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ABSTRACT

Vortex-Induced Vibration (VIV) of risers is the object of substantial research due to its
importance in reducing the fatigue life of risers. The problems associated with VIV increase in
difficulty and importance as the industry works in deeper water. This dissertation is directed at
two topics relevant to VIV research: the development of better structural dynamic models of
risers and the acquisition and analysis of model test data and full scale data with the purpose of
deepening our understanding of VIV on real oil production systems.
Two new beam elements (one straight and one curved) are developed in the context of the
Wave-Based Finite Element Method. Beam curvature, tension variation, rotary inertia, shear
deformation and the influence of soil are taken into account. The new elements are tested
against less efficient conventional FEM's. Comparison of natural frequencies and mode shapes
of steel catenary risers show good agreement.
Three different experiments are analyzed and some interesting VIV properties are observed. The
first experiment employed a model over 1200 feet long. The test dealt with three different
configurations, which included a lazywave and a catenary riser. Several types of motion are
applied on the top end of the riser while accelerations and bending moments are measured at
different points on the riser. The second experiment is a smaller scale test performed on a
catenary riser subjected to out-of plane, top-end displacements. Many cases of resonance were
verified. In the last experiment, a full-scale steel catenary riser from the Petrobras P-18
production facility was instrumented to measure, among other things, bending moments near the
touch down point and on the top of the riser and accelerations at three different points along the
riser. Some preliminary results are presented based on the analysis of these measurements.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering
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Nomenclature

u, generic displacement (linear or angular) on the degree of freedom i

f, generic force (force or bending moment) on the degree of freedom i

wO wave frequency

w transverse displacement
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I Moment of inertia
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Chapter 1

Introduction

1.1 Motivation

The discoveries of oil fields in deeper and deeper water have caused the offshore industry to

look for technically feasible and cost-effective solutions that allow the exploration of these

fields. One of the most important components of offshore development is the riser as it transfers

fluids from the subsea units to floating platforms and vice versa. Furthermore, the dynamic

behavior of risers becomes even more important as exploratory drilling and production

operations move into deeper water.

Flexible risers have been used widely by all oil companies in their offshore activities but these

risers have limitations in diameter, especially as we go to deeper and deeper waters. The

significant use of these flexible pipes caused the companies to look for alternatives to this

component since it represents a significant amount of the total cost of a production unit. In some

cases, a floating unit can have up to eighty flexible risers connected to it. Hence, there is a need

for a new technology to face the increasing demand for large diameter risers. The steel catenary

riser (SCR) alternative started to be investigated in detail not only to compete with the

expensive flexible riser, so far the typical solution for semi-submersible production platforms,

but also to guarantee the feasibility of potential deeper oil fields under exploration. One of the

aspects of this investigation is the vibration of a steel catenary riser when subjected to the

environmental loads.

Risers are subjected to environmental forces from different sources like currents, waves and the

wave-induced motion of the floating vessel. Typical periods are in the range of 6 to 20 seconds.

Another important force appears when a riser is subjected to a current. The alternate shedding of

vortices in the near wake causes the appearance of transverse oscillating lift forces that will act

on the riser. Consequently, it will vibrate in a direction perpendicular to the ambient flow. These
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vibrations are referred to as Vortex-Induced Vibration (VIV) and they are typically smaller than

two cylinder diameters, with periods of the order of 1 second or smaller. Although VIV does not

produce large oscillation amplitudes when compared to the motions caused by waves and

vessels, there are two reasons that make it an important issue to study: the effect on the fatigue

life of the riser and the amplification of the drag coefficient from a nominal value of 1.2 (for

Reynolds numbers below 3x105 ) up to a value of 3.0 or even higher. Consequently, an increase

in the in-line displacements of the risers will be verified.

One interesting aspect is that VIV can also occur even in still water if the riser is moving, due to

the motion of the vessel to which it is attached. In this case the riser will feel an oscillatory

current induced by its motion and the Keulegan-Carpenter (KC) number plays an important role

in this phenomenon.

Hence, developing the technology for estimating vortex-induced vibration (VIV) response is a

critical need for fatigue design of drilling and production risers. The need for a complimentary

analysis and design capabilities has been recognized since the 60's. Since then, vortex-induced

vibration of slender cylinders has become one of the most extensively researched topics in the

hydrodynamics and structural engineering literature. However, the complexity of the problem

does not lend itself to standard analytical or numerical solutions. Current research in the

prediction of vortex-induced vibration of risers has focused attention on many different areas,

such as the physics of the fluid-structure interaction, the development of more adequate

structural dynamic models and the acquisition and analysis of full-scale data with the purpose of

calibrating response prediction codes used to design a riser. The present dissertation will focus

on the last two areas.

We will apply the wave-based finite element method (WBFEM) to develop both straight and

curved beam elements that can be used in the dynamic analysis of risers. It will be shown in the

present dissertation that as frequency increases, the propagating wavelength decreases. Thus, if

a conventional finite element model is used to study a marine riser, it is necessary to decrease

the element length to represent its dynamic behavior well. A large number of elements will be

required. The WBFEM allows the study of the dynamic behavior of a riser in a wide range of

excitation frequencies with the same mesh of finite elements without losing accuracy since the

method uses the solutions of the governing dynamic equations of the beam element to obtain its

dynamic stiffness matrix. Hence, since it is a high frequency dynamic model, it is suitable for
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VIV problems. The model is linear but at such small amplitudes of vibration (between 1 and 2

diameters as a maximum value) caused by VIV, most structural non-linearities are quite weak.

Another important characteristic of this method is the possibility of representing propagating

decaying waves. As higher and higher modes are excited by VIV, the chance of propagating

waves instead of standing waves occurring increases. The WBFEM is capable of representing

this characteristic through the use of complex modulus of the elasticity of the material because

the imaginary part will account for the damping effects.

In the experiments presented in this dissertation, we present data from measurements taken from

small scale to full scale risers. The intention is to gain some insights related to the VIV threshold

and resonance phenomena and compare the displacement and stress measurements with the

predictions of numerical codes. The main idea here is to better understand what is needed to

improve the models used in the numerical codes to design a riser subjected to VIV. The full

scale measurements are particularly interesting because they can provide information for real

risers at full scale Reynolds number and mode shapes.

1.2 Background

The mechanics of risers have been the object of substantial research due to their importance in

offshore activities. Because of their complexity, many numerical methods have been developed

to analyze marine risers such as the Transfer Matrix Method (TMM), the Dynamic Stiffness

Method (DSM) and the Finite Element Method (FEM).

Li Li [27] developed a transfer matrix model to solve string/lump system linear dynamics. This

treatment allowed for systematic and analytical formulations for free vibration, Green's

function, wave propagation and forced vibration problems. He also studied the effects of finite-

sized lumps on wave propagation.

Clough and Penzien [10] presented the DSM applied to a flexural beam element with constant

properties and also considering axial effects. It is based on the exact solution of the dynamic

equilibrium equation. In the end, the coefficients of the dynamic stiffness matrix are dependent

on the input frequency.

Mark Hayner [17] applied the Wave-based Finite Element Method to study wave propagation

on in-vacuo cylindrical shells with discontinuities. He wanted to better understand the shell-
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plate interaction, which plays an important role in the acoustic scattering and radiation processes

from submarine hulls.

Kim [24] employed the WKB asymptotic method to analyze a long slender beam and in the end

obtained some closed forms asymptotically.

Triantafyllou [46], using the WKB method, obtained a general asymptotic solution to the linear

dynamics of a taut inclined cable. Through this solution, he studied the cable hybrid modes,

which are a mixture of taut wire and inelastic chain dynamics.

Tjavaras [44] studied the mechanisms of the dynamic response characteristic of highly

extensible cables through the Finite Difference Method.

Experiments with circular cylinders in the laboratory have been done for at least 30 years and

much insight into the VIV problem has been gained through these experiments. More recently,

Gopalkrishnan [14] focused attention on the measurement, through forced-oscillation

experiments in a towing tank, of the vortex-induced lift and drag forces acting on circular

cylinders undergoing sinusoidal and amplitude-modulated oscillations. In the end, he derived

lift, drag and added mass coefficients for circular cylinders.

M. Venugopal [50] proposed a new damping model based on measurements on a flexible

cylinder covering a wide range of cross flow and in line reduced velocities.

More recently, A. H. Techet [43] performed visualization studies of the flow behind an

oscillating tapered cylinder at Reynolds numbers from 400 to 1500. In addition, forces were

measured at both ends of a rigid tapered cylinder performing transverse oscillations within an

oncoming flow.

Vandiver [11, 48] introduced many new insights into vertical risers subjected to VIV by

examining acceleration and stress measurements from cylinders, both in the laboratory and in

the offshore ocean.

1.3 Overview of the dissertation

The material presented in this dissertation is organized in seven chapters. The introductory

material with the motivation and overview of the dissertation are presented in the first chapter.

The content of each of the following chapters is briefly summarized below.
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In Chapter 2, we study the use of WBFEM to develop two types of straight beam elements, one

with constant properties and the other with slowly varying tension. For both types, we divide the

element in two categories: considering or neglecting the effects of rotary inertia. Since the wave

dispersion plays a very important role in the beam dynamic, we study the propagation of waves

for different conditions of a beam element.

In Chapter 3 we apply the same method for a curved beam element to include the effect of

curvature in the propagation of waves on risers. Since it is the beginning of a new development

we started by working with constant radius of curvature elements. Again, we develop two types

of beam elements: one with constant properties and the other with slowly varying tension. We

also take into account transverse distributed loads acting on both curved and straight beam

elements in the context of the WBFEM. In the end, we present several examples showing the

influence of the curvature on the wave dispersion relation and some simple applications of the

elements developed up to this point to the dynamic analysis of beams. These results are

compared to theoretical values.

Chapter 4 is dedicated to the analysis of measured data from two different experiments. One is

the model used by Petrobras to represent the steel catenary riser that is installed in the platform

P18. The other is the large scale models of 3 different configurations tested in a lake in the USA.

All of them are related to the use of steel catenary risers as an important component of offshore

exploration. This alternative is becoming attractive for the reasons explained before. All the

experiments described in this chapter deal with the imposition of harmonic motion on the top

end of the model and the corresponding measurements of quantities related to the model

response.

In Chapter 5, we give examples about the applications of the beam elements developed in the

context of the wave-based finite element method to the riser dynamic analysis. The risers

considered here are the following: straight, steel catenary, lazy wave and CVAR. Natural

frequencies and mode shapes are calculated and compared to the same quantities calculated by a

computer program that uses FEM.

In chapter 6, we describe the monitoring program of a full scale steel catenary riser installed in

platform P18. This program was developed by Petrobras to reduce the uncertainties related to

the design criteria of SCR and to calibrate computer codes used in the design of risers. It

encompasses measurements of environmental conditions (basically ocean currents, waves and
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wind), forces and bending moments near the touch down point and at the top end, and

accelerations at some points along the riser. Some preliminary results are shown and analyzed

and some conclusions are drawn. Because of confidentiality of the data involved in this project,

we have to show only a piece of it.

Chapter 7 presents the principal conclusions drawn in this research. We also point out the major

benefits and shortcomings that need to be addressed and suggest some areas that need further

research.

Due to the increasing interest in steel marine risers in different configurations, as was explained

in Section 1.1, in this dissertation we are mainly going to focus on this type of riser.
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Chapter 2

Straight Beam Element

2.1 Introduction

In this chapter, we study the application of the Wave Based Finite Element Method (WBFEM)

to obtain the dynamic stiffness matrix of a straight beam segment. Two types of element are

considered here: one with constant tension distribution over the element and another with slowly

varying tension distribution, where the WKB method is used to find a solution for the

differential equation of dynamic equilibrium. Some other aspects are considered, like the

calculation of wave reflection and the formulation of a semi-infinite beam element. At the end

of this chapter, some cases are studied just to clarify the concepts explained in the sections.

2.2 Governing Equations for Beams with Constant Tension

A typical straight beam is shown in Figure 2-1 with its local system of reference for

displacements and forces at its ends. Numbers 1 and 2 inside the circles represent both ends of

the beam. The beam is made out of a linear elastic material and the effects of shear deformation

and rotary inertia are neglected. Besides, it is supported by a visco-elastic foundation, which is

represented by an uniform distribution of springs and dampers along the beam. All the material

and geometric properties are constant over the length of the element. The beam is also subjected

to a constant, static axial tensile force T. Figure 2-1 also shows the sign convention for both end

displacements and forces, which are represented by the vectors let ={u, u2 u 3 u4 }T and
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Pe= {f, f 2 f 3 f 4 y , respectively. The quantities u, and u 3 are the transverse

displacements while u 2 and u4 are the rotations and are defined by the expression -aw/as

because of the local system of reference. The quantities f1 and f 3 are the vertical forces while

f 2 and f 4 are the bending moments.

Tt T

Figure 2-1: Straight beam element on visco-elastic foundation with constant tension.

It is important to stress here that throughout this work, in the derivation of all the equations, we

are restrained to the linear regime.

The governing equation of the dynamics of a tensioned beam on visco-elastic foundation has

been derived before by many investigators (see for instance reference [16]) and so the derivation

will not be repeated here. Its final form is

a4w -a 2W aw _2

EI -T +kw+c + pA =q(s,t) (2.1)
as4 -s at at2

In the derivation of this equation the following relations were used to define bending moment

and shear force, respectively

M =-EI (2.2)

and shear force by

Q = - =M Q = -EI a(2.3)
as as3
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Equations (2.2) and (2.3) were adapted to the local system of reference adopted (see Figure 2-1).

For the free vibration condition we have q(s, t) =0. Thus, the equation of motion becomes

E 3w -a 2wa 2w
EI -T +kw+c-+pA 0 (2.4)

as4  as2  at at2

A harmonic solution of the form

w(s, t) = wO exp(i(ys - ax)) (2.5)

can be assumed, where wo is the amplitude of the motion. Then we substitute (2.5) into

equation (2.4). After canceling the common terms, we obtain the equation that relates the

wavenumber y to the wave frequency w for given beam material properties and geometry,

known as the dispersion relation for the beam:

EIy4 +Ty 2 + k -icw+ pAw 2 =0 (2.6)

The four roots of this equation are

T T 2pAO)2 - k+ ica
Y, = - -- - +

2EM (2EIf EI

Y2 =-y
(2.7)

T T 1t2J +pAW2 -k + ico
Y3= -- - - +

2iEI 2EI fEI

y4 =-Y

These four roots represent four different wavenumbers of waves propagating along the beam.

The wavenumber y, is a complex quantity, with spatial decay corresponding to the imaginary

part and spatial oscillation corresponding to the real part. Depending on the range of frequencies

we are working with we can have only evanescent waves (y, is purely imaginary) or
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propagating waves (y, is purely real). Another characteristic is that there are two waves

propagating and/or decaying to the right and two to the left.

Based on equations (2.7), the general solution for the transverse displacement at any position

along the beam axis can be described in terms of these four waves as

w(s, t) = wo, exp(i(ys -a))+w 2 exp(i(y2 s -))+
w03 exp(i(y3 s - a)) + wo exp(i(y4 s - a)) (2.8)

Note that equation (2.8) is exact to within the assumptions that allowed the derivation of the

governing differential equation (2.1).

Throughout this work, it is assumed a steady state time dependence of exp(-ia*) for all

variables. This assumption is hereafter implied. This term will only appear when it becomes

necessary for the understanding of the text. Therefore, we can rewrite equation (2.8) above as

w(s) = w01 exp(iys)+ w02 exp(y2 s) + w03 exp(iy3 s) + w4 exp(iy4 s) (2.9)

The only unknowns are the wave amplitudes, which depend on the boundary conditions and the

loads applied. Equation (2.9) will be the basis for the construction of the dynamic stiffness

matrix of the beam element shown in Figure 2-1 through the use of the WBFEM.

As we will see later when we study the reflection coefficients, there will be advantages in

sorting the waves in equation (2.9) so that y, and y 2 correspond to right-going (i.e., the real

part of y, is positive) or right-decaying (i.e., y, is pure positive imaginary) waves while y3 and

y4 correspond to the left-going (i.e., the real part of y, is negative) or left-decaying (i.e., y, is

pure negative imaginary) waves. This sorting is implied from now on in this work.

2.3 Dynamic Stiffness Matrix

To obtain the dynamic stiffness matrix we start by determining the nodal displacements u, and

forces f,, located at the ends of the beam element of Figure 2-1. This is easily accomplished
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once we know the expression that defines the transverse displacement field along the beam

element, w(s), as shown in equation (2.9). We have

u1 =w(s=0)
aw

u 2 = - (s =0)
as

U3 = w(s = L)

u4 - (s=L)
as

f =EI
as3

- aw
~T--(s =0)

as

a2W
f 2 =EI as2 (s=0)

f 3 -EI
as3

- aw
+T-(s= L)

as
a2Wf4 =-EI s 2 (s=L)

Note that f, and f 3 had contributions from the shear force plus the axial tension T. The

expressions for f, and f 2 (i.e., at s =0) had to be reversed in sign in order to make them

consistent with the convention of positive directions, as shown in Figure 2-1.

Substituting the expression (2.9) into (2.10) above, we obtain the following expressions for the

nodal displacements:

U1 = W01 + W02 + W 03 + W04

U 2 = -i 1 W 1 -i 2 W 0 2 - i 3 W0 3 - i 4 w0 4

U3 = wo0 exp(iy, L)+ w02 exp(ir2L) + w03 exp(iy3L) + wo exp(iy4 L)

U4 = -iyw, exp(iryL)-iy2 w 2 exp(iy2 L)-iy3 w 3 exp(iy3L)-iy 4 w exp(iy 4 L)

In matrix form we can write the last four equations as

et =[D].W (2.11)

where 1V = {wO1 w02 W0 3 W0}T is the vector of wave amplitudes. As for the end forces we get
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fA =-EI(iwo, y +iwo2 y +iw y +iw y3) - T(iw 1y, +iw0 2 y2 +iw03 7y +iwoj 4 )

f 2 =-EI(wo, y +w02 y +w03y +w. y

= EI(iwoy exp(iy, L)+iw0 2 y exp(iy 2L) +iwo3r3 exp(iy 3 L) + iwo4y exp(iy 4L)

+ T(iwo, 7, exp(iy, L)+iwo2 2 exp(iy 2 L) +iw 0373 exp(i 3 L) + iwo4y yexp(iy 4 L))

f4= EI(wo0 y exp(-iyL)+w02y - + y0 '3 ex p(-i y L)++wy ex p(-iy4 L)

The equations above can be written in matrix form as

e =[C]-W (2.12)

The components of the 4x 4 matrices [C] and [D] are the terms that multiply wOI, w02 , w03 and

wo4in the equations above. They are known as the force-amplitude matrix and displacement-

amplitude matrix, respectively, and they are shown below.

[D]=
exp(iy, L)

iy exp(iy1L)

-iyJ3

[C]= EI 
y1

iy,3exp(iy,L)

Ly,2exp(iyL)

-I 0
T

iy, exp(iy, L)

L 0

1

- i 2

exp(i 2 L)

-iY exp(iy 2 L)

i 3
r2
72

2

72 exp(iy2L)

- iy 2

0

i 2 exp(iy 2L)

0

1

- i73

exp(iy 3 L)

-iY 3 exp(iy3 L)

ir13
2

73

iy exp(iy3L) iy
y2 exp(iy3L) y

- i73

0

iy3 exp(iy 3L)

0

1

- i74

exp(iy4 L)

-iy 4 exp(iy4 L)j

2

exp(iy4L)

exp(iy 4L)

- i74

0

iy4 exp(iy 4 L)

0
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As expected, the force and displacement matrices are functions of beam material, geometric

properties and frequency. From equation (2.11) we get

W =[D]' -Oet (2.13)

After substitution of (2.13) into (2.12) we obtain

F, = [C] -[D]' ,et -> Pe, = [Ket -0et

where [Ket] is the dynamic stiffness matrix of the beam element shown in Figure 2-1,

considering only transverse motion. Notice that the vector of wave amplitudes disappears when

we relate nodal forces to the corresponding nodal displacements.

Because of the complexity of the terms involved in the formation of the matrices [D] and [C]

above, sometimes the analytical form of the stiffness matrix components becomes very long and

difficult to be obtained symbolically, as we will see in the next sections. Thus, in the present

work they were calculated through the numerical implementation of the operation

[Ks ] = [C]- [D]' (2.14)

In specific cases, however, the analytical expression of the dynamic stiffness matrix can be

obtained. Let's suppose we have a tensioned beam were the wavelengths are given by

y, = -r2 = y,, real roots corresponding to propagating waves and r3 =~-4 =-iYe pure

imaginary roots corresponding to evanescent waves. In this case, the stiffness matrix is given by

k 1  k12  k13  k14

EI k12  k22 k 23  k2

b k1 3  k23 k33  k34
k[ k24  k4 k"

where

b = 8ypy,+4(y2 -y )sinh(yL)sin(ypL)-8ypye cosh(yeL)cos(ypL)

= 4(yry, + y y y, sinh(yeL)cos(ypL)+ y, cosh(yeL)sin(ypL))

k12 = -8y sinh(ye pLsiny L)+ 4(r Y - y e)cosh(yeLicoslyL)+ Ye - yp ye
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=4(y yyye sinh(YeL)+yp sin(yL))

k14 = 4(ypy + pYe )cos(y, L)-4(yy + Y>e )cosh(YeL)

=4(y + y y, sinh(YeL)cos(ypL)-Ye cosh(YeL)1sin(YPL))

k2= -k 14

= 4(y2 + y y, sinh(YeL)- Ye sin(yL))

k33 = k

k4 =-k12

k44 = k22

We see that the stiffness matrix will be symmetric and pure real. Positive values denote spring-

like behavior while negative values denote mass-like behavior. Dissipative effects may be

included by letting the modulus of elasticity, E, be complex. This will result in a complex

dynamic stiffness matrix which elements have negative imaginary parts.

From this point on the stiffness matrix given by equation (2.14) may be used in the same way as

any conventional FEM stiffness matrix [see reference [2]]. In general, an element is part of a

global system of elements representing a structure subjected to a combination of external loads.

The local stiffness matrix of each element, [K,,], is taken from the local to the global system of

reference and used to assemble the global stiffness matrix, [K], of the whole structure. We can

follow a similar procedure for the element force vector and form the equation [K]U = F , which

is solved for the nodal displacements Uf. Having determined these displacements, the wave

amplitudes for each element can be obtained through equation (2.11), i.e., IV = [D] 1 U,, , where

0,, corresponds to a specific element of the structure and it is taken from the vector U.
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2.4 Semi-Infinite Length Beam Element

The use of the WBFEM makes it possible to obtain the dynamic stiffness matrix of a straight

element that extends from a known point (s =0) to positive infinity. This type of element will

be useful for the study of reflection of waves travelling along risers. The best way to obtain the

stiffness matrix of this element is to start by rewriting equation (2.11) as

I [[DI, ][D 12  (2.15)U2, [D2ID 22] jw1J
and (2.12) as

{ CI I [I[C121 (2.16)
2 .[C2, 2][C ,

where the subscripts '1' and '2' refer to nodes 1 and 2 of the finite element shown in Figure 2-1

while 'r' and 'l' represent right-going or right-decaying waves and left-going or left-decaying

waves, respectively. The subscript 'et' was omitted in this section to avoid difficulties to

understanding other subscripts. However, it is important to emphasize that in this section we are

working only with the element itself and considering only transverse motion. Vectors U, U 2 ,

F,, F2 , Wr and W, have dimensions 2 by 1. The matrices [D] J and CJ I have dimensions 2 by

2 and they are sub-matrices of [D] and [C], respectively. According to this convention, Wr is

the vector of the amplitudes of the right-going waves and W, is the vector of the amplitudes of

the left-going waves. F, is the vector of forces that act upon node 1 and F2 is the vector of

forces that act upon node 2.

Therefore, in order to make this beam element semi-infinite, we imagine that node 2 moves to

positive infinity (see Figure 2-1) and that only right-going waves are present (which means that

= 0). Then equations (2.15) and (2.16) can be redefined as

= [Dii]-*r

-: , =[Cl I-[D ~ -0 => , = [Ke]- O

C, [C ]- ,
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where [Ke]=[C 11]-[D11] 1 is the dynamic stiffness matrix for the semi-infinite beam studied

here. We can imagine now a propagating wave going in the direction of the end located in the

infinite with wavelength y1 = y, and a evanescent wave, decaying in the same direction, with

wavelength y 2 = -iye Substituting these values in the expression given above for [Kei], we

will have

EI 2{y+ y,)_-i(y,4,+ 2y3 i(yryy y,
Kei]= E 2 2 2( e r

It is interesting to note that, even though we are dealing with an elastic system, there will be

dissipation due to radiation, as indicated by the imaginary parts of the stiffness matrix elements.

This is caused by the fact that there are only right-going waves taking away with them the

energy from the system.

2.5 Effects of Shear and Rotary Inertia

It was pointed out in the development of the governing equation for thin beams that two major

assumptions were made: both the effects of shear deformation and rotary inertia were neglected.

The basic assumption in excluding shear deformations was that a normal to the neutral axis of

the beam remains straight during deformation and that its angular rotation is equal to the slope

of the beam neutral axis (see section 2.2).

To take the effect of shear deformation into account in a beam bending analysis, we continue

with the assumption that a plane section originally normal to the neutral axis remains plane but

not normal to the neutral axis.

The study of wave propagation on beams under these assumptions showed that infinite phase

velocities were predicted for high frequencies. This point will be exemplified later in this

chapter. Hence, there are at least two cases where the consideration of both effects can have a

significant influence:
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1. If the cross-sectional dimensions are not small compared to the length of the beam.

2. When we are working with high frequencies.

To address this problem, in the next section we consider both effects in the wave propagation of

beams.

2.5.1 Governing Equations

We consider here an element of beam lying on an elastic foundation (no dampers are considered

here) and subjected to shear force, bending moment and a constant tension as shown in Figure

2-2. The displacement of the neutral plane of the beam is still measured by w and the slope of

the longitudinal axis is still given by aw / ds. Now, a new independent variable y is introduced

in order to measure the slope of the cross section due only to bending (see Figure 2-2). The

slope of the longitudinal (neutral) axis is given by the following relationship

aw

aJs
(2.17)

7w

M Q a

S

Figure 2-2: Differential element from a straight beam taking into account the effect of shear

deformation

where # is a constant shearing strain across the section of the beam. Since the real shearing

stress and strain vary over the beam section, the shearing strain # in equation (2.17) is an

equivalent constant strain on a corresponding shear area As, defined by As =KA, where K is a

adjustment coefficient that will depend on the shape of the cross section.
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Another assumption is that the relationship between bending moment and curvature is expressed

by

M = EI (2.18)
as

Now the shear force at any cross section is not determined through the knowledge of the

bending moment as we did in equation (2.3). It is defined by

Q=-rAs = -(GoxA)= GA +V (2.19)

It is also noteworthy that we are still using the same system of reference as shown in Figure 2-1.

Writing the equation of motion in the vertical direction for the element shown in Figure 2-2 we

get

( aQd aa 3 2 w
-Q+ Q+ ds +Ta a+ y ds -kwds=pAdsa 2

as as at,

where a - is the rotation of the longitudinal axis.
as

After neglecting higher order effects and canceling opposite terms, the equation above can be

reduced to the following

aQ a2W a
2

W
+T -kw=pA (2.20)

s aPs2 at 2

Writing the equation of motion about the axis of rotation and proceeding in the same way we

did for the vertical direction we get

aM __2

as Q=pI a2  (2.21)
as at2

(a more detailed derivation of the equations of motion can be seen in the reference [16]).

Substituting equations (2.18) and (2.19) into the two governing equations (2.20) and (2.21)

gives
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T a2  kw = pA
as2 at 2

EI 2  pI
as 2 at 2

2.5.2 Dynamic Stiffness Matrix

To calculate the dynamic stiffness matrix of a straight beam element based on equations (2.22)

we use the same procedure that was used before for the beam with no consideration of the

effects of rotary inertia and shear deformation. In other words, we assume a harmonic solution

of the form w = wo exp(i(ys - ax)) and Vf = VfO exp(i(p - ax)) and plug them into the governing

equations (2.22) above. It gives

IGAK(-WOY 2 +iyV 0 )+

-GA (iMwO + V

T(-woy 2)-kwo = pA(-w w 2 )
(2.23)

O)-EIy 2 V 0 =-pW 2yi

The system of equations (2.23) can be rearranged and written in matrix form as

GAy 2 +y 2 +k-pAw 2

-iGAKy
-GAxiy W O40
-GAK -EIy 2 +pIW2J 1y 0J 10J

It can be seen that equations (2.24) are satisfied by the trivial solution wo = O =0, which

implies that there is no wave propagation. For a nontrivial solution, the determinant of the

coefficients of w0 and y/0 must be zero. After doing it and rearranging the terms we get:

y 4EI(-GAK- )+2(GApfto' -TGAic+TpIw 2 EIk+ pAEjW )

+ pIkW 2 - GAIk + pA 2 w2 GK - pAw 4 I = 0 (2.25)

We can see that this equation has four roots. If we rewrite equation 2.25 as ly4 + my 2 +n =0,

where
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- GA1

a 2w

as2

a w
as

+ Y ) +
(2.22)

(2.24)
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S= -EI(GAK-T)

m=GAKpIW 2 -TGAK+TpIw 2 _Ek+ pEAI 2  (2.26)

n= pIkw 2 - GAik + pA 2W 2G K - pAIY'

we can use the well known expressions for these four roots

= + -21 -m2-41n)
21

(2.27)

Y34 = + I 1(m+ 21

Equations (2.24) are not independent of each other because we equated the determinant of

coefficients to zero. From the bottom equation we obtain the following amplitude ratio

S = i 2GAKy = P, j=1,2,3,4 (2.28)
w) p)j 2 -GAK-EIyj

In equation (2.28) the symbol 'j' represents any one of the four waves traveling along the beam.

Equation (2.28) shows that there is a relationship between the amplitude of vertical

displacement and the amplitude of the rotation due to bending moment. Thus, the general

solution for the system of equations (2.22), omitting the term exp(-iax), is

w = w01 exp(irys) + w02 exp(iy 2s) + w03 exp(iy 3s) + wo4 exp(iy4 s)

y = yi exp(iyrs) + YO2 exp(iy 2s) + YO3 exp(iy 3s)+ y/, exp(iy 4 s) (2.29)

where the amplitudes w0, and yuo, are related by expression (2.29) and the wavenumbers y, are

given by equations (2.26) and (2.27).

With this knowledge we can proceed using the WBFEM as was done before in section 2.3. The

end conditions for displacements and forces are the following

u1 =w(s=O)
u 2 = Y(s =0)

U3 = w(s = L)
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u4 = I(s = L)

f = -GAK(-- + y,)as
- aw

-T-( = 0)
as (2.30)

f 2 = -EI (s =0)
as

aw T aw
f3 =GA K(- +y)+T (s = L)

as a
f4= EI (s = L)

as

Substituting equations (2.29) into (2.30) we get the following matrix relations

et = [D]- and P, = [C ].j

[1

[D] P
exp(iy, L)

-P, exp(iyL)

- GAK(iy, +P)

[C] = -iEIy, P,
GAK(iy, +P)exp(iyL)

iEIyP exp(iyL)

-GA(iy 2 +P 2 )

- iEIy 2P2

GA(iy 2 + P2 )exp(iy 2L)

iEIy2P2 exp(iy2 L)

-GA(iy3 +P)
- iEIry3P3

GAK(iy 3 + P3)exp(ir3L)

iEIy 3P3 exp(iy 3L)

-GA(iy 4 +P4 ) 1
-iEIy 4 P4  1+

GA(iy4 + P4 ) exp(iy4L)
iEIy 4P4 exp(iy4L)

- iy2

0

iy2 expoiy 2L)

0

- iny

0

i 3 exp(iy 3L)

0

- I 4

0

i 4 exp(iy 4L)

0
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P2 P3 P4

exp(iy 2L) exp(iy3 L) exp(iy 4L)

P2 exp(iy 2L) P3 exp(iy 3L) P4 exp(iy 4L)_

- 0 L

iy, exp(iy,L)

L 0



The sign in the first two rows of matrix [C] had to be reversed for the same reason as explained

before, in section 2.3. The matrix [K,,] is obtained by the expression [C]- [D] 1 .

2.6 Examples

2.6.1 Wave Dispersion

For the first example, we will study the wave dispersion of a straight beam supported by a visco-

elastic foundation and subjected to a constant tension. This beam is also in water, since it is was

taken from a steel catenary riser that will be studied in chapter 5. The objective of this example

is to study the relationship between the wavelength y and wave frequency w according to the

wave dispersion. The properties of the beam are E = 2.067x10" N/i 2 , A = 0.007426m 2

I=0.2181x10- 4m, p =10759.6kg /m 3 , Hd =0.181m. We will study different cases of the

same beam but with increasing complexity

* Pure beam element

Here we study only a beam element without foundation (which means k =0), static tension

(i.e., T =0) or damping. In this case, the wave dispersion equation is given by

EIy4 +pAw 2 =0

There are four wavenumber roots at each frequency for this equation and since it is second order

in y2 , two of them are negative values of the two other roots. Hence, there are two pure real

roots, y,, corresponding to the propagating waves and two pure imaginary roots, iY,,

corresponding to the evanescent waves. Plotting the relation between wavenumber y, and

frequency, in Hz (obtained by calculating -), for the data given above, we obtain the curve
2;
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shown below, in Figure 2-3. It expresses the idea that as the frequency increases, the wavelength

decreases.

0.35
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E 0.2

)0.15

20.1
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0L
0 0.5 1 1.5 2 2.5 3 3.5 4

Frequency (Hz)

Figure 2-3: Curve of the wave dispersion relation regarding a transverse propagating wave on a

beam.

* The beam on an elastic foundation

After setting T = c =0 and k = lOOkN /m , the wave dispersion, represented by equation (2.6),

becomes

Ely4 +k + pA0 2 =0

Solving this equation for y we have

4 = 2 pA k

EI EI
(2.31)

The roots of equation (2.31) are the four wavenumbers are given by equations (2.7). If we pick

y, and plot it against frequency w we obtain the curve shown in Figure 2-4. In this plot, we

used frequency in Hz, which is obtained by the ratio ---. If we do the same for the other
27r

wavenumbers, the result is the plot shown schematically in Figure 2-5.
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If we set y =0 in equation (2.31) we will have -=- which can be considered a cutoff
pA

frequency. For frequencies above the cutoff there is either purely harmonic wave propagation or

purely evanescent wave. For frequencies below cutoff there is propagating wave (because of the

real part of y) with spatially varying amplitude (because of the imaginary part of y) and the

real part is equal to the imaginary part. It is noteworthy that in this perfectly elastic system we

can encounter complex wavenumbers. It also happens for problems associated with energy

losses of the system.

For the case considered in the present example, the cutoff frequency is equal to 4.88 Hz (see

Figure 2-4 below).

CD

0.6 -

>M 0.4 --

0S0.4

a) 0

0 1 2 3 4 5 6 7 8 9 10
E Frequency (Hz)

0.4

- o

M 0 1 2 3 4 5 6 7 8 9 10
EFrequency 

(Hz)

Figure 2-4: Frequency spectrum for one wavenumber of a straight beam element on an elastic

foundation.
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Figure 2-5: Complete frequency spectrum for all four wavenumbers of a straight beam element

on an elastic foundation. Reproduced from reference [16].

0 The beam on an elastic foundation and subjected to tension

Now we set T=121250N,

wavenumber is given by

c=0 and k= OOkN/m. According to equations (2.7) one

T T pAw> - k
2EI (2EI EI

or, rewriting it

2 pA T -4Elk) -+4
El 4E21 2

In order to have y, =0, the frequency, w, will have to be equal to k
A

(2.32)

again. For frequencies

above this cutoff, the wavenumber y, will be real, which means purely propagating wave.
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Figure 2-6: Dispersion relation for a straight beam element on elastic foundation subjected to

three different static tensions: 800kN for dotted curve, 500kN for dashed curve and 200kN for

solid curve.

-2 -

Another point is that if set w= --- - = 0 , then from (2.32) we will have y=
pA 4EIpA 2EI

i.e., it will be purely imaginary. Thus, there are three different ranges of frequencies: above

cutoff, between cutoff and wo (there will be only evanescent waves which means no

propagating waves occurs) and below w0 (there will be propagating waves with amplitude

varying in space). Notice that wo will always be smaller than the cutoff frequency, as long as T

is tensile. The plot for the curve of y, as a function of frequency (in Hz) is shown in Figure 2-6.

We can see that the cutoff frequency is not affected by T but wo gets closer to the cutoff as T

decreases. The ultimate stage would be the previous example studied where T =0. The
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complete plot including the four wavenumbers is not shown because it would be too messy,

making the understanding more difficult.

* The beam on a visco-elastic foundation and subjected to tension

Finally, we set T = 200000N, c = iONs / m 2 and k = lOOkN /m . Two curves are presented in

Figure 2-7 for the dispersion relation, showing the influence of the soil damping c on the

wavenumber: curve 1, with c =IONs /m 2 and curve 2, with c =IOONs / m2

L-
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2 3 4 5
Frequency (Hz)

6 7 0

Figure 2-7: Dispersion relation for a straight beam element on visco-elastic foundation subjected

to a static tensions of 200kN with two different values of soil damping: c = 1ONs / m2 for dotted

curve and c = 10ONs / m 2 for solid curve.
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2.7 Reflection Coefficients

When a wave is propagating on a beam and encounters a certain kind of discontinuity (a change

in mass, cross-section or flexural rigidity, for example) part of it will be reflected and part will

continue to travel in the same direction. The situation is represented schematically in the Figure

2-8 where the beam is supposed to extend to plus infinity and the discontinuity to minus infinity.

Using the WBFEM, the reflection coefficient (the relationship between the incident wave and

the reflected wave) is relatively easy to be obtained. This is because the knowledge of the waves

travelling in terms of wave number and direction is available.

First it is assumed that the discontinuity that generates the wave reflection is represented by a

dynamic stiffness [K,]. This matrix means that if a displacement vector U = {u u2 }T is

applied to the end of the discontinuity without the beam, a certain force vector F = {f1  f 2

will result on the same location. Applying the dynamic equilibrium to the discontinuity shown

in Figure 2-8 we have

4-

K I
Es

Figure 2-8: Reflection of an incident wave when it encounters a discontinuity on the beam.
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[K,10, = 'P, (2.33)

Looking at equations (2.15) and (2.16) we see that the vector of displacements and forces at the

left end of the beam depicted in Figure 2-8 are defined as

0i =D [D1-1, + [DJ|-
(2.34)

P =[CIII-1r +[C12 ]-

Now we can impose continuity of displacements and forces between the beam and the

discontinuity:

Ut = U1
(2.35)

After substitution of equations (2.34) and (2.35) into (2.33) we get

[K K, -([DI I- 1, + ID12I-5 *) =-([CI I- *, + IC12-# )

From the equation above we can obtain the amplitude ratio vector

Wr =-([]K,]-[D1 1 ]+ [C1 ]~' .([ K,]. [D2I+ [C 2].i (2.36)

The equation above gives the amplitude of the right-going wave (reflected) per unit amplitude of

the left-going wave (incident). To exemplify the use of equation (2.36) in the calculation of the

wave reflection, we can imagine a tensioned straight beam like the one shown in Figure 2-8.

Let's assume it has two purely propagating wavenumbers, y, (rightward) and - yp (leftward),

and two purely attenuated wavenumber, YA and - YA . These waves are sorted so that y, = y,

r2 = -YA, y3 = -y, and r4 = YA. If we set = {1 0 1, we impose a propagating incident

wave of unit amplitude with no amplitude attenuation. Using equation (2.36) we can obtain Wr

which corresponds to the amplitudes of the reflected waves, both propagating and evanescent. It

is in this sense that Wr is being called amplitude ratio.
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The method explained in this section is general and can be used for straight and curved beam

elements. We just have to use the appropriate vectors and matrices in equation (2.36).

2.8 Beams with Slowly Varying Tension

Now the case of a beam element with a slowly varying tension will be studied here. The local

system of reference for the end displacements and forces is the same as the one shown in Figure

2-1. It is an attempt to improve the results that can be obtained with the methodology used

previously for the constant tension beam. First we will neglect the effect of shear deformation

and then we will study the same type of element considering the effect of shear deformation.

Although this effect is not important for the range of frequencies we are working with, the

procedure adopted in this section is very similar to the one we are going to use for the curved

beam with slowly varying tension but a little simpler. Thus, it will not only help in

understanding the method applied to the curved beam element (see chapter 3) but also establish

the formulation for this type of element and it will be available in case another researcher needs

to use it.

2.8.1 Neglecting the Effect of Shear Deformation

In terms of the application of the WBFEM, the procedure used in the previous sections can be

adopted for the case of the beam element with slowly varying static tension, T, once we know

the expression for the transverse displacement along it. The main difference is how the solution

of the differential equation is obtained. This time it will be approximate as we are going to use

the WKB method.

The differential equation of dynamic equilibrium for the free vibration of beam can be rewritten

in a more general way as

a 2 a2W a _ w a 2WEI - T(s)- +pA 2=0 (2.37)
as2 as2 as as at2
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The expressions for the bending moment, M , and shear force, V , are given by

M =-EI a'

Q = -EI 3 w
as,

(2.38)

(2.39)

This time the influence of a visco-elastic foundation will not be taken into consideration because

in a riser configuration there is no tension variation on a beam lying on a horizontal foundation.

The solution of equation (2.37) can be sought through the formal procedure of the WKB

method. We look for a time harmonic solution like w(s, t) = w(s) exp(-iax). After substitution

of this expression into (2.38) we get

2r

as 2
EI W

as 2 I _ A,
T(s) - pA w(s)w1 2 =0

as
(2.40)

According to WKB method, we can assume that

w(s) = exp(iO(s)){wO (s) + w, (s) + w 2 (s) + ..

where
ao =YS
- = y(s)
as

wO (s)>> w1(s) >> W2(S)>>...

In the present work, we will consider that

w(s) = exp(iO(s))wo (s) (2.41)

where wo (s) is the slowly varying amplitude of the wave. Equation (2.40) can be expanded to

the following form

a 2 Ei a2 W

as 2 as2

a(EI) a3'w a4 w aT(s) a w - a 2 w2 + EI -T(s) -m
as as3 as4 as as as 2 w(s)W 2 = 0
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where m, = pA.

To substitute equation (2.41) into (2.42), it is important that first we obtain the expressions for
A

the derivatives of w:

d w dwoS--=( +w ir)exp(i6)
ds ds

A

d 2 w d 2w0  dw 2 dy
= s( +2 *ik -woy 2 +wi-)ep(i)

ds2  ds ds

A

dw d~w d2w0  dw .dy dw0* =( * +3 d iy+3 i i---3 r )exp(iO) (2.43)
ds 3  ds 3  ds 2  ds ds ds

A

d 4 w d4 wO d w 0 d 30o dd2Ww0 dyid3W0  2  .dwo d 2y--= 0 +- 1Y+ +61 y+ 4i
ds4  ds4  ds 3  ds 3  ds2 ,Jds ds 3  ds ds2

3dw dy 4 .dw 0 3 (dy 2  d 2 y 2 dy 4 d3 y18y dw r-4i doY -3wo -3wy - 6iwo -wy +i
ds ds ds ds ds 2  0 ds OY ds 3

d 2y
7s

2 )exp(iO)

As we are dealing with slowly varying quantities, the order of the first derivative of wo is

smaller than the order of w0 . Thus, after we substitute equations (2.43) and (2.41) into equation

(2.42) we can group the terms with the same order and make the sum of them equal to zero. This

way we have an idea of the behavior of the beam element at each order. The terms without any

derivatives have the highest order of all in equation (2.42) and they will be grouped first. We are

going to examine this procedure in detail.

The first two terms in equation (2.42) contribute nothing to the leading order because bending

stiffness is considered constant inside the beam element. Even if they involved slowly varying

quantities, they would contribute nothing because they have second and first derivatives of

bending stiffness. The third term has a fourth order derivative of w. If we look at its expression
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in (2.44), we see that the only term with leading order is - wy 4. The fourth term contribute

nothing to the leading order either because of the first derivative of T. The fifth term has a
A

second derivative of w. Looking at the explicit expression for this derivative in (2.44), we see

that the only contributing term is - woy 2 . Finally, the last term contributes because there is no

derivatives in it. Therefore, to the leading order, we have:

-(EIy 4 +Ty 2 +mw2)w0 exp(iO)=0 => EIy4+ Ty 2 + m V2 =O0

The interesting point here is that, to the leading order, the beam has the same dispersion relation

as the uniform beam.

The next-order terms are those that have just the first derivative in their expressions. Following

the same procedure that was used for the leading order terms, we get for the next lower order:

EI 3i y -3iwy -- 2dy d 3iwy -
ds ds ds ds)

-wyy-2iwy
3 d(EI)

ds ds

- 2iydwo . dy =0
ds ds

where the common term exp(iO) was left out of the equation. After rearranging, this equation

can be rewritten as

2 dwo (- 2Ely3-
ds +wo -6Ely

dy

ds
-2r d(EI) - r dT dy 0

ds ds ds

which is equivalent to

w 2(2y 3EI + Ty)= C 2

ds

Hence

(2.44)

W C1

2y'EI + Ty
(2.45)
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The last equation gives the value of wo, which is dependent of a constant C, to be determined

by the boundary conditions.

Thus, the general solution for the differential equation (2.40), up to the order considered here, is

w(s) = wo, exp(i 1 )0+ w02 exp(i02 ) + w0 3 exp(i0 3) + wo exp(i0 4 ) (2.46)

where 0, is a function of s and is given by J y, ( )d , y, is given by the roots of equation (2.44)
0

and w0, is given by equation (2.45).

Now we can proceed with the calculation of matrices [C], [D] and consequently [Ke] by using

the WBFEM. Once we know the expression that defines the transverse displacement (see

equation 2.46) we need to obtain the vectors of end displacements U, and end forces F,,. In

order to achieve this goal, we first have to obtain the following quantities:

* At s=0
A

w = w 01 (0) + w02 (0) + w03 (0) + w4 (0)

Ad 2 = w01 (0)y1 (0) + w02 (0)iy2 (0) + w03 (0)iy3 (0) + w4 (0)iy4 (0)

ds

d - -w 0 2(0)y (0) 20)y (0) -w 3 (0)y (0) - w 2(0)y(0)

dswds - -iw 01 (0)Y 1 (0) - iw0 30y 0)-i 0 (0)y 3 (0) -iWO4 (0)y 3 (0)

* At s=L

w = w01 (L) exp if y 1 ()dK + Wo2(L) exp if y 2 ( )dj +

wo3(L)ex if y 3()d + w04(L) ex i Y4 y()dJ
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ds = wo, (L)iy, (L) ex if y( )d + w02 (L)iY 2(L) ex if y2 ()d +

w0 3(L)iy 3 (L) exp if y3 (6 + w. (L)iy 4 (L) exp i

dS 2 -wO, (L)iy, (L) exp if y1 ()d W02 (L)iyr (L) ex if y2 ()dKJ-

W03 (L)iy (L) ex if y3 )d w4 (L)iy f(L) riy4(J)d

d - -iw (L)iy (L) ex -iw 02  (L)ex i
d 3 ex 1 ifJr ( )dj 2Liy e f~ y2 (gd

iw (L)iy (L) expri y d iw. (L)iy (L) exp if y 4

To reduce the size of the expressions for the components of matrices [D] and [C], the following

designations will be made

L

B1  Jr1 ( )d
0

e = Ci
2y3

3EI + Ti
j=1,2,3,4

The integral in equation (2.47) is performed numerically.

The end conditions for displacements are:

u1 =w(s =0)

u2 = (s =0)
as

U3 = w(s = L)
A

u4 =- (s=L)
as

The end conditions for forces are:
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f2 =E T(s =0)

fA=-EI + T- (s =L)a3 as (2.49)

f 4 =-EI (s=L)

Applying equation (2.46) into equations (2.48) and (2.49) and writing the result in matrix form

we obtain the expressions for the matrices [C} and [D]. Then [K,,] is obtained through the

expression [C].[D]~'.

~e, (0) e2(0)

[D]= e(ON)i (0) e2 (0)iY 2 (0)[ e, (L) exp(iB,) e2 (L) exp(iB2 )

e1 (O)iy,(0)exp(iB,) e2 (O)iY 2 (0)exp(iB2 )

e3(0)

e 3(O)iY 3 (0)

e3 (L) exp(iB3)
e 3 (0)iY 3 (0) exp(iB3 )

e4(0)

e 4 (0)iy4 (0)

e 4 (L) exp(iB4 )

e4 (O)iy 4 (0) exp(iB4 )

- ie 3(0)y (0) - ie2  3(0)

[C]= EI' e (O)y?(O) - e2 (O)y (O)

- ie3 (O)f (0) - ie4r(2)r(0)

- e3 (0) e(0) - e(O)) (0) +

ie3 (L)y (L) exp(iB 3 ) ie4 (L)y (L)exp(iB 4)

e3 (L)y (L)exp(iB3 ) e4 (L)y (L)exp(iB4 ) J
[ - ie 3()y1 (0) - ie2 () 2 (0)

0 0

ie (L)y (L)exp(iB,) ie2 (L)y 2 (L) exp(iB2 )

0 0
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-ie 3 (0)y 3 (0) - ie4 (0)Y 4 (0)

0 0

ie3 (L)Y 3 (L) exp(iB3 ) ie4 (L)y 4 (L) exp(iB4 )

0 0

2.8.2 Considering Shear Deformation Effects

A completely analogous procedure can be followed to consider the effects of shear deformation

and rotary inertia for the case of beam element with varying properties (in our case, these

properties can be cross-sectional area, moment of inertia and static tension). The only difference

is that now we are going to work with two quantities. In the case of curved beam it is going to

be three.

Rewriting the governing equations (2.20) and (2.21) in a more general way, taking into account

varying properties, we get

aQ a _ aw a 2W
-+-T-kw-pA =0as as as) 0 at2

(2.50)
aM __2a Q = pI a2

as at,

Substituting the expressions Q = GA a+ V and M = EI into equations (2.50) above
as as

and expanding them we get

a(GA K) aw 2 GAfa + aT aw -a2w a2 0

as as as2  as as as as 2  at2

(2.51)
a (EI) a+EI a GA aw -M -0

as as as2  as at2

If we assume solutions of the form w = w exp(-ia*) and V = V/ exp(-iaw) and then plug them

into the governing equations (2.51) above we get
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( A A A A I A

a(GAA) 2 w ay a w -a2 A A

+ yf ++GA +- +-- +T -kw+mm2 w=Oas as2  as as as( as2

(2.52)

a(EI)ay 3ya 3+ EI as2-GAK -- +/ Mr -m =0
as as as2  as 'waI2

where m, = pA and mr = pI.

A A

It is assumed now that the relationships w = wO exp(iO) and y = yo exp(iG) are valid, as we did

in section 2.8.1 (see equation (2.41)). After substitution of these expressions for w, yi and its

corresponding derivatives (see equations (2.43)) into equations (2.52) above, we start to collect

the terms with the same order. This procedure was explained in detail before, in section 2.8.1

and will be used here again. Beginning by collecting the terms with the leading order, we get

GAK(yfoiy-wo y 2 r 2w0-kw +ma)2w =0

- EIy 2 yO -GAK(wOiy+yfo)+mrW2 V =0

These equations are similar to the dispersion relation obtained for the case of beam with

constant tension distribution. All the conclusions derived in section 2.5.2 are locally valid here,

for instance equation (2.28).

Collecting the next-order terms we get

a(GAK) (woiy+yfo)+GA 2 y +woi--+ +-w iy+ 2 *wo iy+woi- =0
as as as as as as as

aEI . aV!0 . ay aw,
Voiy+ EI 2 iy+V1Oi- -GAK--O=0

as E as as as

Rearranging the equations we get

aw 0 .(-fa( AK) ay aBT -ay ava(GAK) 0
as i 2 GA Kr + 2 Ty)+ as +GA K-+-y+T- + GAK+ Vf as 0as as as as as as * as
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a 0 i2Er +('o Liy+EIia-GAKaw0 =0
as as

Rewriting the equations

-(GA Kf. =0
as

- (fO EIiy) -GAiVo wo*= -0as as

Subtracting the second equation from the first one we get

-w+i(GAK y) ) (y EIiy)+-(GAKyowO)=0
as as as

or

(w (GA Ky + Ty)
as a(s EIr

as
)- (iGAKVOWO )=0

as

The solution of this equation is simply

w02(GAi y + Ty) - y EIy - iGA KyOW =C2 (2.53)

As we have seen before, there is a relationship between wo and VO (see equation (2.28)).

Applying it to equation (2.53) above we get the final expression for wo

woj =

and

Cj

G~~ry _ +-p2Ey -iGAKP.

(2.54)

(2.55)Y 0j= PWO j

with j going from 1 to 4, one value for each wave. Thus, the general solution for the system of

equations (2.52) can be written as

w(s) = wi exp(i6,)+ W2 exp(i0 2) + W3 exp(i3) + W4 exp(i0 4 ) (2.56)
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y(s) = y, exp(i,) + Vu 2 exp(i0 2 ) + V exp(i0 3) + Yf 4 exp(i0 4 ) (2.57)

where 0, is a function of s and is given by f dr , w0 is given by equation (2.54) and yfo is
0

given by equation (2.55).

In a similar way to what was done for the constant tension beam, we impose now the end

conditions:

* For displacements

U1 =w(s =0)
A

u 2 =Y(s =0)

A

U 3 = w(s = L)
A

U4 =Y(s =LI)

(2.58)

. For forces

A

fA =-GAK(-
as

A

- (s =0)
as

f 2 = -EI aV(s =0)
as

(2.59)
A A

f 3 =GAK(-+y)+T (s = L)
as as

A

f 4 = EI (s = L)
as

From equations (2.56) to (2.59) we can obtain matrices [C] and [D]. Matrix [K] is obtained

through the operation [C]- [D]~'. The final expression is
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el(0)

[D]= e, (0)P
e, (L) exp(iB,)

-e, (O)P, exp(iB,)

e2(0)

e 2 (O)P2

e 2(L) exp(iB2)
e2 (0)P2 exp(iB2 )

e3(0)

e3(0)P3

e3 (L)exp(iB3)
e 3 (0)P3 exp(iB3)

e4(0)

e4 (0)P4

e 4 (L) exp(iB4 )
e4 (0)P 4 exp(iB4 )

where

j=1,2,3,4B = yi ( )df

and e1 is now defined as
(GA KYj +T) P 2 Eiy1 -iGA KP

, the term that multiplies the

constant of integration in equation (2.54).

-GA K(0)(iy, + P )el (0)

- EI(O)ie, (O)y (0)P,
[c] =GA K(L)(iy, + P)e, (L) exp(iB,)

EI(L)ie, (L)y, (L)P exp(iB,)

- GA K(O)(iy3 + P3 )e3

- EI(0)ie3 (0)r3(0)1

GA K(L)(iy 3 + P3 )e3 (L) e

EI(L)ie3 (L)y 3 (L)P3 exr

-GAK(0)(iy 2 + P2 )e 2 (O)
- EI(0)ie2 (0)Y2(0)P1

GA K(L)(iy 2 + P2 )e 2(L) exp(iB 2 )
EI(L)ie2 (L)y 2(L)P2 exp(iB 2)

(0) -GAK(0)(iy 4 + P4 )e4 (0)

3 - EI(0)ie4 (0)y4(0)P4 ]
Lp(iB3) GAK(L)(iy + P4 )e4(L) exp(iB4 )
i(iB3 ) EI(L)ie4 (L)y 4 (L)P4 exp(iB4 )

-ie, (0)y, (0)
0

ie, (L)y, (L) exp(iB,)

L 0

-ie 2 (0)r2(0)
0

ie 2 (L)y 2 (L) exp(iB2 )

0

-ie 3 (0)73(0)

0

ie3 (L)y 3 (L) exp(iB3 )
0

- ie4 (0)74(0)

0

ie4 (L)y4(L) exp(iB4 )

0 J
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2.9 Consideration of Added Mass

Most of the cases that will be studied here refers to structures in water. In this case, the

governing equations must be changed in order to take into account the added mass due to

dynamic resistance of the surrounding water.

The formula for the added mass of a cylinder segment moving perpendicular to its longitudinal

;w2

axis is given by m, = 4,where Hd is the hydrodynamic diameter. Hence, the total mass for

transverse translation should be given by m, = pA + ma and the governing equations of motion in

the case of submerged lines are written, in its general form as .

a2 a 2 w a - aw a 226
aEI(s) a a(T(s)-a- + m,(s) at=0 (2.60)

For the rest of this work the added mass will be considered in the derivations of the equations

2.10 Consideration of Structural Damping

For an elastic material, the modulus of elasticity is a pure real number. However, in a marine

riser analysis, the hydrodynamic damping causes the propagating wave to dissipate energy as it

travels along the line. Consequently, the wave decays with the distance traveled. This condition

can be studied in the context of WBFEM through the use of a complex modulus of elasticity,

expressed of its real and imaginary parts as

E = Er +iEj = Er(1+il)

E.
where the loss factor can be defined as q = -, a positive real number. In chapter 5, we are

Er

going to see some examples showing the use of this damping.
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Chapter 3

Curved Beam Elements with Constant Radius

3.1 Introduction

In this chapter we start studying the curved beam element with constant radius of curvature. We

develop the formulation of the dynamic stiffness matrix for two cases: one with constant tension

distribution over the length of the element and another for the slowly varying tension. Then it is

shown how the straight element and the curved one can be combined in order to allow the

dynamic analysis of a more complex structure like a marine riser. We also establish a method to

consider the response of a structure to a distributed, harmonic load acting on it. Finally, in this

chapter, we show how the elements developed here can be useful to determine dynamic

properties of a beam and compare the results obtained through WBFEM with the corresponding

theory.

3.2 Dynamic Stiffness Matrix Formulation with Constant Tension

A typical segment of circular beam is shown in Figure 3-1 with its local system of reference for

displacements and forces at its ends. Numbers 1 and 2 inside the circles represent both ends of

the beam. The beam is made out of a linear elastic material and the effects of rotary inertia and

shear deformation are neglected because the range of frequencies we are going to work with is

much smaller than the one that make the consideration of these effects necessary. Besides, no

kind of contact between soil and beam is considered in the present study. All the material and

geometric properties are constant over the length of the element. The beam is also subjected to a

constant axial tensile force along its longitudinal axis. Figure 3-1 also shows the sign convention

for both nodal displacements and forces which are represented by the vectors
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0=ku, u 2 u3 u 4  u5  u6 }T and -={f, f2 f3 f4 f5 f IT, respectively. This

time the axial motion is included because it is coupled with the transverse displacements, as we

will see. Quantities u1 and u4 are the axial displacements, u 2 and u. are the transverse

displacements while u3 and u6 are the rotations of the longitudinal axis. Similarly f, and f 4

are the axial forces, f 2 and f 5 are the normal forces while f 3 and f 6 are the bending moments.

6

3 R

Figure 3-1: Curved beam element with constant radius subjected to constant static tension with

all 6 degrees of freedom.

The procedure to obtain the dynamic stiffness matrix of the curved beam element will be

analogous to the one used with the straight beam element. Equations like (2.11) and (2.12) will

be obtained for the curved beam element. In the case of straight beam, the axial displacement

was uncoupled from the transverse displacement and so we could study one independent of the

other. However, in a curved beam, the curvature couples both types of displacements and so

they have to be studied together.

The equation governing the dynamics of a cable element and a circular beam element have been

studied separately by other investigators (see references [15], [16] and [45]). So it will not be

repeated here. By combining them we can arrive at the governing equations of a constant

tension circular beam, which can be expressed as
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aJ2 M - - T m, _

aT 1 M 1- a2V
+----Ta= pA -

as R as R at2

+v
+s

V aw
R as

and m, = pA + m, , in order to take into account the added mass, as described in section 2.9.

However, its influence is neglected in the longitudinal direction. Substituting equations (3.3) to

(3.6) into (3.1) and (3.2) we get

._a V a3w)'\ a ( V aw
EI 3 C- ---

aS R as) as ~R as

EA r
(R

+ = M, (3.7)

(3.8)+- -I + - --i-- I=pA
as R aS2 (R as R kR as) a

Assuming a harmonic solution like v(s, t) = v0 exp(i(A - ax)) and w(s, t) = wo exp(i( - cr))

for the displacements, where v0 and wo are the constant wave amplitudes, and substituting them

into equations (3.7) and (3.8) we end up with

-EI i3yw 2W _EA w
R

+ io ) = -m t O2WO

Ejr 2 VO+iyrw
0

R R
-

( i 
_W4o 

=-pA 
o)2vo

V0R

Rewriting the equations above in matrix form we have
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where

T = EA j

(3.1)

(3.2)

M=EI a -- I
= s R as

(3.3)

(3.4)

(3.5)

(3.6)

j 

VOj+

EA -4O



KE - 2 EA 2 iEIy3 Tiy EAiy
R2 'R R R w

1 R( 2 R -H =} (3.9)
L EAir+iEIr'+Tir) -EAy 2 -EI - 2+pAW2 _ T VO 0

R R R2

If we set the determinant of the 2 by 2 matrix of coefficients to zero in order to have a solution

different than the null vector, we get the following equation:

y6 4 IPW2+_ 2EIEA EIE2A 2EI 2TEA
y6EIEA + -EIpA&2+TEA - 2 +72-pA2+ EIEA -mt2 2R 2 RT R

EApAw 2  TEA j 2 T
~- 2 + +mp pA-mp -y=0
R R2

This equation admits 6 solutions for 7 which means that there are six waves along the curved

beam. Two of them have positive real parts and two others have negative real parts. Positive real

parts correspond to right-going propagating waves while negative values correspond to left-

going propagating waves. They represent two wave types which are dominated by longitudinal

and transverse beam deflections. Finally there is one positive purely imaginary y (i. e. spatial

decaying to the left) and one negative purely imaginary y (i. e. spatial decaying to the right).

The analytical expressions for these wave numbers were found with the help of Maple software

and implemented in a computer routine. Because of their length they were not written here but

they are designated as 2,r2I 73, 74, 75 and r6 and, like the case of straight beam, they were

sorted so that the first three are right-going or right-decaying waves while the last three are left-

going or left-decaying waves. This operation will prove to be very helpful when we study

reflection of waves on risers because in this case we can identify the direction the waves are

travelling.

Since the equations (3.9) are not independent of each other, if we want to obtain a non-zero

displacement, the relation between the wave amplitudes vo and w0 can be obtained from one of

them. Choosing the second one we will get the following amplitude ratio:

w01  EAR2 2 +EIy 2 - pAR 2
)

2 +T(
i=P. =1,...,6 (3.10)

voj EAir, +iEIr3 +Tiri
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Since we have six wavenumbers, the transverse and axial displacements are given respectively

by the following expressions

w = w01 exp(iys)+ w02 exp(iy 2s)+ w 3 exp(iys)+
wo4 exp(iy4s)+ wO, exp(i rs)+ w. exp(iy6 s) (3.11)

v = vol exp(iyrs) + v02 exp(iy 2s) + v03 exp(iy 3 s)+

vo4 exp(iy4s) + v,, exp(irs) + vo exp(ir6 s) (3.12)

with the wave amplitudes w0j and voj related by the equation (3.10).

To determine the dynamic stiffness matrix, we must first obtain matrices [C] and [D]. These

matrices can be obtained after we have an expression for the displacement field along the beam,

defined by expressions (3.11) and (3.12). These matrices will be 6 by 6 this time because there

are 6 waves travelling along the beam.

As we know, the displacement-amplitude matrix relates the beam wave amplitudes to the

displacements at the element nodes and is formally defined by the relation [D] -W =0 . So we

can satisfy the displacements (linear and angular) conditions at the ends of the beam element

(s =0 and s = L) by using equations (3.11) and (3.12):

u1 = v(0)

u 2 =w(0)

v(0) Dw(O)
u3  R as

u 4 =v(L)

u5 =w(L)

v(L) _ w(L)

R as

So matrix [D] is given by
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1

P

exp(iy, L)

1 1

2

-- iP2 r
R j
exp(iy 2L)

P3

(R 3

exp(iy 3L)

P exp(iy1 L) P2 exp(iy 2 L) P3 exp(iy 3 L)

- iP7 exP(iriL) - iP2 72 ex(iy2L) I - iP3 y3 exP(iy3L)

1

P4

exp(ir4L)

1

p5

- P5 Y5J

exp(iy5 L)

1

P6

Rxp6 Y6

exp(iy6L)

P4 exp(iy4L) P5 exp(iy5L) P6 exp(iy 6L)

-iP 4 y 4 exp(ir4L) -iPy 5 exp(iy5 L) -iPr6  exp(iY 6L)

The force-amplitude matrix relates the beam wave amplitudes to the displacements at the

element nodes and is formally defined by the relation [C] W = f . We can satisfy the force

conditions at the ends of the beam element (s =0 and s = L) by using equations (3.3), (3.4) and

(3.5) together with (3.11) and (3.12):

A EA( w(O) + av(O)
R as

f 2 v(0) aw(0) v(O) aw(O)
f2 =EI-- -- -- T -

as2 R as R as

A= EI a (v(O) aw(O)
as R as

f4 = EA w(L) + v(L)
(R as

f 2  v(L) aw(L)
f EI -- --

f5 as 2 (R as
- v(L) aw(L)

R 3s )
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6=EI -v(L) aw(L)
as R as

In doing so we get the following expression for matrix [c]

- EA ,+ ir, -EA P2+ in

EI iP,7|EI -iP22

R R

r12(2

-EI I +Pr2 -EI 2

yR ) R j 4 ) r

EA +iyr exp(iryL) EA -+i2 exp(iy2L)

- EI ijP37 l ex P(irL) - EI -~iP4 exp(iy2L)

S +Py exp(iyL)p2L)

E -P EI -- iP2 j 4
-E iP 2 x~rL E i4 exp(i2L)

EI( + P r exp(ir, L) EI r + P27 X2 iL
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-EA -+iy 5  -EA j+ir6

2 2
EIL[iPs r5 EI -6Y6

EI +PsYj +6'6 +
R R

EA +iy 5 exp(ir5 L) EA +i 7  6  L)

-EI( -iPy r5 exp(ir5L) -EI( -RPW6 fls

EI( R +P 5 4 l2exp(irsL) EI( R +P6y j exp(ir6 L)

0 0 0

-iy WiP2 r2 -3Kr

0 0 0

0 0 0

SiPy, exp(ir, L)) -iP 2 2 exp(ir2L) -iP 3y 3 exp(iy3 L)

0 0 0

0 0 0

iP 4r4 riPs -iPr 6

0 0 0

0 0 0

-iP4r4 exp(ir4L) -iPy5 exp(i rL) -iPY6 exp(iy6L)

0 0 0

And finally, the stiffness matrix is obtained through the operation [C]- [D]-'.
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3.3 Dynamic Stiffness Matrix Formulation with Slowly Varying

Tension

We are going to study the case of a curved beam with slowly varying static tension, T , along its

longitudinal axis. All other properties are constant on the element including the radius of

curvature. The beam element under consideration here is depicted in Figure 3-1 together with

the local system of reference for the degrees of freedom. Except for the varying properties

mentioned above, the characteristics of the beam studied in the previous section are applicable

here. Based on these assumptions the dynamic governing equations are changed to a more

general form as

a2M a a-\ 2W
TM pA (3.13)

as2  as R at 2

aT 1 M 1- a2V
-- +------- Ta = pA a2(3.14)as + as RT Pat 2

where the forces on any section are given by

T(s, t) = EA w(s + t) v(s, t) (3.15)
R as

M(s, t)v= EI - V(s, t) aw(s, t) (3.16)
as R as

Q(s, t) = aM(s, t) (3.17)
as

and a(s, t)= v(s,t) - (w(s,t) 3.18)
R as

Substituting equations (3.15) to (3.18) into (3.13) and (3.14) we get

a2 a (v aw a ( Vw EA (w +3v a (
EI -- T---- -Aasy (3.19)

as 2 ( as R as as R as R R as at2
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SEA(W+ av+ EI a v aw
as R as)) as R as R as)

T _ Dw 2V
R-R-a=spA 2R R as) at2

Assuming a harmonic solution of the form v(s, t) = v(s)exp(- iaX) and w(s, t) = w(s)exp(- iat)

for the displacements and substituting them into equations (3.19) and (3.20) we end up with

a2  a
EI

- s2 as

K (A

-IEA W
as R

V

R
aw
as

av as
Js as

EI a

R as

(A A A A

V aw EA w av ^-- --- -+- +M tWC2 =0
R as R R as '

V w T v aw ^A

R as R R as

(3.21)

(3.22)

where the term exp(-iot) was left out of the equation. After working with the derivatives,

equations (3.21) and (3.22) can be expanded to

(A A A

2(EI)Iv d(EI)d2 v d v d2(EI)d WRd 2  + d 2 +EI dS3]dS2dS2
R ds2 ds ds ds 2 ds 2 2

1 dT A

R ds

d(EA) w

ds R

I d(EI)d2 w 1 d'w T A T dw A

-EI v+--+mvW2 =0
R ds ds 2 R ds 3 R 2 R ds

d4 w d(EI)d3 wEI -2-ds4 dS ds3

(3.23)

(3.24)

In order to solve this system of equations we resort again to the formal procedure of WKB

method, as we did before for the case of straight beam. First we assume that the relations

w(s) = exp(iO(s))wo(s) and v(s)=exp(iO(s))vO(s) are valid, where O(s)=
0

y1 ( )d . The

expressions for the derivatives of v and w that appear in the equations (3.23) and (3.24) above

have already been calculated in chapter 2 and are shown in equations (2.43). So, if we substitute

them into equations (3.23) and (3.24) and start collecting the terms with equivalent order, the
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(3.20)

1-dv dTdw -d 2 w EAw EAdv 2
-T -+--+T - --- +mwC02 =0
R ds ds ds ds2  R 2  R ds

E~ A A A A A

E dEv d2 1 d(EI)dv 1 d 2 v
+ --- + -+EA + + EI d

R ds ds ds ds 2 R 2 ds ds R 2 ds 2

-
T

A A



same way we did before for the case of slowly varying static tension on straight beams, we will

find:

1. To the leading order (i.e., terms with no derivatives), we get

E -i--y3vo-EIwoy
R -iRvo - wor2

R

.EA 2 EI .EI
e i -- wO - EAvOy 2 - vor2 +i -- wo

R R R

EA
_Wo

R
SiT )'

EA 2~---voy+macw w=0
R

0o20 v 0o~o=0

Notice that, again, we obtain the same dispersion relation that we obtained for the curved beam

with constant tension. It means that there will be six wave numbers, which are no longer

constant, but a function of s and still slowly varying. With this difference in mind we can use

here in this section the same equations for the wavenumbers obtained before.

2. For the next-order terms (i.e., with one first derivative only)

2 d(EI) 2 3 EI dv0 3 EI dy dw 0 . 2 dy w 02 -2vo-3 r2 3 voy +3iEI -3+3iEIwo7 +EIy 3  +
R ds R ds R ds ds ds ds

dy3iEIw0y2 ds
ds

EA dvo -0

R ds

2i d(EI)
ds

ldT

R ds

T dvo
R ds

.dT
+1-W 07

ds

dw0  . d2i y+two
ds ds

d(EA) wo EA dwo .d(EA)
ds R R ds ds

EI (2 .dvro d
R2 y+lv -Rds ds

+EA( .dvo
2i y+iv 0 .

as

1 d(EI) 2 3 EI dwo 2

)R ds R ds

dy . 1 d(EI)
1+ Vy+ds) R 2 ds

dy\ T dwo
+w 07 + =0

ds) R ds

Rearranging both equations

dv T Or-2 \ 2 d(EI) _ Erdr-d +wo(iIrdvo 1 (_EA-T-3EIY + -22 E-3EIYd dwcI 4 iEIr3ds R R ds ds ds ds

w0 ~6i y d(EI)wo 6iEIr2 r+ 2i r 3
ds ds

dv0  .EI2 iEAY+i r) +vo i
ds (2

+i dT y+iT -j=0
ds ds)

.d(EA) dy .
7y+ iEA- +i

ds ds

1 d(EI) .EI dy
R2 ds R2 ds
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dwo EA T 2 EI

ds R R R
1 d(EA)+7 2 d(EI)
R ds R ds

+3r EI dj =0
R ds)

Both equations are equivalent to

EA T

R R

- EIj2'
3

R
+

2
voWO (R

2 d(EI)
2'ds

EI dy
-3 s

R ds

d (w (2iEIi3+ -Ti y))= 0
ds

dwo ( EA

ds R R
3 EIy2

R
(1 d(EA)

R ds
+2 d(EI) EI dy+
R ds R ds)

v(iEAr+ 2 ij ) =0

Subtracting the first equation from the second one we get

EIl
v (iEAy+ 2 iY)

R

d T

ds R

I+d d EA
w2(2iEIr' +Tir) +- -vowo

ds ds R

d (EI
3-i -vw 0R2+dsyR

vOWO = 0

If we multiply the equation above by - i and then integrate it, we get the following relation

v iEAy (3.25)+ R 2E +iy)-i 2 T (EA+3EIy2 + )=C

where C1 is a constant of integration.

As the equations for the leading order are the same as those for the constant tension curved

beam, we conclude that the equation (3.10) is still valid. The only difference is that now P is a

function of s. Introducing it in the equation (3.25) we get

vQiEAy+ -I i_ p(2iEly +Tiy)-i-EA+3EI72 +T =C
R2 ) 2E~3 TR) -]

So, the expression for the amplitude vo is
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v0(s) =
C,

/EAY+ E -rP2(2EI+Tr)-i Li(EA+3EI 2+T)

= Q(s)C (3.26)

Consequently the expression for the displacements are given by

w(s, t) = (wo, (s) exp(i6 ,(s))+ w02(s) exp(i62 (s)) + w03 (s) exp(i63 (s))+

w04 (s) exp(i04 (s))+ w 05 (s) exp(i0, (s))+ w0 (s) exp(i6 (s)))exp(-iaX)

v(s, t) = (vo0 (s)exp(i6,(s))+ v02(s)exp(i62 (s))+ v03(s)exp(i93(s))+

v04(s) exp(i04 (s)) + v05 (s) exp(i65 (s)) + v06(s) exp(i6 (s)))exp(-iat)

(3.27)

(3.28)

where the wave amplitudes w01 and voj are related by the equation (3.10) and voj is given by

(3.26).

Following the usual procedure, now we have to look at the end conditions for displacements:

u1 =v(0)
A

u 2 = w(O)

v(0) a w(0)
= R as

(3.29)

U 4 =v(L)
A

U 5 = w(L)

v(L) asw(L)
U= R a

For the forces we have

=EA Rw(0) + v()
fla

f 2 = EI r
as2

v(0)

R
aw(0) v(0) a w(0)

R as
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A A

f 3 = EI a v(0) a w(0)
as R as

f 4 = EA (L) a v(L)
R as

S= J EI a2 v(L)
f aEIRs2 R

A (A A

Dw(L) T v(L) aw(L)

as R as

( A A

f 6 =EI v(L) aw(L)
as R as

The next step is to obtain matrices [C] and [D] substituting equations (3.27) and (3.28) into

(3.29) and (3.30). The resultant matrices [D] and [C] are, respectively

Q, (0)
P, (0)Q (0)

Q, (0) - i QI (0)Yl
R
Q, (L) exp(iB,)

P, (L)Qj (L) exp(iB,)

Q L-iP, Q, (L) r, )exp(iB,)

Q3 (0)

P3 (0)Q 3 (0)
Q 3 (0) - P3 Q3 (0)y

3R
Q3 (L) exp(iB3)

P3 (L)Q3(L)exp

3 3 Q3 3

(iB3)

Q2 (0)

P2 (0)Q 2 (0)

Q2 (0)
-. P2Q2 (0) Y2R

Q2 (L) exp(iB 2 )

P2(L)Q 2 (L) exp(iB2 )

QL) P2Q2 (L472 exp(iB2 )

Q 4 (0)

P4 (0)Q 4 (0)
Q 4 (0) _ P4Q4 (0)y 4
R
Q 4 (L) exp(iB4 )

P4 (L)Q4 (L) exp(iB4 )

jexp(iB3 ) - 4Q4()r4 exp(iB4)
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[D] =



P 5 (O)Qs (0) POQ 6 (0)

P5 ( O)Q5 (0) 6 -P60Q 6 (0) 6
R R
Q5 (L) exp(iB5) Q6 (L) exp(iB6 )

P5 (L)Q 5 (L) exp(iB5 ) P6 (L)Q6 (L) exp(iB6)

Q5- iP5Q5 (L)yr5 jexp(iBs) ) -P 6 Q6 (L)y6 exp(iB6)

- EA Pi+iy1Q, -EA P2  +iiQ2

R* -EI -Q PQ, lyr - EI -Q2 2 +iP2Q27l

C]= E 
EI {Q 22 +P 2Q 272

EA P 2 i +iy1 Q exp(iB) EA P2 R +ir2Q2 exp(iB2 )

EI -Q, iPQ l exp(iB,) EI -Q 2 2+P 2Q 2 j exp(iB2)

EI iQ 2l +PQ y exp(iBi) EI iQ2 2 + P2Q 2 r2 exp(iB2 )

-EA P3 23 +ir3 Q3 - EA P4 Q4+i)Q 4

( 2 2

-EI Q3 -3 +P3QYj -EI3 -Q +iP4Q42$J

-El iQ3 
1 + P3Q 3y 3 EI Q 4  + P4 Q4y4

EAP3  +iy 3Q 3 exp(iB3 ) EA P4  +ir 4 Q4jexp(iB4 )

EI3- Q R + iP3Q 3y3 exp(iB3 ) EI - Q4 2 + iP4Q 4  jexp(iB4 )

EIriQ 3 L1+ P3 Q3 y3 exp(iB3 ) EI iQ4  '+P4 Q4 y exp(iB4 )R R
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-EA PR +iQ -EA P6
R R

-EI -Q 5  +iP5Q 5rj -EI -Q 6 - +iP6 Q6 rj

-EI iQ5 2I+P Q5 y -EI iQ6 -+P6Q6 r6j

R R
EA PQ5 +r5 Q5 exp(iB 5) EQA P- 6+ 6Q 6 exp(iB 6)

2 

2
EI -Q5 +i5 Q, exp(iB5) EI -6 3P06 exp(iB6

EI iQ5r + P5Q, y ex p(iB, ) EI iQ6 r + P6Qs 62 ex p(iB6 )

0
1-iyPQ,
R

0
0

Q 2
R

-(j2L-iPQexp(iB,) -K2 -

0

0
Q4iy4P4 Q4

R
0

0

- iy2P2Q2

0

0

iy2P2Q2  exp(iB2)

0

0

Q-7 iP5 Q5R
0

- - iy4P4Q 4 exp(iB4) - -iy 5P5Q5 exp(iBS)R ~ R
0 0

0

-Q 3 _'3P3 Q3
R

0

0

- ( - 3J3Q 3 Iexp(iB3 )yR
0

0

0

0

-(Q -'~6(exp(iB 6)

0

where the first three rows are evaluated at s =0 and the last three rows are evaluated at s = L.

The expressions for B, are those shown in equation (2.49). Finally, dynamic stiffness matrix is

obtained from [C]- [D] .
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3.4 Coupling Between Straight and Curved Beam Elements

As we have seen before, the stiffness matrices involving straight beams have dimension 4 by 4

because the axial displacements are uncoupled from the transverse motion. Thus, the governing

equations for the transverse motion are independent from the governing equation for the axial

displacement up to the first order. So the stiffness matrix of the element does not take into

account the axial motion.

In the case of curved beam, the transverse and axial motions become coupled because of the

curvature and so the governing equations involve both types of displacements as we saw in

sections 3.2 and 3.3. As a consequence, the stiffness matrix of the curved beam element

increased its dimension to 6 by 6.

In order to use both types of elements in the same structure (this will be the case in the next

sections when we study risers) we will have to match the stiffness matrices of straight and

curved beam elements when we assemble the stiffness matrix of the structure. It means that their

dimensions will have to be the same.

This problem was solved by adding to the stiffness matrix of the straight beam element the

dimensions related to the axial displacement. In order to achieve this goal we will study in this

section only the axial motion on a straight beam up to the point we obtain the stiffness matrix of

the beam. The beam element is shown in Figure 3-2 with its local system of reference for forces

and displacements. Its stiffness matrix will be 2 by 2 since the element has two degrees of

freedom. We will also study two cases: beam with constant and slowly varying properties, using

the same methodology we used before. Then the stiffness matrix of the beam with axial motion

only will be added to the stiffness matrix of the straight beam element with transverse motion

only, studied previously in chapter 2.

We will refer to the beam with axial motion only as a rod.

F b2

Figure 3-2: Straight beam element with axial motion only.
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wave propagation in straight rods with

Properties

The use of WBFEM in the study of one-dimensional rod was done before by other investigators

(see, for instance, reference [17]) and so it will only be summarized here.

It is known that the linear equation for the axial motion is

(3.31)= pA
as at2

Writing the axial force as T = EA -v and substituting it in equation
as

(3.31) above we get

32 v 32 v
E = p

as 2 at2

Now we assume a solution of the form v = v0 exp(i(js - ax)) and insert it into the equation

(3.32) above to get the wave dispersion relation

2 2P2
E

-> y= i)

Using the terminology adopted in the present work, we can say that the roots are rl = y and

r2= -y. So the general solution for the governing equation (3.32) is given by

v = vol exp(i(rls - wt)) + v0 2 exp(i(y 2s - wt)) (3.34)

We see that there are two propagating waves travelling along the rod, one to the right and the

other to the left with wave number y given by equation (3.33). Similar to what was done before

for the beam, we can obtain the dynamic stiffness matrix of the rod element using the WBFEM.

We will omit the term exp(-iwa) as it is implied throughout this work.

The end conditions for displacements are
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and u2 = v(L)

and for forces are

avf1 =EA-(s=O)
as

av
and f 2 = EA -(s = L)

as

After substitution of (3.34) into (3.35) and (3.36) we obtain the matrices [C] and [D]

[D]= [ L L)1
lexp(ir, L) exp(ir2L)

[C] = EA -rY

[iy, exp(iyrL)

- iy2

ir2 exp(i72L)_

If we represent the roots given in equation (3.33) by y =-)2 = y we will have the following

stiffness matrix:

K = EAy [cosOL)
sinQL) _ -1

-1

cos(W)

3.4.2 Longitudinal wave propagation in straight rods with Slowly Varying

Properties

In this section we study the same rod depicted in Figure 3-2 but now with slowing varying

properties (like cross-section area).

As seen before, the governing equation (written in a more- general way) is

A aV 2
EA - =pA aas as) at2 (3.37)

As we are looking for time harmonic solution, we assume that v(s, t)= v(s)exp(- iar) and

substitute into equation (3.37) to obtain the relation
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A

-- EA +pA) 2 v=0Ls Js a(EA)Dv EA a2 v 1pC2 V=O

as as as2

Again we use the WKB method to find an approximate solution for equation (3.38). We assume

again that v(s)=exp(iG(s))v0 (s) where = y(s). Plugging this expression and its derivatives
a3s

into (3.38) and collecting the terms with the same order, we get

To the leading order

- EAry 2 +pAO)2 =0

or

= 0) (3.39)

* Next order

EA 2ir dvo +
ds

ivo dy d(EA) =0
ds ) ds

We note that if we multiply equation (3.40) by v0 we can rewrite it as d(EAp2)=
ds

0. After the

integration we get the following result:

C1

JEA(s)y(s)

The axial displacement, which is the solution of equation (3.38), can be written as

^ C 1v(S)= - exp if y, ()d
VEA(s)y ,(s)

CS
+ C2 exp if

+EA(s)72(s)
Y2()d

The end conditions for displacements and forces are, respectively

A A

u1 = v(0) and u 2 = v(L)

and for forces are
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f1 =EA a V (s =0) and
as f 2 = EA (s = L)

as

The matrices [D] and [C] are

EAy,
[D]=(

1 exp if J( )d
[EA 7

QEAy,

exp if 7i( )dfJ
EA1 0

1
JEAy

2

E exp if 72 ()d
EA72 0

-i 7 2

QEAy 2
- 'L

72 eXp i r2( )d
VEAy2 1

where the first line is evaluated at s =0 and the second one

obtained from [C]- [D]'.

at s = L .Stiffness matrix is

Once these matrices are known, we can think of a straight beam element with 6 degrees of

freedom (represented symbolically by the word 'dof from now on), 3 per node, like the curved

beam element studied in this chapter. This is the approach given to this element from now on, in

the present work. The axial displacements at the ends of the element are now represented by the

dof numbers 1 and 4 while dof 2, 3, 5 and 6 are related to the transverse motion. In order to

obtain the dynamic stiffness matrix of this new straight beam element we just assemble matrices

[Kea ] and [K,,], paying attention to the relationship between the dof numbers and the type of

motion. Since axial and transverse motions are uncoupled in the straight beam element, the

terms (1,2), (1,3), (1,5), (1,6), (4,2), (4,3), (4,5), (4,6) and those of transposed positions are zero.

The resultant dynamic stiffness matrix [K,] is represented symbolically as
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Kea (1,1) 0 0 Ka(1,2) 0 0

0 Ket (1,1) Ket (1,2) 0 K,, (1,3) K,, (1,4)

[Ke] 0 Ket (2,1) Ket (2,2) 0 K,, (2,3) Ket (2,4)

Ke (2,1) 0 0 Kea (2,2) 0 0

0 Ket (3,1) Ket (3,2) 0 K,, (3,3) Ket (3,4)

0 Ket (4,1) Ket (4,2) 0 K,, (4,3) Ket (4,4)_

The procedures explained in sections 2.4 and 2.7 for the semi-infinite beam element and

reflection coefficients, respectively, are still valid for the element represented by [Ke]. The only

difference is that the matrices involved in expressions (2.41) and in the definition of [Keil are 3

by 3.

3.5 Distributed Transverse Load on Beams

In this section, we are going to develop a method to obtain the nodal forces equivalent to a

harmonic load distributed along a beam element number n. The ends of this element are

identified by node numbers n and n +1.

When we employ the FEM method, including WBFEM, all the equations of equilibrium are

related to a finite number of degrees of freedom that describes the response of the structure in

terms of displacements and forces. That is why the distributed load acting on a beam element

must be substituted by a set of equivalent concentrated forces located at the element's degrees of

freedom. They are called nodal loads. In the present work, these degrees of freedom are located

at the element's ends (see figures 2-1 and 3-1).

Essentially, the procedure adopted in this work to consider the distributed load is similar to the

one used in the conventional FEM. The difference is that now it is going to be applied in the

context of the wave based approach. The method we are going to develop is outlined in Figure

3-3, where q(s,t) represents an arbitrary distributed load acting on the beam element. This

element belongs to a mesh into which the structure to be studied is divided into. The basic steps

are described below:
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~(s~t)

I ~ I ~ V..
t F

F1  F4  N4

off. , F3 s
+

Displacement d?
Fs

Figure 3-3: Procedure adopted in the FEA to consider distributed load on a beam.

1. We clamp the ends of the beam element n and apply the distributed load q on it. The beam

will be subjected to reactions at its ends, represented by the vector force FeR and to a

displacement field called di along the longitudinal axis.

2. Remove the clamps and substitute the distributed load for the vector force - FeR at the ends

of the beam element.

3. Compute the element stiffness matrix [K,]

4. Repeat steps 1 and 2 for all other elements of the structure.

5. For each node n we sum the contributions of the corresponding force vectors -FeR from

elements n -1 and n . In the end we will have the nodal force vector F.

6. Assemble the stiffness matrix of the structure, [K]

7. Solve the equation [K]O = F for the nodal displacements.
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8. From the vector U we take the vector of displacements at the ends of the beam element n,

called e. Then the displacement field along the beam element n is obtained and we call it

d 2 *

9. The final displacement field of the beam element n is equal to the summation of d, and d2

The forces at the ends of the element n will be given by [Ke U - FeR -

We will study now the parts of the procedure above that had to be adapted to the wave based

approach.

3.5.1 Reactions at the clamped ends

qds

Lf L,
-i 1 O

sp .4
Figure 3-4: Picture showing the parameters considered in the calculation of the displacement at

S, location.

The purpose here is to obtain the reaction forces FR at the ends of a beam element due to any

arbitrary distributed load q. In this calculation we are working in the local system of reference

of the element under consideration.

We start by focusing our attention on an infinitesimal part of the load qds at the location s = Lf,

as shown in Figure 3-4. The formulation given here can be applied to both straight and curved
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beam element with length L. Now we can divide this element into two new sub-elements. One

going from node 1 to node 3 located at s = L with length Lf and stiffness matrix defined by

[K 1 [K I

where [K'j is a submatrix with dimensions 3 by 3 relating unit displacements at node i to the

corresponding concentrated forces at node j. The second element goes from node 3 to node 2

with length Lr and the stiffness matrix is given by

[K r K2r

Node 3 can be regarded as a new and temporary node that is used just to help us to obtain FR.

Notice that L = LI + L,. Each node has three degrees of freedom. At this point we can regard

qds as a concentrated force acting on node 3. Based on this assumptions, the equation of

dynamic equilibrium of this element, due only to the infinitesimal load qds, can be written in

matrix form as

K K 0] dU, [dF,

K K ]+ K K dU = dZ' (3.44)
[0] [Kr K 2dU 2  dF 2

where

dU1 ={0 0 0}T, dU3 ={dv dw d#} T , dU 2 ={o 0 0}T

(which represent the infinitesimal displacements at nodes 1, 3 and 2, respectively, due only to

qds ) and

dfI ={dR, dR2 dR3}, d, 3 ={0 qds 0}, dF 2 ={dR4 dR dR6}
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(they represent the infinitesimal reactions at node 1, the forces at node 3 and the reactions at

node 2, respectively, due to qds only).

In the equations above the superscript '1' means the left sub-element and 'r' means the right sub-

element. The subscripts '1', '2' and '3' represent nodes 1, 2 and 3 on the beam, -respectively.

From the middle equation we have the following relation

([K 3 + K ] i 3 = dF3  (3.45)

Equation (3.45) can be solved for the displacements without difficulty:

dU3 = ([K 3 + K 3  dF3  (3.46)

Note that vector dU 3 is a function of the distributed load q. Once this vector is known, the

infinitesimal reactions can be obtained by the following equations, extracted from the first and

third lines of equation (3.44):

dF, = [KI'3 ]dU3  and dF2 =[KJdU3

So, as a final step, the total reactions can be calculated as the integral of dF, and dF 2 with s

varying from 0 to the length L of the beam element.

3.5.2 Displacement at a location s,

Now we are going to focus on obtaining the displacement fields, d, and d2 along the beam

element shown in Figure 3-4, as explained in steps one and eight in the beginning of section 3.5.

1 -Displacement di

It is desired to know the value of the transverse displacement at the location s, of the beam

element. This calculation is a continuation of section 3.5.1, which means that the conditions

depicted in Figure 3-4 are still valid and so are all the results obtained in section 3.5.1. In order

to determine the transverse displacement di at a specific location s, we can resort to equation
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(3.44) again. We start by calculating the incremental displacement d(d,) at location s, due to

an infinitesimal load qds. We have to consider three situations:

1. sP > Lf

In this case location s, is between nodes 3 and 2. We can focus on the right beam sub-

element with length L, and adopt the same methodology used in section 3.5.1. The

infinitesimal displacements and reactions due to qds on node 3 are given, respectively, by

dC3 ={dv dw d6}T and dF3 ={dR, dR, dRf,}

At the same time, on node 2 the infinitesimal displacements and reaction forces are given,

respectively, by

d02 ={0 0 OJT and dF2 ={dR4 dR5  dR61

All these quantities are already known from the calculations from section 3.5.1. If we regard

location s, as a new temporary node inside the right beam sub-element, similarly to what

was done before, in section 3.5.1, the infinitesimal displacements and concentrated forces

acting on this node are given, respectively, by

d0,, ={dv, dwP d/P }T and dF, ={0 0 01

Therefore, we are ready to apply equation (3.44) to the conditions of this right beam sub-

element:

[K [K dU dF3]

[K'3 [K' ]*iK;r ] [Kr2 U~ FKPK + , K' 2 ]J d, dF J'
0] KK 2 d02 dZ2
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where '1' stands for the region of sub-element on the left side of location sp, and 'r'

stands for the region of sub-element on the right side of location sp.

If we once again get the middle equation from the equation above we will have

[K 3 d + sK K + [Kr 1)dU, =U> dO, =-K + [KrS ])K1 (3.47)

Now we can integrate equation (3.47) from s = 0 to s = s, along the longitudinal axis of the

beam element to get the total displacement at location s, (which is d,) due to the distributed

load on the left side of s = s, .

To obtain the curvatures, we can focus on the beam sub-element that extends from s, to

node 2 with dynamic stiffness matrix [K,] and apply the dynamic equation

dvP dfI
dw, df2P

d, df

0 dR4

0 dR5

0 dR6

The third equation gives increment of the bending moment at location s, (equal to df3 ,),

since the quantities on the left side of the equation are all known from the previous steps.

Thus, the increment in curvature is given by df3, /EI. Then, we integrate this quantity from

s =0 up to s = s,.

2. s, < Lf

In this case, location s, is between nodes 1 and 3. We can focus our attention on the left

beam sub-element with length Lf and adopt the same methodology used in item 1 of this

section, with the corresponding adaptations. The infinitesimal displacements and reactions

due to qds on node 1 are given, respectively, by

d01 ={0 0 0}' and dF, = {dR, dR2 dR3
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At the same time, on node 3, the infinitesimal displacements and reaction forces are given,

respectively, by

and dP3 = {dR, dRW dR6I}T

Again, if we regard location s, as a new temporary node inside the left beam sub-element,

similarly to what was done before, in item 1 of the present section, the infinitesimal

displacements and concentrated forces acting on this node are given, respectively, by

dU,, ={dvp dw, d#,6} and d = ={

Now we can write equation (3.44) for the conditions of this left beam sub-element:

[K:1] [K:'] [0] dU0
[K ] [K' +[K [Ks3] K d U

[0] sp K 3 dU 3

I dF

dFS)

df3I
If we get the middle equation from the system above, we will have

[K,+ ' j][,, + [K,',]U = - d0,p = -([K IS]+ [K K,,D1 d[K ] (3.48)

Now we can integrate equation (3.48) from s = s, to s = L along the longitudinal axis of

the beam element to get the total displacement at location s,(which is d,) due to the

distributed load on the right side of s = sp.

To obtain the curvatures, we can focus on the beam segment that extends from node 1 to

location s, and apply the dynamic equation
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0 dR1

0 dR2

0 dR3

[Ke dv, df4
dw, df5
d/8 df6 P

The fifth equation gives the increment of bending moment at location s, (defined by df6,),

since the quantities on the left side of the equation are all known. So, the increment in

curvature is given by df6, /EI. Then we integrate this quantity from s = s, up to s = L

along the longitudinal axis of the beam element.

3. sp = Lf

In this case we already know the displacement at s, from section 3.5.1. The curvature can

be obtained by using the same methodology explained before either using sub-element with

length Lf or sub-element with length L,

For the calculation of d2 , the procedure can be based on the following relations:

O, =[D]W - W =[D] OU,

where vector Ue was obtained according to step 8 of the procedure described in the beginning

of section 3.5. Knowing the coefficients, we can obtain d2 through equations (3.27) and (3.28)

for the case of curved beam, for example.

3.5.3 An alternative way to calculate reactions at the clamped ends

The method shown in section 3.5.1 had two benefits:

" to calculate the reactions at the clamped ends of the beam element

" to calculate quantities (dU 3) that will be necessary in the calculation of transverse

displacement inside the beam element
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However, the calculation of internal displacement does not have to be done for all the elements

of the structure. It can even be an option in the analysis if one is interested only the structure

response at the nodes. There is a faster way to calculate only the nodal forces equivalent to the

distributed load acting on the beam element. This method is well known in the FEM context and

it will be summarized below.

Equations 3.11 and 3.12, with the help of equation 3.10, can be written, in matrix form as

where 2 by 1 vectorii represents the dynamic transverse and longitudinal displacements along

the beam element. The end displacements, U, are given by U = 6 -W, where W is the vector

of wave amplitudes. Vector W can be expressed by W = - C . Substituting this expression in

the equation above yields

i=E-D 1 U -> i=NA.U

where N is the interpolation function of the beam element since it relates the internal

displacements to the end displacements. Suppose now that we have a distributed load along the

element given by a vector f ={f, f, } where f, and f, are the longitudinal and transverse

components, respectively. It have been proven in the FEM context that the equivalent end forces

are given by the expression

L

FJ = 'f -ds
0

Vector f is the one we are looking for.

This method was implemented and tested, giving the same vector as the one calculated

according to the method explained in section 3.5.1.
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3.6 Example

3.6.1 Influence of Curvature

In order to study the effect of curvature on a propagating wavenumber, we will consider here a

curved beam element with the same properties of the straight element studied in the section of

examples in Chapter 2, but this time, with a radius of curvature and without any soil spring. The

static constant tension is 121250N and the beam properties are E = 2.067x 10" N /M 2 ,

A =0.007426m 2 , I=0.2181x104 M 4 , p =10759.6kg /m 3 and Hd= 0.18l m.

First we are going to focus on the longitudinal wave. Figure 3-5 illustrates graphically the

relation between wavenumber and wave frequency governing this type of wave. The solid line

corresponds to radius of curvature, R, equal to 400m, the dashed line to R = 500m and the

dotted line to R = 600m . It is evident that the curvature has a strong influence on the

wavenumber.

CL

(D

a)

CL

6)

x 103
3

2

01
0 0.2 0.4 0.6 0.0 1 1.2 1.4 1.6 1.8 2

3 Frequency (Hz)
x1

2

E 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Frequency (Hz)

1.6 1.8 2

Figure 3-5: Dispersion relation of a curved beam for three different radius of curvature subjected

to a static tension equal to 121250N concerning longitudinal waves. R=400m corresponds to

solid line, R=500m corresponds to dashed line and R=600m corresponds to dotted line.
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We can see from Figure 3-5 that the spectrum for wavenumber presents regions of frequencies

defining two major types of longitudinal waves. For very low and high frequencies we have

purely propagating waves without spatial attenuation. In the intermediate region we have only

purely evanescent waves. Both the extension of this intermediate region and the magnitude of

the attenuation decrease with increasing radius of curvature. In the limit of radius of curvature

very large (i. e., straight beam) the longitudinal wave reduce to that of a rod element.

In Figure 3-6, the relationship between the transverse wavenumbers and frequency are plotted

for different radius of curvature of the beam. The dashed curve corresponds to radius equal to

50m, the dashdot curve corresponds to radius of 100m, the dotted line corresponds to radius of

1000m and the solid curve corresponds to the straight beam with the same characteristics.

Actually, these wavenumbers are the r, mentioned in the first example of section 2.6.1. There

is no imaginary part.

0.035
dashed - radius=50m

0.03 - dashdot - radius=100m
dotted - radius=1000m
solid - straight beam

-E 0.025
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0- 0.01-
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0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Frequency (Hz)

Figure 3-6: Dispersion relation of a curved beam for three different radius of curvature subjected

to a static tension equal to 12125GN concerning transverse waves.

Figure 3-7 shows the same set of curves as those shown in Figure 3-6 for a wider frequency

range. As the frequency increases, the curves corresponding to the curved beam get closer to the

curve corresponding to the straight beam. It means that there is a frequency above which the
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propagating waves do not feel the effect of the curvature because their length is smaller than the

radius of curvature. To have an idea about the value of this limit frequency, the difference

between the wavenumber of a curved beam and the wavenumber of the straight beam is

calculated at each frequency. The following limit frequencies were obtained:

* For a difference equal to 1 %

Radius = 50m -> 1.52Hz => Ratio wavelength to radius = 0.67

Radius = 100m => 0.65Hz -> Ratio wavelength to radius = 0.60

Radius = 1000m -> 0.06Hz = Ratio wavelength to radius = 0.54

* For a difference equal to 0.1 %

Radius = 50m -> 9.85Hz -> Ratio wavelength to radius = 0.23

Radius = 100m => 3.00Hz -> Ratio wavelength to radius = 0.22

Radius = 1000m -> 0.21Hz -> Ratio wavelength to radius = 0.16

0.25

dashed - radius=-0m

dashdot - radius=100m
0.2 - dotted - radius=1000m

solid - straight beam
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Figure 3-7: Dispersion relation for transverse waves of a curved beam for three different radius

of curvature and a straight beam, all of them subjected to a static tension equal to 121250N.

We see that if we are comfortable with 1%, when the wavelength is up to half the beam radius

of curvature, the waves will not feel its effect.
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3.6.2 Static Values

To test the methodology explained in the previous sections and to have an idea of the

capabilities of the WBFEM, we are going to study some simple examples where the static

values of displacements, forces and reactions in different structures are calculated by working

with the dynamic stiffness matrix at very low frequency (i.e., much smaller than the first natural

frequency). For the first two examples, the static values used for comparison are taken from the

reference [38].

The first structure is a straight beam clamped at both ends like the one shown in Figure 3-4.

Only one straight element will be used. The data related to it are the following:

Length: 161m

Uniform load applied in the whole beam: 0.6462N/m

Bending Stiffness: 177530kNm2

Following the methodology explained in section 3.5.1, with a frequency equal to

0.000001Hz, the following quantities were obtained:

Vertical reaction at one clamped end: 52.023 N

Bending moment at one clamped end: 1396.0 Nm

Maximum vertical displacement: 0.00637 m

Using the expressions contained in the reference [38] mentioned above we get:

Vertical reaction at one clamped end: 52.023 N

Bending moment at one clamped end: 1395.95 Nm

Maximum vertical displacement: 0.00637 m

We see that the values are equivalent.

If we now add a constant axial tension on the beam equal to 2459198.25 N, we get the

following results by using the dynamic matrices with the same low frequency:

Vertical reaction at one clamped end: 52.023 N

Bending moment at one clamped end: 395.33 Nm

Using the expressions contained in the reference [38] we get:
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Vertical reaction at one clamped end: 52.023 N

Bending moment at one clamped end: 395.36 Nm

Again, we see that the results match very well and this fact testify the accuracy of the

method.

* The second structure is an arc with the shape of a half of a circumference with its ends

clamped. The characteristics of the system are the following:

Radius of curvature: 3m

Uniform radial load: 646.2N/m

Bending Stiffness: 177530kNm2

Figure 3-8: Structural arc with clamped ends

We are going to calculate the three reactions at end number 1. Two equal elements were

used as shown in Figure 3-8 above. Applying the methodology explained before with a

frequency equal to 0.000001 Hz (the first natural frequency of this structure is 33Hz), we

obtained:

Horizontal reaction: 47.49 N

Vertical reaction: 1936.2 N

Bending moment: -90.68 Nm

Using the expressions contained in the reference [38] we get:

Horizontal reaction: 47.56 N

Vertical reaction: 1938.6 N

Bending moment: -90.85 Nm

91



The reaction forces obtained by both methods show good agreement.

Continuing with the same problem, now we are going to test the methodology to calculate

the bending moments in 3 points (indicated by A, B and C in Fig. 3-8) equally spaced inside

the first curved element, following the procedure explained in section 3.5.2. The bending

moments obtained by the WBFEM will be compared by the analytical values obtained by

the static equilibrium, since the end reactions at node 1 are already known. The bending

moments obtained are shown in the table below.

Point WBFEM Analytical

A -36.24 -36.24

B 10.03 10.06

C 40.98 40.99

Table 3.1: Bending moments in 3 internal points in the curved beam element of the arc

shown in Figure 3-8.

The agreement between the results is satisfactory and shows that the methodology works.

* Now we are going to consider an example that, despite its simplicity, will show the

importance of representing well the distribution of the radius of curvature along the beam.

Suppose we have a horizontal straight beam pinned at both ends with the following

characteristics:

Total length: 1288m

Bending stiffness: 1.7753x101 Nm 2

Uniform transverse load magnitude: 0.02585N / m

If we apply the load at a frequency like 0.000001Hz, we are in fact applying it statically, as

we did in the previous examples. For this case, we know that the maximum bending

moment will be qL2 /8 = 5360.46Nm while the maximum displacement will be given by

5qL4 /(384EI) = 5.22m.

Modeling this beam with 1 straight beam element length and applying the load at

0.000001Hz we will find 5.22m as the maximum displacement and 5360.53Nm as the

maximum bending moment.
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In order to study this straight beam with a curved beam element, we will have to assign it a

very large radius of curvature. From the dispersion relation of a straight beam with the

properties used in the present example and frequency equal to 0.000001Hz, we obtain the

following propagating wavelength: 52450m. According to what was studied in section

3.6.1, the radius of curvature should be at least twice the wavelength so that the wave does

not feel its influence. Thus, we choose the radius of curvature equal to 200000m for the

curved beam. The distribution of transverse displacement and bending moment along the

beam is shown in Figures 3-9 and 3-10, respectively. The maximum values of the curves

correspond to 5.22m and 5360.5Nm obtained before.

6

4

E

0 200 400 600 800
Distance from left end (m)

1000 1200 1400

Figure 3-9: Transverse displacement of a straight

different radius of curvature together with the straight

beam using curved element with 3

element. The origin is the left end
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200 400 600 800
Distance from left end (m)

1000 1200 1400

Figure 3-10: Bending moment of a straight beam using curved element with 3 different

radius of curvature together with the straight element. The origin is the beam left end.

3.6.3 Dynamic Values

* We are going to study the dynamic response of a simply supported beam to a harmonic

concentrated load as shown in Figure 3-11 below,

r

L

Figure 3-11: Simply supported beam subjected to a concentrated harmonic force

where the position s = a a is the distance between the concentrated force and the left end of

the beam (identified here as 'bottom'), p is the force amplitude and o if the force
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frequency, in rad/s. According to reference [36] the transverse displacement is given by the

following expression

2p_ 1 . (nira '~.ncs(39
2p sin -- sin (3.49)

pAL n=12 -2 L L

We selected the beam used in the last example of the previous section as the subject of our

study. The additional properties of the beam are:

Young's modulus: 2.05x10" N /m 2

Moment of inertia: 8.66 x 104 m 4

Cross sectional area: 0.104m 2

Mass per unit length: 0.398kg / m

Total length: 1288m

Amplitude p: lOON

Load frequency: 0.6Hz

Point of application of concentrated force: 257.6m from left end

The beam transverse displacement obtained by the application of formula 3.49 above is

shown in Figure 3.12 below. We had to use 25 modes to get convergence in the response.

0.04

0.02-

0 - ----

-0.02E

-0.04

0 -0.06

I- -0.08-

-0.1

-0.12
0 200 400 600 800 1000 1200 1400

Longitudinal distance from bottom (m)

Figure 3-12: Transverse harmonic displacement of the beam depicted in Figure 3.11 caused

by a harmonic concentrated load acting on '*'.
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In order to test the methodology developed here, we are going to calculate the transverse

displacement of the same beam using both the straight and curved beam (with radius of

curvature very large) in the context of WBFEM. Only one element will be employed.

First we have to check if we are dealing with the right structure. So, the first 5 natural

frequencies (in Hz) are shown in the table 3.2 below. They were obtained through 2

methods: analytical and WBFEM. As we can see they show very good agreement. As we

are using 2 decimals, the values presented in the table for each frequency are equal.

Freq. # WBFEM Analytical

1 0.02 0.02

2 0.08 0.08

3 0.18 0.18

4 0.32 0.32

5 0.50 0.5

Table 3.2: First five natural frequencies of the straight beam shown in Figure 3-11,

calculated by two different methods.

As for the transverse displacement, both types of elements gave the same curve shown in

Figure 3-12. Table 3.3 below shows numerical values of transverse displacement amplitude

at some values of the relative position s/L along the beam.

The agreement between the results is again very good. The noteworthy point here is the fact

that using the WBFEM we did not have to calculate any natural frequency to obtain the

structure response.
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s/L Amplitude

WBFEM Analytical

0.1 -0.1193 -0.1193

0.2 -0.0264 -0.0266

0.3 -0.0280 -0.0279

0.4 -0.0293 -0.0293

0.5 0.0253 0.0253

0.6 0.0197 0.0197

0.7 -0.0315 -0.0315

0.8 -0.0103 -0.0103

0.9 0.0346 0.0346

Table 3.3: Transverse displacement of the simply supported beam shown in Figure 3-11

obtained by two different methods: WBFEM and analytically.

* Now we are going to apply a harmonic distributed load on the same beam considered in the

previous example, beginning at the left end and finishing at s = a. The situation is shown in

Figure 3.13 below. The load has constant magnitude equal to po. Using the mode

superposition method, we find that the expression for the steady-state transverse

displacement is given by

2po 1 -cos nra )in (nr in (oX)
pA 1 n -T ni r Ef cosy)L L

(3.50)

0.

L

Figure 3-13: Simply supported beam subjected to a constant load from s = 0 to s = 257.6m
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Setting po = 50N / m and a = 257.6m, and applying the load at 0.6Hz, we find the

transverse displacement shown in Figure 3.14 below by the solid line.

200 400 600 800 1000
Longitudinal distance from left end (m)

Figure 3-14: Transverse displacement of a simply supported beam for a distributed load with

length equal to 'a', measured from the left end. The solid line corresponds to undamped

beam and the dotted curve corresponds to a damped beam.

For the sake of comparison, we made the same analysis using one straight beam element

developed in chapter 2 to represent the beam. We obtained the same solid curve shown in

Figure 3.14. The dotted curve, presented in Figure 3-14, is the transverse displacement of the

beam with a complex modulus of elasticity equal to 2.05x10"-i-1.2x10"N/m 2 , to

simulate loss of energy, under the same distributed load conditions. Table 3.4 shows the

comparison between the transverse displacements obtained by both methods at specific

points of the undamped beam.
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s/L Amplitude

WBFEM Analytical

0.1 -2.0290 -2.0445

0.2 -2.0256 -2.0292

0.3 0.7916 0.7879

0.4 1.3481 1.3441

0.5 -1.2735 -1.2701

0.6 -0.9815 -0.9789

0.7 1.5643 1.5601

0.8 0.5135 0.5121

0.9 -1.7179 -1.7133

Table 3.4: Transverse displacement of the simply supported beam shown in Figure 3-13

Then we made the same calculations as before but now using one curved beam element with

curvature radius of 500000m and the results were the same as those shown in Figure 3.14

and table 3.4.

* Now we are going to apply a harmonic triangular distributed load on the same beam studied

in the previous example. The load is null for s a and s > b and increases linearly from 0

to pO from s = a to s = b. The situation is shown in Figure 3-15.

0 b

L

Figure 3-15: Simply supported beam subjected to a constant load from s = 257.6m to

s = 386.4m
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Using the mode superposition method, the steady state transverse displacement is given by

the following expression:

2 po 1  L asn n ( L )2

pAL n=1 2 CO-2 b-a [ a L L nr

sin --z -sin -- -- - -L Cos( -- -Cos( -- sin in in )
L L b-a nxr L L L

The transverse displacement, expressed by the equation above, is shown by the solid line in

Figure 3-16 below. We set po =100N/m, a=257.6m, b=386.4m and the excitation

frequency was 3Hz.

With only one element, we employed both the straight and curved types to calculate the

transverse displacement and we obtained the curve represented in Figure 3-16. The region of

application of the distributed load is also shown in this figure through the thicker part.

0.6

0.4 -

0.2

n~
E

-0.2-

-0.4

-0.6

0.80 200 400 60O 8O 1000 1200 1400
Longitudinal distance from left end (m)

Figure 3-16: Transverse displacement for a triangular distributed load. The solid line is the

theoretical response and the dotted line comes from the WBFEM.

100



* In this example, we are going to calculate the natural frequencies of the arc shown in Figure

3-17 through two ways: one is analytical, taken from reference [8], and another with one

curved beam element developed here. Both ends of the arc are pinned.

IN

Figure 3-17: Pinned-pinned beam arc

The properties of the arc are the following:

Young's modulus: 2.05x10"N /M 2

Moment of inertia: 3.73x106 m 4

Linear mass: 7175.33kg /m

Angle of the arc, ao: 1.6rad

Radius of the arc: 3m

The values for the first seven natural frequencies

below. They show good agreement between them.

(in Hz) of the arc are shown in table 3.5

Freq. # WBFEM Analytical

1 2.531 2.421

2 5.765 5.705

3 10.986 10.841

4 15.711 16.821

5 18.823 17.433

6 24.440 24.949

7 38.914 39.557

Table 3.5: First seven natural frequencies of the arc shown in Figure 3.15, calculated by two

different methods.
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Chapter 4

Experiments

4.1 Introduction

In this chapter we will describe some experiments performed with riser models in different

configurations. In the first part we are concerned with highly compliant risers. They are large

scale models that were tested in a lake with controlled excitations. There is a large amount of

data records but in the present work we will focus more on the frequency content issue.

Furthermore, there is another doctoral student devoting most of his time to the analysis of the

data collected. Then we describe an experiment performed in a towing tank with a steel catenary

riser (scr) model in an attempt to have a better understanding of the Keulegan-Carpenter (KC)

number threshold. The effect of boundary conditions on propagating waves is also verified

experimentally.

4.2 Experiments with HCR Models

In 1998, under the direction of PMB Engineering, SMS performed large scale model tests of 3

different configurations of highly compliant rigid riser model pipes: the Compliant Vertical

Access Riser (CVAR), shown in Figure 4-1, the Lazy Wave SCR (LWSCR), shown in Figure 4-

2 and the Steel Catenary Riser (SCR), shown in Figure 4-3. These figures are in accordance with

the configurations devised by PMB.

These tests were performed in about 800ft of water in Lake Pend Oreille in North Idaho and the

goal was to provide greater understanding into the behavior of risers and to compare and verify

riser analysis methods and software.
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Several vertical amplitudes were applied on top of each riser model at many different

frequencies. For each frequency, the steady state response was recorded for riser tension, in-

plane and out-of-plane bending moment, in-plane and out-of-plane accelerations, among other

quantities. All three riser configurations are pinned at the ends (i. e., no bending restraint) and

for the purpose of location, we use a longitudinal coordinate, s, that starts at the bottom end.

The riser models were assembled from 24ft and 12ft joints of 1.5-in.x0.125-in. aluminum pipe

and eight instrumented "pup" joints were attached to each configuration in regions of high

response as shown in Figures 4-1, 4-2 and 4-3. They measured 2-axis bending and lateral

acceleration, twist, tilt and axial tension. The pipe was flooded except for the 2ft instrumented

"pup joints" which were left void to protect the instrumentation. The only source of excitation

was the harmonic vertical and horizontal motion defined by a pair of amplitude/period and

applied to the top end by an actuator on a barge, simulating floating system motions in waves.

During the field work some surface current measurements made with wood chips and a stop

watch gave a velocity of approximately 15cm/s. With the help of an ADCP it was concluded

that the maximum subsurface current was about 5cm/s and that there was no current at depths

greater than 100ft. Because of the small values of the measured current and the limited region

where it occurs, it is supposed during the data analysis that it is negligible as well as any surface

wave. Another point that is worth being mentioned is that during the processing of the data

collected the effect of gravity was removed from the accelerometers.

The main data concerning the riser models were the following:

Modulus of elasticity: 10100 ksi

Weight of a 24 foot section with electric cable, in air: 42.887 lbs

Weight of 24' with electric cable, in water: 34.887 lbs

The buoyancy modules material was syntactic foam with a dry unit weight of 28.446 lb/ft, an

outside diameter of 4.8025 in. and an inside diameter of 1.75 in. The distribution of these

modules obeyed the following rates: 5 modules per 12 ft joint and 10 modules per 24 ft joint

length of buoyancy module.

One interesting point in these experiments is the occurrence of intermittent VIV caused by the

riser top motion. Although there is no current or wave in the lake, the response of the riser to the

top excitation causes the riser to be subjected to an oscillatory flow of lake water. Due to this

time-varying in-plane motion, the Strouhal frequency and the transverse vibration frequency

103



change through each cycle of the motion. As the in-plane velocity varies with respect to time, it

would be intuitive to consider the instantaneous velocity normal to the pipe axis to calculate the

shedding frequency as

fS = lIS (4.1)
D

where lVi is the absolute value of the normal instantaneous velocity of the oscillatory flow.

Throughout this work the value assumed for the Strouhal number was 0.18. The modulus sign

means that the shedding frequency is kept positive even in the negative cycles of the velocity.

Equation (4.1) can be used to estimate the maximum possible vortex shedding frequency by

substituting V.. for V.

According to Bearman et al.[1], the problem with equation (4.1) is that it does not take into

account the history of the flow in terms of the past velocities. So, he proposed that an estimate

of the average expected vortex shedding frequency could be calculated as

fs,avr = "Vavr S (4.2)
D

f Vdt

where V, =0r . The integral should be calculated for each half cycle of the flow. It means
t

that in order to evaluate the shedding frequency we should use the cumulative average of the

instantaneous velocity over each half cycle of the flow so that the flow history is considered.

The absolute amplitude through which the riser moves in response to the top excitation varies

along the length but we believe that there is a minimum value above which VIV will occur. A

non-dimensional measure of this oscillatory flow is the Keulegan-Carpenter (KC) number,

which is defined as

KC(s) = V""(s)P (4.3)
D
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We can also say that

V. (s) = coA(s) = - A(s) => KC(s) = 27 A(s) (4.4)
P D

where A is the local displacement amplitude of the riser due to the periodic top motion at the

period P . Therefore, one important step in the analysis of intermittent VIV is calculation of the

distribution of KC number along the riser and the regions that are above the threshold KC

number. The physical interpretation of this cut-off is the fact that for sufficiently small

oscillations, the vortices do not have time to enter a lock-in situation, although a vortex or two

may be shed without causing the response amplitude to build up to significant levels. As the KC

number increases, the phenomenon becomes more steady-state, enabling lock-in to occur. A

steady current corresponds to an infinite KC number oscillation as can be verified through

equation (4.3).

In the following sections we will study the three configurations separately.

Pp P 7.
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77S

Pup 8
S BARE PIPE

PIN (ANCR)

Figure 4-1: Large scale model of a SCR configuration.
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Figure 4-2: Large scale model of a LWSCR configuration.
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Figure 4-3: Large scale model of a CVAR configuration.
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4.2.1 CVAR Configuration

Figure 4-3 shows the geometry of the CVAR. The length of the buoyancy region is 378ft. The

pup joints were numbered from 1 to 8 and their locations were, respectively: s = 453.5ft,

s=427.5ft, s=413.5ft, s=399.5ft, s=385.5ft, s=371.5ft, s=357.5ft and s=331.5ft.

As we can see, three of them are inside the buoyancy region (6, 7 and 8) while the others are

outside.

The top motion applied to the CVAR is described below by the combination of the amplitude

and period:

* Amplitude of vertical motion (ft): 0.5, 2 and 3

" Period of vertical motion (sec): 3 to 10 sec with increments of 0.5 sec except for 3ft of

amplitude which had increments of Isec.

As a convention, each case is identified by the designation 'cvaranpm' where 'cvar' is the kind

of riser, 'an' represents an amplitude equal to 'n' ft and 'pm' a period equal to 'm' sec.

When the riser is subjected to a periodic top motion, its response will cause a relative periodic

flow between the riser and the lake water. The magnitude of the flow velocity will be equal to

the normal velocity along the riser because there is no current. The distribution of this

oscillatory flow velocity along the riser can be estimated with the help of Anflex, a riser FEM

program. The riser was modeled with 425 elements of 2ft length each and the motion with 3ft of

amplitude and 3s of period was applied to the top node. The amplitude of the normal velocity

was obtained for each node and the result is shown in Figure 4-4 by the solid line, together with

the magnitude of the normal velocities at the locations of the seven pups represented by 'o'.

These velocities were obtained through single integration of the measured accelerations in the

plane of the catenary at each pup. Number 7 was defective and is not shown. Figure 4-4 shows

good agreement between the Anflex prediction of the absolute value of the normal velocity and

the one obtained from the pups, supporting the accuracy of the Anflex model. There is a big

drop in the in-plane normal velocity at location s ~ 415ft, near pup 5. This feature can be

explained by the fact that this pup is located in the inflexion region of the CVAR and so it

experienced little in-plane normal velocity.
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For this case, the maximum value of KC number was 115.2, and occurred near pup 3 at

s = 415ft. The region of maximum normal velocity is just above the buoyant region. Probably

this region has a KC number above the threshold value and consequently is subjected to strong

vibration. The KC at pup 4 is 99.2 and at pup 2 is 107.3. Using equations 4.1 and 4.2 we can

also have an idea of the distribution of the maximum shedding frequency and average shedding

frequency for this case. The plot of these distributions are similar to the one shown in Figure 4-4

in shape, except for a multiplication factor. According to equations (4.1) and (4.2), for the

maximum shedding frequency, this factor would be S, /D =0.18/0.125=1.44 and for the

average shedding frequency it would be 2S, /D = 0.36/0.393 = 0.92, both for the outside the

buoyant region.

The same type of run was performed for the other excitation cases applied to the CVAR

configuration in the lake, as described in the beginning of this section. Linear interpolation was

used to obtain the curve shown in Figure 4-5. On the left side it is shown the variation of

maximum value of KC number found by running Anflex for each excitation case. All the

maximum KC numbers occurred in the middle of the riser model.

-----+------- -+- -+-------------

4. --- I - -- L--------4. 4-. 4---

3225 ---- --------------- 1. J- -----------

EI --- -- I- L -- -- ----

1. ----- L - - -- -

r 

25- ---r-----r --- r---- --r--------

0
0 100 200 300 400 500 600 700 800 9U0

Distance from bottom (ft)

Figure 4-4: Comparison between maximum in-plane normal velocity measured by the pups

(indicated by ') and normal velocity calculated by Anflex (solid line) for the excitation case

cvara3p3.
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Figure 4-5: Anflex prediction of the variation of maximum KC number (left part) and maximum

in-plane velocity (right part) as the period of excitation top motion changes. In the 'a' part the

amplitude of motion is 0.5ft, in 'b' part is 2ft and in 'c' part is 3ft.

Using equation (4.3) we can obtain the maximum in-plane velocity corresponding to the

maximum KC numbers studied before, for the same excitation cases. Linear interpolation was

used between the points. The result is shown on the right side of Figure 4-5 and we can see that

the maximum velocity increases as the top motion amplitude or frequency increases too. The

shape of each in-plane velocity distribution is very similar to the one shown in Figure 4-4.

In order to determine how the transverse vibration frequency and the Strouhal frequency change

within the cycles of the in-plane motion, a spectral analysis of the data within a short window is

performed together with a corresponding numerical analysis of the configuration through

Anflex. One interesting feature related to this issue and shown by the data, as we will see, is the

idea that the maximum riser vibration frequency should be close to the Strouhal frequency when

the in-plane normal velocity approaches its peak value. It occurs when the oscillatory in-plane

bending moment that was measured by the pup joints approaches the static bending moment

(which can be regarded as the mean value of the dynamic in-plane bending moment). Figures 4-

6, 4-7 and 4-8 show in the upper part the time history of the in-plane bending moment and in the

bottom part the time history of the out-of-plane bending moment. In these figures one can see
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that as the in-plane bending moment approaches its mean value there is an increase in the

vibration of the out-of-plane bending moment.
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Figure 4-6: Time history of in-plane and out-of-plane bending moment measured by pup 3 for

the case cvara3p3.
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Figure 4-7:Time history of in-plane (upper part) and out-of-plane (bottom part) bending moment

(lb-ft) measured by pup 7 for the case cvara3p3.
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Figure 4-8: Time history of in-plane (upper part) and out-of-plane (bottom part) bending

moment (lb-ft) measured by pup 4 for the case cvara2p4.

Figure 4-9 shows the time history of the in-plane bending moment measured by pup 3 for the

cvara3p3 case. If compared with the same kind of plot, shown in Figure 4-10 and obtained

through Anflex model, we see that both curves are very similar. This fact also supports the

accuracy of the model employed. Furthermore, the plot in Figure 4-10 will be used as reference

for the study that is ahead.
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Figure 4-9: Time history of the in-plane bending moment at CVAR pup 3 for vertical top motion

with amplitude equal to 3ft and period equal to 3s.
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Figure 4-10: Time history of the in-plane bending moment (lb-ft) at a location in the cvara3p3

case for pup 3. This plot was obtained through Anflex.

Now we can focus our attention on the time interval from 65s to 67s (see Figure 4-6) concerning

the cvara3p3 case. To have an idea of the frequency content during this period of time, we used

the function PMEM from MATLAB and the result is shown in Figure 4-11. It shows that most

of the response energy is around the vibration frequency of 6Hz. Looking at the curve shown in

Figure 4-9 for the same time interval, we see that it corresponds to a change in the in-plane

bending moment from its minimum to its maximum value in a cycle. Now we take an analogous

time interval in the plot shown in Figure 4-10 (it was chosen from 45s to 47s) and calculate the

instantaneous Strouhal frequency according to equation (4.1) (the result is shown in Figure 4-

12). We see that the maximum frequency is around 6Hz, which is very close to the main

frequency content for the period studied. The KC number for pup 3 in the cvara3p3 case is

around 115.

Now we can do a similar analysis for the cvara3p3 at pup 7. Looking at Figure 4-7, we take the

time interval from 73s to 74s to study. Again, through PMEM function we get the frequency

content shown in Figure 4-13. The main frequency of vibration is around 3Hz. Calculating the

instantaneous Strouhal frequency as explained before, we find the plot shown in Figure 4-14.

According to this plot, the maximum Strouhal frequency is never above 1.3Hz. The 3Hz

vibration frequency in this pup must come from a propagating wave originated in the input-

power region of the riser, probably located near pup 3 . The KC number in this case is 21.6.
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Figure 4-11: Frequency content during the period 65s to 67s of the time history of the out-of-

plane bending moment for the cvara3p3 case at pup 3.

Figure 4-12: Plot

equation 4.1 from

Figure 4-6.

of the

Anflex

time history of the instantaneous Strouhal frequency calculated by

computed velocities for a time period corresponding to 65s to 67s in
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Figure 4-13: Frequency content during the period 73s to 74s of the time history of the out-of-

plane bending moment for the cvara3p3 case at pup 7.
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Figure 4-14: Plot of the time history of the instantaneous Strouhal frequency calculated by

Anflex for the cvara3p3 case at a location corresponding to pup 7.

As a final example, we take now the cvara2p4 excitation at pup 4 because it is likely that this

pup has KC above the threshold value. The procedure does not change. Looking at Figure 4-8,

we select the time interval between instants 120.25s and 121.5s to apply the PMEM function.

The frequency content is shown in Figure 4-15 and it shows that the response energy is

concentrated around 2.4 Hz. The calculation of the instantaneous Strouhal frequency in time

gives as a result the plot shown in Figure 4-16. We see that the maximum value is 2.5 Hz.

From the results we have already obtained, we can draw a few conclusions about the CVAR

configuration:

1. There is an indication that the bare upper portion of the riser, where the pups 3 and 4 are

located, is a power-in region while pup 7 is in a power-out region.

2. The buoyant portion of the riser is subjected to a smaller magnitude of in-plane normal

velocity than in the bare portion. This small in-plane motion of the riser's buoyant region

keeps it from reaching the KC number threshold necessary to produce VIV power-in.

3. The magnitude of in-plane normal velocity increases as we increase both frequency and/or

amplitude of top motion.

To have an idea of the variation of the vibration frequency in time, this frequency was estimated

from the time history of the out-of-plane bending moment using the following procedure: two

sequential points of zero bending moment were identified. The difference in time between them
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was the half period. Thus, the frequency was the inverse of the double of this value. Doing this

calculation along the time axis for cvara3p3 at pup 3, we get the time history of the vibration

frequency shown in Figure 4-17. This plot confirms that the VIV frequency of vibration

oscillates with time. It also confirms the fact that the maximum out-of-plane vibration frequency

is near 6 Hz.

cvara2p4 - pup 4 - oop b. m. entre 120.25s e 121.5s
800

700

600

500

400

300

200

100

01
0 2 4 6 8 10 12

frequency (Hz)
14 1G 1 20

Figure 4-15:

history of the

Frequency content during the time interval from 120.25s to 121.5s of the time

out-of-plane bending moment for the cvara2p4 case at pup 4.

Figure 4-16: Plot of the time history of the instantaneous Strouhal frequency calculated by

Anflex for the cvara2p4 case at a location corresponding to pup 4 for a period of time

corresponding to 120.25s to 121.5s.
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Figure 4-17: Time history of the vibration frequency of the transverse motion estimated from the

out-of-plane bending moment time history of pup 3 for the cvara3p3.

Each point in Figure 4-18 corresponds to each case of heave amplitude/input period applied on

top of the riser. The horizontal axis represents the KC number based on measured maximum

velocity along the riser and the vertical axis represents the ratio out-of-plane vibration amplitude

to riser diameter. As we can verify, for pups 1 to 5, which are the most probable to be in the

power-in zone, there is a sudden jump in the out-of-plane amplitude when we go from KC

below 40 to KC above 80. The conclusion is that there must be some KC threshold between

these two limits for the cvar configuration.

Figure 4-19 is an example of the power spectral density (PSD) of the out-of-plane bending

moments measured by all the eight pups installed in the riser model for the excitation case with

heave amplitude and input period equal to 2 ft and 3 s, respectively. It was used the routine

SPECTRUM from MATLAB to perform this calculation. The full length of the data records

used in this calculation have been high pass filtered at 5 times the excitation frequency in order

to separate the VIV response from the response to the top motion.

Examining the PSD of all the other cases of excitation on top of the riser, some immediate

conclusions can be drawn:

" For one single type of excitation, the frequency content varies very little from pup to pup.

" For one single amplitude of motion, if we increase the period of excitation the range of the

frequency response above the cutoff decreases.
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* For one single period of motion, if we increase the amplitude of the excitation motion the

range of the frequency response above the cutoff increases.
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Figure 4-18: Relation between KC number and ratio out-of-plane displacement to riser diameter

for each case of excitation applied on top of the cvar configuration.(From Jung Chi-Liao).
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Figure 4-19: Power spectral density of out-of-plane bending moment at all 8 pups for the

cvara2p3 case.
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4.2.2 LWSCR Configuration

Figure 4-2 shows the geometry of the LWSCR. The length of the buoyancy region is 294ft .

The pup joints were numbered from 1 to 8 and their locations were, respectively: s = 609.5ft ,

s =583.5ft , s =569.5ft , s =555.5ft , s =541.5ft , s =527.5ft , s =513.5ft and s = 487.5ft .

Like the CVAR configuration, three of them are inside the buoyancy region (6, 7 and 8) while

the others are outside.

The top motion applied to the LWSCR are described below by the combination of the following

quantities:

Amplitude of vertical motion (ft): 0.5, 2.5 and 4.

Period of motion (sec): varied from 3s to 10 s with increments of 0.5s. The only

exception is for the amplitude 4ft that started with a 3.5 s period.

Each excitation case is identified by the designation 'lwscranpm' where 'lwscr' is the kind of

riser, 'an' represents an amplitude equal to 'n' ft and period equal to 'm' sec.

The distribution of normal velocity along the LWSCR configuration was calculated through

Anflex and the result for the excitation lwscra4p3.5 is shown in Figure 4-20 by the solid line.

Another way to have an idea of this distribution is to single integrate the accelerations measured

by the pups installed in the riser model, similarly to what was done before for the CVAR

configuration. The values found are represented by 'o' in the Figure 4-20. We see that the

distribution given by Anflex can be considered to have a good agreement with the normal

velocities measured by the pups, which supports the accuracy of the model. It is noteworthy the

fact that the shape of the in-plane normal velocity distribution is similar to the distribution found

in the CVAR configuration but it looks like the LWSCR is subjected to smaller magnitudes than

in the CVAR. Again, we notice that the main source of excitation comes from the region just

above the buoyant length because that is where we have the greatest values of the normal

velocity amplitude (and consequently of the KC number above the threshold value).

118



4

3.5 - - -

3. - - - -- - - --22- - --------- L-----------------

1.5 ------------------- r-- -------- ----- T-----------------

1-----------------------

0.5 -- - - - - - - - -- - - - - - ------------------------

0-
0 So0 1000 1500

Distance from bottom (ft)

Figure 4-20: Comparison between maximum in-plane normal velocity measured by 7 pups

(indicated by Vo) and normal velocity calculated by Anflex (solid line) for the excitation case

lwscra4p3.5.

The maximum values of KC number for many excitation cases for the LWSCR riser were all

obtained after running Anflex for all the top excitation cases mentioned in the previous page and

performed in the lake. Like in the CVAR case, linear interpolation was used to join two

consecutive points. The result is shown in the left side of Figure 4-21. If we compare the left

side of this figure with the left side of Figure 4-5 for the CVAR riser, we conclude that the

LWSCR configuration tends to have smaller KC numbers than the CVAR riser. Another

difference is that the location of the maximum KC numbers varied between 0.44 and 0.53 of the

riser length. In the CVAR riser it occurred always around 0.5 of the riser length.

Using equation 4.3 we can obtain the corresponding maximum in-plane velocities for the same

excitation cases. The result is shown on the right side of Figure 4-21. Again we notice that for

one single amplitude of the top motion the maximum velocity decreases as the frequency

decreases too.
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Figure 4-21: Relation between maximum KC number (left side)/maximum in-plane velocity

(right side) and the period of excitation on top motion of the riser model. In part 'a' the

amplitude was 0.5ft, in part 'b' was 2.5ft and in part 'c' was 4ft.

Figure 4-22 shows the relationship between the rms of the out-of-plane bending moment and the

input period for the excitation amplitude of 4ft for each pup number from 1 to 5. This amplitude

was chosen because in this case, maximum KC number varies very little as we vary the input

period and we can assume it is approximately constant. Hence, Figure 4-22 indicates that the

out-of-plane bending moment decreases as the input frequency decreases.

Figure 4-23 shows the root mean square (rms) of the out-of-plane bending moment in pups 1

and 2 for each input frequency with heave amplitudes of 0.5ft and 2.5ft (which correspond to the

plots shown on the left part of Figure 4-21a and 4-21b) at all input periods. These two pups were

chosen because they are the one that have great chances of being in the input region. The plot

shows a jump in the bending moment when the heave amplitude was changed from 0.5ft

(maximum KC number around 15) to 2.5ft (maximum KC number around 65). Somewhere

between these two values of KC must be the threshold value.
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Figure 4-22: Variation of the out-of-plane bending moment as a function of the input period for
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Figure 4-24 shows the power spectral density of the full length of the out-of-plane bending

moment records filtered at 5 times the top motion frequency for the excitation case with

amplitude of 4ft and period of 3.5s. Examining the plots of power spectral density for the other

cases, we see that the LWSCR shows the same trend as CVAR, with the peak vibration

frequency increasing with increase in top motion amplitude or frequency and the vibration

frequency content not changing so much from one pup to another for the same excitation.
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Figure 4-24: Power spectral

lwscra4p3.5 case.

density of out-of-plane bending moment at all 8 pups for the
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4.2.3 SCR Configuration

Figure 4-1 shows the geometry of the SCR. Unlike the CVAR and the LWSCR configurations,

there is no buoyant region in the SCR. The pup joints were numbered from 1 to 8 and their

locations were, respectively: s = 1220.5ft , s = 378.5ft , s = 352.5ft , s = 338.5ft , s = 324.5ft ,

s = 310.5ft, s = 284.5ft and s = 258.5ft. The only pups that were always above the touch

down point were numbers 1 and 2 while pups 3 to 8 were on the bottom, at least in the static

equilibrium configuration.

The top motion on the SCR was the most comprehensive of all since it was applied in three

different directions: one perpendicular to the catenary plane (amplitudes: 1, 2 and 3.5ft), one

horizontal and making 450 with the catenary plane (amplitudes: 2, 3 and 3.5ft) and one vertical

(amplitudes: 0.5, 2 and 3ft). In all cases the period of the motion varied between 3 and 10s.

Each excitation case is identified by the designation 'scranpm' where 'scr' is the kind of riser,

'an' represents an amplitude equal to 'n' ft and period equal to 'm' sec. For the horizontal

motions, normal to the catenary plane, the first designation is 'hscr'.

The distribution of in-plane normal velocity along the SCR configuration was calculated

through Anflex and the result for the vertical excitation scra3p3 is shown in Figure 4-25 by the

solid line. Another way to have an idea of this distribution is to single integrate the accelerations

measured by the pups installed in the riser model, similarly to what was done before for the

CVAR configuration. The values found are represented by 'o' in the Figure 4-25 and they

correspond to pups 1 to 5, which had a considerable velocity. We see that the distribution given

by Anflex can be considered to have a good agreement with the in-plane normal velocities

measured by the pups, which supports the accuracy of the model. The first feature that differs

from the distribution for the CVAR and LWSCR is the magnitude of the maximum in-plane

normal velocity. It is the highest of all three for a similar excitation. And it means higher

Strouhal frequency. The region with these highest values is just above the touch down point. As

a consequence, the SCR tends to have the longest region with high normal in-plane velocities.

Putting in another way, the SCR would have the longest portion with KC number above the

threshold value and consequently the longest power-in region when compared with CVAR and

LWSCR configurations.
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Figure 4-25: Comparison between maximum in-plane normal velocity measured by 5 pups

(indicated by 'o') and normal velocity calculated by Anflex (solid line) for the excitation case

scra3p3.

Figure 4-26 shows the maximum values of in-plane normal velocity for many vertical excitation

cases for the SCR riser. These values were all obtained by running Anflex for all the cases

mentioned in the beginning of this section. Linear interpolation was used between two

consecutive points. If we compare with the plots shown before in Figures 4-5 and 4-21 for the

CVAR and LWSCR risers, respectively, we have the confirmation that the SCR configuration

tends to have the highest values. Another difference is that the location of the maximum velocity

varied between 0.32 (amplitude of 3ft) and 0.39 (amplitude of O.Sft) of the riser length.
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Figure 4-26: Relation between maximum KC number (left side)/maximum in-plane velocity

(right side) and the period of excitation on top motion of the riser model. In part 'a' the

amplitude was 0.5ft, in part 'b' was 2ft and in part 'c' was 3ft.

Another point is the spectral analysis of the full length of the SCR bending moment records. The

power spectral density plots shown in Figures 4-27 to 4-30 refer to the out-of-plane bending

moment due to the vertical top motion. The power spectral density shown in Figure 4-31 refers

to the in-plane bending moment due to the horizontal top motion. In both cases the series were

filtered at 5 times the frequency of the top motion. These plots confirm the conclusion that the

range of vibration frequencies increases as the frequency or amplitude of the top motion

increases. Furthermore, for the same excitation, we can see that, with respect to the out-of-plane

bending moment, pup 1, located next to the top, has a response energy much smaller than pups

2, 3 or 4. Another feature is that this difference in energy seems to decrease as the frequency

decreases for a constant amplitude. This can be explained by the hydrodynamic damping that

removes energy from the waves generated at pups 2 and 3. As the excitation frequency

decreases the magnitude of the velocity decreases too and it causes the hydrodynamic damping

to decrease as well. Dynamic buckling can also have a significant influence here since it

accounts for a significant part of the response energy in pups 2 and 3.

However this big difference does not happen when the excitation is horizontal. For the vertical

top motion, the main excitation for VIV comes from the region close to the touch down point as

shown in Figure 4-25. In this case, there will be out-of-plane vibration. For the horizontal top

motion perpendicular to the plane of the catenary, the main excitation for VIV comes from the
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top region and it will cause in-plane vibration (this type of excitation will be studied in more

detail in the next section). Looking at the power spectral density of the in-plane bending

moments in Figure 4-31 we see that pups 1, 2 and 3 had a similar level of energy. This probably

can be better explained with the help of an example. The amplitude of the horizontal velocity at

pup 1 for the hscra2p4 excitation, for instance, is smaller than for the amplitude of the in-plane

velocity at pup 2 for the scra2p4, causing the hydrodynamic damping to be smaller in the first

case. This fact is confirmed by table 4.1 below. These velocities were obtained through

integration of the corresponding measured accelerations. Since the hydrodynamic damping is

smaller, the attenuation along the riser will be correspondingly smaller, so the waves generated

on top of the riser can travel further in the first case. In addition, dynamic buckling seems to be

less significant in the horizontal excitation case.

In-plane velocity Out-of-plane velocity

for scra2p4 (in ft/s) for hscra2p4 (in ft/s)

Pup 1 0.55 0.57

Pup 2 4.26 0.10

Table 4.1: Velocity amplitudes for two top motions on the SCR configuration.

scra3p4 - culoff=1.25 - pups 1. 2 3, 471O d . I II I
C 10 1 2 3 4 5 6 7 8 9 10

2

0

0 1 2 3 4 5 6 7 8 9 10
frequency(Hz)

Figure 4-27: Power spectral density of the out-of-plane

for the scra3p4 case.

bending moment at the first four pups
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Figure 4-28: Power spectral density of the out-of-plane bending moment at all eight pups for the

scra2p4 case.
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Figure 4-29: Power spectral density of the out-of-plane bending moment at the first four pups

for the scra2p6 case.
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Figure 4-30: Power spectral density of the out-of-plane bending moment at the first four pups

for the cases scra2p8 (left) and scra2pl0 (right).
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Figure 4-31: Power spectral density of the in-plane bending moment at the first four pups for the

cases hscra2p4 (left) and hscra2p6 (right).

An interesting experiment that was performed with the scr model was to apply heave amplitudes

of 2 ft and 3 ft using a hard bottom as the foundation. In this case there is only sliding boundary

condition with friction and no spring resistance on the bottom. The cutoff frequency can be

considered negligible and so all the wave frequencies would be above it, indicating propagation

of waves beyond the touch down point. Bending moment time histories measured on pups 2, 3,

4, 5 and 6 can give some insight about the effect of boundary conditions on wave propagation.

Figure 4-32 presents the rms of the out-of-plane bending stresses on pups 2 to 8 for heave

amplitude of 2ft while Figure 4-33 refers to the rms of out-of-plane bending stresses on the same

pups for heave amplitude of 3 ft. The corresponding out-of-plane bending moment time histories

were high-pass filtered at 5 times the input frequency.

Based on the maximum in-plane velocity (see Figure 4-26) for the amplitudes and frequencies

of the vertical motion applied on the top end of the riser, an estimate of the propagating

wavelength in the out-of-plane direction was made. For the amplitude of 2 ft, the wavelength is

15 ft (for input period of 3 s) and 32 ft (for input period of 10 s). Looking at the plot shown in

Figure 4-32 and considering that pups 2 and 8 are 108 ft apart, we conclude that the out-of-plane

waves at input period of 3 s penetrate something like 108/15=7.2 wavelengths beyond the tdp.

For the waves generated at input period of 10s we see that the waves decay almost everything

between pups 2 and 6, which are 60 ft apart. Hence, they penetrate 60/32= 2 wavelength,
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approximately, beyond the tdp. The conclusion is that waves at higher frequency penetrate more

than at lower frequencies.

0.24 0.26 0.28
Relativ position (bottom = 0)

0.3 0.32

Figure 4-32: Rms of the out-of-plane bending stress for pups 2 to 8 in the scr configuration for

heave amplitude of 2ft with hard bottom. T is the input period.
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Relativ position (bottom = 0)
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Figure 4-33: Rms of the out-of-plane bending stress for pups 2 to 8 in the scr configuration for

heave amplitude of 3ft with hard bottom. T is the input period.
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Figure 4-34: Rms of the out-of-plane bending stress for all pups in the scr configuration for

heave amplitude of 3ft and in soft soil. T is the input period.

Figure 4-34 presents the rms of the out-of-plane bending moment stresses on all pups, for heave

amplitude of 3ft for the soft soil of the lake. The corresponding out-of-plane bending moment

time histories were high-pass filtered at 5 times the input frequency. This time is possible that

there is lateral resistance due to the soil and in this case a cutoff may exist. However, following

the same reasoning as for the hard bottom, we see that the waves with higher frequency tend to

penetrate more than at lower frequencies. It is possible there is a cutoff frequency between the 3

second input frequency and the 10 second input frequency case.
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4.3 Experiment with a SCR Model

In order to have an alternative assessment of the KC threshold for catenaries in periodic motion,

an experiment was conducted with the same model that Petrobras used previously in a project

about SCR investigation. The experiment was conducted in the towing tank of the Institute of

Technological Research in Sdo Paulo, Brazil and the configuration adopted was the catenary.

The model is composed of a surgical latex tube, a stainless steel cable whose role is to work as

the structural element of the model test and lead weights (spheres) in order to provide the mass,

as shown schematically in Figure 4-35. Although the latex tube is very soft it also contributes a

little to the bending stiffness because of its geometry. It is assumed that the latex tube, the

stainless cable and the lead weights do not have relative motion among them, which is a

reasonable hypothesis, given the way the model was constructed.

Steel wire Latex tube
0~~.~ 

m 8. m/ Os -

Lead Spheres

03 mm

Figure 4-35: Constructive detail of the model.

The main properties of the model are the following:

External diameter: 0.005m

Internal diameter: 0.003m

Total length: 7.78m

Bending stiffness: 1.0x10 4 Nm 2

Axial stiffness: 14622N

Linear mass: 0.044kg / m
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Vertical projection: 4. im

Horizontal projection: 5.7m

Since the outside diameter was too small to be held by an accelerometer, there was only one

point available to measurements: the top end. Therefore, the procedure adopted here was to

impose a harmonic motion at the top of the reduced model in the direction perpendicular to the

plane of the catenary in order to minimize the influence that buckling near the touch down point

might have. The top end of the model was attached to a circular disc. By spinning it we could

impose the top motion. There was no other source of load on the model (i. e., no current or wave

load was applied). At the same time, the steady state response for the horizontal reaction force

on the top node in the plane of the catenary was measured and recorded.

The parametric study had two main quantities of control: each combination of one amplitude

with one frequency of top motion defined a case to be studied. In the end, 48 cases were tested

in the laboratory. The sampling rate was 25.6 Hz. The values applied to the top node of the scr

model are listed below:

Frequencies (Hz): 0.17, 0.20, 0.25, 0.33, 0.50, 0.67

Amplitude (mm): 10, 15, 20, 25, 30, 35, 40, 45

These values were selected after analyzing numerically the model with Anflex for some pairs of

amplitude/frequency. A value similar to the corresponding maximum value of KC number given

by Anflex was expected to occur in the model during the experiment for the same excitation on

top. We intended to limit the KC number range between 10 and 60. For example, Figure 4-36

shows, in the upper part, the curve of the KC number distribution along the model for an

imposed horizontal top motion with 0.667Hz and amplitude equal to 40mm, which represents

rapid, dynamic conditions. Going downward in the figure, it is shown a plot of the estimate of

the maximum possible vortex shedding frequency (see equation 4.1) along the model and the

estimate of the average expected vortex shedding frequency (see equation 4.2), respectively. If

we assume we are dealing with a sinusoidal varying velocity this average is calculated by

multiplying the maximum value by 2/r. Figures 4-36 (right part) and 4-37 show similar plots

for the following cases of amplitude/frequency of excitation, respectively: 0.5Hz/20mm and

0.17Hz/10mm (slow, well behaved conditions). For the cases chosen we see that in average the
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exciting frequency can go up to approximately 4Hz. We also see that the maximum magnitude

of the velocity occurs on the top and decreases as we follow the line toward the bottom for the

rapid dynamic conditions but for the slow dynamic conditions the maximum value can occur in

the middle of the line.

60 30

~40 ~20]

0 30 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7 8

10 3

and average vortex shedding frequency (bottom) along the model for an imposed motion on top

with amplitude 40mm and frequency 0.67 Hz (left side) 20mm and frequency 0.5Hz (right side).

2C2

S10-

U0 1 2 3 4 6 7 8

0.

E U
0 1 2 3 4 5 6 7 B

00 1 2 3 4 5 6 7 B
Distance from bottom end (in)

Figure 4-37: Distribution of KC number (top), maximum vortex shedding frequency (middle)

and average vortex shedding frequency (bottom) along the model for an imposed motion on top

with amplitude 10mm and frequency 0.17Hz.

This model was studied with Anflex in order to obtain an assessment of the natural frequencies.

Table 4.2 shows the first ten natural frequencies associated with the in-plane mode shapes only.

For the rest of this chapter, we will always be referring to in-plane mode shapes of the model.
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Frequency Natural Frequency

Number (Hz)

1 0.543
2 0.860
3 1.201
4 1.507
5 1.832
6 2.136
7 2.455
8 2.760
9 3.076
10 3.380

Table 4.2: First ten natural frequencies of the model

Each case of transverse amplitude/period imposed on the top end of the scr model was applied

to the corresponding finite element model through Anflex. Figure 4-38 shows the maximum KC

number obtained in this model for each input frequency (in Hz). We see that for the same input

frequency, the maximum KC increases with the amplitude and for a fixed amplitude, the

maximum KC decreases a little bit for increasing input frequency.

60

~ I s m * amp=l Orm
S --------- * amp=l mm

> > amp=20mm
- - 1 <1 amp=25mm

A a amp=30mm
45 ----- -------- V V amp=35mm~

-o Vs (> amp=40mm
E 4  --------------- -------------------0 amp=45mm

E.E 35 --- I I--4--I------ --------------

25 I--4 - I J -- - - -I --I ----

20% ------ --------

15 -- -- --- ---- ------- I-- - ----- --- ----

10
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Input Frequency (Hz)

Figure 4-38: Maximum KC number in the scr model obtained by applying the corresponding top

motion of each of the 48 cases through Anflex.
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To have a better understanding about the frequencies that play an important role in the tests, we

made Figure 4-39. The input frequency is in the horizontal axis (in Hz) while the vertical axis

represents a general frequency (in Hz) with different origins:

1. Each point represents the average shedding frequency, fs,avr, for each of the 48 tests

performed with the scr model. . The average shedding frequency can be estimated by the

2
formula fs,avr = - KC -St- f, which is a combination of equations 4.2 and 4.3, assuming

that the flow is sinusoidal. f1 is the input frequency. The corresponding KC numbers are

shown in Figure 4-38. As for the Strouhal number, 0.19 was used. For each input frequency,

the average shedding frequency increases with the input amplitude.

2. The inclined lines represent integer multiples of the input frequency, fn, with m varying

from 1 to 7.

3. The horizontal lines represent the natural frequencies, f,, corresponding to the in-plane

mode shapes of the scr model. The first ten values are shown in table 4.2.

0

g

I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Input frequency (Hz)

Figure 4-39: Relation among the frequencies involved in each of the 48 cases, marked with

specific symbols. The inclined lines are multiples of the input frequency and the horizontal lines

are the scr model natural frequencies associated with the in-plane mode shapes.
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Figures 4-38 and 4-39 indicate that for the same input frequency, as the KC number increases

the model tends to have higher modes excited. Another point indicated by Figure 4-39 is that the

first fourteen natural frequencies are the most important for the response of the scr model in the

tests. It means that for many of these modes the wave propagation parameter, n,, is low. This

parameter is the product of the mode number and the total modal damping ratio, including the

hydrodynamic contribution. It governs the decay of energy in a damped travelling wave. The

smaller this parameter becomes the smaller is the decay, which means the easier it is to have

standing wave behavior. Hence, one idea that can be assumed, based on these points, is that the

threshold KC number has a proportionality nature with the wave parameter. It means that when

the lower modes are excited by the oscillatory flow then the threshold KC number is low, like

10 or 15. As higher modes get excited, these threshold values increase too.

Another point is that resonance (amplification of the scr model response) can occur in these tests

in many ways. One of them is when the shedding frequency coincides with a natural frequency.

Another resonant case might happen when a multiple of the input frequency (higher harmonic)

coincides with the shedding frequency.

Looking at figure 4-39 and then going to the spectra we see that, in general, when one of the

conditions fn = fs,av, or fm = fs,av, or f, = fn = fs,av, is satisfied, there is a strong spike in the

power spectral density function. Take, for instance, the case with input amplitude/frequency

equal to 20/0.5. In Figure 4-39, it corresponds to the condition f,, = fn = fs,av,. = 1.5Hz . This

frequency is equal to the fourth natural frequency of the scr model and is also equal to the third

multiple of the input frequency. If we look at the corresponding spectrum of the transverse

reaction force on the top end of the scr model shown in Figure 4-40, we see a strong

concentration of energy at 1.5Hz too. No filter was applied to this or any other power spectral

density shown in this section.
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Figure 4-40: Power spectral density of the top reaction in

imposed motion with amplitude of 20 mm and frequency

4 5 6

the plane of the catenary for an

of 0.5 Hz.

Similar behavior of resonance occurs in many other cases. For example:

1. Input amplitude/frequency equal to 40/0.2 happened for fm = fn = fs,,, = 1.2Hz. This

frequency corresponds to the third scr model natural frequency and sixth input frequency

multiple. The corresponding spectrum of the top end reaction is shown in Figure 4-41.
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Figure 4-41: Power spectral density

imposed motion with amplitude of 40

of the top reaction in the plane

mm and frequency of 0.2 Hz.

of the catenary for an
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2. Input amplitude/frequency equal to 45/0.17 happened for f, = f = 1.2Hz. This frequency

corresponds to the seventh input frequency multiple. The corresponding spectrum of the

top end reaction is shown in Figure 4-42.
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Figure 4-42: Power spectral density of the top reaction in the plane of the catenary for an

imposed motion with amplitude of 45 mm and frequency of 0.17 Hz.

3. Input amplitude/frequency equal to 45/0.2 happened for f, = fs,av = 1.4Hz. This

frequency corresponds to the seventh input frequency multiple. The corresponding

spectrum of the top end reaction is shown in Figure 4-43.
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Figure 4-43: Power spectral density of the top reaction in the plane

imposed motion with amplitude of 45 mm and frequency of 0.2 Hz.
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Just as a counter example, we can examine the excitation case with amplitude of 30 mm and

input frequency of 0.67Hz. The power spectral density of the top reaction force is shown in

Figure 4-44 below.

We see that there is a strong contribution in the input frequency. In the higher frequency range,

we see that this case corresponds to the point in Figure 4-39 that lies between the frequency

numbers 8 (2.76 Hz) and 9 (3.08 Hz) of the model. Figure 4-44 shows that these two frequencies

have equivalent contributions in the response of the riser. No resonance occurred. The VIV in

this case was small.

0.

0.3

0.

-0.2

0.

0.1

CL 0.

0.0

4

3-

5-

2-

5-

10 1-5 -

0 1 2 3 4 5
Frequency (Hz)

Figure 4-44: Power spectral density of the top reaction in the plane

imposed motion with amplitude of 30 mm and frequency of 0.67 Hz.
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Chapter 5

Application of WBFEM to Riser Analysis

5.1 Introduction

In this chapter we will focus our attention on the application of the WBFEM to analyze the

behavior of a marine riser in terms of displacements and forces. We will also calculate natural

frequencies and mode shapes of some risers and compare them with the values obtained from

FEM solution. Four configurations will be studied in the following order: a vertical riser, a SCR,

a lazywave and finally a CVAR. Then we will study the wavelength distribution along a riser,

how this distribution varies when differences in the riser properties are encountered and the

consequences in the calculation of stresses.

5.2 Vertical Riser

As a first example, we will study a pinned-pinned vertical riser with the following properties:

Total length: 1288m

Outside diameter: 0.5334m

Inside diameter: 0.5016m

Hydrodynamic diameter: 1.1303m

Modulus of elasticity: 2.067x10" N /m 2

Structural mass per unit length in air: 927.4kg / m

Minimum effective tension: 2350kN

Tension variation along the riser: 1356.5N / m
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Although this case is simple, it is useful to check the results from the WBFEM for extreme

cases. Here we will calculate the natural frequencies of the vertical riser mentioned above

through different methods:

1. Using SHEAR7 computer program.

2. Using the straight element with constant tension (developed in chapter 2)

3. Using the straight element with slowly varying tension (developed in chapter 2)

4. Using the curved element with constant tension with a very large radius of curvature

(developed in chapter 3) in order to simulate the straight element.

5. Using the curved element with slowly varying tension with a very large radius of curvature

(developed in chapter 3) in order to simulate the straight element.

The riser was divided in eight elements of the same length. In methods 2 and 4 the constant

tension was calculated as the average value between the elements ends. In methods 4 and 5 the

radius of curvature was 10000m for each curved element in order to simulate a straight one. The

first ten natural frequencies, in Hz, of the vertical riser described before are listed below in table

5.1 for all 5 methods used.

Freq. No. Method 1 Method 2 Method 3 Method 4 Method 5

1 0.0157 0.01561 0.01574 0.01561 0.01562

2 0.0314 0.03125 0.03132 0.03125 0.03125

3 0.0471 0.04693 0.04698 0.04696 0.04694

4 0.0628 0.06266 0.06271 0.06266 0.06263

5 0.0787 0.07846 0.07853 0.07851 0.07845

6 0.0946 0.09436 0.09452 0.09437 0.09427

7 0.1106 0.11038 0.11066 0.11046 0.11030

8 0.1268 0.12580 0.12419 0.12580 0.12631

9 0.1430 0.14266 0.14310 0.14278 0.14263

10 0.1594 0.15896 0.15922 0.15896 0.15886

Table 5.1: Natural frequencies of a vertical riser (in Hz) according to different methods.

In practical terms we see that all methods give the same values for the natural frequencies. It is

also evident that, as expected, the curved beam element tends to the straight beam element
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results when its radius of curvature becomes large enough. This is the correct limiting behavior

for the curved element.

5.3 Steel Catenary Riser

For the second example, we consider a single steel catenary riser configuration, like the one

shown in Figure 5-1 by the solid line, with the following basic characteristics:

Horizontal projection: 331 m

Vertical projection: 192.0 m

Water depth: 192.0m

Modulus of elasticity: 2.067x 10" N / M 2

Mass density: 10760 kg / m3

Outside diameter: 0.168m

Inside diameter: 0.137m

Hydrodynamic diameter: 0.181 m

Soil stiffness: 1x105 N/m

Total length: 405m

Suspended length: 355m

For the time being, the riser extends from the touch down point to the top node and it is

subjected to its own weight and buoyancy forces only. The riser is pinned at both ends. The goal

is to calculate its natural frequencies. The longitudinal coordinate s has its origin at the bottom

node and goes upward toward the top node.

For the calculation of natural frequencies and mode shapes two approaches are considered here:

conventional FEM and WBFEM. Then the results are compared. In both approaches, the first

step is to obtain the static equilibrium configuration of the catenary which will allow us to know

the distribution not only of the tension but also the curvature along the riser. WBFEM can be

used for calculation of linear static equilibrium as we have seen before in section 3.6.2 with

examples. However the static equilibrium of a catenary calls for a nonlinear solution. So, this
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task is accomplished by using a finite element mesh representing the riser and then the

conventional FEM procedure to solve the nonlinear equation [K]u = F . In the present work, a

computer program named Anflex was used. It can calculate, among other things, natural

frequencies and mode shapes which represent the second and final step in the approach with

conventional FEM.

As for the second approach, the one using the WBFEM, the next step consists of discretizing the

same riser with the straight or curved beam elements studied in previous chapters based on the

distribution of properties and forces in the static equilibrium configuration. When using the

curved beam elements presented in this work, we have to be careful when discretizing the

structure because both types of curved elements present limitations: one has constant tension

and constant curvature distribution and the other has constant curvature and slowly varying

tension. The solution adopted here was to use an element with a curvature equal to the average

of the curvature distribution along the segment it represents. The same approach applies to the

tension distribution. Based on this criterion, a mesh is defined so that it represents the

distribution of tension and radius of curvature along the riser. With the mesh defined, the

dynamic stiffness matrix of the whole riser can be calculated through the assemblage of the

element dynamic stiffness matrices, following the traditional FEM techniques. In the FEM

model the riser was discretized with 60 elements of the same length while in the WBFEM model

we used 36 elements of varying length.

We had to employ both the straight beam element in the region of the riser that is in contact with

the sea bottom and the curved beam element between the touch down point and the top node.

Table 5.2 shows the natural frequencies associated with the in-plane mode shapes of the steel

catenary riser according to three different methods. As we can see, the values agree very well. If

we take the natural frequencies calculated by Anflex as a reference, the difference between

natural frequencies using the three methods is less than 1%.

The first and tenth mode shapes are represented by the dashed lines in Figures 5-1 and 5-2,

respectively. Figure 5-3 shows the tenth mode calculated Anflex. We see that the modes agree

very well too.
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Frequency WBFEM WBFEM FEM

Number Constant Tension S. V. Tension

1 0.1009 0.1004 0.10191

2 0.1545 0.1543 0.15589

3 0.2168 0.2167 0.21881
4 0.2728 0.2727 0.27527

5 0.3357 0.3355 0.33884

6 0.3957 0.3958 0.39960

7 0.4622 0.4621 0.46676

8 0.5276 0.5276 0.53286

9 0.5989 0.5988 0.60514

10 0.6703 0.6703 0.67742

Table 5.2: The first ten natural frequencies (in Hz) for the steel catenary considering the region

laying on the sea bottom.
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Figure 5-1: Static equilibrium configuration plus the first mode

WBFEM. The riser extends from the anchor point to the top node.
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Figure 5-2: Static equilibrium configuration plus the tenth mode shape calculated through

WBFEM. The riser extends from the anchor point to the top node.
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Figure 5-3: Static equilibrium configuration plus the tenth mode shape calculated through

traditional FEM. The riser extends from the anchor point to the top node.

Now we apply a distributed load described as follows:

" q=0 for s 355m

" q increases linearly from s = 355m to s =375m, from q =0 to q = 6N / m

" q=6N/m from s =375m to s=405m

145



In order to introduce damping, a complex value of 2.067 x 10" - i .0.2 x 10" N/ m2 was used

for the Young's modulus. The load was applied at two frequencies, 0.67Hz and 2Hz, with the

same mesh. Figures 5-4 and 5-5 show the transverse displacement due to the load at these

frequencies, respectively.
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Figure 5-4: Transverse displacement along the scr subjected to a distributed load at 0.67 Hz.
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Figure 5-5: Transverse displacement along the scr subjected to a distributed load at 2.0 Hz.

146

50 100 150 200 250 300
Longitudinal distance from anchor (m)

CD

E
C-)

0

cc

Ci)

C
cc

1..

0.03

0.025

0.02

0.015

0.01

0.005

0

E
1-

CD)

E

CD)

C
CL

Ao



5.4 Lazywave Riser

In this example, we will calculate natural frequencies and mode shapes of the lazy-wave

configuration represented in Figure 5-6. The main feature of this configuration is the presence of

distributed buoyancy along a region of the riser not far from the bottom causing a hunch in the

static configuration of equilibrium. This region represents an increase in the distributed mass for

the waves travelling along the riser and so it will cause reflection at both ends. Figure 5-6 shows

the configuration of the lazywave under consideration here. The thicker region represents the

buoyancy.
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Figure 5-6: Lazywave configuration

The main characteristics of the structural system are

Horizontal projection: 254 m

Vertical projection: 267.0 m

Length of riser touching the soil: 60 m

Water depth: 267.Om

Modulus of elasticity: 8.703x 106 kN m 2

Mass density: 3243 kg / m 3
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Cross-sectional area: 0.0827 m 2

Moment of inertia: 0.2849x10-4 m 4

Hydrodynamic diameter outside buoyancy region: 0.49 m

Hydrodynamic diameter in the buoyancy region: 0.80 m

Length of buoyancy region: 100 m

Density of floaters: 2.3 kN / m

Buoyancy of floaters: 5.8 kN / m

Soil stiffness: 300 kN / m

Total length: 540m

Table 5.3 shows a comparison between the natural frequencies obtained from Anflex and from

WBFEM. In the first approach, the lazywave was discretized with 136 equally spaced nodes

while in the second case it was discretized with 60 nodes at varying distances according to the

criteria explained before for the radius of curvature and tension.

In the case of lazywave configuration the difference in terms of natural frequencies is around

5%, greater than the catenary case. This can be explained by the fact that in the catenary

configuration the radius of curvature does not vary much along the longitudinal axis of the riser

while in the lazy wave configuration we have larger changes of the radius of curvature along the

longitudinal axis. It makes the representation of the variation of the radius of curvature along the

riser more difficult with the element used in the present work since it has constant radius of

curvature. However, the values are not so different and, as we will see next, the mode shapes are

very similar. It means that the dynamic behavior of the structural system is reasonably well

represented. Besides, as we have seen in chapter 3, as the frequency increases, the propagating

waves tend to be independent of the radius of curvature.
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Table 5.3: First ten natural

different methods.

Frequency WBFEM FEM

Number Constant Tension

1 0.0166 0.0166

2 0.0300 0.0314

3 0.0385 0.0425

4 0.0482 0.0483

5 0.0645 0.0652

6 0.0738 0.0771

7 0.0908 0.0970

8 0.1063 0.1122

9 0.1213 0.1281

10 0.1375 0.1452

frequencies (in Hz) of the lazywave configuration according to

Figures 5-7 and 5-9 show the fifth and tenth mode shapes calculated through the WBFEM while

Figures 5-8 and 5-10 show the mode shapes calculated through the traditional FEM. Comparing

them we see that there is a good agreement in the mode shapes.

Fifth Mode Shape
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Figure 5-7: The fifth mode shape of the lazy wave configuration considered in this example is

represented by the dashed line and it was calculated through WBFEM.
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Figure 5-8: The fifth mode shape of the lazy wave configuration calculated through traditional

FEM.
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Figure 5-9: The tenth mode shape of the lazy wave configuration considered in this example is

represented by the dashed line and it was calculated through WBFEM.
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Figure 5-10: The tenth mode shape of the lazy wave configuration calculated through traditional

FEM.

5.5 Wavelength on a Riser

Along this work, we have presented the dispersion relation of straight and curved beams for a

number of conditions. Equation 2.6 is one example of this relation. Basically, it indicates that

the wavelength depends, among other parameters, upon the distribution of mass and tension

along the beam longitudinal axis. As we have seen before, in a marine riser it is very likely that

a travelling wave will encounter changes in the properties along its longitudinal axis, causing

not only the wave to reflect but also its wavelength to change. So, it is interesting to study how

the wavelength changes for one constant frequency and the consequences of this change in the

behavior of a riser.

The distribution of tension and mass along the longitudinal axis of a riser is defined in the static

equilibrium configuration. Figures 5-11 and 5-12 show these distributions for the CVAR

configuration discussed in chapter 4, respectively. The increase in the mass corresponds to the

buoyant region. We also see that tension has a minimum value near the top end of the buoyant

region. Moving away from this point, tension increases.
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Using the relation dispersion studied in chapter 3, we get the distribution of wavelength along

the CVAR for a specific frequency. Figure 5-13 shows this distribution for 0.5Hz (solid line)

and for 1Hz (dashed line). In this figure, it was used the wavelength that corresponds to the

propagating transverse waves. Examining these three figures we can draw some important

conclusions:

" The wavelength decreases as the frequency increases.

" The wavelength decreases as the tension decreases.

" The wavelength decreases as the mass increases.

The importance of the knowledge of the wavelength is its influence on the fatigue life of the

riser. In order to help the understanding of this influence, we can imagine there is a wave

travelling downward along the CVAR with unit amplitude always. If, for any reason, the

wavelength decreases, as it happens when the wave moves from the bare pipe to the buoyant

region, then the curvature will increase and so will the bending stresses. Therefore, in the CVAR

case, the buoyant region is more likely to present high dynamic bending stresses and so this

region will be very important for the fatigue life. Of course, the final conclusion depends also on

the location and magnitude of the dynamic load and on the hydrodynamic damping.

As for a SCR, a critical region is the one near the touch down point since it is the region with the

smallest values of axial tension and consequently the curvatures will be the biggest.
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Figure 5-11: Tension distribution along the CVAR configuration

152



0.7

0.6

0.5

0.4

-0.3

0 0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Relative distance from bottom
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5.6 CVAR Configuration

The last structure that we are going to study is the CVAR and we are going to focus our

attention to the configuration we studied in chapter 4, which is shown in Figure 4-3.

The natural frequencies can be obtained by following the same procedure adopted previously for

the SCR and Lazywave cases: using FEM and WBFEM. In the FEM, the riser is modeled with
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425 elements with the same length while in the WBFEM it is modeled with 208 elements where,

in the middle region, the element length (about 2 ft) is smaller than the element lengths in the

region near the ends (about 14ft). This model was adopted because it is in the middle region

where the variation of radius of curvature is sharper. Table 5.4 below shows the result of this

calculation for the first ten natural frequencies where 'FEM' stands for the natural frequencies

calculated by the program Anflex. All frequencies are given in Hz.

Frequency WBFEM FEM

Number Constant Tension

1 0.0253 0.0260

2 0.0497 0.0519

3 0.0741 0.0756

4 0.0813 0.0841

5 0.1133 0.1168

6 0.1346 0.1366

7 0.1523 0.1568

8 0.1827 0.1880

9 0.2031 0.2074

10 0.2271 0.2344

Table 5.4: First ten natural frequencies (in Hz) of the

in-plane mode shapes, according to different methods.

The difference in the values is between 2% and 3%.

CVAR configuration corresponding to the
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Chapter 6

Measurements from Full Scale SCR

6.1 Introduction

In this chapter we summarize the program developed by Petrobras to monitor the steel catenary

riser installed on the P18 platform in terms of loads, displacements and forces. The goal of such

a monitoring system is to give the design team more confidence on the design premises and

hence, reduce the uncertainties. The calibration based on the comparison between the measured

data and the predicted values will help in the consolidation of the SCR technology. Some results

from the measurements are presented and then some conclusions are drawn from these results.

This is a preliminary analysis since the amount of data is huge and the data base where

measurements will be stored is still being organized. In the end we make a comparison between

the experimental data and the prediction from Shear7 and WBFEM.

6.2 Monitoring System

In 1995 Petrobras started a project to build and install a steel catenary riser prototype on the P18

semi-submersible platform, located at 910m water depth. It was conceived to be a dummy riser

with a comprehensive monitoring system. Three very important areas regarding the SCR project

were assigned as the main objects of monitoring:

" Stresses at the touch down point, at first welding and at the wave zone.

* Platform motions, including offsets, first and second order motions.

" VIV along the riser.
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Other quantities like environmental loads were also measured. The system encompasses all the

aspects that are important in the design methodology.
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Figure 6-1: Monitoring system installed in the P18 steel catenary riser.

Figure 6-1 gives an idea of the instrumentation used in the implementation of the monitoring

system. The parameters of interest are defined as:

* Environmental loads: current profile, wave directional spectra and wind

1 Platform position and motions

" Mooring line tension

" Forces at the touch down point, wave zone and riser top

" VIV

The monitoring activities were distributed in 5 monitoring sub systems:

" Meteo- Oceanographic

" Platform position and motions

" Top loads
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" TDP loads

" Riser position and motions

Some of the main characteristics of the monitoring system are:

" Internal clocks synchronized by GPS

* Unattended operations

" Operational configuration can be changed remotely

" Executable programs can be loaded remotely

" Local data storage in the subsea equipment

" Data transmitted to the surface by acoustic telemetry

" Redundancy on the permanently installed subsea equipment

Because of the low probability of survival during the pipe-laying operation, it was required that

the transmission of the data from the subsea sensor packages to the surface should be made

acoustically.

6.2.1 Environmental Loads

Sismo is the meteo-oceanographic monitoring system that controls and collect data from

" Local sensors for measuring wind speed and direction, temperature, barometric pressure and

relative humidity.

" The surface meteo-oceanographic buoy. With 2.76m diameter, it is moored around 1000m

away from the P18. The buoy measures its heave, roll, pitch and heading, meteorological

parameters, sea surface temperature and surface current.

" The two high power units Acoustic Doppler Current Profilers (ADCP) for measuring current

profile along the water depth in terms of intensity and direction. One is installed at the sea

floor looking up and with internal data recording, retrieved every three months for battery

change and data collection. The other is suspended at the platform looking downward and is

connected by cable to the Sismo system.

These measurements are important because, among other reasons, the current is one of the main

sources of VIV.
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6.2.2 TDP Monitoring System

Strain gages were installed in the touch down point region in order to measure tension, in-plane

and out-of-plane bending moments. Time series of 900s, every 3 hours would be recorded. The

strain gages had to be protected by a polymer collar which, in turn, had to be protected against

damage during handling and soil contact by a steel blister cover. Four TDP bottles were used to

monitor the forces in the region near the sea bottom. They were numbered from 1 to 4 in the

anchor direction. The sampling rate was 1Hz in the measurements.

The main objective of the measurements in this region was the study of the interaction between

the soil and the riser but they can be also very useful for assessment of intermittent VIV. As we

have seen in section 4.2.3, the region just above the touch down point is where the highest KC

number occurs when there is a heave motion applied on top of the riser.

6.2.3 Top Monitoring System

The main top quantities measured are the following: inclinations, in-plane bending moments,

out-of-plane bending moments and tension. The system has the strain sensors connected to a

remote electronic unit installed at the platform spider deck. Until 1999 November 10th, the

sampling rate was 1Hz. After this day, it was changed to 2Hz.

6.2.4 Riser Motions Monitoring System

X (+)
to anchor

Figure 6-2: System of reference for the quantities measured by the VIV bottles.
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This monitoring system of the riser motions is designed to measure quantities according to the

riser coordinate system shown in Figure 6-2 above. The X direction is coincident with the

longitudinal axis of the riser. The Y and Z axes define a cross sectional plane perpendicular to

X, while the X and Z axes define a vertical plane. The main quantities measured in the VIV

bottles are the following: X, Y and Z accelerations, Y and Z angular velocities. The

corresponding linear and angular displacements are obtained by double integration. Three

bottles, numbered from 1 to 3 in the anchor direction, were installed at depths equal to 221m,

306m and 535m, respectively. The data was measured and recorded at a rate of 2Hz for 5

minutes every 3 hours and the signal was lowpass filtered at 0.5 Hz. This value was chosen

based on the prediction of VIV frequencies excited by the current profiles in Campos Basin.

Figure 6-3 shows the position of P18 together with the SCR. The longitudinal platform axis

makes an angle of 230 with the North direction and the plane of the scr makes an angle of

192.110 with the North.

Y
SwL = 910. orth
Connection (39.3, -6.0, 919.91
Z Anchor = 0.0

YfY

Line azimuth = 192.11
Floating azimuth = 203

MARLIM P18 - 20 DEGREE TOP ANGLE GAS EXPORT SCR

Figure 6-3: Position of platform P18 and the steel catenary riser installed on it with respect to

the North direction
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The X and Y axis shown in Figure 6-3 correspond to the East and North directions, respectively

while Xf and Yf are the global axis used by Anflex to define the structural system of the scr.

6.3 Analysis of Measurements

The main characteristics of the scr are

Water depth: 910m

Angle of catenary plane with North direction: 192.110

Outside diameter: 0.273m

Inside diameter: 0.232

Top angle with the vertical direction: 20.5'

Total length: 2066.5m

Bending stiffness: 27269kNm2

Axial stiffness: 3400000kN

Density: 77kN/m3

Suspended length: 1345m

Table 6.1 shows the first 25 natural frequencies (in Hz) associated with both the in-plane and

out-of-plane mode shapes. They were calculated by Anflex and compared with the values

obtained through WBFEM. They are in the range of frequencies obtained in the measurements

of the riser motions by the VIV bottles 1, 2 and 3. The average difference between the natural

frequencies by Anflex and those calculated through WBFEM is 2%.

The calculations of the out-of-plane mode shapes using the WBFEM were made assuming an

equivalent straight riser with the static distribution of tension along it. The natural frequencies

obtained are close to the values calculated by Anflex, where a tri-dimensional model was

employed. Hence, the behavior of the riser in the out-of-plane direction, with only the weight

and buoyancy forces applied, is similar to the straightened riser with the same tension

distribution.
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Frequency WBFEM WBFEM FEM FEM

Number In-plane Out-of-plane In-plane Out-of-plane
1 0.036 0.021 0.037 0.021

2 0.057 0.042 0.058 0.042

3 0.080 0.062 0.082 0.063

4 0.101 0.083 0.103 0.084

5 0.123 0.104 0.126 0.106

6 0.144 0.125 0.147 0.127

7 0.166 0.146 0.169 0.148

8 0.187 0.167 0.190 0.170

9 0.209 0.188 0.213 0.191

10 0.230 0.210 0.235 0.213

11 0.253 0.232 0.258 0.235

12 0.274 0.253 0.280 0.257

13 0.297 0.276 0.303 0.280

14 0.319 0.298 0.326 0.302

15 0.342 0.320 0.350 0.326

16 0.364 0.343 0.373 0.349

17 0.388 0.366 0.397 0.372

18 0.411 0.389 0.421 0.396

19 0.435 0.413 0.445 0.420

20 0.459 0.437 0.469 0.444

21 0.484 0.461 0.495 0.468

22 0.507 0.485 0.518 0.493

23 0.531 0.510 0.543 0.516

24 0.542 0.535 0.555 0.544

25 0.563 0.561 0.576 0.570

Table 6.1: The first 25 natural frequencies (in Hz) corresponding to the in-plane and out-of-

plane mode shapes of the P18 SCR.

There are basically three types of VIV excitations on a riser: ocean current, ocean waves and the

riser motion itself. This last excitation was studied in chapter 4. Now we are going to try and

identify the influence of each type of excitation for the present P18 scr when subjected to the

environmental loads.
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6.3.1 Intermittent VIV

We are going to select the month of August/1999 because it is one of the few months that

present trustable data so far stored in the data base. The TDP bottles ended up being useful in

the subject of intermittent VIV caused by the riser response to some excitationbecause we

discovered that in August these bottles were above the sea floor. A negative aspect is that only

number 4 bottle was working well.

After examining the variation of P18 heave along the month of August 1999, two days were

selected to be studied in more detail: 13 at 12:00h and 16 at 00:00h. They correspond to the days

with the lowest and the highest heave, respectively. All the power spectra densities shown in

this chapter were obtained through Matlab, except those related to the accelerations measured by

the VIV bottles in which case we used an independent computer program provided by SMS.

1. August 13, 1999 at 12:00 o'clock

An important source of VIV excitation is the current acting along the riser. In this case the

difficulty is the lack of data about the current since the ADCP presented problems all the time.

Thus, we had to resort to surface measurements of the ocean current made by a vessel or another

platform near P18 and assume a typical current profile based on these surface measurements.

The main excitations measured for this date and time are the following:

0 The zero crossing period of the wave was 6.77s, the significant wave height was 1.95m and

its direction was 2050 with respect to the North direction. It has almost the same direction

as the steel catenary riser plane.

0 The measured surface current magnitude and direction are 0.53m/s and 202.50 with respect

to the North direction, respectively. Based on this pair of values, the typical current profile is

assumed to be the one shown on table 6.2 below. It shows one general characteristic of the

currents in Campos Basin: they change the direction along the depth. We see that near the

surface it is approximately aligned with the scr plane.
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Depth (m) Magnitude (m/s) Angle (degree)

50 0.55 217

100 0.50 201

150 0.49 202

250 0.28 189

350 0.14 177

450 0.10 142

550 0.13 83

650 0.18 47

750 0.18 52

900 0.24 46

Table 6.2: Typical current profile estimated for August 13, 1999 at 12:00 o'clock.

* The average heave amplitude on top of the riser is 0.33m

These excitations were applied on the FEM model of the P18 scr through a deterministic

dynamic analysis in Anflex. Many quantities were calculated, such as KC number, normal

velocity along the riser and shedding frequency. The results are shown in Figures 6-4 and 6-5.

The upper part of Figure 6-4 shows the maximum normal velocity along the scr, when subjected

to the current and wave described previously, and the heave measured on top of the riser

(0.33m) applied by the vessel. In the lower part of the same figure we see the corresponding

shedding frequency calculated through equation 4.1. The region of zero normal velocity

corresponds to the riser region that always lies on the sea bed.

To understand the effect of each excitation on the riser we made the same dynamic analysis with

Anflex excluding the current. Figure 6-5 shows the predicted KC number (upper part) and the

corresponding shedding frequency (lower part) for the riser subjected to two types of excitation:

" Heave and wave (solid line)

" Only heave (dotted line)
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Figure 6-4: Maximum predicted normal velocity (upper part) and shedding frequency (lower

part) along the P18 scr for the environmental conditions measured on August 13, 1999 at noon.
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Figure 6-5: Predicted KC number (upper part) and maximum shedding frequency (lower part)

along the P18 scr without the current. The solid line refers to the application of heave plus wave

and the dotted line refers to application of heave only. Heave and wave were measured on

August 13, 1999 at 12:00 o'clock.
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Comparing the lower parts of Figures 6-4 and 6-5, we see that in the riser region near the tdp the

shedding frequency can go up to 0.4 Hz and it is dominated mainly by the riser response to the

heave. As we go up along the riser the influence of the current on the shedding frequency

increases while the influence of the riser motion decreases. In addition to the current, in the

wave zone (upper 70 m of the sea depth) the influence of the wave makes the shedding

frequency increase sharply up to 0.8Hz.

Figure 6-5 indicates that neglecting the effect of current, the highest values of KC number occur

in the lower region of the suspended riser and in the wave zone. The predicted KC number is

below 15 along the riser except at the wave influence zone, where it can reach 20. When the

current is taken into account, the distribution of shedding frequency changes (see Figure 6-4)

but we see that the riser motion is still dominant in the lower part of the riser.

Figures 6-6 and 6-7 show the power spectral density of the in-plane and out-of-plane bending

moments in the TDP bottle 4 on August 13 at 12:00 o'clock, respectively. The ocean wave

period in Campos Basin varies, in general, between 7 and 12 seconds and the second order

motion period, in surge or sway, is around 180 s. These two excitations are present in the

response spectra at the TDP bottle 4. It can explain the big amount of energy seen in the

frequency range up to 0.18 Hz. It indicates that the waves generated at the top of the riser

managed to reach the touch down point (tdp) region. Both response spectra show little energy

between 0.2 Hz and 0.3 Hz when compared to the response at the wave frequency band, for

instance. However, above 0.3 Hz the response spectra indicates an increase of energy.

The rms of the bending moments shown in Figures 6-4 and 6-5 were calculated for 3 different

ranges of frequencies. They are shown in the table 6.3 below:

Frequency In-plane bending Out-of-plane

Range moment bending moment
0.05 to 0.15 0.85 0.46

0.15 to 0.25 0.53 0.32

0.35 to 0.50 0.65 0.45

Table 6.3: Rms of bending moments (in kNm) for different ranges of frequencies (in Hz) at TDP

bottle 4.
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Figure 6-6: Power spectral density of the in-plane bending moment at number

the P18 scr measured on August 13, 1999 at 12:00 o'clock.
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Figure 6-7: Power spectral density of the out-of-plane bending moment at number 4 TDP bottle

of the P18 scr measured on August 13, 1999 at 12:00 o'clock.
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2. August 16, 1999 at 00:00 o'clock

In the present case, the platform heave was much larger than in the previous case and we are

going to investigate the main consequences of this effect. The power spectra densities of the in-

plane and out-of-plane bending moments measured by the tdp bottle 4 are shown in Figures 6-8

and 6-9, respectively.
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Figure 6-8: Power spectral density of the in-plane bending moment at the

on August 16, 1999 at 0:00 o'clock.
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Figure 6-9: Power spectral density of the out-of-plane bending moment at the tdp bottle 4

measured on August 16, 1999 at 0:00 o'clock.
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Again, we see that the riser response near the tdp have many different frequency components,

going up to 0.5Hz. In the plane of the catenary the response of the riser at the wave frequency is

dominant. However, in the out-of-plane direction the response above 0.2Hz is dominant.

The environmental conditions measured at this date and time are:

" The period of the wave was 12.34 s, its height was 4.6m with an angle of 320 with the North

direction. The wave has a similar alignment when compared to the wave in the previous case

but an opposite direction.

* The surface current magnitude and direction are 0.38m/s and 291.4' with respect to the

North direction. It is almost perpendicular to the catenary plane. Based on this pair of values,

the typical current profile is assumed to be the one shown on table 6.4 below.

Depth (m) Magnitude (m/s) Angle (degree)

50 0.35 262

100 0.31 251

150 0.29 238

250 0.16 219

350 0.11 208

450 0.10 113

550 0.14 60

650 0.18 46

750 0.26 27

900 0.26 41

Table 6.4: Typical current profile for the surface current

measured on August 16, 1999 at 0:00 o'clock.

(0.38m/s and 291.4' with North)

0 The average heave on top of the riser is 1.45m

In order to understand this point, the rms of the in-plane and out-of plane bending moments

shown in these figures were calculated for 3 different ranges of frequencies, the same as those

used at August 13, at 12:00 o'clock. They are shown in the table below:
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Frequency In-plane bending Out-of-plane

Range moment bending moment
0.05 to 0.15 2.11 (2.5) 0.63 (1.4)

0.15 to 0.25 1.51 (2.8) 1.67(5.2)

0.35 to 0.50 1.70 (2.6) 1.7 (3.8)
Table 6.5: Rms of bending moments (in kNm) near the tdp region for different ranges of

frequencies (in Hz). The number between brackets represents how many times the rms is bigger

than the values shown in table 6.3.

Comparing the values presented in table 6.5 with those presented in table 6.3, we see an increase

of bending moment rms, specially of the out-of-plane bending moment with frequency above

the wave frequency range. Perhaps the best explanation for it is the fact that while the platform

heave on 16 at 00:00h was approximately 5 times the platform heave on 13 at 12:00 o'clock the

wave period on August 16 is approximately twice the wave period on August 13. Hence, the

vertical velocity amplitude on top of the riser (proportional to the product of heave amplitude

and heave frequency) on August 16 should be larger than on August 13, assuming that the heave

period is close to the wave period. As a consequence, it is likely that the riser normal velocities

near the tdp caused by the vessel motion should be higher on August 16 than on August 13,

causing the VIV frequencies and lift forces to be larger too. Furthermore, comparing the ocean

current magnitudes shown in tables 6.4 and 6.2, we see that on August 16 the current magnitude

was smaller than on August 13. Hence, the average shedding frequency caused by the current on

August 16 should be smaller. It is a situation similar to what happened with the scr large model

studied in chapter 4 when a heave motion was applied on its top. All these considerations point

out the importance of the riser motion in generating intermittent VIV.

To verify these ideas, the three excitations described previously were applied to the riser

through a deterministic analysis in Anflex and quantities like KC number and shedding

frequency were calculated. The results are shown in Figures 6-10 and 6-11.
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Figure 6-10: Maximum predicted normal velocity (upper part) and shedding frequency (lower

part) along the P18 scr for the environmental conditions measured on August 16, 1999 at 0:00

o'clock.
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The upper part of Figure 6-10 shows the maximum normal velocity along the scr, when

subjected to the current and wave described previously, and the heave measured on top of the

riser (1.45m) applied by the vessel. In the lower part of the same figure we see the

corresponding shedding frequency calculated through equation 4.1. The region of zero normal

velocity corresponds to the riser region that always lies on the sea bed.

We see that because of the increase in heave, when compared to the previous case, both the

shedding frequency and the normal velocity are higher despite the fact that there was a decrease

in the magnitude of the ocean current. There are two main regions of VIV excitation: one on the

bottom of the suspended part of the riser, due to the riser response to the heave, and another on

the top, due to the action of the ocean wave.

Figure 6-11 shows the predicted KC number (upper part) and the corresponding shedding

frequency (lower part) for the riser subjected to two types of excitation:

* Heave applied by P18 and wave (solid line)

" Only heave applied by P18 (dotted line)

Comparing the lower parts of Figures 6-10 and 6-11, we see that in the riser region near the tdp

the shedding frequency can go up to 0.6 Hz (Figures 6-8 and 6-9 indicate it too) and it is.

dominated mainly by the riser response to the heave. As we go up along the riser the influence

of the current on the shedding frequency increases while the influence of the riser motion

decreases. The influence of the ocean current is smaller than in the previous case because of its

lower magnitude. In addition to the current, in the wave zone the influence of the wave makes

the shedding frequency increase sharply up to 0.9Hz.

Figure 6-11 indicates that neglecting the effect of current, the highest values of KC number

occur in the lower region of the suspended riser and in the wave zone. The predicted KC number

is below 45 along the riser except at the wave influence zone, where it can reach 60.

Figure 6-12 shows a comparison between the current profile acting on the riser and the

magnitude of the oscillatory flow acting on the riser due to the heave motion only. The upper

part refers to August 13 and the lower part to August 16. We see that on August 13 the current

velocities had magnitudes a little larger than the magnitudes caused by the heave. However, on

August 16 the oscillatory flow caused by the heave was predominant on the VIV excitation.
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Figure 6-12: Comparison between the velocity magnitudes caused by current and heave only.

The power spectra density plots of the in-plane and out-of-plane bending moments at the top of

the riser are shown in Figures 6-13 and 6-14, respectively. We see that the response at that

location is dominated by the second order motion frequency and the wave frequency.
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Figure 6-13: Power spectral density of the in-plane bending moment at the top of the scr

measured on August 16, 1999 at 0:00 o'clock.
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Figure 6-14: Power spectral density of the out-of-plane bending moment at the top of the scr

measured on August 16, 1999 at 0:00 o'clock.

0 Estimate of damping ratio at the wave frequency

We can use Figures 6-8 and 6-13 to have an idea of the total damping acting on the riser. By

total damping we mean the structural plus the hydrodynamic. We know that waves created in

the riser by VIV are attenuated as they travel along the riser. Assuming a linear damping model,

then the waves are attenuated exponentially with distance traveled by the factor exp(- - y - As),

where 4 is an equivalent linear damping ratio and As is the distance traveled along the riser. In

other words, suppose we have a travelling decaying wave along the riser. The ratio of two

consecutive displacement amplitudes at two different locations separated by a distance As is

given by exp(-- y- As). Since the response spectra is proportional to response amplitude

squared, we have that if S1 and S 2 are the spectral areas between two different frequencies,

then the effective damping can be calculated as
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S= -exp(-22- -sAs) -> j= I In 2 (6.1)S, -2-r-As (S,

The areas under the two spectra shown in Figures 6-8 and 6-13, between 0.06 and 012 Hz differ

by a ratio of approximately 12.2 to 1. If we choose an average frequency of 0.08 Hz and an

average wavenumber of 0.01035m- 1 the formula above yields a value of 8.9% for the effective

damping. In general, the structural damping adopted for scr is around 0.3%. The difference

between the values refers to the hydrodynamic damping. Furthermore, the wave propagation

parameter can be estimated as 3-0.089 = 0.267. This value indicates that the propagating waves

can reach the ends of the riser but with decaying amplitudes due to the effect of the damping. It

indicates that the waves generated by the ocean waves on top of the riser can reach the bottom

of the riser and this fact is shown in Figures 6-8 and 6-13.

6.3.2 VIV along the SCR

The VIV bottles started measuring the accelerations on February 2000 and stopped on July of

the same year to exchange the batteries. The problem related with this period of time is the lack

of environmental load data. Concerning the current data, we do not have a measured current

profile since the ADCP never worked. The best we can do is to use a typical profile for the

current based on the measured surface current magnitude and direction (always with respect to

the North direction). Concerning the waves, the buoy presented many problems during this

period too. Furthermore, because of the huge amount of data, the environmental load data and

the platform motion data related to this period are not in the data base yet. However, some

interesting conclusions can be drawn.

As for the VIV bottles, only bottles 1 and 3 worked. Unfortunately, the measurements were not

always at the same time. The sampling rate is 2Hz but the data was high filtered at 0.5 Hz.

The data of measurements are designated by ymmddhh.vfn, where y means the year (it is always

equal to 0 because they refer to 2000), mm stands for the month (from 1 to 12), dd means the

day of the month, hh means the full hour of the day (from 0 to 23) and the extension vfn means

VIV bottle number n. Two days were selected to be studied in more detail.
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1. June 07, 2000 at 14:00 o'clock

Figures 6-15 and 6-16 show the power spectral densities of the 0060714.vfl data file (i.e., June

7, 2000 at 14:00 o'clock) of the Y and Z accelerations at bottle 1, respectively. By inspecting

these plots we see a strong concentration of energy around 0.35 Hz. Unfortunately we have no

data for the same time at VIV bottle 3.
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Figure 6-15: Psd of measured Y acceleration at VIV bottle 1, on June 07, 2000
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Figure 6-16: Psd of measured Z acceleration at VIV bottle 1 on June 07, 2000

at 14:00 o'clock.

at 14:00 o'clock.
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The measured environmental conditions are:

* The wave characteristics are: period of 7.78s, height of 2.33m and direction of 65 with North

direction.

* The surface current magnitude and direction are 0.54m / s and 236', respectively. Based

on these values, the typical current is the same as the one given in table 6.6.

Depth (m) Magnitude (m/s) Angle (degree)

50 0.55 217

100 0.50 201

150 0.49 202

250 0.28 189

350 0.14 177

450 0.10 142

550 0.13 83

650 0.18 47

750 0.18 52

900 0.24 46

Table 6.6: Typical current profile for the surface current

measured on August 13, 1999 at 12:00 o'clock.

(0.53m/s and 202.50 with North)

* Average heave applied on top of the riser: 0.3m

All these excitations were applied to the riser through a deterministic analysis in Anflex and

quantities like KC number and corresponding maximum shedding frequency were calculated.

The results are shown in Figure 6-17. The symbols '*' indicate the position of VIV bottles 1 and

3 on the riser.

In order to study the effect of the periodic excitations on the scr, two dynamic analyses were

carried out using Anflex:

" The scr subjected to the wave and the heave applied by P18 (solid line in Figure 6-18)

* Only heave applied by P18 (dotted line in Figure 6-18)

The results are shown in Figure 6-18.
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The distribution of KC and shedding frequency is similar to those obtained in the two previous

cases. Near the tdp the riser motion drives the VIV formation. As we go up, this influence

decreases and the current influence becomes greater and greater. Near the surface we have also

the influence of waves. VIV bottle I shows a spike at 0.35 Hz. The lower part of Figure 6-17

indicates that it must come from the riser region above this bottle because this region presents

shedding frequency above 0.35 Hz. Hence, in the upper part of the riser the VIV frequency is

being driven by ocean current plus wave.

Passing a high filter on the Y displacement time series (obtained by double integration of the

corresponding Y accelerations) with cutoff equal to 0.3Hz and calculating the corresponding

rms value, we obtain 0.0634 m. In this case, the ratio A/D is 0.25. Passing the same high filter at

0.3Hz at the Z displacement time series, the rms is 0.0415 with Aid equal to 0.16.

Figures 6-19 and 6-20 show the power spectra density of the in-plane and out-of-plane bending

moments at the top end of the riser. This data was measured on the same day at 15:00 o'clock. It

was the closest to the corresponding VIV data time at bottle 1. We see that the second order

platform motion and the wave are predominant in the riser top motion. However, there is some

energy a little bit above 0.3 Hz, especially at the out-of-plane bending moment data, which must

come from the VIV excitation. A curious feature is the appearance of a spike a little above

0.6Hz, especially at the in-plane bending moment data. The most probable explanation for this

spike at a so high frequency is the drag force caused by VIV. We know that the unsteady drag

forces (in-line direction) occur at approximately twice the frequency of the corresponding lift

forces (out-of-plane direction).
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Figure 6-19: Psd of the in-plane bending moment at the top region of the riser, measured on

June 07, 2000 at 14:00 o'clock.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (Hz)

Figure 6-20: Psd of the out-of-plane bending moment at the top region of the riser, measured on

June 07, 2000 at 14:00 o'clock.
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2. July 01, 2000 at 02:00 o'clock

Figures 6-21 and 6-22 show the 0070102.vfl data for the Y and Z accelerations for bottle 1,

respectively. Figures 6-23 and 6-24 show the 0070103.vf3 data for the Y and Z accelerations for

bottle 3, respectively. These measurements were made at the same time. We see a strong

concentration of energy around 0.4 Hz in both bottles, especially for the Y displacements.
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Figure 6-21: Psd of measured Y acceleration at VIV bottle 1 on July 01, 2000 at 02:00 o'clock.
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Figure 6-22: Psd of measured Z acceleration at VIV bottle 1 on July 01, 2000 at 02:00 o'clock.
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Figure 6-23: Psd of measured Y acceleration at VIV bottle 3 on July 01, 2000 at 02:00 o'clock.
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Figure 6-24: Psd of measured Z acceleration at VIV bottle 3 on July 01, 2000 at 02:00 o'clock.
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The environmental conditions are:

" The wave characteristics are: period of 7.04s, height of 2.1m and direction of 61 with respect

to the North

" The surface current is defined by 0.67m / s with 214' with respect to North direction.

Typically this current is defined by the following table:

Depth (m) Magnitude (m/s) Angle (degree)

50 0.65 215

100 0.54 190

150 0.53 198

250 0.28 185

350 0.15 184

450 0.09 149

550 0.11 79

650 0.15 52

750 0.16 53

900 0.20 49

Table 6.7: Typical current profile for the surface current

measured on July 01, 2000 at 02:00 o'clock.

(0.67m/s and 2140 with North)

0 Average heave on top of the riser is 0.36m

All these excitations were applied to the riser through a deterministic analysis in Anflex and

quantities like KC number and shedding frequency were calculated. The results are shown in

Figures 6-25. The symbols '*' indicate the position of VIV bottles 1 and 3 on the riser.

In order to study the effect of the periodic excitations on the scr, two dynamic analyses were

carried out using Anflex:

" The scr subjected to the wave and the heave applied by P18 (solid line in Figure 6-26)

" Only heave applied by P18 (dotted line in Figure 6-26)

The results are shown in Figure 6-26.
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The distribution of KC and shedding frequency is similar to those obtained previously. Near the

tdp the riser motion drives the VIV formation. As we go up, this influence decreases and the

current influence becomes greater and greater. Near the surface we have also the influence of

waves. VIV bottles 1 and 3 show a spike at 0.4 Hz. According to Figure 6-25 there are only two

regions where structural waves could be generated with this frequency: near the tdp (a very

short portion) and near the top region.

Passing a high filter to the Y displacement time series derived by double integration of the

corresponding acceleration time series, with cutoff at 0.35 Hz and calculating the rms of the

resultant series, we obtain 0.0475 or A/D ratio of 0.19. Doing the same thing for the Z

displacements, we obtain rms of 0.0237 or A/D equal to 0.093.

Figures 6-27 and 6-28 show the power spectra density of the in-plane and out-of-plane bending

moment, respectively, on top of the riser. This data was measured on the same day at 3:00

o'clock, which was the closest time to the one under consideration. In Figure 6-27 the riser

response is dominated by the wave and second order motion. In the out-of-plane direction, we

see a strong contribution at 0.4 Hz from the VIV to the riser response, which is bigger than the

contributions from waves and second order motion. This value is close to the maximum

shedding frequency calculated previously. The interesting thing is the appearance of a spike for

the in-plane bending moment power spectra density at a frequency twice the VIV frequency of

the main contribution for the out-of-plane bending moment response. It is the second time we

verify it. Again, the best explanation for it is the unsteady drag force. If we look at the directions

that the ocean wave and surface current are acting, we see that the in-plane component is bigger

than the out-of-plane component. From Figures 6-25 and 6-26 we see that the predicted

shedding frequency can reach values up to 1 Hz. Hence, it indicates that there is VIV in the out-

of-plane direction at 0.4 Hz with in-line vibration at 0.8 Hz.

184



300

250
E
z

?200
C

* 150

100

50

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequency (Hz)

Figure 6-27: Psd of in-plane bending moment in the top region of the riser measured on July 01,

2000 at 02:00 o'clock.
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on July 01, 2000 at 02:00 o'clock.

185

I

I

KL

CO

Ez

0

0.
a-

' _ --

-I

I I

I



0 Estimate of damping ratio

Using the plots shown in Figures 6-21 and 6-23 of the out-of-plane Y accelerations can be used

to estimate the damping ratio of the P18 scr through equation 6.1. The area under psd curves

between the frequencies 0.38 Hz and 0.43 Hz are 0.24(m/s2)2 and 0.13(m/s2 )2, respectively.

The average wavenumber for the chosen frequency of 0.4Hz is 0.039m' calculated from the

wave dispersion relation. The distance between VIV bottles 1 and 3 is approximately 360m.

Substituting these values in equation 6.1 we obtain a damping ratio of 2.2%. Natural frequency

number 18 is the closest to the average frequency of 0.4 Hz. Hence, the wave propagation

parameter (described is chapter 4) is given by 18 -0.022=0.396. This value suggests that spatial

attenuation is important but the propagating waves can reach and be reflected at the ends of the

riser, creating like a pattern of standing waves with spatial attenuation.

This scr subjected to the action of the ocean current was simulated through Shear7. It predicted

a total damping of 1.6%. One explanation for this difference is the fact that Shear7 did not take

into account the effects of the riser motion nor the wave.

6.4 Comparison between Measured and Predicted Values.

As stated before, there are two basic objectives to be achieved with this campaign of

measurements on P18 steel catenary riser:

" Evaluation of design methodology that is employed today for the calculation of fatigue life.

" Check the predictions of numerical codes.

Both objectives are intimately related as the predictions of numerical codes are embedded in the

design methodology. There are also other aspects to be considered in the design of a steel

catenary riser such as maximum stresses. However, fatigue life was always closely related to

the technical feasibility of the riser. In terms of fatigue life, we have Shear7 code whose

predictions will be used for the comparison with the measurements.

According to preliminary VIV analysis of the P18 scr made with the typical current profiles that

occur in Campos Basin, the worst cases in terms of damage rate are the currents going to the

South or South-West direction with magnitude at the surface between 0.9 and 1.0 m/s. Looking
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at the surface measurements we noticed that on June 30th of 2000, at 19:00 o'clock a surface

current with magnitude 0.91 m/s and direction 212' with respect to the North direction was

measured. Thus, we picked the typical current profile described by the table 6.8 below and used

it to calculate fatigue life of the P18 scr through Shear7. It predicted that only the out-of-plane

mode shape number 23, associated with the natural frequency of 0.516 Hz, is potentially

excited. Shear7 calculated a rms of amplitude S
equal to 0.21m at relative position -=0.92,

L

which corresponds to the location of VIV bottle 1.

Depth (m) Magnitude (m/s) Angle (degree)

50 0.93 214

100 0.41 172

150 0.49 201

250 0.24 163

350 0.10 208

450 0.10 127

550 0.16 83

650 0.15 58

750 0.18 45

900 0.15 53

Table 6.8: Typical current profile for the surface

measured on June 30, 2000 at 19:00 o'clock.

current (0.91m/s and 212' with North)

Figure 6-29 shows the psd of the Y displacement at VIV bottle 1 measured on June 30 at

19:00h. when a surface current with 0.91m/s of magnitude and 212 of direction with respect to

the North direction was measured. We see a big spike in the riser response at 0.49Hz, which is

close to the Shear7 prediction of potentially excited frequency, and another at 0.464 Hz in the

high frequency domain. Unfortunately there is no measurement of displacement of bottle 3 near

this time.

Applying a high filter to the Y displacement time series with cutoff at 0.48Hz, we find the rms

amplitude equal to 0.0374m which is 5.6 times smaller than 0.21m.
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As we can see, Shear7 predicted the dominance of only one frequency (0.516Hz) which is

confirmed by the power spectral density shown in Figure 6-29. However, because of

conservatism embedded in the program and also due to the fact that it does not take into account

oscillatory flow acting on a riser caused by waves or top heave, Shear7 predicted a much higher

value for the displacement at the location of VIV bottle 1.
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Figure 6-29: Psd of the measured Y accelerations at the VIV bottle 1 measured on June 30, 2000

at 19:00 o'clock.
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Chapter 7

Conclusions

7.1 Introduction

The contributions of this dissertation fall into two main areas. On one hand, a numerical model

that describes the dynamics of straight and curved beam elements subjected to a slowly varying

tension distribution was developed. On the other hand, new insights about VIV were achieved

through experimental observation and analysis of measurements. The main conclusions

concerning these topics and some suggestions for future work are discussed in the following

sections.

7.2 Numerical Model

In this study, we used the wave-based finite element method to develop different types of beam

elements that would allow us to study the dynamic behavior of risers at high frequencies with

some advantages over the conventional FEM.

The first element to be developed was the straight beam element with distributed spring and

damping acting transversely in order to simulate a foundation. All the properties and the static

tension distribution were constant along the element. This way, it was possible to obtain an

exact solution for the governing dynamic differential equation. This solution was then used not

only to describe the displacements inside the element but also to develop the dynamic stiffness

matrix of this element. Some interesting characteristics of the wave dispersion relation of beams

on elastic foundation were studied.

189



Then the influence of both shear deformation and rotary inertia were considered in the

formulation of the dynamic stiffness matrix of an element under the same conditions.

Furthermore, the procedure adopted here was very similar to the one that would be used for the

curved beam element.

Then we considered that the beam element could be subjected to a slowly varying tension

distribution. This complicated our obtaining of the solution because now we ended up with a

varying coefficient in the dynamic governing equation. WKB method was employed to obtain

an approximation for the solution which, in turn, was used to formulate the dynamic stiffness

matrix of an element subjected to slowly varying tension the same way as we did for the

constant tension case.

The next step was to use the same procedure for a curved beam element because our objective

was to model marine risers and in these type of structures the radius of curvature varies along

the longitudinal distance. So we started with a curved beam element with constant properties

and constant tension distribution. This time we ended up with two dynamic differential

equations, both of them with axial and transverse components. This means that the axial and

transverse displacements were now coupled, which happened due to the appearance of a

curvature in the element. In this case we obtained an exact solution for the governing equation

and formulated the element dynamic stiffness matrix.

Then we considered that the tension distribution was slowly varying along the element and,

again, using WKB method, we managed to obtain an approximate solution for the governing

equation and formulated the dynamic stiffness matrix for the element.

The next step was to couple both straight and curved elements to allow the analysis of a riser

configuration considering the length on the soil. The coupling was performed and the natural

frequencies and mode shapes of some structures were compared to those obtained by

conventional FEM, and good agreement was obtained.

To complete the numerical model, we developed a procedure to consider the response of a beam

element, curved or not, to a distributed load of any shape acting along the element and to obtain

the displacements inside the element in the context of wave-based finite element method.

The application of this numerical model was shown in many different examples involving

simple structures like straight beams up to more complex ones like steel catenary risers and lazy
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waves risers. Comparisons with results from theory and other codes that employ conventional

finite element method were made and good agreement was obtained.

The benefit of employing this method is that it is very well suited for a high frequency dynamic

model (which happens to be the case of a riser when subjected to VIV), without the need to

refine the riser mesh too much as we have to do with the conventional FEM. Furthermore,

spatial attenuation of travelling waves can also be taken into account.

7.3 Experiments

The measurements of three different sets of experiments were analyzed in this dissertation. The

first was the Highly Compliant Riser experiment, conducted by PMB, where different

configurations of risers (CVAR, Lazywave and a steel catenary riser) were subjected to

harmonic top motions simulating vessel motion. Accelerations and bending moments were then

measured at 8 different points along the riser. It was verified that despite the fact that there was

no current or wave acting on the riser, it showed intermittent VIV. We obtained some insights

about the riser behavior when subjected to VIV, about the indication of existence of a Keulegan-

Carpenter number threshold and about reflection of propagating waves when they encounter

bottom boundary conditions.

Another experiment with steel catenary riser was performed by the author. A small model

representing the steel catenary riser on Petrobras P18 semi-submersible was placed in a towing

tank and 48 out-of-plane displacements were applied on its top end with different amplitudes

and frequencies. Interesting cases of riser response resonance were obtained when there was a

match between at least two of the following frequencies: riser natural frequency, average

shedding frequency and multiple of input frequency.

Finally there was the full scale experiment with the steel catenary riser on Petrobras P18. In this

project we tried to measure the most important quantities involved in the design of a riser, such

as ocean current, waves, vessel motions, bending moments and acceleration at some points

along the riser. This type of project is important because it can provide information for real

risers at full scale Reynolds number and mode shapes. On the other hand, this is a very long

project whose data are just beginning to be analyzed. It will take many more months until some
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definitive conclusions can be drawn. However, some ideas could be extracted from this initial

investigation. First, it indicated that the intermittent VIV caused by the riser response to the

vessel motion can be an issue. Frequencies much higher than the wave or vessel motion

frequency appeared on the bottom part of the riser. If we are going to compare the

measurements with the predictions from some program, these high frequencies should be

considered. Second, a quick comparison between measured displacement with Shear7 prediction

showed that Shear7 is very conservative. The decrease of this conservatism is a key issue in the

design of a riser.

The experience gained with this type of project indicates that there are several problems that we

have to face, such as the difficulty in making all the equipment work at the same time during

measurements and the difficulty in interpreting the results due to uncertainties in measurements.

7.4 Contributions

The original contributions presented in this dissertation can be summarized as the following:

1. Development of a straight beam element in the context of wave based finite element method,

considering shear deformation and rotary inertia effects plus the effect of distributed

stiffness and damping acting transversely on the straight beam element. All properties inside

the element are constant and the tension distribution can be constant or slowly varying.

2. Development of a uniform curved beam element, subjected to a constant or slowly varying

tension.

3. Coupling of both straight and curved beam elements in order to allow the analysis of a

whole riser configuration, including the effect of soil.

4. New insights about VIV based on experimental observations, such as: 1) existence of a KC

threshold; 2) Interactions with bottom boundary conditions; 3) VIV resonance in scr and 4)

full scale confirmation of unsteady heave-induced VIV..
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7.5 Recommendations for Further Research

Some suggestions on the future research related to the present work are given in this section.

1. Consideration of some kind of variation of the curvature radius along the curved beam

element in the dynamic model. This could improve the results obtained in this dissertation

and probably decrease even more the number of elements necessary to represent the marine

riser.

2. Repetition of the laboratory test with the small steel catenary model under the action of

waves to see the influence in the resonance issue.

3. More high Reynolds number data from laboratory tests to improve the hydrodynamic

coefficients used in the prediction codes. This way we can improve the match between what

is predicted and what is measured.
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