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Abstract

This dissertation extends the use of the dynamic stiffness and transfer matrix methods
in marine riser vibration. Marine risers possess a predominant chain topology. The
transfer matrix method is appropriate for the analysis of such structures. Wave trans-
mission and reflection matrices are formulated in terms of transfer-matrix elements.
The delta-matrix method is introduced to deal with numerical problems associated
with Yery long beams and high frequencies. The general internal relationships be-
tween the transfer matrix and dynamic stiffness methods are derived and applied to
the problem of a non-uniform beam with discontinuities. An implicit transfer matrix
of a general non-uniform beam is derived.

The vibration analysis of non-uniform marine risers is addressed by combining the
procedure of the dynamic stiffness method with the WKB theory. The WKB-based
dynamic stiffness matrix is derived and the frequency-dependent shape function is
expressed implicitly. The Wittrick-Williams algorithm is extended to the analysis
of a general non-uniform marine riser, allowing automatic computation of natural
frequencies. Marine riser models with complex boundary conditions are analyzed.
The WKB-based dynamic stiffness method is improved and applied to a non-uniform
beam system with discontinuities. A dynamic stiffness library is created.

Dynamic vibration absorbers and wave-absorbing terminations are investigated
as a means of suppressing vibration. The optimal tuning of multiple absorbers to a
non-uniform beam system under varying tension is investigated. The properties of
wave-absorbing terminations of a beam system are derived.

The vibration of two concentric cylinders coupled by the annulus fluid and by
periodic centralizers is modeled. The effects of coupling factors on vibration are nu-
merically evaluated. It is shown that a properly designed inner tubular member may
be used to damp the flow-induced vibration of the outer cylinder.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Problem Statement

Marine structures such as production risers and deep-water pipelines are susceptible

to Vortex-Induced Vibration (VIV), which results from complicated, non-linear in-

teractions between structural motions and vortex-shedding. VIV is of great practical

importance because it may cause fatigue failure.

Much research has focused on understanding the VIV phenomenon. King (1977)

[2], Sarpakaya (1979) [3], and Griffin and Ramberg [4] reviewed the early studies of

VIV and its applications. Vandiver (1993) [5] summarized his 17 years of experimen-

tal observations, discussed the phenomenon of long flexible cylinders, and identified

the dimensionless parameters important to the prediction of VIV. Recently, Vandiver,

Allen, and Li (1996) [6] investigated the occurrence of lock-in under highly sheared

conditions and indicated two dimensionless parameters to predict the likelihood of

the occurrence.

There is broad research work done on structural dynamic analysis and on the VIV

suppression of marine risers. Kim (1983) [7] assumed that the continuous coefficients

are slowly varying and used the WKB asymptotic method to analyze a slender beam.

The MIT Sea Grant Program supported the studies on the dynamics of compliant

risers and cable dynamics, shown respectively in the references by Patrikalakis, et al

[8, 9] and Triantafyllou, et al [10]. Li (1993) [11] modeled a riser as a string system,
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used the transfer matrix method to study the dynamics of strings with rigid lumps,

and evaluated their effects on wave propagation. Vandiver and Li (1994) [12] devel-

oped for tension-dominated structures a device called a wave absorbing termination,

which is capable of suppressing the vibration. Levesque (1997) [13] studied vibration

suppression in a finite length string with constant tension using the transfer matrix

method and found that a translational mass-spring-dashpot absorber works better

than in-line absorbers.

There are a number of analysis programs [17], such as SHEAR7, VIVA, and Vi-

CoMo, available to the industry to predict the VIV of marine risers. SHEAR7, which

is widely applied, uses mode superposition of uniform string and beam models to eval-

uate which modes are likely to be excited, and estimates the cross-flow VIV response

in steady, uniform or shear flows. The program is capable of evaluating multi-mode,

non-lock-in response, as well as single-mode, lock-in response.

As offshore drilling and production proceed into deep waters, marine risers become

longer and more flexible. Deepwater marine risers are very susceptible to VIV [18].

The increase in length lowers the natural frequencies and the magnitude of current

required to excite the VIV. Long slender risers with complicated boundary condi-

tions can cause numerical difficulties in dynamic analysis. A typical marine riser is a

long non-uniform beam structure with discontinuities. Its variable properties include

mass density, bending stiffness, and effective tension. Due to discontinuities such as

buoyancy elements, the mass per unit length changes discontinuously. The dynamic

behavior of such a slender system having variable properties and discontinuities is

difficult to predict.

Floating production platforms require more complex riser configurations for well

production or fluid injection fluids, between the subsea well-heads and the surface

production facilities [19]. One type of riser assembly is made up of two concentric

cylinders separated by a gap filled with viscous fluid. Centralizers are discretely and

longitudinally distributed in between the two cylinders. Both predicting VIV and

suppressing vibration require analysis of a coupled two-riser system, evaluation of the

effects of coupling factors, and determination of the spacing of centralizers.
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This thesis focuses on the dynamics of a long slender non-uniform riser structure

and a coupled double-riser system. The specific objectives are as follows:

(1) to construct effective numerical approaches for a long non-uniform marine

riser with discontinuities and variable properties including bending rigidity, mass

per unit length, and effective tension;

(2) to explore new means such as dynamic vibration absorbers and wave-

absorbing terminations to control vibration; and

(3) to formulate a coupled double-riser system and to numerically evaluate the

effects of coupling factors, such as fluid viscosity and spacing of centralizers

between two risers.

1.2 Technical Summary of Numerical Methods

A typical marine riser is a non-uniform beam structure with discontinuities. An an-

alytical solution to its partial differential equation is generally not possible. We have

to use a numerical technique for analyzing the dynamic behavior of a marine riser. A

number of approaches can be employed to analyze marine risers, such as the Transfer

Matrix Method (TMM), the Finite Element Method (FEM), the Finite Difference

Method (FDM), and the Dynamic Stiffness Method (DSM). Each method has its

advantages and disadvantages.

The transfer matrix method

The TMM, also known as the line-solution technique, has its origin in Germany. It

is one of the most appropriate methods for the analysis of a chain-type structure

because only successive multiplications are necessary to fit the elements together and

intermediate conditions have no effect on the order of transfer matrix required. Hence,

this method handles discontinuities very conveniently.

The line-solution methodology theoretically can be applied to appropriate struc-

tural members to solve problems involving almost any physically conceivable situa-

tions to which a line-type solution applies. However, the fact that a computer requires
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calculations to be performed on the basis of a limited number of digits introduces com-

plications into the numerical implementation of a line solution for certain classes of

members, such as those members whose higher natural frequencies are to be sought

and those members which include stiff spring supports. Numerical problems arise

when large, almost equal numbers are subtracted. Due to the limited number of dig-

its carried by computers, the results may be inaccurate or totally meaningless.

It has been found that the TMM works quite well for a string model but will have

numerical problems for a beam structure when its length is larger and a high natural

frequency analysis is desired. In this case, we have to improve the TMM to avoid the

numerical problems.

The finite element method and the finite difference method

The FEM is a flexible and powerful tool which is widely used in engineering, and

which in particular is employed extensively in the analysis of solids and structures.

The FEM requires the division of a structural domain into many subdomains called

elements. On the basis of frequency-independent shape functions, it effectively re-

duces a continuous model into one having finite degrees of freedom. The accuracy

with which the behavior of the substitute finite degrees-of-freedom system represents

that of the real structure clearly depends on the number of elements and their as-

sumed shape functions. The FDM gives a pointwise approximation of the governing

equation. The accuracy of this method depends on the number of grid points. It

can give accurate results if sufficient grid points are used. Hence, both methods are

effective for the analysis of lower frequencies of structures. If high natural frequencies

are to be sought, a large number of degrees of freedom is required.

For a uniform beam element under linearly varying tension, we have found the

stiffness matrix using the FEM, shown in Appendix A. This matrix is more efficient

than that of a conventional constantly-tensioned element in analyzing a uniform riser

under linearly varying tension.

The dynamic stiffness method

Historically, Kolosek first presented the idea of the DSM in the early 1940s and found

an elaborate formulation of this method in 1950. This method has a great appeal
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since it is based on the exact dynamic stiffness matrix derived from the free vibration

analysis. The DSM performs free and forced vibration analysis within the differential

equation theory of beams, thus avoiding assumed modes and lumped masses. This

method enables one to analyze an infinite number of natural frequencies and modes

by means of a finite number of degrees of freedom. The difference between the DSM

and the FEM is that the shape function in DSM is frequency-dependent while that

in the FEM is independent of frequency. The DSM is appropriate for the analysis of

low frequencies as well as high frequencies.

A marine riser structure possesses a predominant chain-type topology. For ris-

ers in deep water areas, the high order natural frequencies and multiple modes are

potentially excited by VIV. Hence, this thesis employs and explores the TMM and

DSM for the analysis of a long slender non-uniform riser structure and a complicated

coupled double-riser system.

1.3 Overview of this thesis

This thesis investigates the vibration analyses of a long slender non-uniform riser

structure with discontinuities and a coupled double-riser system by improving the

transfer matrix and dynamic stiffness methods, explores new means such as dynamic

vibration absorbers and wave-absorbing terminations to control vibration, and eval-

uates the effects of coupling factors on the frequency response of a coupled dual riser

system.

Chapter 1 states the topic and specific objectives of this thesis, summarizes the

numerical methods which are employed for the analysis of marine risers, and presents

the two methods, the TMM and DSM, to be used and explored in the thesis.

Chapter 2 discusses the transfer matrix method and its application for a beam

structure. The first few sections outline the transfer matrix method and illustrate

the applications with examples. In order to consider wave propagation in a beam

structure with discontinuities, the chapter derives wave transmission and reflection
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matrices in terms of transfer-matrix elements. The method presents numerical prob-

lems in analyzing a beam structure when the length is very large or high natural

frequencies are desired. The chapter specifically introduces the delta-matrix method

and illustrates the method with examples. We often approximate a non-uniform beam

by a number of stepped uniform ones. This chapter investigates three approximate

schemes for a beam structure under variable tension and shows their convergence rates

with an example. This chapter finally presents a symbolic operation-based transfer

matrix method to avoid numerical problems.

Chapter 3 introduces the dynamic stiffness matrix analysis of a uniform beam

structure and discusses the analysis of complex natural frequencies. For a uniform

Euler beam, the chapter derives the elemental dynamic stiffness matrix and the cor-

responding frequency-dependent mass and stiffness matrices. The global dynamic

stiffness matrix is then assembled as in the FEM. Natural frequencies are determined

by equating the frequency determinant to zero. The chapter introduces the Wittrick-

Williams (W-W) algorithm, as a more reliable method for determining natural fre-

quencies. In order to include damping effects, this chapter finds complex frequencies

by means of the Muller method.

Chapter 4 investigates the vibration analysis of non-uniform marine risers by com-

bining the DSM procedure in Chapter 3 with the WKB theory, which assumes that

the coefficients in the differential equation of motion are slowly varying. The WKB-

based elemental dynamic stiffness matrix is first derived and the frequency-dependent

shape function is expressed implicitly. Natural frequencies are found by equating to

zero the determinant of a global dynamic stiffness matrix. Two non-uniform risers

appear as an illustration of the efficiency of this method.

Chapter 5 extends the W-W algorithm to the analysis of a general non-uniform

marine riser and combines the algorithm with the WKB-based dynamic stiffness

method described in Chapter 4. This technique allows automatic computation of

natural frequencies of a non-uniform beam structure. On the basis of the WKB-

based DSM, the chapter derives the formulas for calculating mode shapes, slopes and

curvatures. This chapter further analyzes marine riser models with complex bound-
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ary conditions.

Chapter 6 generalizes the internal relationship between the TMM and the DSM

and discusses its application. Due to different sign conventions which may be used in

the two methods, the chapter generalizes the relationship by introducing correspond-

ing transformation matrices. Using this internal relationship, the chapter then derives

an implicit transfer matrix of a non-uniform beam from the dynamic stiffness matrix

found in Chapter 4 and shows the application by an example of a riser under linearly

varying tension. Again, using the relationship, the chapter improves the WKB-based

DSM for describing a non-uniform beam structure with discontinuities. Further using

the relationship, this chapter establishes a dynamic stiffness library.

Chapter 7 discusses the vibration suppression of a general beam structure by

means of dynamic vibration absorbers and wave-absorbing terminations. The first

few sections introduce the optimal tuning of a single dynamic vibration absorber to a

uniform beam. The chapter next studies optimal tuning of multiple identical dynamic

absorbers to a uniform beam with general boundary conditions. The chapter next

investigates optimal tuning of multiple identical absorbers to a non-uniform beam

system under varying tension. Since practical structures have structural damping,

the chapter discusses the effects of structural damping on the optimal tuning. Based

on the research by Vandiver and Li, this chapter further extends the analysis of wave-

absorbing terminations of a beam system.

Chapter 8 systematically investigates the vibration analysis of coupled beams.

The first few sections discuss the coupled vibration analysis and the optimal tuning

of a dynamic absorbing beam, coupled by distributed springs and dampers to a second

beam. The chapter then analyzes the coupled system in which both uniform beams

are under constant tension. The complexity of the coupled system is next increased

by the introduction of an ideal fluid in between two beams. The effects of the fluid on

natural frequencies and mode shapes are discussed. A practical composite riser struc-

ture is modeled as a generally coupled double-beam system, in which both beams are

non-uniform ones under variable tension, the fluid in between the beams is viscous,

and stiffness and damping from discrete centralizers are longitudinally distributed.
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The chapter mathematically formulates the coupled system, numerically solves for

both real and complex natural frequencies, and evaluates the effects of coupling fac-

tors on the vibration.

Chapter 9 summarizes new contributions made in this thesis and recommends

further research in the future.
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Chapter 2

Transfer Matrix Method

2.1 Introduction

The transfer matrix method is ideally suited to vibration analysis of a structure which

has a predominant chain topology. The size of the transfer matrices is dependent on

the order of the differential equations of the system. Discontinuities such as a con-

centrated mass and a mass-spring absorber present no difficulty since they have no

effect on the order of the transfer matrices required. A marine riser is a chain-like

structure and it is convenient to employ the transfer matrix method to analyze it. Li

and Vandiver [11, 20] modeled a marine riser as a string system and studied the wave

propagation by the transfer matrix method.

However, this method has numerical problems in solving beam-like structures

when the structural length is very large or high order natural frequencies are desired

[21]. Researchers have been improving the method to avoid the numerical problems

[22].

The next section of this chapter briefly outlines the transfer matrix method. The

third section illustrates the applications of the method with examples, solving for nat-

ural frequencies and mode shapes. The fourth section derives the wave transmission

and reflection matrices in a beam structure due to discontinuities and gives illus-

trative examples. The fifth section discusses the numerical problems of the method

in analyzing a beam structure, specifically introduces the delta-matrix method, and
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illustrates the improved method with examples. The sixth section investigates three

approximate schemes for a beam structure under variable tension and shows their con-

vergence rates with an example. The final section of this chapter presents a symbolic

operation-based transfer matrix method to avoid the numerical problems.

2.2 An outline of the transfer matrix method

2.2.1 state vector and transfer matrix

The state vector at a point i of an elastic system is a column vector whose components

are the generalized displacements and the corresponding generalized forces at the

point. For a uniform beam, the displacements are lateral displacement y and slope 6,

and the corresponding forces are shear force Q and bending moment M. The state

vector in this case is:

y

0
si (2.1)

M

Q

We should note that the displacements and corresponding forces in Eq. (2.1) are in

positions which are symmetrical about the center of the column.

We define the transfer matrix as the matrix which relates two state vectors at

different positions in an elastic system, namely:

si+1 = Ui si, (2.2)

in which Uj is the transfer matrix and si and si+1 are the state vectors at stations

i and i + 1, respectively. It is evident that if there are n components in the column

vector, then the transfer matrix is square and of the order of n. When i and i + 1

are the different points of a continuous system, the transfer matrix relating the state

vectors at these points is known as a field matrix. The transfer matrix relating the

state vectors on either side of a point is known as a point matrix.
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There are a number of approaches to deriving a field matrix [21]. A uniform beam

section, shown in Figure 2-1, appears as an example.

R

I 
i+1

x

Figure 2-1: A typical uniform beam section

The differential equation of motion for a beam is:

d" Y
EIlz - pAw 2Y =O, (2.3)

where pA is the mass per unit length, EI is the bending stiffness, and Y is the

transverse displacement amplitude. We find its transfer matrix on the basis of Eq.

(2.3):

S(klj)

kV(ki)

Elk2 U(klj)

EIk3T(kj)

Ek V(k1j)

S(kj)

EIkV(k 2 )

Elk2U(klj)

ggT(kj) E1 U(klj)

S(kli)

kV(ki)

-T(klj)

S(klj)

in which k4 = PAT 2 and the frequency-dependent functions are:EI

S(kli)

T(kli)

U(kli)

V(k4j)

= [cosh(klj) + cos(k4j)];

1
= [sinh(kl) + sin(k)];

2
1

= [cosh(k) - cos(kli)];
2
1

= [sinh(kl) - sin(kl)].
2

A point matrix relating the left and right state vectors at a discontinuity can be
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constructed by considering dynamic equilibrium of the point.

2.2.2 Eliminating intermediate state vectors and finding fre-

quency determinant

Elimination of intermediate state vectors

Taking a uniform beam as an example, we divide the beam into n sections without

lumping the masses at the station points, as shown in Figure 2-2.

I I I
0 12 j j+1 n-2 n-I n

Figure 2-2: A beam divided into n sections

Equation (2.4) shows the transfer matrix of a uniform beam. The following matrix

relations exist between adjacent state vectors:

SL =U 1so;

= U2s;

L

Sn

= RUn-isn-2;

= Us5_1. (2.5)

Noting that s = s (i = 1, 2,

equations in (2.5):

-.- n - 1) in this case, we obtain from the last two

Sn = Un Un_ 1 sn_ 2. (2.6)

We continue this procedure until obtaining the relation between the state vectors at

the two ends of the beam:

Sn = Un Un_ 1 - -- U2 U1 Uso, (2.7)
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where U is the overall transfer matrix formed by taking the products of all the inter-

mediate transfer matrices in the order indicated. In this manner all the intermediate

state vectors have been eliminated.

Frequency determinant

Equation (2.7) is expanded as:

y U 1 1 U1 2 U 1 3 U 1 4  Y

0 U 2 1 U2 2 U 2 3 U 2 4  0(28)

M U31 u3 2 U33 u 34  M

Q U41 U42 U43 U44  Q -

The frequency determinant is formulated by applying the boundary conditions to Eq.

(2.8). For a simply-supported beam, the boundary conditions are:

Yo = 0, Mo =, y = 0, Mn = 0. (2.9)

Substituting Eq. (2.9) into (2.8) leads to:

U 1 2 
0o + U 14 Qo 0,

U3 2 00 + U3 4 Qo = 0. (2.10)

For a nontrivial solution of Eq. (2.10), the determinant of the coefficients must be

zero, namely:

u12 U 1 4 =
=1 0. (2.11)

U3 2 U 3 4

Since the elements Uik, (i, k =1, ... , 4) are known functions of the circular frequency

w, this frequency determinant serves to calculate the natural frequencies of the beam

structure.

For other boundary conditions the frequency equation will require that other

sub-determinants of the overall transfer matrix U vanish. For example, for a beam

clamped at station 0 and free at station n, we find the frequency equation by following
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the same procedure:

U 3 3 U3 4  0. (2.12)
U 4 3 U4 4

Once the natural frequencies are known, we set equal to one one of the state com-

ponents corresponding to the final frequency determinant. The other state component

is found by means of one of the final equations such as Eq. (2.10). It then follows

that the corresponding state variables at all stations can be determined. Hence, we

obtain the mode shape in this procedure.

2.2.3 Response analysis

In order to find steady-state forced vibrations, we add an extra column to the transfer

matrix Eq. (2.4) to include forcing terms. The extended state vector and transfer

matrix are:

y

9i = M ,(2.13)

Q
1

U 1 1 U 12 U 1 3 U1 4 0

U 2 1 U2 2 U 2 3 U2 4  0

U= U 3 1 U 3 2 U 3 3 U 3 4 fm , (2.14)

U41 U42 U43 U4 4 fq

0 0 0 0 1

where fm and fq are external moment and force, respectively.

For example, the extended point matrix of a concentrated mass mi, on which a
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harmonic force p(t) = poeiwt acts, is:

1 0 0 0 0

0 1 0 0 0

U= 0 0 1 0 0 . (2.15)

w mi 0 0 1 Po

0 0 0 0 1

As in the undamped case, the relation between the state vectors at the boundaries

0 and n of the system is achieved by the multiplication of the extended transfer

matrices. The unknown initial parameters at the boundaries are first solved. Hence

the state vector at each node can be obtained as previously.

2.3 Vibration analysis of a beam structure with

discontinuities

In order to solve natural frequencies and mode shapes, we first find field matrices of

continuous sections and point matrices at discontinuities. For a uniform beam section

under constant tension, we derive its transfer matrix from the differential equation of

motion, as shown in the example of Section 2.7. The transfer matrix is also available

in [21]. However, we need to note the differences in the sign convention. The point

matrix describing the mass-spring-dashpot absorber is found as follows:

1 0 0 0

0 1 0 0
Uc = (2.16)

0 0 1 0
mw 2 (k+iwc)
k-mw 2 +iwc

where m is the mass of the absorber, k is the spring stiffness, and c is the damping

of the absorber.

With the field and point matrices, we calculate the overall transfer matrix and
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then find the frequency determinant by means of the boundary conditions. We de-

termine the natural frequencies by plotting the determinant versus frequency. Once

natural frequencies are found, the corresponding mode shapes are calculated by fol-

lowing the procedure in Section 2.2.

Since the field and point matrices are available, we can easily obtain the corre-

sponding extended matrices by including the terms of external exciting forces. Fol-

lowing the procedure in Section 2.2.3, we solve for the state vector at each node and

hence find the steady-state response.

The following examples illustrate the vibration analysis of a beam structure with

discontinuities by means of the transfer matrix method.

(1) A simply-supported uniform beam under constant tension

A simply-supported uniform beam first appears as an illustration. The beam's spec-

ification is as follows:

Length I = 50.8 m;

Mass per unit length pA = 78.0 kg/m;

Bending rigidity EI = 4PA1 Nm2 ; and

Tension T = 10000 N.

The analytical solutions of natural frequencies are:

nhr2 EI TI2

12n = -- 2 + (n = 1, 2, ). (2.17)12 pAr + r2EI (n 1

Figure 2-3 shows the determinant of the transfer matrix of the beam versus fre-

quency. The troughs correspond to the natural frequencies. Table (2.1) indicates the

first seven natural frequencies found by means of the TMM and Eq. (2.17). This

table demonstrates that the TMM is accurate in finding the natural frequencies.

The mode shapes can be found numerically and compared to the analytical so-

lution which is known to be On(x) = sin(n--). The mode shapes are normalized to

have maximum amplitude 1.0.
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0

Figure 2-3: The determinant of the transfer matrix versus frequency

order by TMM by Eq. (2.17)
1 2.12 2.12
2 8.12 8.12
3 18.12 18.12
4 32.12 32.12
5 50.12 50.12
6 72.12 72.12
7 98.13 98.12

Table 2.1: Comparison of natural frequencies found by using the TMM and the
analytical solutions

33

... ..... . ... ... ... . .... ...... ........... ........... .. ......... ..... .

................... ........... .. .............. ........... ........... ............... .

.. ......... .......... .. ... .... .... ..... ........... .... ..... ........... ..... .

.......... ........... ........ ........... ...... ..: ............ ........... .......

....... ... ........ . ...... .. ........... ........... .........

.. .. ............. ....... . ........................

........... ...... ... ........... ........... ........... ...........................

: ........ .. . .. ... . .. . . .. .. .. . .. .... . .. . . .. . .. . .. . . .. . . .. .. . .

. . . .. . .. . . . .. . .. . .. . .. . .. .......... . .... ........... . .......

lu



(2) A simply-supported and constantly tensioned uniform beam optimally

tuned by an absorber

We attach an undamped mass-spring absorber at the midpoint of the beam in (1),

shown in Figure 2-4. The absorber is optimized to tune the first mode of the beam:

The first natural frequency: Q1 = 2.12

The first modal mass of the beam: mb = pAl/2;

Natural frequency of absorber: W2 = k/m;

Absorber mass ratio: p = rn/mb = 0.01; and

Optimal frequency ratio [25]: f Wa/Q1 = 1/(1 + P) 0.9091.

T T

k

Figure 2-4: The simply-supported constantly tensioned uniform beam attached by a
mass-spring absorber at the midpoint

We evenly discretize the beam into two segments so that each segment has the

same transfer matrix. The undamped point matrix describing the discontinuity due

to the absorber is obtained from Eq. (2.15) by setting c = 0. The overall transfer

matrix is the product of all the field and point matrices. We then find the natural

frequencies by plotting the corresponding undamped frequency determinant. Figure

2-5 shows the determinant versus circular frequency. The first eight natural frequen-

cies are found by inspecting those coinciding with the troughs: 1.72, 2.36, 8.12, 18.14,

32.12, 50.12, 72.12, and 98.12.
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Comparing the results with those obtained in (1), we find that the absorber causes

the first natural frequency to split into two but has little influence on higher order

natural frequencies. Figure 2-6 shows the first four mode shapes and indicates that

the first two mode shapes corresponding to the first two natural frequencies are sim-

ilar. The mode shapes as drawn do not show the position of the absorber which is

in phase with the beam for the lowest frequency and out of phase for the second

frequency.

0 10 20 30 40 50
(I)

60 7o 8O 90 100

Figure 2-5: The determinant of the transfer matrix versus frequency
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Figure 2-6: The first four modes of the composite system

(3) Steady-state response of a free-free pipe structure

Case (a): A uniform free-free pipe

The parameters of the pipe are as follows:

Length: I = 6.10 m;

Outer diameter: d0 = 0.0230 m;

Inside diameter: di = 0.0206 m;

Bending rigidity: EI = 1.0284 x 103 N.m 2 ; and

Amplitude of the exciting force at the left end: po = 1000 N.

Figure 2-7 shows the transfer mobility (aRL) versus frequency. The mobility (&RL)

is the harmonic velocity at R due to a unit exciting force at L. We calculate the

velocity amplitude of the right end due to the unit harmonic exciting force at the

left end. The peaks correspond to the natural frequencies. The first elastic natural

frequency found from this figure is 3.84 while the analytical solution is 3.83. Other

natural frequencies are all close to those analytical values.
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Figure 2-7: The transfer mobility of the free-free pipe

Case (b): A uniform free-free pipe with mass attachment at midpoint

On the basis of the free-free pipe in (a), we attach a concentrated mass (m=1.40 kg)

at the midpoint, shown in Figure 2-8. Figure 2-9 shows the transfer mobility (C'RL)

versus frequency. The result in (a) is also included for comparison.

-Or1

m

-Figure 2-8: The simply-supported constantly tensioned uniform beam attached by a
mass-spring absorber at the midpoint

For a free-free beam, the midpoint is a node of even elastic modes. Hence, for the

even elastic modes, the mass attachment has no influence. Figure 2-9 indicates that
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Figure 2-9: The transfer mobility of the free-free pipe with mass attachment

the natural frequencies of the even elastic modes are identical and that the mobility

peaks coincide at the frequencies. For odd elastic modes, the midpoint is not a node.

The mass attachment influences the old elastic modes, and it increases inertia of the

system. Thus Figure 2-9 shows that the natural frequencies of the odd elastic modes

are lower than in the case without the mass attachment.

2.4 Wave reflection and transmission in a beam

structure due to discontinuities

2.4.1 The derivation of wave reflection and transmission ma-

trices

The equation of motion of a uniform beam under constant tension is:

EId 4
dx4

-TI +pAY =01
dx2  dt2
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where y(x, t) is the displacement of the beam, El is the flexural rigidity, pA is mass

per unit length of the beam, and T is the tension. The shear force Q and bending

moment M are:

Q = EId 3y/0X 3 - T ay/Ox, M = EIa2y/0x 2 . (2.19)

Assuming y(x, t) = ei(kx-iwt), and substituting it into Eq. (2.18) results in the

following dispersion relation:

EI k4 +T k 2 - pAw2 =, (2.20)

where the propagating wavenumber k1 and evanescent wavenumber k2 are:

1 T 1 T p w2
k 

2 EI E 4  E

1 T T PAW2
k2= i1 -( I)2 + l)4 + (2.21)

The solution to Eq. (2.18) can be written as the sum of four flexural wave components:

y(x, t) = (a+e-iklx + a-eiklx + a+ e-k2 x + aek2x )eiwt, (2.22)

where the amplitude a may be complex. The a+ and a- represent respectively

positive-going and negative-going propagating waves and the a+ and a- are positive-

and negative-going attenuating waves which decay exponentially.

As in [26], we group the wave amplitudes into 2 x 1 vectors of positive-going waves

a+ and negative-going waves a-:

a+ -
a

a+N

a-
a- =. (2.23)
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With Eq. (2.22), we calculate the derivatives of y(x, t) and suppress the time-

dependent term of es":

ay
Ox

- -ika+e-ikx + ikia-eiklx - k2a e-k2x + k2a-ek2X.

92 Y= -k 2 a+e-ikx - k2 aeiklx + k2a+e-k2x + k2a-ek2x
=X2  1 N -k -k

93 y - ~~ikix - iklikx - k 3a+ ek2X + k 3a- ek2X.
19X3 = zl+ii (2.24)

The bending moment M and shear force Q are expressed in terms of wave ampli-

tudes by means of Eq. (2.19):

M = EI(-k a+e-ikx - k2 aeiklx + kaaek2X + k2a-eksx);

Q = i(EIki + k1T)a+eiklx - i(EIki + k1T)a-eikl

-(EIk - k2T)a+ e-k2x + (EIk3 - k2T)a-ek2x. (2.25)

The state vector on the left of a discontinuity is written in terms of the wave

amplitudes:

y

dy/Ox

M

1

-ik 1

-EIki

i(EIk3 + k1T)

1 1 1 a+

-k2 ik1 k2 a+
ik1  (a2 (2.26)

EIk2 -Elk? EIk a-

-(EIk3 - k2T) -i(EIk3 + kIT) (EIk - k2T) a-

Equation (2.26) is rewritten in the following abbreviated form:

SL = RL aL-
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The wave amplitudes aL are formulated as:

aL = R-1 SL- (2.28)

Likewise, the wave amplitudes on the right side of the discontinuity are written as:

aR = R- 1 SR. (2.29)

Using the TMM, we establish the relation between the state vectors on both sides of

a discontinuity:

SR = USL- (2.30)

Equations (2.27) to (2.30) lead to:

aR = (RR u RL)aL = waL, (2.31)

where w = R- 1 uRL.

A set of positive-going waves a+ is incident upon a discontinuity and gives rise to

the transmitted a+ and reflected a-. The relations among the waves are defined as

follows:

a = t a+,

a- = r a,

where t and r are the transmission and reflection matrices, respectively.

With Eqs. (2.32), we write Eq. (2.31) in the partitioned matrix form:

aR = ( ) wi1 Wi2

W 2 2 ( a+ 4 N
raJ

(2.32)

(2.33)
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Expanding Eqs. (2.33) results in:

aR (w11 + w12r) al,

a- = (w2 1 + w 22 r) a+. (2.34)

Comparing the first equation in Eqs. (2.34) with the first one in Eqs. (2.32) leads to:

t = w11 + w12r. (2.35)

Noting that the incident waves are aL, we have ak = 0. Since the wave amplitudes

at are arbitrary, the second equation in Eqs. (2.34) leads to:

r = -w 2 w 21 (2.36)

Substituting Eq. (2.36) into Eq. (2.35) results in:

t = Wi1 - W1 2 W 2
W

2 1 . (2.37)

Hence, the reflection and transmission matrices are expressed in terms of elements

of the transfer matrix.

2.4.2 Examples

(1) On boundaries of a simply-supported beam

As a special case, we consider wave reflection at boundaries of a simply-supported

beam. The boundary conditions are: y = 0 and M = 0.

Substituting the boundary conditions into Eq. (2.26) leads to:

[ ( a+

a+ )

(

a-)

a-v

0

0
(2.38)
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With the definition of the reflection matrix r in Eqs. (2.32), Eqs. (2.38) are further

written as:

1 1 1 a+ 0

-EIk2 EIk -EIk2 EIk2 a+ 0

Since the a+ and a+ are arbitrary, we then have:

[ 1 .(2.40)
-EIk2 EIk -EIk EIk 0

At the simply-supported boundaries, r reduces to:

-1 0
r =[. (2.41)

0 -1

This result is the same as that obtained in [26]. The elements in the first column of

r are the familiar reflection coefficients for incident propagating waves.

(2) At the attachment point of a mass-spring absorber

For a constantly-tensioned uniform beam with a mass-spring absorber, we consider

wave reflection and transmission at the attachment point. The specification of the

composite system is:

Length of the beam: 1 = 592.53 m;

Bending rigidity: EI = 2.8219 x 107 N.m 2

Mass per unit length: pA = 169.21 kg;

Tension: T = 3.1442 x 10' N;

Mass ratio (absorber mass/beam modal mass of first mode): p = 1/20;

Natural frequency of absorber: w2 = kab/mab;

The first circular natural frequency of the beam: Q, = 0.2288; and

Optimal frequency ratio: f = Wa/%1 = 1/(1 + p) = 0.9524.

Figure 2-10 shows the transmission coefficients versus frequency. This figure indicates
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that at the optimal frequency ratio f, the incident propagating wave is totally reflected

(t11 ~ 0 at the point).

0.6 0.7 0.8 0.9 1
f = (O

Figure 2-10: The modulus of transmission coefficients
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(3) A change in the section

We now discuss wave reflection and transmission due to a change in a beam section.

The left side of the beam has the same properties as in Example (2). The right side

of the beam has similar properties except that EI, = 2EI.

Figure 2-11 demonstrates the reflection and transmission coefficients for the sec-

tion change of the beam. This figure indicates that due to the impedance mismatch-

ing, incident waves give rise to reflected and transmitted waves at the discontinuity.

The reflection and transmission wave amplitudes are found by calculating [r] {ain}

and [t] {ai}, respectively. The elements in the first column of r and t are the wave

amplitudes due to a unit propagating wave while the elements in the second column

correspond to those due to a unit evanescent wave.
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Figure 2-11: The reflection and transmission coefficients of r and t
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2.5 Numerical difficulties and the delta-matrix

2.5.1 Numerical difficulties

Although from the theoretical standpoint all problems in the transfer matrix method

have been solved, this method has a special place among other matrix methods.

-Numerical difficulties prevent wide applications of the method ([21],[22]) .

In order to demonstrate the numerical difficulties with the ordinary transfer matrix

method, we consider a simply-supported uniform beam. Equation (2.4) shows the

transfer matrix of the beam. Equation (2.11) depicts the frequency equation, which

can be specifically written as:

1 [sinh(kl) + sin(kl)] [sinh(kl) - sin(kl)]

Ek [sinh(kl) - sin(kl)] 1[sinh(kl) + sin(kl)]

1
4k2 {[sinh(kl) + sin(kl)]2 - [sinh(kl) - sin(kl)]2} = 0. (2.42)

Expanding the left hand side of Eq. (2.42) leads to:

2 (4 sinh(kl) sin(kl) = 0. (2.43)

The natural frequencies are the solutions to sin(kl) = 0. The solutions are:

k1 = nir. (2.44)

Since k = (PA' )", the natural frequencies are:

2 El nir
(n= 1, 2, -... (2.45)

It is obvious that sin(kl) is responsible for the solutions to Eq. (2.42). However,
in the transfer-matrix analysis the elements of the determinant of Eq. (2.42) are

numerical so that the contributions of the sin(kl) terms cannot be isolated. Hence,
the influence of sin(kl) can be swamped by sinh(kl) as soon as (kl) is much larger
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than 1 and insufficient digits are carried out in the computation.

2.5.2 The delta-matrix method

There are quite a number of schemes to avoid numerical difficulties in the transfer ma-

trix method, such as the delta-matrix method [21], the successive reduction method

by detachment of spring constants[22] and the Riccati transfer matrix method [27].

However, none of these improvements is really perfect. The delta-matrix method is

not an elimination technique but an expansion technique to produce the super-matrix

from the transfer matrix. Compared with other approaches, this method is better.

However, this procedure has the following two disadvantages:

(1) since it is a determinant operation only, it is impossible to obtain mode shapes

after finding the natural frequencies;

(2) It will most probably be limited to fourth order problems due to the enormous

increase in the number of elements when cases of higher order have to be dealt with.

A delta matrix UA is a square matrix formed from a corresponding transfer ma-

trix U in such a way that each element corresponds to a 2 x 2 sub-determinant in

the transfer matrix. There exist 36 sub-determinants in a 4 x 4 transfer matrix.

Hence, the delta-matrix has 36 elements and is of order 6 x 6. The transformation

is accomplished through the use of the following lexicon which identifies the number

of the row and column in the delta-matrix with the corresponding pairs of rows and

columns in the transfer matrix. If we express respectively the transfer matrix U and

row or column in delta-matrix 1 2 3 4 5 6
row or column pair in transfer matrix 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

Table 2.2: Delta-matrix lexicon
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the corresponding delta-matrix U as:

U 1 1

U2 1

U 3 1

U4 1

we may then illustrate the use

A A A
U 1 1  U 1 2  U1 3

U 2 1  U 2 2  U2 3

U 3 1  U 3 2  U3 3

U 4 1  U 4 2  U4 3

U 5 1  U 5 2  U5 3

U 6 1  U 6 2  U 6 3

of the lexicon

U 1 4  U 1 5  U 1 6

A A A
U 2 4  U2 5  U 2 6

UA UA UA
U 3 4  U 3 5  U 3 6

U 4 4  U4 5  U 4 6

A A A
U 5 4  U5 5  U 5 6

U6 4  U6 5  U 6 6

by the following examples:

U12

U22

U 1 1

U21

U2 4 =
32

U13 U 14
U= 36 (2.50)

U4 3 U4 4

In the delta-matrix technique, a delta-matrix corresponding to each transfer matrix in

Eq. (2.7) is constructed according to the above transformation. The product of these

delta-matrices is then taken and must be equal to the delta-matrix corresponding to

the product matrix U. This is fortunately true [21, 23], and the rule is that if

UnUn1 - U 2 U 1 = U
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U 1 2

U22

U32

U42

U 1 3

U23

U33

U43

U 1 4

U24

U34

U44

(2.46)

(2.47)

(2.48)
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then

UA Uf_ 1 - UA UA = UA. (2.51)

Boundary Conditions

If the transfer matrix relating the state vectors at the two ends is U, the frequency

determinant for a beam built-in at both ends is:

U 13  U 14  0

U 2 3 U2 4

or U16 0. Similarly, the condition for a simply-supported beam is:

U 12  U 14 0

U3 2 U3 4

or U 5 = 0.

All possible boundary conditions and the corresponding frequency sub-determinants

can be found from a table in [21].

2.5.3 Examples

(1) A uniform riser under constant tension

A uniform riser first appears as an illustration of the delta-matrix method. The data

of the riser are as follows:

Length of the riser: 1 = 1400 x 0.3048 = 426.72 m;

Bending rigidity: EI = 3.5793 x 10 7 N.m 2 ;

Mass per unit length: pA = 357.0832 kg/m; and

Constant tension: T = 2.27 x 105 N.

We first employ the conventional transfer matrix method to solve for natural fre-

quencies by plotting the frequency determinant. Figure 2-12 shows the determinant

versus frequency in Hz. Due to the word length (double precision) with which a
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computer calculates, the TMM is totally useless in finding natural frequencies. The

roots in the figure are false values generated by numerical problems. It means that in

this case we cannot find any frequency by means of the conventional transfer matrix

method. We have to use the improved TMMs to analyze this example.

We regard the whole riser as one section, first finding the transfer matrix and

x 1026

1. --- -

0.8-......... ............ ... .... ...............-

0.6-

0.4. ....... ..

0.2 - -

0 - -

-0.2 -

--Q4 -

-0.6- .

-0.8 -

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Frequency, f(Hz)

Figure 2-12: The determinant versus frequency (Hz)

then transforming it into the delta-matrix. Figure 2-13 shows the determinant cor-

responding to the delta-matrix versus frequency in Hz. The downward sharp peaks

correspond to the natural frequencies. Table 2.3 indicates the natural frequencies

found by means of the delta-matrix method. The analytical results from Eq. (2.17)

are also included for comparison. Compared with the analytical solutions, the natural

frequencies obtained by means of the delta-matrix method are accurate.
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0.1 0.2 0.3 0.4
Frequency, f (Hz)

Figure 2-13: The determinant versus frequency (Hz)

order delta-matrix analytical solutions
1 0.030 0.0297
2 0.0597 0.0601
3 0.0915 0.0920
4 0.1273 0.1260
5 0.1630 0.1627
6 0.2029 0.2027
7 0.2467 0.2463
8 0.2944 0.2940
9 0.3462 0.3459

10 0.4018 0.4023
11 0.4613 0.4635
12 0.5292 0.5295
13 0.6008 0.6005
14 0.6764 0.6765
15 0.7560 0.7576

Table 2.3: Comparison of natural
and the analytical solutions

frequencies (Hz) found by using the delta-matrix
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(2) A uniform riser under linearly varying tension

We now further analyze a uniform riser under linearly varying tension. The riser has

similar properties except the tension, specified as follows:

Minimum tension at the bottom: To = 222410 N; and

Linearly varying factor: a = 1.6819 x 103 N/m.

We divide the riser into 20 equally-sized sections. For each section, the tension is

at its average value. Figure 2-14 shows the absolute determinant corresponding the

overall delta-matrix versus frequency. The troughs coincide with the natural frequen-

cies. Table 2.4 indicates the first 13 natural frequencies in Hz found by plotting the

determinant. Using 200 elements, we calculate the natural frequencies by means of

Shear7, and include the results in the table for comparison. The table demonstrates

that the natural frequencies obtained by means of the delta-matrix method are quite

close to those found by using Shear7, which employs a WKB solution found by Kim

[7].

order by delta-matrix by Shear7
1 0.0458 0.0447
2 0.0905 0.0902
3 0.1373 0.1370
4 0.1860 0.1857
5 0.2367 0.2368
6 0.2905 0.2904
7 0.3472 0.3470
8 0.4078 0.4067
9 0.4715 0.4699

10 0.5401 0.5367
11 0.6117 0.6073
12 0.6883 0.6819
13 0.7690 0.7607

Table 2.4: Comparison
and Shear7

of natural frequencies (Hz) found by using the delta-matrix
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Figure 2-14: The delta-matrix determinant versus frequency (Hz)
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2.6 Three approximate schemes for a beam under

variable tension

A non-uniform beam under variable tension is approximated by a number of homoge-

neous beams under constant tension, which can be solved analytically. As the number

of the stepped beams increases, the results converge on the exact solution of the orig-

inal beam.

There are three approximate schemes for a beam under variable tension to gen-

erate stepped uniform beams under constant tension, as depicted in Figures 2-15 to

2-17. We assume that each section is under tension at the left node in (a) and at the

right node in (b). In (c), average tension is chosen for each section.

Figure 2-15: The approximation scheme (a)

Figure 2-16: The approximation scheme (b)
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Figure 2-17: The approximation scheme (c)

We employ the uniform riser under linearly varying tension in Section 2.5.3 as an

example to illustrate the three schemes and to compare their convergences. Under

the schemes, we employ the delta-matrix method to solve for the natural frequencies

of the riser.

Figures 2-18 to 2-20 show the absolute determinant versus frequency in Hz in

Schemes (a), (b) and (c), respectively. In order to observe the convergences, these

figures plot the results under different numbers (N) of the stepped beams. The troughs

coincide with the natural frequencies.

Figure 2-18 shows that if the riser is approximated by Scheme (a), and as the

number of stepped beams increases, the natural frequencies approach the exact values

from below; namely, the troughs shift to the right. When N = 80 the first few natural

frequencies converge while the high order natural frequencies do not converge.

Figure 2-19 shows that if the riser is approximated by Scheme (b), and as the

number of stepped beams increases, the natural frequencies approach the exact values

from above; that is, the troughs shift to the left. When N = 80, we observe similar

trend of convergence to that in Figure 2-18.

Figure 2-20 shows that if the riser is approximated by Scheme (c), the rate of

convergence improves significantly. When N = 40, all the first 13 natural frequencies

converge upon the exact values.

In order to obtain all the exact values of the first 13 natural frequencies, we need

to employ a much high number of stepped beams by using the approximate schemes

(a) and (b), demonstrated in Figures 2-21 and 2-22.
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Figure 2-18: The absolute determinant of the riser versus frequency in Hz ( approxi-
mate scheme (a) )
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Figure 2-19: The absolute determinant of the riser versus frequency in Hz (approxi-
mate scheme (b) )
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Figure 2-20: The absolute determinant of the riser versus frequency in Hz (approxi-
mate scheme (c) )

In all three approximate schemes, with sufficient numbers of stepped beams, all

thirteen natural frequencies converge on the exact values depicted in Tables 2.4 and

5.1. Hence, if the riser is approximated by scheme (c), the rate of convergence of the

natural frequencies is the fastest.
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mate scheme (a) )
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Figure 2-22: The absolute determinant of the riser versus frequency in Hz ( approxi-
mate scheme (b) )
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2.7 A new transfer matrix method based on sym-

bolic operations

Using the transfer matrix method, we establish an overall transfer matrix relating to

state vectors at boundaries. Considering boundary conditions leads to a frequency

equation in the form of a 2 x 2 determinant. The numerical difficulty originates from

numerically calculating the frequency determinant when it is equal to the difference

between large and almost equal numbers and the number of decimal digits necessary

exceeds the capacity of most high-speed digital computers.

For a simply-supported beam, we can extract the harmonic terms and analytically

find the natural frequencies without any numerical problem by expanding the 2 x 2

determinant and simplifying the expressions. For a complex system, the frequency

equation is complicated, and furthermore it will be cumbersome to extract the roots.

In this case, it is advisable to replace algebraic by numerical computation, which may

cause numerical problems. In order to overcome the numerical problems, Section 2.5

discusses the delta-matrix method.

However, a number of software programs such as Maple and Mathematica can

do much more complicated algebraic operations. Hence, we present a new transfer

matrix method based on symbolic operations. With these programs, we first do sym-

bolic calculations for obtaining an overall transfer matrix, then expand the frequency

equation in terms of a 2 x 2 determinant and simplify the expressions, and finally

numerically solve the simplified equation. With this technique, we can avoid the nu-

merical problems.

The following two examples appear as an illustration:

(1) A simply-supported uniform beam under constant tension

Section 2.4.1 shows that the wave solution of a uniform beam under constant tension

can be written as:

y(x, t) = [c, sin(A x) + c2 cos(Ax) + c3 sinh(A2x) + c4 cosh(A2x)]e"w, (2.52)
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where A, and A2 are:

1 T 12 T pAw 2

2 EI 4EI EI'

A 2 = T()2E + (4 I pAW (2.53)

With Eq. (2.52), we calculate the derivatives of y(x, t) and suppress the time-

dependent term of eiwt:

= cIA cos(Ax) - c2A sin(Ax) + c3A2cosh(A2x) + c4A2 sinh(A2x);

2 =-c1AJ sin(Alx) - c2A1 cos(Alx) + c3A sinh(A2x) + c4 A cosh(A2x);

03y
aX3  = -cl 1 cos(Alx) + c2A sin(Ax) + c3Ai cosh(A2x) + c4A sinh(A2x)(2.54)

Substituting the derivatives of y into Eqs. (2.19) leads to:

M = El [-cA 2sin(Alx) - c2 A2 cos(Ax) + c3A2 sinh(A2x) + c4 A2 cosh(A2x)],

Q = EI [-c1 A3 cos(Ax) + c2 A3 sin(Ax) + c3A 3cosh(A 2x) + c4 A3 sinh(A 2x)

-T [ciA cos(Aix) - c2 A, sin(Aix) + c3A2 cosh(A2x) + c4 A2 sinh(A2x)]

S--c 1 (EIA3 + TA1) cos(Aix) + c2(EIA3 + TAI) sin(Alx)

+c 3(EIA3 - TA2) cosh(A2x) + c4(EIA3 - TA2) sinh(A2x). (2.55)

At x = L, the state vector is:

si+1 =
M
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sin(AL)

A, cos(AL)

-EIA sin(AL)

-ae COS(A L)

cos(AL)

-Al sin(AiL)

-EIAl cos(AL)

a sin(AIL)

sinh(A2 L)

A2 cosh(A2L)

EIA2 sinh(A2 L)

/ cosh(A2L)

cosh(A2 L)

A2 sinh(A2 L)

EIA2 cosh(A2L

3 sinh(A2 L)

where a = (EIA+TA,) and # = (EIA-TA2).

Equation (2.56) is rewritten in the following abbreviated form:

si+1= A C.

Likewise, we obtain the state vector at x = 0:

y

0
Si

M

Q X=O

0

A,

0

(EIAJ+TA,)

1

0

-EIA2

0

0

A2

0

(EIA3-TA2 )

1

0

EIA 2

0

/ \

C2

C 3

C4 )

(2.58)

Equation (2.58) is rewritten in the following abbreviated form:

si = B C. (2.59)

We have: C = B- si from Eq. (2.59). Substituting this result into Eq. (2.57) leads

to:

si+1 = Uj si, (2.60)

where u is the transfer matrix relating to the state vectors of si and si+1, ui = A B-'.

We divide a uniform beam under constant tension into two equally-sized sections.

The overall transfer matrix is then u = u 2 u1 = u1, and the corresponding frequency

equation is indicated in Eq. (2.11).

As depicted in the first example in Section 2.5.3, there are numerical problems in
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directly numerically solving the beam structure for natural frequencies. When the

beam is much longer or high natural frequencies are needed, we have to resort to the

improved transfer matrix method such as the delta-matrix method.

We now solve this problem by means of the transfer matrix method based on

symbolic operations. We employ Maple VI to calculate all the algebraic operations

stated above, first calculating the elemental transfer matrix and then the overall

transfer matrix, and finally finding the frequency equation in the 2 x 2 matrix and

simplifying the final expression. We obtain the simplified frequency equation by

means of Maple VI:

4 cosh(A2 L) sinh(A2 L) sin(AiL) cos(AIL) - (2.61)
AiA2

If the whole length of the beam is 1, then L = 1/2. Equation (2.61) is written as:

sinh(A2 1) sin(All)
AA2  0. (262)

Thus sin(Al) = 0, and the roots are:

Aj = n7r. (2.63)

Substituting Eq. (2.53) into Eq. (2.62) results in the analytical solutions of the nat-

ural frequencies, shown in Eq. (2.17).

(2) A constantly tensioned uniform beam with an absorber at the midpoint

We now analyze a constantly-tensioned uniform beam with a mass-spring absorber

by means of the symbolic operation-based transfer matrix method. The undamped

transfer matrix of a mass-spring absorber, ua, is obtained from Eq. (2.16) by setting

c = 0. The transfer matrix of the beam section on either side of the absorber, ui and

112, is derived in (1). The overall transfer matrix is: u = U 2 Ua U1 = U 1 Ua Ul.

Following the same procedure as in (1), we find the following frequency equation
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of the composite system by means of Maple VI:

2 sin(A1 L) sinh(A2 L)

(2 w 2 mA 1 3 cosh(A 2 L)EJ A2 cos(A., L) - w 2m cos(Al L) sinh(A2 L)Al k

+2 w2 mAj EJ A 23 cosh(A2 L) cos(Al L) + w2 m cosh(A 2 L) sin(Al L)A2 k -

2 A, 3 cosh(A2 L)EJ A2 k cos(A, L) - 2 A, EJ A 2 cosh(A2 L)k cos(Al L))

/[A 2
2 EJ A 1 2 (-k + mw 2 ) (A 2

2 + A1 2)] = 0, (2.64)

where the m and k are the absorber mass and stiffness, respectively. We can find the

roots by plotting the left hand side of Eq. (2.64) versus frequency.

We attach a mass-spring absorber at the midpoint of the uniform riser under con-

stant tension discussed in Section 2.5.3. The parameters of the absorber are specified

as follows:

The first natural frequency of the beam: Q, = 2 x 7r x 0.0297 = 0.1866;

Modal mass of the beam: mb = pAl/2 = 7.6187 x 104 kg;

Mass ratio of the absorber: P = r/mb = 1/10;

Frequency of the absorber: wa = k/m; and

Optimal frequency ratio: f = wa/1Q = 1/(1 + it).

The absorber is optimally tuned to the first mode of the uniform beam. Again, as

depicted in Section 2.5.3, there are numerical problems in analyzing this system by

means of the conventional transfer matrix method.

Figure 2-23 shows the absolute value of the left hand side of Eq. (2.64) versus

frequency in Hz. The troughs coincide with the natural frequencies of the composite

system. Table 2.5 indicates the first 16 natural frequencies. The first 15 natural fre-

quencies of the beam, shown in Table 2.4, are also included for comparison. This table

demonstrates that the absorber has high influence around the frequency to which it

is tuned while it has little influence on other natural frequencies. In addition, the ab-

sorber causes an additional natural frequency. There are two frequencies distributed

around the first natural frequency of the beam itself (fi = 0.0297Hz), one lower than

fi and the other higher than fi.
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CO

Figure 2-23: The absolute determinant of the system versus frequency in Hz

order with absorber no absorber order
1 0.0239
2 0.0328 0.0297 1
3 0.0597 0.0601 2
4 0.0925 0.0920 3
5 0.1263 0.1260 4
6 0.1631 0.1627 5
7 0.2029 0.2027 6
8 0.2467 0.2463 7
9 0.2944 0.2940 8

10 0.3462 0.3459 9
11 0.4019 0.4023 10
12 0.4635 0.4635 11
13 0.5292 0.5295 12
14 0.6008 0.6005 13
15 0.6764 0.6765 14
16 0.7580 0.7576 15

Table 2.5: Natural frequencies (Hz) of the composite system
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Chapter 3

Dynamic Stiffness Method

.3.1 Introduction

Historically, Kolosek first presented the idea of Dynamic Stiffness Method (DSM) in

the early 1940s, and gave an elaborate formulation of this method in 1950. Since

then the DSM has been widely used in the vibration analysis of beam structures.

Improvements on calculating natural frequencies have been made by the Williams

and Wittrick (W-W) algorithm [28] and Simpson's Newtonian iteration method [29].

The DSM has a great appeal for an exact dynamic analysis of a uniform beam

structure, as it is based on the exact dynamic stiffness matrix derived from the free

vibration analysis. The DSM performs free and forced vibration analysis within

the differential equation theory of beams, thus avoiding assumed modes and lumped

masses. This method enables one to analyze an infinite number of natural frequencies

and modes by means of a finite number of degrees of freedom.

The next section of this chapter introduces the derivation of the elemental dynamic

stiffness matrix of a uniform Euler beam, and then shows the frequency-dependent

mass and stiffness matrices based on the theorem developed by Richards and Leung

[30]. The third section discusses the assembly procedure for obtaining a global dy-

namic stiffness matrix, and determining natural frequencies. The third section then

illustrates the DSM with an example. The fourth section introduces the W-W algo-

rithm. Finally, this chapter discusses complex frequency analysis.
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3.2 Derivation of elemental dynamic stiffness ma-

trix and frequency-dependent mass

ness matrices

3.2.1 Elemental dynamic stiffness matrix

The equation describing undamped bending vibration is:

EI04y/&x4 + pAa4y/&t4 = 0,

and stiff-

(3.1)

where EI is bending rigidity, pA is mass per unit length, and y is lateral displace-

ment.

Assuming y = v sin wt, and substituting it into Eq. (3.1), generates:

L U - A4 V = 0
dx4 I

where A 4 = PA 2
El

The general solution to Eq. (3.2) and its first three derivatives are:

= B1 sin Ax + B2 cos Ax + B3 sinh Ax + B4 cosh Ax;

' = AB1 cos Ax - AB2 sin Ax + AB3 cosh Ax + AB4 sinh Ax;

'i",

-'

- A2 B1 sin Ax - A2B2 cos Ax + A 2B3 sinh Ax + A2 B4 cosh Ax;

= -A 3B1 cos Ax + A3B2 sin Ax + A3B3 cosh Ax + A 3B4sinh Ax.

(3.2)

(3.3)

The geometric boundary conditions for a simply supported beam are as follows:

at x = 0, V = vig, (3.4)'~ = 01;
dx
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at x =l, f = V2y
dii
-62. 

(3.dx

Equations (3.4) and (3.5) lead to:

v1Y 0 1

61 A 0

V2y sin Al cos Al

02 A cos Al -A sin Al

Finally, with one symbol to represent each

viated form as:

0 1

A 0

sinh Al cosh Al

A cosh Al A sinh Al

matrix in Eq. (3.6),

i

it

B1

B2
B . (3.6)

B3

B4

is written in abbre-

VF = CB. (3.7)

The nodal forces represented by the first three derivatives of Eq. (3.3) can be

expressed in terms of Bi. The force boundary conditions for a beam element can be

written as:

M= -EId d2 =, siY = EId3 Ix=O;

d2i di
M2= EI tx=t, S2y = -EI d3 i .dX 2 dX3 Ix=1

(3.8)

(3.9)

The nodal forces at two ends of a beam element are written by

pressions in Eqs. (3.8),(3.9), and (3.3), as follows:

means of the ex-

sly

82y

M2

= El

-A 3

0

A 3 cos Al

-A 2 sin Al

0

A2

-A 3 sin Al

-A 2 cos Al

Similarly, with one symbol to represent

be written as:

A3

0

-A 3 cosh Al

A2 sinh Al

0

-A 2

-A 3 sinh Al

A 2 cosh Al

B1

B2

B3

B4

(3.10)

each matrix in the equation above, it can
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F = WB.

It is obvious that the vector B can be evaluated in terms of the nodal displacements

by inverting Eq. (3.7):

B = C_1 VF- (3-12)

Hence, substituting Eq. (3.12) into Eq. (3.11) leads to:

F = WC-VF. (3-13)

The matrix product, WC-1 in Eq. (3.13), represents the dynamic stiffness matrix

of a beam element by definition, because it expresses the relationship between the

nodal forces and the nodal displacements; that is,

K(A) = WC-1 (3.14)

It is important to note that this stiffness matrix is a function of the frequency pa-

rameter A because both W and C depend on A.

Using Maple V to carry out the symbolic operations of the inversion and multi-

plication in Eq. (3.14), the dynamic stiffness matrix of a uniform beam element is

found to be:

EI

-13

F6

-F41

F5

F31

where the frequency functions F (i =

F1 = -A(sinh A - sin A)/6;

F2 = -A(cosh A sin A - sinh A cos A)/1;

F3 = -A 2 (cosh A - cos A)/6;

F4 = A2 (sinh A sin A)/6;

-F41

F 21 2

-F31

F11 2

F5

-F3 1

F6

F41

1 -- 6) are

F31

F11 2

F41

F21 2

defined by:
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F5 = A(sinh A+ sin A)/6;

F6 = -A 3 (cosh A sin A + sinh A cos A)/6; and

6 = cosh A cos A - 1.

3.2.2 Frequency-dependent mass and stiffness matrices

A theorem by Richards and Leung [30] allows ready determination of [M] and [K],

which are frequency-dependent. The theorem states that:

IMMI - [D(u))][M(w)] = -[D1W (3.16)

Noting that:

dF dF dA
dw 2  dA dw2'

dA _A

dw2 4w2

(3.17)

(3.18)

and defining Gi = rdFi r, we obtain the following equation by using Eqs. (3.17) and

(3.18) and the definition of A:

EI dF
- dwz = G pAl. (3.19)

Then the fundamental [M(w)] can be written as:

[M(w)] = pAl

G 6  -G 41 G5 G31

-G 41 G212 -G 31 G,1 2

G5 -G31 G6 G41

G31 G12 G41 G212

Maple is first used to derive d, prove some identities, and then simplify the form.

Finally the functions Gi are written as:

G, = (F1F 2 - F - F 3)/4A 4

G2 = (F2 - F2)/4A4;
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G 3 = -(FF4 + 2F3)/4A 4;

G4 = -(FF 3 + 2F4)/4A 4 ;

G5 =(F3F4 - 3F5)/4A 4;

G 6 = (F32 - 3F6)/4A4 .

Then [K(w)] will be given by:

[K(w)] = [D(w)] + w2 [M (w)]. (3.21)

We can further prove that if A = 0, then the frequency-dependent matrices [M(w)]

and [K(w)] degenerate into conventional mass and stiffness matrices as in the finite

element method.

In the neighborhood of A = 0, the functions F and G are of the 0/0 type. Using

Maple V, we expand the F and Gi as polynomials of A:

F1 = 1 A4  1097 A 899 A 12

140 69854400 28252224000
5220181117 i1 2764,

+ 81958386400450560000

+0(A22 )

F2 = 4- 1 A4- 71 -
105 4365900'

20403571
320149946876760000

1037
+ 2172065878267084800000AZ 0

(3.22)
127 A12

3972969000

A' 65608307 20

515441414471583600000

1681

2328480 0
460911

140099805812736000
1 04

112631
762810048000

85141179649

143948729568791347200000
+0(A 22 )

F4 = -6+ 11 A4 + A8 2357_4

+ 1  4215149 16  166313573 A
14228886527856000 281149862439045600000

+0(A 22 )

=-12 - 9A4
70

1279 A 8

3880800

70

+0(A22)

F= 6 A+ 13 A43 420

(3.23)

F5

A20

(3.24)

(3.25)
5801 A2

8475667200

A



A 1 A20
303549579260928000 29322889356605644800000

+0(A2 2 )

F6 12 -
35
753689

547264866456000

+0(A 2)
1

61700
1 A

1 [07

140 34927200
5220181117

20489596600112640000

G2 - 1 ,+ 71 _A 4 + 127 _A8
105 2182950 1324323000

+ 20403571 A1 ( 6
80037486719190000 + 6)

G3 = 13 - 1681 A4 - 112631
420 11642400 254270016(

Al Agl 1

551 A 12

794593800
52483633 A20

19090422758206800000

(3.27)
899 A8

9417408000

) (3.28)

(3.29)

A8

00

(3.30)

(3.31)

35024951453184000A2+ 0(A1 6)

G4 - 11 223A 4 - 3547 A8

210 1455300 7945938000
- 4215149 A 12 + 0(A 16)

3557221631964000

G = 9 + 1279 A4  5801
70 1940400 2825222400

75887394815232000
A + 0(A 1 )

06 13 -+ 59A4+ 551 A 8

35 80850 264864600

+ 1368162169 A 12 + O(A16).

If the constant terms in Eqs. (3.22) to (3.33) are substituted into Eqs.

(3.32)

(3.33)

(3.15),

(3.20), and (3.21), then the frequency-dependent fundamental matrices [M(w)] and

[K(w)] will degenerate into consistent mass and static stiffness matrices, again, as in

the finite element method.
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3.3 The global dynamic stiffness matrix and de-

termination of natural frequency

3.3.1 The global dynamic stiffness matrix

In the previous section, we showed the dynamic direct-stiffness matrix and frequency-

dependent mass and stiffness matrices of a uniform beam element. This section ob-

tains system matrices and solves for natural frequencies and mode shapes.

In general, it is more convenient to formulate the elemental dynamic stiffness ma-

trix with respect to local coordinates, which may differ from element to element; and

therefore, such element matrices should be transformed so that they are all referred

to a global coordinate system. Assemblage is then carried out by satisfying the dual

conditions of geometric compatibility and force equilibrium at the common nodes.

Transformation matrices are usually derived as the relationship between the two

sets of displacements or the two sets of forces in local and global coordinate systems.

The nodal displacements ue in local coordinates can be related to the nodal displace-

ments iie in global coordinates by:

[ue] = [Te][iie]. (3.34)

The transformed dynamic stiffness matrix (now in global coordinates) is:

ke] = [Te]T [ke][Te]. (3.35)

There are one-to-one correspondences between the elemental nodal displacement

components ie in global coordinates, and system displacements u:

[ie] = [Ce][u], (3.36)

in which [Ce] is a rectangular matrix consisting of ones when there are correspon-

dences, and zeros when there is no correspondence. Using Eq. (3.36), the ne x ne
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element matrix ke can be transformed into an n x n matrix [kel,

[ke] = [Ce]T [ke][CeI, (3.37)

where ne and n are the numbers of the degrees of freedom of the element and system

matrices, respectively.

All element matrices are now of the same order n, and the direct summations

yield the system dynamic stiffness matrix:

[K] = E[ke]. (3.38)

Finally, the restraint conditions are imposed so that the global dynamic stiffness

matrix is modified. Natural frequencies will be obtained from the following equation:

KU = 0, (3.39)

where K is the global dynamic stiffness matrix whose elements are functions of vibra-

tion frequency, and U is the vector of the amplitudes of sinusoidally varying nodal

displacements.

3.3.2 The Determination of Natural Frequencies

The determinant IKI of the global dynamic stiffness matrix is a transcendental func-

tion of the frequency of vibration, becoming infinite at certain values of the frequency,

and possessing an infinite number of roots to equation IKI = 0.

Several features of the solution to Eq. (3.39) are important [31]:

(a) IKI= 0, U $ 0 is one set of solutions.

(b) IKI = oo, U = 0 is not necessarily a trivial set of solutions; but it sometimes cor-

responds to a mode shape whose nodes correspond to the nodes of a beam structure.

It was suggested previously that Gauss elimination is seldom used directly for

vibration analysis. However, it does play an indirect role successfully when used to-
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gether with the Sturm sequence. The latter is very important in solving eigenvalue

problem in FEM [32].

3.3.3 An example

.A simply supported beam was used to model a pipe in our lab. Its data are as follows:

length L = 5.6906 m ( = 18.67 f t);

bending stiffness EI = 8.66 x 103 N M 2 ; and

mass per unit length pA = 1.8320 kg/m.

The first 12 circular natural frequencies w, were found by means of an analytical

formula for a simply supported beam:

0.0210 x 103, 0.0838 x 103, 0.1886 x 103, 0.3353 x 103, 0.5239 x 103, 0.7544 x 1031

1.0268 x 103, 1.3411 x 103, 1.6973 x 103, 2.0955 x 103, 2.5355 x 103, 3.0174 x 103.

The beam was evenly discretized into four beam elements. A Matlab code (ds-

tiffl.m) was developed for the vibration analysis. Figure 3-1 shows the determinant

of the global dynamic stiffness matrix versus different ranges of circular frequency.

The troughs correspond to natural frequencies, the values of which are close to the

exact ones. This figure also indicates that the determinants of the dynamic stiffness

matrix at two circular frequencies are infinite. Compared to the analytical results of

natural frequency, these frequencies are both associated with modes in which all the

joint displacements are zero.
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Figure 3-1: The determinant of the dynamic stiffness matrix versus frequency

3.4 Use of the W-W algorithm to analyze a uni-

form beam structure

A real structure, assembled from elements possessing distributed parameters, has an

infinite number of degrees of freedom and an infinite number of natural frequencies.

Unlike in a lump-mass model, the determinant IKI of the global dynamic stiffness ma-

trix in Eq. (3.39) is a transcendental function of the frequency of vibration, becoming

infinite at certain frequency values, and possessing an infinite number of roots to the

equation IKI = 0. In addition, it cannot be discounted that solutions to Eq. (3.39)

of the form U = 0 might also be relevant and nontrivial. It is possible to envisage

mode shapes in which all nodal displacements are zero.

Converging on the natural frequencies of a structure having a uniform distribu-

tion of mass presents a number of problems. Several natural frequencies may be close

together or coincident, while others may correspond to U = 0. Also, as IKI is now

highly irregular function of w, any trial and error method, which involves computing

fKj and observing when it vanishes, may miss roots. The Wittrick-Williams algo-
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rithm provides a foolproof basis for the automatic computation of any and all natural

frequencies for a uniform beam structure. This algorithm[28, 33] states that:

J = J + s{K}, (3.40)

where J represents the number of natural frequencies of a structure exceeded by some

trial frequency, w*, and s{K} is the sign count of the matrix. s{K} is equal to the

number of negative elements on the leading diagonal of the upper (or lower) triangu-

lar matrix obtained from K, when w = w*, by the Gaussian elimination procedure.

The rows of K are taken as pivotal in order, and suitable multiples of each pivotal

row are added to all following rows, so that all elements below the pivots become

zero. Jo represents the number of natural frequencies which would still be exceeded

if constraints were imposed upon the structure so as to make all the nodal displace-

ments U zero. When U is null the structures degenerates into component members

in isolation, with their ends clamped. Hence:

JO = E Jm, (3.41)

in which the summation LE extends over all the members; and Jm is the number of

natural frequencies between zero and the trial value of w, for a member with its ends

clamped.

From Eq. (3.15), natural frequencies of a uniform beam element with its ends

clamped will occur when one or more of the elements of D are infinite. It is easily

verified that the number of the natural frequencies lying between zero and any trial

w* is:
1 A

Jm = i- -[1 - (-1)sign{3}]; i = largest integer < -, (3.42)
2 7r

where signr{J} is 1 when 6 is positive, and is -1 when 6 is negative.

A simple but effective method for converging on a specified r-th natural frequency

based on the result of Eq. (3.40) characterizes calculating the number of natural

frequencies, J, of a structure exceeded by some trial frequency, w* [33]. We first try
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a large value of w and see if the corresponding J is > r. If it is, w is an upper bound,

we, on the natural frequency. If not, we will double w repetitively until an upper

bound is obtained. An initial lower bound, w1, is zero. Every time a value of w is

tried, it will always give a new value for either w, or w, depending upon whether

J is less than r or not (except in the unlikely event of w being exactly equal to the

natural frequency). New values of w are obtained from the equation:

1
W= -(w + WU), (3.43)

2

and the method can be made to converge to any specified accuracy.

For the beam structure in Section 3.3.3, using only one element, we employ the

W-W algorithm to find the first 12 natural frequencies, which are almost identical to

the analytical ones.

3.5 Complex frequency analysis

The above vibration analysis is for an undamped beam structure. If damping is in-

volved, the determinant of the global dynamic stiffness matrix is frequency-dependent

as well as complex. The complex solutions to Eq. (3.39) can be determined by using

an iterative root-searching technique. The frequency solution is written as:

W = Wr + iwi, (344)

where the real part Wr represents the damped frequency and the imaginary part wi

represents the exponential decay factor.

The frequency equation of a beam structure can be obtained by setting the deter-

minant of the global dynamic stiffness matrix equal to zero:

IK(w)| = 0. (3.45)
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Frequently, |K(w) is known implicitly; namely, a rule for evaluating IK(w) is known,

but its explicit form is unknown. There are a number of iterative methods to solve

Eq. (3.45), such as the bisection method, the secant method and Newton's method.

Some methods are not very satisfactory when all the zeros of a function are required

or when good initial approximations are not available. The Muller method [34] is

iterative, converges almost quadratically in the vicinity of a root, does not require

the evaluation of the derivative of the function, and obtains both real and complex

roots even when these roots are not simple. It is a successive iteration toward each

particular root by finding the nearer root of a quadratic whose curve passes through

the last three points.

Once the complex frequency is found, the nodal displacements can be found by

Gauss elimination to the free vibration equation; the corresponding complex mode

shape is determined by means of the frequency-dependent shape function.

An example: A simply-supported beam

Taking the beam model in Section 3.3.3 as an illustration and assuming that the struc-

tural damping is 0.01, then the bending stiffness is: EI = 8.66 x 103(1+0.01 i) N m 2 .

We find the complex natural frequencies by means of the Muller method. The

undamped natural frequencies are employed as initial guesses, which the method re-

quires. Table 3.1 shows the first five complex circular natural frequencies and includes

the undamped solutions for comparison. This table indicates that for the lightly

damped beam structure, the damped natural frequencies are close to the undamped

ones.

Order undamped damped
1 20.95 20.95+0.1047 i
2 83.82 83.82+0.4192 i
3 188.59 188.59+0.9423 i
4 335.27 335.28+1.6758 i
5 523.86 523.87+2.6180 i

Table 3.1: Complex natural frequencies of a damped beam
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Chapter 4

WKB-Based Dynamic Stiffness

Method

4.1 Introduction

Marine risers are widely used in the offshore industry for a variety of purposes, such

as deep water drilling, export and production. Slender marine risers are often subject

to Vortex-Induced Vibration (VIV), and therefore require accurate dynamic modeling

for prediction of natural frequencies, mode shapes and fatigue damage rate. A typical

marine riser tends to have a large characteristic length with rigid lumps and varying

tension, flexural rigidity and mass density. The dynamic behavior of such a riser with

variable properties and discontinuities is difficult to predict.

A great deal of research has focused on vibration analysis of a beam structure.

For a uniform Euler beam under a constant axial load, the effect of the axial load on

the natural frequencies has been found by considering the natural frequencies to be

functions of a non-dimensional load parameter and boundary conditions [35]. Using

the dynamic stiffness method, Howson and Williams [36] discussed the natural fre-

quencies of Timoshenko members under constant tension. For a uniform beam under

a linearly varying axial load, Laird and Fauconneau [37] discussed the upper and

lower bounds of the natural frequencies. Using a power series expansion, Dareing and

Huang [1] found the natural frequencies of a uniform marine drilling riser. When the
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axial load is zero at one end of a beam, Huang and Dareing [38] found that the natural

frequencies are functions of boundary conditions and an axial traction parameter.

A dynamic riser model is needed which is able to account for non-uniform proper-

ties such as mass density, bending rigidity and tension distribution, and discontinuities

such as intermediate supports. A closed form solution to such a system is not gen-

erally possible. An approximation to the vibration analysis of such a riser may be

accomplished by replacing the variable parameters with constant ones. For example,

a variable axial load is often approximated by a tension that is constant over each

element. However, many degrees of freedom in the approximation are required in

order to obtain accurate results.

This chapter investigates the vibration analysis of marine risers by combining the

dynamic stiffness method [39, 30] with the WKB theory [40], which assumes that the

coefficients in the differential equation of motion are slowly varying. The WKB-based

dynamic stiffness matrix is first derived and the frequency dependent shape function

is expressed implicitly. Next the natural frequencies are found by equating to zero

the determinant of the global dynamic stiffness matrix, which is obtained by follow-

ing the procedure of the conventional finite element method. Finally, two example

non-uniform risers are analyzed, and the results are compared to show the efficiency

of this method.

4.2 Derivation of the WKB-based dynamic stiff-

ness matrix

A general marine riser is a long slender beam system with variable tension distribu-

tion, bending rigidity and mass density. The mass/length changes are often discon-

tinuous. Such a riser can be discretized into elements having continuously varying

properties within the elements and allowing discontinuities to occur between elements.

For each element, the WKB-based dynamic element stiffness matrix is derived by com-

bining the dynamic direct-stiffness method [39] with the WKB approximation method
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[40], which is a powerful tool for obtaining a global approximation to the solution of

a linear differential equation.

The equation of motion of a riser is written as:

(92 O2 W 0 Ow O2 W
2[EI(x)_ - [T(x) ]+ M= f (x, t), (4.1)

aX2 [Ix Ox2  -[x)0X

where w is the transverse displacement of riser, E is the Young's modulus of the

beam material, I(x) is the area moment inertia of the beam, T(x) is the tension of

the beam, m(x) is mass of the beam per unit length, 1 is length of a riser element,

and f(x, t) is external force per unit length.

We define the following non-dimensional parameters:

s = x/l, T - wOt, WO= Y= w

P(s) = EI(Is) Q(s) = T(,s)1 2  U(s) = m(IS)Eo Io' Eo Io MO'

f(s,T) = ___,

where De is effective diameter of riser, and the subscript o represents the values at

a reference cross section. Eq. (4.1) is rewritten in the following non-dimensional form:

2 [P(s) 2 0 a [s as I + U(S) y = f (s, T). (4.2)

Letting Y(s, T) = R(s)H(T), the equation for R(s) is:

d2  d2R d dR
ds2 i[Pfs) ds2 - ds[Q( ds I - U(s)A 2 R = 0, (4.3)

where A = is dimensionless frequency.

Assuming that P(s), Q(s) and U(s) in Eq. (4.3) vary slowly with respect to s,

compared with variations of R(s), R'(s) and R"(s), rewrite Eq. (4.3) as

d4 R d R 2 d2R 2' dR
e4P(z) dz4 + 2eP'(z) dz3 + [e4P"(z) - e2Q(z)] dz 2 -E2Q'(z) dz U(z)A2 R = 0,

(4.4)
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where z -- es, e is a small parameter.

The formal WKB expansion is written as:

6 -+ 0. (4.5)R(z) ~ exp[ jE jSn&(Z)],
n=0

Substituting this equation into Eq. (4.4), identifying the same order terms, truncating

the series and selecting 6 = e, Kim [7] found the asymptotic solution,

R(s) = T2 (s) [Cl sin(f h2( )d5) + C2 cos(f h2(6)d6)]

+ T1(s) [C3 sinh(j hi(6)d6) + C4 cosh(j hi(6)d)],

.where, Ci (i = 1 - 4) are constants of integration, and

1 1Q 3 QUA 2

= [p 2  +
1 [!) 3 2 QUA 2

\/75 2 P2

UA 2 31(( Q) 2+

1Q
+ ((Q)2

i

UA2 3

+4 )P

_1Q 1 Q UA 2

= 4P 2 (T)2 44 P

Note that: dw = D - p , ) - P9. Neglecting higher order terms,tdal dsp a x2  
d33 F Can -I uddX

then the nodal displacement vector, VF, can be formulated in matrix form:

0
T2(0)h2(0)

B1 T2 (1)

B2T2 (1)h 2(1)

T2 (0)

0

B2T2 (1)

_ BIT2 (I)h 2 (1)

0
T1(O)hi (0)

B 4T(1)hi(1)

T1(0)

0

B3 T (1)hi (1)

Eq. (4.7) can be written in abbreviated form as

VF = DeGC.
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(4.6)

Ti(s)

T2(s)

hi(s)

h2 (s)

viy

v1

V2y

02

= De

C1

02

C3

04

(4.7)

(4.8)

B3T1 (1) B4T1 (1)



The nodal forces, F, for an element with changing properties can be written as

d2R
mI = -EI(x)De dx R=0

= E1X)Dedx2 IX=O

M2 = EI(x)De d2R x=d 2= EI(X)De dx2IX

EI(s)De d2 R
12 ds2 js=O

EI(s)De d2 R
12 ds2 IS=i

EoIoDe d2R
= -P(s) 12 ds 2 S=07

P()EoIoDed2R 1,
E1 d 2 s

d3 R dR
sy = -EI(x)De dx3 Ix=o - T(x)De dIXO

dXR dR
S2y = (EI(x)D, d 3 x= - T(x)D dx IX=L)

EI(s)De d3 R T (s)De dR
l3 ds3 s=3  1 ds

(4.11)
EI(s)De d3 R T(s)De dR

13 dS3 Is= l fs=1 1 ( ) ds
(4.12)

Substituting for R(s) from Eq. (4.6), Eqs. (4.9) to (4.12) can be written in the matrix

form:

F = DeDC, (4.13)

where, defining: B1 (s) = sin fo h2 ( )d;

B2 (s) = cos fo' h2( )d);

B3 (s) = sinh f hi ()d<; and

B4 (s) = cosh f hi( )d,

the non-zero elements of the matrix D are:

EoIo (P(O)T2(0)h3(0)

= E3 _(P(0)T1(0)h(0) -

= P(0)EoIo T2(0)h2(0)
- (

- P(O)EoIo T,(0) h2(o)7

- Q(0)T2 (0)h2 (0)),

Q(0)T(0)hi(0)),

= Eoo (P(1)T2(1) + Q(1)T 2 (1)h 2 (1)),

EoIo (P(1)T2(1)h 
3(1)

EoIo (P(1)T1(1)h 
3(1)

+ Q(1)T2 (1)h2 (1)),

+ Q(1)T(1)hi(1)),
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(4.10)

D(1, 1)

D(1, 3)

D(2,2)

D(2, 4)

D(3, 1)

D(3,2)

D(3,3)



D(3, 4) = - EoIoB3 (P(1)T1 (1)h3(1) + Q(1)T1 (1)h1 (1),

D(4, 1) = - P(1)EoIo BT2(1)h(1)

D(4, 2) = P()EoIo B2T2(1)h (1),

(4, 3) = P(1)EoIo B3T1(1)h2(1),

D(4, 4) = P(1)EoIo B4T1(1)h2(1).

Combining Eq. (4.8) with Eq. (4.13) leads to:

F=KVF, (4.14)

where K = DG- 1, shown in Eq. (C.1) of Appendix C, is the WKB-based dynamic

-element stiffness matrix, whose elements are derived by using Maple V.

4.3 Frequency dependent shape function

In order to derive the frequency dependent shape function, rewrite Eq. (4.6) as

- T

T2 (s) sin f h2 ( )d C

R(s) = T2(s).cosfoh2( )d C2  (4.15)
T1(s) sinh f hi(()df C3

L T(s) cosh f hi(<)d C4

Solving for C from Eq. (4.8) and substituting it into Eq. (4.15) results in:

R(s) = <bVF, (4.16)

where (b, shown in Appendix B, is the frequency dependent shape function obtained

by means of Maple V.
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4.4 Natural frequencies and mode shapes

With the derived local WKB-based dynamic stiffness element matrix K in Eq. (4.14),

one can obtain the global dynamic stiffness matrix by following the procedure of the

conventional finite element method [41], in which local elements are cast into global

form by coordinate transformations. Then boundary conditions are imposed. Finally,

the equation of motion of free vibration in the restrained global dynamic stiffness form

can be written as

KG(W)X = 0. (4.17)

Natural frequencies can be found by equating to zero the determinant of the

global dynamic stiffness matrix KG. The eigenvalues, or the natural frequencies, are

obtained by plotting the figure det[KG(w)], and finding the roots.

Once the natural frequencies are found, one can use Eq. (4.17) to solve for a

specific mode shape. An effective way is to use a triangular decomposition. For

a specific natural frequency, wa, one can use the Gauss elimination to decompose

KG(w,) as,

KG(wn) - [Ln][Un], (4.18)

where [Ln] is a lower triangular matrix and [Un] is an upper triangular matrix. Then

the nth eigen vector is solved from:

[Un]Xn = 0, (4.19)

where Xn [x1, x2 , ,n]

U 1,1  U1,2 ' ... U1,n

U2 ,2  .. U2,n

Un~

n-1,n--1 Un-,n

Un,n
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Assume xn = 1, the (n - 1)th row in Eq. (4.18) gives

Un-l,n-Iln-l + Un-,n = 0, (4.20)

then,

Xn-1 = -l- . (4.21)
Un-1,n-1

Similarly, one can obtain from the (n - 2) row in Eq. (4.18),

Un-2,n-1Xn-1 + Un-2,n
Xn-2 = -n2,- (4.22)

Un-2,n-2

The general recurrence relation can be written as

n

Ui,kXik

= - k=i+1 , (i=1, -1). (4.23)
ui,i

Hence, mode components at element nodes are calculated from the above formulas.

Then one can use Eq. (4.16) to calculate mode components for any points within an

element. In this way, accurate mode shapes can be obtained.

On the basis of the above procedure, Matlab codes solving for natural frequencies

and mode shapes for marine risers were developed.

4.5 Numerical examples

4.5.1 A uniform drilling riser under linearly varying tension

[1]

The parameters of a simply supported riser are

Length 1 = 500ft;

Outer diameter d, = 24 in.;

Thickness t = 5/8 in.;

Young's modulus E = 30 x 106 lb/sq in.;

86



Moment of inertia I = 3136.9in4 ;

Mass per unit length m = 20.8 Slugs/ft(includes mass of drilling mud and sea water);

Tension at the bottom ball joint To = 286, 000 lb;

Net weight of riser per unit length in sea water w = 214 lb/ft (includes 38 lb/ft for

choke and kill lines);

Cross-sectional area of the riser exterior Ae = 3.14 sq ft.;

Cross-sectional area of the riser interior Ai = 2.99 sq ft.;

Density of sea water pm, = 64.8 lb/cu ft;

density of drilling mud pm = 85 lb/cu ft.

This riser was discretized into five elements with equal length. Figure 4-1 shows

the determinant of the dynamic stiffness matrix of the 500-ft riser versus frequency.

Table 4-1 shows the first five natural frequencies found from Figure 4-1. In order to
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Figure 4-1: The determinant of the dynamic stiffness matrix of a 500-ft
frequency

riser versus

verify the results, a finite element procedure which assumed constant tension over each

beam element was developed. Converged values for natural frequencies were found

employing 60 elements in the FEM. The approximation result [1] previously obtained
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by means of a power series expansion is also included for comparison. It is observed

from Table 4-1 that the natural frequencies acquired by the WKB-based dynamic

stiffness method using only five elements are accurate. Measuring the position x(m)

from the bottom, Figure 4-2 depicts the first three mode shapes.

Table 4-1 depicts that the natural frequencies obtained by Dareing and Huang [1]

are also accurate, compared with those obtained by using the FEM and the WKB-

based dynamic stiffness method. However, their finding of "points of inflection" in

mode shapes is not correct.

Table 4.1: Comparison of circular natural frequencies

Order Dareing and Huang [1] FEM WKB-DSSM
(60 elements) (5eements)

1 0.8150 0.8150 0.8150
2 1.8036 1.8038 1.8037
3 3.0876 3.0879 3.0875
4 4.7375 4.7377 4.7375
5 6.7890 6.7896 6.7890

0
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Figure 4-2: The first three natural mode shapes for a 500-ft riser
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4.5.2 A non-uniform riser with variable properties

Due to attachments such as buoyancy modules, a typical marine riser is a system

with variable properties including tension and mass density. The simply supported

Helland-Hansen riser is one such riser, with the following specification:

Length L = 689.29 m;

Outer steel diameter d, = 21 inches;

Inner steel diameter di = 19.75 inches;

Buoyancy diameter db 44.5 inches.

Figures 4-3 and 4-4 show the variations of the mass density and tension at the

measured points which are marked, respectively. The position is measured from the

bottom. These figures demonstrate that the mass density does not change continu-

ously, and tension does not vary linearly.

1800 -.-

1600 - -

~-1400 -

1200-

1000-

800-

6001
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Position x (m)

Figure 4-3: The mass density variation of the Helland-Hansen riser
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There are eleven segments in Figures 4-3 and 4-4, each of which has continuous

variation of mass and tension. By dividing each segment into two equally-sized ele-

ments, we used 22 elements to do the WKB-based dynamic stiffness matrix analysis.

Figure 4-5 shows the first 20 natural frequencies found by means of plotting the de-

terminant. The approximate results using Shear7, which assumed the riser to be an

equivalent uniform beam with linearly varying tension, are included for comparison.

The Shear7 results are accurate for lower order natural frequencies.

Figure 4-6 depicts the 20th mode shape, which is of interest. The locations of

the antinodes are not evenly spaced. Therefore, the mode differs from trigonometric

ones.

It is found that 282 elements are needed for the standard finite element method

to obtain a good 20th mode shape and a converged natural frequency of 0.6952 Hz.

This is close to 0.6955 Hz by the WKB-based dynamic stiffness method with only

11 elements. Very few elements are necessary if they are chosen wisely. Within each

element, properties must vary slowly so as to satisfy the WKB assumptions. Discon-

tinuities should occur at the junctions of elements. In this example, the mass/length

changes abruptly ten times requiring a total of eleven elements to adequately model

the system.
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Figure 4-4: The tension variation of the Helland-Hansen riser
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Figure 4-5: The comparison of the natural frequencies with those obtained by Shear7
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0.8- Freq= 0.6955 Hz
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Figure 4-6: The 20th mode shape of the Helland-Hansen riser

4.6 Conclusions

Knowing natural frequencies and mode shapes is important in the prediction of the

VIV of marine risers. The WKB-based dynamic stiffness method has been intro-

duced to analyze non-uniform marine risers on the assumption that the properties

are slowly varying within elements. When compared with a conventional finite ele-

ment method, the present method demonstrates some advantages, such as eliminating

spatial discretization error and finding accurate natural frequencies by means of a lim-

ited number of elements.

In determination of natural frequencies from Eq. (4.17), it is noted that X = 0 is

not necessarily a trivial set of solutions but corresponds, sometimes, to a mode shape

whose nodes are nodes of the FEM. To find natural frequencies, an infallible search

algorithm is available for structural analysis where element properties are uniform

[31]. In the future this method will be used to extend the algorithm to the frequency

analysis of marine risers whose element properties are non-uniform.
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Chapter 5

The WKB-Based Dynamic

Stiffness Method with the W-W

Algorithm

5.1 Introduction

Chapter 4 presented the derivation of the WKB-based dynamic stiffness matrix

method for a general non-uniform riser. The natural frequencies are obtained from:

K(w) X = 0, (5.1)

where K is the global dynamic stiffness matrix whose elements are, in general, tran-

scendental functions of circular frequency w, and X is the vector of nodal displace-

ments.

In Chapter 4, we found the roots to Eq. (5.1) using the determinant plotting

method. However, solutions in the form of det K(w) = oc and X = 0 might also

be relevant and nontrivial. It does not mean that all frequencies making K(w) = oc

are eigen-frequencies. If fewer elements are used, the determinant may change sign

by passing through zero as well as via infinity. In order to avoid numerical problems,

the determinant plotting method requires the use of more elements.
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For a uniform beam member, Wittrick and Williams [28] presented an automatic

computation of natural frequencies. For a tapered beam whose section properties

vary regularly, Banerjee and Williams [42] gave a procedure to calculate natural fre-

quencies. This procedure, however, requires a preliminary step of finding the natural

frequencies of clamped-clamped tapered members.

A typical marine riser is a slender system having non-uniform properties including

mass per unit length, bending rigidity, and tension. The second section of this chap-

ter extends the Wittrick-Williams (W-W) algorithm to a general non-uniform marine

riser, and combines the algorithm with the WKB-based dynamic stiffness method.

The third section illustrates this technique with examples to automatically compute

natural frequencies. Using the WKB method, the fourth section derives the formulas

for calculating mode shapes, slopes and curvatures. Finally, this chapter analyzes the

marine risers with complex boundary conditions.

5.2 Extension of the W-W algorithm to non-uniform

marine risers

Based on a theorem due to Lord Rayleigh, the W-W algorithm [28] states that:

J = Jo + s{K}, (5.2)

where J represents the number of natural frequencies of a structure exceeded by a

trial frequency, w*, Jo represents the number of natural frequencies which would still

be exceeded if constraints were imposed upon the structure so as to make all nodal

displacements X zero, and s{K} is the sign count of the matrix K. s{K} is defined

in [28], and is equal to the number of negative elements on the leading diagonal of the

upper triangular matrix obtained from K, when w = w*, by the Gaussian elimination

procedure, which is discussed in Chapter 3.

Chapter 4 derives the WKB-based dynamic stiffness matrix of a non-uniform riser

94



member. The global dynamic stiffness matrix K is obtained by assembling all the

contributions from elements. Clearly s{K} is easily computed by the Gaussian elim-

ination procedure without row interchanges. The key in the extension of the W-W

algorithm to vibration analysis of a general riser is the computation of Jo.

Jo can be found from

JO= J, (5.3)

where Jm is the number of natural frequencies of a component member, with its ends

clamped, which have been exceeded by w*, and the summation extends over all the

component members.

For a general marine riser, Eq. (4.5) in Chapter 4 expresses the non-dimensional

asymptotic solution of vibration amplitude, R(s). The boundary conditions for a

clamped-clamped riser member are:

R(O) = R'(O) = R(1) = R'(1). (5.4)

The boundary conditions in Eqs. (5.4) result in the following characteristic equation:

0 T2 (0) 0 T1 (0)

T2(0) h 2 (0) 0 T1(0) hi(0) 0 0. (5.5)

T2(1) B1 T2(1) B2 T1 (1) B3 T1 (1) B4

T2(1) B2 h2(1) -T2(1) B1 h2(1) T1 (1) B4h h(1) T1 (1) B3h i(1)

We know from Chapter 4 that the functions in Eq. (5.5), Ti(s), T2(s), hi(s), and

h2(s), are highly dependent on the circular frequency w, and Bi (i = 1, 2, 3, 4) are

implicit functions of w. Hence it is not simple to directly find the closed-form compo-

nent of Jm arising from Eq. (5.5). However, we can indirectly find Jm by analyzing the

corresponding simply-supported beam system; namely, the boundary conditions of a

riser element are first assumed to be pinned-pinned rather than clamped-clamped.

For a pinned-pinned riser element, the WKB method [7] leads to the following

frequency equation:
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fL 1 T(x) 1 IT(x) m(x) wj,
1.-- + - ( )+ dx = n7r (5.6)

\ 2 EI(x) 2 EI(x) EI(x) '

where the subscript P on WPn indicates "pinned" boundary conditions, and L is a

riser element length. Hence, the number of natural frequencies of a simply-supported

riser element exceeded by the trial w* is Jc, which is defined as:

2 EI xx)2+4 dx
the highest integer < . (5.7)

7r

With a pinned-pinned riser element treated as a complete structure, for which the

dynamic stiffness matrix is B, Eq. (5.2) then gives

Jc = Jm + s{B}. (5.8)

Then

Jm = Jc - s{B}, (5.9)

where s{B} is the sign count of the matrix B.

Although its explicit form is not readily found, the WKB-based dynamic stiffness

matrix, B, of a simply-supported riser element is symbolically written as:

B [ bl b1 2 ] (5.10)
b2 1 b2 2

Due to the symmetry of B, b12 = b2 1. The leading principal minors of B are: bl, and

bulb22- b 2.

It is known that the number of negative characteristic values, s{B}, of B is equal

to the number of changes of sign between consecutive members of the Sturm sequence:

{1, bil, b11b22 - b 2 }- (5.11)

It can readily be shown that:
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1 bub - b2
s{B} = -[2 - sgn(bn) - sgn( (5.12)

where sgn(bu) and sgn( bl 1 2b
2L) are +1 or -1 depending on the signs of bl, and

b11b2-
b 2, respectively.

Substituting Eq. (5.12) into Eq. (5.9) results in:

Jm = Jc - 1[2 - sgn(bl) - sgn(blb22- b 2 )]. (5.13)
2 bnl

Hence, JO is obtained by using Eq. (5.3). As a result, J for a general riser is

found from Eq. (5.2) when w = w*. Thus a computer convergence routine can be

written which adjusts w* systematically to certainly converge upon any specified nat-

ural frequency of a riser. The W-W algorithm is therefore extended to the analysis

of a general non-uniform beam member, and combined with WKB-based dynamic

stiffness matrix method.

5.3 Examples of marine risers

We developed the computational codes of the WKB-based dynamic stiffness method

with the W-W algorithm. This new method allows us to use the minimum number

of elements to accurately analyze a non-uniform riser with variable properties and

discontinuities. The advantage of this approach is particularly evident for calculating

higher order natural frequencies.

The first example is a uniform beam under linearly varying tension. The second

example is a typical riser with variable properties. For both examples, the results

found by Shear7 are also included for comparison. The comparison depicts the accu-

racy and efficiency of this method.

Example 1 A marine riser under linearly varying tension

A simply supported riser appears as an example with specification as follows:
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Length 1 = 1400 ft;

Young's modulus E = 29000 Ksi;

Moment of inertia I = 0.02074 ft4 ;

Total mass per unit length including added mass effects m = 7.45789 Slugs/ft;

Minimum tension To = 50000.0 Pounds;

Linearly varying tension factor a = 115.25 lb/ft.

Using only one element to analyze this riser, Table-1 shows the first 13 natural fre-

quencies . The results obtained by Shear7 using 200 and 1000 segments, respectively,

are also included for comparison. The Shear7 solution is a WKB solution with lin-

early varying tension and constant structural properties. Table 5.1 demonstrates that

the natural frequencies found by means of the W-W algorithm are accurate.

Order shear7(200) shear7(1000) W-W
1 0.0447 0.0448 0.0448
2 0.0902 0.0903 0.0903
3 0.1370 0.1372 0.1373
4 0.1857 0.1860 0.1861
5 0.2368 0.2371 0.2371
6 0.2904 0.2908 0.2909
7 0.3470 0.3474 0.3475
8 0.4067 0.4072 0.4073
9 0.4699 0.4704 0.4705

10 0.5367 0.5372 0.5373
11 0.6073 0.6079 0.6080
12 0.6819 0.6825 0.6827
13 0.7607 0.7614 0.7615

Table 5.1: Comparison of natural frequencies (Hz)

Example 2 The Helland riser with variable properties

The Helland riser appears as the second example, the parameters of which are specified

in Chapter 4. Figures 4-2 and 4-3 demonstrate the variations of the mass density and

tension, respectively.

We find the natural frequencies and the mode shapes by using only 11 elements,
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each of which has continuous variation of mass distribution and effective tension.

Figure 5-1 shows the first 20 natural frequencies. We also include for comparison

the approximate results by means of Shear7, which simply assumes constant average

mass density and linearly varying tension for the whole riser.

0.7

0.5F

0.4-

0.3 [

0.2

0.1

The Comparison of Natural Freq (Hz) of the Helland Riser

0 2 4 6 8 10 12 14 16 18 20
Order (n)

Figure 5-1: The comparison of the natural frequencies with those obtained by Shear7

5.4 Calculation of mode shapes, slopes and curva-

tures

5.4.1 Introduction

Mode shapes, slopes and curvatures are useful in the prediction of vortex-induced

vibration of a riser. Once natural frequencies of marine risers are found by means of

the WKB-Based dynamic stiffness method in connection with the W-W algorithm,

mode shapes, mode slopes and mode curvatures can be derived from the frequency

dependent shape function. Equation (4.5) in Chapter 4 is written as:
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T2(s) sin fo h2 ( )d)

R(s) T2(s) cos fo h2 ( )d

T1 (s) sinh fo5 hi ( )d

T(s) cosh fo hi( )d

where the column vector C = G-VF.

R(s) = <DVF,

T

C1

C2

03

C4

(5.14)

(5.15)

where 4D , shown in Chapter 4, is the frequency dependent shape function obtained by

means of Maple V.

With natural frequencies, mode components at nodes are found by using trian-

gular decomposition of the global dynamic stiffness matrix, discussed in Chapter 4.

Mode components at any point within an element is obtained with Eq. (5.15).

Formulas for calculating mode slope and curvature are derived from Eq. (5.14).

Mode slope is formulated as:

T (s) sin fo h2( )d + T2(s)h2(s) cos fo h2 ( )d

, T (s) cos fo h2 ( )d - T2(s)h2 (s) sin fg h2 ( )d

T (s) sinh fJ hi( )d + T1(s)hi(s) cosh fo hi( )d

T (s) cosh fo hi( )d6 + T1(s)hi(s) sinh fg hi(6)d

Defining B1(s) sin fo h2 ( )d<, B 2 (s) =-cos fo h2(6)c<, B3(s)

B 4 (s) = cosh fo hi(6)d, Eq.(5.16) is rewritten as:

R'(s) =

T (s)B1 (s) + T2(s)B' (s)

T (s)B 2 (s)+ T2(s)B'(s)

T (s)B3 (s) + T(s)B' (s)

T (s)B4 (s) + T(s)B' (s)

T

C1

C2
. (5.16)

03

C4

sinh fl hi( )d, and

T

C1

C2

C3

04

(5.17)
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Similarly, mode curvature is obtained as:

- T

T '(s) B1(s) + 2T2(s) B' (s) + T2(s)B','(s) C1

" T'(s)B2(s) + 2T2(s)B (s) + T2 (s)B"(s) C2 (5.18)
T '(s)B 3(s) + 2T (s)B'(s) + T(s)B(s) 3

T '(s)B 4(s) + 2T (s)B'(s) + T1(s)B"(s) 04

Using C = G-VF, Eqs. (5.17) and (5.18) are further written as:

T

T (s)B1(s) + T2(s)B '(s)

RT (s) T2(s)B2(s) + T2(s)B (s) G-1VF- (5.19)
T (s)B3(s) + T1(s)B (s)

T (s)B4 (s) + T1(s)B'(s)

T

T'(s)B1(s) + 2'2 (s)B'(s) + T2 (s)B'(s)

,, T'(s)B 2 (s) + 2T2(s)B'(s) + T2(s)B'(s) G 1VF. (5.20)

T '(s)B 3 (s) + 2T (s)B' (s) + T1(s)B'(s)

T '(s)B 4 (s) + 2T (s)B' (s) + Ti(s)B'(s)

The final step is to find formulations of basic operators in Eqs. (5.19) and (5.20).

Neglecting high order small terms, we formulate each basic operator as follows:

B1 (s) = sin fg h2()d ;

B'(s) = B2 (s)h2(s); and

B' (s) = h'(s)B2 (s) - h2(s)B1(s).

B2(S) = cos f h2 ( )d;

B(s) = -B(s)h 2(s); and

B'(s) = -h' 2 (s)B1 (s) - h2(s)B2(s).

B33(S) = sinh f h,( )d<;

B (s) = B4 (s)hi(s); and

B'(s) = h'1(s)B4 (s) + h2(s)B3(s).
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B4 (s)= cosh fo hi (6)d;

B '(s) = B3 (s)hi(s); and

Bl'(s) - h'(s)B3(s) + h2(s)B4 (s).

T1(s) = 1[1()3+ 2Q2 + 1((2)2 + 4 4)]-;
VT2PP 

2  2 P PU 2 -

T2 (s) = [-}(Q)3 - 2 2 + ((2)2 +4 -)]-;

hi(s) = 1 + } (Q)2+ 4UA2; and

V 2P 2 \pI P

It is very tedious to derive T1(s), T'(s), T(s) and T(s). The details of the

derivation are not given here. However, as in Shear7, these derivatives can be ne-

glected. Our numerical experiments have shown that the difference between final

results calculated by keeping or neglecting the terms associated with the derivatives

is very small.

5.4.2 Examples

Example 1 A 1400-ft riser under linearly varying tension

This riser is specified in Example 1 of Section 5.3. It is a uniform beam under linearly

varying tension. We analyzed this example for a particular current profile by Shear7

and found that the 6th, 7th and 13th modes were dominant. Figures 5-2 to 5-9 depict

the mode shapes, slopes and curvatures of the first to 7th and 13th modes. The nth

mode shape of a pinned-pinned beam with varying tension is [43]:

Yn(x) = sin[ (s) 1 T(s)2+ 4m(s)w2 ds] (5.21)
o\ 2 EI(s) 2\ EI(s) EI(s)

where x is the spatial location. On the basis of this equation, Shear7 finds the ap-

proximate solutions to mode slopes and curvatures by neglecting higher terms. We

include the results by means of the formulas in Shear7 for comparison. Figures 5-2
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to 5-9 indicate that the formulations in Section 5.4 are correct.

mode shape

0.5

e 0 I
-analy. sol.
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-1
0 50 100 150 200 - 250 300 350 400
x 10-3 mode slope

10 - - - . . .-.-..---- --.-.--.

0 50 100 150 200 250 300 350 400
x 1o-5 mode curvature

0!

-2-.. ................. .. .......... ...... ......... -......

-4........................... ... ..... .. I
-61............... ...... ........... ........... ......... j.......... .... ...... ..

0 50 100 150 200 250 30P 350 400
x (m)

Figure 5-2: The 1st mode shape, slope and curvature of the 1400-ft riser
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mode shape
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Figure 5-3: The 2nd mode shape, slope and curvature of the 1400-ft riser
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Figure 5-4: The 3rd mode shape, slope and curvature of the 1400-ft riser
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Figure 5-5: The 4th mode shape, slope and curvature of the 1400-ft riser
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Figure 5-6: The 5th mode shape, slope and curvature of the 1400-ft riser
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mode shape
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Figure 5-7: The 6th mode shape, slope and curvature of the 1400-ft riser
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Figure 5-8: The 7th mode shape, slope and curvature of the 1400-ft riser
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Figure 5-9: The 13th mode shape, slope and curvature of the 1400-ft riser

Example 2 The Helland-Hansen riser with variable properties

The Helland riser re-appears as an example to illustrate calculations of mode shapes,

slopes and curvatures, as discussed in Section 5.4.1.

Figures 5-10 to 5-16 indicate the mode shapes, slopes and curvatures of the 1st to

5th, 18th and 20th mode, respectively. These figures demonstrate that the curvature

of lower modes is sensitive to the discontinuities of the riser.

We normalize the mode shapes such that they have a maximum displacement

equal to 1, as required by Shear7 program. The results of natural frequencies, mode

shapes, mode slopes, and mode curvatures are exported from the WKB-based DSM

model to the built-for-purpose vortex induced vibration prediction program, Shear7.

Appendix D shows the VIV results by Shear7 (version 3.0) for a particular current

profile and indicates for comparison the results by the approximation used in Section

4.5.2.
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Figure 5-10: The Ist mode shape, slope and curvature of the Helland riser
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Figure 5-11: The 2nd mode shape, slope and curvature of the Helland riser
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Figure 5-12: The 3rd mode shape, slope and curvature of the Helland riser
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Figure 5-13: The 4th mode shape, slope and curvature of the Helland riser
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Figure 5-14: The 5th mode shape, slope and curvature of the Helland riser
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Figure 5-15: The 18th mode shape, slope and curvature of the Helland riser
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Figure 5-16: The 20th mode shape, slope and curvature of the Helland riser

5.5 Marine risers with complex boundary condi-

tions

The WKB method is an efficient tool for analysis of a marine riser with pinned-

pinned boundary conditions. For a simply supported riser, the natural frequencies

are obtained numerically from an implicit integral characteristic equation, and the

mode shapes are explicitly written as a simple harmonic function. However, for a

riser with other boundary conditions, numerical problems appear when its length is

very large or high natural frequencies are involved.

We illustrate this point with the 1400-ft riser, which is analyzed in Sections 5.3

and 5.4. The pinned-pinned boundary conditions are now assumed to be clamped-

clamped. Eq. (5.5) shows the characteristic equation. It should be noted that the

frequency equation obtained by Kim [7] is not correct: the element at 4 x 1 should

be T2 (1)B2h2 (i) rather than T2(1)Bih2 (1). The natural frequencies, in principle, can

be found by means of the determinant-plotting method.

We found that the maximum determinant was even greater than 1.0 x 1051, which is
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far beyond the number a computer can handle. Figure 5-17 shows the determinant of

the riser versus frequency. The frequencies corresponding to zeros of the determinant

in this figure are not real eigen-frequencies. They give false roots due to numerical

problems, which is similar to what we found in Chapter 2.

If the riser length is reduced, for example, to 400 ft, there is no numerical

- .1
0.05 0.1 0.15

Freq f (Hz)

-

0.2 0.25 0.3

Figure 5-17: The determinant of the fixed-fixed 1400-ft riser versus frequency

problem in calculation of the first five natural frequencies. Figure 5-18 shows the

determinant of the 400-ft riser versus frequency. The first five natural frequencies

found from this figure are close to the exact ones: 0.1547, 0.3366, 0.5654, 0.8507,

0.1197 (Hz). Figure 5-19 demonstrates the absolute determinant of the fixed-fixed

400-ft riser versus a large range of frequency. This figure indicates that even for this

short riser, there exist numerical problems for calculating high natural frequencies

from the characteristic equation.

However, using the WKB-based dynamic stiffness method with the W-W algo-
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Figure 5-18: The determinant of the fixed-fixed 400-ft riser versus frequency

Figure 5-19: The absolute determinant (log1O) of the fixed-fixed 400-ft riser versus
frequency
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rithm, we accurately find high natural frequencies. The first 20 natural frequencies

in Hz are obtained as follows:

0.0474, 0.0954, 0.1446, 0.1955, 0.2486, 0.3043, 0.3630, 0.4249, 0.4903, 0.5594, 0.6324,

0.7094, 0.7908, 0.8764, 0.9664, 1.0614, 1.1609, 1.2652, 1.3744, 1.4886.

Taking the 1400-ft riser as an example, we further analyze several structural mod-

els used in Shear7. Using the WKB-based DSSM with the W-W algorithm, we solve

for natural frequencies and the corresponding mode shapes, slopes and curvatures.

Having analyzed previously a pinned-pinned beam with varying tension, we now dis-

cuss other structural models.

(1) Free-pinned beam with varying tension

The first ten natural frequencies in Hz are found by means of the WKB-based DSSM

with the W-W algorithm:

0.02235, 0.06732, 0.11314, 0.16045, 0.20988, 0.26192, 0.31690, 0.37508, 0.41198, 0.50183.

Testing with different numbers of elements, we found the result was independent of

the discretization.

Based on Section 5.4, Figures 5-20 and 5-21 show the mode shapes, slopes, and

curvatures of the first and fifth modes. Since the boundary condition is free-pinned,

the mode shapes vanish at the right end, and the curvatures are zero at both ends.
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Figure 5-20: The 1st mode shape, slope and curvature of the free-pinned beam with
varying tension
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Figure 5-21: The 5th mode shape, slope and curvature of the free-pinned beam with
varying tension

115



(2) Pinned-pinned beam with varying tension and rotational springs at

both ends

-The rotational stiffness ratio is defined as:

k
r = __

where k is rotational spring stiffness, 1 is the riser length, and El is bending rigidity.

Setting stiffness ratio r = 100, we obtained the first ten natural frequencies in Hz:

0.04665, 0.09388, 0.14227, 0.19237, 0.24464, 0.29949, 0.35728, 0.41813, 0.49753, 0.55036.

Figures 5-22 and 5-23 show the mode shapes, slopes and curvatures of the first and

fifth modes. Since both ends have rotational springs, the modes vanish at both ends,

but the curvatures at both ends are not zero.

In addition, Table 5.2 indicates the first five natural frequencies under different

spring stiffness ratios. When r = 0, the riser is a simply-supported model, the natural

frequencies of which are found in Section 5.3. When r = 1.0 x 104 or 1.0 x 1010, the

riser boundary condition is close to clamped-clamped. When r = 1.0 x 1010, the nat-

ural frequencies are same as those obtained previously. Hence we verified the results

of the riser when it is clamped-clamped.

r 1 2 3 4 5
0 0.0448 0.0903 0.1373 0.1861 0.2371

1.0 x 102 0.0467 0.0939 0.1423 0.1924 0.2446
1.0 x 104 0.0474 0.0954 0.1446 0.1954 0.2485

1.0 x 1010 0.0474 0.0954 0.1446 0.1955 0.2486

Table 5.2: Natural frequencies (Hz) of the 1400-ft riser under different spring stiffness
ratios
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Figure 5-22: The 1st mode shape, slope and curvature of the 1400-ft riser with rota-
tional springs
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Figure 5-23: The 5th mode shape, slope and curvature of the 1400-ft riser with
rotational springs
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(3) Free-pinned beam with varying tension and rotational spring at x = 1

'Setting the spring stiffness ratio r = 100, we found its first ten natural frequencies in

Hz:

0.02250, 0.06775, 0.11386, 0.16145, 0.21113, 0.26339, 0.31857, 0.37694, 0.43874, 0.50414.

Figures 5-24 and 5-25 show the mode shapes, slopes and curvatures of the first and

fifth modes. In this case, mode components at the right end are zero, and the curva-

tures at the left end are zero while those at the right end are not zero.
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Figure 5-24: The 1st mode shape, slope and curvature of the free-pinned beam with
varying tension and rotational spring at x = 1
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Figure 5-25: The 5th mode shape, slope and curvature of the free-pinned beam with
varying tension and rotational spring at x = 1
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Chapter 6

Relationship Between Transfer

Matrix and Dynamic Stiffness

Methods and Its Application

6.1 Introduction

Matrix methods of structural analysis have come more and more into practice. Among

those matrix methods, the transfer matrix method holds a special position. Uhrig

[22] showed that under a particular sign convention the transfer matrix method can

be transformed into either the displacement method or force method in structural

analysis. Using the same sign convention for transfer matrix and stiffness matrix,

Pestel [21] derived transfer matrix from stiffness matrix; Pilkey [44] found the relation

between transfer matrix and stiffness matrix. However, the sign conventions between

the transfer matrix method and the stiffness method are often different. Li [11] noted

the difference in sign conventions and derived the transfer matrix from the stiffness

matrix for a second-order subsystem.

This chapter first generalizes the relationship between the Transfer Matrix Method

(TMM) and the Dynamic Stiffness Method (DSM) by introducing the corresponding

transformation matrices due to different sign conventions. The next section of this
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chapter discusses the derivation of an implicit transfer matrix from the dynamic

stiffness matrix found in Chapter 4, and shows an example of a riser under linearly

varying tension by means of fewer transfer matrices. The fourth section extends

the WKB-based dynamic stiffness method to a general riser with discontinuities. The

final section employs the relationship between the two methods to establish a dynamic

stiffness library.

6.2 The relationship between transfer matrix and

dynamic stiffness methods

6.2.1 Relationship between the transfer matrix and the dy-

namic stiffness matrix

We first derive a dynamic stiffness matrix from a transfer matrix.

The transfer of state variables from station i to station i + 1, across segment i, for

a member with n (even) state variables is written as:

si+1 = Uisi + Fi, (6.1)

where s is an n x 1 matrix of state variables, U is an n x n transfer matrix, and F is

an n x 1 matrix of loading functions. Eq. (6.1) can be partitioned as:

d[ + U1 1 U 12  di Fd (6.2)

Pi+1 U 2 1 U 2 2  Pi FP

where d contains the n/2 displacement variables and p contains the corresponding

n/2 force variables. The Uj (i, J = 1, 2) are (n/2) x (n/2) submatrices. Fd is an

(n/2) x 1 submatrix of loading function terms corresponding to the d state variables

and FP contains the forcing terms for the p state variables. For convenience, the

subscript i to U and F is omitted in the following derivations.

Expanding Eq. (6.2) results in:
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Pi+1

= Uj1 di + U 12pi + Fd,

= U21dj + U22pi + Fp.

(6.3)

(6.4)

Eq. (6.3) reduces to:

pi = -U'Ulldi + U-dj+1 - U-jFd.

Substituting Eq. (6.5) into Eq. (6.4) yields:

Pi+1 = (U 21 - U22 U 1 U11 )dj + U22Ujldi+1 + F, - U2 2 U'Fd.

Eqs. (6.5) and (6.6) are rewritten in matrix form:

[ -U- 1 U 1

U 21 - U 22 U-2
1U11

U-1

U22U2 j ( di

dj+1

-U- 1

-U 2 2U-2
1

01

1 C

(6.5)

(6.6)

F)

F(
(6.7)

In local coordinate system of the DSM, the nodal force vector is:

Pi

Pi+1 ) (6.8)

where Lp is the transformation matrix between a nodal force vector in the DSM and

a force state vector in the TMM.

Substituting Eq. (6.7) into (6.8) gives:

-U- 1U 1

U2 1 - U22U 1 U

(

U- 1

U22U12- C + L[
di

dj+1

-U- 1

-U 2 2U-2
1

01

1] CFd

FJ

(6.9)
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The matrix LP can be diagonally partitioned as:

L = Lp 1  0

L0 Lp2 I
Likewise, the nodal displacement vector in the DSM is expressed as:

Xe = ( di ,
dj+1

where Ld is the transformation matrix between the nodal displacement vector in the

DSM and the displacement state vector in the TMM, and can also be diagonally

partitioned as:

Ld= Ldl
L0

(6.12)0L.2
Ld2

Substituting Eqs. (6.10) to (6.12) into (6.9) results in:

KeXe = Fe, (6.13)

where the dynamic stiffness matrix, Ke is :

-L UU 1 )L- 1
Lp2(U21 - U22U12)L d

L, 1UjQL2

Lp2U 22U 2 L- 1

the force Fe is:

L2Pi+1 +

Fe = ( [L 1U-I 0]

-Lp2 ( Fd

F,
(6.15)

Following the same procedure, we find the transfer matrix in terms of the subma-

trices of the dynamic stiffness matrix Ke:
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(6.11)

Ke[ I, (6.14)



[ L-K-1 K ellLdI L-1K-L1  1--L2 e12Ke1a da2 e12 l1U = - . (6.16)
L-(Ke 2i - Ke 2 2 K-1Kell)Ldl L 1 Ke 22K-1Lp, J

Eqs. (6.14) and (6.16) establish the general relationship between the transfer matrix

and the dynamic stiffness matrix.

6.2.2 Relationship between the two methods

(1) Transfer matrix method as a means of elimination

Transfer matrix method is a means of elimination of intermediate state vectors. Al-

though from the theoretical standpoint all problems in this method had been solved,

numerical difficulties prevented its wide practical application [44]. There are numer-

ous suggestions for overcoming the computational difficulties, which are discussed in

Chapter 2. An effective technique, which runs counter to the idea of the TMM, is

based on the classical elimination process, the Gauss elimination [44, 22].

The state vector for a member with changes in field (Figure 6-1) is written for

each section as:

1 2 3--

aO al a2

Figure 6-1: A member with section changes

si u1so + F1

S2 U2 s1 + F2

s = Unsn-1 + Fn, (6.17)
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where uj = uj (aj, aj_1).

Eq. (6.17) is rearranged as follows:

u1 so - s- -F 1

U 2 S 1  -= -F 2

Unsn-1 - s = -F.. (6.18)

The structure of Eqs. (6.18) suggests the simple technique of eliminating all the in-

termediate unknowns si, S2, -.. , used in the TMM. All the state vectors si can be

expressed in terms of so:

s = (ujuj- 1 ... u2ui)so + F

= u(aj, ao)so + F,, (6.19)

where u(aj, ao) is a transfer matrix from section ao to aj.

Use of a classical elimination technique, such as the Gauss process [45], will over-

come the numerical difficulties inherent in the transfer matrix solution in Eq. (6.19).

The member is divided into segments of such length that they can be represented by

transfer matrices without numerical complications. Then Gauss elimination can be

employed to transform the coefficient matrix into an upper and a lower triangular

matrix, and thus it solves the problem [44, 22].

It should be noted that the coefficient matrix in Eq. (6.18) is not symmetric,

thus not convenient for decomposing into triangular matrices. In the following, we

will transform the Eqs. (6.18) into the form of the direct dynamic stiffness matrix

method.

(2) Dynamic stiffness matrix method
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It has been verified that the field transfer matrix relation for one element in Eq. (6.1)

can be transformed into Eq. (6.13), which for convenience is rewritten as:

knl k12

k21 k22

If we do similar operations for each r

transformed in to the following form:

k'1 k'2

k2 1 k'2

k 11 k

k21 k2

where the superscripts refer to the ni

zeros.

Noting d'-1 = d', the geometric c

d'-1

d-1

dz

dZ2

di ft

djaj fjai

ow in Eqs. (6.18), then

2

2

imber

d'

d'2

d =

d 2

of elements,

fi
f2

f 2

f2

(6.20)

the Eqs. (6.18) can be

(6.21)

and elements not shown are

ontinuity leads to:

: 1

I

I

I

I

(6.22)

where I is a unit matrix, and elements not shown are

can be written in the abbreviated form:

zero submatrices. Eqs. (6.22)

d = LX, (6.23)

where d is a super-vector containing the component displacements of all elements, L

is the the index matrix.

Substituting Eq. (6.23) into Eq. (6.21) and pre-multiplying by LT yields:
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KX = F,

k'12

k2

k 2

k 2

(6.24)

where the global stiffness matrix K and force vector F are:

ki

K=LT

F =LT fi2

(6.25)

(6.26)

It can be shown that the elements in Eq. (6.23) k(i, i) = k'- + k1i, k(i, i + 1) = ki2 -

Equations (6.24) to (6.26) are the formulations of the dynamic stiffness matrix

method, the global stiffness matrix is symmetric, i.e., KT = K.

6.3 Derivation of a transfer matrix from the WKB-

based dynamic stiffness matrix

In the local coordinate system of the DSM, defined in Chapter 4, the nodal force

vector is:
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AZ)

Ai+1 )

sly

82y
= LF

Qi

Qi+1

Mi+1

(6.27)

where LF is the matrix relating nodal forces in an element reference to the corre-

sponding state force components defined in Chapter 2. LF for a beam then is:

LF=

1

0

0 0 0

-1 0 0

0 0 -1 0

0 0 0 1

In order to relate state vectors in the TMM, the following transformation is used:

Qi

QMi
Qi+1

Mi+1

=Lr

Q

Qi

Mi+1

Qi+1

(6.28)

where Lr is:

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

Hence the transformation matrix L, defined in Eq. (6.8) is:

LP = LFLr
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0 1 0 0

-1 0 0 0

0 0 0 -1

0 0 1 0

The transformation matrix Ld defined in Eq. (6.11) is a 4 x 4 identity matrix.

Chapter 4 has found the WKB-based dynamic stiffness matrix of a general non-

uniform riser under linearly varying tension. With the transformation matrices Lp

and Ld, the corresponding transfer matrix is obtained implicitly by means of Eq.

(6.16). In order to avoid the numerical problems, we transform this transfer matrix

into a delta-matrix, discussed in Chapter 2.

The 1400-ft riser in Chapter 5 is employed here as illustration. Figure 6-2 shows

the determinant of the delta-matrix versus frequency (Hz) by discretizing 3 equally

sized segments. The troughs correspond to the natural frequencies. The first thirteen

frequencies in Hz are obtained by zooming in around the peaks:

0.0448, 0.0905, 0.1370, 0.1860, 0.2370, 0.2904, 0.4068, 0.4705, 0.5372, 0.6076, 0.6824,

0.7618.

They are quite close to those obtained in the example of Chapter 5. Figure 6-3 further

depicts the accuracy of this new type of delta matrix. This figure indicates that only

a few transfer delta-matrices are required to solve for natural frequencies with good

accuracy.

6.4 Dynamic stiffness method for a riser with dis-

continuities

A typical marine riser is a general non-uniform beam system with discontinuities.

Chapter 4 derives the WKB-based element dynamic stiffness matrix of a non-uniform

beam structure. Chapter 2 indicates that as a means of elimination of intermediate

state vectors, the transfer matrix method is a convenient approach to handle dis-

continuities. Using the relationship between transfer matrix and dynamic stiffness
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Figure 6-2: Frequency analysis of the 1400-ft riser using a new type of delta-matrix
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matrix, we first obtain an overall transfer matrix for a substructure, then find the

corresponding dynamic stiffness matrix from the transfer matrix. Hence in this way

we extend the WKB-based DSM to a general riser with discontinuities. In some cases,

we can also extend the W-W algorithm to the analysis of natural frequencies of such

a system.

In addition, the internal degrees of freedom of each substructure are not employed

in this technique. Therefore the order of the model is greatly reduced by means of

the combination of transfer and dynamic stiffness matrices. For example, a type of

submerged floating pipeline in deep water has a large number of discrete buoyancy

modules and one vertical tether at each mooring point, as shown in Figure 6-4. Using

this technique, we first obtain the overall transfer matrix for each span segment along

which a large number of discrete buoyancy modules are distributed, and then find the

corresponding dynamic stiffness matrix. The part within each span here is regarded

as a substructure or "super-element".

Buoyancy modules

0@@ - -
Tether

Figure 6-4: A submerged floating pipeline

A constantly tensioned beam system with evenly distributed dynamic absorbers,

as shown in Figure 6-5, is used here as an example, whose specifications are as follows:

length 1 = 609.6 m;

elastic modulus E = 2.0 x 10" N/rM 2

outside diameter OD = 0.3397 m;

inside diameter ID = 0.3204 m;

moment of inertia I = 1.3642 x 10-4 m4 ;

mass per unit length pA = 78.57 kg/m;

constant tension T = 1.39 x 105 N;

number of absorbers Nabs = 19;
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mass of absorber m = 0.2pAl/(Nab, = 25.21kg; and

stiffness of absorber k = 46.24 N/m.

The 19 absorbers are evenly distributed along the simply supported beam. The

L
T El

~72
k

S m

k

ml

Figure 6-5: A beam system with absorbers

"super-element" here is a constantly tensioned uniform beam with a mass-spring ab-

sorber on its right end. Its dynamic stiffness matrix is derived in the next section.

Figure 6-6 shows the determinant of the system versus frequency. The troughs corre-

spond to the natural frequencies. The first five natural frequencies in Hz are: 0.0345,

0.070, 0.105, 0.142, 0.181.

0.02 0.04 0.06 0.08 0.1
(Hz)

0.12 0.14 0.16 0.18 0.2

Figure 6-6: The determinant of the system versus frequency
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6.5 Establishment of dynamic stiffness library

The combination of transfer and dynamic stiffness matrices encouraged us to estab-

lish a dynamic stiffness library. Pestel and Leckie [21] gave a catalogue of transfer

matrices. Using the general relationship in Section 6.2, we can transform it into that

of the corresponding dynamic stiffness matrices in a sign convention we define. For a

member with discontinuities, we first find its overall transfer matrix, and then trans-

form this matrix into the dynamic stiffness one. The following two examples illustrate

this technique.

(1) A uniform Bernoulli-Euler beam

Chapter 2 shows that its transfer matrix U whose elements are:

U(1, 1) = 1/2 cosh(kl) + 1/2 cos(kl);

TT(1 0 -1/2 sinh(kl) + 1/2 sin(kl)
, )

U(1 3)

U(1, 4)

U(2, 1)

U(2, 2)

U(2, 3)

U(214)

U(3,1)

U(3,2)

U(3, 3)

U(3.4)

U(4, 1)

U(4, 2)

U(4, 3)

k
= 1/2 cosh(kl) - 1/2 cos(kl).

El k2

= 1/2 sinh(kl) - 1/2 sin(kl).
EI k3

= k (1/2 sinh(kl) - 1/2 sin(kl));

= 1/2 cosh(kl) + 1/2 cos(kl);
= 1/2 sinh(kl) + 1/2 sin(kl).

EI k '
= 1/2 cosh(kl) - 1/2 cos(kl).

EI k2

= k2 EI (1/2 cosh(kl) - 1/2 cos(kl));

= kEI (1/2 sinh(kl) - 1/2 sin(kl));

= 1/2 cosh(kl) + 1/2 cos(kl);
1/2 sinh(kl) + 1/2 sin(kl)

k

= k3EI (1/2 sinh(kl) + 1/2 sin(kl));

= k2EI (1/2 cosh(kl) - 1/2 cos(kl));

= k (1/2 sinh(kl) - 1/2 sin(kl)) ;
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U(4,4) = 1/2 cosh(kl) + 1/2 cos(kl).

The transformation matrices of LP and Ld are indicated in Section 6.3. With Eq.

(6.14), we find the corresponding dynamic stiffness matrix, k, by means of Maple.

The dynamic stiffness matrix is symmetric, which is also verified by using Maple. The

upper triangular elements of k are:

EI k 3 (cos(kl) sinh(kl) + cosh(kl) sin(kl));
k(1cosh(kl) cos(kl) - 1

k(1, 2) I Ek 2 sinh(kl) sin(kl).
cosh(kl) cos(kl) - 1 '

k(1, 3) El k (sinh(kl) + sin(kl)).
cosh(kl) cos(kl) - 1

k(1, 4) EI k2 (- cosh(kl) + cos(kl)).

k(212)

k(213)

k(214)

k(313)

k(314)

cOshk1it) coskiL) - I

kEI(cosh(kl) sin(kl) - sinh(kl) cos(kl))
cosh(kl) cos(kl) - 1

EI k2 (- cosh(kl) + cos(kl))
cosh(kl) cos(kl) - 1

El k (sinh(kl) - sin(kl))
cosh(kl) cos(kl) - 1 '

EI k3 (cos(kl) sinh(kl) + cosh(kl) sin(kl)).
cosh(kl) cos(kl) - 1

= EI k2 sinh(kl) sin(kl).
cosh(kl) cos(kl) - 1 '
EI k (-ceosh(kci) sin(kil +-cosdki) sinh(kliY)

k(4,4) = . (6.30)
cosh(kl) cos(kl) - 1

This dynamic stiffness matrix k is identical to that expressed by Richards and Leung

[30]. Hence this example justifies the technique of deriving a dynamic stiffness matrix

by means of the relationship between transfer and dynamic stiffness matrices.

(2) A uniform tensioned beam with a mass-spring-dashpot absorber on its

right end

The example in Section 6.4 uses the dynamic stiffness matrix of this subsystem. Chap-
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ter 2 shows the transfer matrix U1 of a uniform tensioned beam, whose elements are:

U 1(1, 1) - cos(A, l)A 2
2  co

sin(Al 1) (-EI
EI (A2 + A,

U 1(1,3) = cos(Al 1)
EI (A2 + A 2)

U1 (1, 4)

U1(2, 1)

U1 (2, 2)

U(2, 3)

U1 (2, 4)

U(3, 1)

U1 (3, 2)

U1 (3, 3)

Ui(3, 4)

U1 (4, 1)

U1 (4, 2)

U1 (4, 3)

sh(A2 l)A 2

2 2

L2
2-

sin(Al 1)

EI (A 2
2 + A 2) A

+ T) sinh(

EI (A2 + A2)A2z) A.

+ cosh(A2 1)
El (A2 + 12)

+ sinh(A2 1)
EI (A2 + A,2) A2

A1* sin(Al l)A22  A2 sinh(A2 l)A 2
2 + ~2. 2

A2 -t- Al

cos(A 1) (-EI A2
2 + T)

EI (A2 + A 2)

A 2 1- A1

cosh(A2 ) (EI A 2 + T)
El (A2 + 12)

= Al, sin(Al 1) A2 sinh(A2 1)
EI (A2 + A 12) EI (A 2 2 + A 2

cos(Al 1)

EI (A2 + A 2)

+ cosh(A2 1)
El (A2 + A 2)

2 cosh(A2 )A 2

A2 +2 + A 2

A2 sinh(A 2 1) (El A 2 + T)
A2

2 +A 2

T) A2 sinh(A 2 l) A

A2
2 + A, 2

2

T)(-EI A 2 - T) cos(Al 1) (-EI A2 2 +

EI (A2 + 12)

EI A2
2 - T) cosh(A2 ) (EI A 2 + T)

EI (A2 + A 2)

(EI A 2 + T) A, sin(A, 1)

EI (A2 + A 2)

(EI A2 2 - T) A2 sinh(A 2 1)

EI (A2 + A 2)
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A 2 ) (EI A, 2 +

EIA, 2 cos(A, l)A 2
2  EI A

42+k2+
A, sin(Al 1) (-EI A2

2 + T)

A2 + 2 +

A,2 cos(A, 1) + A2
2 cosh(A2 ).

A22+ 2 2+ ,

A, sin(Al 1) A2 sinh(A 2 ).
A 2

2 + A, 2  2+A2 

(EIA, 2+ T) A, sin(A, l)A2 2

2 2
A2 - A

(EI A2 2 -

T)I



(--EI A? 2 - T) cos(A, 1) (EI A2 2 - T) cosh(A2 1)
U (44 EI (A 2

2 + A1
2 ) EI (A 22 + A 1 2) (6.31)

where the A, and A 2 are:

A, = 1 T + 1 (T )+W2PAA1 = \ EI EZ'

A 2  = 1 T + 1 T 7  pA
A2 \2 EIEI EI'

The transfer matrix U2 of a mass-spring-dashpot absorber is:

1 0 0 0

0 1 0 0
U2 =(6.32)

0 0 1 0

mw2 (k+jw c)
. k-mw 2 +jw c

where m is mass of absorber, m is spring stiffness, and c is damping of absorber.

The transfer matrix U for the subsystem is:

U = U2 U1. (6.33)

With the transfer matrix U, the corresponding dynamic stiffness matrix k, shown in

Appendix C, is found by means of Maple.

Appendix C shows the dynamic stiffness library of the super-elements in a general

marine riser system. Dynamic stiffness matrices for other members can be similarly

derived.
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Chapter 7

Vibration Suppression by Means of

Absorbers and Wave-Absorbing

Termination

7.1 Introduction

A Dynamic Vibration Absorber (DVA) has wide application in reducing undesirable

vibration of structures. It originated from the Fraham's 1909 invention. Ormondroyd

and Den Hartog [25] first analyzed the DVA. Brook [46] completed the analysis when

he found optimal solutions for a viscously damped absorber. However, their analyses

had considered only the application of a lumped parameter absorber to a lumped

main system. Young [47] was the first to apply an absorber to a beam. Using a single

mode approximation, Jacquot [47] found approximate tuning of a DVA to a uniform

beam with regular boundary conditions.

The second section of this chapter introduces optimal tuning of a DVA to a beam.

The third section finds an approximate optimal solution. The next section employs

an example as an illustration. The fifth section studies optimal tuning of multiple

identical DVAs to a beam with general boundary conditions. In order to describe

the characteristic of non-uniformity of a marine riser, the sixth section investigates
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optimal tuning of multiple identical DVAs to a non-uniform beam under varying

tension. The seventh section discusses the incorporation of structural damping. On

the basis of the research by Vandiver and Li [48], the final section derives a wave-

absorbing termination for a beam system.

7.2 Optimum tuning of a DVA to a beam with

general boundary conditions

The main idea here is that for a composite system including a beam and a DVA,

shown in Figure 7-1, we use a mode of the beam rather than a mode of the composite

system, to analyze and optimize parameters of a DVA.

/

/

/
/

y(x, t)

h

b

F(t)

- x

k c
U

Figure 7-1: Beam with a damped dynamic vibration absorber

It is well known that the characteristic functions,

beam constitute an orthogonal set, which satisfies the

#O(x), (n = 1, 2, ... , oo), for a

following relations:

f,0-rdz= 0, (r # s),
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f 1d = 1, (r =s),0r
j d2r dx2 d = 0, (r #s),

j( d2r)2d = Pfl, (r = s), (7.1)

where 1 is the length of the beam and 0 = mwn/EIl, in which m is the total mass of

the beam, wn is the natural frequency of the beam, and El is the bending stiffness.

Let y(x, t) be the deflection of the beam, z = y(h, t) be the deflection of the beam

at the point of attachment of a DVA, and u be the absolute displacement of the

absorber mass. Then y can be written in terms of characteristic functions #n(x):

00
y = E q.q#.(x), (7.2)

n=1

where qn and the displacement coordinate u are considered to be the generalized

coordinates for the composite system.

Using Eq. (7.2), one can formulate the kinetic energy T, the elastic strain energy

potential V, and the dissipation function D for this problem.

T = (m/21) j i2 dx + Mi12 /2

= (m/2) E 2 + Mit2/2,
n=1

V = (EI/2) j(2 )2dx + k(u - z)2/2,

D = (c/2)(iL - i)2

= (c/2)[it - 4 n~q$(h)]2, (7.3)
n=1

where M is the mass of absorber, c is the viscous damping of the absorber, and k is

the spring constant of the absorber.

We take the periodic force F(t) which acts at x = b in the complex form, F(t) =

Pewt. Then the generalized force, Qn, corresponding to the coordinate qn is:

Qn= On(b)Pewt. (7.4)
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Lagrange's equations of motion have the following form:

d 0T' 01' DV 01)
S + + = Qn.
0qn aqn 0qn

Substituting Eqs. (7.3) and (7.4) into (7.5) results in the following equations by

means of Eq. (7.1):

00 00

mij~+ m&qn - kq$n(h) [u - E qrq~r(h)] -c5 h i r~~)
r=1 r=1

Mu + k [u - Eqrr(h)]
r=1

00

+ c[it - E 4r,(h)]
r=1

= On(b)Peiwt,

= 0. (7.6)

To find the steady state solution, we assume that:

qn = Aneiwt u = u0e,

and substitute them into Eqs. (7.6), thus obtaining the following:

m(w 2 - )A - On(h)Mw 2uo

(k - Mw 2 + icW)uo

= On(b)P,

- (k + icw) E Anqn(h).
n=1

The first equation in Eqs. (7.8) represents an infinite set of equations correspond-

ing to n = 1, 2, 3, ... . Multiplying each equation in the set by On (h) and then adding

the entire set leads to:

E AnOn(h)
Mw 2 u0 qo g(h)

m W -(
P +0

+ - E
#n (b)On (h)

w 2 - W
n%

MW 2u0 H(h, P
h) + H(b, h),

where H(h, h) and H(b, h) are obtained by substituting x = b in the following ex-

pressions:

H(h,x)
00

n=1

On (h)n(x)

A2 -f2>

140

(7.5)

(7.7)

(7.8)

(7.9)



H ) On(b)b,(x)
H(b, x) = E _ 2 (7.10)

where An = Wn/wi is the ratio of the n-th natural frequency of the beam to its first

natural frequency, and f = w/wi is the ratio of exciting force frequency to first natural

frequency of beam.

Solving for uO by the second equation in (7.8) and (7.9) and then substituting into

the first equation in (7.8), we find:

An = [On(b) + .(h)H(bh) (7.11)
m(w2 -w2) _n w(k-Mw2+icw) H(h h)

MW2 k+icw ojh

The steady state deflection of the beam is:

00

y = e wt E AOn(x). (7.12)
n=1

We define the following dimensionless parameters:

mass ratio of absorber, [ = M/m;
2

dimensionless deflection curve of the beam, w(x) = y(x, t) (it);

the ratio of frequency of absorber to the first frequency of beam, p = M ;

ratio of viscous damping to critical damping, ( = , cc = 2 kM.

Hence the dimensionless deflection, w(x), is found from Eqs. 7.11 and 7.12:

H (b, h)H (h, x)(1 + i2 L )
w(x) = H(b, x) + . (7.13)

1 ( -- -L) - H(h, h)) + i2(L(-L - H(hh))
ILf p2 p 1'!

-Eq. (7.13) is the principal equation to determine the behavior of the system. Based

on this equation, the following two cases are discussed:

(1) The undamped vibration absorber

Equation (7.13) reduces to:

w(x) H(b, x) 4 H (b, h)H (h, x)
-( - -L) - H(h, h))(

141



Then the deflection at x = h is:

(p2 _ f 2 )H(b, h) (7.15)
f2 -2 _pf 2 2 H(hh)

It is noted that the deflection at x = h vanishes when f = p. The undamped

natural frequencies of the composite system are obtained by solving the following

equation:

p 2 _ f2 _ Af 2 p2H(h, h) = 0. (7.16)

(2) The damped vibration absorber

Replacing x = h into Eq. (7.13), one can obtain the deflection at the point where the

absorber is attached:

w (h) = H (b, h)(1 - f 2/p2 + i2(f/p)
(1 - f2/p2 - 1f 2H(h, h)) + i2(f /p(1 - pf2H(h, h)) (

As in the case of a two-degree-of-freedom system, there are two "fixed points" of

frequencies at which vibration amplitudes are independent of the damping. The two

"fixed points" of frequencies, fi and f2, are solved from the following equation [47]:

2 f2 1_f2H(hjh)
2 1 - ~f 2H(h, h)].(.8

For any pair of frequencies fi and f2, one can find the corresponding amplitudes

through Eq. (7.13) assuming ( is, for simplicity, infinite:

= [ H(b h)1 - pf2H(h, h) f1,f2- (7.19)

By trial and error, one can find optimal absorber tuning which makes equal the

amplitudes at the fixed points.
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7.3 Approximate solution of optimal tuning

Assuming that a dynamic vibration absorber is tuned to a frequency at or near the

n-th natural frequency of a beam itself, i.e., p ~~ A, and neglecting the contribution

of all other modes, H(b, h) and H(h, h) are approximated as:

H(b h) ~ n(b)#n(h)
A2 - f2

#n(h)2H(h, h) ~ (7.20)

Equation (7.17) reduces to:

w(h) = -- (b)#On(h)(p2 _ f 2 + i2(fp) (7.21)
(p2 _ f2)(A2 - f 2) - pf 2p202(h) + i2(fp(A2 - 2 _ 202(h))

The modulus of w(h) is then written as:

|w(h)I = kn(b)on(h) (2 fp) 2 +(p2 -_ f-22
V (2(fp)2(A2 _ f 2 _ pf 2 2 (h)) 2 + [,if 2 p2g(h) - (A2 - f 2)(2 - f2)]2

(7.22)

A convenient way to find the optimal solution to Eq. (7.22) is to use the analogy

between this equation and the expression by Den Hartog [25] in a two-degree-of-

freedom system. The optimal tuning is found by means of the analogy:

1
PO/An = 1 , u102(h)' (7.23)

#302(h)

((OPO/An )2 3p + / )n (7.24)
8(1 + p#R(h)) 3 (

where po and (0 are optimal tuning values.

Based on Eqs. (7.23) and (7.24), (o is written as:

(2 3i(h) . (7.25)
8(1 + p(h))

Equations (7.23) and (7.25) are approximate optimal solutions for a DVA tuned to a

beam.
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7.4 A numerical example

A cantilever beam with a dynamic vibration absorber at the free end, shown in Figure

7-1, appears as an example. A pipe in our lab is used as an illustration, with the

following specifications:

pipe length l = 5.69 m, (18.67 ft);

mass per unit length pa = 1.8320 kg/m;

bending stiffness EI = 8.66 x 103 N.m 2 , (obtained by testing);

the first circular natural frequency of beam w, = 7.4641 rad/s;

distance of absorber to left end of beam h = 1;

distance of exciting force to left end of beam b = 1/2; and

absorber mass ratio It = 1/5.

(1) Natural frequencies of the composite system

One can find natural frequencies of the composite system by solving Eq. (7.16). Since

H(h, h) is a nonlinear function of f, Eq. (7.16) cannot be solved analytically. The

resonant frequencies of the composite system are found by plotting the left hand side

of Eq. (7.16) as a function of f and by finding the roots. Figure 7-2 shows the first

two resonant frequencies for p = A 1.

4.5-

4-

3.5-

3-

2.5

2-

1.5-

0.5

0 0.2 0.4 0. 6 08 1 1.2 1.4 1.6 1.8 2
FFmnsionless frequency 

Figure 7-2: Finding roots of p2
- -ffpH(h, h) = 0 for p =A,
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Table 7.1 depicts the natural frequencies of the composite system for different

tunings and indicates that a DVA causes an additional natural frequency. When

p = A,, the natural frequencies are shown in the second column of Table 7.1. In

this case, the first frequency fi = 0.65 is lower than A1 and the second frequency

f2 = 1.54 is higher than A,, while the higher frequencies of the system are nearly the

same as for the cantilever beam without a DVA. Calculations are also carried out for

the DVA tuned to the second and third frequencies of the beam, respectively, and the

same trend is observed as for p = A1 . The results in the first rows of Table 7.1 are

similar to in [47]. This table also indicates that the DVA results in a great effect on

the natural frequency distribution of the system around the frequency to which the

DVA is tuned.

noDVA p=Al p=A2 p=A3
1.000 0.65 0.74 0.74
6.267 1.54 4.81 5.14

17.550 6.34 10.10 14.61
34.393 17.61 18.70 26.95
56.848 34.40 34.88 40.35
84.925 56.58 57.20 59.58

85.00 85.00 86.65

Table 7.1: Frequencies of a cantilever beam with an undamped DVA (b = 1/2, h = 1,
p = 1/5)

(2) Optimal tuning

With Eq. (7.18), one can numerically find frequencies at two "fixed points" by plot-

ting the right hand side for a given value of p, shown in Figure 7-3. This figure

indicates that there are two f-values around the frequency to be tuned for a given

p-value. Figure 7-4 depicts the curve around A1 = 1. Given p = 0.6, the two "fixed

points" obtained from Figure 7-4 are fi e 0.55 andf2 ~ 0.95.
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Figure 7-3: The relationship between p and f (p = 1/5)

2 3
dimensionless frequency f

4 5

Figure 7-4: The relationship between p and f (p = 1/5)
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In order to further verify that there exist these two "fixed points", set p = 0.6,

= 0.0, 0.1, 100, 0.4 respectively, and calculate their responses by Eq. (7.17), shown

in Figure 7-5. This figure shows two fixed points, P and Q, which correspond to fi,

f2, respectively.

0 0.5 1 1.5
dimensionless frequency f

2 2.5 3

Figure 7-5: The frequency response curves (M = 1/5, p = 0.6)

One can find the amplitudes at such a pair of frequencies fi and f2 by means of

Eq. (7.19). The optimal value po is obtained by adjusting p-value and observing the

change of the two peaks so that they are equal. It is found by trial and error that

optimal tuning occurs for p=0.56, and that the fixed points are at fi ~ 0.50 and

f2 ~ 0.93. The corresponding amplitudes are 2.392 and 2.409, respectively. These

results are slightly different from those obtained by Young [47].

By a proper choice of (, the curve is adjusted to pass with a horizontal tangent

through one of the two fixed points. Figure 7-6 shows that ( = 0.45 is close to the

optimal one. Figure 7-7 indicates that the optimal damping ratio ( 0.432.
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dimensionless frequency f
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Figure 7-6: The frequency response curves (1-L = 1/5, po = 0.56)
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1.

0.

0 1 2 3 4 5
dimensionless frequency f

6 7 8

Figure 7-7: The frequency response curves (1 = 1/5, po = 0.56)
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(3) Approximate optimal tuning

The approximate optimal tuning is found by means of the formulas (7.23) to (7.25).

Figure 7-8 demonstrates that the difference between the response curve by the solution

obtained in (2) and that by approximate solution is small.

3

2

1.

0.

dimensionless frequency f
6 7 8

Figure 7-8: Comparison of response curves with different tuning (M = 1/5)

7.5 Optimal tuning of multiple DVAs to a beam

with general boundary conditions

7.5.1 Optimal solution

For a composite system of a beam with multiple identical dynamic vibration ab-

sorbers, a mode of the beam rather than that of the composite system is employed to

find optimal tuning. Let y(x, t) be the deflection of a beam, z. = y(ai, t) be the de-

flection of the beam at the points where DVAs are attached, and ui(t) be the absolute

coordinate of a DVA mass. Assume that k-th mode dominates a beam's vibration,

149

p-- - 00.56, ;-0.432

approx. tuning

.5-

2-

5-

5-

01



then y is written in terms of the beam modek W(x):

(7.26)y = qk(t)Ok(x).

Using Eq. (7.26), we formulate the kinetic energy T , the elastic strain energy

potential V, and the virtual work 6w, and then derive the governing equation of

motion by using the Lagrange's equation:

d (OL

dt a4n

aL
= Qn,

i9qn
(n = 1, 2), (7.27)

where L = T - V, qn is a general coordinate of the composite system, Q, is the

corresponding general force.

1N
T = im2

2i1
+ 1pA p2 dx,

V = -fk(y(ai) )2
2 ),

6w = 101 f (x)Jydxejw t,

+ EI
2 (dY )2dx,10 dx2

(7.28)

where N is the total number of absorbers, m is mass of a DVA, and k is stiffness of

a DVA, and pA is mass of the beam per unit length.

Substitution of Eq. (7.26) into Eq. (7.28) gives:

1N
T = mn +

2

1pAq2 
q2dx,

V = 1:qk(a) -2+1EIq

= 6 qko (X) (x)dei't.

j(d 2k)2dx,

(7.29)

Since f(x) is specified for an exciting force spatial distribution, 6w can be rewritten

as:

6w = JqkEfe Lat (7.30)
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where E5 = fo' f(x)qk(x)dx.

With Eqs. (7.28) and (7.29), we have by means of the orthogonality of character-

istic functions, shown in Eq. (7.1):

L 2 mt
i=1

+ 1pA4I2 k o # dx -

= pAl4k,

= pAljk,

N

= -k( #2(ai))qk
i=1

N

+ k Ebk(aj)uj - EI3klqk,
i=1

= mu2,
-Mugn,

- k(qk k(a ) - Un), (n = 1, 2, ... , N).

Substituting Eqs. (7.31) into Eqs. (7.27) results in:

N N

pAljk + (k #: q2 (ai) + EIk l)qk - k E q4(ai )ui
i=1

Miin - kq~k(an)qk kUn

Q )et, and substituting into
Un)

N

# (ai) + EI4l -w 2pAl)Qk - k Z #k(ai)U
i=1

-k4(an)Qk + (k - mw 2)Un
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= e 3 , (7.32)

= 0, (n = 1, 2,..., N)(7.33)

Eqs. (7.32) and (7.33) gen-

= 0t,

= 0.

(7.34)

(7.35)

aL
aqk

d OL

di 84 '9q
aL

oDqk

- k(qkq$(ai) -
2i=1

dX 2

N

-- k (qkk(aj) - Ui) Ok(aj)
i=1

- EI lqk,

DL

dOL

dt iQl
D9L
OUn (7.31)

i=1

Assuming

erate:
( qk

Un)

N

(kZ
i=1

- 1EIq 2



Eq. (7.35) gives the expression of Un in terms of Qk:

Un = kqk(an)2Qk.k - mW2
(7.36)

Multiplying Eq. (7.36) by M(an) results in:

)Uk(a2)U = an .Ok an =k - mw2Qk- (7.37)

Adding all the terms in Eq. (7.37) for n from 1 to N, we obtain the following result:

N

k(ai)
i=1

(7.38)U kQk N (ai).
k - mw2 i_1 k

Substituting Eq. (7.38) into Eq. (7.34) results in:

(k #$2(ai) + EI3kl -
k2Qk

w 2pAl)Q- k V w 2
k - MW

N
2 (ai) = E.

1

Eq. (7.39) further reduces to:

Qk(w)
Ef (k - mw 2 )

pAlmw 4 - w 2 (pAlk + mk EN' 1#2(ai) + mEI,3kl) + kEI3kl

Ef (k/m - w 2)
pAlw 4 - w2(pAlk/m + k EN, #2(ai) + EI3il) + EIf3ilk/m

(7.40)

In order to generalize the analysis, we define the following dimensionless quantities:

dimensionless frequency A = AA;

tuning ratio T2

mass ratio of a DVA yu = .

With these dimensionless parameters, Eq. (7.40) is simplified as:

Qk(W) = 6f
EIp3kl

T2  2

A4 - A 2[1 + T2(j + FN E1 # 2) +T
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The frequency response of any point on a beam in terms of the dimensionless param-

eters is then:

y(X A) = fk(X){ T2 -A 2  (7.42)
EI3kl A4 - A2 [1+ T2 (1 + p Ef_1 q$(aj))] + T

For viscous damping in DVAs, it can be easily accomplished by replacing T2 with

a corresponding complex frequency-dependent quantity, namely:

T2 -+ T2 + j2(AT, (7.43)

where ( is the damping ratio of a DVA defined in the usual sense, i.e., (= c/2/km.

It is interesting to note that the approximate frequency response function in Eq.

(7.42) is the same form as that considered by Brock [46] with the exception that the

mass ratio jt is replaced by P EI #0 (ai). Hence the results given in [46] are directly

applied to this problem. In this case the optimal tuning ratio is:

1 
(7.44)1 + A EN 1$2(ai)

The frequencies at "fixed points" are:

A2= T[1 Ez 12 (ai)
1= 2 + ( E7415 )(ai)

The dimensionless frequency response is defined as:

H(A) = y(x, A).EI3k (7.46)
ef Ok (X)

The square of the magnitude of the frequency response at the fixed points is then:

H2 (A 1,2) = 2 +(7. 1 47)(ai)
EN _12 #(ai)
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Substituting Eq. (7.43) into (7.42) yields the square of the frequency response

function with viscous damping:

(T2 - A2) + (2(TA) 2

H ( ) {A4 - A21 T2(1 + y (ai))] + T2}2 + (2(T) 2{A - A3[1 + jt E # (ai) ]}2-

(7.48)

With the similarity of this expression to that by Brock [46], the optimal damping can

be written as:

3~ 1 '1 2(ai)

8[1+ _t Ee 102(ai)]'

7.5.2 An example of a simply supported beam tuned by

DVAs

The beam in Section 7.4 is now assumed to be simply supported. Identical DVAs are

assumed to be evenly distributed. The total mass ratio of DVAs in this example is

kept constant, namely, Ny = 0.20.

(1) Assuming that one DVA at the midpoint is tuned to the 1st natural frequency

of the beam, the optimal solution by Eqs. (7.44) and (7.49) is: To = 0.7143, and

(0 = 0.3273.

Figure 7-9 shows the frequency response of the beam with one DVA tuned opti-

mally and un-optimally. This figure indicates that the vibration around dimensionless

frequency A = 1 is reduced when the DVA at the midpoint is optimally tuned.

Figure 7-10 depicts that the frequency response of the beam with the 1st fre-

quency tuned by one and two DVAs, respectively. In the first case, the DVA is at

the midpoint of the beam and corresponds to the antinode of the 1st mode. In the

second case, the DVAs are evenly distributed along the beam; namely, one DVA is at

one third and the other is at two thirds of the length. Hence, in this case one DVA

is more effective than two DVAs.
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Figure 7-9: Frequency response of a
quency tuned by one DVA (p = 1/5)
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0

simply supported beam with 1st natural fre-
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'Figure 7-10: Frequency response of a simply supported beam with the 1st natural
frequency tuned by one and two DVAs respectively
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(2) Assuming that DVAs are designed to optimally tune the 3rd natural frequency,

we calculate the frequency response by means of Eq. (7.48). Figure 7-11 shows that

the frequency response of the beam optimally tuned by two, three and six DVAs,

respectively. All the DVAs are evenly distributed, as in (1). In the first case, DVAs

are at the nodes of the 3rd mode shape, thus are useless, and the corresponding

response peak is close to infinite. Compared with the other two cases, the second

case is the most effective in suppressing vibration since the DVAs are at the antinodes

of the 3rd mode shape. Hence, the effectiveness of DVAs depends on their location

distribution.

. .............................

F~~A~1
I-3DVAsI

.. . . . . .. . . . . .. . . . . .

. . ....

........ ........

1 2 3 4 5 6 7 8

Figure 7-11: Frequency response of
frequency tuned by multiple DVAs

a simply supported beam with the 3rd natural
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7.6 Optimal tuning of multiple DVAs to a non-

uniform beam under varying tension

7.6.1 Optimal solution

In this section, optimal tuning of multiple identical dynamic vibration absorbers to a

general non-uniform beam is investigated. Following the same procedure as in Section

7.5, we need to modify the terms to include the tension contribution and to generalize

the expressions when applying Lagrange's equation, Eq. (7.27):

T 
1

V 
1

N

mit, + - pA(x)p2 dx,
i=1 22f

+ S(x)( 09Y) 2 ]dx +

where S(x) is the spatially varying tension.

Substituting Eq. (7.26) into (7.50) yields:

T NIj I
T = 1 mi1 + -42 pA(x) 0 dx,

V N
V k (qk4(aj) -

2i=1
ui)2 + 2qk Io 1

2 k(y(a , t) -U)2,

[EI(x)d 2 2 dk2]dx

(7.50)

(7.51)

Doing the algebraic operations with Eq. (7.51) gives:

1 N1 1
L =_ m + _42 pA(x) 2dx2.i i2kf

DL

aqk

dt aqk

aL

i9 qk

2 k (qOk (a ) - us)2

= qkpA(x) k2dx,

qkj'pA(x)$2 dx,

- 1q [EI(x)(d 2

2 k dX 2

N N
-- k(Z q2 (ai))qk +kk ~I (ai) ui - qk

i=1 i=1
f [EI(x)

S(x)(dk)2]dx,+ dx

(d 2k) 2  S(x)

dx2 dx

(7.52)
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Substituting Eq. (7.52) into Eq. (7.27) results in:

4k j pA(x) 02dx

Substituting

N
{k q2 (ai)

k1

k) Qk

Un )

+ [EI(x)( d )2 + ]dx~ q
dX 2 )2 +dlq

N
- k Z bk(ai)ui = ej

i=1

eswt into Eqs. (7.53) yields:

{-w2f pA(x) $2dx
N

+ k q2 (ai)
k=

+ j[EI(x) d 
2

N

- kE qk(ai)U2 = Ef.
i=1

Then substituting Eq. (7.38) into Eq. (7.54) reduces to:

{-w2 f pA(x) $2dx +
N

k 0 (ai)
k=

+ [EI(x)( dk 2 S(x)(dk)2]dx}Qk+ dx

k 2 Q N

- M2

We define the following modal parameters:

modal mass mk = f pA(x)$2dx;

modal stiffness ak = f$[EI(x)(djk )2 + S(x)(1)2]dx;

modal frequency w = /

Eq. (7.55) reduces to:

Qk(w)
Ef(k - mw 2)

mmkw 4 -w 2(kmk + mk E =1#0(ai)+ m+ak) + kOak
Ef(k/m - w 2 )

mkw 4 - w 2 (mkk/m + k EN_ 1 2 (ai) + ak)+ akk/m

We redefine the following two dimensionless quantities:

dimensionless frequency A = w/wk;

tuning ratio T2 -
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S(x)(dk)2]dx)}Qk+ dx

(7.54)

(7.55)
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Eq. (7.56) then reduces to:

Qk(w) = "I { }. + (7.57)
Cek A4 - A2[1 + T2 (1 + /_ El #2(ai))] + T2

The expression of the frequency response function is the same as in Eq. (7.46).

With the same replacement as in Eq. (7.43), we find the optimal tuning shown in

Eqs. (7.44) and (7.49), namely:

= 1
1 +-p ENi 2(ai)'

2 3p Ei kia

8[1+ _LENi #2(ai)]'

Noting that the beam is non-uniform and under spatially varying tension, modal

parameters-including modal shapes, mass, stiffness, and natural frequencies- do not

have closed-form solutions. In addition, mode slope and curvature are needed in order

to obtain modal stiffness. In Chapters 4 and 5, we have investigated the vibration

analysis of such a beam by the WKB-based DSM with the W-W algorithm. Hence, all

the required modal parameters are found numerically using this powerful technique.

7.6.2 Optimal tuning of DVAs to a uniform beam under con-

stant tension

As a special case, this subsection discusses optimal tuning of DVAs to a uniform

beam under constant tension, in which some expressions in the above subsections are

simplified. Exact solutions for the effect of an axial load on natural frequencies are

available for pinned-pinned, sliding-sliding, and sliding-pinned single-span uniform

beams. For other uniform beams, an approximate formula for the effect of axial load

on the natural frequencies is also available [35]. The mode shapes of the pinned-

pinned, sliding-sliding, and sliding-pinned beam are unaffected by an axial load. This

section analyzes a simply supported beam model. Similarly, this process can provide
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closed form solutions to other beam models.

The k-th natural frequency and mode shape of a simply supported beam subject

to constant tension, so, are:

k27r 2  EI sol2

Wk = i2 pA k2 7r2EI'

#k(X) = V2sin( k ), (k = 1, 2, 3, ... ). (7.58)

Then q'k(x) and 0"(x) are expressed as:

V kir kirx
Ok = cos( ),

v127r2 k2  k7rx
q(x = - 1g2 i )

With Eqs. (7.58) and (7.59), the k-th modal mass and stiffness are written as:

mk = pAl,

'k= EIl (J)4 +sol(_)2

= pAlw . (7.60)

The modal parameters, shown in Section 7.6.1, are now in the analytical form.

7.6.3 An example of a 1400-ft riser

The 1400-ft riser in the example of Chapter 4 is employed as an illustration. DVAs

are again assumed to be identical and evenly distributed along the beam. The total

mass ratio of DVAs is kept constant as before, Nyu = 0.20.

(1) Assuming that the riser is under its average tension, Tv = 2.224 x 105 N, Figure

7-12 shows the frequency response curves of the beam with its first frequency, w, =

0.1845 rad/s, optimally tuned by one, three and five DVAs, respectively. In the case of

one DVA (To = 0.7143, (0 = 0.3273), the DVA is at the midpoint which corresponds

to the antinode of the first mode, hence its effect is the most evident on reducing the
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vibration amplitude.

0.5 . .

I--DVAsI

-1 - ---- - - --

. ................. ..................... ............................ .........

-2 -I I I
0 3 4 6 7

dimensionless frequency .='Ie1

Figure 7-12: Frequency response of a uniform riser with its 1st frequency tuned by
multiple DVAs

(2) Now the riser is under linearly varying tension. Figure 7-13 depicts the response

of the riser under linearly varying tension with its first natural frequency, w, = 0.2816

rad/s, optimally tuned by one, three and then five DVAs. In the case of one DVA

(To = 0.8333, Co = 0.2500), the DVA is at the midpoint, not exactly at antinode

but close to the antinode of the first mode. Thus one DVA is the most effective in

suppressing the vibration amplitude, compared with the other cases. Figure 7-14

further demonstrates that the frequency response of the beam with its 6th frequency

(w6 = 1.8275 rad/s) tuned by 7 DVAs optimally and un-optimally.
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dimensionless frequency X=oe

7 8

Figure 7-13: Frequency response of a non-uniform riser with its 1st natural frequency
tuned by multiple DVAs

0.2 0.4 0.6 0.8 1 1.2 1.4
dimensionless frequency X_(OWw

1.6 1.8 2

Figure 7-14: Frequency response of a non-uniform riser with its 6th natural frequency
tuned by seven DVAs
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.7.7 Incorporation of structural damping

In the previous sections, structural damping in the beam is neglected. When the

primary system has no damping, the optimization procedure is simplified by means

of two "fixed points" on the family of frequency response curves. If there is primary

damping, the frequency response curves do not possess any "fixed points". In the

latter case, Thompson [49] found the optimal solution by means of the frequency

locus method; Vandiver and Mitome [50] obtained the result through small changes

around the values in an undamped case so that the double response peaks are of equal

height. For a lightly damped beam system, it is practical to employ the method by

Vandiver and Mitome.

The second example in Section 7.6.3 is further used as an illustration. Assuming

that structural damping of the riser is: J = 0.01, Figure 7-15 shows the response

-curves of a damped non-uniform beam with its 3rd frequency (w3 = 0.8624 rad/s)

tuned by three evenly distributed DVAs. The optimal solution for the undamped

4.5

udampe beam tuning
a dampd beamtuning 1

3 .5 - -. .. .. .-. ------ --...... ....

23 - -- - - -- - - -- - - - -- - -

1 .3 - -.. .. .---... ..........-. .--.-- -.-.-- -.-- -.- -.- .----

1.5.

0.5-

0 0.2 0!4 0!6 0.8 1 1!2 1!4 1.6 1.8 2
dimensionless frequency -OVikn

Figure 7-15: Frequency response of a damped non-uniform riser with its 3rd natural
frequency tuned by three DVAs

beam is: To = 0.8975, (o = 0. 1961. Using the values as an initial guess, the optimal
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result for the damped beam is obtained through a few iterations: TO = 0.8913, (o =

0.1941. The height difference between the two peaks is more sensitive to tuning ratio

T than damping ratio (. Hence, it is recommended to first adjust tuning ratio so that

the two peaks are roughly at the same height, then to slightly change the damping

ratio, and re-adjust these values. A few iterations in this procedure will provide a

much improved optimal solution.

7.8 Wave-absorbing termination of a beam system

Large amplitude flow-induced vibration of cables and risers is often associated with a

phenomenon known as lock-in when a vortex shedding process is synchronized with

a natural frequency. Professor Vandiver and Dr. Li [48] presented a wave absorbing

termination to suppress cable vibration. The key idea is to design the boundary at

the points of termination of a cable so that incident waves are absorbed rather than

reflected when they hit the boundary. On the basis of their research, this section

derives a wave-absorbing termination for a beam model riser, shown in Figure 7-16.

A wave traveling to the right can be expressed as:

h

hinge
El s

J

K c

b

a

Figure 7-16: A wave absorbing termination

y(x, t) = (Aie-ikx + Aeiklx + Acek2x)eiwt, (7.61)
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where k, is a propagating wave number, and k2 is an evanescent wave number.

Based on Eq. (7.61), the derivatives of y(x, t) are written as:

= -ik1Aie-iklx + ik1Areiklx + k2Aek2xJ
Ox

a 2  = -kAie-iklx - kAreiklx + kAek2x

= iki Age-ikix - ik Areik1 + k Acek2x. (7.62)

The boundary conditions at x = 1 are:

y(x, t)lx=l = hO,

M(xt)x= = 0,

Q(xt)IX2_ = Q_, (7.63)

where M(x, t) is the bending moment, Q(x, t) is the shear force, and Q- is to be

determined by considering the termination device.

The equation of motion of the rigid link is found by Newton's second law:

JO + C b2 6 + (Ka2 + hS)O - Qh = 0, (7.64)

where J is the mass moment of inertia of the rigid link with respect to the right pinned

end, K is the spring constant, C is the damping constant, h is distance between the

riser connection point and pivot point, a is the distance from the spring connection

to the pivot, b is the distance from the connection of the damper to the pivot, 0 is

the angle of rotation of the rigid link about the pivot, and S is constant tension to

which the beam system is subject.

Based on Eq. (7.64), Q_ is expressed as:

J +Cb26+ (Ka2 + hS)6
Q_= h. (7.65)

165



Using Q = - S, and assuming that 0 = #eiwt, Eqs. (7.63) and Eq. 7.65 reduce

to:

Aie-ikil + AreikiI + Acek21

-k2 Aie ik1l - k2 Ar eikil + k2 Acek2l

EI(ik3 Aje-ik1l - ik3 AreikiI + k'Acek2l) - S(-ik1Aie-ikI + ik1Areik,' + k2ek2)
-Jw 2 +iCb 2 w + Ka2 + hS-

h

hO,

(7.66)

The right hand side of the third equation in Eqs. (7.66) is further written as:

RHS
-Jw 2 +iCb2 w+Ka2 +hS -

1) (hO)

= iwZm(hO), (7.67)

where the input impedance Zm of the termination as seen at the connection point of

the riser is the same as when connected to a string. As shown in [481, it is:

Zm =1 [b2+ -Sh - Ka2 + jw2
Z 2 +

Combining Eqs. (7.66) with Eq. (7.67) results in:

-kieik1 - klei k'r + kiek2rc

(ik EI + ik1 S - iwZm)e-ikl - (ik EI + ik1S iw'Z)eikilr

(7.68)

=0,

+

(k EI - k2S - iwZm)ek2l r = 0, (7.69)

where the reflection coefficients for propagating and evanescent waves, r and rc, are

defined as:
Ar

r =A, (7.70)
Acr- =r

The first equation in Eqs. (7.69) gives:

e k2I rC c eii + re ikl)I
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Substituting Eq. (7.71) into the third equation in Eqs. (7.69) reduces to:

r =
ik EI + ik1 S - iwZm + :(k EI - k2 S -WZm)2-e i2k1 l

ik!E I ik1 S +iWZm - ((k3EI - k2 S - iWZm)

As in [48], we decompose the input impedance of the device into a

and an imaginary part, Xm, namely:

Zm= Rrn+iXm.

The numerator in Eq. (7.72) becomes:

ik EI + ik1S - ZwZm + (k EI - k2 S - iWZm)

real part, Rm,

(7.73)

k2 3
k(k2EI - k2S)

2
+ (1 + k)wXm + i[k3EI + kiS -(1 + )wRm]

where a, = L(k3EI - k2 S) (1 )wXm, and ai = k3EI + kiS - (1 + 2)wRm.
k1 2 +l i2 1 i2

In order to match the impedance perfectly, one needs:

a, = 0, ai = 0. (7.7

The first equation in (7.75) requires:

k2 S-k3EI
Xm =2 (7.7

Q(1 + k)2

When the device is optimally designed, w = Q.

From the definition of Zm, we have:

-hS - Ka2 + Jw 2

wh2

5)

6)

(7-77)
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Equalizing the right hand sides of Eqs. (7.76) and (7.77) at w = Q yields:

Ka2 + hS h23
= + J(1 +hk2 /k 2 ) (k 2S - k2EI). (7.78)

The second equation in (7.75) requires:

R E + kS(779)

From Eq. (7.68), we have the real part of Zm: Re[Zm] Cb
2  Equating the two

expressions for Rm leads to:

h 2 k 3EI+k 1 S
"O b2(1+k 2 k 2) Q 7-0

We define the following dimensionless parameters:

dimensionless frequency & = i;

wave number ratio k = -

tension factor p = --7; and
1 I'

impedance ratio Zm

The tension factor p is a parameter characterizing structural behavior and is the same

as defined in SHEAR7. For a constantly tensioned uniform beam, its wave numbers

are:

1 S 1Sp
ki = 2 E y+ (E (propagating wave),

k2 = i 2 + !(E)2 W2EI (evanescent wave). (7.81)
2 El 4 EI El

With these dimensionless parameters, the reflection coefficient r is expressed as:

1 + p - (1 + 1/k 2 )VZm - i(k 2 - p)/k i 2k11
1 + p + (1 + 1/k 2 )CVZm + i(k 2 - p)/kc

2[(1 + 1/k 2 )COZm + i(k2 - p)/kI i2 kI (7.82)
+ p+ (1 + i/k 2)CV2m +i(k 2 _ p)lk
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When C = 1, the device is operating at the optimum frequency. Hence the input

impedance of the termination is chosen as:

Zm0 = Rro + iio,
l+p

Rro = 1 + 1/k 2

kp - k3
1 + k 2

The 1400-ft riser is again finally employed as an example. It is assumed to be

subject to constant tension equal to the average value, Tv = 2.224 x 10 N. SHEAR7

found that the 6th frequency is one of the important frequencies. We set optimum

frequency Q = W6= 1.8275 rad/s for this analysis. The parameters are designed to

satisfy Eqs. (7.76), (7.79) and (7.83). Figure 7-17 shows the reflection coefficient

modulus at the termination. At C = 1, the reflection coefficient is zero, and hence

no energy is reflected. Figure 7-17 also indicates that much energy around w =

Q is absorbed. The effects of the parameters on the bandwidth can be evaluated

numerically.

0.9 - - - -.- -.-..- - .. - -.-... . . --

0.8 .....- - -

0.6 .

0.5 - .

03

0.1 - ----

0 0.5 1 1.5 2 2.5 3
(Ala

Figure 7-17: Wave reflection coefficient at the termination
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Chapter 8

Vibration Analysis of a Coupled

Fluid/ Riser System

8.1 Introduction

One of the major components in offshore petroleum production is a production riser.

A production riser system often consists of external casing and an internal liner, which

are separated by an incompressible viscous fluid. In addition, there may be intermedi-

ate guides or supports (centralizers) distributed between the two parallel pipes. The

objective of this chapter is to mathematically model this coupled system, to establish

the theoretical formulation systematically, to solve for undamped or damped natu-

ral frequencies, to investigate effects of coupling factors on forced vibration, and to

explore new means of vibration suppression by designing the parameters of coupling

components.

A double-uniform beam system coupled by longitudinally distributed springs or

an ideal fluid or the combination of both is studied. The beams are assumed to be

classical Bernoulli-Euler ones. Approximate closed-form solutions to natural frequen-

cies and mode amplitude ratios are first found for a coupled double-beam system. A

beam-type dynamic vibration absorber is presented and an optimal tuning design is

found. The similar research is done for the coupled system in which both beams are

uniform ones under constant tension. We introduce an additional coupling factor, an
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ideal fluid between two beams, for the coupled system. The effects of the fluid on

natural frequencies and mode shapes are discussed.

One of the difficulties in vibration analysis of a general coupled fluid/riser sys-

tem is the mathematical models of the coupling components including viscous fluid

and centralizers. The risers are general ones with variable properties and subjected

to spatially varying tension. Hydrodynamic forces act on the external riser. It is

noted that dynamic stiffness analysis converts the dynamic problem into a pseudo-

static one with frequency as a parameter. That is, time no longer appears explicitly

but is replaced by phase relationships among all variables. An approximate scheme

combining a variational principle with the Ritz method is developed to establish the

theoretical formulation systematically. The WKB-based frequency-dependent shape

function is employed as a Ritz vector. The implicit expression of dynamic stiffness is

found for the complex coupled system. The WKB-based Dynamic Stiffness Method

(DSM) with the Wittrick-Williams (W-W) algorithm is extended for the analysis of

the coupled system. Natural frequencies and mode shapes are found with good accu-

racy. Effects of coupling factors, including viscosity of fluid, damping and rigidity of

centralizers on forced vibration, are investigated.

8.2 Free vibration of a spring connected double-

beam system and optimal design of a dynamic

absorbing beam

8.2.1 Analytical solutions

For simplification, the coupled system is assumed to be composed of double uniform

Bernoulli-Euler beams. Coupling springs are evenly distributed in the longitudinal

direction. Both beams have the same length and are simply supported at their ends.

An illustration is shown in Figure 8-2.

Free vibration equations of motion of a spring coupled double-beam system are
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Figure 8-1: A double-beam system coupled by springs and dampers

described by the following equations:

M

ElIi w(IV) + m1 i 1 + E k[wi(x) - w 2 (x)]6(x - Xm) = 0,
m=1

M
P( IV) .

E212W2  + 2 2 + k[w2(x) - w(x)]6(x - Xm) = 0, (8.1)
m=1

where 6 is a Dirac delta function, wi = wi(x, t) (i=1, 2) is the transverse beam

deflection, Ej is the Young's modulus of elasticity, Ii is the moment of inertia, and k

is the stiffness of centralizers. Boundary conditions for simply supported beams are:

wi(0, t) = w' (0, t) = wi(l, t) = w'(l, t) = 0, i = 1, 2. (8.2)

The homogeneous partial differential equations (8.1) with boundary conditions

(8.2) are solved by assuming the solutions in the form:

w (X, t) = EX i t
n=1

i = 1,2, (8.3)

where qin(t) is the unknown time function, and Xn(x) is the mode shape function for

a simply supported beam, namely,

Xn(x) = sin(knx), kn = nr/i, n = 1, 2, 3, ....
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Substituting Eqs. (8.3) and (8.4) into (8.1), then using orthogonality of the eigen

functions, assuming that the system is weakly coupled and natural frequencies are

well separated, and neglecting cross terms lead to:

#1i + (E1 Iik4 + k*)mjlqin - k*m-lq2n= 0,

42n + (E2 I2 k4 + k*)mj lq2n - k*m-lq1n = 0, (8.5)

where

k*=k sin2(nrm),
m=1

M is the total number of springs.

Equations (8.5) can then be rewritten as:

In + 1 nq n - =q2n 0,

q2n + 2Q2 q 2 - Q20qin = 0,

where

iin= (E Iikn + k*)mi-, io = k*mi ,

The solutions to Eqs. (8.6) are as follows:

gin = Cnei)nt, q2n= DneiWnt,

(i = 1, 2).

i = -J, (8.7)

(8.6)

where Wn is the natural frequency of the system. Substituting Eqs. (8.7) into (8.6)

results in the homogeneous equations for unknown constants Cn and Dn:

(Q2- W)C - D = 0,

(Q$2 - 2)Dn -2 GCn = 0. (8.8)
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Eqs. (8.8) have non-trivial solutions when the determinant of the coefficient matrix

is equal to zero, namely:

in -

20

= 0.
Q2 - W2

22n n

Expanding Eq. (8.9) yields the characteristic equation:

n (Q + Q 2 )w2 + (Q2 Q 2 n - Q2 Q2) = 0.

There are two different, real, and positive roots U)2

W1,2n = 2 [(in + O2 2n) + ( in - Q 22 ) + 4<0 Q0 0], wi W <W 2n.

The solution to Eq. (8.7) can be written as:

q1n = Clneiwnt + C2neziwlnt + Cneiw2nt + C4ne-iw2nt ,

q2n = Dinewlnt + D2ne-iw1n + D3 new2nt + D 4ne-io2t.

Introducing trigonometric functions, Eqs. (8.12) are rewritten as:

qin

2

- E[Ain sin(wint) + Bin cos(wit)],
i=1

2

= Z[Ain sin(wint)+ Bin cos(wint)]ain,
i=1

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

where

,2- 2 ) - 2 n)2 + 4 0n 2 0]. (8.14)

It can be found from this equation that the coefficient ain is dependent on the lower

natural frequency win and is always positive, while a2n is dependent on the higher

frequency w2n and is always negative. The win and W2n (win < w2n) are two infinite

sequences of natural frequencies of the coupled system. As shown by Oniszczuk

[51, 52, 53] for a continuously and elastically coupled system, the natural mode shapes
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of the coupled beam corresponding to two sequences of natural frequencies wj, are:

Xin = sin(knx), X2in = ain sin(knx). (8.15)

A spring connected simply-supported double-beam system has two kinds of mode

shapes. One is synchronous (ai > 0) with lower natural frequencies win and the

other is asynchronous (a2n < 0) with higher natural frequencies W2n-

8.2.2 Optimal design of a dynamic absorbing beam

Now considering dampers located with the springs, the equations of motion of the

coupled system are written as:

M M

E1 I1 w(IV) + mli + E k[wi(x) - w2 (x)]5(x - Xm) + E c[tb1(x) - 't 2 (x)]6(x - Xm)
m=1 m=1

peiWt6(x - a),
M M

(IV) 22
E2I2w 2  + m J k[w2 (x) - wi(x)6(x - Xm) + c[?i 2 (x) -T1(x)]6(x - Xm) =

m=1 m=1

0,(8.16)

where pe" is a concentrated harmonic force acting on Beam 1, and a is the distance

of the exciting force measured from the left end.

Following the same procedure as in obtaining Eqs. (8.5), we obtain the following

equations:

m 1 41n + (E1Iik4 + k*)qin - k*q2n + c*(4in - 42n) = 0,

m 2 42n + (E2I2k4 + k*)q2n - k*qin + c*(42n - in) = 0, (8.17)

where c* = 2 EM sin2 (n,'). Equations (8.17) represent a two-degree-of-freedom

system with two masses and three springs, as shown in Figure 8-2 with: k1 =

E1I1 kn, k2 = k*, k3 = E2I2kn, c2 = c*.

Using the Den Hartog method, Aida, et al [54] obtained an optimal solution to

the case in Figure 8-2. Applying this solution, the procedure of optimal design of a
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Figure 8-2: Two-degrees-of-freedom system for nth mode

dynamic absorbing beam in this problem is depicted as follows:

1. The mass ratio p - 2 is set at the beginning.

2. The non-dimensional amplitude of a fixed point on the resonance curve of Beam

1, Yp, is calculated from

YI 1- _ , (8.18)

which requires E212 < pE1 I1 .

3. The equivalent spring constant k* and damper c* are given as follows:

k* = E1Iik4  
(.9k * lli 4 V(2 p)(8.19)n(I + yj)2y

C = 2pu mih2E1I1ki, (8.20)

in which

2 h2 +h 2
h= 2 , (8.21)
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and

P. (8.22)( h~ 2~ (2+2/t)+T-2Vji(2 + I-)
2 ) 4(1+ p)3Yip[(1 + ti)Y1r - Vp( 2 + p) T 1]

8.2.3 An example: A coupled double-axial cylinder system

The specifications of a spring coupled double - riser system, where tension is neglected,

are as follow:

Length l = 1944 ft;

Young's modulus E = 30000 Ksi;

Mass per unit length of external pipe (added mass of external fluid included with

Ca = 1.0) mi = 169.2134 kg/m;

Outer diameter of external pipe dl0 = 13.375 inches;

Inner diameter of external pipe d1i = 12.615 inches;

Area moment of inertia of external pipe I, = 1.3642 x 10- 4 M4 ;

Mass per length of inner pipe (inside water included) M2 = 87.2117 kg/m;

Outer diameter of inner pipe d20 = 9.75 inches;

Inner diameter of inner pipe d2 i = 9.155 inches;

Area moment of inertia of inner pipe I2 = 4.1110 x 105 M4 ;

spring stiffness ratio r8, = 1.0, which is defined as

r = L (8.23)
spEI2/L3'

where L is spring spacing.

There are 19 connecting springs evenly and longitudinally distributed. Tables 8.1

and 8.2 respectively shows that natural frequencies, obtained by means of Eq. (8.11),

of synchronous and asynchronous vibrations. In order to verify the solutions, the

WKB-based dynamic stiffness method with the W-W algorithm (error requirement

1.0 x 10-3) is employed for analyzing the elastically coupled system and the results are

included in the tables for comparison. Both Tables 8.1 and 8.2 indicate that solutions

by Eq. (8.11) are accurate.
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Order by Eq. (8.11) WKB-DSM
1 0.0017 0.0017
2 0.0068 0.0068
3 0.0152 0.0151
4 0.0270 0.0270
5 0.0419 0.0419
6 0.0596 0.0596
7 0.0795 0.0794
8 0.1009 0.1009
9 0.1240 0.1238

10 0.1494 0.1494

Table 8.1: Comparison of natural frequencies fl, (Hz) of synchronous vibrations

Order by Eq. (8.11) WKB-DSM
1 0.0697 0.0696
2 0.0700 0.0698
3 0.0711 0.0709
4 0.0741 0.0740
5 0.0801 0.0800
6 0.0903 0.0902
7 0.1060 0.1060
8 0.1279 0.1278
9 0.1556 0.1555

10 0.1883 0.1883

Table 8.2: Comparison of natural frequencies f2n (Hz) of asynchronous vibrations
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Effects of spring stiffness on natural frequencies are studied by varying the stiff-

ness ratio. Spring stiffness ratios are set to be 1 and then 10. Figure 8-3 depicts

the results of synchronous and asynchronous natural frequencies, which correspond

to in-phase and out-of phase mode shapes, respectively.

Figure 8-3 shows that there is a general tendency to increase natural frequencies

1.8-

1.6

1.4

1.2

C

0.8

0 5 10 15
Order n

20 25

Figure 8-3: Effects of spring stiffness on synchronous and asynchronous natural fre-
quencies

fi with the spring stiffness ratio. The increase for lower asynchronous natural fre-

quencies is greater than for higher ones. The effect of spring stiffness on much higher

asynchronous natural frequencies is insignificant. The increase for lower asynchronous

natural frequencies is much higher than for lower synchronous natural frequencies.

Spring stiffness has almost no effect on much lower synchronous natural frequencies.

In addition, for a specific mode where all spring connecting points happen to be its
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nodes, spring stiffness then has no effect on the natural frequencies at all. In this

example, this specific mode number is 20.

Finally, design an optimal tuning to the 15th mode of Beam 1. Optimal pa-

rameters were obtained as: k* = 105.2213, and c* = 38.6914. The unit concentrated

harmonic force is acting on 1/4 away from the left end. Figure 8-4 depicts the numeri-

cal results by optimal and un-optimal tunings (by running Matlab code coupfb32c.m),

where w, is the 1st circular frequency of Beam 1 (0.0115 rad/s). This figure indicates

the benefit of an optimally tuned dynamic absorbing beam (Beam 2).

100 200 300 400 500
d(O

600 700 800 900

Figure 8-4: Frequency response of the 15th mode due to a concentrated force
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8.3 Free vibration of a spring-coupled tensioned

beam system and optimal design of a dynamic

absorbing beam

8.3.1 Analytical solutions

Both beams in the coupled system discussed in Section 8.2 are now assumed to be

subject to constant tension. Other assumptions are the same as previously.

Free vibration equations of motion of a spring-coupled constantly tensioned beam

system are described by the following equations:

E1I1 wv) + m 1 1 - Timw + E k[wi(x) - w 2 (x)]6(x - Xm) = 0,
m=1

M
(IV)

E2 I2 W2  m2+fi) 2 - T2 w + E k[w 2 (x) - w 1 (x)]6(x - Xm) = 0, (8.24)
m=1

where T(i = 1, 2) is the constant tension in each beam.

Following the same procedure as in Section 8.2.1, one obtains the following equa-

tions:

1n + (E 1Iik4 + Tik2 + k*)m-lqin - k*m71 q2n 0,

42n (E2 I2kn T2kn + k*)m2 q 2n - k*m2 q1n = 0. (8.25)

Equations (8.25) can then be rewritten as:

1n + Q11ng - q2n = 0,

2n + Q 22nq2n - n = 0, (8.26)

where Qin, (i = 1, 2) is defined differently from in Section 8.2.1 as:

Q2= (Ei Ik4 + Tk2 + k*)m-l. (8.27)
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With this new definition of Qii,, natural frequencies and mode ratios have identical

formulas to Eqs. (8.11) and (8.14).

8.3.2 Optimal design of a dynamic absorbing beam

Now including damping of spacers, the equations of motion of the coupled system are

written as

(IV)E,1I1wi +.m 1 6?1 - Tiw1

(IV)E2I2w2 + m2 fbi2 - T2W2

M

+ E k[wi(x)
m=1

M

+ 5 c[1i(x)
m=1
M

+ 5 k[w2(x)
m=1

M

+ E C[W2(X)
M=1

- w 2 (x)]J(x - Xm)

- w2 (x)]6(x - Xm)

- w1(x)]6(x - XM)

- tb1(x)]J(x - Wm)

= eiwt6(x - a),

= 0. (8.28)

Again, Eqs. (8.28) represent a two-degree-of-freedom system witi

three springs. Now re-define k, and k3 as follows:

ki = E1Iik4 + Tik , k = E2I2 k4 + T2k.

h two masses and

(8.29)

With the new definitions of k1 and k3, the optimal tuning procedure is same as in

Section 8.2.2.

8.3.3 An example: A coupled constantly tensioned beam sys-

tem

On the basis of the example in Section 8.2.3, the beams are now assumed to be

subjected to constant tension, which is chosen to be the average values, T = 3.1442 x

105 N, T2 = 1.7692 x 105 N, respectively. Assuming rs, = 0.10, Tables 8.3 and 8.4

show natural frequencies of synchronous and asynchronous vibrations (obtained by

running coupfb32bl.m) and include the results found by the WKB-based DSM with

the W-W algorithm. Both tables demonstrate that values, obtained by (8.11) with
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the new definition of iij2 , (i = 1, 2), are accurate. Figure 8-5 demonstrates optimal

tuning to the 15th mode of Beam 1. Optimal values of parameters are k* = 64.2742

N/m, c* = 13.7205 N.s/m. This figure indicates the benefit of using Beam 2 as an

optimally tuned dynamic absorbing beam.

Order analy. solution WKB-DSM
1 0.0369 0.0369
2 0.0737 0.0737
3 0.1109 0.1109
4 0.1489 0.1489
5 0.1879 0.1878
6 0.2283 0.2282
7 0.2702 0.2701
8 0.3138 0.3137
9 0.3594 0.3594

10 0.4053 0.4052

Table 8.3: Comparison of natural frequencies fi (Hz) of synchronous vibrations

Order analy. solution WKB-DSM
1 0.0436 0.0435
2 0.0788 0.0788
3 0.1163 0.1163
4 0.1548 0.1548
5 0.1941 0.1941
6 0.2342 0.2342
7 0.2753 0.2754
8 0.3175 0.3174
9 0.3608 0.3608

10 0.4073 0.4073

Table 8.4: Comparison of natural frequencies f2, (Hz) of asynchronous vibrations

183



_4 - . .... . ... ............... . .. ... .... ............._ p m a t n g-- .... pima uning
k =200,c*=10
k*=200,c*=100

4.5 - k=250,c*=10

-6.5 - - - - --...................

0 1 2 3 4 5 6 7 8 9 10

Figure 8-5: Frequency response of the 15th mode due to a concentrated force

8.4 Free vibration of a constantly tensioned beam

system coupled by an ideal fluid and springs

8.4.1 Analytical solutions

Consider a coupled fluid/riser system which consists of an external cylinder and in-

ternal one located concentrically and connected by evenly distributed springs. The

annular region is filled with an ideal fluid (incompressible and frictionless). The

beam-like vibration is studied. Two cylinders are modeled as Euler-Bernoulli beams

subjected to constant tension. The equations of motion of the coupled system are:

M-
E1IiwIv) + (mi + mii)f 1 - Tw'1' + E k[wi(x) - w2(X)]J(X - Xm)

m=1

+Mi2A 2 = 0,
M

E 2 I2 w2v) + (M 2 + m 22 )?i3 2 - T 2 w2 + E k[w2 (x) - w1(x)]6(x - Xm)
m=1

+M21l1 = 0, (8.30)
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where mil(i, 1 = 1, 2) is added mass, which is indicated in Section 8.5.1.

Following the same procedure as in Section 8.2.1 and noting that M 1 2 = M2 1 , the

homogeneous algebraic equations for the unknown constants Cn and D, are yielded

as:

(kikn + Tikn + k* - i) - (k* + m 1 2 wn)Dn = 0,

(k 2kn + T2kn + k* - f2Wn)D - (k* + m21wl)C, = 0, (8.31)

where the 7n and f2 are defined as: fin Mn 1 + n 11 , fn2  m 2 + M22 .

Equations (8.31) have non-trivial solutions when the determinant of the coefficient

matrix is equal to zero. The frequency (characteristic) equation is obtained as:

- m$2 )wi - w2 1 (k2 ki + T2k! + k*) + fn2 (k1 k4 + T1 k2 + k*)

+2m 1 2k*] + (k1k4 + T1 k + k*)(k 2k 4 +T 2k2 + k*) - (k* ) 2 = 0. (8.32)

Define the coefficients in this equation as follows:

A rnMi 22 - m 2 , (8.33)

B fn-1 (k2k4 +T 2k2 +k*)+ i 2 (k1 ki +T 1 k2 +k*) +2m 1 2k*, (8.34)

C (k1 k4 + T1 k2 + k*)(k 2k4 + T2k2 + k*) - (k*) 2 . (8.35)

Then natural frequencies are:

2 -BT/B 2 -_4AC
2A , (i = 1, 2), (8.36)

where w2 <2

The mode ratio ain is:

kik 4 + Tik2 + k* - f1w? k* + m 21 W2
ain= - .mw _ in + (8.37)

k* + M12U) k2k + T2 k2 + k* - Mw
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In the un-coupled vibrations, one of the cylinders is rigid. The un-coupled natural

frequency, Cv? , is
-2 kik 4+ Tk2+ k*w2 = _n , (i = 1, 2). (8.38)

ini

It can also be shown that w 1n < i7 < < n (cf. Chen 1978 [55]).

With the definition of un-coupled natural frequencies in Eq. (8.38), Eq. (8.37) is

further rewritten as

= 1( - w(C ) _ k* + m 2 1 wJ?
ain - .n z 2 % (8.39)k* + m12W2 ff2( 2n -in)

The following three cases, based on Eq. (8.39), are investigated:

Case 1: only coupled by springs

Without fluid, then M 1 2 = M2 1 = 0, fil = m1 , and fn2 = M2 . Eq. (8.39) reduces to:

m,(CV2 - Wn) k*
ain = 2  W (8.40)k* ~ 2 m 2 n -in92

As discussed in Section 8.2.1, Eq. (8.40) shows that a1 , corresponding to win, is

positive, while a2n, corresponding to W2n, is negative.

Case 2: only coupled by ideal fluid

Without springs, i.e., k* = 0, then Eq. (8.39) is rewritten as:

hi(cQ7n - w,92) _ m21wn
f C2 W?amn 1 2nin - 2 -Wi~ (8.41)
m12Wzin M2( -n isn)

Noting that M1 2 = M2 1 < 0, Eq. (8.41) shows that ain, corresponding to win, is

negative, while a2n, corresponding to W2n, is positive. This result is opposite to that

in Case 1.

Case 3: coupled by springs and ideal fluid

Whether mode shapes are in-phase and out-of-phase depends on the sign of ain, which

is expressed in Eq. (8.39). It is known that (C02 - W2 ) > 0 and (i - W2 ) < 0.

The sign of (k* + m1 2 wn) finally determines that of ain. The sign of (k* + m12 wzn) is

employed to predict when the phenomenon occurs that some of out-of-phase modes
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disappear while some additional in-phase modes appear.

8.4.2 An example: a constantly tensioned beam system cou-

pled by an ideal fluid and springs

The specifications of both beams are identical to those in the example in Section

8.3.3. Mass density of fluid is p, = 1000 kg/m3

Case 1: Only coupled by springs (r8, = 1.0)

Table 8.5 shows natural frequencies of asynchronous and synchronous vibrations of

the coupled system.

Figure 8-6 depicts the corresponding first four in-phase and out-of-phase mode

Order asynchronous synchronous
1 0.0791 0.0370
2 0.1026 0.0741
3 0.1331 0.1117
4 0.1674 0.1499
5 0.2040 0.1890
6 0.2424 0.2293
7 0.2823 0.2711
8 0.3237 0.3145
9 0.3667 0.3596

10 0.4118 0.4061

Table 8.5: Comparison of
vibrations (Case 1)

natural frequencies(Hz) of asynchronous and synchronous

shapes. The characteristic vibrations of the elastically coupled system are either

synchronous or asynchronous. Table 8.5 indicate that the first mode corresponding to

the lowest natural frequency is synchronous. Compared with Tables 8.3 and 8.4, Table

8.5 demonstrate that with the stiffness ratio of the springs, the natural frequencies

increase, as shown in Figure 8-3. With the stiffness ratio, the coupling between the

two beams becomes stronger.
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In-phase mode shapes (r, =1.0)
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Figure 8-6: The first four synchronous and asynchronous mode shapes (Case 1)
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Case 2: Only coupled by fluid (rp = 0)

Table 8.6 shows natural frequencies of asynchronous and synchronous vibrations of

the coupled system.

Order asynchronous synchronous
1 0.0157 0.0358
2 0.0315 0.0719
3 0.0474 0.1084
4 0.0636 0.1457
5 0.0801 0.1838
6 0.0969 0.2231
7 0.1142 0.2638
8 0.1319 0.3060
9 0.1503 0.3499

10 0.1692 0.3957

Table 8.6: Comparison of
vibrations (Case 2)

natural frequencies(Hz) of asynchronous and synchronous

Figure 8-7 demonstrates the corresponding first four in-phase and out-of-phase

mode shapes. The fluid introduces the coupling between the two beams and reduces

the natural frequencies because of the added mass. As predicted in Section 8.4.1, the

coupled system has in-phase and out-of-phase characteristic vibrations. When the two

beams are out of phase, the fluid in between is displaced and thus the fluid's inertia

effect is large. When the two beams are in phase, the effect of the coupling fluid's

inertia is reduced. hence, out-of-phase mode shapes are beneficial in suppressing

vibration. Table 8.6 in this case indicates that the first mode shape is asynchronous.
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In-phase mode shapes (ideal fluid coupled)
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Figure 8-7: The first four synchronous and asynchronous mode shapes (Case 2)
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Case 3: Coupled by the fluid and springs (rs, = 1.0)

Tables 8.7 and 8.8 show respectively natural frequencies fin and f2n found by means

of (8.36). The results obtained by the WKB-based dynamic stiffness method are also

included for comparison. The two tables indicate that solutions by Eq. (8.36) are

accurate. Compared with Table 8.5, Both tables indicate that the natural frequencies

are lowered due to the fluid.

Figures 8-8 and 8-9 depict the first four in-phase and out-of-phase mode shapes

Order analy. solution WKB-DSM
1 0.0309 0.0309
2 0.0426 0.0426
3 0.0555 0.0555
4 0.0699 0.0699
5 0.0851 0.0855
6 0.1011 0.1016
7 0.1178 0.1187
8 0.1351 0.1362
9 0.1530 0.1549

10 0.1716 0.1742

Table 8.7: Comparison of natural frequencies fi, (Hz)

Order analy. solution WKB-DSM
1 0.0384 0.0384
2 0.0724 0.0724
3 0.1087 0.1086
4 0.1459 0.1459
5 0.1840 0.1840
6 0.2233 0.2233
7 0.2639 0.2639
8 0.3061 0.3061
9 0.3500 0.3500

10 0.3958 0.3958

Table 8.8: Comparison of natural frequencies f2n (Hz)

obtained by the WKB-based dynamic stiffness method and analytical solutions, re-
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spectively. In these figures, subscripts "i" and "o" denote in-phase and out-of-phase

modes, respectively. It is found that the first out-of-phase mode in Figures 8-6 and

8-7 disappears while an additional first in-phase mode occurs. This phenomenon can

also be observed from the coefficients of natural mode shapes ain shown in Table 8.9.

The signs of ain and a2n are opposite. When the phenomenon occurs, ain and a2n

have the same sign and are both positive in this case.

It is further found by checking the sign of (k* + m1 2 W2 ) that this phenomenon

doesn't occur until rs, ;> 0.65. When r,8 = 10, the original 3rd out-of-phase mode

disappears while an additional in-phase mode appears, shown in Figure 8-10. The

corresponding coefficients of natural frequencies ain are depicted in Table 8.10.
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Figure 8-9: First four synchronous and asynchronous mode shapes by using closed
form solutions (solid line: Beam 1; dash-dot line: Beam 2)

Order a1n a2n

1 3.1468 0.3768
2 -3.3993 0.7231
3 -2.6794 0.7529
4 -2.5294 0.7608
5 -2.4876 0.7632
6 -2.4855 0.7633
7 -2.5034 0.7623
8 -2.5333 0.7606
9 -2.5715 0.7585

10 -2.6157 0.7562

Table 8.9: Coefficients of natural mode shapes ain(r-s = 1.0)
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In-phase mode of a double-const. tensioned beam system coupled by springs(r, =10) and fluid
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line: Beam 2)

third in-phase mode shapes(rs, = 10, solid line: Beam 1; dash-dot

Order ain a2n
1 1.0313 -0.6287
2 1.2013 -0.2918
3 2.5451 0.3120
4 -39.3288 0.6012
5 -5.1384 0.6820
6 -3.6999 0.7136
7 -3.2415 0.7286
8 -3.0418 0.7364
9 -2.9479 0.7403

10 -2.9076 0.7421

Table 8.10: Coefficients of natural mode shapes ain (rs, = 10)
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8.5 Theoretical formulation of a general coupled

double-riser system

8.5.1 Hydrodynamic forces of viscous fluid in between con-

centric cylinders

Consider two concentric circular cylinders separated by an incompressible viscous

fluid annulus as shown in Figure 8-11, where r, and r2 are the interface radii between

fluid and tubes. In application, the length of tubes is much larger than the radii

r. (i = 1, 2). Thus, the fluid field can be two-dimensional; that is, the axial motion of

Yx

r r
rg

Viscous fluid

Figure 8-11: Schematic of two concentric tubes containing a viscous fluid

fluid is neglected. It is convenient to express the Navier-Stokes equation in the circular

cylindrical coordinate system (r, 0, z), which governs the motion of viscous fluids. For

small amplitude oscillations, the equations of motion can be linearized. Chen[56, 57]

found that fluid forces acting on cylinders are linear functions of the cylinder motions,

and that the forces can be separated into two components: one proportional to the

real part of the coefficient ail, Re(agi), is in phase with the cylinder acceleration and

is related to the added mass effect, while the other proportional to the imaginary part

of ail, Im(asi), opposes the movement of the cylinder and is related to a damping

mechanism. The hydrodynamic forces can also be expressed in terms of cylinder
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acceleration and velocity as:

2 2

Xi= - M mu - >c3 i, (8.42)
I=1 1=1

where x1(t) is the instantaneous displacement of the lth cylinder, the dot denotes

differentiation with respect to time, and

mi = pirririRe(aii),

ci = p7rrirlm(ai). (8.43)

mni1 and cil are the added mass and fluid damping coefficients of the system, respec-

tively.

It is convenient to define an oscillation Reynolds number NR = wr2/v, where v is

kinematic viscosity, and radius ratio y = r2/ri. The fluid force coefficient ai depends

on the oscillation Reynolds number NR and radius ratio -y in a very complicated way.

Approximate solutions can be obtained in special cases, where the most often used

are shown as follows:

(a): NR>> 1 and moderate gap (e.g., G > 0.01 and NR > 104)

l= 3(1 + 72) sin(G3 1 ) - 2(2 - 7+ 72) cos(G1l) + 4 yV(7

,3(1 - 7
2)sin(G,3 1) + 27(1+ -y) cos(G 1 ) - 4y (8.44

where G = (r1 - r2)/r2= (1 - 7Y)/7, ,12 = -jNR

(b): NR>> 1 and G2 NR>> 1 (e.g., NR > 104 and G2 NR > 104)

- #31(1 + _y 2) - j2(2 - y + 72) (8.45)
,31 (1 - 72 ) + j27(1 + -y)

(c): v -+ 0, NR --+ oo

Eqs. (8.44) and (8.45) reduce to that of in-viscid fluid:

1 + 72a 1 1 = 1- _2. (8.46)
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All other coefficients ail are obtained in terms of al:

a 12  a21 = -7(1 + a11 ),

a22 = 1+Y 2 (1 + a 11 ). (8.47)

8.5.2 Formulation of a coupled fluid/riser system

It has been demonstrated that the hydrodynamic force can be calculated for two

concentric cylinders separated by an incompressible viscous fluid. The governing

equations of motion of external and internal risers in a coupled fluid/riser system are:

02 O2 W 1  Owl 02 w
-2 (EIi(x) +) -(T1(x) ) ) m1(x) =hi(x, t) + fi(x, t), (8.48)

02 O2w2  a Ow2  a22- (EI2 (x) 2 )-- (T2(x) )+ m 2(x) = h2(x,t) + f2 (x,t), (8.49)Ox2 OX 9 x 0t2

where the subscripts '1' and '2' denote external and internal risers respectively,

fi(x, t) (i = 1, 2) includes external exciting force and concentrated ones due to cen-

tralizers, and hi(x, t) (i = 1, 2) is the hydrodynamic force defined in Eq. (8.42).

Substituting Eq. (8.42) into Eqs. (8.48) and (8.49) yields:

a2 a2Wl _a al+(M Mla2WI a22
0 (El (x) ) (T1 (x) ) + (in 1 + n) 2+ 2OX2  Ox2  O9x Ox Ot t2

Ow1  Ow2
+ cw + -C2 + = fi(x, t), (8.50)

a2 a2W2 _ Ow2 + 2w 2  12W,(EI2 (x) ) (T2(x) (M2) + t2  M21 2
OX X 2  

-9 Ox + m2 m 2  + t
Ow1  Ow2

+ c2 1  + c 2 2  = f2(x, t). (8.51)

Define the following non-dimensioned parameters:

s , wO = aE0 , T = wt, and Yi

where the subscript 'o' represents the values at a reference cross section, and D, is an

effective diameter. Then Eqs. (8.50) and (8.51) can be written in a non-dimensional
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a2 a 2y

s2 s 2

_2 a 2y2ss 2

as0
( y,

(s) 9)8

O DY2a (Q2(s) ) 2

= EjI

Mi = ,mEoI

g2y 02Y2
+ Mn(s) T + M12 (s) 2

+ Cn a + C12 a=Yf(s,T),

a2y2g2
M 22(s) DT2

DY2
+ C22 + C

0-r

Tl

Qi EoIo'

Ci Cii
mOw 0 '

a2y
+ M 21(s) 21

ny1
1 = /(,r,

(/'i

- m '(x)

cii
Cii = cOW

f (s,-) - fi (x,t) 1
DeEoIo,

(i, j = 1, 2).

Assuming Y (s, T) = Ri(s)eiAT (i = 1, 2) and substituting it into Eqs. (8.52) and

(53) result in:

02R1
(S) aS2 ) -

a2R2
(s) 8s 2 -

a (Q1
DR1

(s) s) - Mn(s) A2 R1 - M12 (s) A2 R2

+ iACiRi+iAC12R 2 =F1 (s),
0 DRas (Q2 (S) R) - M22 (s) A2 R2 - M21 (s) A2 R1

+ i A C22 R2 + i A C2 1 R1 = F2 (s), (8.55)

where F1(s) fi(s, r)e -iA,, F2 (s) f f2(s, T)eiAT, and A is a dimensionless frequency,

A = w/wo.

The dynamic stiffness formulation of a coupled fluid/riser system is obtained by

establishing a weak form of the equations (8.54) and (8.55) using the Galerkin pro-

cedure. Equations (8.54) and (8.55) are weighted with virtual displacements, V1 and

V2 , respectively:

02 2R1
01[8s ( s g 2 )

0 OR1
~ (Q1(s) O) - MI(s) A2 R1 - M1 2 (s) A2 R2
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(8.52)

(8.53)

02
-s (P2

(8.54)
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+ i A C1 R1 + i A C12R2]ds = j ;-1F1(s)ds, (8.56)

0 OR2 A2
D-M()

a (Q2(s) O - M 22 (s) A 22 A 
- M21() A 2 R1

+ i A C 2 2 R 2 + i A C21R1 ]ds = jV 2F2(s)ds. (8.57)

Integrating over the domain of interest s and transforming - to lower the order of

the derivatives in the expressions of (8.56) and (8.57) and to incorporate the nat-

ural boundary conditions as forcing terms - gives the variational equations to be

discretized by finite element interpolations.

The first two terms in the left side of Eq. (8.56) are transformed as follows:

02 02 R1
fJ, 02s2 (P 1 (s) Os2 )ds

a O2R1  aO1 9 O2R1=1 asN(P(s) s2) 1 - s s (P1(s) ,s2 )ds,

Os 19S2 J9SOS S Os 052O 21 O1 O2R1  rO 2ui O2R1
= 'Os('1(' Os2  O s Pifs) Os2 |,+ s Pifs) Os2 ds,

O OR1f, i a(Q1(s) Os )ds

OR1  fOV1fl(R1
= (Q1 (s) as is O Q(s) Os ds.

(8.58)

(8.59)

The first two terms in the left side of Eq. (8.57) can be transformed into similar forms

with subscript 2 instead of 1. Assuming that both beams are simply supported, we

have the displacement boundary conditions S. : Vi = 0 and the forcing boundary

conditions S1 : P (s)9 2i = 0, (i = 1, 2) on the ends. Similar formulation for other

boundary conditions can be found. Equations (8.56) and (8.57) are then rewritten

as:

I 2i1  02R1
Os2 P (s) 0s2 ds

J 04 2  0
2 R 2

82 P2 (s) s2 ds

a- O OR1+ O Qi(s) ds- V1(Mj(s)A 2 -iACu)Ridss 'Os

- f1(M 1 2 (s) A2 -i A C 1 2 )R2ds = j1 F1(s)ds,

+ f V 2  OR2
Os Q2(s) -s ds - (M22(s) A 2 -i A C 22)R2ds

- jD2 (M21(s) A 2 -i A C 21)Rds = j 2F2 (s)ds. (8.60)
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In the finite element analysis, we approximate the system as an assemblage of

discrete finite elements interconnected at nodal points. The above equations are

further expressed as:

2 iP (s) -j 2ds
8s

a2;V2 a2d

Os-2 P2 (s)- -O s2

+ O Q1 (s) OR1 ds - 1(Mii(s) A 2 -i A Ci)Rids

- 1() VI(M 2 (s) A2 -i A C12)R2 ds) =VlF(s)ds,

+ 1(m) -Q2(s) R2ds -
as as 1(m) V2 (M2 2 (s) A 2 -i A C22)R2 ds

- 1 2 (M2 1(s) A2 -i A C21)Rids) = f 2F2(s)ds.

(8.61)

The forces fi(x, t) (i = 1, 2) in Eqs. (8.50) and (8.51) include external distributed

force fi(x, t) and the concentrated forces fc(x, t) due to centralizers, which are evenly

distributed in the longitudinal direction of a riser. Thus:

fi(x, t) = fe (x, t) + f, (x, t). (8.62)

The force due to coupling centralizers, which are modeled as spring-dampers, is writ-

ten as:

Nm

=E [kn(WI -
n=1

Nm

= - [kn(w2 -
n=1

w 2) + cn(J 1 - lb2)]6(x - Xn), (8.63)

(8.64)

where N,, is the number of centralizers distributed within the m-th element.

noted that ff(x, t) = -f(x, t).

g4Nm
ff(s,) = -DEI Z[k1(wi - W 2) + cn(ti - tb2 )]6(x - xn)

DeO0n=1

14 0

=Eoo

It is

(8.65)
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We assume that:

Rm) (s) = Hm) (s)U1, (8.66)

Rm) (s) Hm) (s) 2, (8.67)

where Him)(s) and Him)(s) are the m-th elemental interpolation function of an ex-

ternal riser and that of an internal riser, respectively. They are found in this research

from the WKB-based frequency-dependent shape functions of risers when they are

un-coupled. The U 1 and U 2 are nodal point displacements of the total element as-

semblage in external and internal risers, respectively. Likewise, the expressions are

obtained for virtual displacements, V1 and 10 2 ,

; ="0 (s) = Hm)(s)U1, (8.68)

,2()= Hm) (s)U 2 . (8.69)

The formulation of the spectrum element method for the coupled problem is ob-

tained by means of substituting Eqs. (8.66) to (8.69) into (8.61).

The left-hand side of the first equation of (8.61) is:

LHS = U Z(m) (s))TP(s)H ") (s)ds + j(Hm) (s))TQi (s)H"(s)ds

- Hm)T(M1(s) A2 -i A C11)Him) (s)ds] U1J (in)

- U [ Hi")T(s)(M12 (S)A2 -i A C12 )Hm) (s)ds]U 2. (8.70)

The right-hand side of the first equation of (8.61) is:

RHS = Um")TF{le(s)ds

T (m) 4 Nm -iArU 1  Hi" T [EI Z[kn(Y1 - Y2 ) + cn(Y1 - Y2 )]6(x -xn)]dse

7)

(8.71)
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The second term (I) in Eq. (8.71) is further expressed as:

(I) = lUjEm

Uj

(m) 14Nm
Him)[EI EZ[k 1 (Y -

n=1

(m)T 13Nm
Hi"[ Z[kn(Y -

EoIo n=1

Y2 ) + cn (Y1 - Y 2 )]6(x - xn)]dse-^ ,

Y2) + cn1 -Y 2)]6(x - Xn)]dxeiAT

Nm

SHi" [kn(y1 - Y2) + cn(Yi
n=1

- 2)] IX=X. 

- T 13 Nm ()= u EI L Hm'" [kn(R1 - R 2 ) + i A cnwo(Ri - R 2 )] I8=-5,
Eoomn=1

- T Nm
= U 1 I j H1m)T[48k*(R1 - R2) + i2 A c*(Ri - R2)] IS=sn

m n=1

-T Nm Nm
= U 1 E HI"')(48k* + i2 A c*)R1 Is=sn - Hn")(48k*

m n=1 n=1

(8.72)

where dimensionless stiffness kn and damping c* of centralizers are defined as:

k* = 4 ,n 48Eo10

= cn_13 w
1 ~ 2Eolo

(8.73)

(8.74)2(mol)wo

Substituting Eqs. (8.66) and (8.67) into Eq. (8.72) results in:

7 T Nn m )
(I) = U [[ H m)T(48k* + i2 A c*)Him)] Is=s. U1

m n=1

-T Nm m)
- 1 [Z Hm)T(48k* + i2 A c*)Hi")] S=Sn u 2.

m n=1

Replacing Eq. (8.75) into (8.71), the first equation in (8.61) is rewritten as:

K1 1 U 1 + K 1 2U 2 = F1,

(8.75)

(8.76)
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= {j (H " (s))Tp1(s) (H)"m (s) + j

H(")T(M 1 (S) A2 -i A Cll)Hm)(s)ds

Nm

+ [ H) (48k* + i2 A c*)H")] i,=,},
n=1

- (M)
Hm)T(s)(M1 2 (s) A2 -i A C12 )Hm)(s)ds

Nmn

- E[E H,")(48k* + i2 A c*)Hi")] JS=Sn,
m n=1

Hi"TF1 (s)ds.

Following the same procedure, the second equation in (8.61) is rewritten as:

K 21 U1 + K 22 U 2 = F2 , (8.80)

where,

K22

K

= Z{(m)(H2;m ()P 2 (s)H2(m) (s)d +(m (H(m) ()Q2(s)H(m d
m s- SM

- 1 "(m) (M22 (s) A 2 -i A C2 2)Hm)(s)ds
Nm

+ [5 Him[ (48k* + i2 A c*)Hi ] i,=,},
n=1

21 =- m Hm)T (s)(M2 1(s) A2 -i A C21)H1(s)(" ds

NM

- E[E Hm)T(48k* + i2 A c*)Him)I ,
m n=1

F2 = f Hm)TF2 (s)ds.

Equations (8.76) and (8.80) are written in matrix form:

[KII

K2 1

K12]

K22 [

(8.81)

(8.82)

(8.83)

(8.84)
F,

F2
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where,

Kil

- 1(m)

K 12

(8.77)

F1 = S1)F, m

(8.78)

(8.79)

(H "m (s))TQ, (s)H'(") (s)ds



With one symbol to represent each matrix in Eq. (8.84), it is rewritten in the abbre-

viated form as:

KU = F, (8.85)

where K is the global dynamic stiffness matrix of the coupled system:

Ki 1 K 1 2

K 2 1 K 2 2 J

U is the global nodal displacement vector, and F is the global nodal force vector.

The construction of the spectrum element matrices, which corresponds to the

global assemblage degrees of freedom (used in Eqs. (8.77) to (8.79) and (8.81) to

(8.83)), can be directly achieved by identifying the global degrees of freedom that

correspond to the local degrees of freedom. However, considering H(m) corresponding

to the global assemblage degrees of freedom, only those columns that correspond to el-

ement degrees of freedom have nonzero entries, and the main objective in defining the

specific matrix is to be able to express the assemblage process of the element matrices

in a theoretically elegant manner. In the practical implementation of the spectrum

element method, this elegance is also present, but all element matrices are calculated

corresponding only to element degrees of freedom and then directly assembled using

the correspondence between the local element and global assemblage degrees of free-

dom. Hence, the frequency-dependent shape function derived in Chapter 4 is directly

employed.

8.6 Undamped and damped natural frequency anal-

ysis of a coupled system

Assuming that fluid in between two risers is ideal and that damping in centralizers

-is neglected, then the coupled system is undamped. Natural frequencies of such an

undamped system are found by means of either a determinant plotting method or an

iterative root-search technique.
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The WKB-based dynamic stiffness method with the W-W algorithm is extended

in this research to the analysis of natural frequencies of the coupled system. Each

segment with continuous properties in both external and internal risers is regarded

as one element. Each mode component at nodal points is obtained easily by Gauss

elimination. Mode distribution within each element is obtained as previously through

frequency dependent shape functions, as shown in Eqs. (8.66) and (8.67). Hence,

natural frequencies and corresponding mode shapes are found with good accuracy

by means of fewer elements. This method has been employed in the analysis of a

double-uniform beam system discussed in sections 8.2 to 8.4, which is either elastically

coupled by discrete springs, or ideal fluid, or the combination of both. Compared with

the analytical solutions in the examples, the natural frequencies and mode shapes of

the coupled system found by the WKB-based DSM with the W-W algorithm are

accurate.

If fluid viscosity and damping in centralizers are considered, a coupled system

is a damped one. Natural frequencies of a damped coupled system are complex.

Complex frequencies are found in this research by means of the Muller method, which

is described in section 3.5. The method requires initial estimation of roots. When a

coupled system is not heavily damped, the undamped natural frequencies are good

approximate initial values.

The above description is further demonstrated through the following example of

a coupled system in which both of the cylinders are simply supported and whose

-specifications are as follow:

Young's modulus E = 30000 Ksi;

Length of both cylinders L = 1944 ft;

Mass per unit length of external pipe (added mass of outside water included, Ca = 1.0)

mi = 169.2134 kg/m;

Outer diameter of external pipe d,, = 13.375 inches;

Inner diameter of external pipe d1 = 12.615 inches;

Area moment of inertia of external pipe I, = 1.3642 x 10-4 M4 ;

Minimum tension on external pipe T10 = 2.5 x 104 pounds;
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Linearly varying tension factor of external pipe a, = 47.00 lb/ft;

Mass per length (insider water included) of internal pipe m 2 = 87.2117 kg/m;

Outer diameter of internal pipe d2o = 9.75 inches;

Inner diameter of internal pipe d2i = 9.155 inches;

Area moment of inertia of internal pipe I2 = 4.1110 x 10-5 M 4;

Minimum tension on internal pipe T2 0 = 1.0 x 104 pounds;

Linearly varying tension factor of internal pipe a 2 = 30.63 lb/ft;

Number of evenly distributed identical centralizers n, = 19.

The following four cases are investigated:

Case 1: only coupled by springs

Each riser is discretized into 20 evenly distributed elements. Setting spring stiffness

ratio k* is 1.0/48, 10/48 and 100/48 respectively, undamped natural frequencies are

obtained by means of the WKB-based DSM with the W-W algorithm and shown in

Table 8.11. This table shows that natural frequencies generally increase with rigidity

of centralizers.

Order k,, =1/48 k. = 10/48 k, = 100/48
1 0.0344 0.0344 0.0344
2 0.0692 0.0693 0.0693
3 0.0778 0.1049 0.1049
4 0.0982 0.1416 0.1416
5 0.1050 0.1795 0.1796
6 0.1259 0.2188 0.2190
7 0.1417 0.2217 0.2603
8 0.1576 0.2297 0.3031
9 0.1796 0.2429 0.3479

10 0.1923 0.2593 0.3945

Table 8.11: Natural frequencies (Hz) of the double-riser system coupled by only
springs

Case 2: only coupled by ideal fluid

Natural frequencies of an ideal fluid coupled system are obtained by using the WKB-
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based DSM with the W-W algorithm. Each riser is regarded as one element. The

first 10 natural frequencies in Hz are found as:

0.0144, 0.0290, 0.0335, 0.0439, 0.0591, 0.0672, 0.0748, 0.0912, 0.1020, and 0.1082,

respectively.

Case 3: generally coupled by springs and ideal fluid

The case is the combination of Case 1 (k* = 1.0/48) and Case 2. Natural frequencies

are found using 20 elements, as in Case 1. Table 8.12 indicates the results and includes

those in Cases 1 and 2 for comparison. This table demonstrates that the fluid lowers

the natural frequencies and softens the coupled system.

Order by springs by fluid Case (3)
1 0.0344 0.0144 0.0294
2 0.0692 0.0290 0.0368
3 0.0778 0.0335 0.0408
4 0.0982 0.0439 0.0525
5 0.1050 0.0591 0.0658
6 0.1259 0.0672 0.0681
7 0.1417 0.0748 0.0804
8 0.1576 0.0912 0.0960
9 0.1796 0.1020 0.1023

10 0.1923 0.1082 0.1125

Table 8.12: Natural frequencies (Hz) of a coupled two-riser system
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The 11th to 16th natural frequencies in Hz are further found to be:

0.1298, 0.1381, 0.1481, 0.1672, 0.1750, 0.1875.

*The corresponding first 16 mode shapes are shown in Figures 8-12 and continued in

8-13. Both figures indicate that when the system is weakly coupled by centralizers,

its mode shapes are either in-phase or out-of-phase. As found in section 8.4.2, the

original first out-of-phase mode in Figures 8-6 and 8-7 disappears while an additional

first in-phase mode occurs. The difference in the first two modes, 4D and 42, is that

the deformation of the internal riser is larger in 4 1 while that of the external riser is

larger in 42.
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Figure 8-12: The first 8 mode shapes of the coupled system (k* = 1/48, solid line:
external riser; dash-dot line: internal riser)

In order to find characteristic vibrations of the coupled system, we further set

the stiffness ratio k* to be 1 and 1000, respectively. Table 8.13 shows the natural
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frequencies and includes the results corresponding to k* = 1/48

table demonstrates that the natural frequencies of the coupled

the stiffness ratio k* of centralizers.

Figures 8-14 and 8-15 depict the first 16 mode shapes of the

Order k* = 1/48 k* = 1 k* = 1000
1 0.0294 0.0324 0.0324
2 0.0368 0.0651 0.0652
3 0.0408 0.0981 0.0988
4 0.0525 0.1313 0.1334
5 0.0658 0.1636 0.1692
6 0.0681 0.1919 0.2064
7 0.0804 0.2068 0.2450
8 0.0960 0.2089 0.2851
9 0.1023 0.2125 0.3264

10 0.1125 0.2127 0.3481
11 0.1298 0.2186 0.3691
12 0.1381 0.2278 0.4005
13 0.1481 0.2281 0.4160
14 0.1672 0.2412 0.4422
15 0.1750 0.2442 0.4648
16 0.1875 0.2549 0.4877

for comparison. This

system increase with

coupled system when

Table 8.13: Natural frequencies (Hz) of a coupled two-riser system

k* = 1. These two figures indicate that when the system is moderately coupled by

centralizers, the first few modes are in-phase while higher mode shapes are roughly

either in-phase or out-of-phase but with shifted peaks. Figure 8-14 shows that the

system in the first two mode shapes vibrates as a single beam and no relative motion

appears between the beams.
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Figures 8-16 and 8-17 show the first 16 mode shapes of the coupled system when

k* = 1000. These figures indicate that when the system are strongly coupled by

centralizers, the system in the low mode shapes vibrates as a single beam and no

relative motion occurs between the beams while relative motion between the beams

in high mode shapes first appears near the bottom and then spreads towards the top

with the mode number. Since the centralizers in this case are very rigid, all the mode

shapes demonstrate that no relative motion appears at the connection points.

Figures 8-12 to 8-17 indicate that the stiffness of centralizers has a great influence

on the mode shapes of the coupled system.
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Figure 8-16: The first 8 mode shapes of the coupled system (k* = 1000, solid line:
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Case 4: coupled by dashpot-springs and a viscous fluid

Assuming that the two risers are coupled by dashpot-springs and viscous fluid, com-

plex circular frequencies are found by means of the Muller method. Damping c* = 0.5

and stiffness ratio k* = 1.0/48 are assumed for the centralizers. The oscillation

Reynolds number NR is set to be 1.0 x 106 and 1.0 x 104, respectively. The results by

the Muller method are shown in Table 8.13, where modal damping ratios are included

in brackets. Modal damping ratio G is the ratio of the real and imaginary parts of

the complex frequency, namely,
=Wfl (8.86)
Wnr

Table 8.14 depicts that modal damping ratios increase with reduction of the oscil-

lation Reynolds number NR. Hence it is observed from the definition of the oscillation

Reynolds number NR that modal damping increases with kinematic viscosity of the

fluid.

Order NR = 1.0 x 106 NR = 1.0 X 104
1 0.2112+0.0372i (0.1761) 0.2032+0.0394i (0.1937)
2 0.2527+0.0448i (0.1775) 0.2473+0.0478i (0.1932)
3 0.3264+0.0463i (0.1418) 0.3197+0.0504i (0.1577)
4 0.4108+0.0469i (0.1142) 0.4026+0.0525i (0.1304)
5 0.5025+0.0475i (0.0946) 0.4928+0.0547i (0.1110)
6 0.6001+0.0481i (0.0802) 0.5888+0.0570i (0.0967)
7 0.6424+0.0047i (0.0073) 0.6410+0.0052i (0.0082)
8 0.7035+0.0488i (0.0694) 0.6905+0.0594i (0.0861)
9 0.8122+0.0496i (0.0610) 0.7975+0.0621i (0.0778)

10 0.8666+0.0045i (0.0052) 0.8650+0.0054i (0.0063)

.Table 8.14: Complex circular frequencies(w = Wr + iwi) of a coupled two-riser system
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8.7 Effects of coupling factors on the vibration of

a coupled system

The dynamic response in the coupled system due to harmonic excitation is found by

solving Eq. (8.85). In this section, effects of fluid viscosity (oscillation Reynolds num-

ber), damping and rigidity of centralizers, and spacing of centralizers are investigated

numerically through the example in Section 8.6. Structural damping of both risers

is set to be 61 = J2 = 0.01. The harmonic force is assumed to distribute within the

range of 10 % the length near the top of the external riser. This range is simulated as

a power-in region, in which the exciting distributed force is assumed to be in phase

with displacement. As in SHEAR7, a sign function is used to determine the sign

of the exciting force, based on the wave number of the external riser under average

tension within the power-in region.

The Root-Mean-Square value (RMS) of the dimensionless displacement vector of

each riser is employed to measure the global vibration level:

N

Uirms = I Uij 12, (i = 1, 2), (8.87)
j=1

where N is the number of nodal points in each riser and uij is the displacement at

the j-th point in the i-th riser.

Based on the theoretical formulation of a general coupled double-riser system, a

computational program is developed for the analysis. The added mass from the fluid

outside of an external riser is considered. The value of NCOUP identifies the type

of the coupled system:

(1) NCOUP = 0, without coupling only external riser is analyzed and its inside fluid

mass included.

(2) NCOUP = 1, two risers are coupled by longitudinally distributed discrete springs

and dampers due to centralizers.

(3) NCOUP = 2, two riser are coupled only by viscous fluid in between.

(4) NCOUP = 3, Two risers are generally coupled by viscous fluid in between and

216



longitudinally distributed discrete springs and dampers due to centralizers.

8.7.1 Fluid viscosity

Assuming that the two risers are coupled by viscous fluid (coupling type NCOUP=2),

we investigate the effect of fluid viscosity by running the developed code. In order

to observe benefit by increasing fluid viscosity, the RMS frequency response of the

external riser when un-coupled is calculated for comparison. In this model, both the

mass of internal fluid and the added mass of external fluid are included in its mass

density. The oscillation Reynolds number, NR, is first set to be 1.0 x 104 and 1.0 x 103,

respectively. Given the radius ratio -y of two pipes, the fluid force coefficients are func-

tions of NR.

Figures 8-18 to 8-19 show the results under different values of NR. Figure 8-18

shows that the RMS displacement response of the external riser when coupled is much

less than than that in the un-coupled model. Figures 8-18 and 8-19 depict that the

reduction of oscillation Reynolds number results in the reduction of vibration of both

external and internal risers.
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dimensionless frequency X=ofo

Figure 8-19:
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The limit value of oscillation Reynolds number which contributes to vibration sup-

pression of the coupled system is found through continuously reducing its value and

observing change of the peaks in the response curves. Figures 8-20 and 8-21 indicate

that the limit value of NR is about 1.0 x 102, at which the vibration of the coupled

-system is maximally reduced. The deviation from this value results in increase of the

RMS displacement response.
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Figure 8-20: The RMS frequency response of the external riser (fluid coupled,
NCOUP=2)

We can find an optimum kinematic viscosity v, of the fluid in between corre-

sponding to a specific current. If the current speed of interest is V = 1 m/s, we can

obtain the corresponding vortex-shedding frequency f,. The outside diameter of the

external riser is D = 0.3397 m. Assuming the Strouhal number St = 0.2, the vortex-
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shedding frequency is f s = = 0.5887 Hz. The circular vortex-shedding frequency

w, = 2 x 7r x f8 = 3.6990 rad/s. The radius of internal riser is r2 = 0.1238 m. From

the definition of NR, we have: v = wor'/NR. The optimal kinematic viscosity of the

fluid in between in this case is v0 = 5.6715 x 10-4.
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8.7.2 Damping of centralizers

Assuming that the two risers are coupled by both viscous fluid and dashpot-springs

(coupling type: NCOUP=3), the effect of damping of centralizers is studied numeri-

cally setting kinematic viscosity of the fluid v = 1.0 x 10- 4 and dimensionless stiffness

ratio of springs k* = 1. Figures 8-22 to 8-25 depict the RMS frequency response of

the coupled system under different values of k*. Figures 8-22 and 8-23 show that

the damping of centralizers can also contribute to the vibration reduction of the sys-

tem. Figure 8-22 includes the result of the un-coupled external riser for comparison.

Figures 8-24 and 8-25 show the RMS response of the system under large values of

dimensionless damping c*. These figures indicate that the vibration of both external

and internal risers is reduced due to the damping of centralizers.

The optimal c* within the frequency range of interest is found by varying its value

and observing the change of the peaks in the response curves.The cross section of

the internal riser is employed as an reference one. The reference circular frequency is

wo = 3.5112 rad/s. This frequency in Hz is fo = 0.5588. As shown in Section 8.7.1, the

vortex-shedding frequency corresponding to current speed V = 1.0 m/s is f, = 0.5887

Hz. The dimensionless frequency is then A, = fs/fo = 0.5887/0.5588 = 1.0535. Fig-

ures 8-24 and 8-25 show that the optimal damping c* of centralizers is around 20.

Since the mode shapes at lower natural frequencies are in phase, there is no relative

motion between the two cylinders. Hence, the damping of centralizers doesn't sup-

press the vibration of the coupled system at a very low frequency.
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dimensionless frequency Xxdo

Figure 8-23: The RMS frequency response
NCOUP=3)

of the internal riser (generally coupled,
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dimensionless frequency X=Iw0

Figure 8-24:
NCOUP=3)

The RMS frequency response of the external riser (generally coupled,
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.8.7.3 Rigidity of centralizers

Section 8.6 discusses the effects of rigidity of centralizers on undamped natural fre-

quencies and mode shapes. With the stiffness ratio k* of centralizers, natural fre-

quencies of the coupled system increase. The rigidity of centralizers influences the

mode shapes of the coupled system. When centralizers are very rigid, the low mode

shapes are similar to those of a single beam, namely two risers are linked together

and no relative motion appears between them. In this case, high mode shapes first

show relative motion near the bottom and the portion having relative motion spreads

toward the top with the mode order.

In the generally coupled system (coupling type: NCOUP=3), the fluid in between

is viscous and centralizers are modeled as dashpot-springs. Setting the kinematic

viscosity of the fluid v = 1.0 x 10- m2 /s and the dimensionless damping c* = 1.0, we

,evaluate the effect of rigidity of centralizers on the dynamic response. Figures 8-26 to

8-29 depict the RMS frequency response of both external and internal risers. Figures

8-26 to 8-27 show that more vibration is reduced with the rigidity of centralizers.

Figure 8-26 includes the result of the external riser when uncoupled for comparison.

Figures 8-28 to 8-29 demonstrate the frequency response of the system under large

values of k*. An optimal value of k* within a frequency range of interest can be

similarly found as in Section 8.7.2.

The rigidity of centralizers doesn't contribute to the vibration reduction of the

system at low frequencies. With the rigidity of centralizers, more and more low-order

mode shapes are in-phase and their behaviors are similar to those of a single beam.

In-phase modes don't show the relative motion between beams and are not beneficial

to increment of fluid damping forces. Hence in-phase modes suppress the effect of

fluid viscosity.
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1 1.5
dimensionless frequency Xo--Ww

Figure 8-26: The RMS frequency response
NCOUP=3)

of the external riser (generally coupled,
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Figure 8-27: The RMS frequency response of the internal riser (generally coupled,
NCOUP=3)
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1 1.5
dimensionless frequency X=oi/o

Figure 8-28:
NCOUP=3)

The RMS frequency response of the external riser (generally coupled,
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1 1.5
dimensionless frequency X-dWo

Figure 8-29:
NCOUP=3)

The RMS frequency response of the internal riser (generally coupled,
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8.7.4 Spacing of centralizers

In order to check the effect of spacing of centralizers on the RMS frequency response

of the coupled system, we calculate the following two cases:

Case (1): increasing the distribution density of centralizers and setting the spacing

of centralizers equal to half of the previous one (namely the spacing is L/40), the

total number of centralizers is double the previous one and is equal to 40.

Case (2): The distribution of centralizers is set as previously.

For both cases, the fluid viscosity is v = 1.0 x 104 m 2/s, the dimensionless stiff-

ness k* is defined with respect to the spacing in Case (1) and is equal to 1000, and

the dimensionless damping of centralizers are set to be zero, i.e., c* = 0.0. Figures

8-30 and 8-31 show the RMS frequency response of both external and internal risers.

Both figures indicate that with the spacing of centralizers, the vibration of the

coupled system is significantly reduced over a large range of frequency. However, the

spacing does not result in the vibration suppression at low frequencies. Since the cen-

tralizers are very rigid, the modes at low natural frequencies are in-phase and their

behavior is similar to those of a single beam. Hence, the effect of the fluid viscosity

is suppressed.

We find a vortex-shedding frequency corresponding to a specific value of current

velocity. The separation of centralizers is chosen so that within the frequency range of

.interest the vibration is suppressed. In our experience, the fundamental frequency for

an one-span simply-supported internal riser should be slightly less than the vortex-

shedding frequency. In the Case (2), the first natural frequency of the one-span

simply-supported beam is fspan = 0.56 Hz. The vortex-shedding frequency corre-

sponding to current velocity V = 1.0 m/s is fviv = 0.59 Hz. Since fsan is less than

fviv, it is appropriate to choose the span in Case (2). It is noted that the separation

of centralizers should not be too large for the wall clearance between the pipes.
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Figure 8-30: The RMS frequency response
NCOUP=3)

of the external riser (generally coupled,
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Figure 8-31: The RMS
NCOUP=3)

frequency response of the external riser (generally coupled,
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Chapter 9

Summary

9.1 New contributions

This thesis makes new contributions in the following aspects:

(1) The WKB-based dynamic stiffness method is presented by combining the

DSM procedure with the WKB approximation for effectively modeling non-uniform

marine risers with variable properties. The WKB-based elemental dynamic stiffness

matrix and the frequency-dependent shape function for a general non-uniform beam

structure are derived and their implicit forms are given. Natural frequencies are found

by equating to zero the determinant of the global dynamic stiffness matrix, which is

obtained by following the procedure in the conventional FEM. Compared with the

FEM, much fewer elements are needed to solve for low natural frequencies as well

as high frequencies. Moreover, mode shapes, slopes and curvatures are important

data to predict the VIV of a riser. The formulas for calculating them are derived.

With the modal data as an input file (common.mds), SHEAR7 predicts the VIV of a

non-uniform riser.

(2) The W-W algorithm for a uniform beam structure is extended to the analysis

of a general non-uniform one. This algorithm further improves the WKB-based DSM

and provides a foolproof basis for the automatic computation of any and all natural

frequencies for a non-uniform beam structure. With this technique, many fewer ele-

ments are required for finding natural frequencies. Only one element is needed for the
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analysis of a simply-supported uniform riser under variable tension. There potentially

exist numerical problems in analyzing marine riser models with complex boundary

conditions. The WKB-based DSM with the W-W algorithm effectively overcomes the

problems and accurately generates modal data for predicting VIV.

(3) The TMM is employed to discuss the wave propagation in a beam system

with discontinuities. Wave reflection and transmission matrices are derived in terms

of transfer-matrix elements. When the length of a beam structure is very large and

high natural frequencies are desired, the TMM has numerical problems in the analysis.

The symbolic operation-based TMM is presented for overcoming the numerical prob-

lems. A non-uniform beam structure is often approximated in TMM by a number of

stepped uniform beams. Three approximate schemes for a uniform beam under vari-

able tension are specifically investigated and their convergence rates are compared.

Based on the relationship between dynamic stiffness and transfer matrices, a new

transfer matrix for describing the non-uniformity of a general beam structure is im-

plicitly derived and transformed into the corresponding delta-matrix for overcoming

numerical problems.

(4) The internal relationships between the DSM and TMM and between their

corresponding matrices are generalized by introducing transformation matrices due

to different sign conventions. Using the relationships, this thesis provides a unified

approach to the analysis of a non-uniform beam system with discontinuities. The

WKB-based DSM is powerful in analyzing a non-uniform beam. For a member ele-

ment with discontinuities, its overall transfer matrix is found by the TMM and the

matrix is then transformed into the corresponding dynamic stiffness matrix. Since

unwanted degrees of freedom are eliminated in the TMM, a limited number of degrees

of freedom are needed to analyze a general non-uniform beam system with disconti-

nuities. Based on the relationship between transfer and dynamic stiffness matrices,

the dynamic stiffness library, shown in Appendix C, is further established.

(5) The means of suppressing vibration of a general beam structure is explored.

The optimal tuning of multiple identical DVAs to a uniform beam with general bound-

ary conditions is analytically found. On the basis of the WKB-based DSM, the opti-
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mal tuning of multiple identical DVAs to a non-uniform beam system under variable

tension is investigated. The effect of structural damping on the optimal tuning is

also discussed. In a double-uniform beam system weakly coupled by longitudinally

distributed discrete springs and dampers, one beam is used as a dynamic absorbing

beam optimally tuned to the other one and the optimal solution is obtained. More-

over, the wave-absorbing termination for a beam system, based on the research by

Vandiver and Li, is derived.

(6) The vibration analysis of a coupled double-beam system is systematically in-

vestigated from the simple to the complicated. This thesis discusses the vibration

analysis of a double-uniform beam system weakly coupled by discrete springs and

dampers distributed longitudinally. Similar research is done for the coupled system

where both uniform beams are under constant tension. When both beams are ad-

ditionally ideal fluid-coupled, the effects of fluid on natural frequencies and mode

shapes are studied. A practical composite riser structure is modeled as a generally

coupled double-beam system, where both beams are non-uniform ones under variable

tension, fluid is viscous, and stiffness and damping from centralizers are longitudinally

distributed. The theoretical formulation of such a complicated system is derived. The

effects on frequency response of coupling factors are numerically evaluated. Natural

frequencies of the coupled system are effectively found by means of the WKB-based

DSM with the W-W algorithm. In order to check damping effects, complex natural

frequencies of the system are obtained by using the Muller method.

9.2 Further work

Further research is recommended as follows:

(1) to implement the improved numerical models in a VIV prediction program such

as Shear7 so that potential numerical problems in the analysis of marine risers with

complex boundary conditions will be overcome;

(2) to generate a guideline to an optimal design of coupling components for suppress-

ing vibration of a coupled system;
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(3) to extend the mathematical formulation of a coupled double-riser system to an-

alyzing a more complicated system; for example, there is the third pipe inside of an

internal riser; and

(4) to apply the improved methods to the analysis of a submerged floating pipeline

in deep water. There are discrete buoyancy elements and tethers distributed along

a pipeline. Each span part can be regarded as one element. The TMM is first em-

ployed to obtain the overall transfer matrix and then the matrix is transformed into

the corresponding dynamic stiffness matrix. In this way, all intermediate degrees of

freedom within a span are eliminated. Hence, a non-uniform pipeline system with

discontinuities is effectively analyzed by means of a limited number of degrees of free-

dom. With the modal data found by the improved approaches, the VIV and fatigue

life are predicted by using Shear7. We have conducted some preliminary work in this

aspect.
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Appendix A

Vibration Analysis of a Riser

Under Linearly Varying Tension

Using FEM

A.1 Derivation of geometric stiffness matrix

In this section, it is of main interest that FEM is used to analyze vibration analysis

of a beam under linearly varying tension. The work due to axial load is :

W = - 1 I IeOv2jN(x)() dx,
0 9

where tension N(x) = To + ax, and a is the proportional factor.

Eq. (A.1) is rewritten as:

+ ax)(a-) 2 dx =-jTo( )2dx - x( )2dx

(I) (II)

From Eq. (A.2), the corresponding geometric stiffness induced by linearly varying

tension consists of two parts, (I) and (II). Part (I) is that due to constant minimum

tension To while Part (II) is that due to the linear increment of tension.
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We first consider Part (II):

X( O)2dx =
a Tf 1 +\(dNe TdNe

21[ o + < < qE. (A.3)

The corresponding geometric stiffness K 1 induced by linear increment of tension

is:

a1 j dN dN
+ e)T < e <. (A.4)

K 1 is further expressed as:

a f1 dNe dNe
= -[X<(d) dg

0 < d <dg
1 dNe TdNe

0 d
xo a dNTdNe$ dNe

ax0  1 dNe dN
TO 1 o d6 d6

(A.5)

in which K, _ T- f1(d )T d is the stiffness matrix induced by constant tension

TO.

Maple V is used to derive the following integral:

KG =
01o

dN dN
d6e T d6e< (A.6)

where (dNe)T -

We thus obtain:

1(1

1

KG
0

6{{- 1)

- 4 + 3 2)

6 (1 - )

(3 2 - 2 )

K11

(dNe)TdNe <

3
5

Il
-L 1
10

3
5

0

10

_l2

10

_L12
60

-il

5

0

0
02

0

112
10

(A.7)
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Equation (A.5) leads to:

K11 = -K 1 + aK .

Similarity, the stiffness K1 is found by using Maple V:

6 11 6 1; \
5 10 5 10

T _L -2_12 _1 1 172
K 1 = 10 15 10 30

1 6 -_ 11 6 11
5 10 5 10

_L 1 02 1 2 12\10 30 TO 15 /

Finally, with Eqs. (A.8) and (A.9), we can find that the geometric stiffness matrix

due to the linearly varying tension is:

K = K1 + K11

To + axoK + aK ,

in which, K is shown in (A.7) and K' is:

K' =

6
5

L1
10

6
5

10

- 1i
10

%2 2

12
10

30

6
5

TO10

6

10

1 110

1 12
30

10

2 1215

A.2 Example

Example 1 a 1400-ft Long Riser Under a Linearly Varying Tension

Length I = 1400 ft;

Young's modulus E = 29000 Ksi;

Moment of inertia I = 0.02074 f t4 ;

Total mass per length including added mass effects m = 7.45789 Slugs/ft;

Minimum tension To = 50000.0 Pounds;

Linearly varying tension a = 115.25 lb/ft.
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A FEM code, which incorporates the new type element, is developed by using Matlab.

Figure A-1 shows the results. This figure shows that much fewer elements is needed

3.5

3
+

2.5- O 1lements
+ 20 elements +
* 50 elements+

&+

L 0 +

0~1.5 0 -
z0

0 :
0 *

1 .0*

0

0.5-

5 10 15 20 25 30
Order (n)

Figure A-1: Natural frequencies of the 1400-ft riser

to obtain lower-order natural frequencies. Table A-1 also shows Shear7's result for

comparison. In this table, the new FEM uses 50 elements to solve this problem.

Figure A-2 depicts the first three mode shapes.

Further, in order to check the validness of using the new geometric stiffness matrix

induced by linear varying tension, use the approximation method for comparison,

i.e. assume each element under its average tension. Table A-2 shows the results

and indicates that tension has higher influence on lower natural frequencies than on

higher frequencies. In Table A-2, the exact values are the converged ones obtained

by using more elements . It can be seen that the new geometric stiffness matrix is

more efficient.

Increasing the linearly varying tension factor ce up to be 1152.5lb/ft, the result

comparison is shown in Table A-3. With higher value of a, the derived matrix works

much better, especially for lower natural frequencies.

Hence, the advantages of the new geometric stiffness matrix induced by linearly
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Order shear7 New FEM
1 0.0447 0.0446
2 0.0902 0.0903
3 0.1370 0.1372
4 0.1857 0.1861
5 0.2368 0.2372
6 0.2904 0.2909
7 0.3470 0.3475
8 0.4067 0.4073
9 0.4699 0.4705

10 0.5367 0.5374
11 0.6073 0.6080
12 0.6819 0.6827
13 0.7607 0.7616

Table A.1: Comparison of natural frequencies (Hz)

0 50 100 150 200
x (in)

250 30 350 400

Figure A-2: The first three mode shapes of the 1400-ft riser
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Order Exact FEM Approx.
1 0.0446 0.0446 0.0447
2 0.0903 0.0903 0.0905
3 0.1372 0.1373 0.1376
4 0.1861 0.1861 0.1865
5 0.2372 0.2374 0.2379
6 0.2909 0.2916 0.2922
7 0.3475 0.3494 0.3501
8 0.4073 0.4120 0.4129
9 0.4705 0.4811 0.4812

10 0.5374 0.5479 0.5455

Table A.2: Comparison of natural frequencies (Hz)

Order Exact FEM Approx.
1 0.0969 0.0970 0.0996
2 0.1993 0.1996 0.2043
3 0.3033 0.3038 0.3105
4 0.4095 0.4109 0.4191
5 0.5183 0.5214 0.5302
6 0.6300 0.6355 0.6415
7 0.7444 0.7525 0.7509
8 0.8618 0.8722 0.8701
9 0.9820 1.0003 1.0099

10 1.1052 1.1368 1.1421

Table A.3: Comparison of natural frequencies (Hz)
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varying tension lie in:

(1) The element can describe the case that tension is not of slowly varying.

(2) Compared with using a conventional FEM, the new geometric stiffness matrix

requires fewer elements for solving natural frequencies and mode shapes of a beam

under a linearly varying tension.
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Appendix B

The frequency dependent shape

function

With the Maple V, Chapter 4 derives the frequency dependent shape function <D in

Eq.(4.13) as follows:

p(1) =- (T2(s)B1(s)T2(1)T1(O)hi(O)T1(1)B2B3h,(1)

+ T2(s)B1(s)T2(1)T1(O)hi(O)T1(1)Bh 2 (1)B4

+ T2(s)B2(s)TJ(1)T2(0)h2 (0)hi(1)B2

- T 2(s)B2(s)T(1)T2 (0)h2 (0)hi(1)B2

- T 2(s)B2(s)T1(1)B1T2(1)T1(O)hi(O)B3h,(1)

+ T2(s)B2(s)T1(1)B2T2(1)h2 (1)T(O)hi(O)B4

- T1(s)B3(s)T2(0)h2(0)T2(1)T1(1)B2B3hj(1)

- T1(s)B3(s)T2(0)h2(0)T2(1)T1(1)Bih2 (1)B4

+ T1(s)B4(s)T2(1)T2 (0)h2 (0)T1(1)B2B4h(1)

+ T(s)B4(s)T2(1)T2(0)h2(0)T1(1)B3Bih2 (1)

- Ti(s)B4 (s)T2(1)Bl2T1(0)h,(0)h2 (1)

- T1(s)B4(s)T2(1)B2h2 (1)T1(0)hi(0))

p(2) = (
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+ T2 (s)B1(s)T(1)T2 (0)hi(1)B42

- T2 (s)B1(s)T1(1)B2T2 (1)T(O)B4hi(1)

- T2 (s)B1(s)T1(1)B1T2 (1)h2(1)T(O)B3

+ T2(s)B2(s)T2(1)Ti(O)T1(1)B1B4hi(1)

- T2(s)B2 (s)T2(1)TI(O)T1(1)B2h2 (1)B3

+ T1(s)B3(s)T2 (1)B1T2 (0)B3T1(1)hi(1)

+ T1(s)B3 (s)T2(1)B 2h2(1)T(O)

- T1(s)B3 (s)T2(1)B2h2 (1)T2(0)B4T1(1)

+ T1(s)B3 (s)T2(1)B2h2 (1)T1 (0)

- T1(s)B4 (s)T2(1)T2 (0)T1(1)B1B4hi(1)

+ T1(s)B4 (s)T2(1)T2 (0)T1(1)B2h2 (1)B3 )

(3) =- ( T2(s)B1(s)T1(O)hi(O)T2(0)B3T1 (1) hi(1)

+ T2(s)B1(s)T(0)hi(O)B1T2(1)h2(1)

- T2(s)B2 (s)T1(O)T2 (0)h2 (0)B4T1(1)hi(1)

+ T2(s)B2 (s)Tf(0)B2T2(1)h 2(1)hi(0)

- T1(s)B3 (s)T2(0)h2(0)B3T1(1)hi(1)

- T(s)B3 (s)T2(0)h2 (0)B1T2(1)h2(1)T1(0)

+ T1(s)B4 (s)T2(0)h2 (0)B4T(1)hi(1)

- T1(s)B4 (s)T2 (0)B2T2(1)h 2(1)T1(O)hi(O))

p(4) = -+(T2(s)B1(s)T1(O)hi(O)T2 (0)B4T(1)

- T2 (s)B1(s)T2(0)hi(0)B
2T2 (1)

- T2 (s)B2(s)T1(O)T2(0)h2(0)B3T1(1)

+ T2 (s)B2(s)T2(0)B1T2 (1)hi(O)

- T1(s)B3(s)T2(0)h2 (0)B4T1(1)

+ T1(s)B3(s)T2(0)h2 (0)B2T2 (1)T1 (O)

+ T1(s)B4 (s)T2(0)h2 (0)B3T(1)
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- T1(s)B4 (s)T2(0)B1T2(1)T1(O)hi(O))

61= -T2(0)h 2(0)T2(1)hi(1)B2

+ T2(0)h2 (0)Tl(1)hi(1)B 2

- T 2 (0)h2(0)T1 (1)B2 T2 (1)T1 (0)B4hi(1)

- T 2 (0)h2(0)T1(1)B1 T2(1)h2 (1)T1(O)B3

+ B1 T2 (1)T1 (O)hi(O)T2(0)B3T1(1)hi(1)

+ B12T(1)T(0)hi(O)h2 (1)

- B2T2 (1)h2(1)T1 (O)hi(O)T2(0)B4T(1)

+ B2T2(1)h2(1)T(0)hi(0). (B.1)
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Appendix C

Dynamic Stiffness Library

C.1 A general non-uniform beam under variable

tension

Chapter 4 derives the dynamic stiffness matrix of a general non-uniform beam under

variable tension by using the WKB approximation. With the aid of the mathematical

software Maple V, we find the upper triangular elements of the WKB-based dynamic

stiffness matrix k as follows:

k(1, 1) = h2(0)T2(0)T2(1)T1(O)hi(O)T1(1)(B2B 3h1 (1)

+ Bih2 (1)B4)P(0)(h2(0) + h2(0))

k(1, 2) = E126 (T22(0)h2(0)T,2(1)P(O)hi(1)B3

- T2(0)h3(0)T2(1)P(0)h 1(1)B2

+ T2 (0)h ()T 1(1)P(0)B2T 2 (1)T1 (0)B4 hi(1)

+ T2 (0)h (0)T1(1)P(O)hi(1)B2

+ T2 (0)h ()T 1(1)P(0)B2T2 (1)T1(0)B4h,(1)

+ T2 (0)h ()T 1(1)P(0)B1T2 (1)h2(1)T1(0)B3

T2(0)h2 (0)T2(1)Q(0)h1(1)B2
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- T (O)h2 (0)Tl(1)Q(0)hi(1)B4

+ T2 (0)h2(0)T1 (1)Q(0)B2T2 (1)T1 (0)B4h1 (1)

+ T2 (0)h2 (0)T1 (1)Q(O)B1 T2 (1)h2(1)T1 (0)B3

+ hi(0)T1(0)T2(1)P(O)B1T2(0)B3T1(1)h 1(1)

+ h,(O)T?(0)T2(1)P(O)B h2(1)

- h3(0)T1 (O)T2 (1)P(O)B2h2 (1)B4T(1)T2 (0)

+ hi(O)Ti(0)T2(1)P(O)Bih2(1)

- hi(O)T1 (O)T2 (1)Q(O)B1 T2(0)B3T(1)hi(1)

- hi(O)T2(0)T2(1)Q(O)B2h
2 (1)

+ hi(O)T1 (O)T2 (1)Q(O)B2h2(1)B4T2(0)T(1)

- h,(O)T2(0)T2(1)Q(O)Bih2(1))

k(1, 3) = E h2 (0)T2 (0)T1 (0)hi(0)(T2(0)B3T(1)hi(1)

+ B1 T2(1)h2 (1)T1 (0))P(0)(h2(O) + h2(O))

k(1,4) = Eo1 h2 (0)T2 (0)T1 (0)hi(0)(T2(0)B4T(1)

- B 2T2(1)T1 (0))P(0)(h2(O) + h2(O))

k(2,2) = - P(O)T2(0)T2 (1)T1 (O)T1 (1)(B1B4hi(1)

- B2h2(1)B3)(hi (0) + h2(O))

k(2,3) = 16 P(0)T2(0)T1 (0)(T2(0)h2(0)(B4T1(1)hi(1)

- B2T2(1)h2(1)T1 (0)h,(0))(h2(O) + h2(O))

k(2,4) = - ~P(0)T2 (0)T1 (0)(T2 (0)h2 (0)B3T(1)

- B1T2(1)T1 (O)hi(O))(h2(O) + hi(O))

k(3, 3) = - T2 (1)h2 (1)T1 (0)T2(0)T1(1)hi(1)(B2h2(1)hi(O)P(1)B3

+ 2B2hi(0)Q(1)B 3 + B(1)h2(1)P(1)h2(0)B4

+ 2B1 Q(1)h2 (0)B4 + h2 (0)B4h2(1)P(1)B1

+ B3 hI(1)P(1)B2hi(0))

k(3,4) = - (-B2T2(1)h3(1)T1(o)hi(o)P(1)T2(o)B4T1(1)
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+ BT (1)h2(1)T (o)hi(o)P(1)

- B2T2 (1)h2 (1)T1 (O)hi(O)Q(1)T2 (0)B4T1 (1)

+ B T (1)h2 (1)T2(0)hi(O)Q(1)

-BlT2(1)h2(1T(O)P(1)T2(0)h2(0)B3T1(1)

+ BlT (1)h2(1)T(0)P(1)hi(O)

- B1T2(1)h2(1)T1(0)Q(1)T2(0)h2(0)B3T1 (1)

+ BlT (1)h2 (1)T(0)Q(1)hi(O)

- T (0)h2(0)B4T(1)h (1)P()

+ T2(0)h2(0)B4T(1)h3(1)P(1)B2T2(1)T1 (O)

- T (0)h2 (0)B T(1)hi(1)Q(1)

T2(0)h2(0)B4T1 (1)hi(1)Q(1)B2T2 (1)T1 (0)

+ T(0)B TJ(1)h3(1)P(1)h2(0)

- T 2 (0)B3T1 (1)h (1)P(1)BT2(1)T1 (O)hi(O)

T (0)B T2(1)hi(1)Q(1)h 2(0)

- T2 (0)B3T1 (1)hi(1)Q(1)BT2(1)T1 (o)hi(o)

k(4, 4) = P(1)T2(1)T1(0)T2(0)T1(1)(-B1h (1)hi(O)B4

+ B2h (1)h2(0)B3 + B3h(1)h2(0)B2 - B4 h2(1)Bihi(O))

.6 = T2(0)h2(0)T2(1)hi(1)B2 - T2(0)h2(0)TI2(1)hi(1)B4

+ T2(0)h2 (0)T1 (1)B2 T2 (1)T1 (0)B4hi(1)

+ T2(0)h2(0)T1 (1)B1 T2(1)h2(1)T1 (0)B3

- B1 T 2(1)T1 (O)hi(O)T2(0)B3T(1)hi(1)

+ B2T2 (1)h2 (1)T1 (O)hi)(O)T2(0)B4T(1)

- B T(1)h2(1)T(0)hi(O). (C.1)
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C.2 A uniform Bernoulli-Euler beam

Eq. (6.30) shows the upper triangular elements of the dynamic stiffness matrix of a

uniform beam. It is rewritten in the abbreviated form:

F6  -F41

EI -F 41 F2 1
2

F5  -F31
F1 F11 2

where the frequency functions F (i=1-6) are

F1 = -A(sinh A - sin A)/6

F2 = -A(cosh A sin A - sinh A cos A)/6

F3 = -A 2 (cosh A - cos A)/6

F4 = A 2 (sinh A sin A)/6

F5 = A 3(sinh A + sin A)/J

F6 - A 3 (cosh A sin A + sinh A cos A)/6

6 = cosh A cos A - 1

F5  F31

-F1 F11 2

F6  F41

F41 F21
2

defined as:

C.3 A Beam Subjected a Constant Tension

If the effects of the constant axial force P (tension is positive), shear deformation

and written inertia are all included, the resulting dynamic stiffness matrix can still

be written in the form as in Eq.(1), i.e.,

EI
k 13g

F6

-F41

F5

F31

-F41

F21 2

-F31

F11 2

F5

-F3 1

F6

F41

F31

F11 2

F41

F21 2

(C.3)
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where the frequency functions are:

F1 = (a + 7/3)(r7sinh a - sin )1)/6

F2 = (a + 77#)(sin, 3cosh a - 77 cos/ sinh a)/6

F3 = 7(1- s2p2)(a2 + / 2 )(cosha - cos 0)/6

F4 = el[(a - 7/3)(1 - cosh acos3) - (0 + r7a) sin # sinh a]/6

F5 = -b 2(a + rf)(sinh a + rj sin #)/a#6

F6 = b2 (a + 7r#)(sinh a cos / + 77 sin 0 cosh a)/a/36

where,

b 2 pAl
4 w

2

EI

r 2 1
A1

2

S2 EI
GA,1

2

2 P1
2

P2 + r 2(1 _ s2p2) + S2

h =(-s 2 p 2 a2+b2 S 2

al

e 1-s
2p 2 f

2
-b

2
s
2

e/h

J = 2rq(1 - cosh a cos,3) + (1 - 72f) sin # sinh a

C.4 Combination of a uniform beam with point

mass

El m
i-I

Figure C-1: Combination of beam with point mass

Figure C-1 shows the combination of a uniform beam with a point mass on its

.right end. The upper triangular elements of dynamic stiffness matrix k are:
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EI k3 (cos(kl) sinh(kl) + cosh(kl) sin(kl)).
cosh(kl) cos(kl) - 1

EI k2 sinh(kl) sin(kl)
cosh(kl) cos(kl) - 1 '

El k3 (sinh(kl) + sin(kl))-
cosh(kl) cos(kl) - 1

El k2 (- cosh(kl) + cos(kl))-
cosh(kl) cos(kl) - 1

El k (- cosh(kl) sin(kl) + cos(kl) sinh(kl))-
cosh(kl) cos(kl) - 1 '

k(1, 1)

k(1, 2)

k(1 3)

k(1 4)

k(212)

k(2 3)

k(214)

k(3 3)

k(314)

k(4, 4)
EI k (- cosh(kl) sin(kl) + cos(kl) sinh(kl))

cosh(kl) cos(kl) - 1

C.5 Combination of a uniform tensioned beam with

point mass

i-1
T :-

EI m

: T

LI

Figure C-2: Combination of tensioned beam with point mass

Figure C-2 shows the combination of a uniform tensioned beam with a point mass

on its right end. The upper triangular elements of k are found as:
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El k2 (- cosh(kl) + cos(kl))
cosh(kl) cos(kl) - 1

EI k (sinh(kl) - sin(kl))
cosh(kl) cos(kl) - 1

m w2 cosh(kl) cos(kl) + k3EI sinh(kl) cos(kl) + k 3 EI sin(kl) cosh(kl) - M w2
cosh(kl) cos(kl) - 1

El k2 sinh(kl) sin(kl).
cosh(kl) cos(kl) - 1 '

(C.4)
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k(1,

k(1,

k(1,

k(1,

k(2,

1) = [A 1 3 sin(A1 1) cosh(A 2 1) + A2
3 sinh(A2 ) cos(A1 1)

+A, 2 A cos(A1 1) sinh(A2 ) A A2 cosh(A2 1) sin(Al l)]A 1 El A 2 /6;

2) = [A El A 2
3 - 2 A TA 2 + A 4 sin(A1 1) sinh(A2 I)EI

+A 2 sin(Ai 1) sinh(A2 l)T + A2
4 sinh(A2 1) sin(A., 1)EI

-A 2 sinh(A2 1) sin(Al l)T - A 2 EI A 3

+A 3A2 cos(Al 1) cosh(A2 l)EI + 2 A1 A2 cos(A1 1) cosh(A2 1)T

-A, A 2
3 cosh(A2 1) cos(A1 l)EI]/6;

3) = -[A, EI A2 (A 2 2 + A 2) (A 1 sin(Al 1) + A2 sinh(A2 l))]/6;

4) = -[A, EI A2 (A 2 2 + A 2) (cos(Al 1) - cosh(A 2 l))]/6;

2) = -EI [cos(A1 1) sinh(A2 I)A 3 - cosh(A2 1) sin(A l)A2
3

- sin(A l)A2 cosh(A 2 1)A 2 + sinh(A2 l)AI cos(A l)A 2
2 ]/6;

3) = A EI A2 (A 2
2 + A 2) (cos(A, 1) - cosh(A2 1)) /6;

4) -EI (A 2 2 + A 2) (sin(A 1)A2 - sinh(A2 l)Al) /6;

3) = -[-2 A A 2 mw 2 cos(Al 1) cosh(A2 ) - A 1 4 A 2 sin(Al l)EI cosh(A2 1)

-A 1 A 2
4 sinh(A2 1)EI cos(A1 1) + 2 mw2 A2 A1

+mw2 sin(Al l)A 2
2 sinh(A 2 1) - mW2 sinh(A2 1) 1

2 sin(Al 1)

- cos(A l)A 1 3 A 2
2 EI sinh(A2 ) - A 1 2 A 2

3 cosh(A 2 l)EI sin(Al l)]/6;

4) = -[A EIA2 3 - 2A TA 2

+A 4 sin(Al 1) sinh(A2 l)EI + A 2 sin(Al 1) sinh(A2 l)T

+A 2 
4 sinh(A2 1) sin(Al l)EI - A 2

2 sinh(A2 1) sin(Al l)T

-A 2 EI A 3 + A, 3 A 2 cos(Al 1) cosh(A2 l)EI

+2A 1 A2 cos(A., 1) cosh(A2 l)T - A1 A2
3 cosh(A2 1) cos(A1 l)EI]/6

4) = -El [cos(Al 1) sinh(A2 l)A 3 - cosh(A 2 1) sin(A l)A 2
3

- sin(A l)A 2 cosh(A 2 l)A 1 2 + sinh(A2 l)Al cos(Al 1)A 2
2 ]16;

6 = 2 A2 - sinh(A2 1)Aj 2 sin(A1 1) + sin(Al 1)A 2
2 sinh(A 2 1)
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k(2,

k(2,

k(3,

k(3,

k(4,



-2A, A2 cos(Al 1) cosh(A2 ).

C.6 Combination of a tensioned beam with spring-

dashpot support

i-I
T c-

K
El

T

k c

Figure C-3: Combination of tensioned beam with spring-dashpot support

The upper triangular elements of dynamic stiffness matrix of a uniform tensioned

beam with spring-dashpot support, shown in Figure C-3, are:

k(1, 1) = -[sin(All)A 1
3 cosh(A21) + sinh(A 21) A2

3 cos(Al)

+ A 2A2 sinh(A21) cos(All) + AjA 2
2 cosh(A21) sin(All)]EI AlA 2/6;

k(1, 2) = -[A EI A23 - 2 A2AT

+A 4 sin(A l) sinh(A2 1)EI + A 1
2 sin(All) sinh(A21)T

+A 2
4 sinh(A2 1) sin(All)EI - A2

2 sinh(A2 1) sin(All)T

-A 2 EI A 1
3 + A, 3 A2 cos(All) cosh(A21)EI

+2 AjA 2 cos(Al) cosh(A21)T - AjA2
3 cosh(A21) cos(AlI)EI]/J;

= [AA 2 (A 2 2 + A,2) El (A, sin(Al) + A2 sinh(A21))]/6;

= -AA 2 (A2
2 + A,2 )EI (- cos(AlI) + cosh(A21))/J;

= -[- cos(Al) sinh(A21)A 1
3 + cosh(A21) sin(All)A2

3

+ sin(A1)A 2 cosh(A 21)A 1
2 - sinh(A21)Al cos(Al)A2 2]EI/;

= AA2 (A2
2 + A,2 ) El (- cos(A l) + cosh(A 21)) /6;
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k(1, 3)

k(1, 4)

k(2, 2)

k(2,3)

-

(C.5)

i

I



k(2,4

k(3,3

k(3,14

k(4, 4

= (A 2
2 + A2) EI (sin(All)A2 - sinh(A21)Ai) /6;

= -[-2 AIA2k cos(A l) cosh(A21) - 2 A A2iwc cos(A l) cosh(A21)

+A, 4 A2 sin(Ajl)EI cosh(A2l) + AA 2 
4 sinh(A2 1)EI cos(All) + 2 kA2A,

+k sin(All)A 2
2 sinh(A21) - k sinh(A21)A1

2 sin(All)

+2 iw cA2A, + iw c sin(All)A22 sinh(A21)

-iw c sinh(A 21)A 1
2 sin(All) + A1 3 A 2

2 cos(All)EI sinh(A2 1)

+ cosh(A 21)A2 A2
3EI sin(Al)]/6;

= [A EI A2
3 - 2 A2AT + A, 4 sin(All) sinh(A21)EI

+A, 2 sin(All) sinh(A21)T + A2
4 sinh(A21) sin(All)EI

-A 2
2 sinh(A21) sin(Al)T - A2EI A, 3

+A,3 A2 cos(Al) cosh(A 21)EI + 2 AjA 2 cos(All) cosh(A2 1)T

-AA 2 
3 cosh(A2 1) cos(Ajl)EI]/6;

= [cos(A l) sinh(A21)A 1 3 - cosh(A21) sin(All)A23

- sin(Al)A2 cosh(A21)A 2

+ sinh(A21)Ai cos(Al)A 2
2]EI/6;

6 = 2 AA 2 cos(A 11) cosh(A 2 1)- 2AA 2

- sin(All)A 2
2 sinh(A 21) + sinh(A2 1)A1

2 sin(All). (C .6)

C.7 A uniform tensioned beam with an abosrber

on the right end

Figure C-4 shows a uniform tensioned beam with an absorber on its right end. The

upper triangular elements of k, derived in Section 6.5, are:

k(1, 1) = [A 1
3 sin(Al 1) cosh(A2 ) + A2

3 sinh(A 2 1) cos(Al 1)

+A 2A 2 cos(Aj 1) sinh(A2 ) +A A2
2 cosh(A 2 1) sin(Al l)]A EI A2 /6;
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k c

M A

T -- T

Figure C-4: Combination of tensioned beam with an absorber

k(1, 2) = [A, El A 2
3 - 2A, A 2 T + Al 4 sin(A1 1) sinh(A2 1)EI

+A 2 sin(A1 1) sinh(A2 l)T + A 2
4 sinh(A2 1) sin(Al l)EI

-A 2
2 sinh(A2 1) sin(A, l)T - A2 EI A, 3

+A, 3 A2 cos(A1 1) cosh(A2 l)EI + 2 A, A 2 cos(A1 1) cosh(A 2 l)T

-A, A 2
3 cosh(A2 1) cos(Al l)EI]/6;

k(1, 3) = -[El (A 22 + A1 2) A1 A 2 (A, sin(Al 1) + A 2 sinh(A2 1))]/J;

k(1, 4) = -[El (A 2 2 + A, 2 ) A., A2 (cos(Al 1) - cosh(A2 1))]/6;

k(2, 2) = -El [cos(A1 1)A , 3 sinh(A2 1) - cosh(A2 l)A 2
3 sin(Al 1)

-A 2 sin(Al 1) cosh(A2 l)A1
2 + A1 sinh(A2 1) cos(Al l)A 2

2 16;

k(2, 3) = [EI (A 2 2 + A 2 )A, A 2 (cos(Ai 1) - cosh(A2 l))/;

k(2, 4) = [El (A 2 2 + A 2) (- sin(A l)A 2 + sinh(A2 1)A 1 )]/6;

k(3, 3) = [2 A, A2 mW 3 jc - A 1 A2
4 sinh(A2 l)EI k cos(A1 1)

-2 A 1 A 2 mw 2 k cos(A, 1) cosh(A 2 1) - A , 4A 2 sin(A, l)EI jw c cosh(A2 1)

+A, 4A 2 sin(Al l)EImw 2 cosh(A 2 1) - A 1 A 2 
4 sinh(A 2 )EIjwccos(Al 1)

+A, A2
4 sinh(A2 l)EI mw2 cos(Al 1) - 2 A, A2 mW 3jc cos(Al 1) cosh(A 2 1)

+ cosh(A2 l)Al 2 A 2
3EI mU2 sin(Al 1) + cos(Al l)A 1 

3 A2
2 EI mw 2 sinh(A2 1)

-A 1
4A 2 sin(A1 l)EI k cosh(A 2 1) - mW 3jc sinh(A2 l)A 1

2 sin(Al 1)

+mW 3jc sin(Al l)A 2 2 sinh(A2 1) - cos(Al l)A 13 A 2
2 EI jw c sinh(A2 1)

- cos(Al l)Al 3 A 2
2 EI k sinh(A2 1) - mw 2 k sinh(A 2 l)A 1

2 sin(A 1)

2 l)A 2
2 s ) l)A 3+mw k sin(Al )A sinh(A2 1 - cosh(A2 1 2lA 2 EI k sin(A., 1)
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+2 A A 2 mw 2 k - cosh(A 2 l)Aj 2 A 2
3 E jw c sin(A1 1)]

/[6(-k + mw 2  jwc);

= -[A E1A2
3 - 2A, A 2 T+A1 

4 sin(A 1) sinh(A 2 1)EI

+A 2 sin(A 1) sinh(A2 l)T + A24 sinh(A2 1) sin(Al l)EI

-A 2 2 sinh(A2 1) sin(Al l)T - A 2 EI A1
3

k(4, 4)

6

+A 3A 2 cos(Al 1) cosh(A2 l)EI + 2 A, A2 cos(Al 1) cosh(A2 l)T

-A, A 2
3 cosh(A2 1) cos(Al l)EI]/6;

-EI [cos(A l)A 1 3 sinh(A 2 1) - cosh(A2 l)A 2
3 sin(Al 1)

-A 2 sin(Ai 1) cosh(A 2 l)A 2 + A sinh(A2 1) cos(A l)A 2
2 ]/6;

-2 A, A2 cos(Al 1) cosh(A2 ) + 2 A, A2

+ sin(A l)A2 2 sinh(A2 ) - sinh(A2 l)A 1 2 sin(Al 1). (C.7)

C.8 Combination of a tensioned beam with con-

centrated mass and rotary inertia

The upper triangular elements of dynamic stiffness matrix k of a uniform tensioned

beam with concentrated mass and rotary inertia, shown in Figure C-5, are:

_i El

T -

U
m,lI

-' T

Figure C-5: Combination of tensioned beam with concentrated mass and rotary in-
ertia

= -[sin(A1l)A 1
3 cosh(A21) + A2

3 sinh(A21) cos(Al)

+A, 2 A2 cos(Ajl) sinh(A21) + A1 A2
2 cosh(A21) sin(All)]EI AlA 2/6;
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k(1,.

k(1,

k(1,

k(2,

k(2,

k(2,

k(3,)

k(3,

k(4, 4

2) = -[AEI A 23 - 2 AA 2T + sin(Al)A 1 4 sinh(A2 1)EI

+ sin(All)A1
2 sinh(A21)T + A24 sinh(A21) sin(All)EI

-A 2 sinh(A21) sin(Aul)T - A2EI A, 3

+A 3 A2 cos(Aul) cosh(A2 1)EI + 2 AA 2 cos(All) cosh(A2 1)T

-A 1 A 2
3 cosh(A21) cos(Al)EI]/6;

3) = N (A2 + A 2) El (A, sin(All) + A2 sinh(A21))/6;

4) = -AA 2 ( 2 + A2) EI (- cos(Al) + cosh(A21)) /6

2) = -El (- cos(Al) sinh(A21)A 1
3 + cosh(A21) sin(Al)A 2

3

+ sin(Al)A2 cosh(A2 1)A 2 - sinh(A21)A1 cos(Aul)A 2

3) AA 2 (A 2 2 + A 2) El (- cos(Al) + cosh(A 21)) /6;

1) = (A22 + A 2) EI (sin(Al)A2 - sinh(A21)Al) /6;

3) = -[2 AlA 2 mw 2 cos(A l) cosh(A 21)+ A4 A 2 sin(All)EI cosh(A21)

+ AA 2
4 sinh(A21)EI cos(All) - 2 A mA2 mcw 2

-mcw 2 sin(Al)A2
2 sinh(A21) + mcw 2 sinh(A21)A1 2 sin(A l)

+A 3 A 2 cos(All)EI sinh(A21) + cosh(A21)AA 2
3 E sin(Aul)]/6;

1) = [AjEI A2
3 - 2AjA2T + sin(Al)A 4 sinh(A21)EI

+ sin(AIl)A 2 sinh(A21)T + A2
4 sinh(A21) sin(All)EI

-A2 2 sinh(A21) sin(Ail)T - A2EI A, 3 + A, 3 A2 cos(AlI) cosh(A21)EI

+2 AA 2 cos(All) cosh(A21)T - AIA 2
3 cosh(A21) cos(Al)EI]/6;

= -[-2 AA2 iew 2 + ic2 A12 sin(A 11) sinh(A21) - iW2 A2
2 sinh(A21) sin(All)

- 1
3 cos(All)EI sinh(A21) + A2

3 cosh(A21)EI sin(All)

+2 AIA 2 icw2 cos(All) cosh(A21) + A1
2 A2 sin(All)EI cosh(A 21)

-AA 2 
2 sinh(A21)EI cos(Aul)]/6;

6 = 2 AA2 cos(Al) cosh(A21) - 2 AA 2

- sin(A1 l)A 2
2 sinh(A21) + sinh(A21)A 2 sin(All) (C.3)
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C.9 Combination of a tensioned beam with con-

centrated mass and spring support

Figure C-6 shows a uniform tensioned beam with concentrated mass and linear spring

support on its right end. The upper triangular elements of its dynamic stiffness matrix

k are:

i-T El H

TT

T

Figure C-6: Combination of tensioned beam with concentrated mass and spring sup-
port

k(1, 1) -[A 1
3 sin(Al) cosh(A21) + A2

3 sinh(A21) cos(Al)

+A 1
2 A2 cos(Al) sinh(A21) + AA 2 

2 cosh(A 21) sin(AlI)]EI AlA 2/6;

k(1, 2) -[A EI A2
3 - 2 AjA 2T + A4 sin(All) sinh(A21)EI

+A2 sin(All) sinh(A21)T + A2
4 sinh(A21) sin(A1l)EI

-A 2 sinh(A 21) sin(All)T - A 2EI A, 3 + A, 3A2 cos(AI) cosh(A 2 1)EI

+2 AjA 2 cos(All) cosh(A21)T - AjA 2
3 cosh(A21) cos(All)EI]/6;

k(1, 3) = [AjA 2 (A,2 + A2
2) EI (A, sin(Al) + A2 sinh(A2 1))]/6;

k(1, 4) = -AjA 2 (A 1 2 + A 22) EI (- cos(All) + cosh(A 21)) /J;

k(2, 2) = [cos(A 11) sinh(A 21)A 1
3 - cosh(A21) sin(Al)A 2

3

- sin(A l)A 2 cosh(A 21)A 1
2 + sinh(A21)A, cos(Aul)A 2

2]EI1/6;

k(2, 3) = AjA 2 (,A 2 + A 2 2) EI (- cos(All) + cosh(A21)) /6;

k(2, 4) = -(A 1
2 + A 2

2 )EI [- sin(Al)A2 + sinh(A21)AiJ/6;

261



k(3, 3)

k(3, 4) =

k(4, 4) =

6-=

262

-[-m w 2 sin(AI)A 2 
2 sinh(A21) + M w2 sinh(A l)A 2 sin(Al)

-2 AjA2m w 2 + A3 A2 cos(All)EI sinh(A 21)

+ cosh(A 21)A2 3 A1
2 EI sin(Al) + 2 AjA 2k

+k sin(Al)A2
2 sinh(A 21) - k sinh(A21)A1

2 sin(Al)

+2 AjA2m w 2 cos(Al1) cosh(A2 1) - 2 AjA2k cos(Al) cosh(A21)

+\ 1 4 A2 sin(All)EI cosh(A21) + AA 2
4 sinh(A21)EI cos(Al)]/6;

[Al EI A2
3 - 2 AA 2T + A, 4 sin(Al) sinh(A 21)EI

+A1
2 sin(Al) sinh(A21)T + A2

4 sinh(A2 1) sin(All)EI

-A 2 sinh(A2 1) sin(Al)T - A2EI A,3

+A 3A2 cos(All) cosh(A2 1)EI + 2 AA2 cos(A 11) cosh(A21)T

-AA 2 3 cosh(A21) cos(Al)EI]/6;

- sin(All)A 2 cosh(A21)A1
2 + sinh(A21)Al cos(AIl)A 2

2]EI/6;

2 AA2 cos(All) cosh(A21) - 2 AA 2

- sin(A 1l)A2 sinh(A21) + sinh(A 21)A1
2 sin(All). (C.9)



Appendix D

The VIV Prediction of the

Helland-Hansen riser

In the second example of Section 5.4.2, we stated the method of predicting VIV of

the Helland-Hansen riser. The SHEAR7 input data file is as follows:

1

0

226

688.

1.1303

0.5334,0.5017

1025.

1.3E - 6

908.

1.0

1942892.

2.107E11

structural model, nmodel

flag To choose SI (0) or English (1) Units.

number of segments in the structure

beam Length, meters or feet

Drag diameter, meters , type 2 buoyancy

beam strength diameters(OD and ID), meters

fluid density, kg/m**3 or Lbf/Ft**3

kinematic viscosity of the fluid, m**2/s or ft**2/s

970.4 kg/m on buoyancy, averaged with slick portion, mass/m in Air, inc mud

added Mass Coefficient

minimum Tension, newton or Pounds, this value could be off

Young'S Modulus, N/m**2 or Ksi
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0.0008637

1087.

0.23

8,1,1

0.0000, 0.00

0.1650,0.63

0.2520, 0.72

0.3820, 0.85

0.5130, 0.91

0.6440, 0.96

0.7740, 0.98

0.9370, 0.98

.002

0

0

0.4

0.0, 1.0, 0.125

1

0.

1.24E8, 2.E6

2.92E8, 1.E5

1.3

0

0.4

0

0

inertia Of Strength Material, m**4 or Ft**4

fix this aver of buoyant and non-bu sections,linearly Varying Tension, N/m

Strouhal No.

Number of vel points, probability, profile ID

location (x/l), velocity (m/s) for first point

location and velocity for each succeeding point

structural modal damping (fraction of critical damping)

flag 1 for controlling damping computation (0=program decides)

flag 2 for controlling damping computation (0=program decides)

RMS lift coefficient (if lift flag set to 0 not used)

RMS response locations (begin, end, step-size), x/L (OUTPUT File Format)

number of SN-curve line segments

cutoff stress range (N/m**2 or KSI)

stress range(N/m**2 or ksi), cycles to failure point 1- C curve

stress range(N/m**2 or ksi), cycles to failure point 2

global stress concentration factor

number of local stress concentration positions

reduced velocities bandwidth

open .cat file? 0 = no, 1 = yes

flag to choose lift coefficient (0=program decides)
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0 No. of VIV suppresion regions (0=off)

5 calculation option, NCAL =1, full response calc

0.20,0 a cutoff to control the No. of excited modes

1.00,0 multi-mode reduction factor.

Figures D-1 to D-4 show the displacement, acceleration, stress, and damage rate

along the riser, respectively. These figures include for comparison the results by using

the simple approximation described in Chapter 4.

0 0.1 0.2 0.3 0.4 0.5 0.6
Relative position

0.7 0.8 0.9 1

Figure D-1: The displacement along the riser

265

0.

0.

E

CL
(a

-- WKB-DSM
-- Shear7 appr..

6-

5- I

4-

2--

I I tI

07

0.

0.

0.



0.9

0.8

0.7

E 0.6
CF

10.5

U) 0.4

0.3

0.2

0.1

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Relative position

Figure D-2: The acceleration along the riser

K107

- WKB-DSM
Sh7 approx.

~ I

- -

- -

' I i ' jl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Relative position

Figure D-3: The stress along the riser
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Figure D-4: The damage rate along the riser
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