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An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG)
in solids is derived. Extensive first-principles simulations within a time-dependent density-functional
framework corroborate the conclusions of the model. Our results reveal that (i) the emitted HHG spectra are
highly anisotropic and laser-polarization dependent even for cubic crystals; (ii) the harmonic emission is
enhanced by the inhomogeneity of the electron-nuclei potential; the yield is increased for heavier atoms;
and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible
to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their
electronic band structure. Our results pave the way to better control and optimize HHG in solids by

engineering their band structure.
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Atoms and molecules interacting with strong laser pulses
emit high-order harmonics of the fundamental driving laser
field. The high-harmonic generation (HHG) in gases is
routinely used nowadays to produce isolated attosecond
pulses [1-4] and coherent radiation ranging from the visible
to soft x rays [5]. Because of a higher electronic density,
solids are one promising route towards compact, brighter
HHG sources. The recent observation of nonperturbative
HHG in solids without damage [6—10], extending even
beyond the atomic limit [10], has opened the door to the
observation and control of attosecond electron dynamics in
solids [8,9,11], all-optical band-structure reconstruction
[12], and solid-state sources of isolated extreme-ultraviolet
pulses [9,11]. However, in contrast to HHG from gases, the
microscopic mechanism underlying HHG from solids is
still controversially debated in the attoscience community,
in some cases casting doubts on the validity of the proposed
microscopic model and resulting in confusion about the
correct interpretation of experimental data. Various com-
peting simplified models have been proposed but they often
are based on strong approximations and a priori assump-
tions, often stating that there is a strong similarity with the
processes underlying atomic-gas HHG emission. However,
it is clear that many-body effects due to the crystalline
structure of solids and the fermionic nature of interaction
electrons play a decisive role that fundamentally distin-
guishes the solid from the gas case. It is the scope of the
present work to unravel within an ab initio approach what
the impact is of the underlying electronic band structure of
the solids in the observed HHG emission.

0031-9007/17/118(8)/087403(6)

087403-1

The process of HHG from gases is by now well under-
stood in terms of the three-step model [13—15] in which
electrons are first promoted from the ground state of the
atom (or molecule) to the continuum, then accelerated by
the electric field, and finally recombine with the parent ion.
With this simple, intuitive model most of the observed
effects are well described, in particular, the dependence of
the harmonic cutoff energy on driver wavelength and
intensity. In the case of solids, electrons are promoted to
discrete conduction bands, where they do not evolve freely.
This leads, for instance, to a different linear field dependence
for the cutoff energy [6], different time-frequency character-
istics of the harmonic emission between atoms and solids
[8,11,16], and a different ellipticity dependence [6,17].

Historically, HHG in solids was first discussed in terms of
Bloch oscillations (i.e., pure intraband dynamics) [18-20],
and more recently mainly analyzed using simplified models
based on numerical solutions of the semiconductor Bloch
equations [21-23] treating the complex, coupled interband
and intraband dynamics, with the exception of the ab initio
simulations of Ref. [24]. Even if these methods have been
successfully applied to some materials, such as GaSe [7,8,25]
or SiO, [9], basic questions remain controversial and/or
unresolved, e.g., which bands are involved in the HHG
dynamics [26,27].

The first experimental observations of HHG from solids
were explained in terms of Bloch oscillations [6,7]. A
competing model attributing the HHG mechanism to inter-
band transitions (resembling the three-step model of gas
HHG [13,14]) was introduced [28,29]. For not too strong
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excitation in ZnO by 3.76 pum pulses, such that the electrons
explore only the near-parabolic region of the Brillouin zone
(BZ), it was found that the magnitude of the interband
contribution is larger than that of the intraband contribution
[28]. Nevertheless, most theoretical works have used either a
simplified two-band or five-band model, intrinsically ham-
pering the predictive power of the model and the full
microscopic understanding of the HHG process.

In this Letter, using an ab initio approach based on time-
dependent density-functional theory (TDDFT) [30,31], we
study the microscopic origin of HHG in solids. Effects
stemming from the full electronic structure (valence and
conduction bands) and the real crystal structure are properly
accounted for. We show that the nonperturbative emission of
harmonics in solids, arising from the interplay between
intraband and interband contributions, is enhanced when
the interband contribution is suppressed due to band-
structure effects. We identify that the joint density of states
(JDOS) along the laser polarization is the key parameter
governing the weight of the interband contribution. In
addition, we address the still controversial question of the
wavelength dependence of the cutoff energy in bulk crystals.

We start by presenting some exact analytical results (see
Supplemental Material [32] for details). We consider a
general interacting many-electron Hamiltonian A of the form

Hty=T+V(t)+ W, (1)

where T is the kinetic energy, V() is the time-dependent
external laser potential, and W is the electron-electron
Coulomb interaction (the ionic motion is not considered
here for the sake of simplicity). The exact equation of motion
for the total microscopic current, j(r,t), can be rewritten
as [33,34]

%j(r, t) = —n(r,t)Vo(r, t) + N (r, 1) + TT™(r, 2), (2)

where TTN"(r,7) and IT"(r,?) are the kinetic and the
interaction contributions to the momentum-stress tensor
[33-35]. This equation just represents the local momentum
conservation law, and shows that only external forces con-
tribute to the total momentum, in accordance with Newton’s
third law. As these two contributions to the momentum-stress
tensor are internal forces [34], Eq. (2) reduces to

gl)dﬁj(r, 1) = —chrn(r, H)Vo(r, 1), (3)

where € denotes the volume of the physical system.
In here the external potential »(r, ) accounts for both the
electron-nuclei potential [vy(r)] and the externally applied
time-dependent laser field. n(r,7) is the time-dependent
electronic density of the system driven by the external strong
laser pulse E(7) thereby generating the higher harmonics.
Equation (3) provides an exact relation, valid for atoms,
molecules as well as solids, that allows us to obtain a new

formula for the high-harmonic spectra. Using the current
expression for the HHG spectra, namely, HHG(w) =
[FT{ [, d°r(0/01)j(r,1)}|?, and plugging now Eq. (3), we
obtain a general expression for the HHG spectra,

HHG (o) o 'FT [ /Q d3r<n(r, £)Vo(r)

j(r,7) x B(r, t))}

2
(e, O)E(r, 1) +2
C

. (4)

where the last two terms correspond to the Lorentz force
exerted by the external laser on the electronic system [34]. If
we now make the dipole approximation, Eq. (4) further
simplifies and we finally get

2

HHG (o) ‘FT( A Prnlr. t)VvO(r)> +NE@)|, (5)

which provides the first important physical result of the
present work, shedding fundamental insights on the intrinsic
bulk contribution to the HHG spectra. Here, N, is the number
of electrons contained in the volume Q. Note that the HHG
spectra depend only on the electronic density. The second
term does not result in a nonperturbative nonlinearity and thus
cannot create a plateaulike HHG spectrum. The more
interesting and relevant term for HHG is the first one in
Eq. (). It shows that higher harmonics are generated by two
competing terms, the spatial variation of the total electronic
density [n(r,t)] and the gradient of the electron-nuclei
potential [Vuy(r)], the latter being time independent, as
we neglected ionic motion. In gases, the gradient of the
electron-nuclei potential is important, but the electronic
density is low. In the case of solids, the electronic density
is higher, but the potential is rather homogeneous, resulting in
a smaller gradient of the potential than in the atomic case. In
fact, in the limit of a homogeneous electron gas, the gradient
becomes 0, and no harmonics are generated, irrespective of
the value of the electronic density. In this case the bands are
parabolic; thus, we recover the known result that parabolic
bands do not yield nonperturbative harmonics [6].

Since the gradient of the electron-nuclei potential is
frequency independent, it contributes equally to all harmon-
ics and therefore could be used to enhance the entire HHG
spectra. As a consequence, we expect a higher harmonic
yield when we have strong spatial fluctuations of the
electron-nuclei potential, as can be realized at surfaces or
interfaces. This also means that layered materials, such as
transition-metal dichalcogenides (TMD) [36], should be
good candidates for HHG. Finally, we note that a similar
expression, valid only for atoms, was obtained in Ref. [37].
The authors’ equation (9) was used to explain the depend-
ence of HHG yield on atomic number Z for noble gases only.
Here, we suggest that the yield of HHG in solids also
increases with the atomic number as in atoms. This
corroborates the idea that layered TMD are good candidates
for improving the yield of HHG. These results might
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therefore guide the search of better materials for HHG
from solids, as not only bulk crystal properties but also
nanostructure engineering aspects are important for optimum
HHG.

Next we discuss the numerical results of our first-
principles TDDFT calculations. This method has already
been successfully applied to the description of strong-field
phenomena in atoms [38,39] and solids [40—43]. Being
interested in the microscopic origin of HHG in solids, we
have neglected macroscopic propagation effects in our
quantum-mechanical simulations, thus making a sudden
approximation, and we consider only the intrinsic bulk
contribution. However the TDDFT framework is more
general and can be used to include extrinsic effects or
dissipation. As most previous works have described HHG
from solids in terms of the dynamics of noninteracting
electrons, we explore here how the Coulomb interaction
and electron-electron correlations affect the HHG in solids.
We consider a laser pulse of 25-fs duration, with a sin-
square envelope of the vector potential. The peak intensity
inside matter is taken to be I, = 10'" Wcem™ (see
Supplemental Material [32] for higher intensity) and the
carrier wavelength 4 is 3000 nm, corresponding to a carrier
photon energy of 0.43 eV. For such few-cycle driver pulses,
the HHG spectra from solids have been shown to be quite
insensitive to the carrier-envelope phase [9,11,44], which is
therefore taken to be 0 here. The evolution of the wave
functions and the evaluation of the time-dependent current
is computed by propagating the Kohn-Sham equations
within TDDFT, as provided by the Octopus package [45], in
the local-density approximation (LDA).

Simulations are performed for the prototype system bulk
silicon [46] (and AlAs; see Supplemental Material [32]),
which exhibits a richer and more complex band structure
close to the Fermi energy than previously studied materials,
such as ZnO [6,11], GaSe [7,8], and SiO, [9]. Moreover,
it is highly relevant for semiconductor technology. It is
therefore our material of choice for investigating the origin
of HHG in solids.

From Fig. 1 we find that the HHG spectrum of bulk
silicon does not change if we consider either the full
evolution of the Hartree and the exchange-correlation parts
of the Kohn-Sham Hamiltonian or the time evolution in a
static ground-state potential. This means that, in silicon,
electrons evolve mainly as independent particles in the
ground-state potential for our excitation conditions. In the
language of atomic HHG, this is similar to the widely used
single-active electron approximation. This result has two
important implications: First, it justifies the independent-
particle approximation assumed in most previously pub-
lished HHG models. Second, it implies that ground-state
information of the crystal, such as the band structure, might
be retrieved from the HHG spectra. However, the band-
structure information could be altered by light propagation
effects in the solid, possibly including impurity or lattice
scattering. Only a careful analysis of these extrinsic effects,

Harmonic order
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FIG. 1. HHG spectra from bulk silicon, for polarization along

I'X, computed within the LDA (LDA, black line) and within the
LDA, but freezing the Coulomb and exchange-correlation terms
to their ground-state value (LDA-FreezeHXC, red line).

well beyond the scope of this Letter, could show how
harmonics are affected while accounting for propagation
effects.

We now investigate the effect of the laser polarization on
the HHG emission. For the sake of simplicity, let us consider
a general cubic material. In this case, the laser electric field is
driving the electrons along the direction of the laser
polarization. Orienting the laser polarization along specific
directions, corresponding to high-symmetry lines of the
three-dimensional BZ of the crystal, thus results in different
HHG spectra. Therefore, even cubic materials such as silicon
exhibit a strong anisotropic emission of high-order harmon-
ics. Moreover, the symmetries of the crystal, which are also
the symmetries of the BZ, are reflected in the anisotropy of
the HHG emission. Our simulation results, displayed in
Fig. 2(a), clearly predict an anisotropic emission of har-
monics while rotating the polarization around the [001]
crystallographic axis. In this plane, the harmonic emission is
maximum for a laser polarization along the T'K direction and
minimal for the T'X direction.

Considering the mechanism underlying HHG in solids,
we first note that harmonics emitted energetically below the
band-gap energy cannot originate from the recombination
of an electron with a hole present in the valence bands, as
this leads to the emission of a photon with energy above the
band-gap energy. This indicates that below-band-gap har-
monics cannot originate from the interband contribution. In
other words, below the band gap, the interband emission
channel is naturally suppressed. This is the case in experi-
ments performed on bulk GaSe [7,8], for which the
numerical calculations reproduce quite well the clean shape
of the harmonic peaks observed in the experiments [7], and
the temporal profile of harmonic emission [8].

Above the band gap, in contrast, it becomes energetically
possible that emitted harmonics originate from an interband
electron-hole recombination. In this situation, both interband
and intraband dynamics contribute to harmonics emitted
above the band gap. Interestingly, clean above-band-gap
odd-harmonic peaks have been observed experimentally in
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FIG. 2. (a) Calculated TDDFT anisotropy map of the HHG
spectra obtained by rotating the laser polarization around the
[001] crystallographic direction, from 0° (T'X) to 45° (TK) to 90°
(CX). (b) HHG spectra for the T'X polarization direction (red line)
and the 'L direction (blue line). The bottom panel shows the
corresponding JDOS. The red and blue dashed lines indicate the
position of the cutoff energy (E,.) for T'X and T'L directions,
respectively. The shaded areas are guides to the eye.

7Zn0O [6] and SiO, [9], whereas the above-band-gap plateau
has been found theoretically to be strongly modulated
[16,27,28,44,48-50]. The absence of clean harmonics in the
theoretical works has previously been attributed to an infinitely
long dephasing time [28], to a metallization regime [50], to
symmetry breaking [16], or to elastic or inelastic scattering
processes [44]. We point out that such a strongly modulated
plateau cannot originate here from intercycle or intracycle
interferences, as observed in above-threshold ionization from
gases [51,52], because such interferences would affect the
entire HHG spectra, and not only the above-band-gap region.

The emission of harmonics by interband transitions in
solids is naturally dictated by the discretization of the bands
in solids. This represents one of the biggest differences
between atomic or molecular HHG and the HHG in solids.
In order to emit a photon at a given energy by interband
transitions, the corresponding direct transition must be
possible between two states. The density of possible
transitions at a given energy, namely, the JDOS, is thus
intrinsically related to the interband mechanism. More
precisely, it is the JDOS corresponding to the region of
the BZ explored by the electrons that dictates the emission
of harmonics by interband transitions.

o)
e 5
= g
2 5
o0 —
2] 73]
:
= &

T

<

0 2 4 § 10 12 14
Photon energy [eV]
FIG. 3. HHG spectra vs center wavelength of the driver pulses,

at fixed peak intensity and laser pulse duration, for polarization
along I'X. White dashed curves represent the harmonics and the
red arrow indicates the wavelength-independent harmonic cutoff.

Similarly to previous theoretical studies [16,27,28,44,
48-50], we do not obtain clean odd harmonics above the
band gap. Nevertheless, we see in Fig. 2(b) that the noisy
region (orange shaded area) is suppressed, thus recovering
clean odd harmonics (green shaded area), when the JDOS
(computed for the region explored by the electrons, assuming
the acceleration theorem) is very low, corresponding to the
situation when the electron-hole recombination channel is
drastically reduced. Interestingly, we observe that selecting
the laser polarization along the 'L high-symmetry [32]
line leads to generation of harmonics up to the 17th harmonic,
whereas only the first 15 harmonics are generated when
the laser polarization is set along the I'X high-symmetry
line. Moreover, harmonics 11 to 17 are more intense for the
'L case compared to the I'X spectrum [see Fig. 2(b)].
This suggests that more intense and energetic harmonics
are obtained when suppressing interband transitions.
Therefore, with knowledge of the ground-state JDOS, a direct
prediction of the optimal laser polarization for HHG in solids
is possible. This paves the way to control and improvement of
the yield of HHG in solids via band-structure engineering, for
instance, by opening gaps between conduction bands.

We finally address a fundamentally and technologically
relevant aspect of the emission of HHG, which is the
wavelength dependence of the cutoff photon energy in
harmonic spectra. Much research effort has been devoted to
identify key parameters governing the HHG cutoff energy.
Surprisingly, the wavelength scaling of the cutoff energy is
still not clearly established theoretically, as some studies
found it to be wavelength independent [6,9,11,53,54],
whereas others claimed it depends linearly on the wave-
length [27,48,49]. Our ab initio quantum-mechanical
simulations displayed in Fig. 3 confirm that the HHG
cutoff energy is independent of the driver laser wavelength.

In gases, the wavelength dependence comes from the
ponderomotive energy U, « 221, which originates from the
free evolution of the ionized electron in the continuum
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accelerated by the laser field. In the case of solids, it is clear
that electrons do not evolve as free particles. Thus, for
solids, a wavelength dependence cannot arise from the
ponderomotive energy. We note also that increasing the
wavelength, clear perturbative harmonics disappear in
Fig. 3 in a white-noise-type plateau, characteristic of a
nonperturbative regime.

In conclusion, we analyzed the microscopic origin of
high-harmonic generation in solids. We show analytically
that high-harmonic generation in solids is enhanced by the
inhomogeneity of the electron-nuclei potential, and that the
yield is increased when we have heavier atoms in the solid.
Our ab initio simulations demonstrate that HHG in bulk
crystals is anisotropic, even in cubic materials. Our sim-
ulations revealed that it is possible to suppress interband
transitions in favor of HHG arising from intraband dynam-
ics in solids, and most importantly to predict the optimal
laser polarization, based on the sole knowledge of the
crystal’s band structure and its JDOS. Finally, we con-
firmed without making any model assumptions that the
cutoff energy of the HHG in solids is wavelength inde-
pendent, offering many intriguing technological perspec-
tives. Further investigations should address extrinsic effects
such as the electron-phonon coupling, propagation, and
surface effects. We expect this work will help in the search
of better materials for solid-state high-harmonic sources
and tailored HHG in solids.
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