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ABSTRACT

This thesis is a study of the electronic energy levels associated
with vacancies in PbTe using the Green's function method of Koster and

Slater, and using unperturbed Bloch functions obtained from a relativ-
istic K*,-APW energy band calculation.

APW one electron energies were obtained at r and the corresponding
eigenfunctions were used to obtain matrix elements of the relativistic
momentum operator n between states at r. These energies and matrix

elements were used in a K-ff secular equation to obtain energies and
wavefunctions at approximately 4300 points in the Brillouin zone. With
11 relativistic bands at r, excellent results were obtained.

Localized Wannier functions were then constructed by taking suitable
linear combinations of the unperturbed Bloch functions, and these Wannier
functions provided the basis in which the energy levels in the presence
of the perturbing impurity potential were found. We have solved the
vacancy problem using Wannier functions from 9 bands (5 valence and 4
conduction) and 13 lattice sites.



The results obtained from this calculation show that Pb vacancies
produce p-type PbTe, whereas Te vacancies produce n-type PbTe, and in
both cases, carriers are present at all temperatures. If it is assumed

that Pb vacancies are the major defect in Te-rich material and Te
vacancies are the major defect in Pb-rich material, our results are in
agreement with the experimental observations and explain why carriers
in PbTe cannot be "frozen out" even at low temperatures.

Thesis Supervisor: George W. Pratt, Jr.
Title: Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

The purpose of this work is to study the electronic energy levels

associated with vacancies in PbTe using the Green's function method of

Koster and Slater. In this scheme the perturbed wave-function is

expanded in terms of Wannier functions of the unperturbed case, which

are written in terms of the unperturbed Bloch functions. In our case,

the latter functions are obtained from a relativistic K-w - APW energy

*
band calculation. The importance of this study is that it explains

some of the very interesting properties of PbTe to be discussed below.

Lead Telluride has been the subject of considerable experimental

and theoretical investigations for several years. It is known to have

0
a NaCl crystal structure with a lattice constant of 6.452 A (12.193

2
atomic units) and to be a semiconductor with a direct gap of about

3
0.3 eV at room temperature. The gap is located at the point L in the

Brillouin zone. The measured and calculated electronic properties of

4
the lead salts have been recently reviewed by Prakash, in his work on

the measurements of the optical absorption edge of these salts and its

variation with temperature and pressure.

+ +A

k is not to be confused with the magnetic momentumwhere p
s the linear momentum and A is the vector potential. In the case of

non-relativist~cbands r is equal to the linear momentum and the method
is called the K-P method.
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A very interesting property of the lead chalcogenide group of semi-

conductors is that they have ranges of non-stoichiometry, the lattice

incorporating either excess lead or chalcogen with the corresponding

defects. While excess lead produces a n-type semiconductor, excess

chalcogen gives rise to a p-type material. Both cases are characterized

by high mobilities at liquid helium temperatures and it is not possible

to freeze out the carriers at low temperatures.5 The concentration of

the excess component can be controlled by equilibrating the solid with

the vapour pressure of that component and the variation of this

equilibrium with the vapour pressure has been carried out for all lead

salts. It has been found out that for excess chalcogen the principal

defect is a singly ionized lead vacancy while for excess Pb, the

situation is not yet clear: for PbSe it seems that the principal defect

is a doubly-ionized insterstitial Pb,6'7 while for PbS, a singly

ionized sulfur vacancy appears to be the primary donor defect, although

an appreciable concentration of doubly ionized interstitial Pb also

exists.8 On the other hand, a singly ionized tellurium vacancy is

probably the most important defect in PbTe.9 The theoretical study of

vacancies in PbTe, therefore, presents the possibility of explaining

the behavior described above.

The defect problem associated with a Pb- and a Te-vacancy is solved

here in a manner similar to that used by Callaway and Hughes10 for

single and di-vacancies in silicon, that is, by applying the Green's

function method of Koster and Slater, which has also been successfully

used in connection with the study of impurities in metals.11 The
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effect of the vacancy is treated as a time-independent localized

potential and the perturbed wave-functions are expanded in terms of

Wannier functions of the unperturbed lattice. Because the latter

functions are defined as linear combinations of Bloch functions, the

knowledge of those wave-functions, on a reasonable mesh of points in

the Brillouin zone, is necessary.

The one-electron energy bands of PbTe were obtained by Conklin,12

through a first principle relativistic APW calculation, and by Lin

and Kleinman,13 using a pseudopotential approach. Conklin's calcula-

tion is briefly discussed in Chapter II, in conjunction with the APW

method. Some experimental results can be very well explained by his

bands12 and the effective-masses 1 and deformation potentials15 ob-

tained with these bands are in good agreement with the experimental

values.

In principle, we can use the APW method to calculate the eigen-

functions and eigenvalues of the one-electron Hamiltonian at every

point in the Brillouin zone, although the program for a low symmetry

point will not fit our computer systems. Even if this were not the

case, the computation time involved would make these calculations

prohibitive. As shown in Chapter II, the eigenfunctions of the one-

electron Hamiltonian are expanded in terms of symmetrized APW (SAPW),

and the number of SAPW necessary to obtain a good energy convergence

increases rapidly as the number of symmetry operations of the group of
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the wave-vector decreases. The energy levels and wave-functions are

calculated only for the high symmetry points and for one or two points

in the symmetry axes of the Brillouin zone. The energy bands are then

sketched along these axes using the compatibility relations between the

groups of the wave-vector at these different points.

As we mention before, in order to explain and calculate many of

the experimentally observable properties of the material it is desirable

to know the eigenvalues and eigenfunctions of the one-electron

Hamiltonian at every point in the Brillouin zone. In Chapter III we

show how to do this by a first principles K-7 interpolation scheme. In

this method, if the energies, wave-functions and momentum matrix ele-

ments between these functions are known at a particular point in k-

space, k say, the energies and wave-functions can be obtained at every

other point. This method involves no approximation if all energy bands

at k are included in the calculations. For a semiconductor, however,

we are mainly interested in the conduction and valence bands, and we

expect that bands with energy far away from these bands will give a

small contribution in the calculations. Thus, if a reasonable number

of bands around the conduction and valence bands is used in the K-7i

calculation, we expect good results for bands near the Fermi level.

The choice of k0 is based on the following considerations. If we

choose k to be a point of low symmetry, two difficulties arise: first,

*
For more information in the convergence of the energy and momentum
matrix elements in PbTe-APW calculation, see reference 16.
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it is difficult to calculate momentum matrix elements at points of low

symmetry, and second, when going from k to a point of higher symmetry,

the symmetry enforced degeneracies are not built in the calculations.

It is wise, therefore, to choose as k the point of highest symmetry

in the Brillouin zone, because there we can perform a very good energy

band calculation and the symmetry properties of each point in the B.Z.

(except the zone faces) are automatically satisfied. In Chapter III

we also discuss how such a calculation was performed by us for PbTe,

using 11 relativistic bands at r, obtained from a relativistic APW

calculation.

+ ~ 17
The K-r method was first used by Cardona and Pollack for germa-

nium and silicon. The values for some of the energy gaps and momentum

matrix elements were obtained from the experimental data on cyclotron

resonance and optical measurements. The remaining parameters were

assigned values suggested by the OPW calculation of Herman18 and pseudo-

potential calculation of Brust19 and were then adjusted until the

calculated energy bands agreed with the ultraviolet reflection data.

Our calculation, however, differs from that of Cardona and Pollack in

that in ours the relativistic bands at r and all momentum matrix ele-

ments between these bands were calculated. The information was used in

a K- secular matrix and the bands were obtained in a mesh of points in

the Brillouin zone. The results were surprising: it was necessary to

change only one of the non-relativistic momentum matrix elements by

2.5% in order to fit the experimental gap, and at the points where

Conklin performed his calculations, our results differ little from his.
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CHAPTER II

APW ENERGY BAND CALCULATION FOR PBTE

The APW energy band calculation of PbTe was performed by Conklin

12in 1964 as a Ph.D. dissertation at MIT. In order to present his

results, let us briefly discuss the APW method.

In the APW method the periodic potential in the crystal is

assumed to be of the muffin-tin type which is obtained by placing

touching spheres around the atoms in the lattice. The potential is

taken to be spherically symmetric inside the spheres and constant in

the region outside them. The spherically symmetric part of the

potential is made of the atomic potential at the site under consid-

eration plus the spherically averaged contribution of the neighboring

atoms. The constant potential is chosen by linearly averaging the

spherically symmetric potential in the region outside the spheres.

The construction of the potential will be discussed in more detail in

Chapter IV.

The solution of the Schrodinger equation can be broken up into

two separate parts. In the region outside the spheres, where the

potential is constant, the solutions are plane waves. Since the

potential is spherically symmetric inside the spheres, the solutions in

th~s~region can be expanded as the sum of the products of radial wave-

functions u,E r) and spherical harmonics Y (0, ), i.e.

I() Ai~ u ,(r) Ym(eo) ' (2.1)
,~m ~
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where u ,E(r) must satisfy the following radial equation

2
[- + V(r) + ]r u ,(r) = Eru ,(r) (2.2)
dr r ruE )

The coefficients A, are chosen so that (r) be continuous with

the plane wave at the surface of the spheres. The resulting function

is called an augmented plane wave (APW) and can be written in the

f ollowing fashion

APW r 4e, &O+
kr) 6 + P e ik0 - 47 i j(IkI R) X

u ZE(r')M
_ (R) kk)6 Y ' )(2.3)
pZ P (R ZekMY] Yp'.t '

where
6 - 1 outside the sphere

0 inside the sphere

-,1 inside the sphere

0 outside the sphere

In (2.3), 6k and 4 k are the spherical coordinates of the k-vector;

jL(r) are spherical Bessel functions and the primed coordinates

refer to a coordinate system having its origin at the center of the

sphere situated at R . The radial functions upZE are subscripted

by the additional index p because the crystal potential may differ in

different spheres if the solid contains more than one kind of atom.

It is easy to prove 12 that the APW functions satisfy the Bloch

condition, i.e.
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APW$ + Rn APW (2.4)iP (k,r + Rn e 'P (k, r)
+n

where R is a lattice translation.n

In setting up the secular equation for the eigenvalues and

eigenfunctions at a particular point k of the first Brillouin zone

only APW functions corresponding to k + K, where K are the various

reciprocal lattice vectors, need be considered. A sufficient number

of reciprocal lattice vectors must be used to adequately approximate

the eigenfunction. The number of reciprocal lattice vectors

necessary depends on the desired accuracy and can be determined

empirically.

Computation is simplified by considering the group of the wave

vector which describes the rotational properties of the wave-functions.

Under the operation R of this group, these functions transform like

the partners of one of its irreducible representations, i.e.,

ra-+ - _
R t (k,r) " 'a(R) iPO (k,r) (2.5)

i~

J'OL thwhere $ (kr) is said to transform like the j- partner (or

column) of the ra irreducible representation of the group of the

k-vector. In (2.5) ra(R)ij is the (i,j) element of the matrix

that represents R in the ra irreducible representation. The trans-

formation properties of the wave-functions will be considered in

some detail in Chapter III.

To accomplish the objective expressed by (2.5), projection

operators are formed for each irreducible representation and these
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operators are used to project out of the augmented plane waves,

functions that transform according to that representation. These

functions are referred to as symmetrized augmented plane waves (SAPW),

and have the form

I:+ + + * APW ++
k+K ,r) = r,(R)J R$ (k+K ,r) (2.6)

SR

where R are the operations of the group of k. The SAPW in (2.6) is

th
said to transform as the j-- partner of the ra irreducible represen-

tation. Because for the same j and different Z, different functions

may be obtained, the column index X is used as a subscripted index

in the SAPW. The Bloch functions are then written as a linear com-

bination of SAPW with different K.

Let us consider now the one-electron relativistic Hamiltonian

derived from the Dirac equation by decoupling large and small com-

ponents of the four component wave-function by means of successive

20applications of the Foldy-Wouthuysen unitary transformation In

the absence of a magnetic field, and for coupling terms between the

5large and small components of the order of (v/c) , where v and c are,

respectively, the velocities of the electron and of light, we obtain:

H 2 4+ A 2 V2V 4
H + V() + )-a + V) -2.7)

4m-c 8v c 8m c

The first two terms are the kinetic and potential energies;

the third is the spin-orbit coupling and the two last are the Darwin

and mass-velocity corrections.
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In Conklin's relativistic APW calculation , the solution for the

non-relativistic bands, i.e., the eigenvalues and eigenfunctions of

+2 4
+ V(r), are first obtained. The Darwin and the mass-velocity cor-

rections are then considered as perturbations and new energies and

wave-functions are obtained. These corrections do not lead to

splitting of the single group levels because they have the same

symmetry as the non-relativistic Hamiltonian. They will, however,

mix levels with the same symmetry and will impart an unequal shift

to them.

The last step in the calculations involves the inclusion of the

spin-orbit term. At this point, spin must be introduced in the wave-

functions, which then will transform as basis functions for the

double-group irreducible representations.

Figures (2.1), (2.2) and (2.3) show the relativistic energy bands

obtained by Conklin along the three major symmetry directions. These

results show a small band gap occuring at L which is responsible for

most of the observed electronic properties of Pbte.

Since the two levels which mark the forbidden gap at L are very

close together, the calculated gap is the difference of two very

large numbers and is therefore very sensitive to slight changes in

the position of these levels. Since the L non-relativistic band

which is the major contributor to the bottom of the conduction band

*
Another way of including the relativistic effects in the APW forma-
lism has been carried out by Loucks 2 l. In this case we solve
directly the Dirac equation based on the muffin-tin potential.
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has a large part of its charge density concentrated in the plane wave

region, the position of this level is very sensitive to the value of

the constant potential in this region. Then, a slight change in this

value results in a large relative change in the size of the energy

gap, and can even lead to a reversing of the order of the conduction

and valence bands at L. This reversing was indeed obtained by

Conklin and a perturbation analysis performed by him showed that a

small variation in the constant potential leads to the right gap.
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CHAPTER III

THE K*n SCHEME

3.1 - INTRODUCTION

Before 1955, two complete sets of orthonormal functions were

largely used for solving problems connected with the behavior of

electrons in solids: the Bloch functions, eigenfunctions of the

one-electron Hamiltonian, and characterized by a band index n and

wave vector k, and the Wannier functions defined in terms of the

Bloch set and characterized by a band index n and a lattice site

R . The representations generated by these two sets, namely the
m

crystal momentum representation (CMR) and crystal coordinate

representation (CCR), will be discussed later, in Chapter IV, in

connection with the study of localized defects in solids.

In 1955, however, a new complete set was introduced. Luttinger

and Kohn22 showed that if the Bloch functions are known at a parti-

cular point in k-space, k say, it is possible to construct a new

complete set of functions, characterized by a band index n and wave

vector k, but different from the Bloch set. These functions, which

we shall call Kohn-Luttinger functions, have been used in the

establishment of the expressions for the effective-mass and g-factor

tensors in solids. The effective-mass tensor is normally obtained

*
If the energy band is degenerate, n also includes the partner
index.
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by constructing the so called k*p-effective Hamiltonian through

Brillouin-Wigner perturbation theory and, in this scheme, the g-

factor tensor can be obtained using the method introduced by Rotho 23

Assume that the eigenfunctions and eigenvalues of the one-

electron Hamiltonian are known at k . We can construct the Kohn-
0

Luttinger set and expand the Bloch functions at every k in terms

of this set. The coefficients in the expansion are determined by

solving a secular equation and if all bands at k0 are included in

the secular matrix the result is exact. In practice we are limited

to a finite number of bands at k which limits the accuracy of the

calculation. However, reasonably accurate calculations can be made

for the conduction and valence bands using a manageable number of

4

bands at k on either side of the gap.

In the case of non-relativistic bands, the off-diagonal terms

in the secular matrix are given by the matrix elements of the

h _+ 4.
operator m K-p between the Bloch functions at k0 , p being the

linear momentum and K-(k 0). However, when relativistic corrections

are taken into account, the appropriate operator is m Kir, where 7r

is equal to p plus other terms due to the relativistic corrections.

This method of obtaining energy bands will be referred to as the

K*-' method.

The idea of using the K-7r scheme for the calculation of energy

bands at every point in the Brillouin xone was first put in prac-

tice by Cardona and Pollack 17, for germanium and silicon. We will

see later that to determine the energy levels at any point in
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41.
k-space it is necessary to know only the energy levels at k and

4.
the momentum matrix elements between states at k . As we men-

0

tioned in Chapter I, Cardona and Pollack treated the energy gaps

and momentum matrix elements as adjustable parameters. The values

for some of them were obtained from the experimental data on

cyclotron resonance and optical measurements. The remaining

parameters were assigned values suggested by the OPW calculation

18 19of Herman and the pseudopotential calculation of Brust and were

then adjusted until the calculated energy bands agreed with the

ultraviolet reflection data. Although this empirical method can

in principle be used for any material, it requires the knowledge of

sufficient experimental data to choose at least the initial trial

values for the energy gaps and momentum matrix elements and does

not provide the wave-functions at k, unless the wave-functions at

k are known.
0

However, the success of Cardona and Pollack in obtaining the

energy levels suggested to us that perhaps the K-ir scheme could be

used as a reliable first principles method for determining the

energy levels and wave-functions in a solid. Suppose, for a certain

material, the energies and wave-functions are known at certain

points in k-space through a first principles energy band calcula-

tion such as the APW or OPW schemes. Suppose that the energy

levels and momentum matrix elements calculated at a particular

point k are used in the K'r secular matrix to evaluate the energy

4. rIlevels at other points in the zone. If the KirT results at those

.-A i I
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other points are compared with the first principles results how good

is the agreement? In the following sections, this question is

answered for PbTe, where the energies and wave-functions at k were

obtained by a relativistic APW calculation.

Section 3.2 is devoted to the general theory of the K*r

scheme in the case where relativistic corrections are taken into

account. There, an expression for the w operator is derived and

the difference between this expression and that obtained for the

corresponding operator in the iep perturbation theory is discussed.

Due to the reciprocal lattice symmetries, the electronic

energy levels and wave-functions are calculated only in a small

region A of the Brillouin zone, every k in A being associated with

a set of k's in the remaining region. This set is called "star

of k" and the wave-functions in the star are defined in terms of

the wave-functions at k. In section 3.3 we present the trans-

formations properties of Bloch functions and derive, in the Zi

scheme, the expressions for the wave-functions in the star. The

Bloch functions obtained in this case, however, do not vary

smoothly in the Brillouin zone and the resulting Wannier functions

will not be properly localized. In that section we also show how

to obtain smooth Bloch functions near k for degenerate bands and

in the case of non-degenerate bands our results are identical to

24
that obtained by Callaway

In section 3.4 we apply the K'w scheme to PbTe. The results

are compared with Conklin's results at symmetry points and with
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some of the experimental data available for PbTe.

3.2 - GENERAL THEORY

Let us consider the one-electron relativistic Hamiltonian

(2.7), which is rewritten below.

+)-2 2 24
S 2 + r) + 22 )-a + -2 2 ( V)- (3.1)

4m c 8m c 8m c

r(k)
The eigenfunctions of H are Bloch functions b a (k),

n,i

which transforms like the i-partner of the double-group irreducible

representation r of the group of the wave vector k. They form

a complete set of orthonormal functions for every k, band index n

and partner i. ('k) (k,)

H b (k,r) - E n(k) b a (kr) (3.2)

According to Bloch's theorem, ra + can be written as

bn,i (kr)

F 4.(k)-
b (kr) - e un,i(kr) (3.3)

where uni(kr) is a periodic function with the periodicity of

the lattice.

Any eigenfunction which belongs to the Hilbert space of

eigenfunctions that characterize the one-electron states of the

crystal can be expanded in terms of this complete set. Two other

complete sets can be obtained from Bloch functions, namely the

Wannier and the Kohn-Luttinger sets. In this section we are parti-

cularly interested in the last one.
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The Kohn-Luttinger functions are of the form

r (1cc)i(k-k )-r ra
n4 b k9r) (3.4)

vehere k is any particular point in k-space.

Now suppose that the Bloch functions and energy levels are

k (a ()
known at k0(e.b t

the Schrodinger equation

r (kO)
H b0 m~j (0 ,

(k ,r) and E m f), which are solutions of

+ r a (k )
) = Em(k ) bm j ,)

are known). Suppose now that we wish to solve the stationary

Schrodinger equation (3.6) at another point, k.

r a(k 4 r (
H b (kr)k E(k) bo n~i n n,i

(3.5)

(3.6)

As the Kohn-Luttinger set is complete, it can be used as a basis

for expanding ra
bn

r (k)
b abn,,i

+ r)
(k .r)

(kr) -
- lj

C 1(k) (mim. j ) 0 (3.7)

where - ('k-1 ). If Eq. (3.7) is substituted in Eq. (3.6) we

obtain

r (k) 4

b a iC ( iKEr (k ) 2 h 4 -*4on b (kr) C (c~mK)e (Em(k)T-KKI(= W

(k0 .r) - En~)~ C'~~~&i M r b kr
44 4 i nm (Ui0

n,mmj
(3.8)

Xni (k-k r) - e

b )

L
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where
2

1 -x ) -1 23 h 2+ h _2
4mc 2m c 2m c 4m c

-2 2  [K p]p (3 9.a)
2m 2C 2I ~

If we multiply both sides of Eq. (3.8) by (K,r) and

integrate over the whole crystal we obtain

{[E - )+ h 2 _2 h4 -4 - h -* C (K)= (3.10)nij m)(ko ~~-K E -T~ E(kIm ~6 + - K r1) () M M(08m 3c 2n n )J'i m n ,m m

which is true for all n. In Eq. (3.10) we have written

S 1 =f dr b (K r) 7 b (K,r) (3.11)
,m crysti m,j

In order for the system (3.10) to have a solution, it is

necessary that

2 4 -
detl[E m(' )+ I En (k) m6n6 + -. 4,

8m c 
(3.12)

Because the off-diagonal terms are of the form K*f, as we mentioned

earlier, this method of extrapolation of the energy bands is

referred to as the Kof scheme.

A confusion, without major consequences, has been made in

reference 17 between the expression (3.9.a) for fr and the expression

for the operator , analogous to 7 in the Ko* perturbation theory.

4.
In the latter case we are mainly interested in the region near k ,

i.e., in the region where K is small0 The term- K-7 in Eq. (3.8)m



is considered as a perturbation in the Brillouin-Wigner scheme and

+)2
terms in K or higher are not considered in the expression for 7r.

Then14

7' - p + ( x VV) - L 3 2- [K h -p* (3.9.b)
4mc 2m c 4m c 2m c

A comparison between Eq. (3.9.a) and Eq. (3.9.b) shows that the

h2  +2+ 2+2term in K , namely K p is missing, But this term is a K
2m c

times smaller than the momentum term and can be completely

2 1 -neglected if K is small (a - M (137.08) in atomic units).2
c

No approximations have been made until this point. Solving

Eq. (3.12) is completely equivalent to solving Eq. (3.6). As we

mentioned earlier, however, the secular matrix (3,12) has infinite

dimension and for practical purposes has to be truncated at some

point. Because we are mainly interested in the valence and con-

duction bands, it is reasonable to expect that if a certain number

of energy bands at k both above and below the conduction and

valence bands is used in the expansion, good results will be

obtained for these important bands. The dimensionality of the

secular equation is chosen by considering the computational com-

plexity versus the expected accuracy of the calculated energies

and wavefunctions. Of course, the accuracy obtained with the K-n

scheme depends not only on the number of bands used at 1%, but also

on the accuracy of the calculated energies and momentum matrix

elements.
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Before we consider the practical application for PbTe, let

us discuss more carefully the symmetry properties of Bloch functions

and the K*- scheme.

3.3 - TRANSFORMATIONS PROPERTIES OF BLOCH FUNCTIONS AND THE Kof
SCHEME

The effect of a general operation of the crystal space group

on Bloch functions has been discussed by various authors 25, but we

will summarize the important results here.

Let us denote an operation in the space group G of the crystal

by {alta + Rn}, where a is a rotation or reflection, ta is a non-

primitive translation associated with a, and Rn is a lattice trans-

lation. Associated with each one of these operations there is an

operator that commutes with the one-electron Hamiltonian. No dis-

tinction will be made here between the operations and corresponding

operators. Let r be an arbitrary vector. If such an operator

44.

acts on r, a new vector r' is obtained such that

r' = {ata + R r w a(r + t + R ) (3.13)a n a n

We recall that the unit operator is given by {e|0}, where e is

the identity rotation, and that the inverse operator {ajta + R n

is defined as

{(t+ En) (t + R)} (3.14)
(X n a n

The group multiplication is given by Eq. (3.15).
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{czt + HO8[ + }- {aSa j(t + + t + } (3.15)a n 8 m a m a n1

Generally speaking, we are interested in obtaining the irre-

ducible representations of the space group G of the crystal, because

the eigenfunctions of the one-electron Hamiltonian will transform

like partners of these irreducible representations. It can be

easily shown that every space group contains a group of pure lattice

translations {IRn} as an invariant subgroup. The irreducible

representations of this Abelian subgroup are one-dimensional and

each one is characterized by a wave vector k. We shall call this

subgroup T. Every one-electron wavefunction is thus characterized

by a wave vector k and must transform like Eq. (3.16) under an

operation belonging to T.

k
{ej (k, V(k,r+Rm - e '(k~r) (3.16)

This condition is known as the "Bloch Theorem" and the basis

functions are called Bloch functions.

Two other important groups are connected with the space group

G: the point group p, and the group of the wave vector k, which

we shall call K. The first group is constituted by the rotational

parts a of all operators {alt + R in G, and the second is formeda n
41 + 4.

by all elements {Ojb} of G, with b - t + R , which has the property

that exp(iak *E) -R exp(iki'Rm) for all R .This last condition can

also be written as
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4. 4

ak k + K q(3.17)

where K is a reciprocal lattice vector.

Of course, K must be one of the possible space groups, and

*
if G is symmorphic , then p is a subgroup of G. It is also easy

to observe that the rotational parts of the operators in K must

form a subgroup of p. We shall call this subgroup p(k), indicating

that it is the point group associated with the space group K.

Every operation of the space group G can be written as the product

of a pure translation and an operation of the type {at a}, as can

be seen by considering the law of multiplication (3.15):

{CIR }{a I - {ca~s(t ) + $ } - {alt + - } (3.18.a)n a a n a n

{ata}{s la 1- - aa(a1 n) + t I - {a'tn + 'n1(3.18.b)

In Eq. (3.18.b) we have made use of the fact that a 1 Rn is A lattice

translation if Rn is.

Assume that we know n orthonormal functions bM
(k)

b nj (r), which satisfy Bloch condition with wave vector k and

transform like partners of the irreducible representation M(k) of

the group of k. Consider now the set of q operations {ai a } with
4. 4. 0 . 4- 4
a i t + Rn, such that a k - k, i.e., sends k in one member of

its star. Let us call Kc this set of operations. It follows then

that the set of (nq) functions

*
The group is called symmorphic if ta is zero for all operations of
G.



-35-

M(k) {a(k)
b (r) - }bM () (3.19)bi bI

form a basis for an irreducible representation of G 26, with

M(k){az a1} = { 001. That b (r) satisfies the Bloch theorem with

wave vector a k can easily be verified by using Eq. (3.18), We

have:

(k ) (k) -{ m b (i {SIRm} {ia } bM r) (3.20)

But

=Rc~~ asci 1 m~{~ R n

- {cti } {S ' {(} a }a i m 1 n

which allows us to write Eq. (3.20) as

(k) it-a i (k) a i k*R (k)

m b (r) e i m M (r ( e m b r

(3.21)

M(k) (,1because we have assumed at the beginning that bM r) satisfies

the Bloch condition with wave-vector k.

Now if k is allowed to vary over the interior and surface of

the Brillouin zone, all the irreducible representations of G can

be obtained by finding irreducible representations of the space

group K associated with k. Let us consider points in the interior

4.of the Brillouin zone first For these points the only value of K
4.q

for which ak = k+Kq is K =0. Let ) be one irreducible represen-
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tation of p(d) It can be easily shown that we get an irreducible

representation M(k) of K by defining

M ({a|bI}) = eib r() (3.22)

Let us now consider a point on the surface of the zone. It is

possible that, for some of these points, K in Eq. (3.17) is a non-
q

vanishing lattice vector in which case Eq. (3.22) does not hold in

general, It does hold, however, if the space group is symorphic,

which means that the a's and b's are pure translations. In what

follows we will deal with points in k-space where condition (3.22)

holds.

We are now in a position to study the transformations proper-

ties of Bloch functions. Let us consider the function b (kr)
n,i

which is characterized by wave vector k and which transforms like

the i-partner of the irreducible representation I( of P(k),

i.e., if 6 belongs to p(k) then

( ((k)
Sb (k,r) = ( b (ir) (3.23)

n,i Y j,i n,j
4 4J

r i) eikr-
Let us write (kr in the form e u (kr), where

n,i ni

u ni(,r) is a periodic function such that

+ +. - + +-, +0 _
u (k,r + a a) = u .(k,r) (3.24)
n,ini

Sk)
where {fa|} is an element of G. In this case, b ' (k,r) also

er s {alk th rr frason

transforms like the i-partner of the irreducible representation
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(k)M k of the group of K because
Y4

r(k) () (k)
k0 b(+b)) - b 1 ( r)

n,i {8Irb n,i

(kt)
e i Y (8) b (k,r) (3.25)

In order to completq the study, let us analyze the functions

obtained from br (k,) using Eq, (3.19), i.e.,
n,i

r(k)
{a ajbn i (k5) (3.26)

As discussed above, the function given by Eq. (3.25) is a partner of

an irreducible representation of G, It can be shown26 that for a

given {a|}) in G, there exist the elements (am %m) and (a I in

K , and an element {Nb} in K, such that

{aa} {a |I }P {am Im} {0jb} (3.27)

From Eq. (3.27) it can be seen that

(k) i () r(k)

(a|a {Y k"} bn r) - e r () {amlm} b (k,r)
j n~iY j~ Mm n~j

(3.28)

Now, because the operation {a a lis applied to a Bloch function

and it can be written as the product of a pure translation by

{a|ta } it is clear that we have to consider only the properties

r)

of {ca t aj b n~ (k~r).
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Eq. (3.21) shows that {ajlt } b (ik,r) satisfies Bloch's

theorem as if it had a wave vector a k. Thus

kj

4 
) 6ie (k)

{a It I b ni (k,r) = e aj B(a k-r) (3.29)

where B(a k,r)is a Bloch function with wave vector a k and 6 ('k)
j -%j

is a real function of k. But {a [t i being a space group operation

leaves the crystal lattice and the electron charge density unchanged.

Then, {a iIt } will interchange members of the star of k. The phase

factor exp (iG k) brought in by the symmetry operation {a |Ita
has to be specified and also one must express the function

B(a k,r) on the right-hand side of Eq. (3.29) in terms of the

functions in the star of k.

For a non-degenerate band, it is reasonable to define

-14 _+ b )
bn (ta r) = bn(a kr) and in this case

ia kt
{a lt } bn kr) = e j bn (a k r) (3.30)

Recently, however, Callaway and Hughes 10, when studying bound

states associated with localized defects in silicon, showed that

if only non-degenerate bands are considered it is necessary to

define r a .

{al ta} bn(kyr) - y (a) e a b n(ak,) (331)

in order that the periodic part of the Bloch function associated with

band n vary smoothly in k-space0 In Eq.(3o31) x (a) is the character of one
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of the one-dimensional representation 1' of the point group and can

only have the values * 1. This point is important in all problems

where localized Wannier functions have to be defined, because the

latter are localized at lattice sites only if the periodic parts of the

Bloch functions vary smoothly in the Brillouin zone.

Later, Callaway24 showed that Eq. (3.31) is a consequence

of the K-P perturbation theory near k-O for a non-degenerate band.

If Eq. (3.31) is satisfied at t=0, it will be satisfied for all k

for which the perturbation series converges. In this case r (a)

is the character of the irreducible representation of the band at

k-0.

Let us determine the properties of the Bloch functions

obtained in the Kew scheme. We will limit ourselves to the case

where the group of k is the point group of the crystal. In the

Kew scheme, a Bloch function at k is written, according to Eq.

(3.7) as
r (k) r 0

b (k,r) - C (K) e b 8 ( ,r) (3.32)
m,j nm mpj o

Let {a[ a} be a general operation of the space group. In this

case k

{a -a} b (k,r) - C '4 (K)e ia / r 0 x
nto mj n m 3,3

b m9Z (k , .r) (3.33)

At ak the Bloch function for the same band n is given by Eq.

(3.34).
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r (k 

bn Y
++ r (o)

af ~ ~ir) =LCn + iaK-r bjC a) e
m~jnm i

(k 0 ,r) (3.34)

where we made use of the fact that ak 0=k 0 In order to relate

Eq. (3.33) and Eq. (3.34) it is necessary to obtain the relation

between C i~(K) and C * (aK)
n ,m

The general term in the K-9 secular matrix is given by Eq.

(3.35.a) at k, and by Eq. (3.36.a) at ak.

2 *2 4 4 r ko) r (o)hK hk +-K<b (k r))

[Em k 83 2 n() 6n,m ij m ni (k0 r)T b m (k0 ,r)>

(3.35.a)

,22 4 4 r (ko) r
[EM(k )1 2m 8m c -En(ak)]6nmi -aK)-<bn or) b (

(3.36.a)

But because

r (k 0
<b (k,)

r ko) o
I ib (k0 ,r)>=<ab (

r (o
S,r)(a b mj(k ,

then

r (k o)
- <b (n~i k ,r) Ilb

(it)
= <a l I

ko) r(ko

(k 0.r) >=<b n~

o0r 
(k ,r) I lb i

(3. 37. a)

) r (o)

(k 0,r)|(a 7)lb m (k ,9)

mk o
($ ,r)>(3.37.b)

In this case, Eq. (3.36.a) can be written as

2[24-4 r r) 5)-<a (kr,

m m 8m c , n n.mi,jm 9i o m~j 0

(3.36.b)



-41-

and the same coefficients are obtained using Eq. (3.36.a) or Eq.

-4 r o)
(3.36.b), the basis in the secular matrix being e i9o b (k ,r)

(. ni o
in Eq. (3.36.a) and eiKr a r

n,i
ri- in Eq. (3.36.b).

0

Suppose we diagonalize Eq. (3.35.a) in a new basis, namely

-) -0 r (Io
e r a-lb 8

now
2-*2

E(t)h K -[m (k 0)

)

(k ,r). The general term in the secular matrix is

-E 6 (k ) (k,
m c2  nomi ii m n4i 0 m o.

(3. 35. b)

the Bloch function (3.32) being given by

r (k)
noi M

r k)
Ci,t(new) ()e i -lb a
n,m m,l

- ci.(new) I )
mot nom j o

P ,0

+ )

From Eq. (3.32) and Eq. (3.38.a) we obtain

C (K) - CiZ(new) (k) 1)n,m nom B jg

But Eq. (3.36.b) and Eq. (3.35.b) are identical. Then

i , Z(new) -)R (K 0nm n0m

and taking into account the unitary nature of r to(a ) we

conclude that

C ' (aK) - C (K) r (a)nm n:m 8~I/,

(3,38.a)

(3.39. a)

(3.39.b)

(3.40)
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Comparison between Eq. (3.39) and Eq. (3.33) gives

r(k) (k)
{ctg} (kr) = eiak a b (akr) (3.41)

which shows us that the application of one operation of the space

group to a Bloch function at k will produce a Bloch function in

the star, corresponding to the same band and partner as the original

Bloch function at k. The K-Tr method, however, does not produce

Bloch functions that vary smoothly in the Brillouin zone. We can

easily verify this by considering, for example, the region near

k . Consider a point k and a band n and assume that at k , the

i-partner of this band corresponds to the i'-partner of band n',

i.e.,

Cioi(O) = 6 6 (3.42)n,m m,n ji

If we are seeking for a smooth function, then Eq. (3.42) must hold

approximately near k 0 , which means that if K = 0

C n n (K ) = 1
n,n (3.43)

C i (K) = , for j i' or m 0 n'

Consider now the Bloch function at ak. According to Eq. (3.40)

C i' (aK) = C K() r (o)
n,m g nm 6 (m)

C ,i(K) r a( ) 6 n (3.44)

where we have made use of Eq. (3.43). Thus
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CI ,(a) n(no) , for all j

(3.45)

C im(ct) 0, for m#n'

From Eq. (3.43) and Eq. (3.45) we can conclude that the periodic part

of the Bloch function will not vary smoothly near .

For the purposes of obtaining localized Wannier functions we

are interested in generating Bloch functions that exhibit reasonable

continuity near k One way of doing this is to consider, for every

a, a new set of values for the coefficients , which we will call

C ninj , O(c), such that they vary smoothly near t 0 Define

ij(mod) 4. 1+(oa' ~~(,~Cn' () {r 8oa) C i,n O) (3.46)

In this case

C (jmod) ) -)[r (a) C I (K)
non j~q q,k n~nq

- 6 C ', () - C ,n ,(K) (3.47)

The transformation we have performed is unitary, because the

4.
matrices for the representation at k are unitary. If bands n and

n' are one-dimensional, then

C (mod) O)= X (a) C :n,(aK) (3.48)

which is similar to the result obtained by Callaway24

When I-k ,| is large, probably other bands besides n' contribute
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significantly to band n at k. In this case the coefficients

corresponding to these bands will not be continuous with the above

transformation. Further considerations about the proper choice of

the phases of Bloch functions will be made in section (4.3) in

connection with the study of Wannier functions in PbTe.

Now, if k is a symmetry point, i.e., there exist operations

a other than identity such that

ak = k (3.49)

Bloch functions at this point have to transform under a like

partners of the irreducible representations of the group of k

r (it) r a -
a b  (k,r) = r (a)x i b n~t (kr) (3.50)

In this case by means of suitable rotations of the basis functions

the K-w matrix can be factored, each block corresponding to a

certain irreducible representation of the group of k. Only part-

ners of the irreducible representations of the group of k com-

patible with partners of a certain irreducible representation of

the group k will enter the block corresponding to the latter

representation. Examples of this and also of the special points

on the zone faces where ak = k + Ki, will be discussed in section

(3.4).

--- '06, - - , -
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3.4 Kew - APW RESULTS FOR PBTE

Let us now apply the theory of section 3.2 to PbTe. Point k 0

is chosen to be the point r in k-space and in this case the group of

k is the point group of the crystal.

As mentioned in Chapter 2, the first step in the APW calcula-

tion consists of obtaining the non-relativistic bands, i.e., the

-.2eigenfunctions and eigenvalues of Rop /2m + V(r), where V(r) is the

periodic potential. The Darwin and mass-velocity corrections are

introduced next and because they have the full crystal symmetry

only a mixing between eigenfunctions of H with the same symmetry

occurs. Although there is a considerable change in the energy

eigenvalues, the eigenfunctions are almost the same, i.e., the

mixing between them is small. The change in energy is essentially

due to the diagonal matrix elements of the Darwin and mass-velocity

corrections, rather than to matrix elements between different bands.

Spin-orbit interaction is finally taken into account and the double

group irreducible representations have to be considered.

Fig. 3.1 shows schematically the non-relativistic and full

relativistic bands obtained by Conklin 12 at r. In this figure

and in the subsequent considerations we will represent the energy

bands by the corresponding irreducible representations. Because

this labelling is not unique, an extra index m is introduced. Thus

mr i will represent the i-partner of the mth band which transforms

like the irreducible representation r U. Fig. 3.1 also shows the
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*
unnormalized energies in atomic units.

2r
Zr1

12

-
25

2r
25

215

ir
15

1

0.90630

0.86858

0.71545

0.67443

0.60947

2 +

Zr 7-
2 +1 +

6
7

2 r6-

2 r6-GAP

0.17921

0.10285

rP1  -0.53758

a) non-relativistic

:8

r6 -

r7 +

- 0.84236

- 0.76205

- 0.71544

0.65688

- 0.53923

- 0.41076

GAP

- 0.14172

0.06586

0.20857
3

3r6+ 0.676

a) relativistic

39

Fig. 3.1 - Schematic representation of the energy levels

at r for PbTe (after Conklin)

Due to the fact that r is a point of high symmetry, only a few

SAPW's are necessary in order to obtain a reasonable energy conver-

gence. In fact, Conklin used 9 SAPW's for r -levels, 11 for

r1 5-levels, 7 for f25 -levels, and 4 for r - and r1 2-levels. The

transformation properties of the partners of the single-group

*
In order to obtain the correct or normalized energies the value of

the constant potential (-0.80138 a.u.) must be added.



-47-

irreducible representations are shown in Table 3.1, where a system

of coordinates with axes in the (100), (010) and (001) directions

is considered.

TABLE 3.1 - Transformation properties of the single-group
irreducible representations at r.

Table 3.2 shows how to write the partners of the double-

group irreducible representations in terms of the single-group

irreducible representations. In that table, r ni(rm) represents

the i-partner of the rn-double-group irreducible representation

Representation Transformation

Partner properties

r

1 st

1stx

r15  2 nd y

3 rd z

r 1 st I (x 2_y 2

2nd 3z2-r 2

r'*2 xyE

1st yz
ro 2 nd25 xz

3 rd XY
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TABLE 3.2 - Relations between partners of the double-group and
single-group irreducible representations at r.

r6, 1 1 1 Sa

r +(r) r s
6,2 1 1 U

,1 25 25,+ 5 2 )s -i 25,3a

,2 25 25,25, 2a 25,3 a

r, 5  2,1 +(ir5 2'5a + 21 17' S

,412-i25, 2+ 2 rs 2 l5,

,2525,1 25,2Sa 12,21 25  25,1 25,2)S2

r6115  (-i151 + 215,s1 -i r35,3sa

,2(41 5 =r [ 15 ,1 -2 1 5 ,2 Sa +1 a15,3"

1 25 22a

7,22 2 2

r,1 1r 1,1 + r,S r

,4( 15 A 1 5 1 + F15 ,2 1.

3 15 [( 15,1 +F 15 ,2)x + 2ir1 5 ,3S]

r82 (r15 = i 15 ,1 + F15 ,2) S + 2i,
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coming from the rm-single-group irreducible representation at r

and S and S are the common "spin-up" and "spin-oiown" functions.

It can be observed that the partners of the double-group repre-

sentations form Kramers pairso For two-dimensional representations

r n,2-Kr n, where here K is the time-reversal operator and for four-

dimensional representations, rn,4 n and r n,2-Krn,3

The coefficients of the mixing between the non-relativistic

bands due to the relativistic corrections at r are shown in Table

3.3. For the bands not shown in that table the coefficient is 1.0.

TABLE 3.3 - Mixing between the non-relativistic bands due to the
relativistic corrections, in Conklin's calculation.

6+ r1) 6+ (2  ) r6+( 3 1 15) 6- 2 15 8 115) r8- (215

1 r+ 0.9833 0.1622 +0.0821 0.0 0.0 0.0 0.0

2 r+ -0.1686 +0.9826 0.0776 0.0 0.0 0.0 0.0

3 r+ 0.0681 0.0902 -0.9936 0.0 0.0 0.0 0.0

1r6- 0.0 0.0 0.0 +0.9963 0.0861 0.0 0.0

2 - 0.0 0.0 0.0 0.0861 -0.9963 0.0 0.0

0.0 0.0 0.0 0.0 0.0 +0.9996 0.0287

2 8- 0.0 0.0 0.0 0.0 0.0 0.0287 -0.9996

As we have seen in section 3.2, in order to obtain the K*r

secular matrix elements it is necessary to calculate the matrix
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elements of ir between Bloch functions at r, w being given by (3.9.a).

Because the relativistic bands are written in terms of the non-rela-

tivistic bands (multiplied by appropriate spin functions) we have

to determine, first, the matrix elements of w between the non-

relativistic bands.

The calculation of the matrix elements of the first three terms

in (3.9.a), which are K-independent, can be performed by a computer

program originally written by Dr. L. G. Ferreira and modified by

us in order to make it applicable to the r point. As it happens at

the L point 4, the second and third terms give matrix elements which

are 10-3 to 10-6 smaller than the corresponding momentum matrix

elements and can be disregarded. The three other terms in (3.9.a),

which are K-dependent, and do not enter in the effective-mass cal-

culations, where K is assumed small, were studied by us. A com-

puter program was written in order to calculate the matrix elements

of these terms between the non-relativistic bands. Results at r

showed that they are also of the order of 10-3 to 10-6 compared

with any other term, if K is limited to the first Brillouin zone.

These considerations show us that only the momentum matrix elements

themselves are important in the calculations. This does not mean

that we are disregarding the relativistic corrections. What have

4.
been disregarded are the contributions of these terms to the ir

operator. Observe that H in (3.5) contains all relativistic

corrections.
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Let us determine the expressions for the momentum matrix elements

between single-group representations at T. This can be easily done

by noting that " transforms like r15 and using the transformation

properties of table 3.1. Because the group of r (point group) con-

tains inversion, then the only non-zero matrix elements are those

relating bands with different parities. The results are shown in

table 3.4, where the three expressions for each matrix element

correspond to the matrix elements of p , py and p, respectively.

The momentum matrix elements between double-group representa-

tions can be obtained through tables 3.2 and 3.4. They are shown

in table 3.5 for one member of each Kramers pairs.

The matrix elements between different partners are not all

independent but are related by

n,2 ii m,l nl m,l (3.51.a)

<rn2 Ii n,> - m > (3.51.b)

We recall that for four-dimensional double-group representations

there are two Kramers pairs and the results are valid for each

pair separately.
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TABLE 3.4 - Momentum matrix elements between single-
group irreducible representations at r.

2 15,1 15 ,2  15,3

o H1 ;15 0

Ml;; 15
r1 0 0 M 1; 15 0

0 0 0 M1; 15

0 M1 2 ;15 0 0

12,1 0 0 -M12;15 0

0 0 0 0

/ 12;15 0 0

r25 ,2  0 0 12;15 0

20 0 0 2

M25;2 0 0 0

r 0 0 0 M
25,1 25; 15

0 0 M25;15 0

0 0 0 M25; 15

o25,2 M25;2 0 0 0

0 M525;15 0 0

0 0 M25;15 0

r 0 " 0 025;3 25;15

M 52 00 0

-, - La- - -



TABLE 3.5 - Momentum matrix elements

(a = 1/f; b = 1/42; c =
between double-group representations at r.
i/f6W; d = 1/3)

6 1 (r15  r 62 (r15  ,1 ,rr7) 2 r2  r8,1 r15  r82 (r15  r83 (r15  ,4 (r15)

0 -iaM1,15 0 0 -ibM1,15  0 icM1 15  0

r61 (r1) 0 - aM1,15  0 0 bM1, 15  0 cM 15  0

-iaM 11 0 0 0 0 21cM 1 1 5  0 0

0 0 0 iaM25 ,2  icM2 5 , 1 5  0 ibM2 5 ,1 5  0
7, 25 0 0 0 aM25 ,2  cM25 ,15  0 -bM25 ,15  0

0 0 iaM2 5 2  0 0 0 0 21cM 2 5 1 5

-ibM25 ,15 0 -icM25 ,2 0 0 0 0 -iaM2 5 15

8,1 25) - bM2 5 , 15 0 cM25 ,2 0 0 0 0 aM25 15

0 0 0 -21cM 2 5, 2 -iaM 2 5 , 15 0 0 0

cM2 5 , 1 5  0 -ibM 2 5 , 2 0 0 -iaM 2 5 ,15 0 0

8,3 .5) -cM25 ,15  0 - bM25,2 aM2515
0 2icM25 ,15 0 0 0 0 -iaM25 ,15 0

iaM1 2 ,15  0 0 0 0 icM2 1 5  0 -ibM1 2 15

12,15 12,15r8,1 (r12) aM12,15 0 0 c 0 CM12,15 0 bM 12,15
0 0 0 0 0 0 0 0

-1dM 0 0 0 0 -idbM 0 icM12915 M12,15 12,15

F8, 3(T'12Y dM12915  0 b 12315  1l2915

0 -21dM 0 0 0 0 -4idbM 0
12,151 0_ 12,1

F

I,

II

----- - WON"
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The eleven independent momentum matrix elements were calculated

using Conklin's non-relativistic bands at r. Although a good energy

convergence was obtained, the same was not true for all momentum

matrix elements, as it can be observed in figure 3.2, where the

dependence of the matrix elements on the number of SAPW's is shown.

In that figure the SAPW's are included in the order of decreasing

magnitude of their K -vector. It can be easily seen that some of
q

the momentum matrix elements present a good convergence, but others

do not. For all of them a tentative extrapolation based on the

behavior of the curves was performed and the extrapolated values

used in the solution of the K-n secular equation for the symmetry

axes. The values of the matrix elements calculated with the maxi-

mum number of SAPW's available and the extrapolated values are

shown in table 3.6.

As we mentioned at the end of section 3.3, the compatibility

relations between the irreducible representations of the various

groups of k-vector and the transformation properties of their

basis functions can be used to factor the K-n secular matrix along

the symmetry axes. Table 3.7 shows the compatibility relations

between the important irreducible representations of the group of

r and the groups of A, A and 1, respectively.

Suppose we wish to obtain the energy bands on the A-axis.

In this extrapolation we did not take into consideration the

dashed-line part of the curves.
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- Matrix elements of m p between basis functions

at r. In this table we represent < nri I m m >
by f Mnm. The calculated values refer to them i;j
values calculated with the maximum number of SAPW's

Matrix
elements

(a.u)

m 1;15

-M; 2
m l1
'M2;1
m 1;15

M2;2
m 1;15

-M3;
m 1;15

Sl;1 56
m 12;15 2
t Ml;2 g!

m 12; 15 2

t-M
m 25;2

m 2i5; 15 2

M2 5
m 2;1,5 2

available.

Ref. No. on
Figs. 3.2 &
3.

9

4

-3

8

2

-1

6

7

10

11

5

Conklin's
bands

New
calculation

calcu- extrapo- calcu- extrap-
lated lated lated lated

1.029 1.045 0.969 0.969

0.261 0.250 0.250 0.250

-0.269 -0.270 -0.155 -0.155

0.830 0.790 1.180 1.180

0.421 0.418 0.437 0.437

-0.213 -0.212 -0.225 -0.225

0.516 0.496 0.534 0.534

-1.381 -1.350 -1.456 -1.456

0.929 0.926 0.949 0.949

1.038 1.021 1.068 1.068

0.442 0.448 0.460 0.460

TABLE 3.6
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TABLE 3.7 - Compatibility relations between the interesting
irreducible representations of the group of r
and the groups of A, Z and A respectively.

r-point 
1 r12 P7

A A+A 2 A'+A A A +A A A A +A2 5 2 1 5 6 7 6 7

E-axis E 1 EE4 E1i2 3 3 13E4  5 E5 5+E5

A-axis A1 A3 A 1+A 3  A1 A 1+A 3  A6 A6 A6+A4 A5

The A6 levels are obtained by diagonaltzing the K- secular matrix

that contains only the P and rP bands, because only they are6 8

compatible with A6. This conclusion could be also obtained from

table 3.5 remembering that on the <100> axis only the x component

of p is non-zero. Further simplifications can be achieved by using

the fact that due to time reversal symmetry the two partners of the

A 6 levels must form a Kramers pair. The diagonalization is then

performed for each partner separately, thereby reducing the dimension

of the secular matrix by half. From table 3.5 and relations (3.51)

we obtain that the first partner of A6, for example, is given by

r, 1; (cP - b + M)/(c 24 b2

while the second partner is obtained fr

6,2; (b8,1- cr8,3 )/a+by )/

1/2 2 1bP,-cP,) 2 2/2

om

, /2+21/2r61 (cP8 2-br M/c 2+b 2

A-axis
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On the other hand, the first partner of A7 will have contributions

coming from

r+ ;(br+,2+cr )/Mc 2+b 2 F7,2; (2r8,1 +br 8,3)/(c 2+b21/2

The second partner of A7 is obtained from

F 2 ; (cF8,1+bF8,3 )/(c2+b2) 1/2; r ;(br 8 ,2+cF,4)/( c
2+b21/2

The same kind of reduction can easily be performed along the (110)

and (111) axis.

When reaching the zone faces a special care has to be taken

with respect to the wave-functions, because there are some special

_+ 4. 4.4
points such as L, X, etc., for which ak-k+K, where K is a recipro-

cal lattice vector and a is an operation of the crystal point

group. Let us consider the L-point, for example. Although the

4.4.+

energies at this point can be obtained by diagonalizing the K-n

7 r
secular matrix on the A-axis for kL=' (1,1,1), the wave-functions

will not have the proper symmetry. Because the L-point

[-L - is equivalent to L[L= (1,1,1)] we must find

linear combinations of the functions obtained by the above diagon-

alizations at L and -L, that transform like the irreducible

representations of the group of L. This can be accomplished by

using projection operators or by arguments similar to the following.

Suppose that when performing the diagonalization in the A-axis for

kk Lthe following linear combination is obtained for a A6-level



-59-

A 6ik * r
b 6=eL C 'c k ) b (0,) (3.52)

mni n,m L m,j (352

At -L the same band will be given by

b 6 ( -ik C (-L) b (0 , r) (3.53)
n,i L mj n,m m

Observe that in both expressions the only Bloch functions at P

that enter are those which transform like irreducible representations

compatible with A6.

As both L and L are compatible with A6 , we have to find out

which linear combinations of (3.52) and (3.53) will transform as

L or L6 . The group of L contains, besides the operations a of the

group of A, also the operations Ja, where J is the inversion oper-

ation. No distinction can be made between the L+ and L representa-

tions as far as the operations of the group of A are concerned.

Under the operations of the group of A the functions (3.51)

and (3.52), or any combination of them, transform in the same way,

i.e., as the i-partner of the A6 irreducible representation (also

as the i-partner of the L or L6 representations). Consider now

an operation Ja of the group of L. This operation sends kL to -kL
-ik. *r

and when applied to (3.51) or (3.52) gives e or
iL 4

e multiplied by the same linear combination which is obtained

when a is applied to (3.51) or (3.52), with the exception that the

terms corresponding to odd parity bands are multiplied by -1. The

4.r 4.
operation that transforms k Linto -k Lis J and according to (3.40)
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C~ '(-i L 6 J, n L r j) (3.54)

If the representation r has even parity r (J) = and

'(-kL) = C ) (L On the other hand if r has odd parity

r (J) = -1 and C ~(-i L) = - Cn (L). Thus

nnm Ln,m L ~A6 .- 4 i r

b n k Lor) e L (+Cn m(kL) bm (Or)

S C () b (,r)] (3.55.a)
m~j n,m kL mIJ

A 6-ik L*r W kra -0
b _ =r e L 1 C ( k)i2.i b (05) +

n,ikL~r m~j n,m L m~j

- ~ (k bj(0")] (3.55.b)

where in expressions (3.55) we have separated the contributions

coming from the even and odd-parity representations. We can easily

observe that
A 6+A6

Ja b ni kL'r) = a b ( kLr) (3.56)

But since L L

Ja b ni(kL,) = a b n(ki,r) (3.57.a)

L L
Ja b (kL r) = - a b ni(kLr) (3.57.b)

we conclude that
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+ A 6 +1 1 A 6 +)- --
bL 6 + + n,i (kL r) + b ni(-k L 2r)
b9i(k L9r) f2 (3. 58. a)

- 6 +
L 6 b (k ,r) b (-kLVr)

b n, r)(kLbr) = (3.58.b)n ,r)=niLniLr

Although the calculated bands along the symmetry axes did not

agree very well with Conklin's results and the calculated gap was

much bigger than the experimental gap, the qualitative behavior of

Conklin's bands was obtained. This suggested to us that if an

APW band calculation was to be performed at r with more SAPW for

each level, certainly better results could be achieved. Based on

this idea, a new APW calculation was performed at r using 15 SAPW's

for each level. Although the energy levels and mixing changed

very little compared with Conklin's results, as can be deduced

from figures 3.3 and 3.1 and tables 3.8 and 3.3, an excellent

convergence was now obtained for all momentum matrix elements as

seen in table 3.6 or figure 3.4. The new values for the momentum

matrix elements were then used in the K-n secular matrix, which

was diagonalized for values of k along the symmetry axes.

With these new matrix elements the energy gap at L was found

to be equal to 0.0256Ry (0.340ev), which is bigger than the

experimental gap of 0.023Ry (0.31ev).3

A quantitative study of the influence of the various momentum

matrix elements in the K-n bands, along the symmetry axes, was then
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1 0.90629 2 +
8 0.84139

12 0.86768
2+

6  0.76940

2 0.71492 7 0.71492

r2 5  0.67362 + 1 +
2 r1 5  0.60921 r 7  r8  0.65600

8 0.53907

GAP 2 r-
G 6 0.41067

15  0.17906 1 - GAP
8 0.14197

1 r 0.10283 1 -
6 0.06697

1+

3 6 -0.20078

1 f -0.53759 3 +
6 -0.67223

a) non-relativistic b) relativistic

Fig. 3.3 - Schematic representation of the energy levels

at r for PbTe (new calculation).

TABLE 3.8 - Mixing between the non-relativistic bands due to the
relativistic corrections in the new calculation.

r6+ 1 6+ 2 1 r6) + 3 r 1 ) 6 1 F15 ) 6 2 r 15 ) F8 1 F1 5) 8 - 2 F1 5 )

1F6+ 0.9881 0.1443 0.0528 0.0 0.0 0.0 0.0

2 6+-0.1481 0.9860 0.0768 0.0 0.0 0.0 0.0

3r6+ 0.0410 0.0837 -0.9957 0.0 0.0 0.0 0.0

16 0.0 0.0 0.0 0.9965 0.0839 0.0 0.0

2r6- 0.0 000 0.0 0.0839 -0.9965 0.0 0.0

Ir - 0.0 0.0 0.0 0.0 0.0 0.9996 0.0280
8

2F8 0.0 0.0 0.0 0.0 0.0 0.0280 -0.9996



0.70

! I 1.30P

NI

'(D

| | | | | | l |' |

120

1.10

0.90

0.80[-

I 2 3 4 5 6 7 8 9 10 I 12 13 14 15

07I

0'

(
I I 3 4 5 I I 8 9 I II 2 3 4 n5
1 2 3 4 5 6 7 8 9 10 11 12 1314 15

FIGURE 3.4 - Momentum matrix elements at P obtained with the non-relativistic
bands of the new APW calculation (15 SAPW's) plotted against
the number of SAPW's

1.40

0.60

0.40-

0.30H_

0.20F

0.10 H

I

1.00



-64-

performed. There are several matrix elements whose variation changes

the gap at L. However, there is one momentum matrix element, namely

M 2; 2 which besides changing strongly the gap, also changes the

bands at other symmetry points in such a way that the K-n bands move

towards Conklin's bands. The variation of the gap with M2;2 is1 ;15

shown in figure 3.5. It can be observed that this variation is

almost linear and that the experimental gap at L is obtained if a

value of 1.210 a.u. instead of 1180 acu. is used for the matrix

element. This corresponds to a change of 2.5% in M2;21 ;15*

Due to the symmetries in a f.coc. unit cell, energies and

wave-functions need to be calculated only for points in a region

corresponding to 1/48 of the first Brillouin zone. A possible

choice is19

I k >-k > kx y z

(k + k + k ) (37)/a

which corresponds to the region A limited by the points F-L-K-W-P-X

in figure 3.6.

The energy levels and corresponding wave-functions were

obtained on a regular mesh of 152 points in A, the distance between

two adjacent points in the mesh being Aki = 0.20 (7/a). This mesh

has 4288 points in the first Brillouin zone, and is very suitable

for interpolations of both the energy levels and the Ken coefficients

of the wave-functions.
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Figures 3.7, 3.8 and 3.9 show the K-r bands obtained in the

<100>, <110> and <111> directions, respectivelyo The circles in

these figures represent the values obtained by Conklin. In figure

3.10 we present the K-dependence of the important K'n coefficients

of the first partners of the conduction and valence bands along

the .symmetry axes. The coefficients not shown in these figures

are smaller than 0.05 a.u. We can observe the rapid change in

the coefficients due to interaction between bands with the same

parity.

On the A-axis (figure 3.10.a) the coefficients for the

Luttinger-Kohn functions corresponding to odd-parity bands at r

are real, while the coefficients for the even parity bands are

pure imaginary, and for the r -bands the coefficients correspond

to +' 2 2 21/2
to (cr893 - b891/(c2+b2) , where c l/F and b=1/12 For the

221/2
rg-bands they correspond to (br8,4 - cP8 ,2)/(c

2 +b2 ) . We could

have chosen the bands at r in such a way that all the coeffi-

cients along this axis are real, but this is not essential. Figure

3.10.b shows the coefficients along the <110> axis and figure

3.10.c presents them in the <111> direction. On the <110> axis

the coefficients of r' and 2 are real, but the coefficients6,1 892

of P are pure imaginary. For P , and r8, we have to multiply8,4 6,2 8,3

the coefficients by (1-1)/17 for the conduction band and multiply

by (1-i) for the valence band, and for r7 2 and r8 l by (1+1)/1-

for the conduction and by (1+i) for the valence band. On the

<111> axis all partners at r contribute to the Bloch functions.
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For the conduction band, the coefficients of r + I' + r7,2' 8,1.' r692 1 r893

are real; the coefficients of 2 ' 8 1 are pure6,2' 8,3' 7,2 81

imaginary; the coefficients of r6 + 8  8 4 have to be

multiplied by (1+1)/ 2 and the coefficients of P +, r + r

P8 2 by (1-1)/ 2. For the valence band, however, the coefficients

of P6 1  8 92 7 1 r, 8p 4 are real; the coefficients of r 1,

r84' r 8 2 are pure imaginary; the coefficients of r +

r8 + 7 2. 8 1 have to be multiplied by (1+1)/ 2 and the coef-

ficients of r7+ . r + r 2 by (1-1)/ 2.

The general behavior of the bands in any other direction

in k-space is similar to that shown in the above figures, with the

exception that the band-crossings occuring in the <100> axis are

not allowed at general points. When going away from the <100> axis

the crossing-bands start to repell each other and as a consequence

the K*f coefficients vary rapidly in this region. This behavior

is shown in figure 3.11, where we present the bands on the line

k - !(x,0.2,0.2) where x varies from 0.0 to 2.0.a

Knowledge of the wave functions allows us to obtain the

matrix elements of the linear momentum between the relativistic

bands over the entire Brillouin zone. They were calculated by us

on the 152 point regular mesh and the results were used by Buss 2 7

to calculate the optical dielectric constant e(q=O,w) of PbTe. The

comparison with the measured value of Cardona and Greenaway28 for

the real part of the dielectric constant showed that the calculated

value agrees with the experiment to within 50%27 (figure 3.12).
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Figure 3.13 presents the matrix element of p between the valence

and conduction bands on the <100>axis, where we are using a system

of coordinates with x, y and z-axis corresponding to the <100>,

<010> and <001> directions respectively. The peak of the curve

occurs at the minimum gap between the conduction and valence

bands and the rapid change in the momentum matrix element in the

region between IkI = 1.2 and Iki = 1.4 is due to the inter-
a a

action between the two A -valence bands and also to the inter-
6

action between the two A6-conduction bands. The matrix elements

of P and p between the valence and conduction bands, which are
y z

zero by symmetry, were calculated to be smaller than 0.01 a.u.

Although the gap is bounded by the A 7 valence and conduction bands

for k greater than Z 1.40, the matrix element between these bands
a

is very small and can be neglected.

Figure 3.14.a shows the real and imaginary parts of the matrix

element of p between the valence and conduction bands on the

E-axis. The matrix element of p can be obtained by
y

val iijcond> = _ val x rcond> (3.61)
5, y 5,15, x 5,

**

and the matrix element of p is zero by symmetry. The matrix
z

elements of the momentum parallel to the -axis is purely imaginary

and equal to /2 m1 <,a 5cond>3 , while the matrix element of

the momentum perpendicular to that axis is real and equal to

r Re [<Evj nd >1. Both matrix elements are shown in

figure 3.14.b. We can observe that the E-axis is also important

in studying optical phenomena, because although the momentum matrix

This value can be considered as a measure of the accuracy of the cal-

culation.

As along the A-axis, the calculated value is smaller than 0.01 a.u.
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elements are smaller than on the A-axis, the minimum gap on the

E-axis is smaller than on the A-axis.

Finally the momentum matrix elements parallel and perpen-

dicular to the A-axis are presented in Figure 3.15. The matrix

elements of p x p and pz can easily be obtained if we remember

that

P + p- + pz
// (3.62)

P = P - (3.63)

The matrix element of P y is related to the matrix elements of

pby
<A p cond> = - <A al IPxI A ond> (3.62)

<A val P Acond> = i<Aval A cond> (3.63)6,1 Iyl 692 6,1 IxI 6,2>

The momentum matrix elements between the remaining partners

can be obtained through Eq. (3.51).
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CHAPTER IV

LOCALIZED DEFECTS IN THE K-7 - APW SCHEME

4.1 INTRODUCTION

Crystal imperfections such as impurities and vacancies produce

electronic states different from those of a perfect crystal.

The effect of these imperfections is to modify the periodic

potential of the host crystal. Let us assume that the perturbed

crystal potential can be written as the sum of the unperturbed poten-

tial plus a time-independent term called the impurity potential that

represents the effect of the imperfections. Normal perturbation theory

can be applied. The perturbed wave functions are expanded in a con-

venient basis, normally a complete set of wave functions for the un-

pertubed case, and one seeks for the solutions of the stationary

Schrodinger equation

[H0+U(r)](r)= Ep(r) (4.1)

where H is the unperturbed one-electron Hamiltonian and U(r) is the

time-independent perturbing potential.
r (k)

The eigenfunctions of H are Bloch functions ba (i,r) i.e.,

r(k) (r

H b n. (k,,r) E (k)b c. (Nn) (4.2)
o n,1 n n,1
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which transform like the i-partner of the irreducible representation

r of the group of the wave vector k.

Different complete sets have been used for expanding W(r. Bloch

functions are the most natural choice: they are eigenfunctions of H
0

and form a complete set of orthonormal functions for every wave vector

, band index n and partner i of the irreducible representation

associated with n. If $(r) is expanded in terms of Bloch functions,

r
$()= A .(k)b a. k,r) (4.3)

n,i,k n,1 n,i

the equation satisfied by the expansion coefficients A (k) is given
n~i

Eq. (4.4).

[E (t)-E]6 1 6., .6 +U1 ,' (k',k)A.(t) 0 (4.4)
n,i,k n nn i ,. k',k n ,n n,i

where

(k')(k., .r ,r
U ,' (k',k) = < r.,)> (4.5)n ,n n ,1n,i

The representation obtained in this way has been called the "crystal

reprsenatio" (MR) y Aams 29

momentum representation" (CMR) by Adams,2 because Bloch functions are

eigenfunctions of the crystal momentum operator. In order to obtain

the coefficients A (k) it is necessary to solve the secular equationn, i

(4.4). The dimension of the secular matrix is n xm, where n is the
p p
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number of unperturbed energy bands used in the expansion (with the

proper degeneracy taken into account) and m is the number of allowed k

vectors. Even if the one band approximation is made, the number of

allowed k's still make this diagonalization prohibitive in practice.

Another very important set of functions is the Wannier set which

is expressed in terms of the Bloch set. For non-degenerate bands, the

Wannier functions an (r-R ), which are localized around lattice sites

R with an average radius approximately equal to a lattice parameter,

are defined as a linear combination of Bloch functions belonging to a

single band, i.e.,

4- 1/2 -ik-R
a (r-R ) = f dt e b (kr) (4.6)
n q 2)3/2 n(4

where 0 is the volume of the unit cell and the integration is performed

in the interior and surface of the first Brillouin zone. These functions

form a complete set of orthonormal functions for every lattice site R
q

and band index n. The perturbed wave function (r) can be expanded in

terms of this set. If this is done, i.e.,

(r = A (R )a (r-R ) (4.7)
n q n q

the equation analogous to Eq. (4.4) for the coefficients of the expansion

is

4. 4.4 4.4

X {[E (R ,-R )-E6 , ]6, +U , (R ,,R )}A (R ) =0 (4.8)
nq q q qq n,n n,n q q n q
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where E n(R ) is the Fourier component of the energy , i.e.,

nq-

+ -ik-R

E (k) = E (R q)e (4.9)
q

and

U ,n (R qR) = <an ,(r-R )IU(r)Ia n(r-R q)> (4.10)

Eq. (4.8) can also be written as the difference equation

[E ,(- V )-E]A ,(R ,)+n U (R , R )A (R ) =0 (4.11)
q q n ,n q ,p q nq

4n,q

where the coefficients A (R ) are considered as a continuous function ofn q
1

the variable R . The expression E , ( ) means that we are to sub-
q n 1 R,qq

1 3 + q
stitute . for k wherever k appears in the expression for the

q
energy of the unperturbed band n' as a function of k. This is analogous

13
to say that A is a function of r and E ,(- + ) means that we are to

n n i
1 q

substitute for k whereever k appears in the expression for the
4.ii

Dr
energy of the unperturbed band n' and the whole expression is evaluated

+4.

at r = R ,. The representation obtained in this way is called "crystal
q

coordinate representation" (CCR), because Wannier functions are eigen-

30
functions of the crystal coordinate operator. The coefficients A (R )

n q

*

E (k) is a periodic function in the reciprocal lattice.
n
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are then obtained by diagonalizing a secular equation with dimension

nxp, where n is the number of energy bands and p is the number of

lattice sites which are taken into account. As in the case of the CMR,

even if the one band approximation is assumed, in the general case, the

number of lattice sites makes the diagonalization prohibitive.

There is, however, a limiting case that can be solved in both the

CMR and CCR, namely, the point impurity. By a point impurity is meant

a strongly localized perturbation such that its matrix element between

two Wannier functions satisfies

<an ,(r-R ,)IU(r)|a n(r-R)> - U, , q ,q 6 qO(4.12)

In Eq. (4.12) the perturbation is assumed to be localized at the origin.

From Eq. (4.12) it is evident that a one band approximation is assumed.

The corresponding matrix element between Bloch functions is given by

<b ,(I',')jU(r)b (kr)> = Q U 6 , (4.13)
n n (27) n

i.e., they are independent of k and t' and diagonal in the band param-

eter. In this case, the secular equation factors into n decoupled

secular equations, one for each band.

This problem was first analysed by Koster and Slater in the CCR.

They considered the case of a one-dimensional crystal of equally spaced

atoms where the impurity potential does not mix Wannier functions

separated by distances larger than the nearest neighbor distance, nor

does it mix bands. Due to the symmetry of the problem, the solutions
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for the coefficients of the Wannier functions have to be symmetric or

antisymmetric with respect to the lattice vectors R . If periodic
q

boundary conditions are assumed, i.e., A(Rp+2N A(R ), then 2n states
p+2N p

are to be obtained. Koster and Slater showed in this case the appear-

ance of (N-1) antisymmetric states in the band, which are not affected

by the perturbation, N symmetric states in the band and a bound state,

with energy given by

E = E(R =0)+2E(R) (4.14)

if the perturbation U(O) has the same sign as the nearest neighbor inter-

actions. In Eq. (4.14), U(O) is the matrix element of the potential

between Wannier functions centered at the origin. In this case the

bound state pushes out of the band at the point where E = E(R=0)+2E(Ri).

If the signs are different, then the bound state will push out of the

band at the point where E = E(R =0)-2E(R By (4.14) it can easily

be seen that for small perturbations the bound.state leaves the band

quadratically in U(O), and as U(O) increases the energy becomes linear

with the perturbation. Further complications were, then, introduced by

the authors, namely, next nearest neighbor interactions between Wannier

functions and again they were able to show the-existence of antisymmetric

states not perturbed by the impurities, symmetric states and a bound

state, whose energy behaves'in a manner similar to the simpler case.

1
In a subsequent paper, Koster and Slater considered the problem

of a point impurity in the center of a three-dimensional cubic crystal
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in which there is only one band of energies and the Wannier functions

only have interactions between each other when they are centered at

nearest neighbors or closer. Because the perturbation potential was

assumed to have full cubic symmetry, the solution for the problem

transforms like a basis partner for one of the irreducible representa-

tions of the cubic group. But since the potential is strongly localized

at the origin, it is evident that one has to look for a function that

transforms like the identity (r 1) representation (s-like symmetry),

because any other irreducible representation would have a vanishing

contribution from the Wannier functions at the origin and would not be

perturbed by the potential. Koster and Slater showed that there is no

bound state unless the potential is greater than a critical value

2E(R1 )
(U(O) > 0.499 ), and U(0) and E(R1 ) have the same sign. For perturba-

tions slightly above the critical value the energy depends quadratically

on U(O) and, for larger perturbations, the dependence becomes linear.

The wave function for the bound state was also obtained.

Finally, a more extended perturbation was assumed, namely the case

where the matrix elements of the perturbation potential between Wannier

functions centered at the atoms near the origin also are different from

zero, i.e.,

++++ 031
<a ,(r-R ,)IU(r)|a (r-R )> = U 6 , , 6' (4.15)
n q n q n,q n ,n q ,q

where 60' means that the matrix element (4.15) is different from zero
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only if R = 0 or R = R In this case, assuming that the wave
q q =

function vanishes at infinity, seven bound states were found: two s-

like states, three p-type states and two d-like states, which exist

for certain values of the perturbation. The effect of the size of the

crystal and of the perturbation on the wave functions were also

discussed.

Recently Kilby31 proposed a variational method for the treatment

of localized perturbations in solids. He worked in the single band

approximation but was able to treat the cubic and the diamond structures.

In the case of the cubic crystal his results are in fair agreement with

that of Koster and Slater.

In the Koster-Slater scheme we do not use Eq. (4.8) or Eq. (4.9)

for the coefficients of the expansion of the perturbed wave function

in terms of Wannier functions. Instead an equation is used where the

energy E n(k) appears explicitly. This equation is deduced in reference 3

and the principal steps are the following. First, the perturbed wave

function is expanded in terms of the unperturbed Bloch functions obtain-

ing Eq. (4.4) for the coefficients of the expansion. Then, the relation

between the matrix elements of the perturbing potential in the CMR and

CCR as expressed by

*
For a cubic lattice we have seven non-zero matrix elements for each band.

Observe that the potential can not be considered as a point impurity any

more as far as Eq. (4.12) is concerned.
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., I. 1 x
U (k',k) = L
n ,n R,R

ik-R -ik'-R , ,
S e q U , (R ,,R )

n ,n q q

is used and Eq. (4.4) is written as

[ E , ( k ' ) -E ] A , 3,i ( k ' ) + N n k i R q 1 Rn,k,i R ,,Rq ci

= 0

(4.16)

-ik'-R , ik-R , ..
e e U , (R ,,R q)A .(k)

n(,n q q n,i

(4.17)

In Eq. (4.16), N is the number of primitive translations in the crystal

over which periodic boundary conditions are defined or equivalently the

number of allowed k-vectors in the Brillouin zone. For every band n and

*
partner i a Wannier function has been defined by

-ik-R ' ' i (k)
d e Eb n. (t,r)e na .(r-R ) - 12 fn,i q 1/2 BZ

(4.18)

where "k= (21) 3/Q is the volume of the first Brillouin zone, and

o n(k) is a phase factor. These phase factorsarenecessary because if they

are chosen properly, localized Wannier functions are obtained.

As we are looking for bound states, we can divide Eq. (4.17) by

1/2 ik'-R
[E ,(k')-EI, multiply by (1/N )e p and sum on k'. Using the
n

*
At symmetry points, problems may arise because of this definition. This
point will be discussed later, in Section 4.2.
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relation

1 ik-R +
A .(R) = 1 2 e A (k)

n~ip N1/ kni

we finally obtain

I 6 , 6., .6 ) +p [ I
n,i,R n ,n i , R ,R N k'

q p q R ,1

ik'-(R -R ,)

Un (R q1,R )}A i(R) = 0
E ,(k')-E n ,n q q n,qn

(4.20)

This equation is valid for all n', i' and R . For the system to have a
p

non-trivial solution, it is necessary that

ik'-(R -R ,)

det6 , 6. i 6 1 e U , n(R ,,R )I = 0 (4.21)
n n 1 + N+ n ,n q q

R pR R q, k E-E ,(k')

In the above secular matrix the general row or column is characterized

by the band index n, the partner index i and the lattice site R . If
q

the term

ik-(R -R ,)

G ,' (R -R ,,E) = - e 6 ,6.,
n ,n p q N k E-E (k) n',n i

n

is considered as the general element of a matrix G., Eq. (4.21) can be

written as

(4.22)

(4.19)
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detlI-GUI = 0 (4.23)

In Eq. (4.23) I is the identity matrix and the matrix U has U' ( ,,R )
ntnq q)

n ,n
as a general element.

If the perturbation U(r) is well localized, the matrix U can be

well approximated as having only a finite number of non-zero elements.

Let us rearrange rows and columns of the U-matrix such that those non-

zero elements appear in the upper-left corner of the matrix. If we

decide to consider a perturbation which has non-zero elements between

*
n bands and nR sites, the non-zero part of U is of dimension NxN,

where N = n n. Let us denote this part by UNN, Matrix U can, then,

be written in block form

U NN 0

U (:(4.24)

Correspondingly, matrices G and I can be written as

G NN GNZ INN 0

G G ( ) ; I -( (4.25)

*
In n we include also the different partners of the bands.

n
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Then, we obtain

INN-G NNU NN0

I-GU (INN NNN (4.26)

-ZN NN ZZ

and Eq. (4.23) becomes

det|I -G UNNI = 0 (4.27)

which shows that it is necessary to consider only the GNN part of G

when calculating the energy levels of bound states. Eq. (4.27) can be

rewritten as

det|GNN -UNN = 0 (4.28)

where GNN~1 is the inverse matrix of GNN. Eq. (4.28) is preferred over

Eq. (4.27) because I NN-GNNUNN is not Hermitian, even though GNN and UNN

are Hermitian.

The Koster-Slater method is sometimes called the Green's function

in the CCR because Eq. (4.21) can also be obtained if the perturbed

wave-functions are expanded in terms of the Green's functions G(rr')

for the unperturbed Hamiltonian H0 , that is, in terms of the solutions

of the differential equation

(H -E)G(r,r') = 6(r-r') (4.29)

which are expressed in terms of the eigenstates of the unperturbed

Hamiltonian (Bloch functions) by
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G=r r') n (4.30)
n,k E (k)-E

n

The perturbed wave-function $(r) is expressed in the form of an

integral equation

(Y') = rfrU)G(rr')d (4.31)

If now the perturbed and unperturbed wave-functions in Eq. (4.31) are

written in terms of Wannier functions, Eq. (4.21) is obtained. The

proof is presented in the Appendix of reference 1.

Energy E in Eq. (4.21) or Eq. (4.30) is a real number if we are

limited to states lying in the energy gap of the host material (bound

states). In the case where we are dealing with states whose energies

coincide with energies in the spectrum of H 0, as in the scattering

problem, E must be allowed to have an infinitesimal imaginary part.

The problem connected with the scattering of excitations in solids

by localized imperfections in the Koster-Slater model was first con-

sidered by Koster, in the case of electrons, and a general theory,

which is applicable to phonons and spin waves as well as electrons is

presented by Callaway. 3 3

As can be observed, the Koster-Slater scheme is extraordinarily

useful when the perturbing potential U(r) is well localized. In this

case, only matrix elements of U between Wannier functions centered at

the site where U is localized or neighboring sites have to be considered.
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This scheme has been successfully used in the problem of impurities in

metals, where localized states are closely confined about the impurity

center, and in the case of localized defects in semiconductors, such

as vacancies for example.

The basic ideas about the electronic structure of impurities in

metals before 1961 are presented in referenceq57 and of particular

interest is the work of Friedel,34 where the scattering of electrons

in a free-electron conduction band by an impurity potential is con-

sidered and virtual states bound to the impurity ion center are shown

to exist. In 1961, Anderson35 and Wolff36 developed and applied the

Green's function method of Koster and Slater to the interesting problem

of magnetized local states in transition metals. A single band approxi-

mation was assumed and the impurity potential was considered closely

confined to the site of the foreign atom. Wolff,36 for example, treated

the problem by considering the scattering of conduction electrons in

the host metal from the potential due to a (single) ion impurity. This

potential was assumed to have a spin-dependent part; the wave-functions

were obtained and used to determine the self-consistent Hartree-Fock

*
potential for the impurity. Virtual states were proven to exist and if

they are sharp and close enough to the Fermi level, the impurity ion

develops an exchange potential that polarizes the electrons in its

vicinity.

The connection between the Koster-Slater method and the phase-shift
analysis of Friedel was established by Clogston,3 7 who showed that no
real distinction exists between Friedel's virtual states and bound
states.
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The theory of Anderson and Wolff was used by Clogston et al.38 in

order to explain the localized magnetic moments experimentally observed

by them in various transition-metal alloys with iron as impurity. The

theory was later improved by Clogston,39 by taking partial account of

correlations and the many-band structure of the transition metals, and

by Sokoloff,40 who determine the electronic structure of dilute sub-

stitutional alloys of iron series impurities in copper, taking into

consideration the actual band structure of copper.

Localized states due to impurities in semiconductors can fall

into two categories: (1) shallow states, characterized by binding

energies of the order of 0.01 ev to 0,1 ev and in general much smaller

than the energy gap, and (2) deep states, characterized by larger bind-

ing energies, as in the case of Cu and Au in silicon and germanium

(o 0.5 ev).

In the description of the shallow impurity state, the most common

approximation is the effective-mass theory (EMA) 41. In this approxima-

tion, the impurity electron (hole) is considered as revolving round the

0
impurity ion in orbits with large diameters (e.g. 50 A) and with an

effective-mass m ef, under the influence of a long-range screened poten-

tial -1/Kr (K being the dielectric constant), due to the extra charge

in the impurity ion, considered at the origin of the system of

coordinates. Thus, a hydrogenic-like equation4l is obtained for the

envelope function and a Rydberg series of energy levels is expected to

be obtained below (above) the band extremum,
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Using the many-electron Hamiltonian including full electron-

electron interaction and the static periodic potential Kohn42 was able

to justify the EMA in the case of large orbits and weak bonding. The

method was extended by Dresselhaus for excitons and Kohn and

Luttinger for impurity states to include degenerate extrema.

Improvements have been made in the past years to the EMA. The

first one,44,45 was to solve the Schrodinger equation for the electron

near the impurity using the true potential and true electron mass and

to match the solution to the EMA solution, which is valid far away from

the impurity. Later, using the Green's function method which includes

the full electron-electron interaction Sham46 showed that corrections

that are inversely proportional to the square of r exist at large

distances from the impurity. They shift the impurity levels relative

to one another and are not the commonly termed central cell corrections.

While the former depend only on the properties of the host material

and on the valency of the impurity atom, the latter corrections depend

on the properties of the impurity atom.

On the other hand, deep states were for many years treated by a

model originally conceived by Frenkel47 for excitons and which has been

improved by many authors.48 According to Frenkel, the excitonic states

can be interpreted in terms of a Heitler-London model, in which the

excited electron is in an atomic-like state confined to the neighborhood

of the lattice site from which it was excited. But, the optical experi-

ments of Baldini49 have shown that deep excitons in Kr and Xe have
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energies not far from the EMA predictions which are obtained by ex-

trapolating the Rydberg series of the shallow excitons. Moved by this

surprising result, Hermanson and Phillips50 investigated the validity

of the EMA from a microscopic viewpoint, taking into account in their

analysis the central cell corrections due to short-wavelength variations

of the periodic and impurity potentials. The impurity equation ob-

tained by them is not easily solved due to the interband matrix elements

of the impurity potential. But they were able to apply a single band

approximation by transforming to a pseudo-potential representation,

where the effective potential is substantially cancelled within the

impurity atom, thereby reducing tremendously the interband matrix

elements. The theory was then used by one of the authors51 to calcu-

late excitonic and impurity states in rare-gas solids.

The first application of the Koster-Slater method to vacancies in

semiconductors was recently made by Callaway and Hughes10 for neutral

single and divacancies in silicon. They used the pseudopotential method

to determine the energy bands of the perfect crystal and represented

the effect of the vacancy by the negative of an atomic pseudopotential.

For the perfect crystal the empirical pseudopotentials of Brust19 were

used and a fourth order polynomial in k was used to interpolate between

the values calculated at reciprocal lattice vectors. The origin was

taken midway between the two atoms in a silicon unit cell and, in the

case of a single vacancy, one of these atoms was removed. The group

of the defect potential is therefore C3v and only localized states
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that belong to the totally symmetric A representation were analysed.

With six bands and ten sites the potential U had to be multiplied by

a factor of about 1.6 in order for a bound state to be localized within

the energy gap. More details about their calculation will be given in

the next sections.

Recently, Johnson52 has derived a powerful method for treating

bound states as well as scattering states due to imperfections. This

method is based on the method he derived to calculate bound one-elec-

tron eigenstates for polyatomic molecules53 and molecular ions,54 the

latter method being the complement of the KKR method for calculating

the electronic energy bands of infinite crystals.

In the following sections we apply the Koster-Slater scheme to the

study of vacancies in PbTe.

According to Eq. (4.28), the determinant of (INNGNN UNN) has to

be calculated for different values of the energy E lying outside the

energy bands of the host crystal. The energy of a bound state is the

one for which the determinant is zero. Matrix GNN can be easily ob-

tained if the unperturbed bands are known on a mesh of points in the

Brillouin zone. For values of E near the bottom or top of the band,

the general element of GNN depends strongly on the details of the

energy bands near these maxima and therefore on the number of points

in the energy mesh. On the other hand, to obtain the elements of UNN

knowledge of the Wannier functions and the localized perturbing

potential is needed.
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In Section 4.2 we derive the expression for the general element

of the U-matrix where the Bloch functions are calculated in the K-r -

APW scheme. The choice of the phase factors that multiply Bloch func-

tions in the definition of the Wannier functions is also discussed.

Section 4.3 is devoted to the solution of the vacancy problem in

PbTe. There we show how to obtain the vacancy potential and how to

define completely the Wannier functions for the valence and conduction

bands. After the matrices G and UN are calculated, Eq. (4.28) isNN NN

solved first for the five valence bands in a single-band approximation,

and, then the results are presented in the case where the five valence

bands and four conduction bands are considered all together. In all

these calculations 13 sites were considered.

4.2 The U Matrix in the K-P - APW Scheme

The purpose of this section is to determine the expressions for

,the matrix U in the K-f-APW scheme.

As we have seen in Chapter 3, in the K-w-APW scheme, a Bloch

function for a point k in the first Brillouin zone which transforms

like the i-partner of the irreducible representation rk) of the group

of k is expressed in terms of the Bloch functions at a particular point

k which transform like partners of the irreducible representation

(k )
r a of the group of k . The relation is
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-)- -* (k )
r *. V iK- r

b ni (k,r) = C C,(K)eKb ., (k ,r) (4.32)

n ,i

First of all we will discuss how to construct Wannier functions

from the complete set of Bloch functions, in the general case where

spin is present and the band structure of the material presents both

degeneracies required by symmetry, accidental degeneracies, and quasi-

degeneracies which occur when energy bands approach each other at some

points of the Brillouin zone.

Let us first consider the region A of the Brillouin zone which

*
contains general points, i.e., points of no symmetry. If the opera-

4.

tion a of the crystal point group are applied to the wave-vector k in A,

a set of vectors ak, also in A, is obtained. This set is known as the

star of k and for a general point it contains G elements, where G is

the number of operations in the crystal point group.

It is well known that at a general point, band crossing is unlikely

to occur. All energy bands are doubly degenerate, and Bloch functions

for one band are partners of the identity double-group irreducible

representation '6 of the group of k. For every band n and every lattice

vector R , we could consider two Wannier functions, one for each partner
q

of the band, the contribution from the Bloch functions being

*
The only symmetry operation of the group of k is the identity operation.
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(k) +
-ik-R 6  io (k)
e b (k,r)e , for the Wannier function corresponding to

the i-partner. But for some materials, as PbTe for example, quasi-

degeneracies are found to be rather numerous in A. Near a quasi-

degeneracy the energy bands almost cross. In fact, they do not but

the wave-functions change drastically. Two different points of view

can be taken when defining the Wannier functions near quasi-degeneracies.

According to the first point of view, the bands are not allowed

to cross and are defined in their order of increasing energy. In this

case a continuous energy band will be produced and the G-matrix will

have the proper asymptotic behavior for large values of E. The wave-

functions, however, may vary wildly in the zone, making the definition

of localized Wannier functions more difficult, but not impossible. In

this case, under the operations of the crystal point group, the

localized Wannier functions will not exhibit simple transformation

properties and larger matrices will have to be diagonalized in solving

the defect problem.

The second point of view consists of departing from the above band

ordering according to increasing energy by defining bands with smooth

*
Bloch function in k-space. In this case the points where the quasi-

degeneracies occur have to be excluded from the definition of the

*
By a smooth Bloch function we mean a Bloch function whose periodic
part varies slowly in k-space.
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Wannier functions and consequently the G-matrix does not have the

proper behavior for larger values of E. But localized Wannier functions

with simple transformation properties can be obtained, and smaller

matrices will have to be solved. In both cases, however, orthonormal

Wannier functions are obtained, if each Bloch function contributes to

only one Wannier function.

In the present work we will adopt the first point of view because

for PbTe, which is a small gap semiconductor, quasi-degeneracies occur

in a large region of k-space, both for the valence and conduction

bands. The upper valence band and the lowest conduction band also come

close together in a region of k-space and in this region the correspond-

ing Bloch functions do not behave as smooth functions.

Now let us consider the contributions coming from symmetry points,

where the bands can have degeneracy greater than two, and band crossing

is allowed between bands that transform like different irreducible

representations. Let us call ks the wave-vector of a certain symmetry

point S inside or on the boundary of the first Brillouin zone. As far

as degeneracy is concerned, two cases are possible: a single band in A

corresponds to a single band at S, or two or more bands in A will join

at S, giving rise to a band with degeneracy greater than two. In the

first case, point S can be treated as a general point, but the second

case can present difficulties. If, however, a certain partner j of a

band m at S corresponds to the partner i of a particular band n at all

points in A near S, then the contribution from S to the Wannier
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-ik -R iG (k )
function corresponding to the i-partner of band n in A is e s q n S

multiplied by the j-partner of band m in S. In order to clarify this

point let us consider one example. Suppose that we have a four-fold
(k )

degenerate band n with symmetry r s at S. This band will split into
(kT)

two two-fold degenerate 1' bands when going from S to a general

point T in A. Now, if for example the second and third partners of

(iS)
r correspond to the first and second partners of the first of the

(k T
first of the r bands, then the contributioi to the Wannier functions

-ik -R r (its) i (k )
corresponding to these partners will be e b (k ,r)e

-ut -N r (l ) 10 (t ) n,2 s
s qb C& 4 + n 8and e b, (kr) e respectively. But the above

behavior does not always happen as, for example, for the r -bands.

While along the A-axis the first partner of a A6-band corresponds to

(br , -c' 8 ,2 ), where b-l/F' and c=l/F6, along thel -axis the same8,4 89
has to have a 15-symmetry and the first partner of a 1 5 -band corres-

ponds to r . We could however, exclude the symmetry axes from the

definition of the Wannier functions, but we should not forget that

for points near these axes the behavior of the Bloch functions is

similar.

Points like r can be excluded in the definition of the Wannier

functions, because we are interested in matrix elements of these

functions, and in integrations a finite number of points can be dis-

regarded without altering the results.

On the surface of the Brillouin zone problems also arise at

points k where there exist operations a in the point group such that

ak=k+Ki, K, being a reciprocal lattice vector. One example is the
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L-point in the f.c.c. lattice. Due to the special transformation

properties of the wave-functions, discontinuitiep may occur in the

K-ir coefficients. However, points like that can also always be

excluded.

Let us assume now that on a symmetry axis Q two bands with

different symmetries, Qa and Qb, cross at a point P (figure 4.1.a).

Along a general line parallel and adjacent to Q (figure 4.1.b) the

bands do not cross but strong quasi-degeneracies occur and the

K*7 coefficients change drastically near P+. At the Q-axis the

contribution to the Wannier function corresponding to band 1 (2)

can be considered as given by the Bloch functions of Qa' 4b) on

the left of P, and by the Bloch functions of Qb' (a) on the right

of P. Consequently, at P it will make no difference which Bloch

function is chosen, but once the Bloch function of Qa is chosen

for band 1, for example, then the Bloch function of Qb has to be

used for band 2. This particular definition along a symmetry axis

is not essential because we may always define Wannier functions

excluding the points on this axis when calculating matrix elements;

however, it is desirable, when a reasonable interpolation in the

wave-functions is needed for the region near the axis.

It is easy to see that the Wannier functions defined in this

way form a complete orthonormal set, because the Bloch function

corresponding to one band contributes to one and only one Wannier

function. The choice of the phase factors On(k) is made in order

to obtain localized Wannier functions. This point, together with
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the transformations properties of Wannier functions, will be dis-

cussed later.

2

P

(a)

Fig. 4.1 - Example of band-crossing in a symmetry axis (a) and
how the bands are in a general axis adjacent to it (b).

Let us now determine the expressions for the elements of the U

matrix. The general term in this matrix is given by

U 0(R',I) - f dr an',( r-R') U(r) a. q
n,n q q n~ q ni q

1 (4.33)
&'11' -ik -'

e e U n (kl',k)

(b)

4+ 4

where the sums on k and k include only the points in the first

Brillouin zone that make contributions to the Wannier functions, and

Uii(k'i) =fdr b ,,(k',r) r() b kr
n,n n.1 n,i e

-io ,' (t') ie n(k)
n n

We are allowing here the case where points in the symmetry axes

are not considered when calculating matrix elements.

(4.34)

Qa

Qb
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If Eq. (4.32) is used for obtaining the Bloch functions at k in terms

of Bloch functions at t , as a result of the K7r scheme, then Eq.

(4.34) can be written as

,' j6 , n(k'') ie (k)
U 1 (k',k) = C Ci , (K') C J(K) en e X
n,n mJ' mj nm n,m

r(k o) )+___* r(

drb , (j0,r)]e- -)U b ,r (4.35)

4.

Because at k the relativistic bands are expressed in terms of the

non-relativistic bands, in the APW scheme, the integral part of Eq.

(4.35) will be written as a linear combination of integrals involving

the non-relativistic bands. In the Appendix we derive the expression

44.for the last integral, i.e., the matrix element of e U(r)

between non-relativistic bands at k . As is observed from Eq. (A.13)

this matrix element can be written as the product of three functions:

4. 4

one independent of k and k', the second depending only on Ik-k'I and

the third depending only on the direction of (k'-4) or, more pre-

cisely, on the group of (k,-k) when U(r) has the same symmetry as

the group of k . But in Eq. (4.35), k' and k can take general

values in k-space and even if a reasonable mesh of points is used,

the number of matrix elements to be calculated would be enormous

and the computational time involved probably prohibitive. However,

if U(r) is a localized perturbation we expect that simplifications

can be made. In fact, if U(r) is very localized near the origin,

*
We are allowing here the case where points in the symmetry axes
are not considered when calculating matrix elements.
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then the exponential e i(k'k)r can be expanded in Taylor's series

near the origin and the integral part in Eq. (4.35) be written as

dr [b ,0 ) 4 U(. r ,k 0

I _+ o 4. 0- k _ ) + ) * -0
f =I' dr [b , (k ,r)1 U(r) b (k r)

(r ) 
k 

r

dr [b ,, (i,,r)] rU(r)b 8  ( ,r)+...(4.36)idZ4.' of a~ ~

If U(r) is well localized then only a few terms in this expansion

need be considered. In the case of vacancies in PbTe, as we will

see later, only the first two terms in Eq. (4.36) need to be con-

sidered if k and are restricted to the first Brillouin zone.

Define

C (Il ) - C (t) e q e n (4.37)Cn,mq) N k Cn~m

Dii(R) C (k) e k e nn,m q N k n~m

= C (r) -]1. + (4.38)rr n:m r-R
q

where in the last part of Eq. (4.38) we take C i~(R ) to be a con-

tinuous function in the lattice sites Rq , although it is a dis-

crete function. The general element (4.33) of the matrix U will

then be written as

We are allowing here the case where points in the symmetry axes
are not considered when calculating matrix elements.
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j'Ij14. -0.j
U (R' R ) Ci':,(R') *Ci (R )T 'ln,n q q , n,m q nm q m,m

[C (C') D (R )-C h('R )Di,(&I') ]*N (4.39)
m' j nm q nm q nm q nm q m:m

where

jpj=Nr (k0 ) * r aCi;,)
Tnorm d mr[b ( k ,)U(r) b (k ,r) (4.40)

fj'j N i r* r (o)
I dr[b (k ,)] UCr) b (k ,r) (mom B nomm j' 0o m~ij (4.41)

with

r Ci;,) 1/2 r (k 0 )1/
nol -+3 2 2 +12

Bnorm drib (k ,r) I fdr b (C ,r)(k 0/2 (4.42)

If the group of k contains inversion and U(r) has at least

the same symmetry as k 0, then the element (4.40) of the T matrix is

different from zero only if the representations rat and

r ko), and the partners j' and j are the same. However, in order for

the element (4.41) of matrix N to be different from zero, it is

necessary that the above representations have different parity.

If k' and k are general points in k-space, then, because U(r)

is invariant under time-reversal,

+ , ' * r4it)
f dr[b fi, (k' )]U(r) b (k ,r) = U (k',Ik) 6 (4.43)n,i n,n i~i

i.e., the partners have to be the same and the result is independent

of the partner. Then,
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ii I~ (R9R U (4.44)U ( ' n ) U ('qn9 q non qq

Let us now determine the expressions (4.37) and (4.38) in the

case where we have a f.c.c. lattice and the group of k contains
0

inversion. The integration on k-space need be performed only over

1/48 of the Brillouin zone if the relations between the coefficients

C i(K) and C i,(aKi), where a is an operation of the point group',

and the phases en (k) are known. If the Kew relation (3.40) is

assumed, then

. 1I X~4 (i ) -iak.R ie (ak)
C (R-) ) CLI (K)r (a) e e (4.45)(Rq - k a I 4

1 (f - ci-Z ie (czi),ii( ) 1) t 0 -ikRq 0n (k..D n ( ) = g tI ) IaI2C (n )r (a) e e cak (4.46)

4.

where k is now restricted to 1/48 of the zone. We indicate this fact

by the primed sum on k. If k is a general point, then ak is different

from k if a 0 e, and the application of the 48 operations of the point

group will give 48 different points in the sum on k. However, if k

is for example the r-point, the application of the 48 operations will

give 48 equal contributions to Eq. (4.45) and Eq. (4.46), but as we

should have only one contribution because there is only one P-point,

the total contribution coming from this point has to be divided by

48. This multiple counting is corrected by the weighting factor

t(k). For reference on the weighting factor for all points in the

1/48 of the zone, see, for example, Brust.19

fi (ak)
As we mentioned before, the phases e n have to be chosen
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in order to produce reasonably localized Wannier functions. This is a

very difficult problem if the material under consideration presents

a complicate energy band structure.

The case of non-degenerate bands and well behaved Bloch functions

was studied by Callaway and Hughes10 and Callaway 24, as discussed in

Chapter 3. For PbTe, for example, because the relativistic correc-

tions are important, the bands at a general point are doubly-degen-

erate and at the P-point some of the important bands have degeneracy

greater than two. The conduction and valence bands come close

together in certain regions of k-space and due to the mutual inter-

action, the K-r coefficients change drastically, which causes the

Bloch functions to vary rapidly in these regions. This fact by

itself is enough to cause the non-localization of the Wannier

functions.

Suppose we have a mesh of p general points (t (k) = 1) in 1/48

of the Brillouin zone. Because for every point k' in this region

there are 47 other points in the star of k', the total number of

points is 48p. The most reasonable procedure for obtaining the

optimal Wannier function for a particular band is to assign a

phase factor for each one of the 48p Bloch functions, to calculate

the matrix element of the impurity potential between Wannier func-

tions centered at the origin and vary each one of these phase

factors until a maximal value for the matrix element is obtained.

This method, however, is exhaustive and time consuming. In the case
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of localized perturbations it is possible to make reasonable choices

just by examining the expressions for the matrix elements. In this

case, the Wannier functions can be considered well localized if the

matrix element of the perturbation U(r) between the Wannier functions

centered at the site where the perturbation is concentrated is

much larger than any other matrix elements relating Wannier functions.

For a particular band, the phases in 1/48 of the zone are

chosen to produce the best Bloch functions. This is achieved by

making the important K-w coefficients vary in the smoothest possible

way in this region of k-space. This is a tedious work but can be

easily done if a reasonable mesh of points is considered. Besides

being the best choice for Wannier functions, it is important when

interpolation is needed in order to obtain the wave-functions at

points other than the points in the mesh.

In order to decrease the number of possible choices we will

assume that the phase associated with a point in the star of k,

where k is in 1/48 of the zone, is obtained by adding a k-inde-

pendent constant to the phase associated with t. It-can be easily

4.44.
shown that this is a good assumption if the important K*r coeffi-

cients do not change drastically in 1/48 of the zone. So, given

a Bloch function with k-vector in this region, the Bloch functions

in the star of k will enter into the construction of the Wannier

function multiplied by a phase factor which is only function of a,

where a is an operation of the crystal point group. For every
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possible set {0n(a i); 1=1,48 and every band we should calculate the

matrix elements of U(r) between the Wannier functions and pick out

the set that maximizes the localization of these functions, i.e.,

f dr a *(r- ) U(r) a (r-R ) is maximal for Rp =-R =0, that is, it

-+ 4.
is much bigger than the matrix elements with others R and R and

p q

where we assume that the perturbation U(r) is localized at the

origin. Because the leading term in the expression (4.33) for

(R',R) is the first we can write approximately:n,n q q

Ui*i(Ogo) C :m C1~(R -0) C -.( 0) Tngn .nm p ngm p mtmmgmtj
(4.47)

In obtaining Eq. (4.47) we made use of the fact that Tm mT 6

and we recall that the representation corresponding to bands m'

and m have to be the same. According to Eq. (4.45)

C ( =0) N C (k)r (a) en )
pk a 2,n

4.48)

If partner i of band n corresponds to partner r of band m at

k it is possible that for a large portion of the 1/48 region

of k-space the leading K- coefficient of the former band is the

one corresponding to the later band. Let us emphasize this point

when calculating U '(0,0). Assume that for every k in the 1/48n n

region C* (is) is the leading coefficient. If band ms transforms
S -

like the irreducible representation r we can write
Y

U ii (0,0) "% A ,r Q * (4.49)nn inrm jJr jr

In PbTe this is not true for all bands.
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where

Ai,r 2 C ,K C r K)T(4.50)
n,m N- kk' t(k) t(k 'r) nmS n s s s

QB * - Q 12 (a) a e in (a (4.51)

But Qjr j,r jr and U'(0,) will be maximum if IQJ,r 2J~r J~ Jrjnr

is maximum. Let aj,r and bJ,r be the real and imaginary parts of

Qj,r, respectively. Then

Ui'i(OO) \ Ai,r I a 2 + b 2 (4.52)
n,n n,m j j,r j,r

and the larger the numbers (a and Ib |, the larger U n'(0,0)
J,r J,r ien n

will be. For simplicity we will assume that e n

One way of obtaining a maximum value for Eq. (4.52) is to choose

o n(a) such that one element, ar,r say, is the largest possible.

But there will be some a's that do not contribute to a Then,

we choose part of the remaining 6n (a) such that another element

is the largest possible and continue in this way until all n (a)

have been chosen. We can now quickly choose the phase factor of

an improper rotation in terms of the corresponding proper rotation,

in the case where the group of k contains inversion. If r has
(k) (k )

even parity, then r (Ja)=r8 a(a), where J is the inversion opera-

tor and in this case we have to have ei(Ja) (a) However, if

o 

O 
Hoer i(Ja)P has odd parity, r (Ja)=-r (a) and we should choose e

= -eia In the next section, we will apply the above results to PbTe.
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4.3 - VACANCIES IN PBTE

Let us apply the formalism developed in the previous sections

to the case where the perturbing potential U(r) is due to a neutral

Pb-or Te-vacancy.

In the APW method one starts with the non-relativistic self-

consistent Hartree-Fock atomic potential and radial wave-functions

for the atoms under consideration (neutral Pb and Te in our case),

as obtained from the program of Herman and Skillman.55 The charge

densities are then calculated, together with the Coulomb potential,

which arises from the fixed charges and the charge density of all

electrons. The crystal potential within each sphere is constructed

by adding to the Coulomb potential and charge density the spherical

average of the Coulomb potentials and charge densities of the neigh-

boring spheres. The total spherically averaged charge density is

then used to obtain the total exchange potential. The crystal

potential is the sum of the total Coulomb potential and total

exchange. In the region outside the spheres the crystal potential

is the sum of the Coulomb potential obtained by averaging the

Coulomb potentials from all the atoms in that region, and the

exchange potential evaluated by finding the total charge in the

region and assuming it to be uniform over the region.

Assume that one atom, Pb say, is missing and that no

lattice deformation or screening occur. The crystal potential

at the sphere corresponding to this atom is only due to the con-

tribution coming from the neighboring spheres and the perturbing
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potential is given by the negative of the crystal potential decreased

by this contribution. In the neighboring Te-spheres the spherically

averaged contribution of the Pb-atom is missing and it represents

the perturbing potential in these spheres. The same can be said about

the perturbing potential in the neighboring Pb-spheres. In the

constant potential region, the contribution of the Pb-sphere is

missing both in the Coulomb potential and in the charge density and

the perturbing potential can easily be obtained.

Table 4.1 presents some values for the perturbing potential at

Pb and Te spheres due to a Pb- and Te-vacancies, together with the

crystal potentials. The perturbing potential is important only at

the sphere in which the vacancy occurs and its value in the other

spheres is disregarded in the calculations. The perturbing and

crystal potentials multiplied by the radius r are shown in

figure 4.2 (Pb-vacancy) and 4.3 (Te-vacancy).

The perturbing potential can be calculated in the plane-wave

region by performing the same averaging used in obtaining the

constant crystal potential. Near the vacancy a value of 0.070 a.u.

for a Te-vacancy and 0.118 a.u. for a Pb-vacancy were obtained and

the values in other regions are completely negligible.

It is evident that the potential constructed in such a way

has the point group symmetry and is important only in the cell

where the vacancy is located.

Let us now calculate the matrix elements of the operator



Crystal
potential

V (r)
Pb-sphere

(a.u)

r
(a.u)

0,0006
0.00-4
0.0102
0.0204
0.0300
0.0408
0.0504
0.0816
0.1032
0.2088
0.3528
0.6024
0.8328
1.21681
1.4856
1.8312
2.2152
2.5992
3.0216
3.1752

Pb-vacancy

Te-sphere

Pb-sphere (neighbor)

(a.u) (10 a.u)

271607.527
29335.396
15099.972
7111.731
4601.434
3209.335
2483.675
1332.199
965.621
327.324
125.815
41.826
19.988
7.865
4.544
2.547
1.460
0.832
0.463
0.367

Pb-sphere
(neighbor

(10 a.u)

0.47
0.32
0.32
0.32
0.31
0.31
0.31
0.31
0.31
0.31
0.31
0.32
0.33
0.37
0.42
0.52
0.69
1.01
1.46
1.66

Crystal
potential

VWr
Te-sphere
(a.u)

-172385.926
-18719.808
-9682.410
-4612.999
-2995.684
-2103.063
-1637.268
-894.974
-655.947
-233.469
-97.549
-35.366
-17.502
-7.276
-4.500
-2.782
-1.842
-1.332

-1.033
-0.981

Te-vacancy

Pb-sphere

Te-sphere
(a.u)

172385.229
18719.366
9682.050
4612.659
2995.340
2102.720
1636.926
894.630
655.604
233.127
97.207
35.017
17.142
6.897
4.099
2.347
1.362
0.792
0.390
0.304

(neighbor)

( )-2(10 aou)

0.185
0.115
0.110
0.111
0.109
0.108
0.107
0.108
0.112
0.109
0.113
0.122
0.139
0.181
0.243
0.371
0.633
1.195
2.160
2.659

Te-sphere

(neighbor)

(10 3a.u)

0.04
0.16
0.05
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.09
0.11
0.16
0.24
0.44
0.54
0,54

TABLE 4.1 - Crystal potential and vacancy potentials due to a Pb- and
a Te-vacancy. Radius r refers to the center of the spheres.

(R Te = 2.9958 a.u.; R Pb - 3.1005 a.u.)

-271607.531
-29335.669
-15100.241
-7112.004
-4601.703
-3209.595
-2493.934
-1332.464
-965.904
-327.587
-126.081
-42.097
-20.270
-8.168
-4.873
-2.910
-1.873
-1.325
-1.045
-0.990

0.832
0.426
0.440
0.425
0.429
0.425
0.423
0.425
0.423
0.426
0.431
0.456
0.494
0.590
0.714
0.933
1.287
1.874
3.157
3.677

I

ON
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FIGURE 4.3 - Radius r times the crystal and vacancy potentials
in the sphere where the Te-vacancy is located.
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r, i.eO

Cj I k

4*+iAkr r
f dr b, ,(0,r) e U(r) b (O,r)

- N crystal (4 A 3)

J dr lb :,(O,r)|2f dr b ,r
crystalm'3  crystal

where N is, as before, the number of unit cells in the crystal and

in Eq. (4.53),A =k-k'. Because the perturbation U(r) is important

only in the cell where the vacancy occurs, Eq. (4.53) can be replaced

by 4).* +iAi~ or
y b d M 1j, (,r) e U(r) b (,r)

J (Ak) N cell (4

f dr jb , (,r)|2 f dr lb (0,r)|2
cell cell

The expression for the numerator of Eq. (4.54) has been derived in the

Appendix and the normalization integrals in the denominator may

be obtained when performing the APW calculation at r. Both integrals

are functions of the number of symmetrized APWIand the number of

2-terms used in the expansion of the APW's. Thus the same number of

SAPW and i-terms must be used in both calculations.

Table 4.2 presents the calculated values of S M(I Ak) for a

Pb- and Te-vacancy in the case where Ak-k-k'm - (t,0,0), a beinga

the lattice parameter and t varying from 0.0 to its maximum value

4.0. When calculating these matrix elements the origin of the

system of coordinates was assumed to be at the center of the sphere-

in which the vacancy occurs, and the change in the origin from the

4)
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N e k)r U(r) between the non-relativistic Bloch functions at
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TABLE 4.2 - Matrix elements of e U(r) between non-

Band Band

1
1

1n1
r

1n'

r1
2 r

2 r

3 r

1 r
2 r15,1

r 15,1

r P,2

2 15,2
F15 ,2
r 12,1

r 12,2
F

25,1
2592

1 0.00

1 n
2 
r

3r1
2 r

3 r
3
r
1

15,1

2 15,1
1125,21 15 21

1 15 9

2 15,2
15,2
12,1

r 12,2

2

25 ,1
F'

j, 2

Band Band

2r

2r

F1

r12 ,
12,1

1 25,1

2r

r13 r

25,

r 15 ,1

1 15,1

2 15,1

iF15 ,1

r15,1

2 15,1'15,1

r 1
2 1

r12 ,1

r 12 ,1

15,1

2.397

-1.474

-1.239

0.921

0.751

0.648

0.752

1.768

4.534

0.752

1.768

4.534

2.305

2.305

0.160

1.575

1.575

0.00

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000
0.000

relativistic single group wave-functions at F.

Pb vacancy
t

0.40 0.80 2.00 4.00

2.396

-1,474

-1.238

0.921

0.751

0.648

0.751

1.766

4.531

0.751

1.767

4.532

2.303

2.304

0.159

1.574

1.575

2.393

-1.472

-1.236

0.920

0.750

0.647

0.749

1.762

4.521

0.749

1.765

4.524

2.299

2.300

0.158

1.572

1.574

2.372

-1.461

-1.224

0.914

0.745

0.639

0.733

1.728

4.451

0.737

1.747

4.469

2.273

2.276

0.148

1.556

1.567

2.302

-1.425

-1.184

0.891

0.726

0.615

0.683

1.618

4.219

0.695

1.686

4.288

2.183

2.197

0.115

1.502

1.535

Pb vacancy
0.20 0.40 1.00 2.00

0.002

0.003

-0.015

-0.034

-0.025

-0.059

-0.018

-0.036

-0.001

0.000

-0.000

0.000
0.010
0.026

0.003

0.006

-0.030

-0.069

-0.049

-0.117

-0.036

-0.071

-0.002

0.001

-0.000

0.001
0.020
0.052

0.008

0.014

-0.073

-0.169

-0.119

-0.287

-0.089

-0.174

-0.006

0.007

-0.001

0.006
0.050
0.128

0.014

0.026

-0.134

-0.321

-0.218

-0.536

-0.161

-0.318

-0.010

0.026

0.003

0.020
0.091
0.236

Te vacancy
t

0.00 0.80 4.00

0.4f

1. 06

-1.05

2.4(

-2. 3f

2.41

4.08

-1. 6E

0. 8C

4.08

-1.6E

0. 8C

1.77

1.77

0.14

1.19

1.19

8 0.467

5 1.064

4 -1.052 -

6 2.463

4 -2.361 -

3 2.408

5 4.071

6 -1.681 -

0 0.797

5 4.089

6 -1.698 -

0 0.798

4 1.768

4 1.769

3 0.142

0 1.186

0 1.188

Te vacancy
0.00 0.40

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000
0.000
0.000

0.453

1.036

1.016

2.400

2.299

2.308

3.773

1.545

0.731

4.108

1.744

0.742

1.625

1.632

0.103

1.097

1.124

2.00

-0.353 -1.648

0.143 0.685

0.044 0.206

-0.016 -0.077

0.160 0.736

-0.063 -0.300

0.088 0.390

-0.021 -0.089

-0.008 -0.039

0.001 0.003

0.008 0.025

0.009 0.029
+0.048 +0.240
0.023 0.095

t

0

0.0

044

1

2

3

4

5

6

7

8

9

10

11

12

-4.

Aw 9
13

14

15

16

17

18

19

20

21

22

23

24
25
26
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Pb to the Te-sphere can be incorporated easily into the coefficients

of the SAPW's. Let us consider the P-point and assume that the APW

calculations was performed with the origin at the center of a Pb-sphere.

The terms in the expression (2.6) for a particular SAPW with wave-

vector kwill have eiaiRpb iakiTe at the Pb- and Te-spheres,

respectively, where RPb and RTe are positions of the centers of the

spheres and a is an operation of the crystal point group. For the

r-point, =K , where K is a reciprocal lattice vector. It is well

known that for a face centered cubic lattice there are two kinds of

reciprocal lattice vectors Ki- 2wr/a (9. m n), namely, 9,m,n are either

all even or all odd. If the origin is at a Pb-sphere, then

iaK -R Pb
e-l

+ if E,m,n are even

e -

[1 if Xn are odd

for all operations a of the point group. Thus, if we have the

coefficients of the SAPW's for a particular wave-function at r

calculated with the origin at the Pb-sphere, we can obtain the

coefficients of the SAPW's of the same wave-function when the origin

is at the Te-sphere, by multiplying the former coefficients by

+1 or -1, depending upon whether the SAPW has ,m,n even or odd.

the matrix elements in Table 4.2 were calculated with 10 SAPW's

for each band and are plotted as a function of t in figure 4.4.

The cutoff in the sums on the L-parameters in Eq. (A.13) was taken

as L-10. The convergence of the matrix elements, both in the number

(4.55)
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of SAPW's and k-terms, was excellent and the results for Z=4 and

Z=10 differ little (the difference was smaller than 10-4 Ry).

Two important conclusions can be deduced from Table 4.2 or

figure 4.4. First, if the representations are the same the matrix

elements are reasonably large and decrease slowly as lAkI increases.

Second, for different representations, the matrix elements are in

general, small; if the representations have different parities, the

matrix elements increase almost linearly with lAki, and, if the

representations have the same parities, the matrix elements

increase quadratically with lAk. This behavior of the matrix

elements provides the important key in the solution of the vacancy

problem in the K'I-APW scheme.

Let us expand the exponential in the numerator of Eq. (4.54)

in Taylor's series near the origin (the impurity potential is assumed

to be localized near the origin). Thus

V d* b* iAkr b
celldr b , (0,r) e U(r) b I(,r)

r* r

= f dr b ,(0,r) U(r) b (0,r
cell mj

+ iAk cell dr b mj(0, rU(r) b .(0,r) + ... (4.56)
cell m'jm,j

If the representations r and r,, have the same parity, only

terms with even powers in (Ak-r) will contribute in Eq. (4.56), i.e.,

the second, forth, etc. terms are zero. The k-independent term is

different from zero only if r = r,, and j=j', and the term propor-

.1 - 04- , - -
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tional to IAkI is the leading term when r and rV (which have the

same parity) are different.

On the other hand, if the representation r and V have dif-

ferent parities, the first, third, etc. terms in Eq. (4.56) are zero

and the first non-zero term is the term linear in Ak.

We can therefore conclude that it is a very good approximation

to consider only the first two terms in Eq. (4.56). This is equiva-

lent to saying that the vacancy potential is so localized that in

4.4the first Brillouin zone e plays the role of a slowly-varying

function of r.

Table 4.3 presents the values obtained from table 4.2 and

figure 4.4 of the matrix elements of U(r) and ixU(r) between the

non-relativistic Bloch functions at r. These wave functions are

such that the matrix elements are real numbers. With these matrix

elements we can construct matrix T and tensor N, defined by Eq.

(4.40) and Eq. (4.41) respectively, observing that the operator

rU(r) transforms in the same way as the momentum operator under the

operations of the crystal point group. This means that when the

matrix elements of xU(r) between the non-relativistic wave-func-

tions, table 3.5 can be used.

Next step in the calculations consists in obtaining for the

important bands of PbTe the expressions for C 'd (' ) and D i (R ),n,m q n,m q

given by Eq. (4.45) and Eq. (4.46).

Let us consider the three valence and three conduction bands

which, at r, correspond to F6 -, 1 8 2 6- and 2 8- . They will
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TABLE 4.3 - . atrix elements of U(r and ixU(r) between non-
relativistic bands at F, for Pb and Te-vacancies.

Band Band

lr
11

2 r1

2 1

3 1r

1

r15,1

r 15,1

r 15,1

r 121,1

2

r2r25,1

1r
2 r

3 r1

2 r

3r'

r1 5 , 1

r 15,1

2

25,1

Hiatrix element of U(r)
Pb-vacancy Te-vacancy

(a. u.)

2.397

-1.474

-1.239

0.921

0.751

0.648

0.752

1.768

4.534

2.305

0.160

1.575

(a.u.)

0.468

1.065

-1.054

2.466

-2.364

2.413

4.085

-1.686

0.800

1.774

0.143

1.190

flatrix element of ixU(r)
Pb-vacancy Te-vacancy

Band Band (a.u.)

il

2r1

2,1r 12,1

r 12,1

r25,1

25

r25

r 15,1

2 r15,1

r15,1

r 15,1

r 15,1

2 15,1

r 1
159

2

r15 , 1

r15

0.0071

0.0131

-0.0688

-0.162

-0.113

-0.274

-0.084

-0.162

-0.0053

0.0465

0.123

(au0)

-0.824

0.345

0.103

-0.0386

0.370

-0.152

0.121

-0.029

-0.0186

-0.124

0.048

(a. u. )
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be refered to as valence bands number 3,4 and 5 and conduction bands

number 1, 2 and 3, in the order of increasing energy. Because these

bands have, over almost the entire zone, a large contribution coming

from the Kohn-Luttinger functions corresponding to the above r 6 and

M=1 48
r~ -bands, a reasonable choice for the phases [0n(a k),1JE in 1/48 of

c ta i
the zone] can be made. The phases for the improper rotations are

chosen such that
ie (Jak) 0 n (ak)

e =

where J is the inversion operator. Eq. (4.45) and Eq. (4.46) can

now be written as

C *( ) = ' C :'(K) r 0 a) ei~n,m q N k t(k) a o n,m

2 cos(ak-R ) , if r has odd-parity
f2 4 i (k)

-2 isin(ak-R ) , if r 0 has even parityq

S q k t(k)

-21sin(ak-R ,
44

2cos( k-R ) ,
(a

(4.57)

C 8(K) o (a) e n ak.

if r (ko has odd-parity

if r (ko) has even-paritya
(4.58)

where the sum on a is restricted to only the 24 proper rotations.

For the valence bands, the important K7r-coefficients vary

Near L, however, the contributions to the valence bands coming from
the Luttinger-Kohn functions corresponding to the even-parity bands
at l are reasonably large, as can be observed&'in figure 3.10.c, for
the upper valence band.
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reasonably slowly over 1/48 of the zone, with the exception of

a region near the point in the <100> axis where band crossing and

quasidegeneracies exist. The contribution coming from 1 is the

largest for the lowest valence band(number 3)and although the con-

tribution coming from the even-parity r-bands is not small near the

L-point, a reasonably localized Wannier function can be obtained,

1-
if the 1r -contribution is optimized, as explained in section 4.2.

6 i1n (alE)
This optimization consists of defining e n - 1 for all

proper rotations.

Although throughout a large part of the 1/48 region of the

B.Z. the valence bands number 4 and 5 consist primarily of the

Kohn-Luttinger functions coming from the first and third partners

of 1r8, reasonably large contributions also come from the other

partners of 1g r, from the r -bands and from 2 -8, besides the

contribution from the even-parity r-bands. For both valence bands,

the most localized Wannier functions were obtained not when the

contribution coming from the first or third partners of 18 were

1 -
optimized, but when all partners of r8 were optimized. With this

procedure phase factors remain undefined and they are chosen in

such a way that the contribution coming from the r -bands is optimal.

In other words, the choice

e 1 if X- (a) > 0
e O( 

a ) > 0

-6r, if X8- (a) < 0

This does not mean that the coefficienta are large in the entire
region
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where X8-(a) denotes the character of the matrix representing a in

the 1' -irreducible representation, optimizes all partners of r
88

But, there are some a for which X8-(a) = 0 and the corresponding

phase-factors remain undefined. They can be chosen in order to

optimiZe 18l1 84) or r8 , 3( 8, 2 ) or 1' . The optimization of

6~ , which corresponds to the choice ei =1 for all a, was

the one that produced the best Wannier functions. Table 4.4

presents the choice of the phase factors in all these cases.

The conduction bands are also represented by reasonably slowly

varying K*n-coefficients, except in regions near the points where

accidental and quasi-degeneracies exist. Although the lowest con-

duction band (conduction band number 1) also has a large contribu-

tion coming from the r -bands, the optimization of the 6 -bands

proved to give better results. The other two bands behaved in

the same way as the two upper valence bands, as far as the choice of the

phase factors is concerned.

Besides the three above mentioned valence bands, PbTe also

has two other valence bands which are important in the vacancy

problem. These bands will be called valence band number 1 and 2,

3 + 1+
and at r, they correspond to r and r respectively. Valence6 6 repciey9aec

band number 1 has an average contribution of 0.897 coming from the

3 +Kohn-Luttinger function corresponding to r6 and valence band number

1 +2 has an average contribution of 0.731 coming from + This means

that very localized Wannier functions can be constructed for these

bands if we choose the phase factors such that ei n( ')=1 for all

rotations a.
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Contribution optimized

r6 r8 r8,1 r8,3Rotation Description

TABLE 4.4 - Phase factors for the 24 proper rotations.

E Identity 1 1 1 1

27r/3 about x-y-z 1 -1 -1 -1
4ff/3 about x=y-z 1 -1 -1 -1
2r/3 about xm-y-z 1 -1 -1 -1

8C 4n/3 about xm-y--z 1 -1 -1 -1

3  27/3 about x-y-i-z 1 -1 -1 -1
4w/3 about x--y--z 1 -1 -1 -
2w/3 about x-y--z 1 -1 -1 -1
4ir/3 about x-y-z 1 -1 -1 -1

2 7r aboutz 1 1 1 1
3C 4  7r about 1 1 1 1

7r about z 1 - 1 1

37r/2 about z 1 -1-
w/2 abouty 1 - -1 1
w/2 aboutx 1 - -1 1

6C4  3/2 abouty 1 - -1 1
37/2 aboutx 1 - - 1
7r/2 aboutz 1 - 1 -1

7r abouty'z 1 - -1 1
iT about x-y 1 - 1 -1
7r about x-z 1 - 1 -1

6C2  7 about x--y 1 - 1 -1
7t aboutxm-z 1 - -1 1
7r about y--z 1 - -1 1

-129-
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In the determination of the vacancy energy levels, the conduction

2 +
band that at r corresponds to 2r had to be included in the calcula-6

tions, because it has an average contribution of 0.627 coming from

2 +
the Kohn-Luttinger function corresponding to r6 , and the matrix

2,+ 3 + 1+
elements of the impurity potential connecting 6 and r6 and 16
are very large.

Once the coefficients C nm (' ) and D i(Rq ) are known, the matrix
n,m q n,m q

elements of U(r) between Wannier functions can be obtained. These

matrix elements are calculated for the five valence bands and four

conduction bands and for the site at the origin and twelve nearest

-+aneighbors of the type R - (1,1,0). We have found that for all
q 2

bands the matrix element connecting Wannier functions centered at

the origin was 5 to 20 times larger than any other matrix element.

On the other hand, the matrix G can easily be obtained if

Eq. (4.22) is used. According to this relation the matrix G is

diagonal in both the band and partner indices and if AR q=R q-R q

where R and Rq, are two lattice sites, we obtain
q q

,2cos(ak*AR)
G i'(AR ,E) - 2 ) (4.59)n,n q N E-E (k)

where now the sum on k is performed in 1/48 of the zone and the sum

on a includes only the 24 proper rotations of the crystal point

group. According to Eq. (4.59)

G (-AR ,E) G (AR ,E) (4.60)n,n q n,n q
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and for AR = 0
q

>0 ,if E > E (k)

n,n (0 E)(4.61)

<0 , if E < E (k)n

Due to the fact that, for values of E near the top or bottom

of the energy band, the G-matrix depends strongly on the details of

the band near these maxima, the number and distribution of points

in the energy mesh are very important. We have calculated the

elements of G for some values of E near and far from the extremum

of the bands using both the regular and Conroy's34 integration

methods. For all bands very good convergence was obtained for a

Conroy's mesh of 1000 points in 1/48 of the zone. Because contin-

uous energy bands have been defined in k-space, G i'(AR ,E) properly
n,n q

approaches zero for large values of E, as can be observed in Figo 4.5

where we present G i i(0,E) for the valence bands number 3,4 and 5n,n

and conduction band number 1. For the conduction band G ii(0,E) is
n,n

negative.

Let us now determine the bound states associated with vacancies

in PbTe. Because the vacancy potential has the crystal point group

symmetry, the wave-functions corresponding to the bound states will

have to transform like the irreducible representations of the crystal

point group. Thus, instead of diagonalizing the total matrix

[I-NN NN % I, or [G NN 1- %N], we factor it in block form, each block

containing only states with wave-functions transforming as the same

irreducible representation. This factorization can be accomplished
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number 1.
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using projection operators, if the transformation properties of the

Wannier functions are known.

Although providing a proper G-matrix, our definition of Wannier

functions do not produce functions with simple transformation proper-

ties. Let us consider Eq. (4.18) which defines a Wannier function.

This equation can also be written as

(k)a . r (it)
a (r-R ) = C1 * (' ) b (k ,r) (4.62)n~i q n,m q mIj 0

mij

where Ci(E ) is given by Eq. (4.45). If 8 is an operation of the
n,m q

crystal point group, then

-iaV-ie (a)
Sa - C () r 0 (a) e e

ti m p k t(k) a A n,m y p

r o
b r E , o r) (4.63)mp 0

If spin is not present, 6.sta is one of the 48 operations contained

in the sum on a. Then

n,i q M(P) k ) n~m Y p,

e (1 a) r (ko)
e n b (k ,r) (4.64)mop 0

and if for a given k the same phase factor corresponds to all

operations 6 we obtain

i~4 r (o)
a (r-R) - C(8 ) b m ,r) = a (r- ) (4.65)
n,i q MSp n,m q m, p r n,i q
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In the present calculation, however, we are dealing with double-

*
group representations and 6= a is not necessarily one of the 48

operations contained in the sum on o Besides that, in order to pro-

duce localized Wannier functions the above choice of the phase factors

is not always possible. For the inversion operator J, however, 6= a

is always one of the 48 operations and

J ani (r-R) = a ni (r+ ) (4.66)

if we choose

e n =+e n (4.67)

But Eq. (4.67) is consistent with our present choices for the phase

factors and this will allow us to factor the total matrix in two

smaller matrices, one for the even-parity representations and the

other for the odd-parity representations, as proved below.

We have that

<a (r-R ) 'U(r)I ani (r- q)> = (a (+ )I U(r)Ia (4r+ )>
m pn qm,i p n,i p

(4.68)

depending upon whether bands m and n have the same or different

choices (4.67). If the symmetric and anti-symmetric linear combinations

, a (r-R ) + ai (r+R P)

- +rR ) - i p ni p
n p

(4.64)

*as-)a (r-P ) - a (r+R )
sni p n,i p

n,i , p

*
The crystal point group has 96 operations.
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are considered, then

<*n (rp) U(r)5$ (rR )> = 0 (4.65)

and can be written in the above block form.

It is easy to verify that the same is true for G NN and G NN 1

and that the Wannier function centered at the origin has to enter

the symmetric block as

s ++
n,,(r,0) = an,i(r-0) (4.66)

in order to be properly normalized.

In the present case we cannot further factor these two blocks

into smaller blocks containing only one irreducible representation,

but each block is totally diagonalized. In the following discussion

we will call the energy levels obtained from the symmetric and anti-

symmetric blocks, symmetric and antisymmetric levels, respectively.

Eq. (4.28) is solved first for the five valence bands in the

single band approximation. The conduction bands are not considered

in this calculation because of the following consideration. As we

discussed before, the matrix element of the impurity potential between

Wannier functions centered at the origin is larger than any other

*
matrix element Thus, the first order solution is obtained con-

sidering only the site at the origin and in this case only one per-

turbed energy level is possible for each band (symmetric solution).

If the perturbation is very small this level stays in the band

(virtual state), but if U is big enough, a bound state lying above

the top of the band is obtained. It lies above the gap because the

The potential is assumed to be localized around the origin.
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impurity potential is positive and, in order to satisfy Eq. (4.28),

G(O,E) has to be positive, However, as we in general are interested

in energies smaller than the top of the lowest conduction band, the

levels obtained for the conduction bands are not of interest. Now,

if more sites are taken into account in the calculation, then not

only will we change the energy level of the bound state which is

obtained when only the site at the origin is considered, but also

new bound states may appear above the top of the band0

The symmetric and antisymmetric energy levels obtained in the

single-band approximation for the five valence bands are shown in

Table 4.5 and figures 4.6 and 4.7. There we present the results for

one site and for 13 sites. In the first case only one symmetric

state is produced per band, while in the second case, seven symmetric

and six antisymmetric levels exist for each band. For vacancy

potentials in PbTe the perturbation is not strong enough to pull

antisymmetric states out of the bands, and only symmetric bound

states may occur. For a Pb-vacancy one symmetric bound state is

produced both for valence band number 1 and 2.

The effect of considering more sites is to increase the energy

of these states, as shown in figure 4.6. The perturbation, however,

is not strong enough to produce symmetric bound states for valence

bands number 3, 4 and 5. A different picture is produced when a

Te-vacancy is present in PbTe. Now, besides valence bands 1 and 2,

symmetric bound states are also pulled out of the valence bands

3, 4 and 5. All these bands, except valence band number 5, present
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0

0

0

0

0

1122.32

43.216

123.813

38.752

16.427

6

6

6

6

5

1278.27

75.132

137.845

57.695

39.010

26.522

6

6

6

6

6

TABLE 4.5 - Symmetric and antisymmetric states obtained in the single-band
approximation for the valence bands of PbTe. The zero of
energy is taken at the top of the band.
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only one symmetric bound state both for 1 and 13 sites. For valence

band number 5, however, one state exists when 1 site is consideted,

but another one appears when all 13 sites are taken into account. From

table 4.5 or figures 4.6 and 4.7 it can be observed that, in the single

band approximation and for 13 sites, one bound state appears above the

bottom of the lowest conduction band for a Pb-vacancy and, for a Te-

vacancy, the number of bound states is equal to three.

The above results, which are different for a Pb-vacancy and a

Te-vacancy, can be qualitatively explained using table 4.3. Valence

band number 1 has a very large contribution coming from the Kohn-

Luttinger function corresponding to r + (3 r1+) and, according to that

table, the matrix element <3r1+IU(r)
3r1 +> is much larger for a Te-

vacancy than for a Pb-vacancy. Valence band number 2, however, has

a large contribution coming from r6+ 1 +) and <1r1+iu(o)Ilr 1+> is

much larger for a Pb-vacancy than a Te-vacancy. On the other hand,

valence bands number 3, 4 and 5 have large contributions coming from

r6 c( 1 5 ) and r8(1r ) and <1r |U(r) 1r> is much larger for a

Te-vacancy than for a Pb-vacancy. Thus, we expect that, for valence

band 1, 3, 4 and 5, the effect of the perturbation is stronger for

a Te-vacancy than for a Pb-vacancy and, for valence band number 2,

the opposite should occur. This is equivalent to saying that valence

bands 1, 3, 4 and 5 have a large part of its charge density concen-

trated in the Te-sphere, while valence band 2 has its charge densiy

in the Pb-sphere. This is in agreement with the LCAO or tight

binding energy band calculation of PbTe performed by Schirf.5 6
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Finally, all the five valence bands and four conduction bands

were considered together. For 13 sites the resulting symmetric and

antisymmetric matrices have dimension 63 and 54, respectively. But,

due to the fact that the valence bands number 1 and 2 and conduction

band number 4 have a large contribution coming from the r 6+-levels

and the other bands have a large contribution coming from the r6

and r8~-levels, these two groups can be considered separately. We

are allowed to make this separation not only because the matrix

elements <r6 +|U(r)|r6- or r8-> are smaller than <r6+IU(r)|r6+> or

<r 6 or r8 _|U(r) 1'6 or r8-> but also because they enter tensor p

which gives a second order contribution to the matrix element of U

between Wannier functions.

When all bands are considered, we can only solve Eq. (4.28) for

values of E outside the bands. This means that in the first group

we look for solutions with energy between the top of valence band

number 2 and bottom of conduction band number 4. In the second

group, only energies in the gap can be considered. But, by in-

vestigating the dependence of the eigenvalues of the matrix

[G NN UN]J or energy E we can determine the number of states lying

below and above a given energy E.

For the first group only one symmetric bound state was found

at -0.43290Ry, for a Pb-vacancy, and at -0.23862Ry, for a Te-vacancy.

In both cases, the effect of the interaction between the bands was

to decrease the energy of the bound state obtained in the single

band approximation, between the top of valence band 2 and bottom of
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conduction band 4. This level, however, still lies well above the

gap. For the second group, no bound state was found in the gap

either for a Pb- or Te-vacancy. Comparing with the unperturbed case,

no extra state appears or disappears above and below the gap, in

the case of a Pb-vacancy, but, for a Te-vacancy, three extra states

were found above the gap and, consequently, three states disappear

below it.

If the results of the two groups are considered together, we

conclude that both for a Pb- and a Te-vacancy no bound states are

produced in the gap. For a Te-vacancy three states disappear below

the energy gap and appear above it, while for a Pb-vacancy only one

state disappears below the gap and appears above it.

2 2
A Pb-atom (configuration 6s 6p ) contributes 4 valence elec-

2 4
trons, while a Te-atom (configuration 5s 5p ) contributes 6. If a

Pb-vacancy is present in the crystal, then the perturbed crystal has

4 fewer electrons than the perfect crystal. But as only one state

( which can accomodate two electrons) has moved from the valence

to the conduction bands, there is still an empty state in the

valence bands. Therefore, two holes are available in the valence

band and we have a p-type semiconductor, in which the carriers can

not be frozen out.

On the other hand, if a Te-vacancy exists, the perturbed

crystal has 6 fewer electrons than the unperturbed crystal. But

as four states have moved from the valence to the conduction bands,

then there is one state filled in the conduction band, i.e., two
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electrons are available there. An n-type semiconductor is produced

and again the carriers cannot be frozen out. These results are

shown schematically in figure 4.8.

It is interesting to note that the number of states pulled out

the band depends on both the strength of the perturbation and on the

shape of the energy bands. The first dependence is present in the

U-matrix, while the second is present in the G-matrix. Because we

are calculating the G-matrix using a Conroy's mesh of 1000 points

a point corresponding to the top of the band probably does not occur

in this mesh. Now, if we allow the energy to have values between

the top of the band and the highest energy in the mesh, other bound

states may occur, when more than one site is considered. This indeed

happens in PbTe, for all valence bands both in the case of a Pb-

and a Te-vacancy in a single band approximation. Let us consider,

for example, valence band number 5. The top of the band occurs

at L and corresponds to an energy Etop of -0.56395 Ry, while the

maximum energy Emax in the mesh is -0.56218 Ry. When the energy

was allowed to vary between these two values, 5 symmetric bound

states and 3 antisymmetric bound states appeared very near E m,

in the case of a Pb-vacancy. For a Te-vacancy, 3 other symmetric

bound states and 3 antisymmetric states were produced. The energies

of these states are shown in Table 4.6.

When all bands were considered, these levels were shifted

towards the Emax. For a Pb-vacancy, for example, the highest

level is now at 3.5x10-5 instead of 1.037x10-3 in the single band



-144-

-T e P ~
S~WCZN~CTO~

JE-VACANCY

N-T Y PE
SCONDUC TOR

6

I S7AT.~

~

ELECT I 0
%J i.

2 ! :cS

.7CTRONS

> (Go

a ELECTRONS

STATES

FIGURE 4.8 - Schematic representation of the effect of a
Pb- and a Te-vacancy in PbTe.



-145-

TABLE 4.6 - Symmetric and antisymmetric states appearing between the
top of valence band 5 (E = -0.56395 Ry) and thetop
highest energy (Emax = -0.56218 Ry) in the Conroy's

mesh of 1000 points corresponding to this band (single
band approximation). The zero of energy in this table
is taken at E 0max

Pb-vacancy Te-vacancy

Symmetric Antisymmetric Symmetric Antisymmetric
states states states states

(Ry) (Ry) - (Ry) (Ry)

-5 -5-550.2x10 2.lxlO 0.8x10 5  7.6x10 5

1.2xlO-5 3.5xl-5 9.27x10~ 4  1.14x10-4

4.Ox1l- 5  1.07x10~4 1.572x10-3 1.52x10-4

6.OxlO-5

1.037x10-3
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approximation.

In order to decide whether these levels are bound states or not

it is necessary to calculate the G-matrix for energies very near the

top of the band using a very large mesh of points. However, we

believe that these states are in the band because the comparison

of the present mesh of 1000 points with the regular meshes of 152 and

916 points, which do include the top of the band, shows that the

value obtained with Conroy's mesh is the convergent value. Even if

some of these states are bound states, they are so close to the band

that screening will be very important. But as the dielectric constant

of PbTe is very large the effective perturbation potential will be

much smaller than the potential we are using in the present calculation

and, as a consequence, these states will be moved further towards

the top of the band.
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CHAPTER V

CONCLUSIONS

Two important results have been obtained in the preceeding work.

They are: the explanation of the effect of vacancies in PbTe from

first principles and the calculation of the energy bands of that material

using the Ker - APW scheme.

The vacancy problem is solved here using the method of Koster

and Slater, which was used by Callaway and Hughes10 in the study of

vacancies and divacancies in silicon. In the definition of the Wannier

functions these authors considered non-degenerate non-relativistic

bands and the regions of quasidegeneracies in k-space were disregarded

in the calculations. Bloch functions for a particular band were

chosen in such a way that their periodic part varied slowly in k-space.

In this case, proper choices of the phase factors in the definition of

the Wannier functions produces localized Wannier functions which

transform like basis partners of the irreducible representations of

the crystal point group. The U-matrix can be factored according to

these representations thus decreasing the dimension of the secular

equation to be diagonalized but the G-matrix, may not present the

proper asymptotic behavior, for large values of the energy E.

In PbTe, however, relativistic corrections are very important

and we have to deal with degenerate relativistic bands. Regions of

quasidegeneracies are very important. They occur in a large part of

the Brillouin zone, and cannot be disregarded. In PbTe therefore the



-148-

vacancy problem is somewhat different than in silicon. With the Bloch

functions obtained by the K*r-APW calculation it is possible to choose

phase factors in the definition of the Wannier functions in such a way

as to produce localized functions. The bands were chosen in order of

increasing energy and in this case proper G-matrices were obtained,

but the U matrix can only be factored into two blocks, one for the

even-parity representations and other for the odd-parity representa-

tions of the crystal point group. However as did Callaway and Hughes,

we had to exclude from the definition of the Wannier functions

symmetry points in k-space where degeneracies, other than spin or

accidental occur, but we believe that the mesh of points used by us

in the Brillouin zone contains all the peculiarities of the bands.

The results obtained here show that a Pb-vacancy produces a

p-type material, while a Te-vacancy causes PbTe to be n-type and,

in both cases, the carriers cannot be frozen out. Thus, if a Pb-

vacancy is the major defect when excess tellurium is present in

PbTe and if a Te-vacancy is the predominant defect when we have excess

lead, the fact that a p-type material is produced in the first case

and a n-type material in the second, with no carrier freeze-out in

either case, can be well explained.

We have used 9 bands and 13 sites in our calculations and the

energy convergence of the levels seems to be satisfactory. In the

one-band approximation, the effect of considering more sites is to

increase the energies of the levels already obtained, shifting them

away from the bands. This increase, however, is not large and if
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more sites are considered we expect the levels to be further shifted

in the same direction, thus improving our results. Because all the

bands that interact strongly with the five valence bands were taken

into consideration, we expect that if more bands are considered, the

results obtained will not differ much from ours, as far as the levels

associated with the valence bands are concerned.

The one-electron energies and wave-functions used in the calcula-

tions were obtained by the K-w-APW method in a mesh of points in k-space.

In this method we start with the APW eigenvalues and eigenfunctions

of the relativistic one electron Hamiltonian at P. The matrix elements

of the operator i between the basis states at r are then used in the

Kon secular equation to obtain the energies and wave-functions in a

point k of the Brillouin zone. For PbTe, we found that the rela-

tivistic contributions to i can be disregarded and only the matrix

elements of momentum p have to be considered. With 11 bands at r

(corresponding to 30 partners) excellent results were obtained. It

was necessary to change only one non-relativistic momentum matrix

at r in order to fit the experimental gap at L and some experimental

results, discussed at the end of Chapter III, can be well explained

with these bands.
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APPENDIX

MATRIX ELEMENT OF U(Ak,r) = eikrU(r) BETWEEN NON-RELATIVISTIC

BLOCH FINCTIONS AT k
0

The purpose of this Appendix is to derive an expression for the

matrix element of the operator U(Ak,r) = e U(r) between two non-

relativistic Bloch functions. For simplicity we will use the notation

r (ko) r (k)

<n. ' ',r) Uk, r) b, (k , r)> (A.1)

for the matrix element.

Since in the APW method, Bloch functions are expressed as linear

combinations of symmetrized augmented plane waves we will have to

calculate the matrix element of U(Ak,r) between two SAPW's,namely

r (k)[QAP ] + + k 0 ) [ APW]
<$ ,(k' ,r) U 1(Akr) $ (k.,r)> (A.2)nvi~j i )In'i,j

where k' = k + K , k - k + K , K' and K being reciprocali 0 1. i 0 i

lattice vectors, and j' and j are the column indices.

The group of the operator U(LAk,r) is the same as the group of

4.

if U(r) is assumed to have the symmetry of the group of k . In

+4. *4.
general, U(Ak,r) reduces the group of the wave-vector k and breaks

the representations of this group into sets of irreducible represen-

tations of the group of U(Ak,r). Observe that the representations r o

and r ko) might be different, since after reduction they might include

equivalent irreducible representations of the group of U(Ak,r).

* +4
The group of k has to be equal to or larger than the group of U(Ak,r
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But the basis used in the APW calculation might not be

the proper basis for reduction, so that a unitary transformation is

necessary before calculating the matrix elements. As Ferreira15 we

reserve the name of transformed symmetrized augmented plane wave

(TSAPW) for the new combination of APW's. Thus, in general we are

interested in the calculation of

r (koe) [TSAPW] r (ko)[TAW

nl (kj r) |U(A k_* r)| q (k ,r) >

r', , T, (o) W) ,IV r 0 (a)
czla ki 0.Z,'9.z ~

x <a' $P(k ,r) |U(Ai,r) aAWk ,r)> (A.3)

where V' and V are the unitary matrices and a and a' are operations

of the group of k .

The expression for the matrix element of a general operator 0

between two TSAPW's is given by Ferreira15 and we present here the

main steps in the calculation. It is important to mention that a

TSAPW is not a SAPW made out of APW's and using the rotation matrices

of the transformed basis, because the latter is

k (~ APW4
Va m a 0 (a) m V a$ (k,r)

while a TSAPW is

V9 ko () aAPW+

Any operation a' of the group of the wave-vector k can always

1 1! " --- __ _1. Mr_
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be written as y' 6', where y' is an operation of the subgroup that

leaves U(Akr) invariant and 6' belongs to the Factor of the subgroup,

which contains GIGsub members, G and Gsub being the number of opera-

tions in the group of k and in the group of U(Ak,r), respectively.
II 4.

' k ) k
If we denote by r,, K0) and r (ko) the rotation matrices which are

in the reduced form for the operations of the subgroup, i.e.,

rI(ko) V + r(ko) V and r ko) = v,+ r ) V', then

V o) = ko)

* k () W)'2Ij (ko) IV
SVj , , o)(a') , , = r , o)(cx')i,V , ,'*

i qI i,q qi,:i

and since y' commutes with U(A',r)

r(k 0)[TSAPW] r(k 0)[TSAPW]

. L + 41t -i)-
<* , (I N,r) JU(Ak,r)l n i,j i

V *tjI r, (ko) ,ko)

y' X q~q' 2., qtj q~j 61O

x r (() 1 0 ) <Y' APW k ,) IU(AkAr) (

(A.5)

where X 6- a. The sum in 6' in Eq. (A.5) can be performed and a

non-zero result is obtained only if

a) the representations of the subgroup to which i' belongs are

the same as the representation of the subgroup to which i belongs;

b) the partner numbers of the irreducible representation of

the subgroup to which the i'-th partner of r o) and the i-th partner

of r o go are equivalent,
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c) the representations of the subgroup to which i' belongs is

the same as the representation of the subgroup to which Z' belongs;

d) the representation of the subgroup to which i belongs is the

same as the representation of the subgroup to which k belongs;

e) the partner numbers of the irreducible representation of the

subgroup to which the V'-th partner of r o and the t-th partner

k'
of r(ko) go are equivalent.

If all the above conditions are satisfied the result of the

sum on 6' is equal to G subn , , where ni, is the dimension of the

common representation. Thus, we have to derive an expression for

the matrix element of the operator U(Akr) between two APW's, i.e.

APW + + A-+,+ APW +( +
<q (k,r) U(k r) $ k ,r)> (A.6)

But, in a sphere located at r and having radius R
0

S + j (k R)
APW ++ ik r 0 1 1

$ (k ,r) =e 4 I 'u, (r')
=0m -A u (R) EE

x Y (61 YM i(',) (A.7)
i I i i

A similar expression can be written for (kr), and if the plane

_)k r +
wave e in U(Ak,r) is expressed in terms of spherical harmonics,

ice., by

eiAr - e r 41r I i , (Akr')Y (k ,Ak) Y ('') (A.8)
1=0 M=-2,

Eqo (A.6) can be written as
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<APW(k ,r) IU(Ak,r)IAPW(kr)> = ei0i1
J 3 .=O X J=O .= I I-2 I

(-1 .(k R)j (k R)

XU(-) (R) fO j2(Akr') u2.E (r')u2.EuA .iu R)uX E i ()_P 'i 3i 3E

M i

Wr)

1 2 [29,.+11/2 M )I
xr2UWr) dr' O4n)2 (29,+l) 12-i + C k0 kUz+ji i i i )y 9 j

x C(z k 2 ; 0 m' M') C(k z 29. ; 0 0 0) (A. 9)

where k7 means the smallest between P, and L. and the C's are
iC i s

Clebsh-Gordon coefficients, which, in the Racah closed expression,

are given by

C~9 . . 0 mx mz' = r(99 4w
(2+2.. (2.,+2.-2.,)! (2..+2,~-2.)!

i ~1
x (WV (' (ki-M')I (A.+M ) (-m') ( +m')

(-) V

V (k+z -Z -v) (L-v) (L +M'-v)! (z - +V)' (k i--M'+v)!

L+2. -2..

C(2.2 k2 . *0 00)=()
L! (221 +1) 1 / 2

iL-i~dL-2 L- )

(X+X -Z )! a+z - 2 i + -X)I 1/2

L (+t +Y1 +1) 1

and in all these expressions (i +1 +) must be equal to 2L, where

L is an integer.

When deriving Eq. (A.9) we made use of the following facts:

a) fd' Y i(*',4') Y j(',0') Y (O', ,')

r(22+) (22 +1)11/2

4L 2 +) ~ i 2 m iii mi) C(L E i; 0 0

and

(A.10)

(A.11)

0)
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b) that we must have mj "urm and 2+Y1 +2 -2L, where L is an

integer, in order for the Clobsh-Gordon coefficients to be different

from zero.

c) the primed system of coordinates (inside the APW sphere) is

chosen such that Ak is in the z'-direction. In this case 6A=0 and

1 =0 and Y (efk fk 211) ]1/2 6 A

d) from b) and c) we obtain that m=0 and m-m jrM'.

e) from the expressions (A.10) and (A.11) for the Clebsh Gordon

coefficients we observe that

m' <

and if 2 means the smallest between Z and Li, then m' can onlyii i

have values between -Z and +X ; also

Z 4 Z+21

and then k can only have values between |I-R, and (L+t ).

f) we have assumed that the potential U(r) is spherically symmetric

inside the APW sphere.

The sum on m' in Eq. (A.9) can also be written as

Y (OI ,$( ) Y (eg , )(C(0 L 2 ; 0 m' m')C(k Z 2 ;0 0 0)
mI--1X i i i j j

ij (21i+)(21 +1) (J -m') / (2 -m') 1

M (4I W- MT
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x P (cos ) P I(cose ) C( k 2 ; 0 m' m')C( k 2, ; 0 0 0)
ki 1 P J k i

cos [m'() -01 )]
X j i

for m' > 0

for m' = 0

Eq. (A.12) can easily be obtained if we expand the spherical harmonics

in terms of the Legendre polynomials, i.e.,

Y (6', $') =-) (2t) (Lm)! 1/2 P (cosO') e 0' for m>0

Y m(', ') = (-)m Y*(O (6 ') for m<0

and observe that

C(L 2 0 -i' -i') = C( k Y ; 0 m m)

Finally, if expressions (A.9) and (A.12) are used in Eq. (A.5)

we obtain

r (k'o)[TSAPW] r (k0)[TSAPW]

<$ 9,,,,(k ,r) |U(Ai,r)| (k ,r) >

2=0 k 1 k= - |i

where

1) the radial integral I(L,, Ak|) depends on U(r) and

IAek and is given by

I(ZZ1 ,24,IAkI) =

(A.13)

(1 0 dr'j,(IAk r')U(r')r
Ei 2 ,E E

x U2 ,E Cr') uV, ,E (r')
i i i' i I

(A. 12)

I(2,9k ,q|A-k j) F(Y,9A,9t') H(kv,2 ,1 ,Ak)
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2) the function F(LLi,1i) does not depend on U(r) or Ak and

is given by

F(kolii,, ) - (2k+l)(22i +1)(2ti+) -L)! (LR)! (L-2 )!

x
(L+1++1) 1

3) the function H(X,2 ,X ) depends on the group of the operator

U (Akr)

- MI 4w ( ) Im')!( -m') [( -z -V)I
mIMO V V

x (L-v) I (+Mi-V)! (li-ki+v)l(l -l-m'+v)l] ,1 (k R)
i i , i1R

x jt (k R) [sub [
i , y'X n lU'

(ii,

Sur (ko)(AaU (X)]L

2 cos [m'(' , - 0'+ ) I

x 1 Yi i

Li

P (co ' (cose' )e

for m' > 0

for m' w 0

where U(r) has the symmetry of the group of ,, thenA)

depends only on the group of Ak.

H(k, ,9 P , k)

1 -10. -0.
i ( k' i-Y kl),,ro
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