
Machine Learning and Coresets for Automated

Real-Time Data Segmentation and Summarization

by

Mikhail Volkov
M.Sc., Massachusetts Institute of Technology (2013),

B.A., B.A.I., University of Dublin, Trinity College (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

@ Massachusetts Institute of Technology 2016.

Author.......

All rights reserved.

Signature redacted.
Department of Electrical Engineering and Computer Science

Certified by..

Accepted by ...

E NSTITUTE ChHNOLOGY

8 2016

ARIES

August 31, 2016

Signature redacted
Daniela Rus

Andrew and Erna Viterbi Professor, EECS, MIT
Thesis Supervisor

Signature redacted
((/ I Leslie A. Kolodziejski

airman, Department Committee on Graduate StudentsMASSACHUS
OF TEC

SEP 2

LIBR

Machine Learning and Coresets for Automated

Real-Time Data Segmentation and Summarization

by

Mikhail Volkov

M.Sc., Massachusetts Institute of Technology (2013),

B.A., B.A.I., University of Dublin, Trinity College (2010)

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

In this thesis, we develop a family of real-time data reduction algorithms for large
data streams, by computing a compact and meaningful representation of the data
called a coreset. This representation can then be used to enable efficient analysis
such as segmentation, summarization, classification, and prediction. Our proposed
algorithms support large streams and datasets that axe too large to store in memory,
allow easy parallelization, and generalize to different data types and analyses.

We discuss some of the challenges that arise when dealing with real Big Data
systems. Such systems are designed to routinely process unseen, possibly unbounded,
data streams; are expected to perform reliably, online, in real-time, in the presence
of noise, and under many performance and bandwidth limitations; and are required
to produce results that are provably close to optimal. We will motivate the need
for new data reduction techniques, in the form of theoretical and practical open
problems in computer science, robotics, and medicine, and show how coresets can
help to overcome these challenges and enable us to build several practical systems
that meet these specifications.

We propose a theoretical framework for constructing several coreset algorithms
that efficiently compress the data while preserving its semantic content. We pro-
vide an efficient construction of our algorithms and present several systems that are
capable of handling unbounded, real-time data streams, and are easily scalable and
parallelizable. Finally, we demonstrate the performance of our systems with numer-
ous experimental results on a variety of data sources, from financial price data to
laparoscopic surgery video.

2

Thesis Supervisor: Daniela Rus
Title: Andrew and Erna Viterbi Professor, EECS, MIT

Reader 1: Polina Golland
Title: Professor, MIT

Reader 2: Dan Feldman
Title: Professor, University of Haifa

3

Acknowledgments

Deus f fiel

4

Contents

1 Introduction 15

1.1 P relude . 15

1.1.1 What Is Data? . 16

1.1.2 How Much Data Is There? . 18

1.1.3 Why Do We Need Data Reduction? 20

1.1.4 Why Do We Need Coresets? 22

1.1.5 The Big Picture . 23

1.2 Thesis Overview . 24

1.2.1 Motivation and Open Problems 25

1.2.2 Main Results . 29

1.2.3 Key Contributions . 33

2 Notation 35

3 Related Work 39

3.1 k-segmentation . 39

3.1.1 Approximation Algorithms . 40

3.2 Video Summarization . 41

3.2.1 Medical Video . 42

3.3 Localization and Loop Closure . 42

3.4 Dimensionality Reduction . 44

3.4.1 Coresets . 46

3.4.2 Sketches . 46

5

3.4.3 Lower bounds .

3.4.4 Softw are .

4 Coresets for Segmentation of Temporal Data

4.1 Problem Formulation

4.2 A Novel Coreset for k-segment Mean

4.2.1 Computing a k-segment Coreset - Overview

4.3 k-segment mean .

4.4 Balanced Partition

4.5 (a,)-Approximation and the Bicriteria Algorithm

4.6 (k, E)-C oreset .

4.7 Efficient k-segmentation via Coresets

4.7.1 Endpoint-constrained k-Segment Mean Computation

4.7.2 Weak (k, e)-Coreset for Efficient Segmentation

4.8 Parallel and Streaming Implementation

4.8.1 1-Segment Coreset

4.9 Conclusions .

5 Coresets for Segmentation - Applications to Video Streams and Fi-

nancial Data

5.1 Experimental Results .

5.1.1 Segmentation of Large Datasets

5.1.2 Real Data Experiments .

5.1.3 Semantic Video Segmentation

5.1.4 Technical Summary .

5.2 C onclusions .

6 Coresets for Summarization - Applications to Localization and Re-

trieval

6.1 Coresets And Stream Compression

6.1.1 Streaming and Parallelization

6

47

48

49

. 50

. 52

. 53

. 55

. 56

. 60

. 62

. 63

. 63

. 65

. 76

. 77

. 81

82

83

83

86

87

94

96

97

98

99

0 loll NIRR I, " R 11 R - __

6.1.2 Summarization and Retrieval

6.2 Loop Closure Problem Formulation

6.3 Retrieval Algorithms

6.3.1 Incorporating Keyframes into a Coresets Tree

6.3.2 User-Interface for Retrieval

6.3.3 Life-long loop closure

6.4 Experimental Results

6.4.1 Loop Closure Experiments

6.4.2 Large Scale Experiments

6.4.3 Retrieval Experiments

6.4.4 Technical Summary

6.5 Conclusions .

. 102

. 103

. 104

. 105

. 108

. 109

. 112

. 112

. 113

. 114

. 115

. 115

7 Coresets for Classification - Applications to Laparoscopic and Robot-

Assisted Surgery

7.1 Problem Formulation .

7.1.1 Solution Overview .

7.2 Technical Approach .

7.3 R esults .

7.3.1 Technical Summary .

7.4 C onclusions .

8 Coresets for Dimensionality Reduction of Stationary Data 1

8.1 Problem Formulation .

8.2 Technical Solution .

8.2.1 Proof of Theorem 7 .

8.3 Coreset for Sum of Vectors (k = 0)

8.3.1 Analysis of Algorithm 10 .

8.4 Coreset for Low Rank Approximation (k > 0)

8.4.1 Analysis of Algorithm 11 .

8.5 C onclusions .

18

119

L19

120

[23

124

[25

26

[27

L28

131

131

134

135

141

143

7

9 Coresets for Dimensionality Reduction - Applications to Topic Mod-

eling

9.1 Evaluation and Experimental Results

9.1.1 Latent Semantic Analysis of Wikipedia

9.1.2 Technical Summary

9.2 Conclusions

10 Conclusions and Future Work

10.1 Summary of Contributions

10.2 Future W ork

10.2.1 Video Segmentation

10.2.2 Financial Data Segmentation

10.2.3 Semantic Video Summarization

10.2.4 Medical Data Analysis

10.2.5 Coresets for Dimensionality Reduction

10.3 Final Thoughts

146

147

148

151

153

154

. . . . 154

. . . . 156

. . . . 156

. . . . 156

. . . . 157

. . . . 157

. . . . 158

. . . . 159

8

List of Figures

1-1 The Internet 17

1-2 DIKW Pyramid . 18

1-3 Protests in Hong Kong, 2014 . 19

1-4 The Kepler space observatory . 21

4-1 k-segment coreset illustration . 51

4-2 k-segment coreset flowchart . 53

5-1 Coreset size vs error and construction time 85

5-2 Coreset error vs dimensionality reduction 86

5-3 Segmentation of GPS data from taxis in San Francisco 89

5-4 Lat/Long plot overlayed on a map of San Francisco 90

5-5 Summary of experiments with Bitcoin and GPS data 91

5-6 MTGOXUSD daily Bitcoin price segmentation 92

5-7 S&P 500 index plot . 93

5-8 S&P 500 stock quotes 93

5-9 S&P 500 index vs S&P 500 stock quotes segmentation 94

5-10 Segmentation from Google Glass 95

5-11 Segmentation based on the Places CNN model 96

6-1 Streaming coreset construction . 102

6-2 Distance matrix vs relevance score . 104

6-3 Interactive coreset tree retrieval UI . 109

6-4 Boston tour loop closure results . 111

9

6-5 Loop closure sampling algorithm results 117

6-6 Precision/recall plot for coreset tree vs uniform sampling 118

6-7 Experimental results of loop closure detection 118

7-1 Phases of the laparoscopic sleeve gastrectomy 120

7-2 Augmented descriptors for surgical video 122

7-3 Surgical phase prediction results . 125

9-1 Coreset runtime experiments . 149

9-2 Experimental results for synthetic data and Wikipedia 152

10

List of Tables

9.1 Wikipedia experimental results . 151

9.2 Wikipedia topic model examples . 151

11

List of Algorithms

1 BALANCEDPARTITION(P, E, o-) 57

2 BICRITERIA(P,k) 60

3 CORESET(P,k,E) 62

4 MODIFIEDBELLMAN(D) 64

5 PIECEWISECORESET(n, s, E) 66

6 FASTSEGMENTATION(P, k, e, S) 74

7 1-SEGMENTCORESET(P) 79

8 SAMPLEOLDNODE(V) 108

9 UPDATECLOSURECACHE(Xref) ...-........................... 111

10 SUMVECSCORESET(A,E) 136

11 LOwRANKCORESET(A, k, E) 144

12

lw I - -"-W'RPMM 'PRIPM 0 "Rol NIq M IF Poll jqim q w-r-

List of Abbreviations

" AWS: Amazon Web Services

" BOW: bags of words

" CNN: convolutional neural network

* DCT: discrete cosine transform

" DR: dead reckoning

" DTW: dynamic time warping

* EC2: Elastic Compute Cloud

" FAB-MAP: Fast Appearance-based Mapping algorithm

" FIFO: first in, first out

" FPS: farthest point sampling

* GPS: global positioning system

" HMM: Hidden Markov Model

* HOG: histogram of oriented gradients

" HSV: hue, saturation, value

" KL: KullbackLeibler

* LDA: latent Dirichlet allocation

13

" LSA: latent semantic analysis

" LSG: laparoscopic sleeve gastrectomy

* NNMF: non-negative matrix factorization

" PCA: principal component analysis

* PDF: probability density function

" RDP: Ramer-Douglas-Peucker

" RGB: red, green, blue

" RMIS: robot-assisted minimally invasive surgery

" SFTA: Segmentation-based Fractal Texture Analysis

" SURF: Speeded Up Robust Features

" SVD: singular value decomposition

" SVM: Support Vector Machine

" WM: working memory

14

1 'I-I'|l~M 4'| j I I 6| I | | || 1 -I-||0 i i1| R I il 1- -- 3* "-n d r ~ ip N -| | e - fau |W T j e F l M L u .'.1111-' "-- -L1.1 pil-lj 11M.. , ,12 0 0:. I 1 y l !0 pi |(% 6 R6

Chapter 1

Introduction

"Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in the information?"

-- T. S. Eliot, Choruses from The Rock (1934)

1.1 Prelude

Our world is changing. Around the year 380 BC, Plato argued that a man should not

begin his study of philosophy until the age of thirty. His reasoning was that he is not

ready to think critically before such time, the implication being that he will still have

more than enough time to learn everything there is to know about the world after

such time. Following the Dark Ages, the Doctor of Philosophy title was established in

European universities since the twelfth century AD, meant to be a "terminal degree"

to confirm the completion of one's knowledge of the world. Our understanding of the

world progressed and the invention of the printing press heralded the birth of modern

education. Still, even as late as the seventeenth century, the father of modern Western

philosophy, Rene Descartes - a philosopher, mathematician, and scientist by today's

academic canon - could be considered to have known all there was to know about the

world during his time. To use MIT's own metaphor, knowledge and the information

contained therein, was still just a water fountain and one could drink most of it in

15

the seventeenth century if one was thirsty enough.

As information was passed down through generations, living standards improved,

education became the norm among young adults, and human knowledge continued to

increase. As we grew to understand more about the laws of physics and the natural

world, more academic disciplines were established. New knowledge was being derived

from existing knowledge, leading to increasingly abstract academic pursuits and caus-

ing a second order increase in the rate of accumulation of knowledge. And although

life expectancy also increased, we could not keep up with exponential increase of in-

formation. And so it was that the human race inevitably crossed an "epistemological

event horizon", a point in time whereupon it was no longer possible for one man to

know everything that was known before him. The water fountain burst its pipes,

turning into the proverbial fire hydrant, and the world could no longer be conquered

by one man.

1.1.1 What Is Data?

"Distinguishing the signal from the noise requires both scientific knowledge and self-

knowledge: the serenity to accept the things we cannot predict, the courage to predict

the things we can, and the wisdom to know the difference."

- Nate Silver, The Signal and the Noise (2012) [122]

There are a many elementary and uncontroversial sources that will answer this

question quite concisely, and it is not my intention to engage the reader in a diff6rance

of scientific terminology. But I would simply like to draw one's attention to the large

number of different academic and practical problem domains for which the term is

always reliably well-defined, and always slightly nuanced.

Our scientific evolution as a species, from Plato to Popper, has heralded moments

of tremendous historical significance. And over the past 20 years, the advent of the

Internet has without a doubt been the most significant to date. However we choose to

define data, the Internet has fundamentally changed the way we produce, consume,

and interact with it.

16

1 11 1 1 - -_-_ 11!MX_1MTMMMr11 101

-IV

71A

' Q

-A-17

The Data-Informatioi-Kniowledge-Wisdoin Pyramid [137].

Figure 1-2: DIKW Pyramid

In terms of its impact on society, the closest historical parallel that we can draw

would probably be the invention of the printing press. And with this comparison I

would offer the reader an opinion that is at the heart of how I see the central theme

of my of miy work---I believe that there is a growing dichotomy between iiformationi

anld data, and that at the time that the printing press was invented in the fifteenth

century these ideas were synonymous -- all data was once information.

Today we live in a different time. To understand what data really entails today,

and how it is different from knowledge and information, I believe that it is helpful to

consider just how munch data is there.

1.1.2 How Much Data Is There?

"There was 5 exabytes of informrnation created between. the dawn of ciilization throagh

2003, bat that mach information is now creatcd ceery 2 days, and the pae is increas-

ing."

Eric Schmidt, Techonomy Conferernce (2010)

Any discussion about data inevitably leads to the (qlestion of just how much data

is out there? The study that Eric Sclnidt cited [92] attempted to add up all the

data stored since the (lawn of civilization until 2003. And the number they came up

18

At 7.22 billion, the number of mobile phones has s}upassed 0r own population.

Figure 1-3: Protests in Hong Kong, 2014

with is around 5 exabytes. To put that into some kind of context: 1 gigabyte is a

small library of approximately 1000 books; 5 exabytes is 5 billion gigabytes, which

is approximately one such small libIrary for every single person on the planlet. To

generate this vounine of data every 2 (lays is a fairly mind-blowing statistic, and it

puslles Big Data to the boundaries of our intuition, where we can still understand

such nmnbers on paper, but probably find it difficult to relate them to reality.

And indeed, according to Eric Schmidt, this pace is only increasing. At 7.22 billion,

the llnllber of active imobilc. phones has recently surlpassed the niumber of hmans alive

to(day [128] (Fig. 1-3). Almost every song. movie and piece of multimedia is available

instantly, anywhere in the first first world. Online education is now abundant and free,

aIld social media is ubiquitous. Mon weather alerts, more traffic information, more

social Iledia feeds., and Iore news reports ostensibly, more data is a good thing.

Ahost any factual claim can be instantly checked, verified, and cross-referenced

against an archive of relevant information, making fact-based disagreements a thing

19

of the past. Expanding on Eric Schmidt's prediction, Bruce Schneier writes, "All

of our data exhaust adds up ... By 2015, 76 exabytes of data will travel across the

Internet every year" [118].

But just as as the Industrial Revolution saw an unprecedented rise in the levels

of pollution, so is the Information Revolution accompanied by a rise in data exhaust

that has not yet given us the the benefit of hindsight. "Disruptive technologies" are

taking over Silicon Valley just like the coal mines and steel plants once redecorated

our skies and landscapes. The Data Rush is as real as the Gold Rush. Data is no

longer just information-it is a raw material and a commodity, it is mined, generated,

processed, bought, sold, and stolen.

Hedge funds are becoming powerhouses of top engineering talent and finding al-

phas through sentiment analysis of Twitter feeds; ultra-high-frequency proprietary

trading firms are literally manipulating the laws of physics to get their data faster

than you; and some of the biggest tech companies that you have never heard of are

data brokers.

The rate at which data is being produced is increasing exponentially. It is be-

coming increasingly difficult to distinguish the signal from the noise, and to separate

data from data exhaust.

1.1.3 Why Do We Need Data Reduction?

"One can prove that the better you can compress, the better you can predict; and being

able to predict well is key for being able to act well."

- Marcus Hutter, Human Knowledge Compression Contest (2009) [72]

Big Data is a term for data sets that are so large and complex that traditional

techniques are inadequate to process the data. This complexity is characterized not

only by an increase in the volume of data, but also the speed of data acquisition,

varying quality and consistency of data sources. This thesis introduces new theory,

algorithms and systems for data reduction of real Big Data problems.

We motivate the central contribution of this work with a real example from the

20

The Kepler space observatory, used to locate likely planets orbiting stars beyond the sun (artist's
rendition).

Figure 1-4: The Kepler space observatory

cutting edge of modern technology. The Kepler space observatory was launched in

2009 to discover Earth-size planets orbiting other stars [12] (Fig. 1-4). The space-

craft is equipped with a telescope and the largest camera system ever launched into

space, capable of recording 30 minutes of footage at a 95 mnegapixel resolution [102].

Unfortunately, the resulting sum of all 95 million pixels constitute more data than

can be stored and sent back to Earth.

The problem that Kepler faced was that despite recording a high amount of data,

only Sonic fixed fraction of it contained any useful information. The solution that

NASA employed was to compress the data to about 6 percent of the raw pixels,

selecting only those pixels associated with specific targets of interest. The data from

these pixels is then re-quantized, compiressed, and stored along with other auxiliary

data to be later sent back to Earth [100, 101].

21

I

What we are really interested in is not the data itself, but the information con-

tained in it that enables us to do something useful. This intuition was formalized by

Claude Shannon with the birth of information theory. Shannon's entropy measures

the information contained in a stream of data, and puts a numerical bound on the

theoretical performance of any form of lossless compression [119].

There is a close equivalence between compression and machine learning. Prom

the machine learning point of view, a system that predicts posterior probabilities of a

sequence given its entire history can be used for optimal data compression; while an

optimal lossless compression algorithm can be used for classification and prediction

(by finding the symbol in the sequence that yields the best compression ratio, given

the previous history [120, 15].

Indeed, the problem of compression is so general that it is considered to be equiv-

alent to general AL. This is exemplified well in the field of decision theory, which

formally poses the problem of a rational agent interacting with the world in uncer-

tain conditions. In 2000, Marcus Hutter proved that finding the optimal behavior

of a rational agent is equivalent to compressing its observations [70, 71]. This result

essentially proved Occam's Razor, the idea that the simplest satisfactory explanation

is usually the correct one [96]. For a mode in-depth discussion on the subject see [96],

and the references therein.

1.1.4 Why Do We Need Coresets?

"Science may be described as the art of systematic over-simplification - the art of

discerning what we may with advantage omit."

- Karl Popper, The Open Universe: An Argument for Indeterminism (1992) [110]

In the Kepler example, the data reduction techniques were traditional lossy com-

pression or sub-sampling of the original data. Another example of lossy compression

is the MP3 standard for digital audio files. The degree of data reduction is expressed

as a fraction of the size of the compressed data relative to the original data. Both

are examples of lossy compression because some of the information contained in the

22

data is irreversibly destroyed in the process.

However, in both examples one property remains preserved - in data compression,

the aim is to reduce size of the data while in some sense preserving the original

character properties of the data; the compressed data is still the same type of data

structure as the original data. An image of deep space is recovered although some of

the pixels are missing; the mp3 track can still be played back, albeit at a lower sound

quality than the original.

But what if this key requirement is relaxed, so that we no longer require an

approximation of the original data, but merely that we can approximate some indirect

property with respect to the original data? As it turns out, this relaxation is enough

to enable a whole family of data reduction constructs called coresets that allow us

to solve a wide range of problems that are intractable to solve on the entire dataset

and do not become easier with a simple compression of the data. In this context, the

best definition of a coreset is a problem-dependent compression of the data. The key

difference between coresets and compression is the additional level of indirection in

the problem that we are trying to solve -- compression aims to approximate the data

itself, while coresets aim to approximate some derived property of the data.

With coresets we may indeed "with advantage omit" a lot of redundant data,

allowing us to efficiently solve Big Data problems on small but provably discerned

subsets. If indeed the rationale for data reduction being representative of general

AI is true, or if at least it is a sound benchmark, then it suggests that there is

great power in the simplicity of representation and parsimony of expressiveness that

coresets provide. It is my aim to convince the reader that this is the case in the rest

of this thesis.

1.1.5 The Big Picture

"We demand rigidly defined areas of doubt and uncertainty!"

Douglas Adams, The Hitchhiker's Guide to the Galaxy (1979)

The Hutter Prize for Lossless Compression of Human Knowledge was estab-

23

lished to promote the advancement of Al through a contest to compress the English

Wikipedia [72]. Since Wikipedia is very sparse, it makes for an excellent test case for

compression algorithms. In this thesis we set ourselves a similar challenge, though

with distinctly different motivations and technical approach.

However, it is no coincidence that we also chose to use Wikipedia. It is perhaps

the most influential and ubiquitous term-document corpus in the Age of Informa-

tion. Much like The Hitchhiker's Guide to the Galaxy [3] was designed to serve as

"the standard repository for all knowledge and wisdom", Wikipedia may be the first

reasonable approximation to the sum total of all human knowledge. It is profound

to consider that so much data, information, and knowledge can be contained in just

under 12GB of data, and stored on a microSD card the size of a fingernail.

1.2 Thesis Overview

In this thesis, we develop a family of real-time data reduction algorithms for large

streams, by computing a compact and meaningful representation of the data called

a coreset. This representation can then be used to enable efficient analysis such

as segmentation, summarization, state estimation, and prediction. Our proposed

algorithms support large streams and datasets that are too large to store in memory,

allow easy parallelization, and generalize to different data types and analyses.

In this section we will discuss some of the challenges that arise when dealing

with real Big Data systems. Such systems are designed to routinely process unseen,

possibly unbounded data streams and are expected to perform reliably, online, in real-

time, in the presence of noise and under many performance and bandwidth limitations,

while still producing results that are close to optimal. We will motivate the need for

data reduction, in form of both theoretical and practical open problems in computer

science, robotics, and medicine, and show how coresets can help overcome all of these

challenges and enable us to build a number of practical systems in these areas.

24

1.2.1 Motivation and Open Problems

There is an increasing demand for systems that process long-term, high-dimensional

data streams over practically unbounded time. Examples include life-logging video

streams, financial ticker data, and Twitter feeds. In these examples the data is repre-

sented as a high-dimensional feature at discrete points in time - for example location

vectors, stock prices, or image content feature histograms. In other examples the

data may have no inherent temporal structure -- for example a collection of docu-

ments written in the English language.

Segmentation and Summarization Analyzing many of these data streams, we

often observe a partition into time intervals that are governed by different temporal

models. Detecting these segments and the models describing each of them is known

as temporal segmentation. Such a segmentation can be used to find important tran-

sition points in the data that are semantically informative with respect to our choice

of representation. The segmentation itself may be the ultimate goal of the system,

such as automatic phase detection in laparoscopic surgical video. In other cases the

transition points can enable further analysis of the data such as efficient summariza-

tion, state estimation and retrieval algorithms that would otherwise be impossible to

run on the full dataset. For example, the summarization of wearable video data can

be used to efficiently detect different scenes and important events, while collecting

GPS data for citywide drivers can be used to learn weekly transportation patterns

and characterize driver behavior.

Currently, segmentation of such data streams over long periods of time is lim-

ited. One of the reasons for this is that current optimally-guaranteed algorithms for

data segmentation and summarization can handle only relatively small datasets that

consist of only few segments, and low-dimensional signals such as GPS data. Larger

data streams are usually handled by running computation only on small parts of the

streams, or resorting to a non-optimal on-line approach for summarization [130].

25

State Estimation and Retrieval In continuously operating robotic systems, where

life-long video streams are a crucial source of information, efficient representation of

the captured video is crucial. Many uses of visual sensors involve retrieval tasks on

the collected video with various contexts. Robots operating in a persistent manner

are faced with several difficulties due to the variety of tasks and scenes, and the

complexity of the data arriving from the sensors. While for some tasks we can define

simplified world representations that form approximate sufficient statistics, real-world

scenarios challenge these approximations.

For example, one important task is loop closure detection for robotic navigation

and localization. Loop closure involves the recognition of mutually-visible parts of the

world from two or more frames, allowing correction of reconstruction and localization

errors due to noisy measurements, as well as initialization and recalibration of pose

estimation processes.

Scene assumptions are also critical. Under the assumption of a static environment,

a location-based loop closure can be defined in terms of locations and their visual ap-

pearance model. Clearly such a model would not be sufficient for a human operator

trying to find a specific observed event in the robots history. Breaking the assumption

of a static environment would turn the relatively easily defined location-based map-

ping problem into the full life-long localization and reconstruction problems that are

still open lines of research. On the other hand, keeping the full visual history of the

robot in random access memory is also suboptimal and often is impossible. A more

condensed form, summarizing the video and allowing various tasks to be performed

is an important tool for persistent operation.

More generally, various retrieval tasks can be defined directly on the visual history,

searching for places, objects, people, and other queries. For example, an interactive

retrieval task might involve simplifying the users search in a large video for a specific

subsequence. While for specific tasks and contexts, we can describe specific represen-

tations that gather sufficient statistics from a life-long video, for a more complete set

of tasks, going back to the visual history may be required, at least in some condensed

form of it.

26

Classification and Prediction Video segmentation and summarization systems

are also important in the medical field. Video-based coaching and debriefing of la-

paroscopic and robot-assisted surgery has been demonstrated to contribute to en-

hanced surgical performance. A context-aware summarization and retrieval system

for surgical video can facilitate education, time-critical consultation, and can improve

perioperative workfloW efficiency of operating room assignment and turnover.

While recording laparoscopic and robotic surgical procedures is quick and easy,

reviewing and analyzing video remains a time-consuming process. Videos are not seg-

mented automatically and must be viewed in their entirety or by skipping time seg-

ments in trial-and-error fashion to identify different phases of an operation. Modern

pressures on training and productivity preclude spending hours viewing and editing

surgical video for the purpose of routine video-based coaching. Moreover, hospital

policies and legacy infrastructure are often prohibitive of recording and storing large

amounts of video data as a miatter of routine.

These procedures are typically carried out in a stepwise fashion by identifying

distinct steps or phases or an operation. Therefore a visual segmentation and sum-

marization of the surgical video is an obvious solution towards an automatic system

for identification of the surgical phases. However, the challenge lies not only in com-

puting a segmentation but in being able to identify and predict the correct segments,

based on the surgeons' own knowledge of the criteria for identifying the segments

manually.

This is a typical problem of classification in machine learning. Training a system

to recognize and correctly classify visual categories such as surgical phases, as well

as a multitude of other medical imaging problems has been the subject of research

in computational biology and medical engineering for decades. The biggest challenge

in building reliable machine learning systems is understanding the data and finding

the right feature space. A visual segmentation and summarization can serve as a

pre-processing step for producing high-level semantic features that are then used to

train the phase classification and prediction system.

This is as much a problem of human learning as it is machine learning, as the

27

surgeons need to explicitly elaborate on how they arrive at critical decisions (luring

the operation - this is not always an easy task, as a lot of it comes down to years of

experience, and can be hard to explain.

Dimensionality Reduction Finally, we consider the case of non-temporal or sta-

tionary data that has no inherent dimension of time. Much of the large scale sta-

tionary data sets available today (such as image corpora, collections of documents,

etc.) are sparse. As motivated in the previous section, Wikipedia is perhaps the most

important sparse dataset that is universally available to anyone with an internet con-

nection. It is arguably the best snapshot of all the world's knowledge, and we are

spoiled with no shortage of open research questions.

For example, in machine learning and natural language processing, a topic model

is a type of statistical model for discovering the abstract "topics" that occur in a

collection of documents. This is a canonical dimensionality reduction problem in

information retrieval. Applying this definition to Wikipedia it is tempting to consider

if we can compute say 100 such abstract topics. Essentially, we are asking the question

"can we represent the sum total of human knowledge with 100 high-dimensional

vectors, and what would that mean?"

The English Wikipedia consists of approximately 4.4 million articles, and every

article can be considered simply as a collection of words from the English language.

We can associate a matrix with the entire English Wikipedia, where the (approxi-

mately 1.4 million) English words define the columns and the individual documents

define the rows. This matrix will be very large and very sparse because most English

words do not appear in most documents.

A topic model of a sparse matrix immediately implies sparse SVD. Even if we could

compute the exact SVD of a large document-term matrix such as Wikipedia, each of

the corresponding k topics will be a linear combination of all the 1.4 million distinct

terms in Wikipedia. These combinations may be too large to fit into RAM and will

be difficult to interpret. Inm-fact, the matrix is so large that no existing dimensionality

reduction algorithm can compute its eigenvectors. To this' point, running the state

28

of the art singular vector decomposition (SVD) implementation on the Wikipedia

document-term matrix crashes the computer very quickly after applying its step of

random projection on the first few thousand documents. This is because such dense

vectors, each of length 1.4 million, use all of the computer's RAM capacity.

Algorithms for dimensionality reduction usually aim to project an input set of

d-dinensional vectors (documents) onto a k < d - 1 dimensional affine subspace that

minimizes the sum of squared distances to these vectors, under some constraints.

Special cases include linear regression (k = d - 1), low-rank approximation (k-SVD),

latent semantic analysis (LSA), principle component analysis (PCA), latent Dirichlet

allocation (LDA), and non-negative matrix factorization (NNMF). Learning algo-

rithins such as k-means clustering can then be applied on the low-dimensional data

to obtain fast approximations. There are no algorithms or coreset constructions

with performance guarantees for computing the PCA of sparse n x n matrices in the

streaming model, meaning that they use memory that is poly-logarithmic in n.

1.2.2 Main Results

In this thesis we present theory and develop systems for analyzing very large datasets

by compressing the data into a compact and meaningful representation called a coreset

[4, 46]. This representation can then be used to enable efficient computation of

inefficient algorithms. Our proposed algorithms support streams and datasets that

are too large to store in memory, allow "embarrassingly parallel" implementations,

and are data-agnostic in the sense that they generalize to different types of data and

analytical methods.

Informally, coresets are approximation algorithms for specific problems that of-

fer linear construction complexity, and sublinear memory requirements. Running an

algorithm for a specific type of coreset (such as segmentation or clustering) approxi-

mates the cost obtained by that algorithm on the original data, with a provably small

error.

More rigorously, a coreset C is a problem dependent compression of the data A,

such that running an algorithm f on the coreset yields a result f(C) that provably

29

approximates the result f(A) of running the algorithm on the original data. If the

coreset is small and its construction is fast, then computing f(C) is fast even if

computing f (A) on the original data is intractable.

In the following chapters of the thesis we detail how we use coresets to enable

efficient solutions to the problems of segmentation, summarization, state estimation,

retrieval, classification, and prediction. This thesis is organized into ten chapters, as

follows.

Segmentation In Chapter 4 we consider the problem of computing an optimal

segmentation of a signal by a k-piecewise linear function, using only one pass over

the data. We present a coreset computation for the signal that enables an efficient

approximation to the k-segment mean problem. Our results rely on a novel reduction

of statistical estimations to problems in computational geometry.

Specifically, we show that the segmentation problem admits coresets of cardinality

only linear in the number of segments k and data points n and independent of dimen-

sion d of the signal. Further, we provide a construction for such a representation of

size O(k/e2) that provides a (1 + e)-approximation for the sum of squared distances

to any given k-piecewise linear function. Our coreset construction can be streamed

or parallelized.

In Chapter 5 we present a system for efficient online segmentation of large data

streams, such as real-time video streams. Our system implements the algorithms

presented in the previous chapter. We empirically evaluate our algorithms on very

large synthetic and real datasets including GPS data, financial ticker data, and real-

time video feeds from mobile phones and wearable devices. Finally, we show how

our system can be scaled up by parallelizing our experiments across 255 machines on

Amazon EC2.

Summarization, State Estimation, and Retrieval In Chapter 6 we consider

the segmentation and summarization of life-long video streams in continuously op-

erating robotic systems. Using the coresets developed in the previous chapters, we

30

formulate a new method for hierarchical retrieval of frames from large video streams

that are collected online by a moving robot. We demonstrate how to utilize the

resulting structure for efficient loop closure by a novel sampling approach that is

adaptive to the structure of the video. The same structure also allows us to create a

highly-effective search tool for large-scale videos.

We define a data-adaptive structure called a coreset tree that consists of a sum-

mary of representative keyframes from the video. We show how the coreset tree can be

used as a tool to enable efficient localization by providing useful candidate keyframes

for loop closure algorithms. We present an algorithm for sampling the coreset tree to

find such candidate keyframes over a video history of arbitrarily large size, while pro-

viding guarantees for the retrieval given enough computation time. The collection of

the data requires a linear-size memory, and allows logarithmic-time retrieval, provid-

ing an approximate sufficient statistic for a large variety of tasks involving the visual

history. The tasks we demonstrate in this chapter can be considered representatives

of the full range of possible tasks for a robotic system involving its visual history.

We present a user interface that allows intuitive human retrieval of keyframes from

a coreset summary of a processed or online video stream. Finally, we demonstrate the

efficiency and versatility of the coreset tree by conducting a variety of summarization,

retrieval and localization experiments on standard datasets, on a large-scale video

of a city tour from a wearable camera, and on remote-controlled quad-rotor robots

mounted with a wireless camera.

Classification and Prediction In Chapter 7 we consider the problem of context-

aware segmentation of laparoscopic and robot assisted surgical video. As motivated

in the previous section, such a system would be invaluable to surgeons, to poten-

tially improve performance and workflow efficiency, and as a tool for education and

time-critical expert consultation. The stakes for developing such a system could not

be higher - when a human life is one of the variables that depends on the correct

operation of a system, the margin for error is close to zero.

In this part of the thesis we present a system that automatically generates a

31

video segmentation of laparoscopic and robot-assisted procedures according to their

underlying surgical phases. We develop a visual feature space, tailor-made visual

for the laparoscopic surgery domain, that captures the intuition of the world's best

laparoscopic surgeons. We use the k-segment coreset algorithms presented in Chapter

4 as a backbone for our system, and we use the coreset tree presented in Chapter 6

as a preprocessing step, allowing our system to produce results of approximately

equal quality, in real-time, and using only a fraction of the computational resources.

Finally, we employ an SVM and HMM combination as the top layer of our system

enabling the system to automatically learn the phase transitions from training data

and segment unseen the surgical videos according to their phases. We evaluate our

system with cross-validation experiments on real video of laparoscopic vertical sleeve

gastrectomy (LSG) procedures, and propose a blueprint for piloting such a system in

a real operating room environment with minimal risk factors.

Dimensionality Reduction In Chapter 8 we consider a long-open research ques-

tion of whether we can compute a coreset for principal component analysis (PCA)

that is both small in size and a subset of the original data. In this chapter we answer

this question affirmatively and provide an efficient construction.

Our main result is the first algorithm for computing a coreset of size independent

of both n and d, for any given n x d input matrix. The algorithm takes as input a

finite set of d-dimensional vectors and computes a coreset that is a weighted subset

of k2/ 2 such vectors. This coreset can be used to approximate the sum of squared

distances from a matrix whose rows are the n vectors seen so far, to any k-dimensional

affine subspace, up to a factor of 1 s. For a (possibly unbounded) stream of such

input vectors the coreset can be maintained at the cost of an additional factor of

log 2 n.

The polynomial dependency oi d of the cardinality of previous coresets made

them impractical for fat or square input matrices, such as the Wikipedia document-

term matrix, images in a sparse feature space representation, or an adjacency matrix

of a graph. If each row of an input matrix has O(nnz) non-zero entries, then the

32

update time per insertion, the overall memory that is used by our algorithm, and the

low-rank approximation of our coreset is independent of n and d.

In Chapter 9, we provide an efficient implementation our coreset for dimensionality

reduction presented in the previous chapter. Our system can run on a standard laptop.

Since our algorithm affords an embarrassingly parallel architecture, we implement our

system on Amazon EC2, and receive a significantly better running time and accuracy

compared to existing heuristics that yield non-sparse solutions. We evaluate our

system on synthetic data to provide a ground-truth for the quality, efficiency, and

scalability of our system. Finally, as motivated in the previous section, we consider

the grand challenge of computing a topic model for the entire English Wikipedia.

We apply our algorithm to compute the principal component analysis (PCA) of the

Wikipedia document-term matrix, and use this to compute a topic model of k = 100

topics.

1.2.3 Key Contributions

This thesis makes the following contributions to the state of the art.

" A coreset for the k-segment mean problem, of size O(k/e 2) that provides a

(1 + e)-approximation for the sum of squared distances to any given k-piecewise

linear function (Chapter 4).

" A system for approximating the k-segmentation of streaming data. Experimen-

tal results with video streams, GPS data, and financial ticker data (Chapter

5).

" Algorithms for semantic summarization and retrieval of video frames from un-

bounded life-long video streams (Chapter 6).

" A new mechanism for computing an adaptive, semantic summary of the video

by means of a coreset tree (Chapter 6).

" A system for efficient loop closure detection by novel sampling approach that

33

is adaptive to the structure of the video. Experimental results with real video

data of a tour of Boston collected from a wearable device (Chapter 6).

" A system for automatically identifying the phases of laparoscopic and robot-

assisted surgical procedures and segmenting them in real-time. Experimental

results with real surgical data. (Chapter 7).

* A dimensionality reduction algorithm for computing a (k, E)-coreset of size in-

dependent of both n and d, for any given n x d input matrix (Chapter 8).

" A system for computing an efficient low-rank approximation of a matrix. Ex-

periments to to compute the principal component analysis (PCA) and derive a

topic model for the entire English Wikipedia (Chapter 9).

34

Chapter 2

Notation

This thesis uses the following notation and conventions. Where the nature of a term

or variable is not obvious from the context, it is always made clear explicitly.

* N, Z, R denote the set of natural numbers, the set of integers, and the real

numbers, respectively. A superscripted Rd denotes the real coordinate space of

d dimensions.

" i, j, k usually denote integers, such as indices of a closed form expression or

iterations in an algorithm.

* u, v, w usually denote vectors, and subscripted letters denote their elements, i.e.

u = [ui, 2 , ...

* The notation [n] denotes the vector of integers [1, ... , n].

* The notation j: k denotes the set of indices {j, j+1, ... , k} for integers k > j.

* X, or any other italicized letter denotes a matrix. (Note that in this thesis

we use the convention that vectors are the rows of a matrix, not its columns.

Although this is unconventional with respect to most mathematical literature,

it is much more intuitive for our work and it is the convention that was used in

all our publications.)

" The notation Xi,: E R1 xd denotes the i-th row of a matrix X.

35

" The notation X,j E R"X1 denotes the j-th column of a matrix X.

* n denotes the number of rows of a matrix.

" d denotes the dimension of the matrix X, that is the number of its columns and

the number of elements of its row vectors.

" t denotes the time dimension, which is a non-negative integer.

* proju is the projection of u on v.

" compu is the component of u in the direction of v.

" trace denotes the trace of a matrix.

* Pr(.) denotes the probability of an event.

* mean denotes the mean or expected value of a set of numbers.

" var denotes the variance of a set of numbers.

* A string of non-italicized letters such as KSEGMENTCORESET denotes the name

of an algorithm.

* O(.) denotes the asymptotic function used to express the upper bound on the

growth rate of the function (big 0 notation).

" A denotes a non-temporal input data matrix.

" P denotes a temporal signal, which is defined as a set vectors P E Rd + 1, P =

{(1, pi) , . . . , (n, pn)}, where pj E Rd is the point at time index j for every

jE [n].

" f (\ell) denotes a vector norm. In particular, f2 denotes the Euclidean norm.

* |XI12 = EZ (Xjg) 2 is the sum of squared entries of a matrix or a vector X

(the Frobenius norm for a matrix or the 2 Euclidean norm for a vector). We

emphasize this as ||XIl2 where necessary, to differentiate between the induced

2-norm IIXI1 of a matrix.

36

* C, D denote coresets. C usually denotes a simple coreset that is a subset of a

rows of a matrix or signal. D usually denotes a compound coreset construction

such as a tuple of mathematical objects.

" U, D, V usually denote the singular value decomposition (SVD) of a matrix

A = UDVT. (D is used over E to avoid confusion with sumination, but E is

used where it is clearer to avoid confusion with the coreset D. This is always

defined explicitly.)

" k denotes the number of segments in the k-segment mean problem or the rank

of the subspace in the low rank approximation (k-SVD) problem.

* E denotes a positive.real number that represents an error measure, specifically

in the definition of (k, e)-coreset.

* a, 3 usually denote positive real numbers that represent some approximation

criteria, such as the bi-criteria or (a',)-approxiimation.

" cost(.) is always defined as some fitting function of a matrix or signal to a

subspace or set of points. This is specified explicitly when used.

" dist(p, 1) is the regression distance between a point p and its projection on 1.

" 1 denotes a line in Rd.

" f usually denotes a k-segment, that is a piecewise linear function f : R -+ Rd

that maps every time i E R to a point f(i) in Rd.

" g denotes the 1-segment mean approximation (SVD) for a subset of a signal.

So- usually denotes the fitting cost of a matrix or signal.

" b, e denote the beginning and end of the time interval [b, e] associated with a

coreset segment.

" h denotes the (a, 0)-approximation for the k-segment mnean of a signal.

37

e Q denotes a coreset segment tuple (C, g, b, e).

* f* denotes the relevance score for keyframe selection.

* d denotes the e2 distance d combined with the relevance score f* used computed

by the modified FPS algorithm.

" L denotes the projection of a coreset C on its 1-segment mean approximation

9.

" w denotes the non-negative weight vector w = (wi,.-- , wn) E [0, o) n.

" W denotes the diagonal matrix with the non-negative weight vector along its

diagonal.

* M denotes the lookup table of inner products maintained for the coreset for

sum of vectors.

" J denotes the set of recorded indices j E [n].

Please see page 12 for a list of algorithms and page 13 for a list of abbreviations

used in this thesis.

38

Chapter 3

Related Work

Our work builds on several important contributions in coresets, k-segmentations, and

video summarization. This thesis we refer to work ranging from decades ago to very

recent results. In this chapter we detail some of the key results.

3.1 k-segmentation

The k-segment mean problem is defined in Definition 1 in Section 4.1. The k-segment

mean problem can be solved exactly using dynamic programming [14]. However, this

takes O(dnik) time and O(dn) memory, which is impractical for streaming data.

In [62, Theorem 8] a (1 + e)-approximation was suggested using O(n(dk)4 log n/E)

time. While the algorithm in [62] support efficient streaming, it is not parallel. Since

it returns a k-segmentation and riot a coreset, it cannot be used to solve other opti-

mization problems with additional priors or constraints. In [51] an improved algorithm

that takes O(nd2 k + ndk3) time was suggested. The algorithm is based on a coreset

of size O(dk3/IE). Unlike the coreset in this work, the running time of [51] is cubic

in both d and k.

The result in [51] is the last in a line of research for the k-segment mean problem

and its variations; see survey in [50, 62, 58]. The application was segmentation of

3-dimensional GPS signal (time, latitude, longitude). The coreset construction in [51]

and previous papers takes time and memory that is quadratic in the dimension d and

39

cubic in the number of segments k. Conversely, our coreset construction takes time

only linear in both k and d.

3.1.1 Approximation Algorithms

One of the main challenges in providing provable guarantees for segmentation with

respect to segmentation size and quality is global optimization. Current provable

algorithms for data segmentation are cubic-time in the number of desired segments,

quadratic in the dimension of the signal, and cannot handle both parallel and stream-

ing computation as desired for big data. The closest work that provides provable

approximations is that of [51].

Several works attempt to summarize high-dimensional data streams in various ap-

plication domains. For example, [107] describe the video stream as a high-dimensional

stream and run approximated clustering algorithms such as k-center on the points of

the stream; see [59] for surveys on stream summarization in robotics. The resulting

k-centers of the clusters comprise the video summarization. The main disadvantages

of these techniques are

(i) They partition the data stream into k clusters that do not provide k-segmentation

over time. In this sense, k-segmentation can be considered as k-clustering where the

assignment of points to centers is based on their context instead of only similarity of

images.

(ii) Computing the k-center takes time exponential in both d and k [69]. In [107]

heuristics were used for dimension reduction, and in [59 a 2-approximation was sug-

gested for the off-line case, which was replaced by a heuristic for streaming.

(iii) In the context of analysis of video streams, they use a feature space that is

often simplistic and does not utilize the large data available efficiently. In our work

the feature space can be updated on-line using a coreset for k-means clustering of the

features seen so far.

40

3.2 Video Summarization

One motivating application for us is online video summarization, where input video

stream can be represented by a set of points over time in an appropriate feature space.

Every point in the feature space represents the frame, and we aim to produce a com-

pact approximation of the video in terms of this space and its Euclidean norm. In the

context of video streams analysis, we build upon a multitude of prior works on for

activity understanding of both robotic systems [22] and human users [9]. Application-

aware summarization and analysis of ad-hoc video streams is a difficult task with

many attempts aimed at tackling it from various perspectives [22, 44, 91, 9, 17]. The

problem is highly related to video action classification, scene classification, and object

segmentation [91]. Applications where life-long video stream analysis is crucial in-

clude mapping and navigation, medical imaging, assistive technology, and augmented-

reality applications, among others. Our goal differs from video compression in that

compression is geared towards preserving image quality for all frames, and therefore

stores semantically redundant content. Instead, we seek a summarization approach

that allows us to represent the video content by a set of key segments, for a given

feature space.

The features used for this task vary from low level brightness-, gradient- and

optical flow-based descriptors to quite elaborate descriptions of scene structure and

content. Significant attention has been given to low-level feature extraction from video

sequences for these vision tasks (see [136] for example). Maekawa et al. [94] used

an HSV color codebook in order to represent activities from a wrist-based camera.

Bandla and Grauman [9] use spatio-temporal features based on optical flow and HoG

freatures, and Koppula et al. [77] combine descriptors and local transformation cues.

Lu and Grauman [91] define the relative strength of inter-frame connections based

on object cooccurrence. Directly learning features has also been attempted by deep

learning techniques, see for example [8]. Developing scalable analysis schemes for

summarizing large quantities of visual data is still lacking, especially as far as provably

efficient and accurate algorithms are concerned.

41

3.2.1 Medical Video

Video-based coaching and debriefing of laparoscopic and robot-assisted minimally

invasive surgery (RMIS) has been demonstrated to contribute to enhanced surgical

performance [18, 123]. These procedures are typically taught in a stepwise fashion by

identifying distinct steps or phases or an operation [76]. Context-aware segmentation

of surgical video can facilitate education, time-critical consultation, and can improve

perioperative workflow efficiency of operating room assignment and turnover [97, 43].

Recent studies such as [98] conclude that phase recognition is crucial for skill evalu-

ation in robot-assisted surgery, which is still a relatively new discipline. Research in

computer vision has addressed the general problem of automated video segmentation

(see [114], and references therein). There has been a lot of research on surgical phase

recognition [79, 16, 90, 127, 104], but this work has been mostly limited to offline

video of entire procedures.

3.3 Localization and Loop Closure

Large-scale place recognition in online robotic systems relates to several active fields of

research. Studied intensely between the vision [138, 125, 84, 117] and the robotics [67,

31, 85] communities, attempts have been made to allow faster loop closure processing

of larger datasets [32] and to utilize 3D information in order to increase specificity

[108]. Maddern et al. [93] propose a way of minimizing the effects of life-long collection

of images in the mapping phase, especially with respect to location model creation.

We note that a key assumption of such algorithms is that loop closure and location

pruning are achieved at full video frame rate, thereby inducing both high computa-

tional costs and the need for significant retrieval efficiencies. When 3D information

is unreliable (e.g. indoor localization), when there is significant location uncertainty,

or when loop closure information is scarce, the number of locations may grow with

the size of the video stream. In this sense, dealing with the inherent complexity of

life-long videos in the area of localization is still quite limited.

Several works in the robotics community (see for example [31, 74, 6]) attempt

42

to define the problem as large scale inference problem over a graphical model of

observations conditioned on locations. One advantage of such methods is their natural

integration with local filtering approaches for localization [36] and handling of outlier

matches.

In the vision community, lpcalization is highly related to place recognition works

such as [84]. However in large scale location recognition, 2D-to-3D matching ap-

proaches (such as [86, 116]) attempt to address the retrieval problem associated with

collections of large images and multiple locations. The main emphasis in these ap-

proaches is on obtaining high specificity and reducing false alarm rate - this is partially

due to the fact that such systems are inherently looking for maximum probability so-

lutions and hence attempt to prune multiple alternatives to the correct location.

Several of these works obtain high efficiency by 3D-aided pruning, since they utilize

the reconstructed map as well.

The use of coresets of data approximation has been considered previously with the

work of [107] and [114] being the most closely related. While [107] considers the use

of coresets for appearance-based mapping, navigation, and localization they do not

exploit temporal consistency across frames as we do here. Additionally, the compu-

tational complexity and associated memory requirements of the proposed approach

represent an exponential improvement when compared to that work. Lastly, the pro-

posed coreset formulation allows for an unbounded set of locations while supporting

location retrieval and loop closure. While in [114] we adopt a descriptor vector rep-

resentation of frames and demonstrate segmentation using a derived coreset, we do

not consider localization or loop closure. Furthermore, in contrast to the current

formulation, the number of segments is assumed to be known a priori.

In the field of data approximation by coresets, the closest work to ours is that of

Paul et al. [107]. Our work oil visual summarization improves on the coreset of [107]

in the following ways. First, unlike the algorithm in [107], the new coreset algorithm

uses the temporal consistency across adjacent frames to compute better summaries.

Second, the computational complexity and memory requirements are exponentially

better over [107]. Third, the new coreset can handle an unbounded set of locations,

43

supporting location retrieval and loop closures.

It differs significantly from ours, however, in several aspects, since the coreset used

differs significantly, and temporal consistency in the data is not exploited. Moreover,

the complexity requirements for the coreset defined in [107] differ from ours -- for

example its memory complexity depends exponentially on the dimension, which is

impractical for large datasets. Furthermore, the method proposed in [107] did not

include a method of retrieving location from an unbounded, ever-growing, set of

locations, which is key to the proposed approach. The work of [114] associates frames

with descriptor vectors and perform segmentation based on the coreset. No attempt,

however, is made for localization and loop closure or retrieval, and the segmentation

is limited to k segments, for which a coreset approximation is constructed.

3.4 Dimensionality Reduction

In [131] it was recently proved that an (k, e)-coreset of size ICI = O(dk 3 /E2) exists

for every input matrix, and distances to the power of z > 1 where z is constant. The

proof is based on a general framework for constructing different kinds of coresets, and

is known as sensitivity [46, 83]. This coreset is efficient for tall matrices, since its

cardinality is independent of n. However, it is useless for "fat" or square matrices

(such as the Wikipedia matrix above), where d is in the order of n, which is the main

motivation for our work. In [23], the Frank-Wolfe algorithm was used to construct

different types of coresets than ours, and for different problems. Our approach is

based on a solution that we give to an open problem in [23], however we can see how

it can be used to compute the coresets in [23] and vice versa. For the special case

z = 2 (sum of squared distances), a coreset of size O(k/s2) was suggested in [27]

with a randomized version in [26] for a stream of n points that, unlike the standard

approach of using merge-and-reduce trees, returns a coreset of size independent of n

with a constant probability. These result minimizes the - error, while our result

minimizes the Frobenius norm, which is always higher, and may be higher by a factor

of d. After appropriate weighting, we can apply the uniform sampling of size O(k/e 2)

44

to get a coreset with a small Frobenius error [73], as in our work. However, in this case

the probability of success is only constant. Since in the streaming case we compute

roughly n coresets (formally, O(n/m) coresets, where m is the size of the coreset) the

probability that all these coresets constructions will succeed is close to zero (roughly

1/n). Since the probability of failure in [73] reduces linearly with the size of the

coreset, getting a constant probability of success in the streaming model for 0(n)

coresets would require to take coresets of size that is no smaller than the input size.

There are many papers, especially in recent years, regarding data compression for

computing the SVD of large matrices. None of these works addresses the fundamental

problem of computing a sparse approximated PCA for a large matrix (in both rows

and columns), such as Wikipedia. The reason is that current results use sketches

which do no preserve the sparsity of the data (e.g. because of using random projec-

tions). Hence, neither the sketch nor the PCA computed on the sketch is sparse. On

the other side, we define coreset as a small weighted subset of rows, which is thus

sparse if the input is sparse. Moreover, the low rank approximation of a coreset is

sparse, since each of its right singular vectors is a sum of a small set of sparse vectors.

While there are coresets constructions as defined in this work, all of them have car-

dinality of at least d points, which makes them impractical for large data matrices,

where d > n. In what follows we describe these recent results in details.

The recent results in [27, 26] suggest coresets that are similar to our definition

of coresets (i.e., weighted subsets), and do preserve sparsity. However, as mentioned

above they minimize the 2-norm error and not the larger Frobenius error, and maybe

more important, they provide coresets for k-SVD (i.e., k-dimensional subspaces) and

not for PCA (k-dimensional affine subspaces that might not intersect the origin). In

addition [26] works with constant probability, while our algorithm is deterministic

(works with probability 1). Some recent papers can be considered as applications

and extensions of our papers. We expect that there will be many more such related

results and applications in the future, e.g. a coreset for an SVM classifier can also be

reduced to a sum of vectors [23]. Our recent arXiv publication [53] was already cited

and inspired other papers, including oime from Google [5].

45

3.4.1 Coresets

Following a decade of research (e.g. [47, 45, 64, 39, 41, 40, 46]), it was recently proven

that an (e, k)-coreset for low rank approximation of size ICI = O(dk/ 2) exists for

every input matrix [131]. The proof is based on a general framework for constructing

different kinds of coresets, and is known as sensitivity [46, 83]. This coreset is efficient

for tall matrices, since its cardinality is independent of n. However, it is useless for

"fat" or square matrices (such as the Wikipedia matrix above), where d is in the order

of n, which is the main motivation for our work. In [23], the Frank-Wolfe algorithm

was used to construct different types of coresets than ours, and for different problems.

Our approach is based on a solution that we give to an open problem in [23].

3.4.2 Sketches

A sketch in the context of matrices is a set of vectors u1 , u.. ,u8 in Rd such that

the sum of squared distances EZ" (dist(ai, S))2 from the input n points to every k-

dimensional subspace S in Rd, can be approximated by EZ=(dist(ui, S))2 up to a

multiplicative factor of 1 E. Note that even if the input vectors a1, - , an are sparse,

the sketched vectors ul, , u, in general are not sparse, unlike the case of coresets.

A sketch of cardinality d can be constructed with no approximation error (s = 0),

by defining u1 , -.. , Ud to be the d rows of the matrix DVT where UDVT = A is the

SVD of A. It was proved in [48] that taking the first O(k/E) rows of DVT yields such

a sketch, i.e. of size independent of n and d.

Unlike the other coresets, this sketch is of cardinality independent of both n and d.

Using the merge-and-reduce technique, this sketch can be computed in the streaming

and parallel computation models. The final coreset size will be increased by a factor

of O(log n) in this case. For the streaming case, it was shown in [87, 56] that such

a strong sketch of the same size, O(k/e), can be maintained without the additional

O(log n) factor. In this case, the running time is longer by a factor of the coreset size

C|, since the merge-and-reduce tree is no longer used.

The first sketch for sparse matrices was suggested in [24], but like more recent

46

results, it assumes that the complete matrix fits in memory. Other sketching methods

that usually do not support streaming include random projections [7, 2, 42] and

randomly combined rows [106, 132, 115, 88].

The Lanczoz method [105] and its variant [75] multiply a large matrix by a vector

for a few iterations to get its largest eigenvector vi. Then the computation is done

recursively after projecting the matrix on the hyperplane that is orthogonal to v1 .

Multiplying a matrix by a vector can be done easily in the streaming mode without

having all the matrix in memory, although it requires multiple passes over the data

compared to the one-pass model that we consider. If A is sparse then the computation

of Axi for 1 < i < m takes time that depends only on the non-zeroes-entries of A.

However, v, is in general not sparse even A is sparse. Hence, when we project A

on the orthogonal subspace to v1 , the resulting matrix is dense for the rest of the

computations (k > 1). Indeed, our experimental results show that the MATLAB

svds function which uses this method runs faster than the exact SVD, but crashes

on large input, even for small k. This thesis builds on this extensive body of prior

work in dimensionality reduction, and our approach uses coresets to solve the time

and space challenges.

3.4.3 Lower bounds

Recently, [56, 87] proved a lower bound of O(k/s) for the cardinality of a strong

sketch. A lower bound of O(k/e2) for strong coreset was proved for the special case

k = d - 1 in [10]. Our algorithm is more efficient and numerically stable than the

approach in [10], since, for example, it doesn't need to compute the inverse of the

input matrix. Also, the error in [10] that corresponds to the error matrix is measured

with respect to the 2-norm, while we bound the (always higher) Frobenius norm of

this matrix.

47

3.4.4 Software

Popular software for computing SVD such as GenSim [113], redsvd [61] or the MAT-

LAB sparse SVD function (svds) use sketches and crash for inputs of a few thousand

of documents and a dimensionality reduction (approximation rank) k < 100 on a

regular laptop, as expected from the analysis of their algorithms. This is why ex-

isting implementations (including Gensiin) extract topics from large matrices (e.g.

Wikipedia), based on low-rank approximation of only small subset of few thousands

of selected words (matrix columns), and not the complete Wikipedia matrix. Even

for k = 3, running the implementation of sparse SVD in Hadoop [121] took several

days [63]. Next we give a broad overview of the very latest state of the dimensionality

reduction methods, such as the Lanczoz algorithm [82] for large matrices, that such

systems employ under the hood.

48

Chapter 4

Coresets for Segmentation of

Temporal Data

In this chapter' we present the k-segment coreset, and develop the theoretical frame-

work to enable fast content-based segmentation of data streams. We propose a new

coreset for the k-segmentation problem (see Definition 1 in Section 4.1) that can be

computed in one pass over the streaming data, with insertion time and space that

are dependent poly-logarithmically in n. Unlike previous results, the insertion time

per new observation and required memory is only linear in both the dimension d and

the number k of segments. This result is formalized in Theorem 2. Our algorithm is

scalable, parallelizable, and provides a provable approximation of the cost function.

Using this coreset construction we present a system for compression of large-scale

data. Our approach allows real-time segmentation of video streams such as video in

a way that preserves the semantic content of the aggregated video sequences, and is

easily extendable.

Chapters 4 and 5 are organized as follows. We begin by describing the k-segmentation

problem in Section 4.1. We present our proposed coresets, describe their construction,

and detail their properties in Section 4.2. In the next chapter we describe our system

implementation and present experimental results. In Section 5.1 we perform several

'Some of the content in this chapter was published in [114].

49

experiments in order to validate our proposed approach on real data.

4.1 Problem Formulation

The k-segment mean problem optimally fits a given discrete time signal of n points

by a set of k linear segments over time, where k > 1 is a given integer. That is, we

wish to partition the signal into k consecutive time intervals such that the points in

each time interval are lying on a single line; see Fig. 4-1 (left) and the following formal

definition.

We make the following assumptions with respect to the data: (a) We assume the

data is represented by a feature space that suitably represents its underlying structure;

(b) The content of the data includes at most k segments that we wish to detect

automatically; An example for this are scenes in a video, phases in the market as

seen by stock behaviour, etc. and (c) The dimensionality of the feature space is often

quite large (from tens to thousands of features), with the specific features depending

on the application -- several examples are given in Section 5.1. This motivates the

following problem definition.

Definition 1 (k-segment mean). A set P in Rd+1 is a signal if P = {(1, pi), n, (fp.)}

where Pj G Rd is the point at time index j for every j E [n] {1, ... , n}. For an

integer k > 1, a k-segment is a k-piecewise linear function f : R -* Rd that maps

every time t E R to a point f(t) in Rd. The fitting error at time j is the squared

distance between pj and its corresponding projected point f(i) on the k-segments. The

fitting cost of f to P is the sum of these squared distances,

cost(P, f) = Z -p f(i) (4.1)
j1

where ||-||denotes the Euclidean distance. The function f is a k-segment mean of P

if it minimizes cost(P, f).

For the case k = 1 the 1-segment mean is the solution to the linear regression

problem. If we restrict each of the k-segments to be a horizontal segment, then each

50

y

EZ~

V

Q)

i Time
41-j

U)

Time

II I I

II I I

II I I

I I I *..I

I I

Time

For every k-segment f, the cost of iput points (blue) is approxiilated by the cost
of the coreset. Left to right, top to bottom: (a) An input signal; (b) The coreset
consists of the partition of the inlput into a few segments (dashed blue vertical liles),
with approximate per-segment represnltatioin of the data (dashed red lines). The
cost of f is the sum of these squared distances from all the input p)ints; (c) Given
any k-segment, (colored in green) mnodel, we can comnpute an f 2-fitting cost using the
coreset; (d) The fitting cost should approximate the 22 fitting cost on the original

data points.

Figure 4-1: k-segment coreset illustration.

segment will be the mnean height of the corresponding input points. The resulting

problem is similar to the k-mean problem, except each of the voronoi cells is forced

to be a single region in tine, instead of nearest center assignment, i.e. the regions

are contiguous.

In this chapter we seek a compact representatioi D that approximates cost(P, f)
for every k-segment f using the above definitioln of cost'(D, f). We deniote a set D

as a (k, E)-coreset according to the following definition,

Definition 2 ((k, E)-coreset). Let P C R d+1, k > 1 be an integer, for some small

e > 0. A set D, with a cost function cost'(-) is a (k, e)-coreset for P if for every

k-scqem'rent f we have

(1 - E)cost(P, f) < cost'(D, f) < (1 + s)cost(P, f).

51

I B I I I1.Coo!

I I

I I

I I

1~~..*
I I

II I I

II I I

II I I

I i

**r.I I I

Y

We present a new coreset construction with provable approximations for a family

of natural k-segmentation optimization problems. This is the first such construction

whose running time is linear in both the number of data points n, their dimensionality

d, and the number k of desired segments. The resulting coreset consists of O(dk/e 2)
vectors that allow us to approximate the sum of square distances for any k-piecewise

linear function (k segments over time). In particular, we can use this coreset to

compute the k-piecewise linear function that minimize the sum of squared distances

to the input points, given arbitrary constraints or weights (priors) on the desired

segmentation. Such a generalization is useful, for example, when we are already

given a set of candidate segments (e.g. maps or distribution of images) and wish to

choose the right k segments that approximate the input signal.

Previous results on coresets for k-segmentation achieved running time or coreset

size that are at least quadratic in d and cubic in k [51, 50]. As such, they are less

suitable for large-scale data such as long streaming video data which is inherently

high-dimensional and contains a large number of scenes. This prior work is based

on some non-uniform sampling of the input data. In order to achieve our results, we

had to replace the sampling approach by a new set of deterministic algorithms that

carefully select the coreset segments and their internal representation.

4.2 A Novel Coreset for k-segment Mean

We now describe the construction of the coreset. We detail the main theorems and

proofs, after giving the intuition behind the construction, which is illustrated in Fig-

ure 4-2.

The key insights for constructing the k-segment coreset are: i) We observe that

for the case k = 1, a 1-segment coreset can be easily obtained using SVD. ii) For the

general case, k > 2 we can partition the signal into a suitable number of intervals,

and compute a 1-segment coreset for each such interval. If the number of intervals

and their lengths are carefully chosen, most of them will be well approximated for

every k-segmentation, and the remaining intervals will not incur a large error con-

52

Flowchart of our algoritlun: (a) Use the BICRITERIA algorithin to estimate the signal complexity.
(b) Use the BALANCEDPARTITION algorithm to compute the coreset.

Figure 4-2: k-segment coreset flowchart

tribution. Based on these observations, we propose the following construction. 1)

Estimate the signal's complexity, i.e., the approximated fitting cost to its k-segment

mean. We denote this step as a call to the algorithm BICRITERIA. 2) Given an

complexity measure for the data, approximate the data by a set of segments with

auxiliary information, which is the proposed coreset. denoted as the output of algo-

rithn BALANCEDPARTITION.

We then prove that the resulting coreset allows us to approximate with guarantees

the fitting cost for any k-segmentation over the data, as well as compute an optimal

k-segmentation. We state the main result in Theorem 2, and describe the proposed

algorithms as Algorithms 2 and 1, respectively.

4.2.1 Computing a k-segment Coreset - Overview

We would like to compute a (k, E)-coreset for our data. A (k, E)-coreset D for a set P

approximates the fitting cost of any query k-segment to P up to a small multiplica-

tive error of 1 + E. We note that a (1, 0)-coreset can be computed using SVD; See

Appendix 4.8.1 for details and proof. However, for k > 2, we cannot approximate the

data by a representative point set (as shown in Appendix 4.8.1, Corollary 2). Instead,

we lefime a data structure D as our proposed coreset, and definie a new cost function

cost'(D., f) that approximates the cost of P to any k-segment f.

53

+ +

T

Time

The proposed coreset D consists of tuples of the type (C, gi, bi, ei). Each tuple

corresponds to a different time interval [bi, ei] in R and represents the set P(bi, ei) of

points of P in this interval. The set Ci is a (1, E)-coreset for P(bi, ei), and gi denotes

the 1-segment mean approximation for P(bi, ei). We refer to these tuples as coreset

segments in the description of the algorithm. For brevity's sake, the index i may be

omitted where it is clear from the context. We assume that the time (first coordinate)

is discrete between 1 to n. This means that the projecting of P on any line can be

described exactly in 0(d) space using only the first and last projected points, which

motivates the structure of D, and the element gi.

We note the following:

(1) If all the points of the k-segment f are on the same segment in this time

interval, i.e, {f(t) I b < t < e} is a linear segment, then the cost from P(b, e) to f can

be approximated well by C, up to (1 + e) multiplicative error (see Appendix 4.8.1).

(2) If we project the points of P(b, e) on g, then the projected set L of points will

approximate well the cost of P(b, e) to f, even if f corresponds to more than one

segment in the time interval [b, e]. Unlike the previous case, the error here is additive.

(3) Since f is a k-segment there will be at most k - 1 coreset segments whose time

interval intersects more than two segments of f, so the overall additive error is small.

This motivates the following definition of D and cost'.

Definition 3 (cost'(D, f)). Let D = {(C, gi, bi, ei)}' 1 where for every i E [m] we

have Ci g Rd+1, gi : R -+ Rd and bi ! ei E R. For a k-segment f : R+ Rd and

i E [m] we say that Ci is served by one segment of f if {f(t) | bi t < ei} is a linear

segment. We denote by Good(D, f) C [m] the union of indexes i such that C is served

by one segment of f. We also define Li = {g (t) | bi 5 t < ei}, the projection of Ci

on gi. We define cost'(D, f) as eEGood(Df) cost(C, f) + EiE[m]\Good(Df) cost(Li, f).

Our coreset construction for general k > 1 is based on a data-dependent input

parameter - > 0 such that for an appropriate o the output is a (k, e)-coreset. For

the purpose of constructing our coreset we will require the definition of an (z, 3)-

approximation,

54

Definition 4 ((a, 0)-approximation). For a, /3> 0, an (a, /)-approximation for the

k-segment mean of P is a (k -/)-segment g such that cost(P, g) 5 a - cost(P, f*).

Specifically, we show that Algorithm 2 constructs an (a, /)-approximation, for

a, 3 small enough so as to estimate the complexity of the data. We show that using

the minimal value cost(P, g) even without knowing g, suffices to get a (k, c)-coreset,

using the BALANCEDPARTITION(P, e, a) algorithm, given as Algorithm 1.

4.3 k-segment mean

Let P = {(tipi), .. , (tn, p)} be a subset of Rd+1 where tj E R and pj E Rd for

every j E [n] = {1, - , n}. The fitting cost (henceforth simply "cost") from P to a

k-segment f is the sum of squared distances

cost (P, f) = ||(p - f(t)) 12
, (4.2)

(tp)eP

where ||XI12 = E (Xj)2 is the sum of squared entries of a matrix or a vector X

(known as the Frobenius norm for a matrix or the e2 Euclidean norm for a vector).

A k-segment mean of P is a k-segment f* R -+ Rd that minimizes cost(P, f)

over every k-segment f : R -+ Rd. For a > 1, an a-approximation for the k-segment

mean of P is a k-segment f such that cost(P, f) 5 a - cost(P, f*). For a, / > 0, an

(a, /)-approximation for the k-segmient mean of P is a (k - /)-segment g such that

cost(P, g) 5 a -cost(P, f*).
One of our main tool for computing approximations to the k-segment mean is

the singular value decomposition (SVD) which is defined as follows. For integers

n, d > 1 we denote by Rnxd the set n x d matrices whose entries are in R. A unitary

matrix is a matrix whose columns are orthonormal vectors. The thin SVD of a matrix

X E Rnxd is X = UDVT where both U E Rnxd and V E Rdxd are unitary matrices,

and D E Rdxd is a diagonal matrix of non-negative and non-increasing diagonal

entries. As we show in Appendix 4.8.1, we can use the SVD to get a (1, 0)-coreset for

1-segments.

4.4 Balanced Partition

We now proceed to describe our coreset construction, according to the outline in

Section 4.2.1.

We will compute such a small structure D that approximates cost(P, f) for every

k-segment f using the above definition of cost'(D, f). Such a set D will be called a

(k, e)-coreset as follows.

Definition 5 ((k, e)-coreset). Let P C Rd+1, k > 1 be an integer, and let E E

(0,1/10). The set D is a (k,e)-coreset for P if for every k-segment f we have

(1 - e)cost(P, f) < cost'(D, f) (1 + e)cost(P, f).

Our coreset construction is based on an input parameter o- > 0 such that for

an appropriate a the output is a (k, e)-coreset. Recall that for a, 3 > 0, an (a, #)-

approximation for the k-segment mean of P is a (k./)-segment g such that cost(P, g) <

a - cost(P, f*). We show that using the value cost(P, g) of such an approximation,

even without knowing g, suffices to get a (k, e)-coreset. In the next section we will

compute such an (a,)-approximation for small a and 0.

The size of the resulting coreset depends on a and /. In particular, for a = / = 1

the following lemma implies that there exists a (k, e)-coreset of size O(k/e 2) for every

input set P.

Lemma 1. Let P = {(1, p),.- ,(n, pn)} such that pj E Rd for every j E [n]. Suppose

that h: R -+ Rd is an (a, #)-approximation for the k-segment mean of P, and let

e2cost(P h)
100ka

Let D be the output of a call to BALANCEDPARTITION(P, E, -); See Algorithm 1.

Then D is a (k, s)-coreset for P of size

DI = (k).- +#

56

Algorithm 1 BALANCEDPARTITION(P, e, o)

Input: A set P = {(1,),- , (npn)} in Rd+1, an error parameters E E (0, 1/10)
and o- > 0.

Output: A set D that satisfies Lemma 1.
1: Q := 0; D = 0
2: pn+i:= an arbitrary point in Rd
3: for j :=l to n + 1 do
4: Q:= Q U {(j,p)}
5: f* := a 2-approximation to the 1-segment mean of Q. //See Corollary 2
6: A := cost(Q, f*)
7: if A>oorj=n+1 then
8: T:= Q \ {(j,p)}} //Define the new coreset segment data up to j
9: C := a (1, e/4)-coreset for T //See Claim 1

10: g := a 2-approximation to the 1-segment mean of T /See Corollary 2
11: b:= j - ITI
12: e:= j - 1
13: D := D U {(C, g, b, e)} 7/A dd a new coreset segment
14: Q := {(j,pj)} /Start aggregating a new coreset segment
15: end if
16: end for
17: return D

and can be computed in O(dn/E4) time.

Proof. Let m = DI and f be a k-segment. We denote the ith coreset segment in D

by (Ci, gi, bi, ej) for every i E [m]. For every i E [m] we have that Ci is a (1, E/4)-

coreset for a corresponding subset T = T of P. By the construction of D we also

have P = T1 U - U Tm.

Using Definition 3 of cost'(D, f), Good(D, f) and Li, we thus have

Icost(P, f) - cost'(D, f)|

cost(Ti, f) - cost(C, f) + cost(Lf))
i=1iEGood(Djf) iE[m]\Good(D,f)

(cost(T, f) - cost(Ci, f)) + (cost(T, f) - cost(Li, f))
iEGood(D,f) iE[m]\Good(D,f)

: E cost(T, f) - cost(Ci, f)| + cost(T, f) - cost(Li, f),
iEGood(D,f) iE[rn]\Good(D,f)

(4.3)

57

where the last inequality is due to the triangle inequality. We now bound each term

in the right hand side.

For every i E Good(D, f) we have that Ci is a (1, e/4)-coreset for T, so

Icost (Ti, f) - cost (Ci, ecost(T, f)
4

For every i C [m] \ Good(D, f), we have

Icost(T, f) - cost(Li, f)| I (lp -f(t)12
(p,t)ET

- g (t) - f(t)112
t=bi

(P - f(t) 11 2 - |1gi(t) - f(t)[2)
(p,t)eTi

< lj- f(t) 2 - gi(t) - f(t)1121
(p,t)ET,

(12 |gi(t) - p||2

(p,t)ETj \

12cost(T, gi) ecost(TI
E 2

+ 6 - f(t)|2 (4.7)

f) 24a- ecost(Ti, f)
2 (42

(4.8)

where (4.6) is by the triangle inequality, and (4.7) is by the weak triangle inequality

(see [49, Lemma 7.1]). The inequality in (4.8) is because by construction cost(T, f*) <

a for some 2-approximation f* of the 1-segment mean of T.

2cost(T, f*) 2-.

Plugging (4.8) and (4.4) in (4.3) yields

Hence, cost (T, gi) <

Icost(P, f) - cost'(D, f)| 5 E
iEGood(Djf)

ecost(Ti, f) +4 +
iE[m]\Good(D,f)

+ cost(Tf)
2/

4 + cost(P, f)+ 24ka

where in the last inequality we used that fact that I [mn] \ Good(D, f) I k - 1 < k

58

(4.4)

(4.5)

(4.6)

since f is a k-segment. Substituting o yields

Icost(P, f) - cost'(D, f)| 3 -cost(P, f) + Ecost(P, h) 3Ef) + Ecost (Pf Ecost(P, f).4 4a 4 4

Bound on IDI: Let j E [m - 1], consider the values of T, Q and A during the

execution of Line 8 when T = T is constructed. Let Qj = Q and Aj = A. The cost

of the 1-segment mean of Qj is at least Aj/2 > o/2 > 0, which implies that JQjj : 3

and thus ITj I 1. Since Qj_1 is the union of T_1 with the first point of T we have

Qj-1 C T-1 U T. By letting g* denote a 1-segment mean of T_1 U T we have

cost(T7_ U T, g*) > cost(Qj_1, g*) > Aj/2 > or/2.

Suppose that for our choice of j E [m - 1], the points in Ty_1 U T are served by

a single segment of h, i.e, {h(t) I bj- 1 t < ej} is a linear segment. Then

cost(Tj_1, h) + cost(T, h) = cost(Ty_1 U T, h) cost(T-_ U T, g*) > a/2. (4.9)

Let G C [m - 1] denote the union over all values j E [m - 1] such that j is both

even and satisfies (4.9). Summing (4.9) over G yields

cost(P, h) = cost(T, h) > Z(cost(T _1, h) + cost(T, h)) > IG o/2. (4.10)
jE[m] jG

Since h is a (,k)-segment, at most (,3k) - 1 sets among T1, - , Tm are not served by

a single segment of h, so IGI > (m-3k)/2. Plugging this in (4.10) yields cost(P, h)

(m - #k)a/4. Rearranging,

4cost(P, h) ka(4.11)
inK- + #k =O(-- +k. (.1

Running time: In Theorem 6 it was shown how to compute a (1, e)-coreset C

in time O(dn/ 4) for n points using the algorithm in [57]. This algorithm is dynamic

and supports insertion of a new point in O(d/e) time. Therefore, updating the 1-

59

Algorithm 2 BICRITERIA(P, k)

Input: A set P C Rd+' and an integer k > 1
Output: h, an (O(log n), O(log n))-approximation to the k-segment mean of P.

1: if n K 2k + 1 then
2: Set f +- a 1-segment mean of P
3: return f
4: end if
5: Set t1 5 ... 5 t, and pi,--- ,p, E Rd such that P = {(ti, pi),- , (it, p)}
6: Set m +- {t E R 1.(tp) E P}
7: Partition P into 4k sets P1, , P4 C P such that for every i E [4k - 1]:

(i) I {t (tp) E P}I = ['], and (ii) if (tp) E P and (t',p') E P+1 then t < t'.

8: for i = 1 to 4k do
9: Compute a 2-approximation gi to the 1-segment mean of P

10: end for
11: Set Q +- the union of k + 1 signals P with the smallest value cost(P, gi) among

i E [2k].
12: Set h +- BICRITERIA(P \ Q, k); //Repartition the segments that did not have a

good approximation
13: Set

g (t) E(t,p) E P such that P G Q
fh(t) otherwise

14: return f

segment mean f* and the coreset C can be done in O(d/64) time per point, and the

overall running time is O(nd/e4).

4.5 (a,)-Approximation and the Bicriteria Algo-

rithm

We now describe the BICRITERIA(P, k) algorithm. This algorithm allows us to esti-

mate the minimal k-segmentation cost for the signal, which is required for a balanced-

complexity coreset. It is described as Algorithm 2.

Theorem 1. Let f : R -+ Rd be the output of a call to BICRITERIA(P, k). Then

(i) f is a (0k)-segment for some 3= O(log n).

ii) cost(P, f) acost(P, f*), where a = log2 n, and f* is a k-segment mean of P.

60

(iii) f can be computed in O(dn) time.

Proof. (i) In every recursive iteration of the algorithm we remove (k - 1) subsets of

P, whose overall size is

IQ| > -: (k - 1) - - >. (k -- I) - - I; = - (k - 1.) > = --
L4k -4k 2 4 4k- 4 8 12 24

where in the last inequality we used the assumption k E [2, n/ 12 + 1]. Hence,

the size of P reduced by a constant fraction in each recursive iteration and we have

O(log n) iterations.

Each subset P in Q contributes at most 2 segments to f, so the number of

segments in f increases by 0(k) in each of the 0(log n) recursive iterations. Hence,

the final output f has 0(k log n) segments.

(ii) Consider the value of P during one of the recursive iterations. Since f* is a

k-segment, every set in P1, . -- , P4k is served by one segment of f*, except at most

k - 1 such subsets. Let M C [4k] denote the indexes of these (at most k - 1) subsets,

and let W = [4k] \ M denote the rest, such that Q = UiEW P. Hence,

cost(P, f*) > I cost(Pi, f*) T min cost(P, g) 1 E cost(Pi, gi), (4.12)
iEW iEW 2[4k]\M

where the minimum is over every 1-segment g : R -+ Rd. Since

[4k] \ MI = 4k - IM| 2 4k - (k - 1) = 3k + 1,

we have

cost(Pi, g) cost(P, gi) = cost(P, f) cost(Q, f).
iE[4k]\M iEW iEW

Plugging the last inequality in (4.12) yields cost(Q, f) ; 2cost(P, f*). Summing

over all iterations proves the claim.

(iii) In each recursive iteration, the dominated running time is in the "for" loop in

61

Algorithm 3 CORESET(P k, E)

Input: A set P = {(1, pi), - - - , (n, Pn)} in Rd+1
Output: A (k, e)-coreset (C, w) that satisfies Theorem 2.

1: Compute h +- BICRITERIA(P, k) ; See Algorithm 2

2: Set a 6 lOko2CO100k 10g2 n
3: Set D <- BALANCEDPARTITION(P, e, -) /See Algorithm 1

4: return D

Lines 8-9. We compute a 2-approximation gi for the 1-segment mean of a set P of m

points in O(md) time using Corollary 2. Hence, the overall time to compute Lines 8--

9 is O(nd). Since the size of P reduced by a constant fraction in each recursive

iteration, the overall running time is dominated by the first iteration which takes

O(nd) time.

4.6 (k, e)-Coreset

We now define the k-segment coreset construction algorithm and prove bounds on its

desisred tradeoff of size, construction complexity, and accuracy of representation.

Theorem 2. Let P ={(1, pi), - - - , (n, p,)} such that pj E Rd for every j E [n]. Let

D be the output of a call to CORESET(P, k, e); see Algorithm 3.

Then D is a (k, E)-coreset for P of size

IDI = 0(k) E2

and can be computed in O(dn/e4) time.

Proof. By Theorem 1, h is an (a, #)-approximation for the k-segment mean of P for

a = log 2 n and 3 = O(log n). Theorem 2 then follows by substituting a and 3 in

Theorem 1. 1

62

4.7 Efficient k-segmentation via Coresets

We recall one of the useful aims for a k-segment mean coreset is fast k-segmentation.

When computing an optimal k-segmentation for our data, we are bounded by the

scale of the data in yet another aspect - the number of possible locations for each

segment endpoint is O(N). This means we cannot run algorithms with a linear com-

plexity in the data size, let alone a quadratic one, as the original method of [14].

While the coreset we propose handles gracefully k-segmentations with any endpoints,

sweeping through all possible endpoints as in the original algorithm by Bellman [14]

is computationally prohibitive. In order to avoid the problems associated with such

a limitation, we propose two approaches. Alternatively, the approach presented in

Subsection 4.7.2 incorporates per coreset segment an weak coreset in the form of a

weighted set of points. Computing the cost using these points for shattered coreset

segments allows us to bound the error with respect to the k-segment mean computed

with the full set of possible endpoints. In Subsection 4.7.1 we show the endpoint-

limited case, where we limit ourself to a subset of the possible endpoint based on the

coreset segments. In the endpoint limited case, we use the same dynamic program-

ming framework suggested by Bellman in [14], and as demonstrated in Section 5.1,

obtain state-of-the-art results on signals from various domains.

4.7.1 Endpoint-constrained k-Segment Mean Computation

One approach for fast segmentation uses the coreset from Algorithm 1 directly, while

constraining the possible segment endpoints. We add the additional constraints that

there cannot be more than one k-segment endpoint inside each coreset-segment. This

allows us to use the coreset obtained by Algorithm 1 for cost computations, and

perform the computation of all linear segment costs required in [14] on a sublinear

number of sampling points, reducing overall algorithm complexity from 0(kN 2) to

0(klog 2N). By construction of the piecewise coresets, and the segments C computed

in Algorithm 1, the cost comnputedi with these limitations on the endpoints is an 6

approximation of the cost of our solution on the real data. Specifically, our solution

63

Algorithm 4 MODIFIEDBELLMAN(D)

Input: D, a set that satisfies Lemma 1.
Output: f, an E-approximation of the constrained k-segment mean

1: for b = 1, 2,. .. , m do
2: Update the, 1-segment solution for each subsegment starting at t = 1
3: fi(b) = h (1, b)
4: end for
5: for k'= 1, 2, ... , K do
6: for b = 1, 2, ... , m do
7: for Uk, = 1, 2, ... , b do
8: Update the cost fk' based on the (k' - 1)-segment solution fk'-1
9: Update f, the k'-segment solution by

10: fkl(b) = min>u,>b [h (Uk/, b) + fkl-1(uk/)] , where
h (Ukf, b) is computed using the appropriate matrix C(Uk ,b).

11: end for
12: end for
13: end for

is an e-approximation to the real optimal solution from among those of constrained

end-points. We note the cost difference between the constrained and unconstrained

solutions can be bounded using the Lipschitz constant of the signal.

The modifications required to the algorithm of [14] in this case are as follows

* During the search over Ukf, Uk' is allowed only to be at locations which are part

of the piecewise coreset of some segment in D.

* For each line segment (Uk,, b), its fitting solution and cost is obtained by concate-

nating row-wise the matrices C from each segment i of D completely contained

inside (Uk', b), along with the sampling points inside (Uk', b) from partially con-

tained segments of D, into a single matrix C(UkI,b), and solving for the linear

segment using C(u ,,b).

* h (Uk', Uk') is defined to be infinite if two segment endpoints are inside a coreset

segment.

The Modified Bellman algorithm for computing k-segmentation using a coreset is

described as Algorithm 4.

64

Let Lcoreset denote the maximum number of inner-points per segment obtained

from Algorithm 5. The number of segment fitting cost computations done is

0 (+ok L . (4.13)

We denote the minimal fitting k-segment such that its endpoints are constrained to

be on the boundaries of one of the coreset segments produced by Algorithm 1.

Theorem 3. Given a coreset D as described in Algorithm 1, Algorithm 4 finds an

e-approximation of the constrained k-segrnent mean in time O(polylog(n) poly(k))

Proof. Computation time is determined by the number of end points over the whole

signal. Following the proof from [14], the modified algorithm finds the optimal con-

strained k-segment.

According to Equation 4.11, we have overall 0(f + ak)) segment endpoints,

which is O(log n). Therefore our algorithm requires 0 ((log n)2 k) estimations of liii-

ear segment fittings. Each line segment estimation involves constructing a matrix

composed out of 0 (+ 3k) complete segments, and inverting it. We note that

each segment (partial or full) contributes O(log n) rows to the matrix, and that its

width is O(d). Hence, inverting it is 0(polylog(n) poly(k)), therefore the algorithm

takes 0(polylog(n) poly(k)) to complete. The approximation property of the algo-

rithms comes from the approximation of the coresets E

Incorporating the construction time of the coreset, we have the following.

Theorem 4. Let P be a d-dimensional signal. A (1 + E) approximation to the k-

segment mean of P can be computed in 0 (ndk/E + d(klog(n)/1E)o())) time

4.7.2 Weak (k, e)-Coreset for Efficient Segmentation

As an alternative that avoids constraints on the segment endpoints, we describe an

additional new approximation tool for computing efficient k-segmentation. Instead

of going through all n time points of the signal for the k + 1-segmneits induction

65

Algorithm 5 PIECEWISECORESET(n, s, E)
Input: An integer n > 1, a function s : [n] -- (0, oo) and an error parameter e > 0.
Output: A vector w = (wi, - - - , Wn) that satisfies Lemma 2.

1: Set t +- En sj and B +- 0
2: for i = 1 to n do

3: Set bji- // Hence, bi [1/,]

4: if bi 0 {bj I j E B} then
5: B +- B U {i}
6: end if
7: end for
8: for each j E B do
9: Set I+- {i E [n] bi = by}

10: end for

- Ei41j Si j E B
: j 8 3 i

0 otherwise.

12: return (w 1 ,- ,wn)

step, or constrain the minimization problem as in Subsection 4.7.1, we propose an

approximate set of points to describe the time domain of each coreset segment that is

shattered into 2 or more segments. Aggregating the points over all coreset segments

provides us with a set of control points over which we can, for example, run the

original dynamic algorithm of [14] with bounded error as we now describe.

For an integer n > 1 we denote [n] = {1, , n}. Let k, n > 1 be a pair of

integers. A function f : R -+ [0, oc) is non-decreasing over [n] if f(i) < f(j) for every

i < j in [n], and non-increasing if f(i) f(j) for every i j in [n]. A function is

monotonic if it is either non-increasing or non-decreasing. A function g : R -+ [0, oc)

is k-piecewise monotonic if [n] can be partitioned into k consecutive sub-intervals

[n] = [i1] U ([i2] \ [ill) ... U ([n] \ [ik_1) such that g is monotonic over each one of them.

Lemma 2. Let k, n > 1 be a pair of integers, E > 0 and let f, s : [n] -+ (0, oo)

be a pair of functions, such that f, s are k-piecewise rational functions, where each

interval is of the form si = (aj + ibj)di, for each point i in segment j. (dy can be

any integer. Note: this includes k-segments) Let w = (w1,.- , wn) E Rn denote the

output of a call to PIECEWISECORESET(n, s, e/(2Ek En si)); see Algorithm 5. If for

66

every i E [n]
n

f(i) s: Zf) (4.14)
j=1

then

n n n

(1 - E) fi W Wf f(i) :5(1 +) f(i).
i=1 i=1 i=1

Proof. For every i E [n] let

s =" f(j)

We will prove that for a vector w that is returned from a call to PIECEWISECORESET(n, s, e)

we have

Z -hi - Z -hj < 2aek, (4.15)
i .iEB

Multiplying this by t j f(i) yields

f(i) - w Z(j) =I f(i) - Zwjf(j)l < 2akteF f(i).
jEB i=1 j=1

Replacing e by e/(16kt) will prove Lemma 2.

Due to the definitions of f,s, h is ak-monotonic, where E is a finite small integer

constant depending on the maximum IdjI. This comes from the 2k transitions of

segments from f, s, and the number of poles/zeros for the derivative of the product

function fisi. Hence, there is a partition 1 = {[il], [i2] \ [il], ... , [n] \ [iok-1]} of [n]

into consecutive Ek intervals such that hi is monotonic over each of these intervals.

Let Ij = {i E [n] : bi = bj} for every j E B. For every I E H we define Good(I) =

67

{j E B | Ij C I}. Their union is denoted by Good = Ejcr Good(I). Hence,

i
t - hi - E

jEB

s t

iE[n]

h - ZEIhj =5 h.7
jEB jEB iEIj

< S t
BG- (h -

jEB\Good iEIj

Si

t

hj)

+E - (h
IEH jEGood(I) iEIj

- (hi - hj)

(4.16)

(4.17)-hj)

We now bound (4.16) and (4.17). Put j E B. By Line 5 of the algorithm we have

Ij n B|= 1 and EiEI si/t < e. Hence,

- (hi - hj) e(max hi - min hi) e,
iEIj iEIj

(4.18)

where the last inequality holds since hi < 1 for every i E [n], by (4.14). Since each set

I E H contains consecutive numbers, we have IB\Goodl I 2k. Using this and (4.18),

we bound (4.16) by

- (hi - hj) < B \ Goodl -E < 11- e aEk. (4.19)
jEB\Good iEIj

Put I E H and denote the numbers in Good(I) by Good(I) = {k, k + 1 ... , l}.

Recall that h is monotonic on I. Without loss of generality, assume that h is non-

decreasing on I. Therefore, summing (4.18) over Good(I) yields

5 5 '(hi
jEGood(I) iEIj

- hj |
j=k

e(max hi - min hi)
iEIj iEI3

sI(hi - h
iEIj

1-1

<5 (min hi
j=k iEI+i

- min hi) = e(min hi - min hi) : e,
iEIj iEh iEI

where in the last derivation we used the fact that hi 1 for every i E [n]. Summing

68

I:
iE[n]

j s

over every I e II bounds (4.17) as,

zZ (hi
IEn jEGood(I) iEIj

- hj) |J -,e < aek.

Plugging (4.19) and the last inequality in (4.16) and (4.17) respectively proves (4.15)

as

- hi - E 3hj < 26ek
jEB

For every p, q E Rd we denote D(p, q) = I p - q | 2 , where 11p - qj| is the Euclidean

distance between p and q.

Lemma 3. Let p1, - , pn be a set of points on a line in Rd such that ||P1 - P2 =

-=|Pn1 - pn = A for some A > 0 and the first coordinate of pi is i for every

i E [n]. Let 1 : R -+ Rd bc a function such that {(x, 1(x)) x E R} is a line in Rd+1.

Then for every i E [n]

- ||pi - l(i)||
||A - '(i1|| < i

Proof. Since P is contained in a line, it can be shown [45] that there is a point q E Rd

and a positive number w > 0 such that for every i E [n]

|p - l(i0| 2 = w | pi - q112 . (4.20)

Let b : [0, oc) -+ [0, oo) be a monotone non-decreasing function and r E [0, oc) such

that D(xe6) er8D(x) for every x, J > 0. It, can be shown that for p = max {2r--1, 1}

and every a, b, c E M in a metric space (M, dist) we have

D(dist(a, c)) p(D(dist(a, b)) + D(dist(b, c)));

See [52], Lemma 2.1. In particular, for the case M = Rd, dist(ab) = w Ila- bfl, we

69

iE [n] t

denote D(a, b) = D(w IIa - b |) to obtain

D(a, c) p(D(a, b) + D(b, c)).

Let m = je[] D(pj, q) and i E [n]. We will prove that

D(pi, q) < 4mp 2 .

In particular, for b(x) = X2 we have r =2, p = 1 and

|pi - 1(i) = b(|lpi - l(i)|) = D(w ||p - q||) = D(pi, q)

4 Zjp[- l(i)11
< 4m =_ .ji , 2

where the second equality is by (4.20), and (4.23) is by (4.22).

Indeed, let Q ={j E [i] I D(pj, q) 2m}. By Markov's inequality,

-2;

(4.21)

(4.22)

(4.23)

(4.24)

Hence, there are ps,pt E Q such that s - t > i/2. Using this and (4.21)

D(p,p) p(D(p8 ,q) + D(q,pt)) < 2pm. (4.25)

Since s - t > i/2,

Al pi-ps= z(i -s) A(i -i/2) = Li/2< (s -t) =A lp - PtII.

Since D is non-decreasing, the last equation implies D(pi, p,) D(p, pt). Together

with (4.25) we get D(pi, PA) 5 2pm. Using the last inequality and the fact that p, E Q

proves (4.22) as

D(pi, q) p(D(pi,ps) + D(p, q)) p(2pm + 2m) 4mp2.

70

A function g : R -+ Rd is a 2-piecewise linear function if the set {(x, g(x)) I x E R}

is the union of two linear segments in Rd+l.

Corollary 1. Let (wi, - , wn) E Rn be the output of a call to PIECEWISECORESET(n, s,

where c is a sufficiently small universal constant, n > 1, e > 0 and s is the function

that maps every i E [n] to si = max { , n_. }

Then for every set (1, p1), .- , (n, pn) of n points that is contained in a line in

Rd+1 and every 2-picccwise linear function g : R -> Rd the following hold:

(i) w has ||w||O = 0 ('09n) non-zeroes entries.

(ii) w can be computed in O(log n) - ||w||0 time and ||w||O space.

(iii) The following bound holds:

(1 - 6) 1 g(i) - pil 2 < EW I 2 (1 + i) <(, +g(i) - pijI2
i=1 i=1 i=1

Proof. (i) Put E' = ce log n. By Line 11 of the algorithm, IIw = B1. Since B consists

of distinct integers bi E [1, 1/E'+ 1] we have flw jjO = JBI = O(1/e') = O(log(n)/E).

(ii) Since bi is monotonic over i E [n], we can use binary search on [n] to compute the

smallest i E [n] such that bi 0 B. In each of the O(log n) iterations we compute bj for

some j E [n]. Since E_1 si is a sum of two harmonic series, bj can be computed in

0(1) time. As explained in (i), JBI = O(log(n)/e) so the overall time is O(log(n)/e') =

O(log 2 n/E). We only need to store w during this recursion, which takes lwHjO space.

(iii) Put i E [n] and let f(i) = p -- g(i) 12. Since (1, pi), , (n, pn) are on a line, we

have that I pi - P2 = Pn-i - A,|1 = A for some A > 0. Since g is 2-piecewise

linear function, there is a line {x, 1(x)} for some 1 : R -+ Rd such that 1(j) = g(j) for

every j E [ii or every j E {i, i + 1, - - , n}. Without loss of generality, we assume the

71

first case. By Lemma 3,

4 E_'j |--e ~)|f(i) = -pi g(i) 1 = 1pi- l(i)H| <Z|til]Ipi -(2 Z S f
jENi] jE[i]

(4.26)

Since g is 2-piecewise linear and pi, p.. ,,p, are points on a line, we have that f is

4-monotonic over [n]. The function s is 2-monotonic. We also have that

logn -- 2k _1 s,

for a sufficiently small constant c. Plugging this and (4.26) in Lemma 2 then proves

the theorem as

(1 -e) f(i) wif(i) (1 + E) f(i).
=1i=1 i=1

We show how to compute a (1 + E)-approximation to the k-segment mean of the

original signal P using the coresets constructed in Algorithms 3 and 5. The technique

can be used to solve any other optimization problem over k-segments, assuming that

we have an existing algorithm for a weighted signal. For example, if priors are given

(weights for each segment) or we want to minimize the cost over some subset of

k-segments (e.g., (k, m)-segment mean).

We assume that we are given a possibly inefficient algorithm SLOWSEGMENTATION

("black box") that will be used to compute the k-segment mean of a small set that

is based on the coreset. The algorithm SLOWSEGMENTATION gets a set Q of pairs

((t, p), w) where t E R, (t, p) is a point in Rd+1, and w > 0 denote its weight. The

algorithm then returns the k-segment mean of Q, i.e., the k-piecewise linear function

that minimizes the weighted cost, costw (Q, f) <-- w |1(p - f(t))112. We will

((t,p),w)EQ
run this algorithm only on a small set Q, whose size is roughly the size of the coreset.

In what follows we describe the algorithm FASTSEGMENTATION that uses the coreset

and SLOWSEGMENTATION to get a fast approximation of the k-segment mean of the

72

Algorithm 6 FASTSEGMENTATION(P, k, E, S)

Input: P = {(1,pi),--- , (n,p)} in Rd+1
Input: k > 1, an integer
Input: E > 0, an error parameter
Input: S = SLOWSEGMENTATION(Q, k), an algorithm that computes the k-segment

mean of a given weighted set Q.
Output: f, a (1 + e)-approximation f. to the k-segment mean of P.

1: D +- CORESET(P, k, E); See Algorithm 3.
2: Identify D = {(C, gi, bi, ei), .., (Cm, gm, bm, em)}
3: Q- 0
4: for i +- 1 to rn do

5: Pi -{(bi, gi(bi)), I -. - (ej, gi (ei))}
6: (wi, - , wn) <- PIECEWISECORESET(IPi , s, ce/ log(n)), where c and s are de-

fined in Corollary 1.
7: Q +- Q U {(tp),2) I (tp) is the jth point of the signal P}
8: end for

9: h +- SLOWSEGMENTATION(Q, k)
10: for i -- 1 to m do
11: T f- bi, -... , ei}
12: if {h(t) I t E T} consists of at most 2-segments then
13: f(t) +- h(t) for every t E T
14: else
15: f(t) +- gi(t) for every t E T
16: end if
17: end for

18: return f

original set P.

Algorithm overview The input to the algorithm FASTSEGMENTATION is a signal

P of n points in Rd, an error parameter e > 0, and an integer k > 1. In addition, the

algorithm gets a pointer to the algorithm SLOWSEGMENTATION.

Recall that for a k-segment f : R Rd and i E [m] we say that Ci is served by

one segment of f if {f(t) I bi t < ej} is a linear segment. The next lemma states

the weighted set Q that is computed in Line 7 of Algorithm 6 is a weak coreset in the

following sense. For every k-segment f such that each cell C is served by at most

two segments of f, the cost of P and the weighted cost of Q to f are approximately

the same. In Theorem 1 we prove that a k-segment mean has this property, and thus

73

can be computed from this coreset Q.

Lemma 4 (Weak coreset). Let f be a k-segment such that Ci is served by at most

two segments of f, for every i E [m]. Then

min cost(P, f) K min costw(Q, f) (1 + e) min cost(P, f).
f f f

Proof. Put i E [m] and P = {(ti,pi), Since Ci is served by at

most two segments of f, then P is also served by at most two segments of f. By

Corollary 1,

'Pt'

f (tj) - p3 12 < Ew f
j=1

APil

(t,) - p|| (1 + e) E |f(tj) - pi|
j=1

Hence, letting Q = {(tj, p), wj) I wj > 0, j E [IPi}, by Line 7 of Algorithm 6 we

obtain

Icost(Pi, f) - costw(Q , f)I =
j=1

Ilf(tj) - pj1 2
Pd

- wj2 If(t) -
j=1

'Pil
< E S f(ti)

j=1
- 112 = S7ost(Pi, f).

Summing over every i E [m] yields

cost(P, f) - costw(Q, f)| 5 Ecost(P f).

Theorem 5. LetP = {(lpi),p - , (n,pa)} be a set in Rd+1, e (0, 1/2), and k > 1 be

an integer. Let f : R -+ Rd be the output of a call to FASTSEGMENTATION(P, k, e, SEGALG).

Then f is a (1 + e)-approximation to the k-segment mean of P, i.e.,

cost(P, f) (1 + e) min cost(P, f'),

74

(1-) 1 Wj

pj
12

, (tipilIpisi)}.

where the minimum is over every k-segment g : R -+ Rd.

Proof. Let h be the k-segment that is computed in Line 9 of the algorithm FASTSEGMENTATION(P, k)

and let i E [m]. We first prove that cost(P, f) cost(P, h) by case analysis: (i)

f(t) = hi(t) for every t E T, and (ii) f(t) = g (t) for every t E T.

Case (i): In this case cost(P, f) = cost(P, h) by definition of P.

Case (ii): In this case cost(P, f) = cost(P, gi). By its construction, gi is a 2-

approximation for the 1-segment mean of P. Since the points of P lie on a line,

we thus have cost(P, gi) 0. Hence,

cost(Pi, f) cost(Pi, gi) = 0 < cost(Pi, h).

Summing cost(P, f) cost(Pi, h) over i E [m] yields

cost(P, f) cost(P, h). (4.27)

Suppose that h* minimizes cost(P, f') over every k-segment f' : R -+ Rd. Similarly

to (4.27), it can be shown that there is a k-segment f* such that

cost(P, f*) < cost(P, h*),

and Ci is served by at most two segments of f*, for every i E [m]. We then have

cost(P, f) costw(Q, f)

< costw(Q, h)
1 +e

K
(Ostw(Q, f*)

(1 - e)cost(P, f*)
1 + E

S(I + 106) cost (P, f*,

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

where (4.29) holds by (4.27), Eq. (4.28) and (4.31) hold by Lemma 4, Eq. (4.30) is

by the optimality of h, and (4.32) holds since & < 1/2. Replacing E with E/10 proves

75

this theorem.

4.8 Parallel and Streaming Implementation

One major advantage of coresets is that they can be constructed in parallel as well as

in a streaming setting. The main observation is that the union of coresets is a coreset

-- if a data set is split into subsets, and we compute a coreset for every subset, then

the union of the coresets is a coreset of the whole data set. This allows us to have

each machine separately compute a coreset for a part of the data, with a central

node which approximately solves the optimization problem; see [49, Theorem 10.1]

for more details and a formal proof.

When discussing streaming coresets, one must define the merging and reduction

operations used in streaming, and show that the coresets create are still efficient and

accurate. We build our merge and reduce operations as a modification of the coreset

algorithm as given in Algorithm 3, so that it compacts coreset segments rather than

signal points. For this we modify Algorithms 1,2 as we now describe.

First, we look at Algorithm 2, we modify it in the following way. In line 6 of the

algorithm, the original segments from both child coresets are taken. Partitioning is

done by unifying existing coreset segments into sections P. Iterating over Theorem 1,

we note that part i is kept by the reduction of parts at each turn. Looking at the

proof of part ii we note that we only use the coreset segments' cost as represented for

1-segments, and this can be computed by the C matrices,,starting from the end of

Equation 4.12. This holds also for the joined and compacted matrices.

Next, we look at Algorithm 1, and modify it to utilize the child coresets' coreset

segments in order to construct a new set of coreset segments for the combined span.

This requires several modification the the algorithm -- notibly, the accumulation of a

new coreset segment Q is done solely in terms of adding new child coreset segments.

We note that f* and A in lines 5 and 6 respectively can be computed for concatenations

of coreset segments, in terms of their (1, e/4)-coresets. We note that C,g can be

computed using the C matrices of the child coresets. We do so by concatenating the

76

El

C child matrices, and recomputing the SVD for the concatenated matrix.

Specifically, for the matrix-based approach (of claim 1), let (U1 , S1, V) and (U2 , S2, V2)

be the SVD of matrices P1, P, 2 corresponding to the coreset segments creation. It's

easy to show that

22(2T T (s v b) (1I b + (S2 V) b

F F

S, 1 S1 VT
S2V T b I = U1S 1 b = (4.33))2Vk s2V I

F F

Sj Vj b ,

-I1

S1V1 T'
where (Uj, Sj, Vj) is the SVD of I I, and we used the properties of the Frobe-

S2 VT

nius norm, the isometry properties of unitary matrices, and properties of (Us, Si, Vg),

respectively. Once Cj is computed gj can be computed easily. We note that similar

to Theorem 6, an approximate solution can be computed using the approach of [57].

Looking at the proof of Lemma 1, we note that the treatment of good coreset

segments remains the same. The coreset segments that do not belong to Good(D, f)
still amount to the same cost bounds, due to the construction of gj.

4.8.1 1-Segment Coreset

A (1, e)-coreset approximates cost(P, f) for every 1-segment f up to a factor of 1 t E,

Definition 6 ((1, E)-coreset). Let P and C be two sets in Rd+1 and let E, w > 0. The

77

Algorithm 7 1-SEGMENTCORESET(P)

Input: A set P = {(ti,pi), ... , (t.,p.)} in R'+1
Output: (1, 0)-coreset (C, w) that satisfies Claim 1.

1: Set X E Rnx(d+2) to be matrix whose ith row is (1, tj, pi) for every i E [n].
2: Compute the thin SVD X = UDVT of X.
3: Set u E Rd+ 2 to be the leftmost column of DVT.
4: Set w <- ./w > 0 since ||Dfl = HXH| > 0

5: Set Q, Y E R(d+ 2) x (d+2) to be unitary matrices whose leftmost columns are
u/ IIul and (/,- , / uI respectively.

6: Set B E R(d+2)x(d+1) to be the (d + 1) rightmost columns of YQTDVT/ /W.
7: Set C C Rd+1 to be the union of the rows in B
8: return (C, w).

pair (C, w) is a (1, e)-coreset for P, if for every 1-segment f : R -+ Rd we have

(1 - e)cost(P, f) < w - cost(C, f) <; (1 + e)cost(P, f).

For example, (P, w) is a (1, E)-coreset for P with e = 0 and w = 1. However, a

coreset is efficient if its size |C| is much smaller than P.

It is easy to compute cost(P, f) exactly by a matrix DVT of (d+2) rows using SVD,

as shown in Algorithm 7. In our coreset construction we use additional matrices Q and

Y to turn this matrix into a subset C of Rd+1 so that the cost cost(P, f) = cost (C, f)

is still a point-wise cost, although a weighted one. This allows us to improve the

result later in this section, to get a less trivial coreset C of only 0(1/.2) rows.

Claim 1. Let P be a set of n points in Rd+1. Let (C, w) be the output of a call to

1-SEGMENTCORESET(P); see Algorithm 7. Then (C, w) is a (1, 0)-coreset for P of

size CI = d + 1. Moreover, C and w can be computed in 0(nd2) time.

Proof. Let f : R -+ Rd be a 1-segment. Hence, there are row vectors a, b E Rd

such that f(t) = a + b t, for every t E R. By definition of Q and Y we have

YQTu/ ju| = (/w, - -- ,)/||ull. The leftmost column of YQTDVT is thus

78

YQTU = (V, - ... , V)T. Therefore,

n

cost (P,f)= | f(t)-p|2= |a+bt -p 2 = Z [1
(t,p)EP (t,p)EP (t,p)EP

-- 2 - 2 - -

a aa

X 2 = UDVT 2 = YQTDVT b

. -' I~ ~ L ~ ~ ----I]

V1W a a

B b =w B b

=w E (a+bt-p)||2 =w-cost(C,f).
(t,p)EB

.a 2

t] a
bJ

2

Construction Time. The matrices Q and Y can be computed in O(dn2) time

using the QR, d(ecomposition of [(1, . .. , 1)T I and [u I] . Computing the thin

SVD of an n x d matrix X also takes 0(nd2) time. Hence, the overall running time

is O(nd2) [109].

The size d + 1 and running time of the above (1, 0)-coreset C might be too large,

for example when d is in the order of n, or we are dealing with high dimensional space

such as images or text. On the other side, in the rest of the work the construction of

(1, F)-coresets suffices. Using recent results from [49] and [57], the following theorem

yields faster and smaller coreset constructions when d > 1/6.

Theorem 6. Let P C Rd+1 and let 6 > 0. A (1,e)-coreset C C Rd+1 for P of size

|C|= O(1/e 2) can be computed in 0(nd/E4) time.

Proof It was proven in [49] that a coreset for P and a family of query shapes, where

each shape is spanned by 0(1) vectors in Rd, can be computed by projecting P on a

(1/E2) dimensional subspace S that minimizes the sum of squared distances to P up

to a (1 + E) factor. The resulting coreset approximates the sum of squared distances

to every such shape up to a factor of (1 + e). The size of this coreset is n, the

79

same as the input size, however the coreset is contained in an 0(1/2) dimensional

subspace. We then compute a (1, 0)-coreset C for this low dimensional set of n points

in s = O(1/e2) space using Claim 1. This will take additional O(ns2) time and the

resulting coreset will be of size O(s).

The subspace S can be computed deterministically in 0(nd/e4) using a recent

result of [57]. D

As proven below, the 1-segment mean of C is an approximation to the 1-segment

mean of P. So, using C we can compute a fast approximation for the 1-segment mean

of P.

Corollary 2. Let e c (0,1). A (1 + e)-approximation to the 1-segment of P can be

computed in 0(nd/E4) time.

Proof. Using Theorem 6 we compute a (1, e)-coreset C of size JCJ = O(1/E2) in

0(nd/E4) time. Then, using the singular value decomposition it is easy to compute

a 1-segment mean f of C in O(d - JC12) = O(d/e4) time. Hence, the overall running

time is 0(nd/E4).

Let f* be a 1-segment mean of P and f be an arbitrary 1-segment. Since C is a

(1, E)-coreset for P,

cost(P, f) (1+e)cost(C, f) (1+F)cost(C, f*) < (1+e) 2cost(P, f*) (1+3e)cost(P, f*),

where in the last inequality we use the assumption e < 1. Replacing e with E/3 in

the above proof proves the corollary. D

In the previous section we showed that a 1-segment coreset (C, w) of size inde-

pendent of n exists for every signal P. Unfortunately, the next example shows that,

in general, for k > 3 such a coreset C must contain all the n points of P. This result

justifies the more complicated definition of a (k, e)-coreset in the next section; See

Definition 3.

Claim 2. For every integers n, c, d > 1 there is a set P of n points in R'+1 such that

the following holds. If C ; Rd+1 and |CJ < n then there is a 3-segment f such that

80

either

cost(C, f) c -cost(P, f) or cost(P, f) n c -cost(C, f).

Proof. Let P = {(i,0, - 0)}7, a constant-0 signal. Consider the 3-segment f
R -+ Rd such that f(t) = (0, ... ,0) for every t E R. We have cost(P, f) 0. If

cost (C, f) > 0 then cost(C, f) c -cost(P, f) as desired.

Otherwise, cost(C, f) = 0. Let (t, p) e P \ C and consider a 3-segment g R -+ Rd

such that g(t) = f(t) = (0, -- - , 0) for every t E R \ {t} and g(t) $ p. Hence,

cost(C, g) = Ip'
(t',P')eC

(t',p')EC

Since cost(P, g) = 1- g(t) 2. > 0

cost(C, g).

- g(t')f 2 '- 2

- f(t') 2 = cost (C, f) = 0.

the last two inequalities imply cost(P, g) > c -

E

4.9 Conclusions

In this chapter we presented the k-segment coreset, enabling us to build systems for

fast, content-based segmentation of data streams. In the next chapter we describe our

system implementation and in Section 5.1 we present experimental results to validate

our proposed approach on real data.

81

Chapter 5

Coresets for Segmentation -

Applications to Video Streams and

Financial Data

In this chapter1 we present a system for efficient online segmentation of large data

streams and detail experimental results. We demonstrate our algorithms on various

data types: video streams, GPS, and financial ticker data, in several experimen-

tal modalities. We evaluate performance with respect to output size, running time

and quality and compare our coresets to uniform and random sampling coinpres-

sion schemes. We demonstrate the effectiveness of our algorithm by running several

analysis algorithms on the computed coreset instead of the full data. Our implemen-

tation allows real-time segmentation of video streams at 30 frames per second on a

single machine. Lastly, we demonstrate the scalability of our algorithm by running

our system on an Amazon cluster with 255 machines with near-perfect parallelism as

demonstrated on 256,000 frames.

'Some of the content in this chapter was published in [114].

82

5.1 Experimental Results

We now demonstrate the results of our algorithm on several data streams of varying

length and dimensionality. We compare our algorithms against several other segmen-

tation algorithms where applicable. We also show that the coreset effectively improves

the performance of several segmentation algorithms by running the algorithms on our

coreset instead of the full data.

5.1.1 Segmentation of Large Datasets

We first examine the behavior of the algorithm on synthetic data which provides us

with easy ground-truth, to evaluate the quality of the approximation, as well as the

efficiency, and the scalability of the coreset algorithms. We generate synthetic test

data by drawing a discrete k-segment P with k = 20, and then add Gaussian and salt-

and-pepper noise. We then benchmark the computed (k, e)-coreset D by comparing

it against piecewise linear approximations with (1) a uniformly sampled subset of

control points U and (2) a randomly placed control points R. For a fair comparison

between the (k, e)-coreset D and the corresponding approximations U, R we allow

the same number of coefficients for each approximation. Coresets are evaluated by

computing the fitting cost to a query k-segment Q that is constructed based on the

a-priori parameters used to generate P.

Approximation Power Figure 5-la shows the aggregated fitting cost error for

1500 experiments on synthetic data. We varied the assumed k' segment complexity.

In the plot we show how well a given k' performed as a guess for the true value of k.

As Figure 5-la shows, we significantly outperform the other schemes. As the coreset

size approaches the size P the error decreases to zero as expected. This is in line

with the intuition that for an arbitrarily large coreset size we can trivially construct

a zero-error coreset by simply taking all of the input points.

Performance We evaluate performance by considering how the coreset size and

coreset construction time depend on the input size and dimensionality. Figure 5-

83

coreset error vs coreset size (source data k-segment query)

S--k-segment coreset0.45
-- uniform sample coreset

0.4- random sample coreset
- -input size n 10,000

03-

0f25

015-

01

005-

0
2000 3000 4000 5000 6000 7000 8000 Y1U0 10000

coreset size (number of points)

(a) Coreset error (E) decreasing as a function of coreset size. The dotted black
line indicates the point at which the coreset size is equal to the input size.

coreset construction time vs coreset size
400-

n = 10000
350 n = 5000

n = 2000
300

250

0 10 1 00 2000 3000 4000 5000
coreset size (number of points)

(b) coreset construction time in minutes as a function of coreset size. Trendlines
show the linear increase in construction time with coreset size.

Figure 5-1: Coreset size vs error and construction time

84

coreset error vs dimensionality reduction

~k' -2k

k' 10k
k' = 20k
k = =50k

=100k
k 00kI

4 8 6 0 12 14 1E. 18 2C 22

dimensionality reduction (num. SVD rows)

(a) Coreset error as a function of the diinensionality of the 1-seginent coreset,
for a fixed input size (note that in practice diinensionality is often reduced. down
to R2

Figure 5-2: Coreset error vs ,-diIensionality reduction

11) shows the linear 1ehltionship between input size and costructioni time of D for

different coreset size. Figure 5-2 shows how a high dimensionality benlefits coreset

coistriUctionl. This is even imore apparelnt in real data, which ten(ds to be Sparse, so

that in practice we are typically able to further rehice the coreset (hillelsion in each

segment.

Scalability The coresets presented in this work are parallelizable, as discllssed in

Section 4.8. We demiionstrate scalability I)y conducting very large scale experimllents on

b)th real anid synthetic data, runming our algorithm on a network of 255 Amazon EC2

iiodes. We coimpress a 256,000-frame baus-of-words (BOW) stream iii approxiiately

20 minutes, represeiting an almost-perfect scalability. For a coImlparable single node

rinimung on the same data dataset, we estimate a total running tine of approxiiately

42 honrs.

5.1.2 Real Data Experiments

We compare our coreset against uniform sample and random sample coresets, as

well as two other segmentation techniques: Ramer-Douglas-Peucker (RDP) algorithm

[111, 38], which uses a maximum distance cost function, and the Dead Reckoning

(DR) algorithm [130], which uses a sum of squared distances cost function. We also

show that we can combine our coreset with segmentation algorithms, by running the

algorithm on the coresets itself. We emphasize that segmentation techniques (RDP,

DR) were purposely chosen as simple examples and are not intended to reflect the

state of the art - the point is to demonstrate how the k-segment coreset can be used

to improve on any given algorithm.

To demonstrate the general applicability of our techniques, we run our algorithm

using financial (1D) time series data, as well as GPS data (2D).

For the 2D case we use GPS data from a taxi fleet of 343 taxis in San Francisco.

This is of interest because a taxi-route segmentation has an intuitive spacial inter-

pretation that we can easily evaluate, and on the other hand GPS data forms an

increasingly large information source which we are interested of analyzing. Figures

5-3a, 5-3b show example results for a single taxi. Again, we observe that computing a

DR segmentation produces segments with a meaningful spatial interpretation. Figure

5-5 shows a plot of coreset errors for the first 50 taxis (right), and the table gives a

summary of experimental results for the Bitcoin and GPS experiments.

For the 1D case we use Bitcoin price data from the now defunct Mt.Gox Bitcoin

exchange. Bitcoin is of general interest because its price has grown exponentially

with its popularity in the past two years. Bitcoin has also sustained several well-

documented market crashes [13, 25] that we can relate to our analysis. Figure 5-6a

shows the results for the Bitcoin data. Notable market crash events are highlighted

by local price highs (green) and lows (red). We observe that running the simple DR

algorithm on our k-segment coreset to compute a segmentation captures these events

quite well. Figure 5-6b shows Bitcoin price segmentation vs Google Trends interest

over time for the search term "Bitcoin" [1]. It is interesting to note that the most

86

prominent search even occurred on April 10, 2013 [13, 25], which thersegmentation

identified despite the market capitalization being an order of magnitude less than it

was a year later.

As a high-dimensional temporal stream from the financial domain we look at a

stream of S&P 500 stock quotes. Specifically, we take the daily ask price for S&P

500 over 2000 days, between 8/29/2005 and 8/09/2013. Pruning stocks that do

not appear in the index for the full duration, we have a 477-dimensional vector per

day, normalized w.r.t. the initial stock value. In Figures 5-7--5-9 we demonstrate

the coreset computation and segmentation over the period. As can be seen, both

the coreset segments, and the resulting dynamic programming segmentation capture

main events of the period, such as the October 2008 and August 2011 crashes.

5.1.3 Semantic Video Segmentation

In addition, we demonstrate use of the proposed coreset for video streams summariza-

tion and compression. In order to get a meaningful segmentation and analysis of video

streams, embedding video frames into a semantically meaningful representation is im-

portant. The basis for video segmentation and summarization is content comparison

across video frames. The dissimilarity measure is subjective and depends on our own

definition of activities and segments in the video, and it may involve user interaction

or input. While different choices of frame representations for video summarization

are available [124, 86, 91], we used BOWs based on color-augmented SURF features,

quantized into 5000 visual words, trained on the ImageNet 2013 dataset [37]. We

gather about 3.5 x 108 vectors from the data by an online streaming coreset [49] for

k-means representation, allowing the k-means clustering to be computed in a few

minutes on an Intel i7 CPU.

The resulting signals are compressed in a streaming coreset. Computation in on

a single core runs at 6Hz; A parallel version achieves 30Hz on a single i7 machine,

processing 6 hours of video in 4 hours on a single machine, i.e. faster than real-time.

We then can perform segmentation using dynamic programming [14].

In Figure 5-10 we demonstrate segmentation of a video feed taken from Google

87

0
-

0

F:

X1: Latitude (top)
X2: Longitude (bottom)

"-'- Dead Reckoning segmentation

TimeI
Time

(a) Normalized GPS data from taxis in San Francisco overlayed with a Dead
Reckoning segmentation computed on our coreset.

- 122 .37 r- - -.. . . . -. --.- ..- .

-122.38k - - -. ..-. . . .

37.7 37.75

Latitude (X1)
37.8 37.85

(b) Latitude/Longitude plot demonstrating that the segmentation yields a
meaningful spacial interpretation (cf. Fig. 5-4)

Figure 5-3: Segmentation of GPS data from taxis in San Francisco

88

-122.39-

-122.4-

-122.41-

-122.42-.

-122.43

-122.44-

'0

-j

-122.45F --

-122.46-

-122.47
37. 6 37.65

I I --- I I

.......I -.-.

-- .--. .- -. . -. .- -. .--

-. -. ..-. ..-. --. .-. .--.--.

.....-.....-

.....-.-. .-- -. .---

-....... -.... -......... -...... -....----.. ---- - ---

-.--........

Alcatraz Island
fIIA URE
ISL/ ND

CH

:P ESIDIO Lombard M RCADERO
A IAL

DIS RICT

SEA CLIFF Cafoia S,

GearY BIN
OUTER q AT&T P rk

RICHMOND .i -I cIsc
Golden r t HAIGHT-ASHBURY

Gate Park t~
th tI

THE CAITRO NT ION
ICT DOGPATCH

OUTER SUNSET

SUNSET DISTRICI

BER kL HEIGHT

Sloat Blvd

& HUNTEF 3 POINT

PARKMERCED -iOAC N
OUTER MI V VALLI:

WESTLAKE

Daly City

Brisbane
Colma

South an FO
Franc co

Sa I Fran
Int !rnatic

Pacifica

.,-~. -.-~-

~ -~->

4

Cisco
)nal Airport

Latitude/Longitude plot overlayed on a map of San Francisco. Note that the segmentation yields a

meaningful spacial hiterpretatioln, by separating trajectories across the various parts of the downtown

area (yellow box).

Figure 5-4: Lat/Long plot overlayed on a map of San Francisco

K)

I

Headlands

Golden Gate
National

Recreation
Area

.L ~

~

- - 5.

Average E Bitcoin data GPS data

k-segment coreset 0.0092 0.0014
Unliforn saimple coreset 1.8726 0.0121
Randomi sample coreset 8.0110 0.0214

RDP on original data 0.0366 0.0231
RDP on k-segment 0.0335 0.0051

DR on original data 0.0851 0.0417
DR on k-segment 0.0619 0.0385

A ~ ~ AN'V

I I I I I I I I I
0 5 10 15 20 25

Taxi ID
30 35 40 45 50

Table: sunmary of experimental results with Bitcoin and GPS data. Plot: visualization of GPS
error and standard deviation results for the first 50 taxis.

Figure 5-5: Sumnnary of experiments with Bitcoin and GPS data

90

I1

I

0.2-

0.18

0.16

0.14

0.12

0.1

k-segment coreset (mean and std)
Uniform sample coreset
Random sample coreset
RDP on points
Dead Reckoning on points

6-

a)
a
a)

C.)

0.08-

0.06-

0.04!

0.02

0

%

MTGOXUSD
1400

MTGOXUSD D1 closing price
1200 -

Dead Reckoning segmentation
1000 A Local price maxima

&) Local price minima
800

C) 600
:D
O 400

200A

0

-200
Apr-2013 JuL-2013 Oct-2013 Jan-2014

Date

(a) Daily Bitcoin price da.a (MTGOXUSD Dl), froim Jan 1, 2013 Apr 1, 2014, overlayed with
a Dead Reckoning seginenitation coinputed on our coreset. The red/green triangles represent
local inin/nax, indicating proiinent iarket events [13, 25],

MTGOXUSD vs Google Trends

1200

1000

800

C) 600

200

0

MT(~OXIJ~flfl1 -
Google Trends for "Bitcoin"

Apr-2013 Jul-2013 Oct-2013 Jan-2014

Date

(b) MTGOXUSD daily Bitcoin prices (.Jan 1, 2013 Apr 1, 2014) compared against Google Tends
search interest over tine for "Bitcoin" [1].

Figure 5-6: MTGOXUST) daily Bitcoin price seginentation

91

$SPX - S&P 500 Index

~I.

~ j ~

A;

2-

'I

1,04
0

A

2067 ?0 2r09

I 5o 00

1.450 CW
1.400 00

1,35000D

1.30000

I .2so 01)
120000

1,15000

S100W

1.s0500

-f.cX Co

-U50 'j

- 900

A o

- C ou
750 CH)

- 7c 00
201?

S&P 500 Index (SSPX) for the period from Aug 29, 2005 Aug 9, 2013.

Figure 5-7: S&P 500 index plot

$SPX - S&P 500 Index

1.50000

I.4s000
1,40000

I.soo
1.300 o0
1 2130 00

I "COOO

I 5000O

1,10000

I.Doo 00

9500000000

s 00

Normalized S&P 500 stock quotes for the period from Aug 29, 2005 Aug 9, 2013.

Figure 5-8: S&P 500 stock quotes

92

-1

I i .j i r ul?0 1

S&P 500 Index vs segmientation of normalized S&P 500
over the coreset, for K

Figure 5-9: S&P 500 index vs S&P 500

stock quotes using Bellman's algorithmi
= 10.

stock quotes segmentation

Glass. We visualize the BOWs, as well as the segments suggestcd by the k-segment

mean algoritlun [14] ruin on the coreset. Inspecting the results, most segient transi-

tions occur at scene and room dhanges. The resulting segmentation call be used so

as to reason about the places traversed, activity of the wearer, and unusual events.

An additioial property of oiir algorithn is the ability to handle segmentation

bIased Ol several data streams, whose coresets are comiplited separately. Segmentation

can then be complliuted oii the comlbiined data stream.

We note that semantic segmentation of video is still unsolved and iin particular, it

can not be (lone in real-time. Our method for segmneitation rms ill real-time arnd can

further be used to automatically sinnumarize the video) ly associating representative

frames with segments. T() evaluate the "semmiantic" quality of our segmentation, we

compared the resulting segments to uniiform segmnentation by contrasting thei with

a himimiami aimitatioii of the Video) into scemies. Our nmetlhod gave a 25% improvemnent

in the Rand ilidex [112] over a 3000 frames sequence.

A larger scale examiple is given in Figure 5-11c. where data from a 3-hours tour

9:3

I

S&P 500 company price data

21312 20113

-1
_____ 1

0z

E00

7p 4 7'
Segmientation froin Google Glass. Black vertical lines present seginent boundaries, overlayed on top
of the bags of word representation. Icon inages are taken from the niddle of each segment.

Figure 5-10: Segmentation from Google Glass

of Boston is processed in real-time. The resulting segmentation is shown, along with

representative frames. To give an example at a higher semantic level, we used our

algorithm to compress and then segment a stream of scene classification vote vectors

based on the Places mnodel [139]. Our stream conies from a GoPro video camera

strapped to a person, going fron a lab space, to a couple of meetings, and back to

the lab, totaling 180,000 frames and vector dimensionality of 205. As can be seen in

Figure 5-11, the resulting 8-segnientation clearly shows the transitions between scene

types, and would match the intuitive sunnary for this vi(leo.

5.1.4 Technical Summary

" SVD provides a (1, 0)-coreset for the 1-segment mean.

* BICRITERIA algorithm estimates the complexity of the data in O(log n) itera-

tiolis.

" BALANCEDPARTITION algorithn uses the complexity BICRITERIA estimate to

construct a (k, E)-coreset for the k-segment mean.

" The k-segment mean coreset is of size O(k/E 2).

* The k-segment mean coreset is constructed in O(dk) time.

" The k-segment mean coreset is constructed using O(log n) memory.

I
94

%r

Ct

Z 4
- VO

(a) Seginentation based on the Places CNN n(iodel of 30 iinutes of egocenltric video. Black vertical
lines present segin it boimdamies, overlayed on top of the scene votes. Icon images are taken from

the middle of each segincnt. The two meeting places (coffeeshop and restaurant) are easily captured
as their own segiment, where the other segments include time spent inside the laboratory and walking
in the street.

(b) Segmentation based on the Places CNN model for a period of lh:40m, or 180,000 frames. Black
vertical lines present segment boundaries, overlayed on top of the scene votes. As can be seen, the
resulting segments capture the changes iin scene type.

(c) Segmentation based on bags of features of 3 hours taken from the Boston Trolley tour. Black
vertical lines present segnient bounldaries, overlayed on top of the scene votes. Icon images are taken
from the middle of each segment. The resulting segmentation matches the chlauges in scene content,
as expected.

Figure 5-11: Segmentation based on the Places CNN model

95

5.2 Conclusions

In Chapters 4 and 5 we demonstrated a new framework for segmentation and event

summarization of video data from robot cameras. We showed the effectiveness and

scalability of our proposed algorithms, and their applicability for large distributed

video analysis. In the context of video processing, we demonstrate how using the right

framework for analysis and clustering, even relatively straightforward representations

of image content lead to a meaningful and reliable segmentation of video streams at

real-time speeds.

96

Chapter 6

Coresets for Summarization -

Applications to Localization and

Retrieval

In this chapter' we demonstrate how our algorithms for high-dimensional stream

compression based on the k-segment mean coreset can be leveraged for efficient sum-

marization, state estimation, and retrieval for large video streams in continuously

operating robotic systems. We present an efficient feature-based coreset algorithm

for summarizing video data with significantly lower memory requirements than exist-

ing methods. We demonstrate a system implementation of the described algorithm

that generates a visual tree of keyframes that provide an image-based summary of the

video. We present a variety of experimental results that characterizes the efficiency

and utility of the resulting system for robotic localization and loop closure.

This chapter is organized as follows. We define and describe the relevant core-

sets, structures, and algorithms in Section 6.1. In Section 6.2 we define the require

notations for localization. This is followed by the details of the proposed closure de-

tection and retrieval algorithms in Section 6.3. Finally, in Section 6.4 we demonstrate

empirical results of our algorithm, both on existing and new datasets.

Some of the content in this chapter was published in [135].

97

6.1 Coresets And Stream Compression

We now turn to describe the coreset used in this work and the specific properties that

make it useful for video retrieval and summarization. In the problem statement we

query an observed image from a static set of observed locations. However, in practice

we are given a possible unbounded video stream of multiple frames per second (50/60

is the HD standard). To this end, we select a representative over-segmentation of the

video stream (along with a compact representation of each segment) called a coreset.

The coreset approximates the original data in a provable way, that guarantees a good

trade-off between the size, of the coreset and the approximation of each scene in the

video stream. More precisely, we embed images into Rd based on a naive Bayes

approximation, representing n images as a set n points in Rd. The algorithm outputs

a set, called e-coreset, of roughly k/e weighted segments approximating the data,

such that the sum of squared distances over the original points and approximating

segments to every k piecewise linear function is the same, up to a factor of 14+ e. The

existence and construction of coresets has been investigated for a number of problems

in computational geometry and machine learning in many recent papers (cf. surveys

in [46]). The assumption in this model is that similar images corresponds to points

on approximately the same time segment.

In this work we leverage our most recent results for high-dimensional data seg-

mentation [114] and present algorithms to perform efficient loop closure detection

and retrieval for arbitrary large videos. The core of our system is the k-segment

coreset, which provides flexibility with respect to varying dimensionalities, multiple

sensors, and different cost functions. For a single segment (k = 1) no segmentation

is necessary, and the data is represented using SVD. For multiple segments we want

to know how many segments are in the partition, how to divide them, and how to

approximate each segment. We present a two-part coreset construction: first we es-

timate the complexity of the data using a bicriteria algorithm; second we define a

fine partition of the data into coreset segments using a balanced partition algorithm,

and we approximate each segment by SVD. The algorithm guarantees a segmentation

98

that is close to k-segments with a cost that is close to the optimal cost.

6.1.1 Streaming and Parallelization

One major advantage of coresets is that they can be constructed in parallel, as well

as in a streaming settifg where data points arrive one by one. This is imaportant

in scenarios where it is impossible to keep the entire data in random access memory.

The key insight is that coresets satisfy certain composition properties, which have first

been used by [65] for streaming and parallel construction of coresets for k-median and

k-means clustering. These properties are:

1. The union of two c-coresets is an e-coreset.

2. An 6-coreset of such a union is an E(1 + e)-coreset.

We note that while the first property may seem trivial by concatenating the elements

of the coresets, the second property relates to the desired compactness of the repre-

sentation, and states that we can further compactness the unified coreset so that it

scales nicely as more- data is added.

Streaming In the streaming setting, we assume that points arrive one-by-one,

but we do not have enough memory 'to remember the entire data set. Thus, we

wish to maintain a coreset over time, while keeping only a small subset of O(log n)

coresets in memory. Since each coreset is small, the overall memory consumption is

also small. Using the properties above, we can construct a coreset for every block

of consecutive points arriving in a stream. When we have two coresets in memory,

we can merge them (by property 1), and re-compress them (by property 2) to avoid

increase in the coreset size. An important subtlety arises: while merging two coresets

does not increase the approximation error, compressing a coreset does increase the

error. However, using a binary tree as shown in Fig. 6-1, the final approximation in

the root is roughly O(e log n) for an original stream of n points, which can be reduced

to e by using a little smaller value for e (cf. [114] for a discussion of this point in the

context of k-segmentation).

99

We call the tree resulting from the coreset merges the coreset streaming tree.

We denote the coresets created directly from data as streaming leaves. An additional,

useful structure can be defined by looking at segment merges in the balanced partition

algorithm in [114]. This structure is the coreset segment tree.

Parallelization Using the same ideas from the streaming model, a (nonparallel)

coreset construction can be transformed into a parallel one. We partition the data

into sets, and compute coresets for each set, independently, on different computers in

a cluster. We then merge two coresets (by property 1), and compute a single coreset

for every pair of such coresets (by property 2). Continuing in this manner yields a

process that takes O(log n) iterations of parallel computation. This computation is

also naturally suited for map-reduce [35] style computations, where the map tasks

compute coresets for disjoint parts of the data, and the reduce tasks perform the

merge-and-compress operations. We note that unlike coresets for clustering such as

the one used in [108], parallel computation requires us to keep track of the time

associated with the datapoints sent to each processor.

New Approaches We now discuss how our work differs from, and builds on,

existing state of the art in this respect. Using the above techniqu6s, existing coreset

construction algorithms allow us to handle streaming and parallel data but not both.

This is because the parallel approach assumes that we can partition the data in

advance and split it between the machines. However, we cannot split an unbounded

stream in such a way when not all the data is available in advance. In our problem

we wish to process streaming video on the cloud, i.e., computing it for streaming

data and in parallel. In other words, we want to compress the data in a distributive

manner while it is uploaded to the cloud.

There are two contexts in which our system allows simultaneous streaming and

parallelization. The first is streaming of buffered data. For example (a robotic sce-

nario), in the case of an autonomous exploration vehicle or UAV collecting a high

volume of video, it is still useful and sometimes necessary to stream the data to a

collection point at a later time. Another example is a wearable device with an inter-

mittent connection to a data server that will buffer data at times when it is unable

100

0.

y

... ** b*91 Q

.9 *. .. .

/ __ t

I

I I I

.1- ..4 an 0 .00.. ..0.. ...

t

Streaiing coreset construction of a data streai. The bottom figure illustrates the online construc-
tion and segmentation of a block from an incoming data stream. Coreset segments are shown with
dashed blue lines. The top figure illustrates the continuous compression of the data stream through
progressive merge/reduce computation of the coresets fromn lower level coresets.

Figure 6-1: Streaming coreset construction

to upload it in real time. In both cases, the context will dictate a sufficient leaf size

beyond which temporal continuity is not expected, and continuous data blocks of this

size can be streamied in parallel.

Another context that is prevalent in robotics is a multi-source video stream (such

as the FAB-MAP dataset [31], which is considered an industry standard). In this

case, we can parallelize the coreset construction by streaming each view separately,

multiplexing video streams where necessary. Temporal continuity is naturally pre-

served.

101

6.1.2 Summarization and Retrieval

Roughly, in video summarization the goal is to get an image representative from each

scene in a given time interval, for a partition that captures the structure of the video.

Using the right feature space, we assimne that images in the same scene are generated

by a simple model. We use a linear approximation to allow short-scale temporal

variations. Our goal is to select a representative image from each such segment.

However, the coreset for this problem only guarantees that the k-segment of the

coreset will approximate the k-segment of the original data, which may not be a fine

enough segmentation. In addition, the assumption above holds usually but not always

- thein practice images that are intuitively similar appear on different segments, due

to appearance of new objects or viewing of different scene areas with a small FOV

camera. In this work we demonstrate how the coresets streaming framework allows

us to overcome these difficulties with little effort.

In this work we differentiate between several hierarchical structures that are cre-

ated during the stream processing. The traditional two are the coreset streaming tree

defined by the merging of batches in the data stream, and the coreset segment tree,

which depicts the merging of coreset segments during the streaming. The former has

a fixed topology regardless of the data, while the latter is adaptive to transitions in

the data, yet does not prioritize different aspects of the data points themselves. We

add on top of these a third structure, which allows us to get this unary adaptivity.

Specifically, we add a layer that stores a carefully chosen set of images along with

each node of the coresets tree, called key frames. Besides accomodating possible

partitions of the data, these key frames are expected to capture the variability of

the observed scenes in the video, and provide for various applicative needs. We

detail the selection of the key frames in Section 6.3.1. These key frames are merged

both according to the images quality and their ability to represent other images in the

video, and according their representation of video transitions, as captured by segment

merges in the coreset algorithm. We call the tree formed by selection of prominent

key frames the keyframe merqe tree.

102

Distance matrix D Relevance score f

J/2

keyframes keyframes

(a) The f2 distalce matrix D shows the difference between the candidate frames in descriptor space.
The 3 red circles indicate the 3 chosen keyframes using FPS only. (b) The relevance score f' is the
sum of all the keyframe selection netrics fi, f2,.... The 3 magenta circles indicate the 3 chosen
keyfraines using the relevance score only. The 9 out of 18 keyfraines eventually selected during the
merge of two nodes are shown with black dots.

Figure 6-2: Distance matrix vs relevance score

In the c(ontext of life-long processing and retrieval, the (corset streaming tree is

usually used to support the streaming and parallel model as explained in Section 6.1.1,

where only a small subset of the coresets in the tree exists at any given moment.

6.2 Loop Closure Problem Formulation

We 1ow describe the loop closure lproblemll following the notation of [31]. Denoting

the set of observations at time k, usually extracted from an observed image by Zk,

we wish to associate it with a uni(qule location Li. This is done by evaluation of the

set lunder a location-depeldent probabilistic model

Pr(i L) - Pr(zi, . . ., 2 jiv Lj) (6.1)

where vl dellotes the number of features, and zi denotes the indicator for appearance

of feature i in the image k. While soime methods consider the variables zi as binary

variables, in many cases, counts of feature appearance may be nmltiple (especially if

the visual vocabulary use(is small).

103

We are looking for the location that maximizes the conditional probability

Pr(LI Zk) = Pr(Zk I Li)Pr(Li)Pr(LZk)Z)'=(6.2) Pr(Zk)

and for the purpose of this work, we ignore the temporal dependency that is often

sought [31]

ZZk-1 Pr(Z | Li, Zk-)Pr(Li, Zk-1)
Pr(L~ Z,j Pr(k=Zk), (6.3)Pr(Zk, Zk-1)

where Zk-l denotes the observation history up to time k.

Several approximation have been considered for computing Pr(Zk Li). The

simplest approximation is the naive Bayes approximation

lvi
Pr(Zk I L) =]7Pr(zi I Li), (6.4)

i=1

which leads to e2 distance measure between observations and location distributions,

while assuming

Pr(zj I L) oc exp{-(zj - pj (Li)) 2 /0 2 }, (6.5)

where we do not assume a binary appearance vector. We note that the log-probability

of the observation given a location naive Bayes model is the f2 distance in feature-

space. This distance is the distortion measure approximated* by k-segment mean

coreset for k-segment models.

Another often used approximation is the Chow-Liu tree [21]. As proposed in [31],

the naive Bayes PDF model can be improved upon by an optimal tree (in the KL-

divergence sense) with respect to the empirical distribution of the location in a way

that is still tractable (i.e by solving a max-weight spanning tree problem).

6.3 Retrieval Algorithms

We now detail the construction required for the summarization and retrieval tasks

described above, in terms of the augmentation of the coreset structures, and the

104

algorithms running on top of the coresets.

6.3.1 Incorporating Keyframes into a Coresets Tree

We first describe the incorporation of keyframes into the coreset streaming tree con-

struction. This allows us to demonstrate the use of keyframes stored in the coreset

tree in localization, keeping only a fraction of the frames for localization, At each

streaming leaf SL we keep a set of K keyfranies, for some fixed K. With each node

merge in the tree, we select the new set of keyframes from the ones existing in the

children nodes by running a modified farthest-point-sampling (FPS) algorithm [68, 60]

on the feature vectors. The FPS chooses the frame with feature vector x from the

data, that is farthest fr6m the existing. set Sj_1

x3 = argmax d(x, Sj_1), (6.6)
x

with Sj_1 marking the set of previously chosen frames, in terms of their feature

vectors, and d(xi, xj) is the 2 distance between keyframes xi, xj in the feature space.

Here, we modify the FPS selection rule by adding an image relevance score term that

can include image quality (sharpness and saliency), temporal information (time span

and number of represented segments), and other quality and importance measures.

The relevance score is defined as

f*(X)= aTf(x) + asfs(x) + aBfB(X) (6.7)

where positive fi(xj) indicates higher relevance. The relevance score fB(xi) is the

the blur measure for image j based on [29] (negated for consistency with our positive

relevance convention). The relevance scores fT(xi), fs(xj) denote video time and

number of coreset segments associated with the keyframne xj, respectively. More

generally

f*(xj) = Ej' ai fi(xi) (6.8)

105

for any set of metrics 1 ... N, such as the example in Fig. 6-2(b). The weights a

allow us to fine-tune the system, for example to give more weight to image quality

vs temporal span. This allows us to get a rich set of representative keyframes that

are meaningful in the video in terms. of time span and complexity, Given a starting

point xO we modify the FPS algorithm to include the relevance score. The new point

is then given by

xj = argmnax d(x, S-)}
X

= argmax {d(x, Sj_1) + f*(x)} (6.9)
X

It can be shown that the resulting selected set is close to the optimal set if the

values of the score function are bounded and sufficiently close to 0, converging in the

limit to the 2-optimality guarantee of FPS. Let S be the set chosen by the modified

FPS, and let

p(S) = max d(x, S). (6.10)
X

Lemma 5. Let S* be an optimal representative set given by S* = argmins, p(S').

Then

p(S) ; 2 p(S*) - min f*(x) (6.11)
x

Proof. The proof for a specific k and Sk is done similar to the FPS proof [99], by

looking at xmax, the maximizer of d(x, Sk), along with Sk. By comparing this set to

Sk using

d(x, y), X E{Xax}USki yESk* (6.12)

we have two elements x 1, x 2 with d minimal to the same element s* E SZ, by the

pigeonhole principle. Let us assume x1 to be the latest of the two. It can be shown

106

Algorithm 8 SAMPLEOLDNODE(V)
Input: V = v1, ... , Vend, the set of coreset tree nodes
Output: v, node sampled from the tree before Vend

1: V +- Vend

2: tmax +- 00

3: started- descent +- 0
4: a < 1 is a fixed parameter
5: while started descent , 1 do
6: sample p uniformly at random from [0, 1]
7: if v is not the root node and p < a then
8: tmax +- tstart(v)
9: V +- PARENT(V)

10: else
11: started.descent *- 1
12: end if
13: end while
14: while v is not a leaf node do
15: V +- OLDCHILD(v, tmax, KEYFRAMES(V))
16: started descent +- 1
17: end while

18: return v

that d(Xmax, Sk) 5 d(xi, x2), due to the order of selection of Xmax, Xi1 X 2,

d(xl1 , X2) d(x:, s*) + d(X 2 , S*) f f(X2)

2p(S) - min(f*(x)), (6.13)
x

by triangle inequality over d and the definition of d. r

The function f* makes the coreset tree more adapted to the data. By storing this

relevance score for each node in the coreset tree, the relative importance of individual

keyframes is propagated along the binary tree structure, allowing us to query the tree

for this information at each level. In general, our coreset tree system facilitates the

addition of other metrics, such as object detection, optic flow, etc. that allow us to

emphasize the semantic content that is most appropriate to the problem.

107

The interactive UI described in Section 6.3.2 showing the coreset tree for the Boston Trolley Tour
(left). The image collage shows 9 keyfraies captured from this data (right). Observe that the
keyframes with the red/green margins propagated from the left/right child modes; the corresponding
represented time interval is shown at the bottom of the tree.

Figure 6-3: Interactive coreset tree retrieval UI

6.3.2 User-Interface for Retrieval

The proposed key-fraies allow easy aild useful search and retrieval for a humuan user.

We now describe user interface that allows the user to browse through the video stream

and see the suminarizatio1 and representative images from each interval using a visual

tree, as shown for example in Fig. 6-3. We note that our user interface, sunmarization

and time search approach cai be useful for any other type of coresets o images, such

as k-means clustering, or for trajectories sulimnarization. The interface demonstrate a

nlon-standard retrieval task and could be relevant for robotic tasks, such as searching

for people and objects in a suibsequence of the video, change detections, and so forth.

In the proposed UI, the user can browse through the bilary tree on the left. The

node with the white circle correspo1ds to the selected time interval. Its left child is

always marked by a red circle, and its right child by a green one. The red and green

rectangulars on the bottom of Fig. 6-3 mark the relevant leaves of the red and green

nodes respectively. Ini the right side of the figure we show the selected key frames inl

the white nodes. The key frames that were chosen from the red note are marked by

108

I

a red border, and similarly the other key frames are marked by a green border.

Additionally, the user can specify a time span that he or she is interested in

summarizing. The user interface computes the minimum subtree that summarizes

the activity in that time region. The relevant images are extracted from the hard

drive according to the user clicks. Theoretically,, the retrieval time of the relevant

coreset is poly-logarithmic in the size of the related video stream using the properties

and structures of the coreset tree.

6.3.3 Life-long loop closure

We now proceed to describe how life-long loop closure can be performed based on

the coreset streaming segment tree. While the segments in the coreset streaming

tree provide an adaptive tradeoff between temporal resolution and efficiency, different

nodes in the coreset streaming tree are still of equal time span. However, we expect the

data-adaptivity of the coreset to allow efficient retrieval for arbitrarily long videos. To

this end, we define a method for random caching of frames for loop closure detection,

based on the graph distance in the streaming segment tree. Similar to RTAB-MAP

[78], we assume the system to include a working memory (WM in the notation of [78])

and an index based on the coreset streaming tree in mnemory. The coreset streaming

tree nodes point to a database of frames (or their corresponding locations, in the

case of a location-based retrieval), we denote as long-term memory (or LTM), where

each leaf is a page of frames to be swapped in and out. We define retrieval and

discard rules for pages containing previous frames, between a working memory and

the database of the robot's visual history. We note that a similar approach could be

incorporated with location-based mapping by replacing the frames descriptors with

pointers to locations -observation models.

The retrieval rule we employ randomly selects pages based according to the proce-

dure SAMPLEOLDNODE presented in Algorithm 8. The procedure uses the function

OLDCHILD(V, t, keyframes), that returns a child of v recorded at tend older than t

at random. We adapt the sampling so that each child has a weight proportional to

the number of keyframes the parent node drew from it, plus 1 (to ensure a non-zero

109

Algorithm 9 UPDATECLOSURECACHE(ref)

Input: xref, the reference image (lescril)tor

Output: X, the llatchlilg canIdi(dates for Xref

1: WM= 0
2: while 1 do
3: V +- SAMPLEOLDNODE(Vend)
4: if v WM and FULL(WM) then
5: select no(le Vrem from WAf at raInldol

6: W + WM \ {'Vrer}
7: end if
8: WA <- WA/I U {V}.
9: comuj)ite loo) closure)robabilities for xref using WAY

10: coiolj)lte inatchiig candidates X
11: end while
12: return X

An inlage retrieval example froi the Boston dataset, using the tree-samping nethod in Algo-
rithms 8, 9. The green frame marks the query image corresponding to xrf in Algoritm 9. The
other im1ages are the maxinmun-probability miatch found by sampling.

Figure 6-4: Boston tour loop closure results

sampi)ling)robability). This allows us to take into accounllt quality metrics base(on

the coreset as well as image (luality/saliency, as (lescribe(in Subsection 6.3.1. The

effect of the weighted traversal can be seen in Fig. 6-5b.

It can be seen that the probability of reaching leaf f, by traversing from the last

leaf in tie tree Vend, is non-zero. Since reaching each leaf from Vend has exactly one

)ath, an(this corresponds to a single set of choices in the conditioinals we can bound

110

this probability from below by looking at the direct route from ve~n to the node f,

p (SAMPLEOLDNODE(Vend) = f)

> ad (Ve ,) () dD(ven d)

\ max/

1 d4v"""')
> min d , (6.14)

dmax

where dD (Vend,) denotes the path length from the common root of Vend and f to

e, and du(Vend, f) denotes the path length from the common root to Vend. It is easy

to see that

p(SAMPLEOLDNODE(Vend)) =) adU(Vemd~t) (6.15)

Let us mark by ttart and tend the beginning and end of the time span associated

with each node or leaf of the tree. It is furthermore easy to see that going up to the

parent node, ttart is non-increasing and tend is non-decreasing. Going down to an

earlier child, ttart is non-increasing. This can be summed up in the following lemna:

Lemma 6. SAMPLEOLDNODE(V) samples a leaf whose span ends before tend(V),

and all previous leaves have a non-zero probability of being sampled, as described

in equation (6.14).

Based on this sampling procedure we present the loop closure detection algorithm

described in Algorithm 9, which operates according to a maximum time allotted per

turn, in order to fit a real-time regime. We define FULL(WM) to be a function

indicating whether the working memory is full. The sampling probability of leaves

according to Algorithm 8 can be seen in Fig. 6-5a, showing the adaptiveness of the

method.

It can be shown that the pages in WM are distributed exponentially decreasing

with respect to the tree distance from start node Vend, assuming pages are kept in a

FIFO order in the cache. The probability of a leaf to be added to WM is bounded

from zero, thus ensuring that every leaf (and the locations pointed by it) has a chance

of being sampled.

111

6.4 Experimental Results

The primary dataset used in this study is a recording of a Boston Trolley Tour.

The video was captured using Google Glass and spans 3 hours. Doing away with

an obvious redundancy for these application [32], we conservatively subsample by a

factor of 5, to around 75k frames. Fig. 6-3 (left) shows the coreset tree generated by

processing the entire tour.

A preliminary set of experiments serve as a hard ground-truth demonstration of

the correctness of the coreset tree for the purposes of video segmentation. For this

demonstration we select 15 still frames capturing scenes of interest during the tour.

The stills were duplicated for random periods of time into a synthetic video file.

The purpose of these experiments is to demonstrate (a) the coreset tree's utility in

successfully segmenting data, and (b) the capability of the coreset tree to adaptively

propagate important keyframes to the higher nodes without repetition. Fig. 6-3

(right) shows the results of these experinients. We observe that the coreset tree has

successfully segmented the data and captured all representative frames, and that

each video still was captured by a keyframe, regardless of how long the original

video segment was. This demonstrates the coreset's capacity to capture information.

Secondly, we observe that as the keyframes propagate up to the node of the tree, the

modified FPS algorithm described by equation (6.9) favors few repetitions of similar

keyframes, by definition of the FPS algorithm. This highlights our coreset tree's

capacity to summarize information in an adaptive manner that can be tailored to the

problem domain.

6.4.1 Loop Closure Experiments

Loop closure experiments were first conducted on a short video of 6000 frames with

2 known ground-truth loops. A coreset tree was created using a set of 5000 VQ

representatives trained on 100k SURF descriptors. In general, the choice of leaf size

depends on the problem domain, and will reflect the typical temporal resolution of

the sequence. We used leaf sizes of 100,150, 200. With 9 keyframes per leaf, a leaf

112

T_- TI PR I OF

size of 200 represents a subsampling of the input data by a factor of more than 22.

With larger leaf sizes, results were too sparse for this short video sequence, however

for larger videos such as the Boston data, a leaf size that is an order of magnitude on

par with the size of the test data is appropriate. An e2 distance map was calculated

based on the descriptors of the leaf-iiode keyftaines, and thresholded to produce a

loop closure map.

The loop closure map produced by our coreset was compared against an equiv-

alent loop closure using uniform sampling of frames from the test video. Keyframe

descriptors were primed for a number of thresholds that give meaningful loop clo-

sure patterns. Results were evaluated objectively by computing the precision/recall

trends for our coreset tree against uniform sampling (Fig. 6-6). We see a typical

trend of precision decreasing with recall, as the true positives get outweighed by false

negatives with increasing threshold. For all values of recall, we achieve a higher pre-

cision by using descriptors from the keyframes of the coreset tree compared against

uniform sampling. These results demonstrate the ability the coreset tree to capture

information that is useful for state of the art loop closure algorithms such as [32].

6.4.2 Large Scale Experiments

Large-scale experiments were carried out on the complete 3 hour video of the Boston

tour. The complete video consists of 3 hours, totaling a 360,000 frames at 30 frames

per second. This is a true demonstration of life-long loop closure, as attempting to

store candidate frames for a video of this size takes a prohibitively large amount of

space. The video consists of a single tour of the city traversed in a loop, such that

there is approximately 30 minutes of overlapping trajectory that forms a loop closure

at an offset of approximately 2 hours.

A coreset was computed offline for the entire video, and took 159 minutes to

construct, which is fhster than real-time with respect to the length of the video. We

use SURF descriptors and VQ to compute a bag-of-words representation of the video,

exactly as described in the previous chapter.

A Chow-Liu tree was constructed for the video using the coreset keyframes using

113

the FAB-MAP package [31]. We compute loop closure using both E2 distance and

FAB-MAP confidence scores. We chose the best set of parameters after pre-computing

confidence scores for a small set of ground truth pairs of frames displaying the same

scene at different parts of the tour. We ran the existing closure detection system

on these frames, and determined parameters by pivoting one parameter at a time

against the fixed set of remaining parameters. The parameters were altered in the

order above -- first downsampling, then finding the number of strongest features, and

finally the parameters for the feature detection and extraction steps.

Finally, we apply the experimental setup to compute loop closure for the entire

video. Figure 6-7 shows the results. The thin lines indicate confidence scores for

different time offsets. The thick black line shows the aggregate confidence score, and

the dotted red line indicates a confidence threshold used to determine whether a loop

was detected or not. We observe that a loop closure detection occurs at approximately

234,000 frames or 2.2 hours, which matches exactly with the ground truth.

6.4.3 Retrieval Experiments

We now demonstrate a retrieval application based on the keyframes defined in Sub-

section 6.3.1. For a larger scale retrieval experiment, we demonstrate retrieval for a

given query image in Fig. 6-4. Given a query image, we show the results of 3 runs of

the a search for a match (with some threshold on the f2 distance) that includes the

query image and similar results. We resample tree leaves until a match is found, and

in each leaf retrieved, we look for the minimum f2 distance match, starting with an

empty WM.

We note that processing the overall video of 75k frames can be done at 3 frames

per second on an i7 CPU. The histogram of leaf retrievals until match is shown in

Fig. 6-5c. The seek access attempts average of 70.5 is significantly lower that the

uniform expected number of attempts of 108.5 because we expect caching according

to recent hits and more adaptive keyframe-based sampling to further improve results.

114

7 1, 1 ffi?

6.4.4 Technical Summary

" Using union, compression, and merging properties we can compute a streaming

coreset tree with O(log n) coresets.

" Each node in the coreset tree contains 9 representative keyframes that provide

a semantic sunimary of the underlying coreset segments.

" Variability is represented by the e2 distance matrix for the candidate frames.

* Relevance is represented by encoding context-based relevance scores, which are

weighted to form a single score for each frame.

" An adaptive keyframe selection algorithm propagates keyframes up the coreset

tree by optimizing variability and relevance, and provably yields a result to

within a constant factor approximation.

" SAMPLEOLDNODE and UPDATECLOSURECACHE probabilistically sample the

coreset tree to select the best loop closure candidate frames.

6.5 Conclusions

In this chapter we demonstrated how coresets for the k-segment means can form a

basis for summarization of visual histories, for retrieval and localization tasks. We

show how the coreset streaming tree can be used for visual loop closure and image

retrieval from a video sequence over large videos, essentially summarizing the video

at real-time speeds. In future work we expect to extend the use of coresets into

additional retrieval and understanding tasks, explore the use of additional coresets,

and consider the more challenging case of indexing dynamic environments.

115

(a) The sampling paths (blue) starting from the query node Verd (black) along the coreset
streaming tree of the Boston data in Fig. 6-3. . Blue paths indicate inIdividual samples
according to Algorithiu 8. The query mode Vo 5a is showni in black.

10 200

-o150

a.E 100
CY0)

CL (I)E io, U>
50

0 50 100 10 000 250 300 350 400 450 0 50 100 150 200
Node number Number of sampled leaves

(b) Comparisoni of leaf saiple frequenicy (c) Seek time histogram for the example
without usage of keyframes coumputed on the shown in Fig. 6-4, using the tree-sampling
data in Fig. 6-3 for 500k trials (red) against method in Algorithms 8,9. As expected, the
sampled nodes using keyframes (blue). Intu- tree-saimplimg seek timies drop as the inumber
itively, high-probability niodes correspoid to of sampled leaves increases.
segmnemits ill the video that had salient and
clear sections il the video.

Figure 6-5: Loop closure sanmpling algorithm results

116

-- L = 100 (coreset)

0.6- L 150 (coreset)
-L = 200 (coreset)
- - Lk = 100 (uniform)

0.5 - - L. = 150 (u niform)
0.4-L* = 200 (uniform)

S.4 - Ground-truth baselinej-

03

U- 0. .. .2...4 0 5 0 . .

0.2..

0.1...%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

Precision/recall plot comparing keyframes from the coreset tree (solid lines) against uniformly san-

pled keyfraines from the video (dashed lines), as inputs for f2 loop closure. The ground-truth line
represents the asymptotic precision score, i.e. TP/(P + N) for a P = 1, N = 0 classifier.

Figure 6-6: Precision/recall plot for coreset tree vs uniform sampling

Lwop lmeo~neFAWAAO

L."p 0. .e-uen e : U2

Experimental results of loop closure detection for a 3 hour video of a tour of Boston. Plots
showing f2 (bottom) and FAB-MAP (top) confidence scores for increasing time offsets in the video.

Figure 6-7: Experimental results of loop closure detection

117

Chapter 7

Coresets for Classification -

Applications to Laparoscopic and

Robot-Assisted Surgery

In this chapter1 we present a system that utilizes coresets to automatically segment

and identify phases of laparoscopic and robot-assisted surgery video. We leverage

the technical knowledge of expert surgeons to aggregate a feature space that best

captures the axes of variability in the specific surgical video domain. Using and SVM

and HMM combination we train our system using annotated ground truth surgical

video, and show that we can reliably segment an unseen laparoscopic surgical video

and classify the segments according to its surgical phases. We demonstrate that

by using coresets we obtain results of almost identical quality, while using only a

fraction of the computational memory resources. Finally, we evaluate our system

experimentally using video from real laparoscopic vertical sleeve gastrectomy (LSG)

procedures, and present a blueprint for instantiating such a system in a real operating

room environment, with minimal risk factors.

'Some of the content in this chapter was published in [134].

118

,T Rwj q11 1 r,- . . - -,r- .1 __ _1-1-1111111 I'll' I I ''I I

(2) (3) (4) (5) (6)

Phases (2 6 shown) of the laparoscopic sleeve gastrectoniy (LSG) procedure: (1) port, (2) biopsy,
liver retraction, (3))ineituin rem1oval, dissectioni., hiatus inspection, (4) stapling, (5) bagging, (G)
irrigation, (7) final iinspcction, withdrawal.

Figure 7-1: Phases of the laparoscopic sleeve gastrectony

7.1 Problem Formulation

The objective of this stuldy is to use (oresets to create ail efficient automlhati(real-time

plhase re(ognlitionI all(l Vi(le(o segilentatioi system for laparosco)ie and robot-assisted

surgery; an(1 to proiose a cost-effeetive b1le)rilnt for piloting the system in a real

o)erating roomi enviromnent, with ininnmal risk faetors. 2

7.1.1 Solution Overview

We give a high-level roaimiia) for our tecineal approaeh 11a(solution here:

1. Ground truth data. We build a eorpus of recorded video footage an(text

anno1 tationls of lpar(seOIpic)roC(drs performlle(d by expert surgeons. In this study

we focus on the laparoscopin vertical sleeve gastreetomy (LSG) j)ro(ed(ure, whieh can

be pierformne(d both manually or as a robot-assiste(operation.

2. Frame representation. We use the grolln(truth data to comnpose a feature

spmace that caIptures the axes of variability ani(main (iseriiinant faetors that inform

the snrgical plhaseS. We use the bag-of-wor(ls (BOW) 111d(el to relreselnt eaeh frame.

3. Phase prediction. We traii a Support Vector Ma:ahine (SVM) for eaeh phlase of

the)roedulre, introduIe an olbservationi funetion anidl Hidden Markov Model (HMM)

to model the transitions and associated likelihoods, ald(1 use the Viterbi algorithmn to

2 This study is IRB approved for research use of surgical footage.

119

compute the final phase prediction.

4. Coreset segmentation. As in our previous work [114, 135], we compute a core-

set representation of the video instead of using the entire video. We show that using

coresets gives the same level of accuracy, while providing a computationally tractable

approach that enables our system to work in real-time, and using only a fraction of

the computational resources.

5. Experiments. Finally, we assess our process with with cross-validation experi-

ments, and evaluate the performance of our system against ground truth.

7.2 Technical Approach

1. Ground truth data. For this study we used 10 videos of the laparoscopic

vertical sleeve gastrectomy (LSG) procedure performed by expert surgeons at the

Massachusetts General Hospital. The surgeons identified 7 basic phases for this pro-

cedure to be: (1) port, (2) biopsy, liver retraction, (3) omentum removal, dissection,

hiatus inspection, (4) stapling, (5) bagging, (6) irrigation, (7) final examination, with-

drawal (Fig. 7-1). We note that some phases have multiple stages, and a much finer

granularity is generally possible. In-fact, some very complicated procedures such as

The Whipple Procedure (pancreaticoduodenectony) can have more than a hundred

identifiable phases, wherein a single misstep can result in morbidity and mortality

[97]. For this study we assume that the phases always occur in the specified order.

We also note that not all videos contain all the phases, which presents an additional

challenge to segment videos with missing phases. We then interviewed the surgeons

who performed the procedures, and collected two kinds of information: (1) qualita-

tive annotations describing how they identified the phase from the video; (2) specific

timestamps of phase transitions that serve as our ground truth segmentation.

2. Frame representation. From the video annotations we identified several visual

cues, categorized broadly as local and global descriptors, that inform surgeons of the

current phase. We use these cues to compose a feature space of local and global

descriptors that captures the principal axes of variability and other discriminant fac-

120

'I'l-NMR RRIMM 1111F -RPMV M IR"Illrlp OPP

Local descriptors
[.. 41 RGBHSVII..64[1 64IRBSI..4

I L SURF color location

VQJ

Global descriptors - color
7 BOW histogram [RGBHS I STA I HOG DCT - texture

d 500 - form

Combined frame descriptor, d = 1000

(a) Algii nt(d local d i(l'ipt0(r (b) Augmented global descriptor

Diagram representing the aiigimented local aiid global descriptor framework, and the final frame
representation ising the BOW Niodel.

Figure 7-2: Augmented descriptors for surgical video

tors that deterinlle the phase. We 11ow describe these visual cues, the augmented

descriptor structure, and the final frame representation using the BOW nodel.

(i) Color. Histogram intersection hts lbeen used in similar work to extract color-

oriented visual cues by creating a training image database of positive and negative

images [79]. Other (lescriptor categories for individual RGBHSV channels can be

uitilized to increase dimensionality to discern features that depend on color in con-

blination with some other property. Pixel values can also be used as features directly

[16]. In this work, we use RGB/HSV components to augment both the local descriptor

(color values) and global descriptor (color histogram).

(ii) Position. Relative position of organs and instruments is an important visual cue.

We encode the position of SURF-detected keypoints with an 8 x 8 grid sampling of

a Gaussian surface centered around the keypoint (Fig. 7-2a). The variance of the

Gaussian defines the spatial "area of influence" of a keypoint.

(iii) Shap. Shape is important for detecting instruments, which are some of most

obvious visual cues for identifying the phase. Shape can be encoded with various

techniques, suich as the Viola-,Jones object detection framework [133], using inage

segmentation to isolate the instrnuenits and match against artificial 3D models [127],

and other methods. For local frame descriptors we use the standard SURF descriptor

121

as a base, and for global frame descriptor we add grid-sampled HOG descriptors [34]

and DCT coefficients [33].

(iv) Texture. Texture is a crucial visual cue to distinguish vital organs, which tend

to exhibit a narrow variety of color. Texture can be extracted using a co-occurrence

matrix with Haralick descriptors [80], by a sampling of representative patches to be

evaluated with a visual descriptor vector for each patch [79], and other methods. In

this work, we use the newer SFTA texture descriptor [28], which has shown better

performance than Haralick filter banks.

(v) Temporal Regularity. Time is a very valuable non-visual cue. Hidden Markov

Models (HMM), with the states corresponding to the surgical phases, and Dynamic

Time Warping (DTW) are commonly utilized to build a model of the "average"

surgery that captures the underlying semantics [79, 16]. We use a simple low-pass

filtering approach to construct an observation function that relies on the inherent

regularity of surgical phases, and combine this with HMM to produce the final phase

prediction.

Finally, we combine the augmented local and global descriptors into a single fixed-

dimension frame descriptor. For this we use the bag-of-words (BOW) model, which

is is a simplifying representation commonly used to standardize the dimensionality of

features [126]. We compute a representative vector quantization (VQ) by sampling

frames using local descriptors only. Any set of local descriptors (Fig. 7-2a, bottom)

can then be represented as a histogram of projections in the fixed VQ dimension

(d1 = 500). The final frame descriptor is then composed of the BOW histogram of

augmented local descriptors and the additional dimensions (d2 = 500) of the global

descriptor (Fig. 7-2b, top), for a combined dimension d= 1000 (Fig. 7-2b, bottom).

3. Phase prediction. As a first step, we train a series of support vector machines

for each phase. Each SVM classifies a phase i by outputting a binary variable pi =

1, P\ {pi} = 0. This approach was shown to be more accurate than a single multi-

class SVM in a similar visual domain [80]. This is an iterative step that involves

interviewing surgeons, re-calibrating the feature space, re-training the classifiers, etc.

Interviewing surgeons is expensive and time-consuming therefore it is important to

122

_ P1 Im RMIRMFIN 'MrIp"M IRPM 1100 1. 11 11 1 .. I. I - I I I I

repeat this step first until we achieve the desired level of accuracy. The first step

is to ensure that the augmented feature space presented in Section 7.2 yields an

acceptable level of accuracy for this domain with respect to the ground truth phases.

Fig. 7-3a shows the binary outputs produced by the SVM. Fig. 7-3b shows the rate

of correct classification (accuracy) of tlie predictions compared against ground truth.

We also note that there are two ambiguous cases: (i) multiple classifiers identify phase

yi(t) = 1; and (ii) every SVM outputs yi(t) = 0.

The second step is to make use of the temporal structure of surgical phases (mono-

tonically increasing, MECE) to correct SVM predictions, resolve the ambiguous cases

stated above, and compute a single time-series of phase predictions. We achieve this

using an observation function O(V, s; a, #) that takes a sequence of SVM outputs V,

the current state prediction s, a certainty parameter a, and lookback value 3, and

returns the next phase prediction p. Phase transitions are modeled using an HMM

with the left-right restriction as in [79]. The final observation sequence Q = P1, PN

is the emission sequence. Finally, we run the Viterbi algorithm [55] on the emission

sequence to find the .most likely sequence of hidden states (the phases).

4. Coreset segmentation. Coresets are compact data reduction constructs that can

efficiently produce a problem dependent compression of the data. As in our previous

works, we use an online k-segment coreset algorithm to compute an approximate

segmentation of the video stream [114], and construct a keyframe compression of

the video based on this segmentation [135]. Using coresets allows our system to run

online, in real-time, using minimal computational resources.

5. Experiments. We assess our system with cross-validation experiments, using

both the entire video and the coreset representation, and evaluate accuracy against

ground truth segmentation. We present results in the next section.

7.3 Results

We perform cross-validation tests by training the system on each subset of N -1=9

videos in the dataset, using a standard 80/20 training/validation split. The system

123

7 7-

6O 6 -
z5- 5-

1 13 I 1ii 11

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

(a) SVM binary outputs (black 1) (b) SVM accuracy (red = incorrect)
7 _ -7 _ _7

oGro und Itruth 6, -Gon trut 7 G roii hdfrtW1
HMM predicbon - HMM prediction 5e L~p~ n

Ca44. 4

2 2.

500 1000 1500 2000 2000 3000 500 1000 1500 2000 2000 3000 000 1000 1500 2000 2500

(1) Example 1 (2) Example 2 (3) Example 3

Typical results (x = frame number). (7-3a 7-3b) highlights the shortfalls of SVM-only system with
no temporal component. (1 3) shows HMM-corrected predictions.

Figure 7-3: Surgical phase prediction results

is then tested on each remaining unseen video, and the results aggregated over the N

subsets. The observation function parameters were determined empiric ally (typical

values are a = 0.8, # 15). The HMM transition and emission matrices learned from

the data, similar to [79]. The Viterbi algorithm was run on the emission sequence

to compute the final phase prediction given the outputs of the observation function.

Fig. 7-3.1 -7-3.3 shows typical experimental results. We demonstrate a 90.4% SVM

prediction accuracy, and improve to 92.8% when combined with HMM. These results

are on par with similar work in the surgical video domain [81], while achieving a

90+% coreset compression over the original video stream.

7.3.1 Technical Summary

" Used surgeons' expertise to build a corpus of ground truth segmentation of LSG

surgical video.

* Fine-tuned a feature space that captures the principal axes of variability and

other visual discriminant factors that inform the surgical phases.

" Used SVM, HMM for classification and prediction.

* Achieved average prediction accuracy 92% , as good or better than related work.

124

* Achieved 90%+ compression using coreset summary, while maintaining the

same performance accuracy.

7.4 Conclusions

In this chapter we presented a system for automatically identifying the phases of

laparoscopic and robot-assisted surgical procedures and segmenting them in real-time.

We received a set of laparoscopic sleeve gastrectomy (LSG) videos, and accompanying

ground truth segmentation. We used the surgeons' expert annotations to tailor a

visual feature space that captures the main visual factors that the surgeons rely

on to determine the current phase of the procedure. We trained a set of SVMs to

classify each of the surgical phases independently, and then used an HMM to compute

the phase predictions. We demonstrated the effectiveness of our system on unseen

surgical video, achieving 92%+ prediction accuracy and a 90%+ compression by using

the coreset summary.

125

Chapter 8

Coresets for Dimensionality

Reduction of Stationary Data

In this chapter' we present an efficient construction for a coreset for principal com-

ponent analysis (PCA) that is both small in size and a subset of the original data.

We present the first algorithm for computing a (k, E)-coreset C of size independent

of both n and d, for any given n x d input matrix. The algorithm takes as input a

finite set of d-dimensional vectors, a desired approximation error e, and an integer

k > 0, and computes a weighted subset (coreset) C of k2/e 2 such vectors. This coreset

can be used to approximate the sum of squared-distances from the matrix A E Rnxd,

whose rows are the n vectors seen so far, to any k-dimensional affine subspace in Rd,

up to a factor of 1 e. For a (possibly unbounded) stream of such input vectors the

coreset can be maintained at the cost of an additional factor of log 2 n. If each row of

an input matrix A has O(nnz) non-zero entries, then the update time per insertion,

the overall memory that is used by our algorithm, and the low rank approximation

of the coreset C is O(nnz - k2 /E 2), i.e. independent of n and. d.

Key contributions

The main contributions of this chapter are:

'Some of the content in this chapter was published in [54].

126

M

(i) A new algorithm for dimensionality reduction of sparse data that uses a

weighted subset of the data, and is independent of both the size and dimensionality

of the data. (ii) An efficient algorithm for computing such a reduction, with provable

bounds on size and running tine. (iii) A system that implements this dimensionality

reduction algorithm and an application of the system to compute principal component

analysis (PCA) of the entire English Wikipedia.

Chapters 8 and 9 are organized as follows. Section 8.1 sets up the problem for-

mulation, establishes the definition of coreset as used in this work, and sets up the

main existence theorem and two supporting lemmas that form the burden of proof

for the rest of the work. .Section 8.1 concludes by using these results to prove the

main result of the work. Sections 8.3 and 8.4 contain the definitions and theorems

to prove the main results of this work. In the next chapter we describe our system

implementation and in Section 9.1 we present experimental results.

8.1 Problem Formulation

Given a matrix A, a coreset C in this work is defined as a weighted subset of rows of

A such that the sum of squared distances from any given k-dimensional subspace to

the rows of A is approximately the same as the sum of squared weighted distances to

the rows in C. Formally,

For a compact set S E Rd and a vector x in Rd, we denote the Euclidean distance

between x and its closest points in S by

dist2 (x, S) := mil lx - sl
seS

For an n x d matrix A whose rows are a,... , an, we define the sum of the squared

distances from A to S by

n

dist2 (A, S) : (ist 2 (a, S)

127

Definition 7 ((k, 6)-coreset). Given a n x d matrix A whose rows a,, ... , an are n

points (vectors) in Rd, an error parameter e E (0,1], and an integer k ([1, d - 1] =

{1, ... , d - 1} that represents the desired dimensionality reduction, n (k, e)-coreset

for A is a weighted subset C = {wiai | wi > 0 and i - [n]} of the rows of A, where

w = (w1 , , Wn) E [0, oo)n is a non-negative weight vector, such that for every affine

k-subspace S in Rd we have

dist2 (A, S)) - dist2 (C, S)) < Edist 2 (A, S)). (8.1)

That is, the sum of squared distances from the n points to. S approximates the

sum of squared weighted distances w? wf(dist(ai, S)) 2 to S. The approximation is

up to a multiplicative factor of 1 E e. By choosing w = (1,--- , 1) we obtain a trivial

(k, 0)-coreset. However, in a more efficient coreset most of the weights will be zero

and the corresponding rows in A can be discarded. The cardinality of the coreset is

thus the sparsity of w, given by ICI = flwj O := {wj / 0 1 i E [n]}1.

If C is small, then the computation is efficient. Because C is a weighted subset

of the rows of A, if A is sparse, then C is also sparse. A long-open research question

has been whether we can have such a coreset that is both of size independent of the

input dimension (n and d) and a subset of the original input rows.

8.2 Technical Solution

Given a n x d matrix A, we propose a construction mechanism for a matrix C of

size ICI = O(k 2 /E 2) and claim that it is a (k, E)-coreset for A. We use the following

corollary for Definition 7 of a coreset, based on simple linear algebra that follows from

the geometrical definitions (e.g. see [48]).

Property 1 (Coreset for sparse matrix). Let A E Rnxd, k E [1, d - 1] be an integer,

and let e > 0 be an error parameter. For a diagonal matrix W E Rn*n, the matrix

C = WA is a (k, e)-coreset for A if for every matrix X E Rdx(d-k) such that XTX =

128

I, we have

(i) 1 - WAXH : e, and (ii) ||A - WAIl < evar(A) (8.2)
IAXI

where var(A) is the sum of squared distances from the rows of A to their mean.

The goal of this work is to prove that such a coreset (Definition 7) exists for any

matrix A (Property 1) and can be computed efficiently. Formally,

Theorem 7. For every input matrix A E R,,d, an error E E (0,1] and an integer

k E [1, d - 1]:

(a) there is a (k,e)-coreset C of size |C| = (k 2

(b) such a coreset can be constructed in O(k 2 /E 2) time.

Theorem 7 is the formal statement for the main technical contribution of this

work. Sections 8.2 -8.4 constitute a proof for Theorem 7.

To establish Theorem 7(a), we first state our two main results (Theorems 8 and 9)

axiomatically, and show how they combine such that Property 1 holds. Thereafter we

prove the these results in Sections 8.3 and 8.4, respectively. To prove Theorem 7(b)

(efficient construction) we present an algorithm for computing a matrix C, and ana-

lyze the running time to show that the C can be constructed in O(k 2 /E 2) iterations.

Let A E RnXd be a matrix of rank d, and let UEVT = A denote its full SVD. Let

W E R"x be a diagonal matrix. Let k E [1, d - 1] be an integer. For every i E [n] let

Vi =U,, I ... , Ui,k, Ui,k+l:dEk+:d,k+1:d 1 . (8.3)
\ l~k+1:d,k+1:dl|

Then the following two results hold:

Theorem 8 (Coreset for sum of vectors). For every set of of n vectors v 1 , - ,n in

Rd and every E E (0,1), a weight vector w E (0, oo) of sparsity ||w||o 5 1/E2 can be

computed deterministically in O(nd/E) time such that

n n n

Vi WiVi i 11 V 2. (8.4)

129

I
Algorithm 10 SUMVECSCORESET(A, E)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

(a) Coreset for sun of vectors

Input: A: n input points a,.. , a,, in Rd
Input: E E (0, 1): the approximation error
Output: w e [0, oc)": non-negative weights
A - A - meaii(A)
A - c A where c is a constant s.t. var(A)

S (,0, . . ., 0)
. <- 1, p +- Aj, J <- {j}
Mi = {y 2 y = A A }
for i =,.. n do

j <- argnin {wj . '1}
G +- W' . Aj where W' = iOU
||ell = JlG G)I I
C.P - =Z 1jt GpT'

lHe = P 14* 1e1 Hl - (P
Comp1P(v) =1/lIc - P - (c . p) /Ile - P11
|IC - C'll = lie - p11 - comflp,(V)
(I = 1C - e'l1 /1c - pl1
W <-O(- I (t)D
'j <- 'Ul + a
w <- w / 1 Wi
Al- {y2 I y = A. AT}
j *- JU {j}
if hll||2 < E then

break
end if

end for
return w

Fig. 8-1b shows the first 3 steps of Algorithm 10 . Given n input points ai,.. ,an in Rd,
with weighted mean J ziai = 0, pick an arbitrary starting point a =cl. At each step

find the farthest point aj+ from cj, and compute cj+1 by projecting the origin onto the
line segment [cj, aj+1]. Repeat this for j =1,...,N iterations, where N= 1/F 2 . The output

weight vector w E D' satisfies CN wjaj-

Section 8.3 establishles a proof for Theorem 8.

Theorem 9 (Coreset for Low rank approximation). For every X - Rdx(d-k) such

that XTX = T.

1
WAX 2

||AX 2

n

<5 Zviv[-W vivi[.
i=1

(8.5)

Section 8.4 establishes a proof for Theorem 9.

130

0.8-

0.6-
4

0.4-

0.2

0

-0.2- 2

-0.4
C3 '-. 5-0.6 ---.

-0.8-
3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(b) Illustration showing first 3 steps of the algorithm

8.2.1 Proof of Theorem 7

Proof of Theorem 7(a). Replacing vi with vivf and e by E/(5d) in Theorem 8 yields

vivT-W vivT (e/5d) ||vv[2
i 21

Combining this inequality with (8.4) gives

f1WAX 12 nVV
1 - | W 5 ZvivT - W<,ivivf (e/5d) | vv| 2

1 =1

Thus the left-most term is bounded by the right-most term, which proves (8.2). This

also means that C = WA is a coreset for k-SVD, i.e., (non-affine) k-dimensional

subspaces. To support PCA (affine subspaces) the coreset C = WA needs to satisfy

the expression in the last line of Property 1 regarding its mean. This holds using the

last entry (one) in the definition of vi (8.3), which implies that the sum of the rows

is preserved as in equation (8.4). Therefore Property 1 holds for C = WA, which

proves Theorem 7(a).

Claim Theorem 7(b). follows froin simple analysis of Algorithm 11 that implements

this construction. E

8.3 Coreset for Sum of Vectors (k = 0)

In order to prove the general result Theorem 7(a), that is the existence of a (k, e)-

coreset for any k E [1, d - 1], we first establish the special case for k = 0. In this

section, we prove Theorem 8 by providing an algorithm for constructing a small

weighted subset of points that constitutes a general approximation for the sum of

vectors.

To this end, we first introduce an intermediate result that shows that given n

points on the unit ball with weight distribution z, there exists a small subset of

points whose weighted mean is approximately the same as the weighted mean of the

original points.

131

Let Dn denote the union over every vector z E [0, 1]" that represent a distribution,

i.e., EZ zi = 1. Our first technical result is that for any finite set of unit vectors

a,, ... , an in Rd, any distribution z E Dn, and every 6 E (0, 1], we can compute a

sparse weight vector w E Dn of sparsity (non-zeroes entries) ||w 1 1/E2

Lemma 7. Let z E D" be a distribution over n unit vectors a1 , a n , ia in Rd. For

6 E (0,1), a sparse weight vector w E Dn of sparsity s < 1/62 can be computed in

O(nd/62) time such that

n n

zi ai - Eivi ai < E. (8.6)
i=1 i=2 2

We note that the Caratheodory Theorem [20] proves Lemma 7 for the special case

E = 0 using only d + 1 points. Our approach and algorithm can thus be considered as

an E-approximation for the Caratheodory Theorem, to get coresets of size independent

of d. Note that our Frank-Wolfe-style algorithm might run more than d + 1 or n

iterations without getting zero error, since the same point may be selected in several

iterations. Computing in each iteration the closest point to the origin that is spanned

by all the points selected in the previous iterations, would guarantee coresets of size

at most d +1, and fewer iterations. Of course, the computation time of each iteration

will also be much slower. '

Proof. We assume that Es ziai = 0, otherwise we subtract 1:_-zjaj from each input

vector aj. We also assume e < 1, otherwise the claim is trivial for w = 0. Let w E Dn

such that ||wljo = 1, and denote the current mean approximation by c = Ewiai.

Hence, lc11 2 = Haifl = 1.

The following iterative algorithm updates c in the end of each iteration until

Ic1 2 < E. In the beginning of the Nth iteration the squared distance from c to the

mean (origin) is

ICI12 E [E, -](8.7)

132

W POR PMW '

The average distance to c is thus

zi ||ai - c| = zi ||ai1| + 2c' ziai + zi Ic|| = 1 + ||C 2 1 + e,

where the sum here and in the rest of the proof are over [n]. Hence there must be a

j E [n] such that

||q- c11 > 1 + e. (8.8)

Let r be the point on the segment between aj and c at a distance p := 1/ Iaj - C112

from aj. Since IIaj - r = p = p Iaj - 0|1 2 , and |Haj - 0112 = 1 = P HaJ - c11 2, and

Z(0, aj, c) = Z(c, aj, 0), the triangle whose vertices are aj, r and 0 is similar to the

triangle whose vertices are aj, 0, and c with a scaling factor of p. Therefore,

r - 011 2 = p ' 0 - C11 2 l2 (8.9)
IHqj - (8.9)

From (8.8) and (8.9), by letting c' be the closest point to 0 on the segment between

aj and c, we obtain

||c'1 < | r ||2 _ c | || 2||

2ay - c2la 1 +

Combining this with (8.7) yields

1 11

IC'11 N < N
- 1+ - 1+ + N+1

Since c' is a convex combination of aj and c, there is a E [0, 1], such that c' =

aa + (1 - a)c. Therefore,

c'f =aa + (I1-a)ZEwiai

and thus we have c' = 'a, where w' = (1 - a)w + aey, and ey E DI is the

jth standard vector. Hence, ||w'f = N + 1. If ||c'l < e the algorithm returns c'.

Otherwise

1Cl E [F - (8.10)
N +1

133

We can repeat the procedure in (8.7) with c' instead of c and N + 1 instead of N.

By (8.10) N + 1 1/e so the algorithm ends after N < 1/E iterations. After the last

iteration we return the center c' = E 1 wjai so

2

(zi - w) ai = |C', 11 2 < + <Sw~)~ fC' 2 -N +1-
i 2

We prove Theorem 8 by providing a computation of such a sparse weight vector

w. The intuition for this computation is as follows. Given n input points a 1,...,an

in Rd, with weighted mean E zi ai = 0, we project all the points on the unit sphere.

Pick an arbitrary starting point a1 = c1 . At each step find the farthest point aj+1

from cj, and compute cj+1 by projecting the origin onto the line segment [ci, aj+1].

Repeat this for j = 1,... ,N iterations, where N = 1/62. We prove that Ici 2 = 1/i7

thus if we iterate 1/82 times, this norm will be c1/62 = 82. The resulting points ci

are a weighted linear combination of a small subset of the input points. The output

weight vector w E D" satisfies cN wi ai, and this weighted subset forms the

coreset.

Proof of Theorem 8. The proof of Theorem 8 follows by applying Lemma 7 after

normalization of the input points and then post-processing the output. E

Algorithm 10 contains the pseudocode for SUMVECSCORESET. Fig. 8-1b illus-

trates the first steps of the main computation (lines 9-26).

8.3.1 Analysis of Algorithm 10

Algorithm 10 contains the full listing of the construction algorithm for the coreset

for sum of vectors.

Input: A: n input points a1, ... , an in Rd; 8 > 0: the nominal approximation error.

Output: a non-negative vector w E [0, oo)n of only 0(1/E2) non-zeros entries which

are the non-negative weights of the corresponding points selected for the coreset.

134

I I I T IMM 1, 1 M " M

Analysis: The first step is to translate and scale the input points such that the mean

is zero and the variance is 1 (lines 4-5). After initialization (lines 6-8), we begin the

main iterative steps of the algorithm. First we find the index j of the farthest point

from the initial point a1 . The next point added to the coreset is denoted by p = aj.

Next we compute c - P ,.the distance from the current point p to the previous center

c. In order to do this we compute G = W' - Ai where J is the set of all previously

added indices j, starting with the first point, and W' is defined in line 11. Note that

G also gives us the error of the current iteration, e = trace(G GT) (line 23). Next

we find the point c' on the line from c to p that is closest to the origin, and find the

distance between the current center c and the new center c' (lines 12-16). Finally,

the ratio of distances between the current center, farthest point, and new center give

us a value for a, the amount by which we update the coreset weights (lines 17-20).

The algorithm then updates the recorded indices J, update the lookup table M of

previously computed row inner products for subsequent iterations, and repeat lines

10-26 until the loop terminates. The terminating conditions depend on the system

specification - we may wish to bound the error, or the number of iterations. Moreover,

if the update value a is below a specified threshold, we may also terminate the loop

if such threshold is lower than a desired level of accuracy.

8.4 Coreset for Low Rank Approximation (k > 0)

In Section 8.3 we presented a new coreset construction for approximating the sum of

vectors, showing that given n points on the unit ball there exists a small weighted

subset of points that is a coreset for those points. In this section we describe the

reduction of Algorithm 10 for k = 0 to an efficient algorithm for any low rank ap-

proximation with k E [1, d-1].

Conceptually, we achieve this reduction in two steps. The first step is to show that

Algorithm 10 can be reduced to an inefficient computation for low rank approximation

for matrices. To this end, we first prove Theorem 9, thus completing the existence

clause Theorem 7(a).

135

Algorithm 11 LowR.ANKCORESET(A, k, E)

1: Input: A: A sparse n x d matrix
2: Input: k E Z>o: the approximation rank 12: for i = 1. [k2/ 21 do
3: Input: E E (0, '): the approximation error 13: j +- argrin 1 . {wXXj}
4: Output: w e [0, oo)"': non-negative weights 14: a= w (XTX) 2

5: Compute UEVT=A the SVDofA 1- ||PX| + E_1 W1wPXi||1
6: R +- Ek+1:d,k+f1:d 5p||2:

7: P +- matrix whose i-th row Vi E [n] is 16: c = |jwX1|F
8: P = (Ui,1:k, U,k+1:d ' 1PPT) 17: a= (1-a + b) / (1 + c - 2a)
9: X +- matrix whose i-th row Vi E [n] is 18: w *- (1 - a)Ij + aw

10: Xi = P/IPi LF 19: end for
11: w +- (1, 0, ... ,0) 20: return w

(a) 1/2: Initialization (b) 2/2: Computation

Coreset for low rank approximation. Using MATLAB notation, we denote by j: k the set of

indices {j, J+ 1, ... , k} for an integer k > j. The i-th row and j-th column of X are denoted
by Xi,: E Rlxd and X:,j E Rnx1 , respectively. The i-th entry of a vector x = (x1, - - - , Xd) is
denoted by xi. The Frobenius norm (root of squared entries) of a matrix or a vector X is

denoted by EdX 1 1 X?. The identity matrix is denoted by I and the matrix

of all zeros whose entries are all zeroes is denoted by 0.

Proof of Theorem 9. Let e = (W?)vjv[. For every i E [n] let tj = 1- W?.

Set X E Rdx(d-k) such that XTX - I. Without loss of generality we assume VT I,

i.e. A = UE, otherwise we replace X by VTX. It thus suffices to prove that

(8.11)tj ||Aj,.X |2 < 5- I AX||2

Using the triangle inequality, we get

Zti IAjX1 2
- Z i (Ai,1:k, O)X11 2

+ Zti II(Ai,1:A, 0)X11 2

(8.12)

(8.13)

We complete the proof by deriving bounds on (8.12) and (8.13).

Bound on (8.12): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd

there is u > 0 and a (k - 1)-subspace T C S1 such that the distance from every point

p E S1 to S2 equals to its distance to T multiplied by u. By letting S1 denote the

k-subspace that is spanned by the first k standard vectors of Rd, letting S2 denote

136

z ti
i

V low, rwomp'""

||A i,.X ||12

the k-subspace that is orthogonal to each column of X, and y E Rk be a unit vector

that is orthogonal to T, we obtain that for every row vector p E Rk,

(p, O)X2 2 1 u2(Py) 2.

After defining X = E1:k,1:kY/ Z E,1:kYj, (8.12) is bounded by

tj 1 (Ail i O)X12 = . u 2 lAi,:Icy 2
jk

= u 2 t IAj,1:kY1 2

- u 2 t lUi,:kEi:k,1:kY 12

= U2 211k1:kY1 ' tin (Ui,l:k)X 112. (8.15)

The left side of (8.15) is bounded by substituting p = Ej,1:k in (8.14) for j E [k],

as

k k

u 2 2I_1_k,1:kY12 E U2(Zj:kY)2 = E l(ZI:, o)X11 2

k

j=1

j=1

d

< ZC Xj,: 12

j=1

=IEX |2 = ||UEX||2= |AX||12 .

The right hand side of (8.15) is bounded by

j=1

(8.16)

ti ll(U,1:k)X 2 ti ti(Ui,l1:k)TU,1:k -xxT = xxT - ti(U,l:k)T U,l:k

137

(8.14)

< ||XXT| ti t(Ui, 1: k) T Ui,1:k (8.17)

(8.18)tjvv i .= Eti(Vi,1:k)TV,1:k

where (8.17) is by the Cauchy-Schwartz inequality and the fact that ||xxT0 =

|jx 2= 1, and in (8.18) we used the assumption A , = Ujjsa = vij for every j E [k].

Plugging (8.16) and (8.18) in (8.15) bounds (8.12) as

(8.19)ti I (Ai,l:kO)X 2 1 < - ||AX 11 2

Bound on (8.13): For every i E [n] we have

IAi,X112 - |(Ai,1:k, O)X 2

= 2(A,1:k, O)XXT(O, Ai,k+l:d)T + 11(0, Ai,k+i:d)XH1 2

2Ai,1:kXl:k,: (Xk+l:d,:)T(Ai,k+l:d)T + 1(0, Ai,k+1:d)X1 2

k

= 2 1j Ai,jXj,:(Xk+l:d,:)T(Ai,k+1:d)T + j(O, Aj,k+1:d)Xj 2

j=1

k

= 2QjXj,:(Xk+l:d,:)T. I Vk+1:d i, (Vi,k+l:d)T+
j=1

k+:d11 2(0, Vi,k+1:d)X2 2 (8.20)

Summing this over i E [n] with multiplicative weight tj and using the triangle

138

inequality, will bound (8.13) by

O)XI1 2t Ai X112-- t11(Ai,1:k,9

Zti 2OXj,:(Xk+1:d,:)T
j=1

flok+1:dlI Vi,j(Vi,k 1:d)T

+ ti IOk+1:d1211
i

The right hand side of (8.21) is bounded by

k.

2OjXj,:(Xk+1:d)T

j=1

k

j=1

k

j=1

IlX,:Xk+1:dl ' 110'k+1:d E tiVi,jVi,k+1:d
i

+ X II1k+1:d12 tiVi,jVi,k+1:d 2)

< 2e ||AX 12 ,

where (8.23) is by the Cauchy-Schwartz inequality, (8.24) is by the inequality 2ab <

a + b2. In (8.10) we used the fact that Ej ti(vi,l:k)TVi,k 1:d is a block in the matrix

Zi tivivP, and

Ik+1:d|12 < ||AXI1 2

k

and E 0-j Xj,.1|2
j=1 (8.26)

= H1:k,1:kX:k,:12 < IX1 2 < |AX 12

Next, we bound (8.22). Let Y E Rdxk such that yTy = I and YTX = 0. Hence, the

columns of Y span the k-subspace that is orthogonal to each of the (d - k) columns

139

(8.21)

(0, Vi,k+1:d)X (8.22)

' 0k+1:d tivij (Vi,k+l:d)T

(8.23)

(8.24)

(8.25)

of X. By using the Pythagorean Theorem and then the triangle inequality,

k+1:a 2 ti (0, Vi,k+1:d)XH2 (8.27)

k+1:d 2 KVi,k+1:d) 2

- ti (0, Vik+1:d)Y1 2

i

< lU1k+1:d 112 1 IVi,k+1:d1 2 (8.28)

+ 0lk 1:dH 111 ti I1(0O1Vj,k 1:d) Y 12 1.(8.29)

For bounding (8.29), observe that Y corresponds to a (d-k) subspace, and (0, Vi,k+1:d)

is contained in the (d- k) subspace that is spanned by the last (d- k) standard vectors.

Using same observations as above (8.14), there is a unit vector y E Rd-k such that

for every i E [n] I1(0, Vi,k+1:d) Y 2 = (Vi,k+1:d) Y 2 . Summing this over tj yields,

Sti (0, Vi,k+1:d)Y 12 1 ti Vi,k+1:dY 12

d d
= t, E V2J~K 5: Y ktV2 1.

i j=k+1 j=k+1 i

Replacing (8.29) in (8.27) by the last inequality yields

0k+1:d 21 ti (, Vi,k+1:d)X1 2
i

d

Wrk+1:d1 (1 tiVzd~lI + 5 Y>k tiv) (8.30)
2 j=k+ 2

d

k+12 (-k) 2e ||AX 12 . (8.31)
j=k+1

where (8.30) follows since J tjv? is an entry in the matrix Etiviv[, in (8.31) we

used (8.26) and the fact that 11y112 = 1. Plugging (8.10) in (8.21) and (8.31) in(8.16)

140

gives the desired bound on (8.13) as

ti || Aj,:X|1 2 - (ti || (Ai,1:i, O)X||2 5 4E IAX|1 2

Finally, using (8.19) in (8.12) and the last inequality in (8.13), proves the desired

bound of (8.11).

Together, Theorems 8 and 9 show that the error of the coreset is a 1 e ap-

proximation to the true weighted mean. By Theorem 9, we can now simply apply

Algorithm 10 to the right hand side of (8.5) to compute the reduction. The intuition

for this inefficient reduction is as follows. We first compute the outer product of

each row vector x in the input matrix A E RI"nxl. Each such outer products xTx

is a matrix in Rdxd. Next, we expand every such matrix into a vector, in Rd2 by

concatenating its entries. Finally, we combine each such vector back to be a vector

in the matrix P E Rnxd2 . At this point the reduction is complete, however it is clear

that this matrix expansion is inefficient.

The second step of the reduction is to transform the slow computation of running

Algorithm 10 on the expanded matrix P E Rnxd into an equivalent and provably

fast computation on the original set of points A - E Rd. To this end we make use of

the fact that each row of P is a sparse vector in Rd to implicitly run the computation

in the original row space Rd. We present Algorithm 11 and prove that it returns

the weight vector w = (w 1, - Wn) of a (k, 6)-coreset for low-rank approximation

of the input point set P, and that this coreset is small, namely, only O(k2 2) of

the weights (entries) in w are non-zeros. Algorithm 11 contains the pseudocode for

LowRANKCORESET.

8.4.1 Analysis of Algorithm 11

Algorithm 11 contains the full listing of the construction algorithm for the coreset

for low rank approximation.

141

Input: A: n input points a,, . . . , an in Rd; k > 1: the approximation rank; E > 0:

the nominal approximation error.

Output: a non-negative vector w E [0, oo)n of only O(1/2) non-zeros entries which

are the non-negative weights of the corresponding points selected for the coreset.

Analysis: Algorithm 11 starts by computing the k-SVD of input matrix A (line 5).

This is possible because we use the streaming model, so that the input arrives in

small blocks. For each block we perform the computation to create its coreset. By

merging the resulting coresets we preserve sparsity and can aggregate the coreset for

A. Lines 7-8 use the k-SVD of this small input block to restructure the input matrix

A into a combination of the columns of A cotresponding to its k largest eigenvalues

and the remaining columns of D, the singular values of A.

After initialization, we begin the main iterative steps of the algorithm. Note

that lines 12-19 of Algorithm 11 are heavily optimized but functionally equivalent.to

lines 9-27 of Algorithm 10 - the end result in both cases is a computation of a at

each iteration of the for loop, and an update to the vector of weights w. First we

find the index j of the farthest point from the initial point a (Line 13). The next

point is implicitly added to the coreset is by updating w, and in turn affects the next

farthest point as the computation wXXj is performed iteratively. The variables a, b, c

implicitly compute the distance from the current point p to the previous center q, the

error of the current iteration e, the point on the line from the p to q that is closest

to the origin, and the distance between the current center q and the new center q'.

Finally, line 17 updates a and line 18 updates w using the new value of a.

The algorithm terminates after k 2 /6 2 iterations, and we omit the explicit compu-

tation of e since it is implied in the guarantees proven in the following section. As in

Algorithm 10, the terminating conditions depend on the system specifications. We

may wish to bound the error, or the number of iterations, or the update value a.

142

8.5 Conclusions

In this chapter we presented an efficient construction for a coreset for principal com-

ponent analysis (PCA) that is both small in size and a subset of the original data.

In the next chapter we describe our system implementation and in Section 9.1 we

present experimental results.

143

Algorithm 10 SUMVECSCORESET(A, c)

1: Input: A: n input points a,, ... , an in Rd
2: Input: e E (0, 1): the approximation error
3: Output: w E [0, oo)n: non-negative weights
4: A +- A - mean(A) // Translate points of A to the origin 0 of Rd s. t. mean of A

=0

5: A <- c A where c is a constant s.t. var(A) = 1 // Scale each point by constant C
s.t. variance of A = 1

6: w +- (1,0, ... ,0)
7: j +- 1, p <- Aj, J +- {j} // Initialize starting point
8: M = {y 2 y = A -A} /Maintain lookup table of computed inner products
9: for i = 1, ... ,n do

10: j +- argmin {Wj Mj} / Compute farthest point Aj
11: G +- W' - Aj where W' = ViB
12: ||c|| = ||GT G) |2
13: c -p = Z G pT

14: 11c - p11 = 1 + lce2 - c -p
15: comp,(v) = 1/11c - p11 - (c -p) /11c -p1|
16: 1lc - c'11 = ||c - p11 - compp(v)
17: ce= flc - c'11 / 1c - p1
18: w +- w(1 - a|) // Update weights
19: wj 4- w3 +a
20: w +- w/ n 1 wi

21: Mj +- {y 2 | y = A -A} / Update lookup table
22: J +- J U {j}
23: if Ic1 2 < e then
24: break
25: end if
26: end for
27: return w

144

41 111 'MR "7- - - RIF- , R

Algorithm 11 LOWRANKCORESET(A, k, &)

1: Input: A: A sparse n x d matrix
2: Input: k E Z>o: the approximation rank

3: Input: F E (0, 1): the approximation error
4: Output: w E [0, oo)n: non-negative weights
5: Compute UEVT - A, the SVD of A
6: R < Ek+1:d,k+1:d
7: P +- matrix whose i-th row Vi E [n] is

8: Pi (U,1:k, Ui,k+1:d - gRI,)
9: X +- matrix whose i-th row Vi E [n] is

10: Xi = Pi/ ||Pi|F
11: W +- (1, 0, . .. , 0)
12: for i = 1, ... , [k 2 /2] do
13: j <- argmmniA,...,n{wXX }
14: a = l wi(XfX3)2

15: b= 1 \\PX 11 + E Wi \lPX 1\2

16: c= wX||=
17: c= (1 - a + b) / (1 + c - 2a)
18: w 4- (1 - a)lj + aw
19: end for
20: return w

145

Chapter 9

Coresets for Dimensionality

Reduction - Applications to Topic

Modeling

In this chapter1 we provide an efficient implementation our coreset for dimensionality

reduction presented in the previous chapter. We present a system that can compute

a latent semantic analysis for the term-document matrix of Wikipedia with provable

error bounds. We demonstrate our system on a standard laptop as well as on the

Amazon Elastic Cloud Compute (EC2), and show a significant improvement in run-

ning time and accuracy compared to existing heuristics. We evaluate our system on

synthetic data to provide a ground-truth for the quality, efficiency, and scalability

of our system. Finally, we apply our algorithm to compute the principal component

analysis (PCA) of the Wikipedia document-term matrix, and use this to compute a

topic model of the English Wikipedia.

'Some of the content in this chapter was published in [54].

146

9.1 Evaluation and Experimental Results

The coreset construction algorithm described in Section 8.4 was implemented in MAT-

LAB. We make use of the redsvd package [61] to improve performance, but it is not

required to run the system. We evaluate our system on two types of data: syn-

thetic data generated with carefully controlled parameters, and real data from the

English Wikipedia under the "bag of words" (BOW) model. Synthetic data provides

ground-truth to evaluate the quality, efficiency, and scalability of our system, while

the Wikipedia data provides us with a grand challenge for latent semantic analysis

computation.

For our synthetic data experiments, we used a moderate size sparse input of

(5000 x 1000) to evaluate the relationship between the error 6 and the number of

iterations of the algorithm N. We then compare our coreset against uniform sampling

and weighted random sampling using the squared norms of U (A = UEVT) as the

weights. Finally, we evaluate the efficiency of our algorithm by comparing the running

time against the MATLAB svds function and against the most recent state of the

art dimensionality reduction algorithm [26]. Figure 9-2a-9-2d show the exerimental

results.

Approximation error. We carried out experiments on a moderate size sparse input

of (5000 x 1000) to evaluate the relationship between the error E and the number of

iterations of the algorithm N. for a hyperplane coreset (i.e. k = d - 1). Fig. 9-2d

shows how the characteristic function of the approximation error f (N) behaves with

respect to increasing number of iterations N (normalized to N = n). Note that three

of the plotted functions f(N) converge as N increases, while the last one ramps up

and then increases linearly. From this we conclude that s decreases at a true rate

somewhere between the rates of increase of f(N) N log N and f(N) = N2 . The

true characteristic f* (N) + C indicates the theoretical breakpoint between increasing

and decreasing error.

We then compare our coreset against uniform sampling and weighted random

sampling, using the squared norms of U (A = UEVT) as the weights. Tests were

147

carried out on a small subset of Wikipedia (n = 1000, d = 257K) to ensure representa-

tive data structure. Figure 9-2a---9-2c shows the results. As expected, approximation

error decreases with coreset size, as well as the subspace rank. (Note that since our

algorithm is deterministic, there is zero variance in the approximation error.)

Running time. We evaluate the efficiency of our algorithm by comparing the

running time (coreset construction) against the built-in MATLAB svds function and

against the most recent state of the art dimensionality reduction algorithm [26].

We implemented the matrix spectral approximation algorithm presented in [26].

Fig.9-la shows the running time of our coreset compared against MATLAB svds.

Fig. 9-1b shows the running time of our algorithm compared against Algorithm 12 run

on synthetic data for the same set of input parameters. We used a fixed dimensionality

d = 1000, approximation rank k = 100, sparsity 10-6 and evaluated construction time

for increasing input size N. The results are plotted as a function of the log of the

input size to show the order of magnitude difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support

PCA, an important advantage of our technique compared to existing coreset con-

structions is that it is much numerically stable and faster in practice. For example,

the result of [27] is based on the technique of [111. This technique needs to compute

many inverse of matrices during the computation, which makes it not only less stable

but also very inefficient. Indeed, we implemented the coreset construction of [27] and

the running time comparison to our algorithm for the same coreset size can be found

in Fig. 9-1b. In conclusion, our algorithm is faster, numerically stable, and can be

computed on practically unbounded size input data.

9.1.1 Latent Semantic Analysis of Wikipedia

For our large-scale grand challenge experiment, we apply our algorithm for computing

principal component analysis (PCA) on the entire English Wikipedia. The size of the

data is n = 3.69M (documents) with a dimensionality d = 7.96M (words). Unfortu-

nately, there is no ground truth for the sum of squared distances to the real SVD, as

that has never been computed on such a large dataset as Wikipedia. We specify a

148

M

A[10000xlOOOOO], sparsity=0.033 Synthetic data running times

-MATLAB svds -.- SVD Coreset
-- SVD Coreset 7o Matrix Product Approximation

W- 6 -
C:

E

C)CMATLA SVID Coreset 3 --

crashed scales up arbitrarily - 2

100 1

500 0) 150 :400t 2t6 300 3500 4 450 00 1 1.5 2 2.5 3 3.5 4 4.5 5
Approximation rank k log number of input points (log N)

(a) Relative error (k - 10) (b) Relative error (k = 20)

Fig. 9-la shows the ruintiies of our coreset conipared against MATLAB svds. Fig.9-lb shows the

runtiines of our coreset compared against the algorithm in [26].

Figure 9-1: Coreset runtinie experiments

nominal error of E =0.5, which is a theoretical upper bound for N =2k/i iterations,

and show that the coreset error remains bounded. In practice we can (10 much better

than this. Figure 9-2f shows the log approximation error, i.e. sum of squared dis-

tances of the coreset to the subspace for increasing approximation rank k =1, 10, 100.

We see that the log error is proportional to k, and as the number of streamled points

increases into the millions, coreset error remains bounded by k. Figure 9-2e shows the

running time of our algorithm compared against svds for increasing dimensionality

d and a fixed input size n =3.69M (number of documents).

Finally, we show that our coreset can be used to create a topic model of 100 topics

for the entire English Wikipedia. We construct the coreset of size N =1000 words.

Then to generate the topics, we compute a projection of the coreset onto a subspace

of rank k=100.

For these experiments we used three types of machines:

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU 42.67GHz,

6GB RAM (low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU A1.8GHz, 16GB RAM

(medium spec).

149

3. High-performance computing clusters on Amazon Web Services (AWS) as well

as local custers, e.g. an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-

2680v2 vCPU C2.8Ghz, 60GB RAM (high spec).

We compute the coreset using a buffer stream of size N/2, parallelized across

64 nodes on Amazon Web Services (AWS) clusters. The 64 individual coresets are

then unified into a single coreset. Figure 9-2e shows the running time of our algorithm

compared against svds for increasing dimensionality d and a fixed input size n = 3.69M

(number of documents). Note that this is a log-scale plot of dimensionality against

running time, so the differences in performance represent orders of magnitude. The

desktop computer with 6GB RAM crashed for d = 2000 and was omitted from the

plot. The same algorithm running on the cluster (blue plot) outperformed the laptop

(red plot), which also quickly ran out of memory. Comparing svds computation on

AWS against our coreset (green plot) highlights the difference in performance for

identical computer architectures. As the dimensionality d increases, any algorithm

dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k =100 topics

for the entire English Wikipedia, with a fixed memory requirement and coreset size

of just N = 1000 words. We compute the projection of the coresets on a subspace of

rank k to generate the topics. Table 9.2 shows a selection of 10 of the most highly

weighted words from 4 of the computed topics. The total running time, including

coreset construction, merging and topic extraction was 140.66 min.

A cursory glance at the words suggests that the "themes" of these topics are (1)

urban planning, (2) economy and finance, (3) road safety, (4) entertainment. This

serves as a qualitative proof of concept that our system can produce meaningful results

topics on very large datasets. We view this result optimistically, as proof of concept

that our system can be used to compute a topic model of the English language.

A more objective analysis would involve using a corpus of tagged documents as a

ground truth, projecting the corresponding vectors onto our topics, and comparing

the classification error against topics computed by other systems. This is the subject

of our ongoing work.

150

k Size N Coreset error Running time

1 4 4 0.269 34 min

10 37 40 0.0312 42 min

100 167 400 0.0004 140 min

Summary of Wikipedia experimental results (corpus size = 12GB).

Table 9.1: Wikipedia experimental results

Topic 1 Topic 2 Topic 3 Topic 4

US credit drivers comedy

highway risk distracted nominated

bridge plan phone actress

road union driver awards

river interest text television

traffic rating car episode

downtown earnings brain musical

bus capital accidents writing

harbor liquidity visual tv

street asset crash directing

Example of the highest-weighted words from 4

computed by our algorithm.

topics of the k = 100 topic model of Wikipedia

Table 9.2: Wikipedia topic model examples

9.1.2 Technical Summary

e First coreset for PCA that is both small and a subset of the original points, and

preserves the sparsity of the data.

151

+SVD Coreset
-Uniform Random Sampling
-- Weighted Random Sampling

Coreset size (number of points)

(a) Relative error (k 10)

A[5000x1000], sparsity=0.0333

- -fIN)
s

ap

f(N) = N logN epa
f(N) = N epaS
f(N) -(N+C

Number of erations N

-+SVD Coreset+-Uniform Random Sampling
-e-Weighted Random Sampling

Coreset size (number of points)

(b) Relative error (k 20)

Running Times of SVD Coret vs MATLAB svds

-0 MATLAe .apten)
MATLAB avdi uster/AWS
SV0 5 n..Mt Cel., /AW%

29- -E

XE

-eSVD Coreset
-Uniform Random Sampling
-- Weighted Random Sampingi

Coreset size (number of points)

(c) Relative error (k 50)

Wikipedia approximation log error

MIIVNJkrM =PIV0

k.1g
Number al milion pints streamed

jAI

(d) Synthetic data errors (e) Wikipedia running time (x-axis log (f) Wikipedia log errors
scale)

Fig. 9-2a-9-2c show the relative error of our coreset against uniform random sampling and weighted
random sampling. Fig. 9-2d shows the coreset approximation error e for increasing number of
iterations N. Fig. 9-2e shows the algorithm running times for increasing d on large datasets

(n= 3.8M). Fig. 9-2f shows the approximation error (in log scale) for the entire Wikipedia.

Figure 9-2: Experimental results for synthetic data and Wikipedia

* Coreset construction is independent of both n and d.

* We present SUMVECSCORESET, a coreset for the sum of vectors based on a

generalization of the Frank-Wolfe algorithm.

" We present an efficient reduction to LOWRANKCORESET, a coreset for low-rank

approximation (k-SVD) and PCA.

" Coreset is of size O(k2 / 2).

" Implemented our algorithms on Amazon EC2.

" Computed the k = 100 low-rank approximation of the English Wikipedia matrix

in just over 2 hours.

152

4

.5

9.2 Conclusions

In Chapters 8 and 9 we presented a new approach for dimensionality reduction using

coresets. Our solution is general and can be used to project spaces of dimension d to

subspaces of dimension k < d. The key feature of our algorithm is that it computes

coresets that are small in size and subsets of the original data. We benchmark our

algorithm for quality, efficiency, and scalability using synthetic data. We then apply

our algorithm for computing PCA on the entire Wikipedia -- a computation task

hitherto not possible with state of the art algorithms. We see this work as a theoretical

foundation and practical toolbox for a range of dimensionality reduction problems,

and we believe that our algorithms will be used to construct many other coresets in

the future.

153

Chapter 10

Conclusions and Future Work

In this thesis, we presented a family of real-time data reduction algorithms for large

streams. We discussed some of the challenges that arise when dealing with real Big

Data systems, and motivated the need for new data reduction techniques, in the form

of theoretical and practical open problems. We showed how we can use coresets to

compute a compact and meaningful representation of the data that can enable efficient

analysis such as segmentation, summarization, state estimation, and prediction.

10.1 Summary of Contributions

In Chapters 4 and 5, we proposed a coreset for the k-segment mean problem, of size

O(k/e 2) that provides a (1 + e)-approximation for the sum of squared distances to

any given k-piecewise linear function. The coreset is constructed in O(dk) time, using

O(log n) memory. We present the BICRITERIA algorithm estimates the complexity

of the data in O(log n) iterations, and the BALANCEDPARTITION algorithm which

uses the complexity estimate to construct a (k, e)-coreset for the k-segment mean.

We presented a system for approximating the k-segmentation of streaming data, and

provide experimental results with video streams, GPS data, and financial price data.

In Chapter 6 we proposed algorithms for semantic summarization and retrieval of

video frames from unbounded life-long video streams. Using union, compression, and

merging we can compute a streaming coreset tree with O(log n) coresets. Using this

154

coreset tree, we presented a mechanism for computing an adaptive, semantic summary

of the video. An adaptive keyframne selection algorithm propagates keyframes up

the coreset tree by computing a tradeoff between variability (encoded as E2 distance

between frames) and relevance (encoded as weighted per-frame scored that are based

on the context of the video). We prove that the algorithm yields a result to within

a constant factor approximation. Finally, we presented a system for efficient loop

closure detection by novel sampling approach that is adaptive to the structure of the

video, and validated our approach with experimental results on real video data of a

tour of Boston.

In Chapter 7 we presented a system for automatically identifying the phases of la-

paroscopic and robot-assisted surgical procedures and segmenting them in real-time.

By consulting with expert surgeons we compiled a corpus of ground truth segmenta-

tion of their recorded surgical video, specifically for the laparoscopic vertical sleeve

gastrectomy (LSG) procedure. We then used their detailed verbal explanations to

augment and fine-tune a visual feature space that captures the main axes of variabil-

ity and other discriminant factors within this very narrow visual feature space. We

trained a set of SVMs to classify each of the surgical phases, and used an HMM to

compute the phase predictions. We demonstrated the effectiveness of our system on

unseen surgical video, achieving 92%+ prediction accuracy. We also achieved a 90%+

compression using coreset summary, while maintaining our performance benchmark.

Finally, in Chapters 8 and 9, we proposed two novel dimensionality reduction

algorithms for computing a (k, e)-coreset of size independent of both n and d, for any

given n x d input matrix, and is a weighted subset of the original data. The first

algorithm, SUMVECSCORESET, computes a coreset for the sum of vectors based on

a generalization of the hRank-Wolfe algorithm, We then present a reduction to the

second algorithm, LOWRANKCORESET, which computes a coreset of size O(k2/ 2)

for low-rank approximation (k-SVD) and PCA. We presented a system for computing

an efficient low-rank approximation of a large sparse matrix, implemented on Amazon

EC2, and showed how the system can be used to efficiently compute the PCA for the

entire English Wikipedia.

155

10.2 Future Work

I believe that the following directions of future work are particularly important and

fruitful to consider for anyone planning to build on any of these respective systems.

10.2.1 Video Segmentation

For further work with video segmentation, we should develop a better set of metrics

and user interface tools for evaluating video segmentations. Currently, with our video

segmentations, there is often no right or wrong answer, and claiming that a segmenta-

tion is good because some of the segments matched, seems like rationalizing. It would

be prudent to develop a system for easy annotation of captured videos, so that we

could collect ground truth against which to objectively evaluate our segmentations.

Such a system needs to be designed with a degree of seriousness because poor usabil-

ity can often be the difference between a willing and an annoyed volunteer. Another

viable option is to consider using Amazon Mechanical Turk, to automate this process.

10.2.2 Financial Data Segmentation

Similarly for financial data segmentation, the kind of retrospective segmentation stud-

ies that we had performed hitherto are basically a form of technical analysis, which

is disputed by the efficient market hypothesis [89], and is generally considered to be

pseudoscience.

This calls into question some deeper issues concerning the predictive power of

coresets. We are reminded that the (a, #)-approximation can only give us a useful

complexity'measure for offline data, or for representative data with a similar distri-

bution. But even if we had a perfect complexity oracle allowing us to create perfect

balanced partitions, unfortunately this would not entail any predictive power that

would make an online k-segment coreset ally more useful than say, a moving average,

or any other technical indicator based on historical data.

If we are to delve further into analyzing financial markets, then future work should

aim to embrace the capital asset pricing model (CAPM) and introduce a rigorous

156

system of model construction and backtesting. It is well possible that coresets have

a predictive power, particularly the (k, m)-segment mean problem, which has an

inherent capacity to express recurring patterns in temporal data, but for such a

study we should implement the correct development and testing frameworks that are

already well established for developing rigorous algorithmic trading models.

10.2.3 Semantic Video Summarization

I am very optimistic about future work on the coreset tree and semantic video sum-

marization. I believe that it is still in its infancy in terms of its true potential.

The keyframe selection algorithm is close to optimal, as was proved in [135], but I

believe that we can research and implement and much more expressive and robust

mechanism.

Currently, the retrieval interface was not showcased very often. Indeed, it is not

very impressive as it lacks a web interface and/or a mobile app. But the idea of

summarizing content with 9 images is still be very relevant at the time of writing this

thesis [103].

10.2.4 Medical Data Analysis

The main focus of ongoing work is to improve the phase prediction accuracy. We

are extending our system to consider continuous likelihood models, allowing us use

temporal regularity to handle ambivalent phase predictions more effectively. By using

the learned SVMs to model log-likelihoods of the individual phases, we can obtain

improved results compared to the per-frame votes while enforcing a meaningful set

of transitions. To this end, we are also looking into other temmporal models for non-

monotonic phase sequences.

Insofar as coresets will remain a part of this project, my goal going forward would

be to extend the apply the semantic video summarization framework in [135] to create

interactive visual sunmaries of laparoscopic and robot-assisted surgeries.

One outcome that the surgeons were very keen oi if we could get enough video

157

data, is to evaluate our predictive model across different surgical procedures. I believe

that this will require more than just additional videos. However, I think that this is

a very useful extension, and a step in the right direction towards making a general

surgical assistance system.

Just recently, the IBM Watson supercomputer was successfully able to diagnose a

rare type of leukemia and identify the correct course of treatment faster than would

have been possible through manual analysis [129]. With the increased reliance on

computational resources, surgeons face a tough challenge in determining when they

can confidently offload their judgment to a computer that can do the job faster, if not

better. Going beyond a video-based phase prediction system, we believe that a more

complete model of the operating room would be required for developing predictive

medical systems in the future.

10.2.5 Coresets for Dimensionality Reduction

I believe that future work on this project should be dedicated towards improving the

system implementation. The source code has been open-sourced upon acceptance

of [54], and time should be spent making this remarkable theoretical result a more

accessible practical reality. A more refined analysis of the Wikipedia topics that

includes error bounds would be a very convincing result, and would help to engage

information retrieval, natural language processing, and other communities.

158

10.3 Final Thoughts

"Don't Panic."

Douglas Adams, The Hitchhiker's Guide to the Galaxy (1979)

This work has forced me reach wide and dig deep, and called into question many

of my views about academia and about life. In the end, I have put my heart and soul

into this thesis, and if my work goes on to save even a single life in the future then it

will have been worth it.

159

Bibliography

[1] Google trends, "bitcoin" search term, August 2016.

[2] Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank matrix

approximations. Journal of the A CM (JA CM), 54(2):9, 2007.

[3] Douglas Adams. The Hitchhiker's Guide to the Galaxy. Pan Books, 1979.

[4] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximations

via coresets. Combinatorial and Computational Geometry - MSRI Publications,

52:1--30, 2005.

[5] Jason Altschuler, Aditya Bhaskara, Vahab Mirrokni, Afshin Rostamizadeh,

Morteza Zadimoghaddam, et al. Greedy column subset selection: New bounds

and distributed algorithms. arXiv preprint arXiv:1605.08795, 2016.

[6] Roy Anati and Kostas Daniilidis. Constructing topological maps using markov

random fields and loop closure detection. In Advances in Neural Inf. Proc. Sys.,

pages 37-45, 2009.

[7] Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling algorithm

for sparsifying matrices. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, pages 272--279. Springer, 2006.

[8] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and

Atilla Baskurt. Sequential deep learning for human action recognition. In

Albert Ali Salah and Bruno Lepri, editors, HBU, volume 7065 of Lecture Notes

in Computer Science, pages 29-39. Springer, 2011.

160

1 '11111M 111111 mill 11 1

[9] Sunil Bandla and Kristen Grauman. Active learning of an action detector from

untrimmed videos. In ICCV, 2013.

[10] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan

sparsifiers. SIAM Journal on Computing, 41(6):1704-1721, 2012.

[11] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-rananujan

sparsifiers. SIAM Journal on Computing, 41(6):1704-1721, 2012.

[12] BBC. Nasa launches earth hunter probe, March 2009.

[13] BBC. Bitcoin panic selling halves its value, April 2013.

[14] Richard Bellman. Oi the approximation of curves by line segments using dy-

namic programming. Commun. ACM, 4(6):284, 1961.

[15] Irad Ben-Gal. On the use of data compression measures to analyze robust

designs. IEEE Transactions on Reliability, 54(3):381--388, 2005.

[16] Tobias Blum, Hubertus Feuner, and Nassir Navab. Modeling and segmentation

of surgical workflow from laparoscopic video. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 6363(PART 3):400-407, 2010.

[17] Marc Bolanos, Ricard Mestre, Estefania Talavera, Xavier Gir6 i Nieto, and

Petia Radeva. Visual summary of egocentric photostreams by representative

keyframes. CoRR, abs/1505.01130, 2015.

[18] Esther M Bonrath, Nicolas J Dedy, Lauren E Gordon, and Teodor P

Grantcharov. Comprehensive surgical coaching enhances surgical skill in the

operating room. Annals of surgery, 262(2):205--212, August 2015.

[19] L Bouarfa, P P Jonker, and J Dankelman. Surgical context discovery by mon-

itoring low level activities in the OR.. MICCAI workshop on modeling and

monitoring of computer assisted interventions (M2CAI), (October 2015), 2009.

161

[20] C Carath6odory. Uber den variabilitatsbereich der fourierschen konstanten. von

posi-tiven harmonischen funktionen, rend. circ. mat. palermo32 (1911), 193-217.

Caratheodory19332Rend. Circ. Mat. Palermo1911, 1911.

[21] C. Chow and C. Liu. Approximating discrete probability distributions with

dependence trees. IEEE Trans. Inf. Theor., 14(3):462-467, May 1968.

[22] Winston Churchill and Paul Newman. Continually improving large scale long

term visual navigation of a vehicle in dynamic urban environments. In Proc.

IEEE Intelligent Transportation Systems Conference (ITSC), Anchorage, USA,

September 2012.

[23] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-

wolfe algorithm. ACM Transactions on Algorithms (TALG), 6(4):63, 2010.

[24] Kenneth L Clarkson and David P Woodruff. Low rank approximation and

regression in input sparsity time. In Proceedings of the forty-fifth annual ACM

symposium on Theory of computing, pages 81-90. ACM, 2013.

[25] CNBC. Bitcoin crash spurs race to create new exchanges, April 2013.

[26] Michael B. Cohen, Cameron Musco, and Jakub W. Pachocki. Online row sam-

pling. CoRR, abs/1604.05448, 2016.

[27] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate

matrix product in terms of stable rank. arXiv preprint arXiv:1507.02268, 2015.

[28] Alceu Ferraz Costa, Gabriel Humpire-Manmani, and Agma Juci Machado Traina.

An efficient algorithm for fractal analysis of textures. In Graphics, Patterns and

Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on, pages 39-46. IEEE,

2012.

[29] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and Marina Nicolas. The

blur effect: perception and estimation with a new no-reference perceptual blur

metric. In Proc. SPIE, volume 6492, 2007.

162

I R IMF"

[30] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and

Cedric Bray. Visual categorization with bags of keypoints. In Workshop on

statistical learning in computer vision, ECCV, volume 1, pages 1-2. Prague,

2004.

[31] Mark Cummins and Paul Newman. FAB-MAP: Probabilistic Localization and

Mapping in the Space of Appearance. IJRR, 27(6):647--665, 2008.

[32] Mark Cummins and Paul Newman. Appearance-only slam at large scale with

fab-map 2.0. IJRR, 30(9):1100-1123, August 2011.

[33] Saeed Dabbaghchian, Masoumeh P Ghaemmaghami, and Ali Aghagolzadeh.

Feature extraction using discrete cosine transform and discrimination power

analysis with a face recognition technology. Pattern Recognition, 43(4):1431

1440, 2010.

[34] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 1, pages 886-893. IEEE, 2005.

[35] Jeffrey Dean and Sanj ay Ghemawat. MapReduce: Simplified data processing

on large clusters. In OSDI, 2004.

[36] Frank Dellaert and Michael Kaess. Square root SAM: Simultaneous localization

and mapping via square root information smoothing. LJRR, 25(12):1181-1203,

December 2006.

[37] J. Deng, W. Dong, R.. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In Computer Vision and Pattern

Recognition, 2009.

[38] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. Carto-

graphica: The International Journal for Geographic Information and Geovisu-

alization, 10(2):112- 122, 1973.

163

[39] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for 12

regression and applications. In Proc. 17th Ann. ACM-SIAM Symp. on Discrete

Algorithms (SODA), pages 1127-4136. ACM Press, 2006.

[40] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and

relative-error matrix approximation: Column-row-based methods. In ESA,

pages 304-314, 2006.

[41] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix

decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844--

881, 2008.

[42] Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsifi-

cation via a matrix-valued bernstein inequality. Information Processing Letters,

111(8):385-389, 2011.

[43] Brett L Ecker, Richard Maduka, Andre Ramdon, Daniel T Dempsey, Kristof-

fel R Dumon, and Noel N Williams. Resident education in robotic-assisted ver-

tical sleeve gastrectomy: outcomes and cost-analysis of 411 consecutive cases.

Surgery for Obesity and Related Diseases, 2015.

[44] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse

modeling for finding representative objects. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 1600-1607, June 2012.

[45] D. Feldman, A. Fiat, and M. Sharir. Coresets for weighted facilities and their

applications. In Proc. 47th IEEE Ann. Symp. on Foundations of Computer

Science (FOCS), pages 315--324, 2006.

[46] D. Feldman and M. Langberg. A unified framework for approximating and

clustering data. In STOC, 2010. Manuscript available at arXiv.org.

[47] D. Feldman, M. Monemizadeh, C. Sohler, and D. P. Woodruff. Coresets and

sketches for high dimensional subspace approximation problems. In Proc. 21th

Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), 2010.

164

_J

[48] D. Feldman, M. Schmidt, and C Sohler. Turning big data into tiny data:

Constant-size coresets for k-means, pca and projective clustering. Proceedings

of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

[49] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data:

Constant-size coresets for k-means, PCA and projective clustering. SODA,

2013.

[50] D. Feldman, A. Sugaya, and D. Rus. An effective coreset compression algorithm

for large scale sensor networks. In IPSN, pages 257--268, 2012.

[51] D. Feldman, C. Sung, and D. Rus. The single pixel gps: learning big data

signals from tiny coresets. In Proceedings of the 20th International Conference

on Advances in Geographic Information Systems, pages 23-32. ACM, 2012.

[52] Dan Feldman and Leonard J. Schulman. Data reduction for weighted and

outlier-resistant clustering. In SODA, pages 1343 -1354, 2012.

[53] Dan Feldman, Mikhail Volkov, and Daniela Rus. Dimensionality Reduction of

Massive Sparse Datasets Using Coresets. arXiv:1503.01663, February 2015.

[54] Dan Feldman, Mikhail Volkov, and Daniela Rus. Dimensionality reduction of

massive sparse datasets using coresets. In NIPS. Curran Associates, Inc., 2016.

[55] G David Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268-

278, 1973.

[56] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Fre-

quent directions: Simple and deterministic matrix sketching. arXiv preprint

arXiv:1501.01 711, 2015.

[57] Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank

matrix approximations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 707--717. SIAM, 2014.

165

[58] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S Muthukrishnan,

and Martin J Strauss. Fast, small-space algorithms for approximate histogram

maintenance. In STOC, pages 389--398. ACM, 2002.

[59] Yogesh Girdhar and Gregory Dudek. Efficient on-line data summarization us-

ing extremum summaries. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 3490--3496. IEEE, 2012.

[60] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theor. Comput. Sci., 38:293-306, 1985.

[61] Google. redsvd. https://code.google.com/archive/p/redsvd/, 2011.

[62] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and stream-

ing algorithms for histogram construction problems. ACM Transactions on

Database Systems (TODS), 31(1):396-438, 2006.

[63] Nathan P Halko. Randomized methods for computing low-rank approximations

of matrices. PhD thesis, University of Colorado, 2012.

[64] S. Har-Peled. Low rank matrix approximation in linear time. Manuscript, 2006.

[65] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median cluster-

ing. In Proc. 36th Ann. ACM Symp. on Theory of Computing (STOC), pages

291-300, 2004.

[66] Robert M. Haralick, K. Shanmugani, and Its'Hak Dinstein. Textural Features

for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics,

3(6):610-621, 1973.

[67] K. Ho and P. Newman. SLAM-Loop Closing with Visually Salient Features. In

ICRA, April 2005.

[68] Dorit Hochbaum and David Shmoys. A best possible approximation for the

k-center problem. Mathematics of Operations Research, 10(2):180-184, 1985.

166

[69] Dorit S Hochbaum. Approximation algorithms for NP-hard problems. PWS

Publishing Co., 1996.

[70] Marcus Hutter. Towards a universal theory of artificial intelligence based on

algorithmic probability and sequential decisions. In European Conference on

Machine Learning, pages 226-238. Springer, 2001.

[71] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions

based on Algorithmic Probability. Springer, Berlin, 2005. 300 pages,

http://www.hutterl.net/ai/uaibook.hti-.

[72] Marcus Hutter. Human knowledge compression contest, July 2009.

[73] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi

diagrams and randomization to variance-based k-clustering. In Proceedings of

the tenth annual symposium on Computational geometry, pages 332--339. ACM,

1994.

[74] H. Johannsson, M. Kaess, M.F. Fallon, and J.J. Leonard. Temporally scalable

visual SLAM using a reduced pose graph. In ICRA, Karlsruhe, Germany, May

2013.

[75] Michel Journde, Yurii Nesterov, Peter Richtirik, and Rodolphe Sepulchre. Gen-

eralized power method for sparse principal component analysis. The Journal of

Machine Learning Research, 11:517-553, 2010.

[76] Umashankkar Kannan, Brett L Ecker, Rashikh Choudhury, Daniel T Dempsey,

Noel N Willians, and Kristoffel R Dunmon. Laparoscopic hand-assisted versus

robotic-assisted laparoscopic sleeve gastrectomy: experience of 103 consecutive

cases. Surgery for Obesity and Related Diseases, 2015.

[77] Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learning hu-

man activities and object affordances from rgb-d videos. I. J. Robotic Res.,

32(8):951 970, 2013.

167

[78] M. Labbe and F. Michaud. Appearance-based loop closure detection for online

large-scale and long-term operation. IEEE-TRA, 29(3):734--745, June 2013.

[79] Florent Lalys, Laurent Riffaud, David Bouget, and Pierre Jannin. A framework

for the recognition of high-level surgical tasks from video images for cataract

surgeries. IEEE Trans. on Biomedical Engineering, 59(4):966-976, 2012.

[80] Florent Lalys, Laurent Riffaud, Xavier Morandi, and P Jannin. Automatic

phases recognition in pituitary surgeries by microscope images classification. In-

formation Processing in Computer-Assisted Interventions LNCS Volume 6135,

pages 34-44, 2010.

[81] Florent Lalys, Laurent Riffaud, Xavier Morandi, and Pierre Jannin. Surgical

phases detection from microscope videos by combining SVM and HMM. In

Medical Computer Vision. Recognition Techniques and Applications in Medical

Imaging, pages 54-62. Springer, 2010.

[82] Cornelius Lanczos. An iteration method for the solution of the eigenvalue prob-

lem of linear differential and integral operators. United States Governm. Press

Office Los Angeles, CA, 1950.

[83] M. Langberg and L. J. Schulman. Universal e approximators for integrals.

SODA, 2010.

[84] Anat Levin and Richard Szeliski. Visual odometry and map correlation. In

Computer Vision and Pattern Recognition, volume I, pages 611-618, Washing-

ton, DC, June 2004. IEEE Computer Society.

[85] Shigang Li and S. Tsuji. Selecting distinctive scene features for landmarks. In

ICRA, pages 53-59 vol.1, May 1992.

[86] Yunpeng Li, David J. Crandall, and Daniel P. Huttenlocher. Landmark classi-

fication in large-scale image collections. In ICCV, pages 1957-1964, 2009.

168

110M = NMI 111111NN' 1 111111011101 10011010010

[87] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 581-588. ACM, 2013.

[88] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and

Mark Tygert. Randomized algorithms for the low-rank approximation of ma-

trices. Proceedings of the National Academy of Sciences, 104(51):20167-20172,

2007.

[89] Andrew W Lo and Jasmina Hasanhodzic. The evolution of technical analysis:

financial prediction from Babylonian tablets to Bloombery terminals, volume

139. John Wiley & Sons, 2011.

[90] Benny PL Lo, Ara Darzi, and Guang-Zhong Yang. Episode classification for the

analysis of tissue/instrument interaction with multiple visual cues. In MICCAI,

pages 230-237. Springer, 2003.

[91] Zheng Lu and Kristen Graumnan. Story-driven summarization for egocentric

video. In Computer Vision and Pattern Recognition, pages 2714 -2721, 2013.

[92] Peter Lyman and Hal Varian. How much information 2003? 2004.

[93] William P. Maddern, Michael Milford, and Gordon Wyeth. Towards persistent

indoor appearance-based localization, mapping and navigation using cat-graph.

In IROS, pages 4224-4230, 2012.

[94] Takuya Maekawa, Yutaka Yanagisawa, Yasue Kishino, Katsuhiko Ishiguro, Koji

Kamei, Yasushi Sakurai, and Takeshi Okadome. Object-based activity recogni-

tion with heterogeneous sensors on wrist. In Patrik Florden, Antonio Kruger,

and Mirjana Spasojevic, editors, Perwasive Computing, volume 6030 of Lecture

Notes in Computer Science, pages 246-264. Springer Berlin Heidelberg, 2010.

[95] Phil Maguire, Philippe Moser, and Rebecca Maguire. Understanding conscious-

ness as data compression. Journal of Cognitive Science, 17(1):63 -94, 2016.

169

[96] Matt Mahoney. Rationale for a large text compression benchmark, August

2006.

[97] Gabriele Marangoni, Gareth Morris-Stiff, Sunita Deshmukh, Abdul Hakeem,

and Andrew M Smith. A modern approach to teaching pancreatic surgery.

Journal of gastrointestinal surgery, 16(8):1597--1604, 2012.

[98] William McMahan, Ernest D Gomez, Liting Chen, Karlin Bark, John C Nappo,

Eza I Koch, David I Lee, Kristoffel R Dumon, Noel N Williams, and Katherine J

Kuchenbecker. A practical system for recording instrument interactions during

live robotic surgery. Journal of Robotic'Surgery, 7(4):351-358, 2013.

[99] David M. Mount. Design and analysis of computer algorithms. Lecture notes,

University of Maryland, 2008.

[100] NASA. Kepler: Nasa's first mission capable of finding earth-size planets, Febru-

ary 2009.

[101] NASA. Pyke primer - 2. data resources; March 2014.

[102] NASA. Kepler and K2, spacecraft and instrument, July 2015.

[103] nine. nine, August 2016.

[104] Nicolas Padoy, Tobias Blum, Irfan Essa, Hubertus Feussner, Marie-odile Berger,

Nassir Navab, and Loria-inria Lorraine. A Boosted Segmentation Method for

Surgical. MICCAI, pages 102-109, 2007.

[105] Christopher C Paige. Computational variants of the lanczos method for the

eigenproblem. IMA Journal of Applied Mathematics, 10(3):373-381, 1972.

[106] Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh

Vempala. Latent semantic indexing: A probabilistic analysis. In Proceedings of

the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems, pages 159-168. ACM, 1998.

170

[107] R. Paul, D. Feldman, D. Rus, and P. Newman. Visual precis generation using

coresets. In ICRA, pages 1304-1311, May 2014.

[108] Rohan Paul and Paul Newman. FAB-MAP 3D: Topological mapping with

spatial and visual appearance. In ICRA, pages 2649-2656, Anchorage, Alaska,

May 2010.

[109] Karl Pearson. On lines and planes of closest fit to systems of points in space.

London, Edinburqh and Dublin Philosophical Magazine and Journal of Science,

2(11):559-572, 1901. Sixth Series.

[110] Karl Raimund Popper. The open universe: An arqument for indeterminism,

volume 2. Psychology Press, 1988.

[111] Urs Rainer. An iterative procedure for the polygonal approximation of plane

curves. Computer Graphics and image Processing, 1(3):244 - 256, 1972.

[112] W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66(336):846 -850, 1971.

[113] Radim Rehurek, Petr Sojka, et al. Gensim-statistical semantics in python.

2011.

[114] Guy Rosman, Mikhail Volkov, Dan Feldman, John W Fisher III, and Daniela

Rus. Coresets for k-segmentation of streaming data. In NIPS, pages 559-567.

Curran Associates, Inc., 2014.

[115] Tamas Sarlos. Improved approximation algorithms for large matrices via ran-

dom projections. In Foundations of Computer Science, 2006. FOCS'06. 47th

Annual IEEE Symposium on, pages 143-152. IEEE, 2006.

[116] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving image-based local-

ization by active correspondence search. In European Conf. Computer Vision,

pages 752-765, Berlin, Heidelberg, 2012. Springer-Verlag.

171

[117] Grant Schindler, Matthew Brown, and Richard Szeliski. City-scale location

recognition. In Computer Vision and Pattern Recognition, 2007.

[118] Bruce Schneier. Data and Goliath: The hidden battles to collect your data and

control your world. WW Norton & Company, 2015.

[119] Claude Elwood Shannon. A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1):3--55, 2001.

[120] Armin Shimilovici, Yoav Kahiri, Irad Ben-Gal, and Shmuel Hauser. Measuring

the efficiency of the intraday forex market with a universal data compression

algorithm. Computational Economics, 33(2):131-154, 2009.

[121] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The hadoop distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1-10. IEEE, 2010.

[122] Nate Silver. The signal and the noise: Why so many predictions fail-but some

don't. Penguin, 2012.

[123] Pritam Singh, Rajesh Aggarwal, Muaaz Tahir, Philip H Pucher, and Ara Darzi.

A randomized controlled study to evaluate the role of video-based coaching in

training laparoscopic skills. Annals of surgery, 261(5):862-869, 2015.

[124] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In ICCV, volume 2, pages 1470-4477, October 2003.

[125] J. Sivic and A. Zisserman. Video Google: Efficient visual search of videos. In

J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, editors, Toward Category-

Level Object Recognition, volume 4170 of LNCS, pages 127-144. Springer, 2006.

[126] Josef Sivic and Andrew Zisserman. Efficient visual search of videos cast as

text retrieval. IEEE transactions on pattern analysis and machine intelligence,

31(4):591-606, 2009.

172

will".

[127] Stefanie Speidel, Julia Benzko, Sebastian Krappe, Gunther Sudra, Pedram

Azad, Beat Peter Miiler-Stich, Carsten Gutt, and Riidiger Dillmann. Au-

tomatic classification of minimally invasive instruments based on endoscopic

image sequences. In SPIE Medical Imaging, pages 72610A-72610A. Interna-

tional Society for Optics and Photonics, 2009.

[128] International Business Times. Active mobile phones outnumber humans for the

first time, October 2014.

[129] The Japan Times. Ibm big data used for rapid diagnosis of rare leukemia case

in japan, August 2016.

[130] Goce Trajcevski, Hu Cao, Peter Scheuermann, Ouri Wolfson, and Dennis Vac-

caro. On-line data reduction and the quality of history in moving objects

databases. In MobiDE, pages 19-26, 2006.

[131] Kasturi Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems.

arXiv preprint arXiv:1209.4893, 2012.

[132] Santosh S Vempala. The random projection method, volume 65. American

Mathematical Soc., 2005.

[133] Paul Viola and Michael Jones. Robust real-time object detection. International

Journal of Computer Vision, 4, 2001.

[134] Mikhail Volkov, Dan A. Hashimoto, Guy Rosman, Ozanan R. Meireles, and

Daniela Rus. Machine learning and coresets for automated, real-time video

segmentation of laparoscopic surgery. In SAGES Errierging Technology Session,

Boston, Massachusetts, Mar. 16-19 2016.

[135] Mikhail Volkov, Guy Rosman, Dan Feldman, John W Fisher III, and Daniela

Rus. Coresets for visual summarization with applications to loop closure. In

ICRA, Seattle, Washington, USA, May 2015. IEEE.

173

[136] Heng Wang, Muhammad Muneeb Ullah, Alexander Kliser, Ivan Laptev, and

Cordelia Schmid. Evaluation of local spatio-temporal features for action recog-

nition. In British Machine Vision Conference, page 127, sep 2009.

[137] Wikipedia. Dikw pyramid, August 2016.

[138] Jiang Zheng, M. Barth, and S. Tsuji. Qualitative route scene description using

autonomous landmark detection. In ICCV, pages 558--562, Dec 1990.

[139] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude

Oliva. Learning deep features for scene recognition using places database. In

Advances in Neural Inf. Proc. Sys., pages 487--495, 2014.

174

