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"The model has an answer to (nearly) everything.'

- Heinz Isler
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of the Roman Pantheon

by J. William Plunkett

Submitted to the Department of Architecture on January 15, 2016

in partial fulfillment of the requirements for the degree of
Master of Science in Building Technology

Abstract

The Roman Pantheon is among the largest unreinforced masonry dome ever built and is
an unparalleled example of the construction capabilities of the ancient Romans. As one of
the most well-known buildings in the world, its preservation remains important because
of its cultural and societal significance, and the methods used to assess the safety of
historic masonry structures continue to be developed, particularly for three-dimensional
vaulted forms. Through a study of the Roman Pantheon, this thesis compares analytical
and experimental results on a :ioo scale model of the variable thickness, hemispherical
dome. The model is created using additive manufacturing for accuracy.

This thesis, using a physical scale model, quantifies the safety of the Roman Pantheon
against the two most probable causes of collapse (i) deformation of the building geometry
and (2) seismic activity. The structural behavior of the model is compared to analytical
predictions of (1) spreading supports, simulating leaning walls that result from the dome
thrust or settling of the foundations, and (2) tilting, a first-order approximation of
horizontal ground acceleration. The experimental tests lead to the formation of a
mechanism and collapse due to instability. High-speed imagery captures the observed
collapse mechanisms and failure limits. Experimental results are compared to analytical
predictions for hemispherical masonry domes.

The results of the physical experiment demonstrate the potential for digitally fabricated
scale models in approximating the behavior of three-dimensional structures with complex
geometries. The low cost and rapid approach provides a useful method for validating
analytical predictions of the limit states and collapse mechanisms of unreinforced
masonry structures.

Thesis Supervisor: John A. Ochsendorf
Professor of Architecture and Civil and Environmental Engineering

4



Acknowledgements

This research over the all-to-brief two years at MIT is inspired by and indebted to the

endless expertise and enthusiasm of John Ochsendorf.

Many others helped make research opportunities possible. The faculty and staff of the

Building Technology Program and the Department of Architecture supplied financial

support and answered many questions along the way. John Ochsendorf, Caitlin Mueller,

Andrea Love, and Carl Solander provided the opportunity to assist in their courses, along

with Shiyu Wei and Nathan Brown. Steve Rudolph of the Civil and Environmental

Engineering laboratories advised on experiment methodology. Jim Bales, Edgerton Center,

and Strobe Lab shared their expertise in high-speed imaging. Anna Kaertner, Juanita

Ballesteros, Sabrina Henry, Katie Gertz, Francesca Perone, and Ali Irani, were

instrumental in creating models and testing through the support of the MIT

Undergraduate Research Opportunities Program (UROP). Justin Lavallee, Jen O'Brien,

and the MIT Architecture Shops spent many hours advising on how to fabricate the

models. Professor Lynne Lancaster of Ohio University generously shared her expertise on

Roman vaulting and the three-dimensional geometric model of the Pantheon. Matt

Dejong and Philippe Block demonstrated expertise around open questions in masonry

and influenced the direction of the research questions. Matthias Rippmann and the Block

Research Group at ETH-Zurich influenced the testing setup through their support of the

MIT Externship Program. The MIT-UNIPI and MIT-Italy collaborations supported field

research in Rome. Finally, many thanks to the dedication of the student team

collaborating on the Officer Sean A. Collier Memorial - particularly Grant Iwamoto, Anna

Kaertner, Estelle Yoon, Michael Laracy, Chris Porst, Andrew Smith, Nathaniel Lyon,

William Cord, and Corentin Fivet. To the friends of MIT, the Building Technology Lab,

Structural Design Lab, and those in studio, thank you for making the research daily fun.

To my parents, James and Carla Plunkett, and sister, Layla, thank you for always listening.

And Jane, my thanks for the wholehearted kindness.

5



Table of Contents

1. Introduction 7

1.1. Motivation 7

1.2. Research Objectives 7

1.3. Outline 8

2. Literature Review 9

2.1. Masonry Analysis 9

2.2. Scale Models Experiments 11

2.3. Pantheon History 11

3. Methodology 14

3.1. Model 14

3.2. Experiment Setup 17

4. Spreading Supports 20

4-1. Analytical Predictions 20

4.2. Experimental Results 20

5. Horizontal Acceleration through Tilting 21

5-1. Analytical Predictions 21

5.2. Experimental Results 22

6. Discussion 23

6.1. Spreading Supports 23

6.2. Horizontal Acceleration through Tilting 23

7. Conclusion 24

7.1. Summary of Findings 24

7.2. Future Research 24

References 27

6



1.0 Introduction

The Pantheon in Rome, Italy, is one of the great technological and architectural

achievements in human history and one of the most recognizable structures in the world.

Its influence on the architecture of both civic and religious buildings is likely unparalleled,

and the construction of its clear span is unprecedented and has remained unsurpassed for

more than a millennium. Continuing to preserve the Roman Pantheon for additional

centuries is important not only for the safety of visitors but also for its significant cultural

and architectural heritage.

1.1 Motivation

As one of the largest unreinforced concrete and masonry dome ever constructed, the

Roman Pantheon has been the subject of numerous and contradictory structural analyses

throughout its history (Mark 1986, Croci 2006, Lancaster 2009). Its span was not matched

for more than a millennium until the 15 th century dome of the Cathedral of Florence, Italy,

and was not exceeded until the late 19 h' century with the iron trusses of the Devonshire

Royal Hospital in Buxton, England. This research was inspired by a twofold need: first, to

quantify the potential causes of future collapse of the Roman Pantheon due to foundation

settlement or earthquakes using limit analysis, and second, to validate the results through

physical experiments on a scale model.

1.2 Research Objectives

By exploring the collapse mechanisms of a physical scale model, this thesis uses limit

analysis on a scale model to demonstrate (i) the safety of the Roman Pantheon against

collapse due to deformations caused by support displacements, (2) the safety of the

Roman Pantheon against collapse due to seismic activity, and (3) the validity of

predictions from analytical models based on equilibrium methods. The combination of

physical experiments and simple tools for analytical models applied to the Roman

Pantheon supplies a new assessment methodology for the structural behavior of

unreinforced masonry.
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1.3 Outline of Chapters

This thesis studies the safety of the Roman Pantheon through collapse analyses of a

digitally fabricated scale model.

Chapter 2 provides an overview of published literature in three relevant areas. First, an

overview is given of the assessment methods used in masonry structures with an

emphasis on limit analysis for masonry domes. Second, recent developments in the use of

digitally fabricated scale models as an experimental tool to validate analytical models are

discussed. Third, the general history and structural analyses of the Roman Pantheon

specifically are examined.

Chapter 3 presents the methodology of the physical experiments. The assumptions

made in the creation of a dimensionally-accurate discretized virtual and physical model

are discussed. The general testing setup and procedure are also described.

Chapter 4 finds the collapse mechanisms of the full-scale model and the dome alone

due to spreading supports, simulating settling of the foundation or outward rotation of

the walls of the drum, respectively. The increase in the span before collapse is found and

compared to analytical predictions.

Chapter 5 derives the horizontal ground acceleration that causes collapse of the full-

scale model, the dome alone, and the drum alone. Using a tilt test, seismic activity is

approximated using a static technique to estimate the minimal horizontal acceleration

required to form a collapse mechanism. The resulting critical lateral acceleration is

compared to analytical predictions of collapse.

Chapter 6 presents the results of the experiments and discusses their limitations.

Chapter 7 generalizes the main conclusions of this thesis and outlines opportunities

for further research.
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2.0 Literature Review

This chapter presents an overview of the literature regarding masonry dome analysis,

scale model experiments, and the Roman Pantheon. First, it explores assessment methods

for masonry structures; second, it presents developments in the use of digitally fabricated

scale models as an experimental tool to validate analytical models; third, it examines the

general history and structural analyses of the Roman Pantheon.

2.1 Masonry Analysis

Strength versus Stability

Unreinforced masonry is the primary material for many historic structures, and it

behaves differently from modern buildings in which the materials are more highly

stressed. Masonry buildings rely primarily on their geometry for stability, owing to the

fact that masonry is strong in compression and weak in tension. Contemporary building

codes require the structure to absorb the energy of lateral loads, particularly seismic loads,

through material failure. The use of equilibrium or stability analysis is often more

appropriate than stress or strength analysis for unreinforced masonry structures (Heyman

1995, Boothby 2001, Lourenco 2002).

Limit Analysis of Masonry Domes

Stability methods are commonly referred to as limit analysis or limit state analysis.

Coulomb (1776) is attributed with first formalizing the concept of minimum and

maximum states of stability. Heyman, who presented a modern formulation for limit

analysis of masonry structures, describes three primary assumptions for using the theory

of limit analysis in unreinforced masonry structures (Heyman 1966; 1995). First, masonry

does not resist tensile forces. While this assumption is typically applied to the structure as

a whole to be conservative, the masonry itself can transfer some small amount of tension,

although joint mortar is often weaker. The frequent appearance of cracks within masonry

structures indicates a tensile failure of either the material or the joint but does not
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necessarily compromise the entire system. In reality, masonry has some nominal tensile

strength, though it is a conservative assumption to neglect this limited tensile capacity.

Second, it can be assumed that masonry has infinite compressive strength. This

assumption, certainly not conservative, is applicable in practice because masonry

structures rarely experience high material stresses in compression. The working stresses

are typically on the order of only 5% of their crushing strength. Studies have tested this

hypothesis to determine the capacity of arches, including the compressive strength of the

masonry, and have demonstrated capacity, even with weak or old masonry, far beyond

the height or applied loads in most historic masonry structures. (Foce 2003, Aita et. al.

2012). Moreover, when local material failure does occur, the integrity of the structure is

rarely compromised as the forces redistribute across a larger interface. The third

assumption is that masonry blocks have enough friction and do not slide. This

assumption should always be considered carefully since sliding may occur in particular

geometric configurations, often if joints are not perpendicular to the dominant force

transfer and have relatively low thrusts across their interface. These three basic

assumptions allow for the study of structures as rigid blocks that depend on their

geometry for their stability (Heyman 1995). More thorough examinations of the

differences between plastic and elastic analysis are presented by Huerta and Aroca (1989)

and Block (2006).

Historically, graphic statics, or the representation of forces within a structure as

vectors, has been used to apply the principles of limit analysis by various authors. The

first application of a graphical method of forces as vectors was Stevin, a Dutch

mathematician in the 17th century (Allen and Zalewski 2009.) For developments that

apply to domes, Poleni famously assessed the stability of the dome of St. Peter's Basilica

in Rome ignoring the impact of any hoop forces (Poleni 1748). Bossut (1776) proposed an

analysis of domes without hoop stresses. Durand-Claye (188o) introduced indeterminacy,

creating a method for drawing all possible thrust lines and introduced an early form of a

factor of safety, but like Bossut he did not consider hoop forces. Wolfe (1921) introduces

hoop forces in his derivation of a line of thrust. Domes were traditionally studied as two-
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dimensional arches, though Heyman extended the method to spherical domes using

membrane analysis (Heyman 1967).

There are two primary causes of a loss of stability in a masonry structure. One cause of

collapse in historic buildings is deformation from the original building geometry typically

caused by settling of foundations or supports (Danyzy 1732, Viollet-le-Duc 1854). A second

cause of collapse is horizontal ground acceleration. Numerous recent studies have been

dedicated to the collapse of arches (Oppenheim 1992, Smars 2000, Boothby 2001,

Ochsendorf 2002), buttresses (De Luca 2004), barrel vaults (DeJong 2009), and domes

(Lau 2006, Cooke and Ochsendorf 2012, Zessin 2012), and vaults (Shapiro 2012, van Mele

et 2012.)

2.2 Physical Experiments

The use of small-scale physical experiments provides an effective method to create

and validate results. The importance of physical testing in the study of unreinforced

masonry structures is particularly important, as computational approaches using

strength-based assumptions can lead to inaccurate or infeasible results (Block 2006).

Additionally, finite element analysis models do not easily accommodate large support

displacements that are common in unreinforced masonry structures. Because most

historical masonry structures have low stresses, their safety is governed by stability and

not by the compressive strength of the materials (Heyman 1995). Several recent authors

have demonstrated the ability of scale models to investigate the stability of masonry

vaults and domes (Quinonez et al. 2010, van Mele et al. 2011, Shapiro 2012).

2-3 The Roman Pantheon

The construction of the unprecedented dome of the Pantheon is attributed to

Emperor Hadrian (117-138 AD), though the names of the master builders responsible for

its construction are unknown (Lancaster 2005). Hadrian's most likely inspiration for

building such a large dome came from the domes he knew from the popular ancient

Roman resort town of Baiae (Yourcenar 2005). There is also a connection with Marcus

11



Agrippa, whose name is famously inscribed on the current Pantheon constructed by

Hadrian, and Baiae because Agrippa was likely involved with the construction of Portus

Julius adjacent to Baiae. Between 3 oBC and 12BC, Agrippa built or expanded numerous

public works in the Campus Martius of Rome, including the first of the great baths

constructed in Rome which likely contain the largest dome span in the world when

completed and the first building known as the Pantheon. While the construction history

of the Pantheon is unknown, it is believe that Agrippa constructed the first version that

was destroyed by fires and rebuilt in 8o AD by Domitian. The third and current Pantheon

was constructed around iio AD by Hadrian (Moore 1995, MacDonald 2002).

Ancient Roman architecture placed great significance on the form of the dome,

particularly as a representation of imperial power. Both octagonal and round domes with

long spans built of different materials including brick (Baths of Trajan), concrete

(Pantheon), and hollow terracotta (Baths of Caracalla) demonstrate the mastery and

experimentation of the ancient Romans. Numerous authors have illustrated the influence

of the Pantheon in subsequent architecture throughout the world (Pliny 79, Terenzio

1934, MacDonald 2002, Belardi 2006).

Many recent scholars have studied the structural behavior of the Pantheon, often with

the intent of understanding the stability of the structure and how the Ancient Romans

could have constructed the span (Mark 1986, Croci 2006, Lancaster 2009, Vogel 2009,

Zessin 2012). Mark and Hutchinson (1986) outline the results of several finite element

models representing an uncracked dome, cracked dome, stepped rings, and coffering.

Their exploration considered the possible tension forces that led to the development of

large, evenly spaced meridional cracks running from the bottom of the dome. These

cracks are assumed to have formed soon after construction as repairs utilize the same

bricks as the original structure (Terenzio 1934, Lancaster 2005). Zessin (2012) proposes an

alternate means for the formation of the meridional cracks using limit analysis that also

matches the cracks observed in the Pantheon. Lancaster (2009) applied thrust line

analysis to study various Roman vaulted structures, and she investigated a range of

questions surrounding the construction of the Pantheon, including the role of the step
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rings and the use various densities of concrete, caementa, in the structure. Her study is

the most complete analysis of the Pantheon structure using static analysis, though it does

not address the question of collapse limits for the current building.

In summary, previous authors have conducted numerous studies of the history and

structure of the Roman Pantheon. However, none have attempted to quantify the limits

of collapse due to tilting, an equivalent static analysis of horizontal acceleration due to

earthquakes. Zessin (2012) calculated the first theoretical predictions of the stability of the

Pantheon due to spreading supports, but did not validate the results with a numerical

model or a physical experiment. To address these gaps in the existing literature, this

thesis investigates the stability of the dome of the Pantheon through a scale model.
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3.0 Methodology

This chapter describes the design and fabrication of the physical model and test

experiments and documents assumptions used in creating the discretized scale model.

3.1 Model

The dimensional measurement of the Pantheon has been highly varied throughout its

history, dating back to Serlio and Palladio in the 16 th century. For example,

measurements of the horizontal diameter of the dome taken in the second half of the 21s

century vary from 43.3 meters to 44.08 meters (de Fine Lict 1966, Geertman 1980, Pelleti

and Martines 1989, Bartoli 1994, Aliberti and Altozano 2o, Fernandez-Cabo 2013). Most

studies state 43.8 meters as the horizontal diameter of the dome because it equates to a

measure of 148 Roman feet. The most accurate digital survey of the Roman Pantheon has

been the collaboration on the Bern Digital Pantheon Project (Grabhoof 2009). In addition

to providing accurate measurements of the current building, the survey demonstrates the

clear deviations that refute the common misconception that the dome and base form a

perfect hemisphere. The discretized virtual model used to 3 D print the physical model

was derived from the dimensions of the geometric model created by Lancaster (2005). A

section elevation of the Lancaster model is shown in Figure 3.1

Figure 3.1 Model illustrating the construction of the Pantheon by Lancaster (2005).
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In order to create a 3 D printed scale model of the Roman Pantheon, a virtual model is

created to explore the stereotomy. A virtual model of the Roman Pantheon was created

using Rhinoceros 3 D, a computer aided drawing and modeling software (rhino3d.com).

Particular attention was paid to preserving the voids within the walls of the drum.

Figure 3.2: Four plan sections taken from different heights of the Pantheon drum

The model was divided into eleven horizontal courses, four courses for the drum and

seven courses for the dome. Each of the four courses of the drum and the lowest layer of

the dome were divided into an inner and outer layer, which also aided the printing of the

voids within the walls. The mode does not include the porch of the structure as it does

not provide structural support of the dome.

Figure 3.3: A typical cross section showing the discretization of the eleven courses, four

horizontal courses for the drum and seven radial courses for the dome

The virtual model was discretized into 492 blocks, 200 for the dome and 292 for the

drum. All joints were placed radially normal to the interior surface of the dome. The

horizontal discretization of the dome followed the ribs of the coffers, a choice made for

visual clarity and to aid in constructing the model. The vertical discretization alternated

between the ribs of the coffers and the midpoint of the coffers.

15
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Figure 3.4: Axonometric view showing the offset discretization of the seven radial courses

in relation to the coffers of the Pantheon dome

The discretized model was 3 D printed using a ZCorp 350 printer. The model is 1/ 1 0 0 th

of full scale: one centimeter in the model represents one meter in the Roman Pantheon.

All blocks were printed with a uniform density as a conservative assumption, since the

density of the concrete in the Roman Pantheon likely has lighter aggregate than the base.

All printed blocks were infiltrated with ZBond 90 to cure and harden the blocks. The

density and friction of the blocks were measured empirically to be 0.5 g/cm3 with a

friction angle of 43 degrees. Blocks were labeled according to the course and position

based on the radial symmetries within a particular layer.

Figure 3-5: Image of the labeled blocks for courses io and n during construction
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3.2 Physical Experiments

The model was constructed atop a piece of io mm thick oriented strand board. Two

test bases were constructed: a tilting assembly and a spreading assembly. Both used the

same setup with the exception that the base of the spreading assembly is divided into

quadrants while the base for the tilting assembly is a single board. A cylinder matching

the inner radius of the drum was cut from the base board in order to allow for the

removal of the supporting formwork and to view collapse experiments from below. The

cylinder was affixed to the original board using brackets. Sand paper was affixed on top of

the board in order to increase the coefficient of friction at the base to prevent sliding

between the blocks of the base layer and the support.

Foam formwork matching the curvature of the interior surface of the dome (i.e. the

surface if no coffers were presented) was milled using a computer numerical control

router. The formwork was subdivided into four quadrants and trimmed to provide a

suitable gap for ease of removal when lowering the formwork after construction.

Temporary spacers were used to ensure the formwork was in the correct location.

Threaded rods, which allowed the supporting formwork to be lowered after assembling

the dome, were used to support the temporary foam formwork. After the model was

assembled, the formwork was lowered using the threaded rods. The removal of the

formwork was made easier because of access through the oculus of the dome, which

allowed for the removal of the temporary spacers maintaining the location of the interior

formwork. The formwork, threaded rods, and base cylinder were then lowered allowing

for a view from below the dome. The formwork, assembly process, spacers, completed

model, and lowering of the formwork are shown in Figure 3.6 and 3.7. The interior view of

the completed dome including the coffers and oculus is shown in Figure 3.8
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Figure 3.6: Construction process of the full model showing the use of formwork

Figure 3.7: View of dome from oculus showing the initial lowering of the formwork
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Figure 3.8: Interior view of the completed model assembly
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4.0 Spreading Supports

4.1 Analytical Prediction

Zessin (2012) found the Rankine factor of the Roman Pantheon to be 3.2 in its current

state, building on the work of Lancaster (2005) who found using graphical methods the

Rankine factor to be 4.2. Additionally, Zessin proposed an analytical prediction that the

span increase that would cause the dome to collapse is 4.43 meters, which corresponds to

a 6 degree lean of the supporting walls. It follows that the analytical prediction for the

span increase that would cause collapse of the scale model is 4.4 centimeters.

4.2 Scale Model Collapse Results

Two trials of a spreading test were conducted on the scale model.

Trial Span
Increase

1 3.4 cm
2 3.0 cm

Average 3.2 cm

Table 4.1

A span increase of 3.2 cm is observed to cause collapse of the dome. The critical span

increase is observed to be 7.3% of the clear span. The experimental result is conservative

for three reasons. First, the analytical prediction assumes two densities of materials in the

dome, while the scale model blocks have uniform density. Second, the discretization of

the dome in the analytical prediction has twice as many courses, which allows for the

hinge location to form closer to the actual location. Third, the physical model is

susceptible to imperfections in construction and printing. This last assumption is often

addressed using an effective thickness modification to account for the rounding of edges

the blocks after multiple tests. The effect was observed and quantified during tilting tests

of arch models by DeJong (2009).
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5.o Horizontal Acceleration through Tilting

Analytical Predictions

Equivalent static analysis is frequently used to approximate an earthquake load. This

allows for a tilt analysis to be a first-order approximation. Horizontal ground acceleration

is the equivalent of gravity multiplied by the tangent of the tilt angle. The dome of the

Roman Pantheon has a variable thickness, at the top of the oculus, the thinnest portion of

the dome is one meter thick, while at the base of the dome where the dome meets the

drum, the dome is four meters thick. Using the conservative assumption that the dome

could be approximated as a uniform thickness dome with a thickness-to-radius ratio

of .25, the dome is predicted to collapse at 30 degrees, or at a horizontal acceleration

of .58g (Zessin 2012). The critical lateral acceleration can be calculated using the tangent

of the tilt angle at collapse.

Experimental Results

Three trials of a tilting test were conducted on the dome of the scale model. Images of

the collapse mechanisms are shown in Figure 5.1 and Figure 5.2.

Trial Collapse Angle
1 27.1

2 26.8

3 28.0
Average 27.3

Table 5.1

The average tilt angle of 27.3 yields a collapse at a critical lateral acceleration of .51g-

The results of the third trial indicate that the quality of the assembly impacts collapse as

it would be accepted that the collapse angle would be lower than previous trials due to

slight deterioration of the blocks resulting from multiple collapses.
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6.o Discussion

6.1 Spreading Supports

The conservative assumptions used in testing the scale model indicate the experiment

results support the analytical prediction using limit analysis for the dome. The critical

span increase before collapse is observed to be 7.3% of the clear span compared to 10.2%

in the analytical prediction. As the meridional cracking within the dome of the Roman

Pantheon has already increased the span by approximately one meter, the physical

experiments indicate that the current, deformed structure has a geometric factor of safety

against collapse of at least 3, versus 4.5 indicated based on the analytical factor of safety.

Assuming the scale model experiment is conservative, the results indicate alignment

between the analytical Rankine (4.2), experimental geometric (3-1), and analytical

geometric (4-5) factors of safety. The results of the scale model experiments indicate that

the dome span could increase by an additional two meters before collapse, confirming the

high degree of stability of the structure.

6.2 Horizontal Acceleration through Tilting

Comparing the result to the analytical predictions of Zessin (2012), the critical lateral

acceleration of a uniform thickness dome with a thickness to radius ratio of .25,

approximating the thickness of the Roman Pantheon, is -58g. The average tilt angle of

collapse 27-3 yields a critical lateral acceleration of -51g. This result validates the analytical

predictions using limit analysis to calculate the collapse mechanisms of domes subject to

horizontal ground acceleration. It also provides another result to support using a uniform

thickness dome as an approximation for a variable thickness dome to simplify

calculations. Zessin (2012) finds analytically the critical tilt angle for a .2 thickness to

radius ratio dome is 26 degrees, a critical lateral acceleration of .49g, which was

confirmed using a scale model with a collapse tilt angle of 24.8 degrees (.46g) (Zessin

2012).
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7.0 Conclusion

7.1 Summary of Findings

- The use of scale models provides a method to validate analytical models.

- Analytical predictions of collapse due to spreading supports using limit analysis

are validated by the scale model experiments on the Roman Pantheon.

" The experimental factor of safety against spreading is conservative compared to

the analytical prediction.

" The stability of the Roman Pantheon against collapse to spreading supports or

leaning walls is confirmed.

" Approximating the critical lateral acceleration of a variable thickness dome as a

uniform thickness dome is shown to be a valid simplifying assumption due to the

high lateral stability of the form.

" The scale model experiments validate the analytical predictions of the high lateral

stability of unreinforced masonry domes.

7.2 Future Research

This thesis outlines the collapse mechanisms of a specific unreinforced masonry dome,

using a 1:100 scale model of the Roman Pantheon. Future research can be performed using

scale physical experiments to validate analytical models i) specific to the Roman

Pantheon and 2) more broadly on non-uniform thickness masonry domes.

Future Work on the Roman Pantheon

Variable Material Density

In order to demonstrate the worst-case performance of the dome, the fabricated

model has a uniform material density. Most researchers agree that concrete of the Roman

Pantheon becomes lighter closer to the oculus as the density of the pozzolanic concrete is

reduced (de Fine Licht 1968, Lancaster 2005, Belardi 2006); however, the height when the
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material change occurs, reduction in density, and number of different materials are not

well established. This lower density concrete makes the dome more stable by reducing

the thrust on the supporting walls. Digital fabrication of the scale model allows for the

density to be controlled, providing a quick method to model and test hypotheses of how

much the lighter concrete increases structural stability. This could be modeled by

introducing voids in the central blocks of the dome.

Stepped Rings

The purpose of the "stepped rings" of the dome remains an open question. Exploring

physical models where the stepped rings are printed separately from the uniform

thickness hemispherical dome, as performed in the photo-elasticity experiments of Mark

and Hutchinson (1986), could provide insight into whether the rings increase the overall

structural stability or if they serve perhaps only as an aid to the construction - reducing

the steep angle to place concrete at the base of a hemispherical dome - or if they are

purely an aesthetic choice.

Discretization

The discretization of the scale model of the Roman Pantheon is derived from logical

divisions of the building geometry. The use of large blocks may cause an overestimate of

stability of the structure and produce greater error - simulating larger cracks than in the

actual structure - where blocks are not dimensionally perfect. Determination of an

appropriate discretization size through comparison of results through blocks of different

sizes would provide additional validation. This study could also influence future scale

models where the block size is not known or for which it would be too labor-intensive to

replicate the actual structure. Similarly, aligning rather than offsetting the joints between

blocks could approximate the large cracks present in the Roman Pantheon, causing the

dome to act more like a series of arches.
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Future Work on Scale Models of Masonry Domes

Additional Case Studies

An immediate extension of this research is its application to other iconic structures

and dome geometries. The potential to replicate and to validate historic collapses of

structures - something that is not necessary or possible for the Roman Pantheon, which

has not experienced a documented collapse - is particularly promising. For example,

replication on model scale of the partial collapses of the Hagia Sophia in Istanbul, Turkey,

could provide validation of possible collapse mechanisms. Moreover, studying the

collapse of scale models through physical experiments of other dome typologies, such as

Islamic double-shell domes, will yield additional information on the accuracy of results to

domes more broadly.

Dynamic Analysis

As the results of this study confirm, seismic loads are more likely than deformation to

cause a surprise collapse of the Roman Pantheon. Further study of the dynamic behavior,

including rocking, sequential linear analysis, and time history analysis would be an area

of additional research to explore scale effects between the virtual and physical model.

Three-Dimensional and Two-Dimensional Analytical Models

The structural behavior of unreinforced masonry vaults throughout history has been

studied using two-dimensional slices, simplified from the three-dimensional forms due to

the mathematical complexity and indeterminacy of masonry structures. Domes,

particularly those with primary vertical cracking patterns like the ones seen in the Roman

Pantheon, allow for further research into whether two-dimensional analytical models

remain a valid tool or if more recently developed three-dimensional models yield more

accurate results.
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