3)/(G‘+b ) s r6,1’

5,270 4 /(P47

+ +
Te 8,2

’2;(b1"8’1 (el
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On the other hand, the first partner of A7 will have contributions

coming from

1/2 1/2

4

4
Ty.08

+ 2,2 e P .t - 2,2
(bl"8,2+c1’8’4)/(c +5) : 1‘7,2, (cl"8,1+b1‘8’3)/(c +b7)

The second partner of A7 is obtained from

1/2 1/2

4

- - 2.2
P7’2: ’ P7,1,(br8,2+CF8’4)/(c +b )

+
(eI +bT'g 3)/(c2+b2)

The same kind of reduction can easily be performed along the (110)
and (111) axis.
When reaching the zone faces a special care has to be taken

with respect to the wave-functions, because there are some special

e

points such as L, X, etc., for which a£?§4Ki, where Ei

cal lattice vector and a is an operation of the crystal point

is a recipro-

group. Let us consider the L-point, for example. Although the
energies at this point can be obtained by diagonalizing the Kem
secular matrix on the A-axis for EL= E-(l,l,l), the wave-functions
will not have the proper symmetry. Because the L-point

[k_= £ (-1,-1,-1)] is equivalent to L[k = = (1,1,1)] we mst find
linear combinations of the functions obtained by the above diagon-
alizations at L and -L, that transform like the irreducible
representations of the group of L. This can be accomplished by
using projection operators or by arguments similar to the following.
Suppose that when performing the diagonalization in the A-axis for

K-ﬁL the following linear combination is obtained for a A6-leve1
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A ik T
6 > =+ _ L B
by 1kt = e Z c ,m(kL) by 50 ,T) (3.52)
At =L the same band will be given by
A -1k, r _°
6 -> > L ,
bn,i( L,r) = e 2 C j( kL) b B (0 r) (3.53)

Observe that in both expressions the only Bloch functions at T

that enter are those which transform like irreducible representations

compatible with A6°
As both LZ and Lg are compatible with A6, we have to find out

which linear combinations of (3.52) and (3.53) will transform as

Lz or ng

group of A, also the operations Ja, where J is the inversion oper-

The group of L contains, besides the operations o of the

ation. No distinction can be made between the LZ and L; representa—
tions as far as the operations of the group of A are concerned.
Under the operations of the group of A the functions (3.51)
and (3.52), or any combination of them, transform in the same way,
i.e., as the i-partner.gf the A6 irreducible representation (also
as the i-partner of the LZ or Lg representations). Consider now
an operation Ja_of the group of L. This operation sends k to -k
and when applied to (3.51) or (3.52) gives e-ik or
°r

i
e multiplied by the same linear combination which is obtained

L

when o is applied to (3.51) or (3.52), with the exception that the
terms corresponding to odd parity bands are multiplied by -1. The

> ->
operation that transforms kL into -kL is J and according to (3.40)
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1,3, 24 i, - ,j
Cn’m(—kL) = E Cn’m(kL) Ty (J)j Cralkl) Tg (J)j p (3.54)
If the representation FB has even parity I‘B(J)j j=l and
Ci:i(-ﬁi) = Cn’i(kL) On the other hand if FB has odd parity
rg(d) = -1 and Ciig(‘ﬁi) - - ci:i(ﬁL). Thus
bA6 (E "*) = iEL.;[Z +) i’j(k )(+) B ') ")
n,i L e o j n,m L m, j T
(I ) B
+ E j Cronkr) j(o )] (3.55.a)
A -1k, oT r
6 , > =+ L (+) i 2> (+) B ->
by g (k) = e rglj ) R0, +
-3 Ot j(k Db (0 D] (3.55.b)

m, ]

where in expressions (3.55) we have separated the contributions
coming from the even and odd-parity representatidns. We can easily

observe that

A A
6 47> > 6 + 7 =
Jab P k) =ab kD) (3.56)
But since L+ +
Ja i(k ,r) = b (kL,r) (3.57.a)
L, L.
6 ,» > 6 > >
JQ bn,i(kL,r) = = (O bn,i(kL,r) (3.57ob)

we conclude that
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+ > -+
L b8 &, +b 0 (L.
6 > = 1L it L
b ", (k,,r) = —= 1 (3.58,a)
1L z
A A
- 6 > =+ 6
L b (k,,r) b (=k_,x)
> - 4 4
b O (k.7 =Dl L n,i' L’ (3.58.b)
ik z

Although the calculated bands along the symmetry axes did not
agree very well with Conklin's results and the calculated gap was
much bigger than the experimental gap, the qualitative behavior of
Conklin's bands was obtained. This suggested to us that if an
APW band calculation was to be performed at I' with more SAPW for
each level, certainly better results could be achieved. Based on
this idea, a new APW calculation was performed at I' using 15 SAPW's
for each level, Although the energy levels and mixing changed
very little compared with Conklin's results, as can be deduced
from figures 3.3 and 3.1 and tables 3.8 and 3.3, an excellent
convergence was now obtained for all momentum matrix elements as
seen in table 3.6 or figure 3.4. The new values for the momentum
matrix elements were then used in the E°; secular matrix, which
was diagonalized for values of k along the symmetry axes.

With these new matrix elements the energy gap at L was found
to be equal to 0.0256Ry (0.340ev), which is bigger than the
experimental gap of 0.023Ry (0.31ev).3

A quantitative study of the influence of the various momentum

- >
matrix elements in the Kem bands, along the symmetry axes, was then
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Fig. 3.3 ~ Schematic representation of the energy levels

at ' for PbTe (new calculation).

TABLE 3.8 - Mixing between the non-relativistic bands due to the
relativistic corrections in the new calculation.

+.1 +.2 +3 -1 -2 -1 -2
Tg CT)) Ty (TP T CTy) Ty CTyg) Tg (T1g) Tg (Tyg) Tg (°T45)

1r6+ 0.9881 0.1443  0.0528
2F6+‘0.1481 0.9860 0.0768
3r6+ 0.0410 0.0837 -0.9957
1r6‘ 0.0 0.0 0.0
2r6' 0.0 0.0 0.0
Ir - 0.0 0.0 0.0
) 8

r.. 0.0 0.0 0.0

0.0

0.0

0.0
0.9965

0.0839
0.0

0.0

0.0

0.0

0.0
0.0839

-0.9965
0.0

0.0

0.0
0.0
0.0
0.0

0.0
0.9996

0.0280

0.0
0.0
0.0
0.0

0.0
0.0280

-0.9996
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performed. There are several matrix elements whose variation changes

the gap at L. However, there is one momentum matrix element, namely

Mifis, which besides changing strongly the gap, also changes the
s
-3
bands at other symmetry points in such a way that the K'; bands move

232
1;15

shown in figure 3.5. It can be observed that this variation is

towards Conklin's bands. The variation of the gap with M is

almost linear and that the experimental gap at L is obtained if a

value of 1.210 a.u. instead of 1.180 a.u. is used for the matrix

2:2
1;15°

Due to the symmetries in a f.c.c. unit cell, energies and

element. This corresponds to a change of 2.5% in M

wave-functions need to be calculated only for points in a region
corresponding to 1/48 of the first Brillouin zone. A possible
choice isig

kx szy 2 kz

kx < (2m)/a (3.59)

(kx + ky + kz) < (3m)/a

which corresponds to the region A limited by the points [-L-K-W-P-X
in figure 3.6.

The energy levels and corresponding wave~-functions were
obtained on a regular mesh of 152 points in A, the distance between
two adjacent points in the mesh being Ak1 = 0.20 (r/a). This mesh
has 4288 points in the first Brillouin zone, and is very suitable
for interpolations of both the energy levels and the KT coefficients

of the wave-functions.
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function of MZ;2 ‘

1;15 °

FIGURL 3.6 ~ First Brillouin zone for a f.c.c. lattice.
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Figures 3.7, 3.8 and 3.9 show the K*T bands obtained in the
<100>, <110> and <111> directions, respectively. The circles in
these figures represent the values obtained by Conklin. In figure
3.10 we present the.E:dependence of the important Kem coefficients
of the first partneré of the conduction and valence bands along
the symmetry axes. The coefficients not shown in these figures
are smaller than 0.05 a.u. We can observe the rapid change in
the coefficients due to interaction between bands with the same
parity.

On the A-axis (figure 3.10.a) the coefficients for the
Luttinger-Kohn functions corresponding to odd-parity bands at T

are real, while the coefficients for the even parity bands are
+

pure imaginary, and for the F8 bands the coefficients correspond
1/2
to (cI'8+3 - bP8+l)/(c2+b2) , where ¢ = 16 and b=1NZ. For the
y »

1/2
I';~bands they correspond to (T - ¢l )/(c2+b2) . We could
8 8,4 8,2

have chosen the bands at I in such a way that all the coeffi-
cients along this axis are real, but this is not essential. Figure
3.10.b shows the coefficients along the <110> axis and figure
3.10.c presents them in the <111> direction. On the <110> axis

the coefficients of r6:1 and F8:2 are real, but the coefficients

of P8:4 are pure imaginary. For PGTZ and F8T3 we have to multiply
the coefficients by (1-i) /{2 for the conduction band and multiply
by (1-i) for the valence band, and for 1"7”'2 and rs‘:l by (L+H)INZ
for the conduction and by (1+i) for the valence band. On the

<111> axis all partners at I contribute to the Bloch functions.
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+ + - -
For the conduction band, the coefficients of F7’2, FS,l’ F6,2’ P8,3
+ + - -
are real; the coefficients of PG,Z’ F8’3, P7’2, r8,1 are pure
+ + - -
imaginary; the coefficients of F6’1, P8,2’ F7’l, P8,4 have to be

multiplied by (1+i)/ 2 and the coefficients of T + s I + , .7,
: 7,1° " 8,4’ "6,1

8,2

+ + - - +
of r6,1 . T8,2, F7,l, P8,4 are real; the coefficients of T7’l,
+ -

- +
8,4° ré,l’ F8’2 are pure imaginary; the coefficients of P6,2,

+ - -
8,3 '7,2° Tg,1

+ + - -
ficients Of I‘7,2. 8,1’ 6’2! 8’3

The general behavior of the bands in any other direction

T by (1-1)/ 2. For the valence band, however, the coefficients
r
r have to be multiplied by (1+i)/ 2 and the coef-

r r r by (1-1)/ 2.

in k-space is similar to that shown in the above figures, with the
exception that the band-crossings occuring in the <100> axis are
not allowed at general points. When going away from the <100> axis
the crossing-bands start to repell each other and as a consequence
the E°; coefficients vary rapidly in this region. This behavior

is shown in figure 3.11, where we present the bands on the line

k = g(x,0e2,0.2) where x varies from 0.0 to 2.0.

Knowledge of the wave functions allows us to obtain the
matrix elements of the linear momentum between the relativistic
bands over the entire Brillouin zone. They were calculated by us
on the 152 point regular mesh and the results were used by Buss27
to calculate the optical dielectric constant €(q=0,w) of PbTe. The

28 for

comparison with the measured value of Cardona and Greenaway
the real part of the dielectric constant showed that the calculated

value agrees with the experiment to within SOZ27 (figure 3.12).
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Figure 3.13 presents the matrix element of Py between the valence
and conduction bands on the <100>axis, where we are using a system
of coordinates with x, y and z-axis corresponding to the <100>,
<010> and <001> directions respectively. The peak of the curve
occurs at the minimum gap between the conduction and valence
bands and the rapid change in the momentum matrix element in the
region between IEI =-§ 1.2 and IKI = %-1.4 is due to the inter-
action between the two A6—valence bands and also to the inter-
action between the two A6—conduction bands. The matrix elements
of py and P, between the valence and conduction bands, which are
zero by symmetry, were calculated to be smaller than 0.01 a.u.*
Although the gap is bounded by the A7 valence and conduction bands
for k greater than~§ 1.40, the matrix element between these bands
is very small and can be neglected.

Figure 3.l4.a shows the real and imaginary parts of the matrix
element of P, between the valence and conduction bands on the

IL-axis. The matrix element of py can be obtained by

<zVal l Izcond = -<3 val l l zcond (3.61)

%k
and the matrix element of P, is zero by symmetry. The matrix

elements of the momentum parallel to the -axis is purely imaginary

and equal to v2 Im[<Zval |p [ zcond>]

» while the matrix element of
the momentum perpendicular to that axis is real and equal to
V2 Re [<Zval Ip | Z-ond >]. Both matrix elements are shown in

figure 3.14.b. We can observe that the L-axis is also important

in studying optical phenomena, because although the momentum matrix

*

This value can be considered as a measure of the accuracy of the cal-
culatiea.
**As along the A-axis, the calculated value is smaller than 0.01 a.u.
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elements are smaller than on the A-axis, the minimum gap on the
I-axis is smaller than on the A-axis.

Finally the momentum matrix elements parallel and perpen-
dicular to the A-axis are presented in Figure 3.15. The matrix

elements of P> py and p, can easily be obtained if we remember

that
) =px+p;+pz
/1 7
-, Px" Py
p-L"va =
V2

The matrix element of py is related to the matrix elements of

P, by
X val cond, _ val cond *
<A 6,1 py| Aﬁ,l > = ' xI
<A val I yl cond - i<Aval | I Acond

(3.62)

(3.63)

(3.62)

(3.63)

The momentum matrix elements between the remaining partners

can be obtained through Eq. (3.51).
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CHAPTER IV

- >

LOCALIZED DEFECTS IN THE Kem - APW SCHEME

4.1  INTRODUCTION

Crystal imperfections such as impurities and vacancies produce
electronic states different from those of a perfect crystal.

The effect of these imperfections is to modify the periodic
potential of the host crystal. Let us assume that the perturbed
crystal potential can be written as the sum of the unperturbed poten-
tial plus a time-independent term called the impurity potential that
represents the effect of the imperfections. Normal perturbation theory
can be applied. The perturbed wave functions are expanded in a con-
venient basis, normally a complete set of wave functions for the un-
pertubed case, and one seeks for the solutions of the stationary

Schrodinger equation
[HAU@ W@ = EBy(D) (4.1)

where Ho is the unperturbed one-electron Hamiltonian and U(?) is the
time~-independent perturbing potential. (E)

The eigenfunctions of Ho are Bloch functions bnai (E,;) i.e.,
H

. (%k,1) = E ()b % &D (4.2)
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which transform like the i-partner of the irreducible representation
>

Fék) of the group of the wave vector k.

Different complete sets have been used for expanding w(;)° Bloch

functions are the most natural choice: they are eigenfunctions of Ho

and form a complete set of orthonormal functions for every wave vector

ﬁ, band index n and partner i of the irreducible representation

associated with n. If w(?) is expanded in terms of Bloch functioms,

r ®

ROLIIN (R (4.3)

@ = § A

- n,
n,i,k

the equation satisfied by the expansion coefficients An i(K) is given

Eq. (4.4).
) g k{[E (R)-E18 y 6.1 (8pr (HU (k' Bla, @ =0 4.4
where
oo r " r ()
> ' >, > >
U;,:;( '3y = <b ff’i, (kv,r)]U(¥)|bn‘fi &,7%)> (4.5)

The representation obtained in this way has been called the 'crystal
momentum representation' (CMR) by Adams,29 because Bloch functions are
eigenfunctions of the crystal momentum operator. In order to obtain
the coefficients An i(I:) it is necessary to solve the secular equation

b

(4.4). The dimension of the secular matrix is n xm, where n 1is the
P
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number of unperturbed energy bands used in the expansion (with the
proper degeneracy taken into account) and m is the number of allowed ﬁ
vectors. Even if the one band approximation is made, the number of
allowed'ﬁ's still make this diagonalization prohibitive in practice.

Another very important set of functions is the Wannier set which
is expressed in terms of the Bloch set. For non-degenerate bands, the
Wannier functions an(:—gq), which are localized around lattice sites
E with an average radius approximately equal to a lattice parameter,
are defined as a linear combination of Bloch functions belonging to a
single band, i.e.,

1/2 kR
an(;—gq) = o [k e B %_(&,7) (4.6)
(2m)

where I is the volume of the unit cell and the integration is performed
in the interior and surface of the first Brillouin zone. These functions
form a complete set of orthonormal functions for every lattice site Eq
and band index n. The perturbed wave function w(?) can be expanded in

terms of this set. If this is done, i.e.,

-+ > >

vE = LA R)a (rR) 4.7
n,q

the equation analogous to Eq. (4.4) for the coefficients of the expansion

is

ngq{[En(Rq.—Rq)—Edq.,qldn,,n+ L n(R ,,R Y}a_ (R ) =0 (4.8)
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* *
where En(Rq) is the Fourier component of the energy , i.e.,

> >
> -5 "ik‘Rq
E (k) = ZEn(Rq)e (4.9)
q
and
-+ > e - > >
Upr nRyroRy) = <a (xR ) [U(D) |2, (xR )> (4.10)

Eq. (4.8) can also be written as the difference equation

1 -+ -+ d ->
(B Vg DEIAL RoDFL Upw Ry ROARY =0 (4.10)

q n,q

->
where the coefficients An(Rq) are considered as a continuous function of

5

the variable Rq. The expression En,c% v ) means that we are to sub-

R
q'

stitute %- %ﬁ“‘ for k wherever ﬁ appears in the expression for the
)
q

<>
energy of the unperturbed band n' as a function of k. This is analogous

to say that An is a function of r and En,c% 3+ ) means that we are to

3R _,
substitute~% 2:‘ for k whereever k appears in? the expression for the
ar
energy of the unperturbed band n' and the whole expression is evaluated

-> >
atr = Rq" The representation obtained in this way is called "crystal

coordinate representation' (CCR), because Wannier functions are eigen~

>
functions of the crystal coordinate operator.30 The coefficients An(Rq)

*
-
En(k) is a periodic function in the reciprocal lattice.
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are then obtained by diagonalizing a secular equation with dimension
nxp, where n is the number of energy bands and p is the number of
lattice sites which are taken into account. As in the case of the CMR,
even if the one band approximation is assumed, in the general case, the
number of lattice sites makes the diagonalization prohibitive.

There is, however, a limiting case that can be solved in both the
CMR and CCR, namely, the point impurity. By a point impurity is meant
a strongly localized perturbation such that its matrix element between
two Wannier functions satisfies

> > > - >
<an.(r—Rq,)lU(r)lan(r—Rq)> - unsn.’naq.’qéq’o (4.12)

In Eq. (4.12) the perturbation is assumed to be localized at the origin.
From Eq. (4.12) it is evident that a one band approximation is assumed.

The corresponding matrix element between Bloch functions is given by

2
usé_,
(2")3 nn',n

<bn.(§',?)|U(?)|bn(ﬁ,;)> = (4.13)
i.e., they are independent of ¥ and k' and diagonal in the band param-
eter., In this case, the secular equation factors into n decoupled
secular equations, one for each band.

This problem was first analysed by Koster and Slaterl in the CCR.
They considered the case of a one-dimensional crystal of equally spaced
atoms where the impurity potential does not mix Wannier functions
separated by distances larger than the nearest neighbor distance, nor

does it mix bands. Due to the symmetry of the problem, the solutions



for the coefficients of the Wannier functions have to be symmetric or
antisymmetric with respect to the lattice vectors Rq. If periodic

boundary conditions are assumed, i.e., A(R ) = A(Rp), then 2n states

pt+2N
are to be obtained. Koster and Slater showed in this case the appear-
ance of (N-1) antisymmetric states in the band, which are not affected

by the perturbation, N symmetric states in the band and a bound state,

with energy given by

MO 142

2E(R1)] } (4.14)

E = E(R=0)+2E(R,) {1+]

if the perturbation U(0) has the same sign as the nearest neighbor inter-
actions. In Eq. (4.14), U(0) is the matrix element of the potential
between Wannier functions centered at the origin. In this case the

bound state pushes out of the band at the point where E = E(R°=O)+2E(Rl).
If the signs are different, then the bound state will push out of the

band at the point where E = E(Ro=0)—2E(R By (4.14) it can easily

1)'
be seen that for small perturbations the bound ‘state leaves the band
quadratically in U(0), and as U(0) increases the energy becomes linear
with the perturbation. Further complications were, then, introduced by
the authors, namely, next nearest neighbor interactions between Wannier
functions and again they were able to show the-existence of antisymmetric
states not perturbed by the impurities, symmetric states and a bound
state, whose energy behaves in a manner similar to the simpler case.

In a subsequent paper, Koster and Slaterl considered the problem

@

of a point impurity in the center of a three-dimensional cubic crystal
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in which there is only one band of energies and the Wannier functions
only have interactions between each other when they are centered at
nearest neighbors or closer. Because the perturbation potential was
assumed to have full cubic symmetry, the solution for the problem
tfansforms like a basis partner for one of the irreducible representa-
tions of the cubic group. But since the potential is strongly localized
at the origin, it is evident that one has to look for a function that
transforms like the identity (Fl) representation (s-like symmetry),
because any other irreducible representation would have a vanishing
contribution from the Wannier functions at the origin and would not be
perturbed by the potential. Koster and Slater showed that there is no

bound state unless the potential is greater than a critical value
2E(R.)
1
0.499

tions slightly above the critical value the energy depends quadratically

(o) > )Y, and U(0Q) and E(Rl) have the same sign. For perturba-
on U(0) and, for larger perturbationé, the dependence becomes linear.
The wave function for the bound state was also obtained.

Finally, a more extended perturbation was assumed, namely the case
where the matrix elements of the perturbation potential between Wannier
functions centered at the atoms near the origin also are different from

zero, i.e.,

—>E U+ 5> > 0,1
<a_i(r- q.)l (r)lan(r—Rq)> = Uy ot nbet, (4.15)

where 60’1 means that the matrix element (4.15) is different from zero
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-> -> -
*
only if R_= 0 or Rq = Rl' In this case, assuming that the wave

function vanishes at infinity, seven bound states were found: two s-
like states, three p-type states and two d-like states, which exist
for certain values of the perturbation. The effect of the size of the
crystal and of the perturbation on the wave functions were also
discussed.

Recently Kilby31 proposed a variational method for the treatment
of localized perturbations in solids. He worked in the single band
approximation but was able to treat the cubic and the diamond structures.
In the case of the cubic crystal his results are in fair agreement with
that of Koster and Slater.

In the Koster-Slater scheme we do not use Eq. (4.8) or Eq. (4.9)
for the coefficients of the expansion of the perturbed wave function
in terms of Wannier functions. Instead an equation is used where the
energy En(z) appears explicitly. This equation is deduced in reference 3
and the principal steps are the following. First, the perturbed wave
function is expanded in terms of the unperturbed Bloch functions obtain-
ing Eq. (4.4) for the coefficients of the expansion. Then, the relation
between the\matrix elements of the perturbing potential infthe CMR and

CCR as expressed by

*

For a cubic lattice we have seven non-zero matrix elements for each band.
Observe that the potential can not be considered as a point impurity any
more as far as Eq. (4.12) is concerned.



-89~

ig -+ >, >
. . R =-ik'*R ) -
1',1 —>' -> = -]; q q' i ,i R R 16
Uy a0 =y ZR e ‘e Ut aResR) (4.16)
9’ q'
is used and Eq. (4.4) is written as
> > > >
-ik'*R ik*R ., . > = >
-+ > 1 q' q.i',1i
[E_,(k")-E]JA , ., (k") += ] ) e e U, (R ROA L (K)
n n,i N n,k,i R .,R n,n q q’ n,1
q
=0 (4.17)

In Eq. (4.16), N is the number of primitive translations in the crystal
over which periodic boundary conditions are defined or equivalently the
number of allowed k-vectors in the Brillouin zone. For every band n and

*
partner i a Wannier function has been defined by

-
> >
. (k) Lo
-ik*R_ T io (k)
aing _ 1 > L q, B > > n
(R = 17z ] dk e b (k,T)e (4.18)

a
n, n,i
K BZ

where Qk= (ZW)B/Q is the volume of the first Brillouin zone, and

-).
On(k) is a phase factor. These phase factorsare necessary because if they
are chosen properly, localized Wannier functions are obtained.

- As we are looking for bound states, we can divide Eq. (4.17) by

> >
L
1/2 eik Rp and sum on k'. Using the

[E_, (K")-E], multiply by (1/N'%)

% .
At symmetry points, problems may arise because of this definition. This
point will be discussed later, in Section 4.2.



relation

(R.) 2 Je  Pa (@ (4.19)

A, iRy 17z ok 0,1

we finally obtain

R

ik“(R_-R )
Dofos 6 6 w4 B e gl Roba, ()
8 > > N 1
4 n',ni',i N &, Ty n,n q n,i''q
n,l,Rq ? ’ Rp Rq Rq' k E +(k")-E
(4.20)

>
This equation is valid for all n', i' and Rp. For the system to have a

non-trivial solution, it is necessary that

> >

1k' (R -Rq,)
e i _
det|s , 6., 6 -] g’ —u_, (R R Ol =0 @2y
- '
RprRq R BB (1)

=

=2

In the above secular matrix the general row or column is characterized

->
by the band index n, the partmer index i and the lattice site Rq. If

the term
> > o
ik' (R _R ')
. P q
1 i 1) e
(R -R 1sE) = = e S v 8., . (4.22)
n s p ¢ N Kk E—En(k) n,ni,i

is considered as the general element of a matrix G, Eq. (4.21) can be

written as

=0
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det|I-GU| = 0 (4.23)
i'yi 2 o
In Eq. (4.23) I is the identity matrix and the matrix U has U " (R ,,Rq)
as a general element. nen
If the perturbation U(;) is well localized, the matrix U can be
well approximated as having only a finite number of non-zero elements.
Let us rearrange rows and columns of the U-matrix such that those non-
zero elements appear in the upper-left corner of the matrix. If we
decide to consider a perturbation which has non-zero elements between
n bands* and np sites, the non-zero part of U is of dimension NxN,
where N = n ng. Let us denote this part by UNN' Matrix U can, then,
be written in block form
UNN 0
U = (4.24)
0 0
Correspondingly, matrices G and I can be written as
GNN GNz INN 0
G = ; I 0= (4.25)
°ax Gz 0 I

*In n we include also the different partners of the bands.
n



-Q2-

Then, we obtain

Lan~ GV 0
I-GU = (4.26)
“ConVnn L2
and Eq. (4.23) becomes
det]INN—GNNUNN] = 0 (4.27)

which shows that it is necessary to consider only the GNN part of G
when calculating the energy levels of bound states. Eq. (4.27) can be

rewritten as

-1

detIGNN -U = 0 (4.28)

-

where GNN—l is the inverse matrix of GNN' Eq. (4.28) is preferred over

Eq. (4.27) because I U is not Hermitian, even though GN

NN U and Uy

N N

are Hermitian.

The Koster-Slater method is sometimes called the Green's function
in the CCR because Eq. (4.21) can also be obtained if the perturbed
wave-functions are expanded in terms of the Green's functions G(;,;’)
for the unperturbed Hamiltonian Ho, that is, in terms of the solutions

of the differential equation
(H ~E)G(T,r') = &(r-z'") (4.29)

which are expressed in terms of the eigenstates of the unperturbed

Hamiltonian (Bloch functions) by
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n (4.30)

The perturbed wave-function w(;) is expressed in the form of an

integral equation
¥ = [¥E@UE)CE,T)dr (4.31)

If now the perturbed and unperturbed wave-functions in Eq. (4.31) are
written in terms of Wannier functions, Eq. (4.21) is obtained. The
proof is presented in the Appendix of reference 1.

Energy E in Eq. (4.21) or Eq. (4.30) is a real number if we are
limited to states lying in the energy gap of the host material (bound
states). In the case where we are dealing with states whose energies
coincide with energies in the spectrum of Ho’ as in the scattering
problem, E must be allowed to have an infinitesimal imaginary part.

The problem connected with the scattering of excitations in solids
by localized imperfections in the Koster-Slater model was first con-
sidered by Koster,32 in the case of electrons, and a general theory,
which is applicable to phonons and spin waves as well as electrons is

presented by Callaway.33

As can be observed, the Koster-Slater scheme is extraordinarily
useful when the perturbing potential U(;) is well localized. 1In this
case, only matrix elements of U between Wannier functions centered at

the site where U is localized or neighboring sites have to be considered.
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This scheme has been successfully used in the problem of impurities in
metals, where localized states are closely confined about the impurity
center, and in the case of localized defects in semiconductors, such
as vacancies for example.

The basic ideas about the electronic structure of impurities in
metals before 1961 are presented in reference 57 and of particular
interest is the work of Friedel,34 where the scattering of electrons
in a free-electron conduction band by an impurity potential is con-
sidered and virtual states bound to the impurity ion center are shown
to exist. In 1961, Anderson35 and WOlff36 developed and applied the
Green's function method of Koster and Slater to the interesting problem
of magnetized local states in transition metals. A single band approxi-
mation was assumed and the impurity potential was considered closely
confined to the site of the foreign atom. Wolff,36 for example, treated
the problem by considering the scattering of conduction electrons in
the host metal from the potential due to a (single) ion impurity. This
potential was assumed to have a spin-dependent part; the wave-functions
were obtained and used to determine the self-consistent Hartree-Fock
potential for the impurity. Virtual states* were proven to exist and if
they are sharp and close enough to the Fermi level, the impurity ion
develops an exchange potential that polarizes the electrons in its

vicinity.

*
The connection between the Koster-Slater method and the phase-shift

analysis of Friedel was established by Clogston,37 who showed that no
real distinction exists between Friedel's virtual states and bound
states.
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The theory of Anderson and Wolff was used by Clogston et a1.38 in

order to explain the localized magnetic moments experimentally observed
by them in various transition-metal alloys with iron as impurity. The
theory was later improved by Clogston,39 by taking partial account of
correlations and the many-band structure of the transition metals, and
by Sokoloff,40 who determine the electronic structure of dilute sub-
stitutional alloys of iron series impurities in copper, taking into
consideration the actual band structure of copper.

Localized states due to impurities in semiconductors can fall
into two categories: (1) shallow states, characterized by Sinding
energies of the order of 0.0l ev to 0,1 ev and in general much smaller
than the energy gap, and (2) deep states, characterized by larger bind-
ing energies, as in the case of Cu and Au in silicon and germanium
(~ 0.5 ev).

In the description of the shallow impurity state, the most common
approximation is the effective-mass theory (EMA)41. In this approxima-
tion, the impurity electron (hole) 1is considered as revolving round the
impurity ion in orbits with large diameters (e.g. 50 X) and with an
effective-mass mgs under the influence of a long-range screened poten-
tial -1/kr (x being the dielectric constant), due to the extra charge
in the impurity ion, considered at the origin of the system of
coordinates. Thus, a hydrogenic-like equation41 is obtained for the
envelope function and a Rydberg series of energy levels is expected to

be obtained below (above) the band extremum,
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Using the many-electron Hamiltonian including full electron-
electron interaction and the static periodic potential Kohn42 was able
to justify the EMA in the case of large orbits and weak bonding. The
method was extended by Dresselhaus43 for excitons and Kohn and
Luttinger44 for impurity states to include degenerate extrema.

Improvements have been made in the past years to the EMA. The

44,45 was to solve the Schrodinger equation for the electron

first one,
near the impurity using the true potential and true electron mass and
to match the solution to the EMA solution, which is valid far away from
the impurity. Later, using the Green's funétion method which includes
the full electron—-electron interaction Sham46 showed that corrections
that are inversely proportional to the square of r exist at large
distances from the impurity. They shift the impurity levels relative
to one another and are not the commonly termed central cell corrections.
While the former depend only on the properties of the host material

and on the valency of the impurity atom, the latter corrections depend
on the properties of the impurity atom.

On the other hand, deep states were for many years treated by a
model originally conceived by Frenkel47 for excitons and which has been
improved by many authors.48 According to Frenkel, the excitonic states
can be interpreted in terms of a Heitler-London model, in whiéh the
excited electron is in an atomic-like state confined to the neighborhood
of the lattice site from which it was excited. But, the optical experi-

ments of Baldin149 have shown that deep excitons in Kr and Xe have
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energies not far from the EMA predictions which are obtained by ex-
trapolating the Rydberg series of the shallow excitons. Moved by this
surprising result, Hermanson and Phillips50 investigated the validity

of the EMA from a microscopic viewpoint, taking into account in their
analysis the central cell corrections due to short-wavelength variations
of the periodic and impurity potentials. The impurity equation ob-
tained by them is not easily solved due to the interband matrix elements
of the impurity potential. But they were able to apply a single band
approximation by transforming to a pseudo-~potential representation,
where the effective potential is substantially cancelled within the
impurity atom, thereby reducing tremendously the interband matrix
elements. The theory was then used by one of the author351 to calcu-
late excitonic and impurity states in rare-gas solids.

The first application of the Koster-Slater method to vacancies in
semiconductors was recently made by Callaway and Hughes10 for neutral
single and divacancies in silicon. They used the pseudopotential method
to determine the energy bands of the perfect crystal and represented
the effect of the vacancy by the negative of an atomic pseudopotential.
For the perfect crystal the empirical pseudopotentials of Brustl9 were
used and a fourth order polynomial in ﬁ was used to interpolate between
the values calculated at reciprocal lattice vectors. The origin was
taken midway between the two atoms in a silicon unit cell and, in the
case of a single vacancy, one of these atoms was removed. The group

of the defect potential is therefore C v and only localized states

3
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that belong to the totally symmetric A1 representation were analysed.
With six bands and ten sites the potential U had to be multiplied by

a factor of about 1.6 in order for a bound state to be localized within
the energy gap. More details about their calculation will be given in
the next sections.

Recently, Johnson52 has derived a powerful method for treating
bound states as well as scattering states due to imperfections. This
method is based on the method he derived to calculate bound one-elec-
tron eigenstates for polyatomic molecules53 and molecular ions,54 the
latter method being the complement of the KKR method for calculating
the electronic energy bands of infinite crystals,

In the following sections we apply the Koster-Slater scheme to the
study of vacancies in PbTe.

According to Eq. (4.28), the determinant of (I ) has to

NNV
be calculated for different values of the energy E lying outside the
energy bands of the host crystal. The energy of a bound state is the
one for which the determinant is zero. Matrix GNN can be easily ob-
tained if the unperturbed bands are known on a mesh of points in the
Brillouin zone. For values of E near the bottom or top of the band,
the general element of GNN depends strongly on the details of the
energy bands near these maxima and therefore on the number of points
in the energy mesh. On the other hand, to obtain the elements of UNN
knowledge of the Wannier functions and the localized perturbing

potential is needed.
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In Section 4.2 we derive the expression for the general element
of the U-matrix where the Bloch functions are calculated in the E-; -
APW scheme. The choice of the phase factors that multiply Bloch func-
tions in the definition of the Wannier functions is also discussed.

Section 4.3 is devoted to the solution of the vacancy problem in
PbTe. There we show how to obtain the vacancy potential and how to
define completely the Wannier functions for the valence and conduction
bands. After the matrices GNN and UNN are calculated, Eq. (4.28) is
solved first for the five valence bands in a single-band approximation,
and, then the results are presented in the case where the five valence
bands and four conduction bands are considered all together. 1In all

these calculations 13 sites were considered.

> >

4.2 The U Matrix in the K+P - APW Scheme

The purpose of this section is to determine the expressions for

> >
‘the matrix U in the K-+7-APW scheme.

+ >
As we have seen in Chapter 3, in the K<7-APW scheme, a Bloch

function for a point k in the first Brillouin zone which transforms
-
(k)

N of the group

like the i-partner of the irreducible representation I
of k is expressed in terms of the Bloch functions at a particular point
ﬁ , which transform like partners of the irreducible representation

>

(k_)

>
Pa © of the group of ko. The relation is
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¢ (k,T) (4.32)
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First of all we will discuss how to construct Wannier functions
from the complete set of Bloch functions, in the general case where
spin is present and the band structure of the material presents both
degeneracies required by symmetry, accidental degeneracies, and quasi-
degeneracies which occur when energy bands approach each other at some
points of the Brillouin zone.

Let us first consider the region A of the Brillouin zone which
contains general points, i.e., points of no symmetry.* If the opera~
tion o of the crystal point group are applied to the wave-vector E in A,
a set of vectors aﬁ, also in A, is obtained. This set is known as the
star of k and for a general point it contains G elements, where G is
the number of operations in the crystal point group.

It is well known that at a general point, band crossing is unlikely
to occur. All energy bands are doubly degenerate, and Bloch functions
for one band are partners of the identity double~group irreducible
representation F6 of the group of E. For every band n and every lattice
vector Eq, we could consider two Wannier functions, one for each partner

of the band, the contribution from the Bloch functions being

#*
-
The only symmetry operation of the group of k is the identity operation.
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e b ", (k,r)e » for the Wannier function corresponding to
the i-partner. But for some materials, as PbTe for example, quasi-
degeneracies are found to be rather numerous in A. Near a quasi-
degeneracy the energy bands almost cross. In fact, they do not but
the wave-functions change drastically. Two different points of view
can be taken when defining the Wannier functions near quasi-degeneracies.

According to the first point of view, the bands are not allowed
to cross and are defined in their order of increasing energy. In this
case a continuous energy band will be produced and the G-matrix will
have the proper asymptotic behavior for large values of E. The wave-
functions, however, may vary wildly in the zone, making the definition
of localized Wannier functions more difficult, but not impossible. In
this case, under the operations of the crystal point group, the
localized Wannier functions will not exhibit simple transformation
properties and larger matrices will have to be diagonalized in solving
the defect problem.

The second point of view consists of departing from the above band
ordering according to increasing energy by defining bands with smooth
Bloch function in k—spacef In this case the points where the quasi-

degeneracies occur have to be excluded from the definition of the

*
By a smooth Bloch function we mean a Bloch function whose periodic

part varies slowly in k-space.
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Wannier functions and consequently the G-matrix does not have the
proper behavior for larger values of E. But localized Wannier functions
with simple transformation properties can be obtained, and smaller
matrices will have to be solved. In both cases, however, orthonormal
Wannier functions are obtained, if each Bloch function contributes to
only one Wannier function.

In the present work we will adopt the first point of view because
for PbTe, which is a small gap semiconductor, quasi-degeneracies occur
in a large region of E—space, both for the valence and conduction
bands. The upper valence band and the lowest conduction band also come
close together in a region of k-space and in this region the correspond-
ing Bloch functions do not behave as smooth functions.

Now let us consider the contributions coming from symmetry points,
where the bands can have degeneracy greater than two, and band crossing
is allowed between bands that transform like different irreducible
representations. Let us call ES the wave-vector of a certain symmetry
point S inside or on the boundary of the first Brillouin zone. As far
as degeneracy is concerned, two cases are possible: a single band in A
corresponds to a single band at S, or two or more bands in A will join
at S, giving rise to a band with degeneracy greater than two. In the
first case, point S can be treated as a general point, but the second
case can present difficulties. If, however, a certain partner j of a
band m at S corresponds to the partner i of a particular band n at all

points in A near S, then the contribution from S to the Wannier
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b A 4 >
-ik *R_ 10 (ks)
function corresponding to the i-partner of band n in A ise °> 9 ©®

multiplied by the j-partner of band m in S. In order to clarify this

point let us consider one example.+ Suppose that we have a four-fold
(k)

degenerate band n with symgetry Pa s at S. This band will split into

(k)

8

point T in A. Now, if for example the second and third partners of
(k)
Fa S correspond to the first and second partners of the first of the
(k)
. T
first of the PB bands, then the contribution to the Wannier functions
~Af . 3 6 (K )
1k T (Keg) , . 18 (
corresponding to these partners will be e ) (ks,t)e

-k R T (&) 16 () n,2
and e ° qbna3 (i;,;) e ™ 8 respectively., But the above
’

behavior does not always happen as, for example, for the 1‘8 -bands.

two two-fold degenerate T bands when going from S5 to a general

While along the A-axis the first partner of a As-band corresponds to
(brg’4 —ch’z ), where b=1/f3'and c-l/JE; along theZ -axis the same
has to have a zs—symmetry and the first partner of a Zs-band corres-
ponds to P;,4 + We could however, exclude the symmetry axes from the
definition of the Wannier functions, but we should not forget that
for points near these axes the behavior of the Bloch functions is
similar.

Points like T can be excluded in the definition of the Wannier
functions, because we are interested in matrix elements of these
functions, and in integrations a finite number of points can be dis=-
regarded without altering the results.

On the surface of the Brillouin zone problems also arise at

points E where there exist operations a in the point group such that

->

a§=§+§i, Ki being a reciprocal lattice vector. One example is the
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L-point in the f.c.c. lattice. Due to the special transformation
properties of the wave-functions, discontinuities may occur in the
E-; coefficients. However, points like that can also always be
excluded,

Let us assume now that on a symmetry axis Q two bands with
different symmetries, Qa and Qb, cross at a point P (figure 4.1.a).
Along a general line parallel and adjacent to Q (figure 4.1.b) the
bands do not cross but strong quasi-degeneracies occur and the
i’% coefficients change drastically near P+. At the Q-axis the
contribution to the Wannier function corresponding to band 1 (2)
can be considered as given by the Bloch functions of Qa’ (Qb) on
the left of P, and by the Bloch functions of Qb’ (Qa) on the right
of P. Consequently, at P it will make no difference which Bloch
function is chosen, but once the Bloch function of Qa is chosen
for band 1, for example, then the Bloch function of Qb has to be
used for band 2, This particular definition along a symmetry axis
is not essential because we may always define Wannier functions
excluding the points on this axis when calculating matrix elements;
however, it is desirable, when a reasonable interpolation in the
wave-functions is needed for the region near the axis.

It is easy to see that the Wannier functions defined in this
way form a complete orthonormal set, because the Bloch function
corresponding to one band contributes to one and only one Wannier
function. The choice of the phase factors Bn(k) is made in order

to obtain localized Wannier functions. This point, together with
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the transformations properties of Wannier functions, will be dis-

cussed later.

-
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Fig. 4.1 - Example of band-crossing in a symmetry axis (a) and
how the bands are in a general axis adjacent to it (b).

Let us now determine the expressions for the elements of the U

matrix. The general term in this matrix is given by

i3i >, 2 - - * > >, -+ k-
U |’n(R ,R ) f dr angiy(r Rq) U(r) an'i(r Rq)

n 9 q

-b' .-D" - -b.
-1 eik K e e ﬁq vty (4.33)
N é,ﬁ' nin ’ *

-+ ->
where the sums on k and k?include only the points in the first
*
Brillouin zone that make contributions to the Wannier functions, and

- -+
: -16 ,(k') 16 (k)
t > > > -»> > > !
Uzi:(i',ﬁ) = f dr bnli'(k"t) U(r) bn,i(k,r) e ® e B (4.34)

*
We are allowing here the case where points in the symmetry axes
are not considered when calculating matrix elements.
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If Eq. (4.32) is used for obtaining the Bloch functions at X in terms
of Bloch functions at E;, as a result of the E'; schemé, then Eq.

(4.34) can be written as

>, -+
ien,(k ) i@n(k)

i;i""’ i;'-r'*i".,.
i@, =] 1 eid@)erid e e
’ m, m, i
&) )
T,, o - *_ Ty T T o” |
[ dem?j. & D1t gy 5 P @ (4.35)

Because at Ko the relativistic bands are expressed in terms of the
non-relativistic bands, in the APW scheme, the integral part of Eq.
(4.35) will be written as a linear combination of integrals involving
the non-relativistic bands. In the Appendix we derive the expression

-1(k'-k) -;U )

for the last integral, i.e., the matrix element of e
between non-relativistic bands at ﬁ;. As is observed from Eq. (A.13)
this matrix element can be written as the product of three functions:
one independent of Xk and E', the second depending only on |k-k'| and
the third depending only on the direction of (ﬁ'—i) or, more pre-
cisely, on the group of (ﬁ,-ﬁ) when U(;) has the same symmetry as

the group of io' But in Eq. (4.35), k' and k can take general
values in k-space and even if a reasonable mesh of points is used,
the number of matrix elements to be calculated would be enormous

and the computational time involved probably prohibitive. However,

if U(;) is a localized perturbation we expect that simplifications

can be made. In fact, if U(;) is very localized near the origin,

*
We are allowing here the case where points in the symmetry axes
are not considered when calculating matrix elements.
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“1(K'-R) 7

then the exponential e can be expanded in Taylor's series

near the origin and the integral part in Eq. (4.35) be written as
s
(k )
T £3) * > > >
+. "R > >0 =i(k'-k)*r _ _—+
[ @y, & ,Dle B
p &) &)

°+->*+B

v (kD1 U@ b7
> >
(k) r ()

R + > >
g GBI T P @ D u36)

(ks )
+1(k-k") - [ dF [bm‘f’

If U(;) is well localized then only a few terms in this expansion
need be considered. In the case of vacancies in PbTe, as we will
see later, only the first two terms in Eq. (4.36) need to be con-

sidered if ﬁ and K' are regstricted to the first Brillouin zone.

Define
->
-ik*R_ 16 (k)
> % - SR § 1,3 q n
Cn’m(Rq) 5 é Cn,m(k) e e (4.37)
> > ->
-ik*R i6 (k)
1,32, 1 i,3 q
Dn,m(Rq) N E C,) k) e ke
a d,j.>
= [i-ég Cn:m(r) ]'f-i{ (4.38)

where in the last part of Eq. (4.38) we take C;’i(ﬁa) to be a con-
4
tinuous function in the lattice sites ﬁa, although it is a dis-

crete function. The general element (4.33) of the matrix U will

then be written as

*We are allowing here the case where points in the symmetry axes
are naot considered when calculating matrix elements.
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m!j'm,] n,m q n,m q m
s I - SIS I, (0% SR BGOSR 5, - LS B
+ ) [Crigr (R D n(RO=CUTRID (R TN (4.39)
mj' m,j
where r (Eﬁ) . r (ﬁs)
' .
ol - F—f @t b, & D@ b E &L (4.40)
m,m norm : ?
RO x p ()
1
W AN 2B @ DI b @D (4.41)
mjm B m, o m,j o
norm
with > >
(k) (k)
F,yo 1/2 r,“vo 1/2
> B > > 2 -> B > > 2
B orm = f drlbm;j. k_,o) |1 [far by (k_,0)|°] (4.42)
If the group of Eo contains inversion and U(;) has at least
the same symmetry as ﬁ;, then the element (4.40) of the T matrix is
-
different from zero only if the representations Fé%o) and

Pék°), and the partners j' and j are the same. However, in order for
the elemgnt (4.41) of matrix N to be different from zero, it is
necessary that the above representations have different pafity.
If k' and ¥ are general points in k-space, then, because U(?)
is invariant under time-reversal,
N FB'(ﬁ' e @)
[amh, & LD bn‘fi B = v, @0 S0 (4.43)

i.e., the partners have to be the same and the result is independent

of the partner. Then,
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' N
i@ Ry -u, @3 6., (4. 44)
)

Let us now determine the expressions (4.37) and (4.38) in the
case where we have a f.c.c. lattice and the group of i:o contains
inversion. The integration on k-space need be performed only over
1/48 of the Brillouin zone if the relations between the coefficients
Ci:i(i) and Ciéi:(af), where & is an operation of the point group,-
and the phases Gn(ﬁ) are known. If the KT relation (3.40) is

assumed, then

. k) -mE-‘ﬁq 10 (ak)
i’j + = i 1 i’g' > n
Cn’m(Rq) 3 l{( i3] g% Cn,m(K)rB (a)j’ze e (4.45)
. &) —1ak*R_ 16 (ok)
i3z, _ 1 1 i, o q  n g
nn’m(nq) 3 l{( 5 ég Cn,m(K)rB (a)j.ze ‘e | ak (4.46)

where k is now restricted to 1/48 of the zone. We indicate this fact
by the primed sum on ﬁ. I1f ﬁ‘is a general point, then aﬁ is different
from k if a ¥ €, and the application of the 48 operations of the point
group will give 48 different points in the sum on k. However, if M

is for example the I'-point, the application of the 48 operations will
give 48 equal contributions to Eq. (4.45) and Eq. (4.46), but‘as we
should have only one contribution because there is only one I'-point,
the total contribution coming from this point has to be divided by

48. This multiple counting is corrected by the weighting factor

t(ﬁ). For reference on the weighting factor for all points in the
1/48 of the zone, see, for example, Brust.19

16_(ok)
As we mentioned before, the phases e have to be chosen
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in order to produce reasonably localized Wannier functions. This is a
very difficultiproblem if the material under consideration presents
a complicate energy band structure.

The case of non-degenerate bands and well behaved Bloch functions
was studied by Callaway and Hughes10 and Callawayza, as discussed in
Chapter 3, For PbTe, for example, because the relativistic correc-
tions are important, the bands at a general point are doubly-degen-
erate and at the I'-point some of the important bands have degeneracy
greater than two. The conduction and valence bands come close
together in certain regions of k-space and due to the mutual inter-
action, the E'; coefficients change drastically, which causes the
Bloch functions to vary rapidly in these regions. This fact by
itself is enough to cause the non-localization of the Wannier
functions.

Suppose we have a mesh of p general points (t(ﬁ) = 1) in 1/48
of the Brillouin zone. Because for every point k' in this region
there are 47 other points in the star of ﬁ', the total number of
points is 48p. The most reasonable procedure for obtaining the
optimal Wannier function for a particular band is to assign a
phase factor for each one of the 48p Bloch functions, to calculate
the matrix element of the impurity potential between Wannier func-
tions centered at the origin and vary each one of these phase
factors until a maximal value for the matrix element is obtained.L

This method, however, is exhaustive and time consuming. In the case
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of localized perturbations it is possible to make reasonable choices
just by examining the expressions for the matrix elements. In this
case, the Wannier functions can be considered well localized if the
matrix element of the perturbation U(:) between the Wannier functiomns
centered at the site where the perturbation is concentrated is

much larger than any other matrix elements relating Wannier functions.

For a particular band, the phases in 1/48 of the zone are
chosen to produce the best Bloch functiomns. This is achieved by
making the important K'? coefficients vary in the smoothest possible
way in this region of k-spgce. This is a tedious work but can be
easily done if a reasonable mesh of points is considered. Besides
being the best choice for Wannier functions, it is important when
interpolation is needed in order to obtain the wave-functions at
points other than the points in the mesh.

In order to decrease the number of possible choices we will
assume that the phase associated with a point in the star of i,
where k is in 1/48 of the zone, is obtained by adding a'E:inde-
pendent constant to the phase associated with-{. It-can be easily
shown that this is a good assumption if the important i*% coeffi-
cients do not change drastically in 1/48 of the zone, So, given
a Bloch function with k-vector in this region, the Bloch functions
in the star of k will enter into the construction of the Wamnnier
function multiplied by a phase factor which is only function of «,

where o is an operation of the crystal point group. For every
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possible set {Gn(ai); i=1,48 and every band we should calculate the
matrix elements of U(;) between the Wannier functions and pick out
the set that maximizes the localization of these functions, i.e.,

> *
I dr an,i( 1

is much bigger than the matrix elements with others ﬁ? and iq and

- > > +> > > >
-R ) U(r) a r-R ) is maximal for R =R =0, that is, it
r p) (r) L q) o Rg™0s R
where we assume that the perturbation U(;) is localized at the
origin., Because the leading term in the expression (4.33) for

L
U::i(ﬁ',i ) is the first we can write approximately:

mig’ g
1,4 1,3 & _ov* ds3 2 |
Uy n(0,0) v E, mvgn’“"(RP 0)" € n(R=0) T up (4.47)
Bt 4

1
In obtaining Eq. (4.47) we made use of the fact that TiiiETm;mdj:j

and we recall that the representation corresponding to bands m'
and m have to be the same. According to Eq. (4.45)

(ko) 18, (o)

1,33 oy o L 01 i,8 2
Cn,m (RP-O) 5 EE?ET g g Cn,m(k)PB (a)j’ze (4.48)

If partner i of band n corresponds to partner r of band m at
Eo it is possible that for a large portion of the 1/48 region
of ﬁ;space the leading Kew coefficient of the former band is the
one corresponding to the later band. Let us emphasize this point
when calculating Ui:i(0,0). Assume that for every ﬁ in the 1/48

*
region Ci’; &) is the leading coefficient. If band m transforms
»

s -+
like the irreducible representation réko) we can write

%*

1o, q (4.49)
j j’r j’r

vti0,0) v al'E
n,n n,m

*
In PbTe this is not true for all bands.



-113-

where
i,r 1 ¢ 1 i,r
AT = [.__ z S W (K ) C ( i] (4.50)
n,Mg 2 Lk t®) e@®Y) %, ms
(k ) ie ()
=})T (a) n (4.51)
r Y
o
But Q,"_ Q, _ = |Q, _|? and Ul (o 0) will be maximm if § |Q, |
j,r “3,r J»r j j.r
is maximum. Let aj . and bj r be the real and imaginary parts of
’ 2
Q , respectively. Then
i,r
i,1 i,r 2 2
U, a(0,0) v An’ms § [aj’r + bj’r] (4.52)

and the larger the numbers Iaj r! and Ib I, the larger U o1 (0 0)
= 10 (o)
will be. For simplicity we will assume that e =g,

One way of obtaining a maximum value for Eq. (4.52) is to choose

Bn(a) such that one element, a, . say, is the largest possible.

But there will be some a's that do not contribute to a, .o Then,
H

we choose part of the remaining Gn(a) such that another element
is the largest possible and continue in this way until all Bn(a)
have been chosen, We can now quickly choose the phase factor of

an improper rotation in terms of the corresponding proper ro&ation,
)
in the case where che group of k contains inversion. If PB ° has

(k) (k)
even parity, then PB °(Ja)=TB (a), where J is the inversion opera-

tor and in this case we have to have eie(Ja)=eie(a). However, 1if

(%) (k) (K )
: ° has odd parity, T 8 (Ja)uTB ®(a) and we should choose o168 (J0)

_eie(a)

r

. In the next section, we will apply the above results to PbTe.
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4,3 - VACANCIES IN PBTE

Let us apply the formalism developed in the previous sections
to the case where the perturbing potential U(;) is due to a neutral
Pb~or Te-vacancy.

In the APW method one starts with the non-relativistic self-
consistent Hartree-Fock atomic potential and radial wave-functions
for the atoms under consideration (neutral Pb and Te in our casg),
as obtained from the program of Herman and Skillman.55 The charge
densities are then calculated, together with the Coulomb potential,
which arises from the fixed charges and the charge density of all
electrons, The crystal potential within each sphere is construcfed
by adding to the Coulomb potential and charge density the spherical
average of the Coulomb potentials and charge densities of the neigh-
boring spheres. The total spherically averaged charge density is
then used to obtain the total exchange potential. The crystal
potential is the sum of the total Coulomb potential and total
exchange. In the region outside the spheres the crystal potential
is the sum of the Coulomb potential obtained by averaging the
Coulomb potentials from all the atoms in that region, and the
exchange potential evaluated by finding the total charge in the
region and assuming it to be uniform over the region.

Assume that one atom, Pb say, is missing and that no
lattice deformation or screening occur. The crystal potential
at the sphere corresponding to this atom is only due to the con~

tribution coming from the neighboring spheres and the perturbing
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potential is given by the negative of the crystal potential decreased
by this contribution. In the neighboring Te-spheres the spherically
averaged contribution of the Pb-atom is missing and it represents

the perturbing potential in these spheres. The same can be said about
the perturbing potential in the neighboring Pb-spheres. In the
~constant potential region, the contribution of the Pb-sphere is
missing both in the Coulomb potential and in the charge density and
the perturbing potential can easily be obtained.

Table 4.1 presents some values for the perturbing potential at
Pb and Te spheres due to a Pb-~ and Te-vacancies, together with the
crystal potentials. The perturbing potential is important only at
the sphere in which the vacancy occurs and its value in the other
spheres is disregarded in the calculations. The perturbing and
crystal potentials multiplied by the radius r are shown in
figure 4.2 (Pb-vacancy) and 4.3 (Te-vacancy).

The perturbing potential can be calculated in the plane-wave
region by performing the same averaging used in obtaining the
constant crystal potential, Near the vacancy a value of 0.070 a.u.
for a Te-vacancy and 0.118 a.u. for a Pb~vacancy were obtained and
the values in other regions are completely negligible.

It is evident that the potential constructed in such a way
has the point group symmetry and is important only in the cell
where the vacancy 1is located.

Let us now calculate the matrix elements of the operator



Crystal Pb-vacancy Crystal Te~vacancy

pots?iial Te-sphere Pb-sphere pots%;ial Pb-sphere Te-sphere

r Pb-sphere| Pb-sphere (nefghbor) (neighbor Te-sphere | Te-sphere (nefghbor) (nefghbor)

(a.u) (a.u) (a.u) (10 © a.u) (10 “a.u) (a.u) (a.u) (10 © a.u) (10 "a.u)
0.0006{~271607.531|271607.527 - 0.832 0.47 ([-172385.926 |172385.229 0.185 0.04
0.0054| -29335.669| 29335.396 0.426 0.32 -18719.808 | 18719.366 0.115 0.16
0.0102} ~-15100.241| 15099.972 0.440 0.32 -9682.410( 9682.050 0.110 0.05
0.0204| -7112.004} 7111.731 0.425 0.32 -4612.999 | 4612.659 0.111 0.06
0.0300| ~-4601.703| 4601.434 0.429 0.31 -2995.684 | 2995.340 0.109 0.06
0.0408| -3209.595| 3209.335 0,425 0.31 -2103.063 ' 2102.720 0.108 0.06
0,0504| -2483,934| 2483.675 0.423 0.31 -1637.268| 1636.926 0.107 0.06
0.0816] -1332.464} 1332.199 0.425 0.31 -894.974 894.630 0.108 0,06
0,1032 -965.904 965.621 0.423 0.31 ~-655.947 655.604 0.112 0.06
0.2088 ~327.587 327.324 0.426 0.31 =-233.469 233.127 0.109 0.06
0.3528 -126.081 125.815 0.431 0.31 -97.549 97.207 0.113 0.06
0.6024 ~42,097 41.826 0.456 0.32 ~35.366 35.017 0,122 0.06
0.8328 -20,270 19.988 0.494 0.33 -17.502 17.142 0.139 0.06
1.2168 -8.168 7.865 0.590 0.37 -7.276 6.897 0.181 0.07
1.4856 -4,873 4,544 0.714 0.42 -4,500 4.099 0.243 0.09
1.8312 -2.910 2,547 0.933 0.52 -2.782 2.347 0.371 0.11
2,2152 -1.873 1.460 1.287 0.69 -1.842 1.362 0.633 0.16
2,5992 - =1.325 0.832 1.874 1.01 -1.332 0.792 1.195 0.24
3.0216 -1.045 0.463 3.157 1.46 -1,033 0.390 2.160 0.44
3.1752 -0.990 0.367 3.677 1.66 -0.981 0.304  2.659 0.54

TABLE 4.1 - Crystal potential and vacancy potentials due to a Pb~ and

a Te-vacancy.

(RTe = 2,9958 a.u,; RPb = 3,1005 a.u.)

Radius r refers to the center of the spheres.

-911-
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FIGURE 4.2 - Radius r times crystal and vacancy potentials
in the sphere where the Pb-vacancy is located.
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ot &'k) T

N U(;) between the non-relativistic Bloch functions at

I, i.e.
T, * > > T
+1Ak >

| [ dr bm?j.(o,?) MOk T @) bmffj(o,r)

13 1 4

sisi(AK) = RYERES Stalr , = -
| [a o B 0,2 dt Imej(o,?)l
crystal™? crystal °’

(4.53)

where N is, as before, the number of unit cells in the crystal and
in Eq. (4.53), Ak=k-k'., Because the perturbation u(r) is important

only in the cell where the vacancy occurs, Eq. (4.53) can be replaced

T, > > r
by [ dr bm? g 0, 5" ATy bm‘fj (0,7
si;;(Ak) . cell X (4.54)
’ dat b 8 ,0,D[% [ dF |bB (0,02
£ell b <{e11 3

The expression for the numerator of Eq. (4.54) has been derived in the
Appendix and the normalizat;on integrals in the denominator may
be obtained when performing the APW calculation at I'. Both integrals
are functions of the number of symmetrized APWsand the number of
f-terms used in the expansion of the APW's, Thus the same number of
SAPW and f-terms must be used in both calculations. ‘

Table 4.2 presents the calculated values of Siéi(Aﬁ) for a
Pb- and Te-vacancy in the case where Ak=k-k'= %’(t,0,0), a being
the lattice parameter and t varying from 0.0 to its maximum value
4.0, When calculating these matrix elements the origin of the
system of coordinates was assumed to be at the center of the sphere

A

in which the vacancy occurs, and the chénge in the origin from the
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Fig. 4.3

TABLE 4.2 - Matrix elements of eiAK.; U(;) between non- g
relativistic single group wave-functions at T. i
Pb vacancy Te vacancy é
Band Band t t o
0.00 0.40 0.80 2.00 4.00 | 0.00 0.80 4.00 | §
r, 1r1 2.397 2,396 2.393 2.372 2.302 | 0.468 0.467 0.453 |1
1r1 2P |-1.474 ~1.474 ~1.472 -1.461 -1.425 | 1.065 1,064 1,036 |2
', %, |-1.239 -1.238 -1.236 -1.224 -1.184 [-1.054 -1.052 -1.016 | 3
zrl r | o0.921 0.921 0.920 0.914 0.891 | 2.466 2.463 2.400 | 4
’r) 3r1 0.751 0.751 0,750 0.745 0,726 |-2.364 -2.361 -2.299 | 5
31‘1 3, | 0.648 0.648 0.647 0.639 0.615 | 2.413 2.408 2,308 |6
1r15,1 lrls’l 0.752 0.751 0.749 0.733 0.683 | 4.085 4.071 3.773|7
lr15,1 2F15,1 1.768 1.766 1.762 1,728 1.618 |-1.686 ~1.681 -1.545 | 8
2oy 2P| 4-536 4.531 4.521 4.451 4.219 | 0.800 0,797 0.731]9
lrlsfz lrls:z 0.752 0.751 0.749 0.737 0.695 | 4.085 4.089 4.108
1F15’2 .| 1.768 1.767 1.765 1.747 1.686 (-1.686 -1.698 -1.744
2r15:2 Zrls:z 4.534 4.532 4.524 4.469 4.288 | 0.800 0.798 0.742
Tipy Tip.qy| 2305 2.303 2.299 2.273 2.183 | 1.774 1.768 1.625 |10
Tia.2 Tip.p|2-305 2.304 2.300 2.276 2.197 | 1.774 1.769 1.632
r7° Ty |0.160 0.159 0.158 0.148 0.115 | 0.143 0.142 0.103 11
T3s 1 Tys,p|1-575 1.574 1572 1.556 1.502 | 1.190 1.186 1.097 [12er
Tyg s T3y | 1575 1.575 1.574 1.567 1.535 | 1.190 1.188 1.124 6.;
Z ot
Band  Band |oor——g oY oo o300 ;&»‘Z
1r1 1r15’1 0.000 0.002 0.003 0.008 0.014 | 0.000 -0.353 -1.648|13
Ir, 2r15,1 0.000 0.003 0,006 0.014 0.026 | 0.000 0.143 0.685|14
2r] lrls’l 0.000 -0.015 -0.030 -0.073 -0.134 | 0.000 0.044 0.206]15
r. ryo ;| 0.000 -0.034 -0.069 -0.169 -0.321 | 0.000 -0.016 -0.077|16
3r1 1F15:1 0.000 -0.025 -0.049 -0,119 -0.218 | 0.000 0.160 0.736|17
3r1 irls,l 0.000 -0.059 -0.117 -0.287 -0.536 | 0.000 -0.063 -0.300]18
F12,1 15,1 | 0-000 -0.018 -0.036 -0.089 -0.161 | 0.000 0.088 0.390(19
F1p.1 Tys.q|0-000 -0.036 -0.071 -0.174 -0.318 | 0.000 -0.021 -0.089|20
rfs, Tj |0-000 -0.001 -0.002 -0.006 -0.010 | 0.000 -0.008 -0.039|21
1r1 1, |0-000 0.000 0.001 0.007 0.026 |0.000 0.001 0.003|22
’r) T, ; | ©0-000 -0.000 -0.000 -0.001 0.003 |0.000 0.008 0.025|23
3 r.> | 0.000 0.000 0.001 0.006 0.020 |0.000 0.009 0.029|24
P35, Iri3;1]0.000 0.00 0.020 0.050 0.091 | 0.000 40.048 +0.24025
rye: 23’7 |0.000 0.026 0.052 0.128 0.236 |0.000 0.023 0.095I26
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Pb to the Te-sphere can be incorporated easily into the coefficients
of the SAPW's. Let us consider the I'-point and assume that the APW
calculations was performed with the origin at the center of a Pb-sphere.

The terms in the expression (2.6) for a particular SAPW with wave-
> > -+
vector Ei will have el®1°RPb 4ng e:i'aki'ﬁ;re at the Pb- and Te-spheres,

-5
respectively, where ﬁfb and RTe are positions of the centers of the

spheres and o is an operation of the crystal point group. For the
<> .

[-point, ki=Ki, where Ei is a reciprocal lattice vector. It is well

known that for a face centered cubic lattice there are two kinds of

reciprocal lattice vectors K, = 2n/a (£ m n), namely, £,m,n are either

i
all even or all odd. If the origin is at a Pb-sphere, then
10K, +R
1" Rpp,
e _ = 1
> * 1 1if L,m,n are even
eiaKi RTe -

1 if ¢,m,n are odd

for all operations o of the point group. Thus, if we have the
coefficients of the SAPW's for a particular wave-function at T
calculated with the origin at the Pb-sphere, we can obtain the
coefficients of the SAPW's of the same wave-function when the origin
is at the Te-sphere, by multiplying the former coefficients by
+1 or -1, depending upon whether the SAPW has %,m,n even or odd.

The matrix elements in Table 4.2 were calculated with 10 SAPW's
for each band and are plotted as a function of t in figure 4.4.
The cutoff in the sums on the L-parameters in Eq. (A.13) was taken

as £=10. The convergence of the matrix elements, both in the number

(4.55)
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of SAPW's and %-terms, was excellent and the results for 2=4 and
2=10 differ little (the difference was smaller than 1074 Ry).

Two important conclusions can be deduced from Table 4.2 or
figure 4.4. First, if the representations are the same the matrix
elements are reasonably large and decrease slowly as 'Ail increases.
Second, for different representations, the matrix elements are in
general, small; if the representations have different parities, the
matrix elements increase almost linearly with lAﬁl, and, if the
representations have the same parities, the matrix elements

. This behavior of the matrix

increase quadratically with 4AK
elements provides the important key in the solution of the vacancy
problem in the f'%-APw scheme.

Let us expand the exponential in the numerator of Eq. (4.54)
in Taylor's series near the origin (the impurity potential is assumed

to be localized near the origin). Thus

T, > > r
ar bm?j.(o,'r’)* 2Ty 3y b B 0,
’

cell m,J

=Y
j 0,r)

T
= [ dr bm? 10, D% U@ bm‘f

cell 3

L T r

>k > > B
dr bm;j,(o,r) ru(r) bm

> f >
+ 1Ak ce ’j(O,r) + ..0 (4.56)

11

If the representations FB and PB. have the same parity, only
terms with even powers in (AK~¥) will contribute in Eq. (4.56), i.e.,
the second, forth, etc. terms are zero. The k-independent term is

different from zero only if PB = PB' and j=j', and the term propor-
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tional to [Azlz is the leading term when FB and FB, (which have the
same parity) are different.

On the other hand, if the representation FB and FB' have dif-
ferent parities, the first, third, etc. terms in Eq. (4.56) are zero
and the first non~zero term is the term linear in Ak.

We can therefore conclude that it is a very good approximation
to consider only the first two terms in Eq. (4.56). This is equiva-
lent to saying that the vacancy potential is so localized that in
the first Brillouin zone eiAﬁ.; plays the role of a slowly-varying
function of :o

Table 4.3 presents the values obtained from table 4.2 and
figure 4.4 of the matrix elements of U(;) and ixU(;) between the
non-relativistic Bloch functions at I'. These wave functions are
such that the matrix elements are real numbers. With these matrix
elements we can construct matrix T and tensor‘ﬁi defined by Eq.
(4.40) and Eq. (4.41) respectively, observing that the operator
;U(;) transforms in the same way as the momentum operator under the
operations of the crystal point group. This means that when the
matrix elements of xU(;) between the non-relativistic wave-func-
tions, table 3.5 can be used,

Next step in the calculations consists in‘obtaining for the
important bands of PbTe the expressions for Ci:i(ﬁé) and Di:i(ﬁq),
given by Eq. (4.45) and Eq. (4.46).

Let us consider the three valence and three conduction bands

1

which, at ', correspond to 1F6—, F8—, 2P6- and 2F8— . They will
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TABLE 4.3 - Matrix elements of 163
relativistic bands at

Matrix element of U(r)

Pb-vacancy Te-vacancy

and ixU(-f) between non-
» for Pb and Te~vacancies.

Matrix element of ixU(r)
Pb-vacancy Te-vacancy

Band Band (a.u.) (a.u.) Band Band  (a.u.) (a.u.)
Ir, r, 2.397 0.468 'r, 1r15’1 0.0071  -0.824
r, ’r, -1.474 1.065 I, 21*15’1 0.0131 0.345
r, ’r, -1.23%  -L.054 ’r, 11"15’1 -0,0688 0.103
’r ’r 0.921 2.466 °r, 2r15,1 ~0.162 -0.0386
’r, ’r, 0.751  -2.364 T, 1r15,1 -0.113 0.370
g T ) 0.648 2.413 °r, 21'15’1 -0.274 -0.152
1r15’1 lrls'l 0.752 4.085 T, ) 11'15,1 -0.084 0.121
11*15’1 2rls’l 1768 -1.68 Ty, 2r15,1 -0.162 -0.029
2F15,1 2F15,1 4.534 0.800 T, Tf  -0.0053  -0.0186

Tjpy Tigp 20305 1774 T 11‘15’1 0.0465  =0.124

ry rs 0.160 0.143 ré; r15,1 0.123 0.048

r;;’l r;;’l 1.575 1.190
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be refered to as valence bands number 3,4 and 5 and conduction bands
number 1, 2 and 3, in the order of increasing energy. Because these
bands have, over almost the entire zone, a large contribution coming
from the Kohn-Luttinger functions corresponding to the above Fg and

i=1,48

Pg ~bands, a reasonab;e choice for the phases [Gn(aii) X in 1/48 of

*
the zone] can be made. The phases for the improper rotations are
chosen such that -
1e (Jak) ien(ak)
e = e

where J is the inversion operator. Eq. (4.45) and Eq. (4.46) can

now be written as

1e (aﬁ)
i,j > 1 k
Cn,i(Rq) ﬁ'i Z Z K) F ( Oza) "
kt o
> > (Ko)
x 2 cos(uk-Rq) , 1f FB 07 has odd-parity
> > (k ) . (4.57)
-2 isin(ak°Rq) , 1f FB o’ has even parity
16_(ok)
; L L
pdd) =21 A1 T ki 1P, e .
’ k tk) a £
' »> > i: )
-2isin(ak*R ) , if Fé °7 has odd-parity
‘ . *ﬂ ) (4.58)
2 cos(ak°Rq) , if PB ©°” has even-parity

where the sum on o is restricted to only the 24 proper rotationms.

For the valence bands, the important i';-coefficients vary

xR

ihear L, however, the contributions to the valence bands coming from
the Luttinger-Kohn functions corresponding to the even-parity bands
at " are reasonably large, as can be observed™in figure 3.10.¢, for
the upper valence band.
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reasonably slowly over 1/48 of the zone,* with the exception of
a region near the point in the <100> axis where band crossing and
quasidegeneracies exist. The contribution coming from 1?; is the
largest for the lowest valence band(number 3)and although the con-
tribution coming from the even-parity I'-bands is not small near the
L-point, a reasonably localized Wannier function can be obtained,
if the IPg -contribution is optimized, as explained in section 4.2.
This optimization consists of defining eieﬂ(aﬁ)- 1 for all
proper rotations.

Although throughout a large part of the 1/48 region of the
B.Z. the valence bands number 4 and 5 consist primarily of the
Kohn-Luttinger functions coming from the first and third partners

of lF;, reasonably large contributions also come from the other

partners of 1P§ , from the P6 ~bands and from zrg » besides the
contribution from the even-parity TI'-bands. For both valence bands,
the most localized Wannier functions were obtained not when the

contribution coming from the first or third partners of 1rg were

optimized, but when all partners of 1P8 were optimized. With this

procedure phase factors remain undefined and they are chosen in

such a way that the contribution coming from the F6 ~bands is optimal.

In other words, the choice

1 , if Xg~ (@ >0
eie(a)

=1, if Xg~ (a) <0

*Thia does not mean that the coefficients are large in the entire
region



-128-

where x8-(a) denotes the character of the matrix representing o in

the I, ~irreducible representation, optimizes all partners of P8 .

8
But, there are some o for which x8-(a) = 0 and the corresponding

phase-factors remain undefined. 'They can be chosen in order to

optimize F8’1(P8’4) or F8,3(F8,2) or P6 . The optimization of

eie(a) = 1 for all o, was

Pg , which corresponds to the choice
the one that produced the best Wannier functions. Table 4.4
presents the choice of the phase factors in all these cases.

The conduction bands are also represented by reasonably slowly
varying ﬁ';-coefficients, except in regions near the points where
accidental and quasi-degeneracies exist. Although the lowest con-
duction band (conduction band number 1) also has a large contribu-

8 -bands, the optimization of the FG -bands

proved to give better results. The other two bands behaved in

tion coming from the T

the same way as the two upper valence bands, as far as the choice of the
phase factors is concerned.
Besides the three above mentioned valence bands, PbTe also
has two other valence bands which are important in the vacancy
problem. These bands will be called valence band number 1 and 2,

and at ', they correspond to 3TZ and IFZ » respectively. Valence

band number 1 has an average contribution of 0.897 coming from the

Kohn-Luttinger function corresponding to 3Pz and valence band number

2 has an average contribution of 0.731 coming from IFZ + This means
that very localized Wannier functions can be constructed for these
16, (ok)

bands if we choose the phase factors such that e =1 for all

rotations a.



TABLE 4.4 - Phase factors for the 24 proper rotations.
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Contribution optimized

Rotation Description I'6 I‘8 1-‘8,1 I‘8,3
E Identity 1 1 1 1
27/3 about xmy=z 1 -1 -1 -1

4m/3 about x=y=z 1 -1 -1 -1

21/3 about x=-y=2z 1 -1 -1 -1

8c 4m/3 about x=-y=-z 1 -1 -1 -1
3 2m/3 about x=-y=-z 1 -1 -1 -1
4m/3 about xm-y=-z 1 -1 -1 -1

2m/3 about x=y=-z 1 -1 -1 -1

4m/3 about x=y=-2z 1 -1 -1 -1

2 T about z 1 1 1 1
BC4 ™ about y 1 1 1 1
T about 2z 1 1 1 1

31/2 about z 1 - 1 -1

m/2 about y 1 - -1 1

6C m/2 about x 1 - -1 1
4 3n/2 about y 1 - -1 1
3m/2 about x 1 - -1 1

m/2 about z 1 - 1 -1

T  about y=2 1 - -1 1

T  about x=y 1 - 1 -1

6C T  about x=z 1 - 1 -1
2 T  about x=-y 1 - 1 -1

T  about x=-z 1 - -1 1

™ about y=-z 1 - -1 1
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In the determination of the vacancy energy levels, the conduction
band that at I' corresponds to ZFZ had to be included in the calcula-
tions, because it has an average contribution of 0.627 coming from
the Kohn-Luttinger function corresponding to ZFZ , and the matrix
elements of the impurity potential connecting ZFE and BFz and 1F;
are very large.

Once the coefficients Ci’j(i ) and Di’j(i ) are known, the matrix

n,m" q n,m' q
elements of U(;) between Wannier functions can be obtained. These
matrix elements are calculated for the five valence bands and four
conduction bands and for the site at the origin and twelve nearest
neighbors of the type ﬁé ='% (1,1,0). We have found that for all
bands the matrix element connecting Wannier functions centered at
the origin was 5 to 20 times larger than any other matrix element.

On the other hand, the matrix G can easily be obtained if
Eq. (4.22) is used. According to this relation the matrix G is
diagonal in both the band and partner indices and if A§q=§§-§A"
where Rq and Rq' are two lattice sites, we obtain
t 2cos(a§'A§q)

i,i,,% 1
Gn,n(ARq’E) N E g E-En(t)

(4.59)

where now the sum on k is performed in 1/48 of the zone and the sum
on o includes only the 24 proper rotations of the crystal point
group. According to Eq. (4.59)

i, i, x> _ali, 2
Gn’n(-ARq,E) Gn’n(ARq,E) (4.60)
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and for Aﬁq =0
-3
ci’i(o 5 > , if E > En(k)
n,n? N (4.61)
<0 , 1f E < En(k)

Due to the fact that, for values of E near the top or bottom
of the energy band, the G -matrix depends strongly on the details of
the band near these maxima, the number and distribution of points
in the energy mesh are very important. We have calculated the
elements of G for some values of E near and far from the extremum
of the bands using both the regular and Conroy's34 integration
methods. For all bands very good convergence was obtained for a
Conroy's mesh of 1000 points in 1/48 of the zone. Because contin-
uous energy bands have been defined in k—space,(}izi(Aia,E) properly
approaches zero for large values of E, as can be observed in Hpg. 4.5
where we preaent(}i:;(O,E) for the valence bands number 3,4 and 5
and conduction band number 1. For the conduction band(;::i(O,E) is
negative.

Let us now determine the bound states associated with vacancies
in PbTe. Because the vacancy potential has the crystal point group
symmetry, the wave-~functions corresponding to the bound states will
have to transform like the irreducible representations of the crystal
point group. Thus, instead of diagonalizing the total matrix
[INN4;NNth]’ or UgNN-l—IhN]’ we factor it in block form, each block
containing only states with wave-functions transforming as the same

irreducible representation. This factorization can be accomplished
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using projection operators, if the transformation properties of the
Wannier functions are known.

Although providing a proper G -matrix, our definition of Wannier
functions do not produce functions with simple transformation proper-
ties. Let us consider Eq. (4.18) which defines a Wannier function.

This equation can also be written as
>

N r &)

- i’ > >
an,i(r—Rq) - E i Cn,g(Rq) mej (ko’;) (4.62)

where Ci’i(EA) is given by Eq. (4.45). If B is an operation of the
]

crystal point group, then

+> - -
Ba G2)=) L7 L7y d@) rkd e e q, n
G 1 R AT e,
r (kO)" >
b Y k., (4.63)

If spin is not present, 6=fc is one of the 48 operations contained

in the sum on a. Then

' -idﬁ'Bﬁ
> 1 1 1,2 (k) q
Ba ,(r-R) = = —— C’(K) T 70/ (8)_ e
ER Ez,p Nxzc e(®) g % myms Y P>t
10 (871 oy 1 K
e mep (k1) (4.64)

-
and if for a given k the same phase factor corresponds to all

operations § we obtain
>

, &)
- R Peatyp Y >
Bay (k) =1 CULBRI b kD) = e

(x-BR)  (4.65)
- m,p q

1
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In the present calculation, however, we are dealing with double-
group representations and 6=Ba is not necessarily* one of the 48
operations contained in the sum on 0. Besides that, in order to pro-
duce localized Wannier functions the above choice of the phase factors
is not always possible. For the inversion operator J, however, §=Bo.

is always one of the 48 operations and
+-+ -+ >
Ja, JGER)Y =ta (oK) (4.66)
if we choose

-
ien(Jék)

u}
i8_(8k)
e =te T

(4.67)
But Eq. (4.67) is consistent with our present choices for the phase
factors and this will allow us to factor the total matrix in two
smaller matrices, one for the even-parity representations and the
other for the odd-parity representations, as proved below.

We have that

= < » > > > > > e d
< - \ - =t 3
am’i(r Rp)l Wr) | a, (r Rq)> _<am’i(r+Rp)|L(r)lan’i(ﬁ-Rp)>

depending upon whether bands m and n have the same or different
4

choices (4.67). If the symmetric and anti~symmetric linear combinations

- > > >
ws (;'ﬁ ) - an,i(r—Rp) + an,i(r+Rb)
n,i' " ’p
’ vz (4.64)
3> > - >
25ty - ) a s ()
n,i s P /2—

*
The crystal point group has 96 operations.
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are considered, then

.8 -> - as ,+ =»

Yy, 1 (R [U(r)lwm’i(r,RqP =0 (4.65)
and lkN can be written in the above block form.
It is easy to verify that the same is true for G, and(}NN—l,

and that the Wannier function centered at the origin has to enter

the symmetric block as
8 -»> >
wn’i(r,O) = an’i(r-O) (4.66)

in order to be properly normalized.

In the present case we cannot further factor these two blocks
into smaller blocks containing only one irreducible representation,
but each block is totally diagonalized. In the following discussion
we will call the energy levels obtained from the symmetric and anti-
symmetric blocks, symmetric and antisymmetric levels, respectively.

Eq. (4.28) is solved first for the five valence bands in the
single band approximation. The conduction bands are not considered
in this calculation because of the following consideration. As we
discussed before, the matrix element of the impurity potential between
Wannier functions centered at the origin is larger than any other
matrix element*o Thus, the first order solution is obtained con-
sidering only the site at the origin and in this case only one per-
turbed energy level is possible for each band (symmetric solution).
If the perturbation is very small this level stays in the band
(virtual state), but if U is big enough, a bound state lying above

the top of the band is obtained. It lies above the gap because the

*The potential is assumed to be localized around the origin.
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impurity potential is positive and, in order to satisfy Eq. (4.28),
G (0,E) has to be positive. However, as we in general are interested
in energies smaller than the top of the lowest conduction band, the
levels obtained for the conduction bands are not of interest. Now,
if more sites are taken into account in the calculation, then not
only will we change the energy level of the bound state which is
obtained when only the site at the origin is considered, but also
new bound states may appear above the top of the band.

The symmetric and antisymmetric energy levels obtained in the
single-band approximation for the five valence bands are shown in
Table 4.5 and figures 4.6 and 4.7. There we present the results for
one site and for 13 sites. In the first case only one symmetric
state is produced per band, while in ‘the second case, seven symmetric
and six antisymmetric levels exist for each band. For vacancy
potentials in PbTe the perturbation is not strong enough to pull
antisymmetric states out of the bands, and only symmetric bound
states may occur, For a Pb-vacancy one symmetric bound state is
produced both for valence band number 1 and 2.

The effect of considering more sites is to increase the energy
of these states, as shown in figure 4.6, The perturbation, however,
is not strong enough to produce symmetric bound states for valence
bands number 3, 4 and 5. A different picture is produced when a
Te-vacancy is present in PbTe. Now, besides valence bands 1 and 2,
symmetric bound states are also pulled out of the valence bands

3, 4 and 5. All these bands, except valence band number 5, present



Pb~Vacancy Te-Vacancy
Symmetric Antisymmetric Symmetric Antisymmetric
states states states states
BAND 1 gite 13 sites 13 sites 1 site 13 sites 13 sites
States| Energy (States|Energy iStates{Energy [States|Energy [States|Energy iStates |Energy
in the| of in the| of in the] of {in the| of in the] of in the! of
band ] bound band ]|bound band |bound | band |bound band | bound band |bound
states gtates states states states states
(10 3ry)| (10 3gy) 20~ %ky) 10 3ry) 107 %y 10 Ry)
VALENCE 1 0 52,0271 6 94.221)f 6 - 0 1122.321 6 1278.27% 6 -
VALENCE 2 0 }631.182} 6 758.366] 6 - 0 43.2161 6 75,132} 6 -
VALENCE 3 1 - 7 - 6 - 0 123,813} 6 137.845} 6 -
. |VALENCE 4 1 - 7 - 6 - 0 38.752] 6 57.695} 6 -
VALENCE 5 1 - 7 - 6 - 0 16.427| 5 39.010} 6 -
26.522
4

TABLE 4,5 -~ Symmetric and antisymmetric states obtained in the single-band
approximation for the valence bands of PbTe.
energy is taken at the top of the band.

The zero of

~LET~
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only one symmetric bound state both for 1 and 13 sites. For valence
band number 5, however, one state exists when 1 site is eonsidered,
but another one appears when all 13 sites are taken into account. From
table 4.5 or figures 4.6 and 4.7 it can be observed that, in the single
band approximation and for 13 sites, one bound state appears above the
bottom of the lowest conduction band for a Pb-vacancy and, for a Te-
vacancy, the number of bound states is equal to three.

The above results, which are different for a Pb-vacancy and a
Te-vacancy, can be qualitatively explained using table 4,3, Valence
band number 1 has a very large contribution coming from the Kohn-
Luttinger function corresponding to FZ (3Fi+) and, according to that
table, the matrix element <3I'1+|U(?)| 31‘1+) is much larger for a Te-
vacancy than for a Pb-vacancy. Valence band number 2, however, has
a large contribution coming from 11‘6+(1I'1+) and <1F1+IU(?)|1P1+> is
much larger for a Pb-vacancy than a Te-v;cancy. On the other hand,
valence bands number 3, 4 and 5 have large contributions coming from
P6-(1P15) and rs'(lrls) and <1F15|U(?)|1P15> is much larger for a
Te-vacancy than for a Pb-vacancy. Thus, we expect that, for valence
band 1, 3, 4 and 5, the effect of the perturbation is stronger for
a Te-vacancy than for a Pb-vacancy and, for valence band number 2,
the opposite should occur. This is eguivalent to saying that valence
bands 1, 3, 4 and 5 have a large part of its charge density concen-
trated in the Te-sphere, while valence band 2 has its charge densiy

¥

in the Pb-sphere. This is in agreement with the LCAO or tight

binding energy band calculation of PbTe performed by Schirf.56
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Finally, all the five valence bands and four conduction bands
were considered together. For 13 sites the resulting symmetric and
antisymmetric matrices have dimension 63 and 54, respectively. But,
due to the fact that the valence bands number 1 and 2 and conduction
band number 4 have a large contribution coming from the P6+—1evels
and the other bands have a large contribution coming from the F6-
and Fs‘-levels, these two groups can be considered separately. We
are allowed to make this separation not only because the matrix
elements <F6+[1K;)|P6- or F8-> are smaller than <F6+|U(;)|P6+> or
<T¢” or P8_|U(;)|F6- or P8-> but also because they enter temsor N
which gives a second order contribution to the matrix element of U
between Wannier functions.

When all bands are considered, we can only solve Eq. (4.28) for
values of E outside the bands. This means that in the first group
we look for solutions with energy between the top of valence band
number 2 and bottom of conduction band number 4. In the second
group, only energies in the gap can be considered. But, by in-
vestigating the dependence of the eigenvalues of the matrix
K;NN-l-th] or energy E we can determine the number of states lying
below and above a given energy E.

For the first group only one symmetric bound state was found
at -0.43290Ry, for a Pb-vacancy, and at -0.23862Ry, for a Te-vacancy.
In both cases, the effect of the interaction between the bands was
to decrease the energy of the bound state obtained in the single

band approximation, between the top of valence band 2 and bottom of
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conduction band 4. This level, however, still lies well above the
gap. For the second group, no bound state was found in the gap
either for a Pb~- or Te-vacancy. Comparing with the unperturbed case,
no extra state appears or disappears above and below the gap, in

the case of a Pb-vacancy, but, for a Te-vacancy, three extra states
were found above the gap and, consequently, three states disappear
below it.

1f the results of the two grodps are considered together, we
conclude that both for a Pb- and a Te-vacancy no bound states are
produced in the gap. For a Te-vacancy three states disappear below
the energy gap and appear above it, while for a Pb-vacancy only one
state disappears below the gap and appears above it,

A Pb-atom (configuration 6sz6p2) contributes 4 valence elec-
trons, while a Te-atom (configuration SsZSpa) contributes 6. If a
Pb-vacancy is present in the crystal, then the perturbed crystal has
4 fewer electrons than the perfect crystal. But as only one state
( which can accomodate two electrons) has moved from the valence
to the conduction bands, there is still an empty state in the
valence bands. Therefore, two holes are available in the valence
band and we have a p~type semiconductor, in which the carriers can
not be frozem out.

On the other hand, if a Te-vacancy exists, the perturbed
crystal has 6 fewer electrons than the unperturbed crystal. But
as four states have moved from the valence to the conduction bands,

then there is one state filled in the conduction band, i.e., two
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electrons are available there. An n-type semiconductor is produced
and again the carriers cannot be frozen out. These results are
shown schematically in figure 4.8.

It is interesting to note that the. number of states pulled out
the band depends on both the strength of the perturbation and on the
shape of the energy bands. The first dependence is present in the
U-matrix, while the second is present in the G-matrix. Because we
are calculating the G -matrix using a Conroy's mesh of 1000 points
a point corresponding to the top of the band probably does not occur
in this mesh., Now, if we allow the energy to have values between
the top of the band and the highest energy in the mésh, other bound
states may occur, when more than one site is considered. This indeed
happens in PbTe, for all valence bands both in the case of a Pb-
and a Te-vacancy in a single band approximation. Let us consider,
for example, valence band number 5. The top of the band occurs
at L and corresponds to an energy Etop of -0,56395 Ry, while the
maximum energy Emax in the mesh is -0.56218 Ry. When the energy
was allowed to vary between these two values, 5 symmetric bound

states and 3 antisymmetric bound states appeared very near Em ’

ax

in the case of a Pb-vacancy. For a Te-vacancy, 3 other symmetric
bound states and 3 antisymmetric states were produced. The energies
of these states are shown in Table 4.6.

When all bands were considered, these levels were shifted
towards the Ema « For a Pb-vacancy, for example, the highest

x
level is now at 3,,5x10-5 instead of 1‘,037::10"3 in the single band
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TABLE 4.6 - Symmetric and antisymmetric states appearing between the
top of valence band 5 (Etop = ~0.56395 Ry) and the
highest energy (Emax = -0,56218 Ry) in the Conroy's
mesh of 1000 points corresponding to this band (single
band approximation). The zero of energy in this table
is taken at E .

max
Pb-vacancy Te-vacancy
Symmetric Antisymmetric | Symmetric Antisymmetric
states states states states
(Ry) (Ry) - (Ry) (Ry)
0.2x107° 2.1x107 | 0.8x107° 7.6x10™>
1.2x10™° 3.5x10> | 9.27x107% 1.14x10™
4,0x107° 1.07x10™% | 1.572x1073 1.52x107%
6.0x10™>
1.037x107>
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approximation.

In order to decide whether these levels are bound states or not
it is necessary to calculate the G-matrix for energies very near the
top of the band using a very large mesh of points. However, we
believe that these states are in the band because the comparison
of the present mesh of 1000 points with the regular meshes of 152 and
916 points, which do include the top of the band, shows that the
value obtained with Conroy's mesh is the convergent value. Even if
some of these states are bound states, they are so close to the band
that screening will be very important. But as the dielectric constant
of PbTe is very large the effective perturbation potential will be
much smaller than the potential we are using in the present calculation
and, as a consequence, these states will be moved further towards

the top of the band.
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CHAPTER V

CONCLUSIONS

Two important results have been obtained in the preceeding work.
They are: the explanation of the effect of vacancies in PbTe from
first principles and the calculation of the energy bands of that material
using the E'? - APW scheme.

The vacancy problem is solved here using the method of Koster
and Slater, which was used by Callaway and Hughes10 in the study of
vacancies and divacancies in silicon. In the definition of the Wannier
functions these authors considered non~degenerate non-relativistic
bands and the regions of quasidegeneracies in k-space were disregarded
in the calculations. Bloch functions for a particular band were
chosen in such a way that their periodic part varied slowly in k-space.
In this case, proper choices of the phase factors in the definition of
the Wannier functions produces localized Wannier functions which
transform like basis partners of the irreducible representations of
the crystal point group., The U-matrix can be factored according to
these representations thus decreasing the dimension of the secular
equation to be diagonalized but the G-matrix, may not present the
proper asymptotic behavior, for large values of the energy E.

In PbTe, however, relativistic corrections are very important
and we have to deal with degenerate relativistic bands. Regions of
quasidegeneracies are very important. They occur in a large part of

the Brillouin zone, and cannot be disregarded. In PbTe therefore the
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vacancy problem is somewhat different than in silicon. With the Bloch
functions obtained by the E‘%—APW calculation it is possible to choose
phase factors in the definition of the Wannier functions in such a way
as to produce localized functions. The bands were chosen in order of
increasing energy and in this case proper G-matrices were obtained, -
but the Umatrix can only be factored into two blocks, one for the
even-parity representations and other for the odd-parity representa-
tions of the crystal point group. However as did Callaway and Hughes,
we had to exclude from the definition of the Wannier functions
symmetry points in k-space where degeneracies, other than spin or
accidental occur, but we believe that the mesh of points used by us

in the Brillouin zone contains all the peculiarities of the bands.

The results obtained here show that a Pb-vacancy produces a
p-type material, while a Te-vacancy causes PbTe to be n-type and,
in both cases, the carriers cannot be frozen out. Thus, if a Pb~-
vacancy is the major defect when excess tellurium is present in
PbTe and if a Te-vacancy is the predominant defect when we have excess
lead, the fact that a p-type material is produced in the first case
and a n-type material in the second, with no carrier freeze-out in
either case, can be well explained.

We have used 9 bands and 13 sites in our calculations and the
energy convergence of the levels seems to be satisfactory. In the
one-band approximation, the effect of considering more sites is to
increase the energies of the levels already obtained, shifting them

away from the bands. This increase, however, is not large and if
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more sites are considered we expect the levels to be further shifted
in the same direction, thus improving our results. Because all the
bands that interact strongly with the five valence bands were taken
into consideration, we expect that if more bands are considered, the
results obtained will not differ much from ours, as far as the levels
assoclated with the valence bands are concerned.

The one-electron energies and wave-functions used in the calcula-
tions were obtained by the i';FAPW method in a mesh of points in ﬁ—space°
In this method we start with the APW eigenvalues and eigenfunctions
of the relativistic one electron Hamiltonian at I'. The matrix elements
of the operator T between the basis states at I' are then used in the
i'% secular equation to obtain the energies and wave-functions in a
point'E of the Brillouin zone. For PbTe, we found that the rela-
tivistic contributions to T can be disregarded and only the matrix
elements of momentum ; have to be considered. With 11 bands at T
(corresponding to 30 partners) excellent results were obtained. It
was necessary to change only one non-relativistic momentum matrix
at " in order to fit the experimental gap at L and some experimental
results, discussed at the end of Chapter III, can be well explained

with these bands.
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APPENDIX
MATRIX ELEMENT OF U(Aﬁ,?) = iAk rU(;) BETWEEN NON-RELATIVISTIC

BLOCH FINCTIONS AT ic’o

The purpose of this Appendix is to derive an expression for the
matrix element of the operator U(Aﬁ,;) = eiAﬁ.;tK;) bétween two non-
relativistic Bloch functions. ¥For simplicity we will use the notation

r (ko) (k )

B & ,r)IU(Ak Dl b & ,0> (A.1)

<b !i'

for the matrix element,

Since in the APW method, Bloch functions are expressed as linear
combinations of symmetrized augmented plane waves we will have to
calculate the matrix element of tKAﬁ,?) between two SAPW's, namely

r (& )[_§A r (ko) SAPY]

< ?;. x4 5 vk, B v Py (gD (A.2)

where k' = k + Ki . ki = ﬁo + Ei ’ Ki and K, being reciprocal
lattice vectors, and j' and j are the column indices.
The group of the operator U(AE,;) is the same as the group of

AE, if U(;) is assumed to have the symmetry of the group of Eo' in
general, U(AE,;) reduces* the group of the wave-vector ﬁ; and breaks
the representations of this group into sets of irreducible represen-
tationséof the group of U(Aic),;). Observe that the representations F(i{:o)
and Péﬁo) might be different, since after reduction they might include

equivalent irreducible representations of the group of U(AK,?).

%
The group of Eo has to be equal to or larger than the group of U(AE,;)Q



=151-

But the basis used in the APW calculation might not be
the proper basis for reduction, so that a unitary transformation is
necessary before calculating the matrix elements. As Ferre:[ra15 we
reserve the name of transformed symmetrized augmented plane wave
(TSAPW) for the new combination of APW's. Thus, in general we are
interested in the calculation of

(ko) [TSAPW] r, (k) [TSAPW]
<‘P |i J'(k' ) |U(Ak r)[xp 1.3 d:i’;) >

. _— ®,) (k)
aga zgzv gr,gr Tgro @ €@ gV Tg o (a )2

x <a' VI@ELD) Uk, D] ot E D> A.3)

where V' and V are the unitary matrices and a and o' are operations
of the group of 11’0.

The expression for the matrix element of a general operator 0
between two TSAPW's is given by Ferreirals and we present here the
main steps in the calculation. It is important to mention that a
TSAPW is not a SAPW made out of APW's and using the rotation matrices

of the transformed basis, because the latter is

% i L rék )( )9. m j m wAPw(Ei’;)

Qw1

while aﬂTSAPW is

r (ko) 2
L1V Tg° (g & D

Any operation o' of the group of the wave-vector i:o can always
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be written as y' &', where Y' is an operation of the subgroup that
leaves U(AE,;) invariant and §' belongs to the Factor of the subgroup,

which contains G/G members, G and G being the number of opera-

ub
tions in the group of k and in the group of U(Ak r), respectively.

(k)

If we denote by PB,(k°) and PB the rotation matrices which are

in the reduced form for the operations of the subgroup, i.e.,

ré(ﬁo) = vt réko) réfk o =yt r‘éko) V', then
(k ) (ko)
Vi o T ON ) I (a)
2' B L 3 q i,q Q:j (A,l;)

)
3
1V
g

P& (k ) - '(k )
1100 Tgr o7 (@gy g z Tgr o’ (ah) ,q'vqlJ

'

and since y' commutes with U(Ai,;)

F (k ) [TSAPW] (k ) [TSAPW]
<wn.1,3. (ki) Uk, D | w G 7
ko) .(k )
v (k) 1 (k) APY

To (Mgl © Wy < WHE&LD Juak,H e &, D>

(A.5)
where A = 6'-ia° The sum in &' in Eq. (A.5) can be performed and a

non-zero result is obtained only if
a) the representations of the subgroup to which i' belongs are

the same as the representation of the subgroup to which i belongs;
b) the partner numbers of the irreducible representation of

k)

the subgroup to which the i'-th partner of F<,° and the i~th partner

-
of FékO) go are equivalent,
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¢) the representations of the subgroup to which i' belongs is
the same as the representation of the subgroup to which 2' belongs;

d) the representation of the subgroup to which i belongs is the
same as the representation of the subgroup to which £ belongs;

e) the partner numbers of the irreducible representation of the

>

subgroup to which the L'-th partner of T fko and the f-th partner
g B

(ko)
of FB 0’ go are equivalent.

If all the above conditions are satisfied the result of the
sum on §' is equal to Gsub/ni" where n,, is the dimension of the

common representation. Thus, we have to derive an expression for

the matrix element of the operator U(Aﬁ,;) between two APW's, i.e.

>

@ UELD Juek D] & D> (2.6)

But, in a sphere located at r and having radius R

> > o L j, (k.R)
APW .+ iki ro i zi 21 i .
¥ (k,,r) = e 4y ) i" ———=5u (r")
1 $,=0 m =-2, Y .5 B ApE
i i 71 it
mi *
XY, (8! , ¢' ) Yoi (8',9") (A.7)
L k k L
i i i i
APW o> =
A similar expression can be written for ¥ (kj,r), and if the plane
> >
wave eiAk’r in U(AE,;) is expressed in terms of spherical harmonics,
i.e., by
+> > +> > L
. . *
T L MR 4ny T thy ryvpcey, Lo TROI8)  (A.8)
2=0 m=-2

Eq. (A.6) can be written as
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APW > = > - APW > = iAﬁ'row ® 2+2j lij
<y (ki,r)IU(Ak,r)Iw (kj,r)> =e ) ) <
=0 2.=0 & =|2-%,| m'=-2,
J b ij
x (-) jo(bkr') u (r')u (r")
liaE (R) ulj Ej(R) 072 24,E; 2ok,
) ) g.4171/2 o .
x £'U(e') det) (GmTeD) I5phE Yy (80 60 DYy (8] L4 )
i i i "1 07y i ]
x C(L & & 5 0m' m') c(L 2% 5000 (A.9)

where £< means the smallest between 21 and zj and the C's are

ij

Clebsh-Gordon coefficients, which, in the Racah closed expression,

are given by (£+2'-2i)' (g +2—2 )i (£i+zj—£)!

C(t £y L35 0 m' m') = [(22;+1) (£+z +£j+1)'

x (2)1 (@)% (gg-m"): (g4tm’): (45-m DRENCFL Y

X 2 T ] (= ) i ¥ 3 i '(A°10)
v Vi (£+2j—£i-v)o (2-v): (2 +mt~v)! (JLi—Q,J.+\))° (zi-z-m +v) !

and
L+L -8 1/2
j i L! (221+1)

s

(" 2 oS T - i - 1
(L-2). (L Ri). (L £j)e

c(R Zj 21 ; 000) =

1/2
. [(ILHLL Pl (-2t (A D) x]

(2+2 ORERY (A.11)
and in all these expressions (2 j+2.) must be equal to 2L, where
L is an integer.
When deriving Eq. (A.9) we made use of the following facts:
, *
a) [ao' Ypi(8',¢") Y‘;;;(e',cb') Yo(6', ¢")
1 N
(28+1) (22j+1) 1/2
= 4“(221+1) C(2 £j 21; m mj m, ) C(2 Qj li; 000)
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b) that we must have m:l_'--tuﬂ-mj and 2+21+2j=2L, where L is an

integer, in order for the Clebsh-Gordon coefficients to be different

from zero.

¢) the primed system of coordinates (inside the APW sphere) is

chosen such that Ai is in the z'~direction. In this case e&k-o and
1/2

[ Monr . 49 *. 522"'12

Op=0 and Yo (Bpp s 0p) = N1 6

m,0
d) from b) and ¢) we obtain that m=0 and mi=mj-m'.
e) from the expressions (A.10) and (A.11) for the Clebsh Gordon
coefficients we observe that

m' <&

<
and if 21 means the smallest between li and 2j’ then m' can only

J

have values between -1: and +2: ; also

h| 3

AR

3
< £+li

Lig 4
2
h|
and then 21 can only have values between Il-ljl and (£+2j).
f) we have assumed that the potential U(r) is spherically symmetric
inside the APW sphere.

The sum on m' in Eq. (A.9) can also be written as

SR iy .
E‘""‘inz (e"‘i'd)"‘i) Yy (e;‘j, "’1'<j) C(L 2, 2,5 0 m' m')CA &y 4,5 00 o>‘
. ' 112
o Jeagrn@epn @enhieen! ]
Lo b @m? @ TR,
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v 1 .
x P? (coseéi) Pzﬂ(coseﬂj) c(2 lj zi; 0m' m")CR lj 21; 000

k| i : (A.12)

L
< 2 cos [m'(¢£ - ¢é )1 form' >0
1 form' =0

Eq. (A.12) can easily be obtained if we expand the spherical harmonics

in terms of the Legendre polynomials, i.e.,

Yo', ¢') = [132;1) §§+:;:]1/2 PP(cos') e'” " for m>0

(e, ¢') = (D™ v e, ¢ for w0
and observe that

c(2 lj 21; 0 -m' -m') = C(2 Rj 21; 0 mm)

Finally, if expressions (A.9) and (A.12) are used in Eq. (A.5)

we obtain
P (k )[TSAPW] F (k ) {TSAPW]
<‘p ' V(k ’r) IU(Ak r)l w i J (ki)r) >

> >
I(Z,Qi,liJAk|) F(L,2,,20) H(L,2,,8],0K) (A.13)

where
1) the radial integral 1(2,21,£iJAﬁl) depends on U(;) and

|AEI and is given by

1
(R) U, 1 (R)
1°B4 LiEg

R
1(2,21.2;,IA§l) - [] 0 dr'jzclAilr')U(r')r'z

X u (r') u,y o, (")
RyoBy i°B4
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2) the function F(l,ki,li) does not depend on U(;) or Ak and

is given by

| : : Lt
FlLply) = QD QL) @) T 1) T @ 2!

1 —-p ‘e
. (2+2.i li)! (2.+2.i li)! (2£+£1 )1
(2+21+2£+1)!

1
3) the function n(z,zi,zi) depends on the group of the operator

U(Ak, D)
zij v
' AL ' ' (- '
B, 00) = 4 ] a1t g—\;}-[ (L -2 -v)

]

(-1 (R Am' V)1 (4]-2,4v) L(B]~R-m'+V)1 1714 3 (k}R)

S

N ¢ (ko)
x 3 Gm [T Bt Ty,
i L,Ly v'A ™ i,
> 1Ok, ~y'k!) ¥
(kg) m' ' m' i i’ "o
x [UT;,© ()] P,,(cos0' ,) Py (cos8'. > e
8 Lisd 4y YT M Ay
2 cos [m' (@' 2y = ¢',7 )] form' >0
. Y'ki Aki
1 forn' =0

where U(;) has the symmetry of the group of ﬁ;, then H(Z,li,ﬂi,Aﬁ)

depends only on the group of Ak.
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