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In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional
to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the
first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point.
For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant,
longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon
density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure,
effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle
distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the
vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD
critical point.

DOI: 10.1103/PhysRevC.95.034902

I. INTRODUCTION

The structure of the QCD phase diagram has attracted
much attention and triggered a plethora of theoretical and
experimental studies (see Refs. [1–6] for reviews). Of high
interest is the existence of a conjectured critical point [7–11]
in the QCD phase diagram. This critical point is the end point
of the first-order phase transition line that separates, in the
chiral limit, a chirally symmetric quark-gluon plasma (QGP)
phase from the hadron-matter phase of QCD. The existence
of this critical point has been supported by many models of
QCD thermodynamics. However, its precise location in the
phase diagram and even its existence are uncertain from the
first-principle lattice simulations [4].

An entire experimental program, the Beam Energy Scan
(BES) at the Relativistic Heavy-Ion Collider (RHIC) aims to
search for the QCD critical point [5,6]. A universal feature of a
system near a critical point is the emergence of a critical mode,
with growing and eventually divergent correlation length ξ .
Thus, physical quantities which are more sensitive to the
growth of critical correlation length are expected to play crucial
roles in experimental searches for the QCD critical point.

Well-known and more extensively studied examples are the
non-Gaussian fluctuations of the critical mode, which grow as
high powers of ξ [12]. For example, while the variance grows
as ξ 2, the skewness and the kurtosis are expected to grow
more rapidly as ξ 4.5 and ξ 7, respectively. These enhanced
near-critical fluctuations are accessible through measure-
ments of event-by-event fluctuations of particle multiplicities
[11–14]. Expected growth of these fluctuation measures reflect
the static properties of the underlying near-critical background.

In the present work we pursue a complementary avenue: we
focus on how the growth of ξ near the QCD critical point affects
the bulk hydrodynamic evolution of the medium, and explore
potential observables sensitive to such critical dynamics.

Hydrodynamical transport coefficients of a system near
criticality scale with the correlation length with universal

exponents, which are fixed by the dynamical universality class
of the system. The dynamical universality class of the QCD
critical point is argued to be that of model H [15–17] according
to the classification of Ref. [18]. For a system belonging to the
dynamical universality class of model H,1

η ∼ ξ
1
19 ε, l ∼ ξ, and DB ∼ 1/ξ, (1)

where η, l, and DB denote the shear viscosity, thermal
conductivity, and baryon diffusion constant, respectively. ε =
4 − d, where d is the spatial dimension. More importantly,
near the criticality the bulk viscosity is expected to grow far
more rapidly [19,20] (see also Sec. II):

ζ ∼ ξ 3. (2)

In view of the above behaviors of the transport coefficients,
it is crucial to understand how the bulk hydrodynamical
evolution of the matter created in heavy-ion collisions will
be modified in the proximity of the QCD critical point,
and what are the possible phenomenological consequences
of such modification, if any. Previously, the hydrodynamical
evolution near a critical point has been studied in a number of
references [21–24] (see Ref. [25] for a recent review). While
the critical behavior of the baryon diffusion constant was
addressed in Ref. [26], studies incorporating critical behavior
of bulk viscosity are sorely lacking.

This work is the first attempt to address this issue. We
focus on the critical behavior of bulk viscosity as it exhibits
the strongest dependence on the correlation length among the
transport coefficients. As the first attempt, we incorporate the
critical behavior of the bulk viscosity [cf. Eq. (2)] within non-
boost-invariant, longitudinally expanding 1 + 1 dimensional

1Throughout this work we use approximate rational values of
critical exponents: (α,β,γ,δ,ν,η) = (0,1/3,4/3,5,2/3,0). These ap-
proximate values are within a few percent of their respective exact
values.
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causal relativistic hydrodynamical equations (i.e., the Israel-
Stewart theory [27]) at nonzero baryon density. Along the way,
we also discuss the behavior of the bulk relaxation time, τ�, in
the vicinity of the critical point. τ� is a transport coefficient in
Israel-Stewart theory that controls the relaxation time of bulk
viscous pressure towards its Navier-Stokes limit. We argue
that near the QCD critical point τ� ∼ ξ 3. To the best of our
knowledge, the critical behavior of τ� has not been discussed
before.

The rest of the paper is organized as follows. In Sec. II, we
review the behavior of bulk viscosity and discuss the behavior
of bulk relaxation time near the QCD critical point. We explain
our setup for hydrodynamic evolution in Sec. III. We present
our results in Sec. IV and summarize in Sec. V.

II. BULK VISCOSITY AND RELAXATION TIME NEAR
QCD CRITICAL POINT

We consider the following second-order viscous hydrody-
namic equations with finite baryon density:

∇μT μν = 0, (3a)

∇μJ
μ
B = 0, (3b)

uμ∂μ� = − 1

τ�

[ ζ∂μuμ + � ], (3c)

where ∇ denotes the covariant derivative in Bjorken coor-
dinates. The stress-energy tensor is decomposed as T μν =
εuμuν + p + ��μν + πμν , where ε,p,uμ are the equilib-
rium energy density, the equilibrium pressure and the fluid
velocity, respectively. The bulk viscous pressure � measures
the deviation of the pressure from its equilibrium value.
�μν = gμν + uμuν projects onto the spatial components in
the local rest frame, and πμν is the shear-viscous stress
tensor. Our sign convention for the metric is chosen to be
gμν = diag(−1,+1,+1,+1). Since the bulk viscosity exhibits
the strongest dependence on ξ , we will concentrate solely
on the effects of the bulk viscosity. More specifically, in
Eq. (3) we only keep terms involving the bulk viscosity, ζ ,
and the bulk relaxation time, τ�, completely omitting terms
involving the shear viscous tensor, πμν , as well as the baryon
density diffusion. More specifically, we use the baryon current
J

μ
B = nBuμ, nB being the baryon density, and do not include

terms in the baryon current which are proportional to the
baryon diffusion.

Now, we discuss the behaviors of ζ and τ� near the QCD
critical point. The behavior of ζ can be determined by noting
that the dynamical universal behavior of the QCD critical point
is the same as for the liquid-gas phase transition [15,16], i.e.,
that of model H [18]. Onuki has performed a detailed study of
the behavior of the bulk viscosity near the critical point of a
liquid-gas system [20], and it can be directly adapted for the
case of the QCD critical point: ζ ∼ ξz−α/ν . Here, α and ν are
standard equilibrium critical exponents, and z is the dynamical
critical exponent. At the mean-field level α = 0, and z = 3 for
model H [20], giving ζ ∼ ξ 3.

An intuitive explanation of the behavior of bulk viscosity
in the vicinity of the critical point goes as follows [19]: bulk
viscosity controls the relaxation time of the pressure towards

its equilibrium value after a rapidly applied small compression
or expansion. Near a critical point, the pressure will remain out
of equilibrium until the slow critical mode relaxes back to its
equilibrium value, and, thus, ζ ∝ τσ , where τσ is the relaxation
time for the critical mode. Due to the critical slowing down
τσ provides the longest time scale, and grows as τσ ∼ ξz [18].
Hence, in the proximity of a critical point the bulk viscosity is
expected to be enhanced as ζ ∼ τσ ∼ ξz.

The above discussion also sheds light on the behavior of
τ� near a critical point. Imagine a homogeneous equilibrated
system, described by the equilibrium values of ε, p, and with
� = 0 and uμ = (1,0,0,0). Now, consider a small homoge-
neous but time-dependent perturbation of the bulk pressure,
δ�. Since such a perturbation has no spatial dependence,
δ� does not change the energy-momentum conservation
equation (3a). Consequently, ∂μuμ = 0, and Eq. (3c) becomes
∂t δ� = −δ�/τ�, implying that the characteristic damping-
time of the off-equilibrium pressure, �, is given by τ�. Near
a critical point this time scale should be governed by the
relaxation time of the slowest mode, i.e., that of the critical
mode, given by τσ ∼ ξz. Thus, near a critical point it is natural
to expect τ� ∼ τσ ∼ ξz.

The above argument can be further supplemented and
strengthened by invoking causality of the Israel-Stewart
theory. For the linearized Israel-Stewart theory, neglecting the
contribution of shear viscosity, the dispersion relation of the
sound mode is given by [28]

lim
k→∞

dωsound(k)

dk
=

√
c2
s + ζ

τ�(ε + p)
, (4)

where cs denotes the speed of sound. To maintain causality
the sound speed cannot exceed the speed of light, i.e., the
right-hand side of the above equation must remain less than
1. In other words, to ensure causality ζ/τ�ε + p must remain
finite, and cannot grow with the diverging correlation length
near a critical point. Since near a critical point (ε + p) remains
nonzero but the bulk viscosity diverges as ζ ∼ ξz, causality
dictates that the bulk relaxation time also must grow at least
as rapidly as τ� ∼ ξz.

Thus, near a critical point the bulk relaxation time is
expected to diverge as

τ� ∼ ξz. (5)

While Eq. (5) is a natural consequence of slow relaxation of the
critical modes, to best of our knowledge, the critical behavior
of τ� has not been discussed in literature before.

To summarize, ζ and τ� determines the relaxation of
pressure towards its equilibrium value in long time limit, and,
near a critical point, this relaxation process is governed by
the relaxation of the slowest critical modes. In particular, for
the QCD critical point belonging to the dynamical universality
class of model H, we, therefore, have

ζ ∼ τ� ∼ τσ ∼ ξ 3. (6)

With the critical behaviors ζ and τ� at hand, we are now ready
to study their influences on hydrodynamic evolution near the
QCD critical point.
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FIG. 1. Dependence of initial energy density, εI (η) (a), and initial
baryon number density, nI

B (η) (b), normalized by their corresponding
values at η = 0, on the spatial rapidity, η.

III. SETUP FOR HYDRODYNAMIC EVOLUTION

In this exploratory study we consider 1 + 1 dimensional
Israel-Stewart hydrodynamics with longitudinal expansion
along the z direction [29]. The temperature, baryon density, and
fluid velocity only depend on the proper time τ = √

t2 − z2

and spatial rapidity η = arctan(z/t), and the fluid velocity is
given by uμ = (uτ ,uη,0,0).

We numerically solve the 1 + 1 dimensional non-boost-
invariant viscous hydrodynamic equations (3). The spatial
rapidity dependence of the initial energy and baryon number
densities are obtained by extrapolating color glass models
[30–33] to the fixed beam energy

√
s = 17 GeV; see Fig. 1.

The normalizations and parameters in those models are tuned
to roughly imitate the rapidity distributions of the charged
hadrons and the net baryon number of the most central Pb-Pb
collisions at the Super Proton Synchrotron near midrapidity at
the corresponding beam energy. The initial state model used
in this study might not be completely realistic for heavy-ion
collisions at the lower energy. However, they suffice for this
illustrative study. Since at this beam energy the two incoming
nuclei take longer to pass through each other, we start the
hydrodynamic evolution at τth = 1.5 fm/c. We further assume
uη(τth) = 0 and �(τth) = 0.
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freeze−out
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FIG. 2. Hydrodynamic evolution trajectories in the μB -T plane
for different spatial rapidity, η, as well as with and without the
presence of a critical point. The black solid curve plots the equal-ξ
contour, i.e., the critical region, with the red dot illustrating the
position of the critical point; see text.

Hydrodynamical equations are closed by providing an
equation of state (EoS), p(μB,T ), ε(μB,T ), and nB(μB,T ).
The EoS is constructed out of the second- and fourth-
order net-baryon number fluctuations computed using lattice
QCD [34–36], and by matching onto that obtained from a
hadron resonance gas model at low temperatures [37,38]. As
our sole focus is on the effects of the critical enhancement of
bulk viscosity, for simplicity, we do not include any critical
behavior in the EoS itself.

For further quantification this critical enhancement, we
consider two cases with the same initial condition. In the first
case, denoted by “no-CP,” we solve (3) by assuming that the
QCD critical regime is far away from the evolution trajectories
in the μB-T plane. In the second case, denoted by “CP,” the
location and width of the critical region are chosen to make
some evolution trajectories pass through the critical regime.

To study the hydrodynamic evolution near the critical point
we implement critical behaviors of ζ and τσ within a chosen
critical region. First, we define the QCD critical region as the
area enclosed by equal correlation length contour ξ (μB,T ) =
ξ0, where ξ0 is the value of the correlation length at the edge of
the critical regime (cf. Fig. 2). Within this critical region we use

ζ = ζ0

(
ξ

ξ0

)3

and τ� = τ 0
�

(
ξ

ξ0

)3

, (7)

in accordance with Eq. (6). ζ0 and τ 0
� are the bulk viscosity and

bulk relaxation time outside the critical region, respectively.
Our choices for the (T ,μB) dependence of ζ0 and τ 0

� are moti-
vated by the holographic model based results of Refs. [39,40]:

ζ0 = 2

(
1

3
− c2

s

)
e + p

4πT
, (8a)

τ 0
� = C�

18 − (9 ln 3 − √
3π )

24πT
. (8b)

To study the effects of relaxation time in more detail
we consider hydrodynamic evolutions with different choices
of C�.
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Next, we model how ξ varies over the μB-T plane, i.e.,
ξ (μB,T ). Near the Ising critical point the dependence of
ξ (r,h) on the Ising variables, the reduced temperature r and
the rescaled magnetic field h, is universal. For convenience
of the readers the details on ξ (r,h) are provided in the
Appendix. However, the mapping of the Ising variables (r,h)
onto the thermodynamic variables (μB,T ) is not universal. For
simplicity, we will follow the widely-used prescription (see for
example [22,41,42]):

T − Tc

�T
= h

�h
,

μB − μc
B

�μB

= − r

�r
. (9)

Here, (μc
B,Tc) is the location of the QCD critical point, and

(�μB,�T ) is the width of the critical region in the μB-T
plane. The corresponding width of the critical region in term
of the Ising variables (�r,�h) is defined to be

ξ (r = �r,h = 0) = ξ (r = 0,h = �h) = ξ0. (10)

Specifically, the width of the QCD critical region is chosen
to be (�μB,�T ) = (0.1,0.02) GeV, surrounding the critical
point located at (μc

B,Tc) = (0.22,0.16) GeV. For numerical
convenience, we set a upper limit for ξ , i.e., ξmax = 10ξ0.
One might wonder that our choices of μc

B,Tc are unreasonable
based upon our current knowledge of the QCD phase diagram.
However, for our illustrative purpose, this choice is a simple
convenient way to make comparisons between evaluations
with and without the presence of a critical point, keeping other
inputs (initial condition, EoS, etc.) unchanged. The boundary
of the critical region in the μB-T plane is illustrated in
Fig. 2.

Finally, we end the hydrodynamic evolution and compute
particle distributions using the Cooper-Frye formalism on a
(thermal) freeze-out surface characterized by a constant energy
density εf = 0.25 GeV/fm3. This corresponds to freeze-out
temperature Tf ∼ 0.15 GeV at vanishing chemical potential.
The freeze-out curve in the μB-T plane is also shown in Fig. 2.

The bulk viscosity modifies the one-particle phase-space
distribution in the Cooper-Frye formula. This distortion of the
distribution δf is determined using the Grad’s moment expan-
sion and the self-consistency conditions that off-equilibrium
components of the energy-momentum tensors and net baryon
number currents in kinetic theory and hydrodynamics match
respectively [27]. See Ref. [43] for the specific form.

IV. RESULTS

A. Trajectories in the μB-T plane

The trajectories in the μB-T plane resulted from our
hydrodynamic evolution, with τ� corresponding to C� = 1,
are shown in Fig. 2. The trajectories for the CP and no-CP
scenarios are nearly identical except for those corresponding
to η = 1.5, i.e., the one closest to the critical point. The large
value of ζ in the vicinity of the critical point produces more
entropy, and “pushes” the trajectory towards smaller values of
μB . Consequently, trajectories passing the crossover side of
the critical regime move further away from the critical point.

B. Bulk viscous pressure and flow

We now turn to bulk viscous pressure by focusing on the
evolution of � along the trajectory corresponding to η = 1.5
for the CP scenario. First, in Fig. 3(a) we show the critical
enhancement of the relevant dimensionless quantity ζ/s along
this trajectory, s being the entropy density. This enhanced bulk
viscosity leads to a dramatic reduction of the bulk viscous
pressure, as shown in Fig. 3(b). For reference, in the same
figure we also show the corresponding Navier-Stokes value
(black dotted line) and the no-CP scenario (black dashed line).
The growth of Naiver-Stokes value, ζ (∂μuμ), in the critical
regime is in accordance with the growth of ζ . While for no-CP
|�| is an order of magnitude smaller than the equilibrium
pressure, for CP |�| can become comparable to the equilibrium
pressure within the critical regime.

To clarify the role of τ� in the critical regime we solve
Eq. (3) for several values of τ�, corresponding to different
choices of C�. These results are shown in Fig. 3(b). As
expected, a larger bulk relaxation time not only reduces the
maximal value |�| but also delays the growth. Note that
such delayed growths make |�| substantially larger than
its Navier-Stokes limits at later times. Similar observations
regarding finite-time effects were made in previous studies
of on critical fluctuations [41,42]; for off-equilibrium critical
universal behavior induced by finite-time effects, see Ref. [44].

It is easy to infer the effective pressure, peff = p + �, from
the �/p in Fig. 3(b). While for no-CP peff is not much different
from the equilibrium pressure, in the presence of a critical
point peff can be significantly suppressed and become nearly
vanishing depending on the largeness of τ�.

In Fig. 3(c) we show the flow velocity, vη = uη/uτ along
the same trajectory for different values of τ�. Since the
acceleration rate of flow rapidity is proportional to the spatial
gradients of peff, for CP we observe significantly large vη due
the smaller peff at the forward rapidity.

C. Rapidity distributions of hadrons

We now present a couple of observables accessible in
heavy-ion collision experiments. We choose charged particle
and net-baryon number multiplicities, Nch and NB respectively,
per unit momentum rapidity Y . dNch/dY and dNB/dY are
obtained at freeze-out, using the procedure described before.

Our results for dNch/dY are shown in Fig. 4. In addition,
we have also found that the influence of the non-critical bulk
viscosity, i.e., in the no-CP scenario, on dNch/dY without
δf is a mere few percent. For no-CP dNch/dY decreases
monotonically with increasing Y , similar to the εI (η) in
Fig. 1(a). In contrast, for the CP case dNch/dY becomes
nonmonotonic in Y , showing a large increase around Y = 2.
These charged particles likely come from trajectories which
are closer to the critical point; see Fig. 2. Here one should
note that there is correlation between η and Y even after
thermal smearing. The enhanced particle production might
be understood intuitively by noting that growth of bulk
viscosity (2) in the vicinity of the QCD critical point induces
an increase in entropy, thus it is accompanied by an increase in
multiplicity. The effects of enhanced entropy production due to
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FIG. 3. The ratios of bulk viscosity to entropy density ζ/s (a),
bulk viscous pressure to equilibrium pressure �/p (b), and the fluid
velocity vη = uη/uτ (c) along the hydrodynamic evolution trajectory
corresponding to spatial rapidity η = 1.5 and in presence of a critical
point. Results for evolution with several values of the bulk relaxation
time τ� corresponding to C� = 0.25, 1, and 4 [see Eq. (8b)] are shown
by red, blue, and green curves, respectively. The Navier-Stokes limit
along the same trajectory in the presence of the critical point also
is shown by the black dotted curve. The black dashed curves show
results in the absence of a critical point and with Cπ = 1.
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FIG. 4. (a) Charge particle multiplicity per unit momentum
rapidity, dNch/dY , as a function of Y . The dashed black, solid
red, and dashed blue curves, respectively, correspond to results
for hydrodynamical evolution with (CP) without (no-CP) a critical
point, as well as including the nonequilibrium δf contribution to the
freeze-out (CP+δf ). (b) The relative change of dNch/dY with and
without a critical point.

bulk viscosity near the critical point have also been discussed in
Ref. [45]. Additionally, the spatial gradient of peff is steepened
by the large bulk viscosity, accelerating the flow as indicated in
Fig. 3(c). The entropy density is then carried from midrapidity
to forward rapidity because the entropy current is associated
with the flow. This explains slight reduction of multiplicity
at midrapidity in Fig. 4(a). As shown explicitly in Fig. 4(b),
the presence of a critical point can enhance dNch/dY in the
forward rapidity by as much as 30%.

In Fig. 5 we present results for dNB/dY . The influ-
ence of a critical point is similar to that in the case of
charged particles. Since the entropy production in presence
of large viscosity will not change the net-baryon number,
the enhancement in dNB/dY at the forward rapidity is the
effect of enhanced convection caused by the larger spatial
gradient in peff. The relative enhancement around Y = 2
in Fig. 5(b) is, thus, smaller than that for the dNch/dY in
Fig. 4(b).

034902-5



AKIHIKO MONNAI, SWAGATO MUKHERJEE, AND YI YIN PHYSICAL REVIEW C 95, 034902 (2017)

No- CP

CP

CP+ f

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20

40

60

80

Y

dN
B
/d
Y

(a)

(CP)/(No- CP)

(CP+ f)/(No- CP)

0.0 0.5 1.0 1.5 2.0 2.5
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Y

ra
tio

(b)

FIG. 5. (a) Net-baryon multiplicity per unit momentum rapidity,
dNB/dY , as a function of Y . The dashed black, solid red, and dashed
blue curves, respectively, correspond to results for hydrodynamical
evolution with (CP) without (no-CP) a critical point, as well as
including the nonequilibrium δf contribution to the freeze-out
(CP+δf ). (b) The relative change of dNB/dY with and without a
critical point.

V. SUMMARY AND DISCUSSIONS

This work is the first exploratory attempt to study the
consequences of the anticipated enhancement of bulk viscosity
near the QCD critical point. We incorporated the expected
critical behaviors of the bulk viscosity and relaxation time in
Eq. (6) within a non-boost-invariant, longitudinally expanding
1 + 1 dimensional causal relativistic hydrodynamical evolu-
tion at nonzero baryon density. To clarify the influence of
the critically enhanced bulk viscosity, we compared results
from hydrodynamic evolution with and without the presence
of a critical point, but using the same initial conditions and
the EoS. As shown in Figs. 4(b) and 5(b), we found that the
critically enhanced bulk viscosity led to a sizable increase
of dNch/dY and dNB/dY at forward rapidity, suggesting that
particle spectra may contain discernible information regarding
the presence of a critical point in the QCD phase diagram. Also,
we have demonstrated that presence of a critical point will lead
to a rapid growth of the bulk viscous pressure, which in turn
will soften the effective pressure. In future, it will be interesting

to explore whether such softening of the effective pressure can
lead to the observed nonmonotonicity, as a function of

√
s, in

the slope of the directed flow of net protons [46] or that in the
rescaled triangular flow [47], as these features are sometime
speculated to be related to the softening of the pressure. Of
course, such questions must be carefully addressed using
state-of-the-art hydrodynamic evolution, and go much beyond
the scope of our present exploratory illustrative study involving
only longitudinal expansion, simplified initial conditions,
and noncritical EoS. Use of state-of-the-art hydrodynamic
evolution also will enable access to transverse momentum
spectra and azimuthal momentum anisotropy, which were
shown to be more sensitive to the bulk viscosity [48].

We close with a short discussion on the applicability of
hydrodynamics with a large bulk viscosity. Obviously, when
peff < 0 hydrodynamical evolution becomes mechanically
unstable against cavitation, as has been discussed in a number
of references [49] previously. Indeed, if � is close to
its corresponding Navier-Stokes value, the cavitation seems
unavoidable for trajectories near the critical point. However,
as we have already discussed, the presence of τ� limits the
growth of �. Consequently, in our current case, cavitation
may only happen for very small values of τ� corresponding to
C� < 0.25; see for example the solid red curve in Fig. 3(b).
Furthermore, as pointed out in Ref. [48], when the viscosity is
too large then one also needs to worry about the applicability
of the Israel-Stewart formalism, namely the bulk viscous
corrections to the energy-momentum tensor must be much
smaller compared to the ideal fluid terms, |�|/(ε + p) �
1. When |�| ∼ p, one has |�|/(ε + p) ∼ 1/(1 + c−2

s ). For
μB = 0 and around the transition temperature Tc, the value
of c2

s is about 0.15 [34], giving |�|/(ε + p) ∼ 0.1. Closer to
the critical point and around the crossover line, the equation
of state is expected to become even softer, leading to an
even smaller value of c2

s , and thus extending the the range
of applicability of Israel-Stewart formalism.

One can also see in Figs. 4 and 5 that the contributions of
the bulk viscous corrections δf to the particle spectra are small
even when |�| ∼ p.
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APPENDIX: PARAMETRIZATION OF CORRELATION
IN ISING VARIABLES

For completeness, in this Appendix we explain the
parametrization of the critical correlation length ξ (r,h) in the
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critical regime in terms of the Ising variables r and h used
in this paper. For this purpose, we only need to know the
equilibrium magnetization M(r,h) as ξ can be computed by
taking derivatives of M(r,h) with respect to h at fixed r:

ξ 2 = 1

H0

(
∂M(r,h)

∂h

)
r

. (A1)

Here H0 is a dimensionful parameter (of mass dimension
3) which relates reduced magnetic field h to the un-reduced
magnetic field. As explained earlier (cf. footnote 1), we will
take critical exponent η = 0. Therefore the right-hand side
of (A1), which is nothing but the magnetic susceptibility χM

in the Ising model, is proportional to ξ 2. This relation has
been widely used in the previous studies (see for example
Ref. [12]).

To parametrize Meq(r,h), we use the linear parametric
model [50,51]. In this parametrization, one introduces two
new variables R,θ which are related to (dimensionless) Ising
variables r,h as

r(R,θ ) = R(1 − θ2), h(R,θ ) = �h Rβδ h̃(θ ) > (A2)

Following Ref. [52], we will use

h̃(θ ) = 3θ

[
1 −

(
(δ − 1)(1 − 2β)

(δ − 3)

)
θ2

]
. (A3)

Here β,δ are standard critical exponents and we will use the
values obtained from mean field theory, β = 1/3,δ = 5. In
these R,θ variables, θ = 0 corresponds to the crossover line
and |θ | = √

3/2 corresponds to the coexistence (first-order
transition) line. The equilibrium “magnetization” M

eq
0 (r,h)(or

σ0) is given by

Meq(R,θ ) = M0R
βθ, (A4)

where M0 sets the scale of “magnetization.” The parametriza-
tion introduced describes the equation of state with a precision
sufficient for our purpose.

We now compute κ
eq
n using Eqs. (A1) and (A4). Explicitly,

we have

ξ 2 = M0

H0

1

R4/3(3 + 2θ2)
. (A5)

One could then determine ξ (r,h) consequently from (A5)
using (A2).
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