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Abstract

We construct a Byzantine Agreement protocol that tolerates ¢ < n/2 corruptions, is very ef-
ficient in terms of the number of rounds and the number of bits of communication, and satisfies
a strong notion of robustness called player replaceability (defined in [Mic16]). We provide an
analysis of our protocol when executed on real-world networks such as the ones employed in
the bitcoin protocol.
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1 Introduction

In 1980, Pease, Shostak and Lamport [PSL80] defined the problem of Byzantine agreement, and
since then, it has arguably become the central problem in distributed computation tolerating faulty
behavior. Informally, the problem is to maintain a common view of the world in the presence of
faulty processes that strive to prevent the good processes from reaching agreement. The faults are
“Byzantine” in the sense that their strategy is arbitrary and is focused on maximizing the chance of
disagreement among the honest players (and, except when we explicitly say so, is also polynomial-
time bounded).

Definition 1.1. A protocol among n players, in which each player starts with an input is a Byzantine
Agreement protocol with ¢ faulty players, if the following conditions hold:

e Completeness (Validity): If the input values of all the honest players are the same (say, a value
v), then the output of all the honest players is v itself.

e Soundness (Agreement): No two honest players have different outputs, regardless of the
inputs of the players and regardless of the strategy employed by the ¢ dishonest players.

We work in the standard synchronous communication model. Here, Pease, Shostak and Lam-
port [PSL80] showed a protocol with round complexity of ¢ + 1 rounds for any ¢t < n/3 faulty
players, which was shown to be optimal for deterministic protocols by Fischer and Lynch [FL82].
However, the communication complexity of the protocol was exponential in n. Following a series
of works, Garay and Moses [GM98] constructed a deterministic BA protocol that runs for ¢ + 1
rounds, with a polynomial communication.

Faced with the lower bound on the round complexity for deterministic protocols, the natu-
ral direction of research was to find ways to overcome this limitation, the first choice being to
resort to randomization. This direction was pursued early on, starting with the work of Ben-Or
and Rabin [Ben83, Rab83] who showed how to reach Byzantine agreement quickly given a source
of “common coins”. Thus, the bulk of the attention was concentrated on constructing protocols
that generate a common-coin in a network. This line of research culminated in the groundbreak-
ing work of Feldman and Micali [FM97], who designed a protocol to generate a common coin in
expected O(1) rounds and with polynomial communication, under the assumption that the point-to-
point channels connecting pairs of processors are private. This, in turn, gave Byzantine Agreement
protocols that run in expected O(1) rounds with ¢t < n/3 faulty players. In all this work, the pro-
cessors could have arbitrary, potentially computationally unbounded, strategies.

Building on this, Katz and Koo [KK06] showed a protocol with expected O(1) rounds tolerating
t < n/2 faulty players, assuming that the processors are computationally bounded and that secure
digital signature schemes exist. Finally, in a recent work as part of the Algorand shared ledger
protocol, Micali [Mic16] showed an entirely new and surprisingly simple Byzantine agreement
protocol with ¢ < n/3 faulty players.

Our Results. We show a new Byzantine agreement protocol tolerating ¢t < n/2 faulty players,
improving on [KK06, Mic16] in several ways. Our protocol has a higher fault-tolerance, namely
t < n/2, compared to [Micl6].

Our protocol improves on [KK06] in two significant ways. First, the protocol is more efficient.
The round-complexity of the Katz-Koo protocol is a large constant owing to its use of sub-optimal
primitives (starting from basic primitives such as graded broadcast [FM97]) and its reliance on ex-
pensive verifiable secret-sharing machinery. Secondly, their concrete communication complexity



when performing BA for large messages is sub-optimal as well. Our protocol improves [KK06] on
both fronts. Concretely, for every k € N, our protocol is guaranteed to halt with agreement in 2k + 3
rounds with probability 1 — 27%. Of these rounds, only three of them involve sending large mes-
sages while the rest only involve communicating short signatures of around 300 bits. Furthermore,
we provide an analysis of the cost of the protocol in a real-world propagation network (such as the
one used in the design of shared public ledgers [Nak, Mic16]).

Secondly, and more importantly, the protocol satisfies the strong security notion of player re-
placeability, first defined in [Mic16]. Roughly speaking, consider the protocol executing over a
very large network of n players where in each round r, some (uniformly random) small subset of
players is chosen according to some external protocol to carry out the r** round of the protocol.
Once these players are done, they pass the baton to the next set and they could all be immediately
corrupted by the adversary. In other words, this entails being robust to a very strong notion of
adaptive corruption. The players running each round of the protocols are replaceable, in fact neces-
sarily so as their identities are unknown up until the r*" round and they are corrupted immediately
after.

The protocol of [KK06] does not satisfy this strong notion of security. The protocol of [Mic16]
does, but only for ¢ < n/3 corruptions. Our protocol achieves the best of both worlds, achieving
player replaceable BA with ¢ < n/2 corruptions.

Organization of the Paper. We describe our graded broadcast protocols in Sections 3 and 4. Fi-
nally, we put these together to construct our eventual BA protocol in Section 5.

2 Definitions

21 Byzantine Agreement and Friends
Byzantine Agreement. The problem of Byzantine Agreement [PSL80] is as defined below.

Definition 2.1 (Byzantine Agreement). Let D be a finite set. Let II be a protocol among n players,
in which each player P; starts with an input value v; € D, and outputs a value w; at the end of the
protocol. Il is a Byzantine Agreement protocol, if the following conditions hold:

1. (AGREEMENT) For any two non-faulty players P; and Pj, w; = wj.

2. (VALIDITY) If all the non-faulty players have the same input v, then the output w; of every
non-faulty player P, is v itself.

3. (TERMINATION) Protocol II terminates eventually. The probability that II has not terminated
within ¢ rounds is a vanishing function of ¢. More precisely,

lim Pr([II has not terminated in ¢ rounds| = 0

t—o0
where the probability is over the coin-tosses of all the non-faulty players.
When |D| = 2, then the problem is called binary Byzantine Agreement.

If IT is a randomized protocol, then the Agreement and the Validity conditions are required to
hold with probability 1 over the coin-tosses of the processors. The principal complexity measure of
interest is the expected running time of the protocol.



Graded Broadcast. Since we do not have built-in broadcast channels in the real world, we would
like to simulate a broadcast channel using a protocol among the players. As a useful intermediate
step to achieving fully reliable broadcast, we would like to define a weaker notion of broadcast
that is nevertheless very easy to achieve. Informally, the right notion is that of a “semi-reliable”
broadcast channel that loses messages sometimes, but never delivers two different messages to
two different players.

There are various definitions of such a semi-reliable broadcast channel in the literature, starting
with the work of [] who defined what they called a Crusader agreement, and the work of Feldman
and Micali [| who defined the notion of graded broadcast. What we use here is the Feldman-Micali
notion of graded broadcast, as well as stronger variants thereof.

Informally, a graded broadcast protocol is a protocol with a designated player called “dealer”
(the one who broadcasts) such that:

o If the dealer is good, all the players get the same message.

e Even if the dealer is bad, if some good player accepts the message, all the good players get
the same message (but they may or may not accept it).

Formally, the notion of gradecast is as follows.

Definition 2.2 (Graded Broadcast [FM97]). A protocol II is said to be achieve graded broadcast if,
at the beginning of the protocol, a designated player D (called the dealer) holds a value v, and at the
end of the protocol, every player P; outputs a pair (v;, ¢;) such that the following properties hold:
Vi, ¢; € {0, 1, 2})

1. If D is honest, then v; = v and ¢; = 2 for every honest player F;.
2. For any two honest players P; and P}, |¢; — ¢j| < 1.
3. (Consistency) For any two honest players P; and P;, if ¢; > 0 and ¢; > 0, then v; = v;.

Feldman and Micali [FM97] also constructed a constant-round deterministic protocol which
solves the graded broadcast problem — they called their protocol a “gradecast” protocol. An O(1)-
rounds deterministic protocol with these guarantees appears, for instance, in Feldman and Mi-
cali [FM97] as a “gradecast” protocol. Katz-Koo [KKO06] constructed a graded broadcast protocol
with ¢ < n/2 corruptions with XX rounds.

2.2 Probabilistic Tools
We use the following version of Chernoff Bound.

Proposition 2.3 (Chernoff Bound). Let X, X»,..., X, be independent Poisson trials such that, for
1 <i<n,Pr[X; =1] = p;, where 0 < p; < 1. Then, for X = >""" | X;, p = E[X] =", p;, and any

§>0,Pr[X > (140)u] < [ ¥ In particular, if § = 2, we get Pr[X > 3u] < e~

el }
(1+6)(1+9)

3 Protocol for {0, 1}-Graded Broadcast when ¢ < n/2

Let the set of players be P. The protocol Ilgco1 proceeds as follows. The Sender S starts the
protocol with input x and all other players start empty-handed.

1. Sender S: Broadcast input x together with signature (x, Sigg(z)).
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2. Player P: If P sees = with valid signature from S, P broadcasts (z, Sigg(z)). Else, send noth-
ing.

3. Player P (Local): If P sees > n/2 players with the same « and valid signatures and no player
with a different 2’ and valid signature, then P sets zp = z and gradep = 1. Else, P sets
xp = L and gradep = 0.

Theorem 3.1. oy is a 2 round {0, 1}-gradecast protocol.

Proof. We show completeness (validity), soundness (agreement) and discuss both the number of
rounds and the (wall-clock) time.

Completeness (Validity). If the sender S is honest, all honest players broadcast (z,Sigg(x)) in
Step 2. In (Local) Step 3, all honest players see > n/2 copies of = with valid signatures and, by
security of the digital signature, no 2/ # z with a valid signature.

Consequently, each honest player P sets zp = = and gradep = 1.

Soundness (Agreement). Suppose an honest player P sets zp = x and gradep = 1. This is
because P sees (in Step 3) > n/2 valid signatures of  and no valid signature of any 2’ # z. One
of the valid signatures of  comes from an honest player who necessarily sends it to all players in
Step 2.

Each other honest player @ thus sees a valid signature of z, together with potentially valid
signatures of other z’ # x. Thus, his only options are (a) to output x = 2 and grade, = 1, or (b) to
output ¢ = 1 and gradeg = 0.

In summary, if grade, = 1, then ¢ = zp, which is the definition of soundness for {0, 1}-graded
broadcast.

Rounds and Time. Clearly, the protocol takes two rounds. The total time is the time to twice
propagate the value x together with a signature (32 bytes), in other words, two short rounds. The
total time is 2 x lsec = 2sec.

Ul

4 Protocol for {0, 1,2}-Graded Broadcast when ¢ < n /2

The protocol IIgcoi2 proceeds as follows. The Sender S starts the protocol with input = and all
other players start empty-handed.

1. Sender S: Broadcast input = with signature (x, Sigg(z)).

2. Player P: If P sees x with valid signature from S, P countersigns and broadcasts (z, Sigp(Sigg(z)).
Else, send nothing.

3. Player P: If P sees > n/2 valid countersignatures (z, Sig;(Sigg(x)) for some z, and no contra-
diction (i.e., no (2’, Sig;(Sigg(2’)) for any z’ # z), then broadcast

(x, SIGSET p(x)) := {, Sigi(SigS(:c))}i>

Otherwise broadcast nothing.

A SIGSET is defined to be consistent if it has > n/2 valid countersignatures.
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4. Player P (Local):

o IF P sees > n/2 consistent SIGSETs for the same x, and no consistent SIGSET for any
x' # x THEN output zp = x and gradep = 2.

e IF P sees any consistent SIGSET for z, and no consistent SIGSET for x # =, THEN output
xp =z and gradep = 1.

e ELSE output p = L and gradep = 0.

Theorem 4.1. o2 is a 3 round {0, 1, 2}-gradecast protocol.

Proof. We show completeness (validity), soundness (agreement) and discuss both the number of
rounds and the (wall-clock) time.

Completeness (Validity). If the sender S is honest, then all honest players P broadcast (z, Sigp(Sigg(z)))
in Step 2. In Step 3, all honest players see > n/2 valid countersignatures of « and, by the security of

the digital signature, no valid countersignature of any =’ # . Thus, all honest players P broadcast
(x,SIGSET p(z)). In (Local) Step 4, all honest players see > n/2 consistent SIGSETs of z. Conse-
quently, each honest player P sets zp = = and gradep = 2.

Soundness (Agreement). Assume that an honest player P outputs zp = x and gradep = 2. We
wish to argue that for every honest player @, z¢ = z and gradeg > 1.

(@ sees = with at least one consistent SIGSET. It suffices to argue that it does not see an 2’ # =
with a consistent SIGSET. Suppose, for contradiction, that it did. This SIGSET contains > n/2
countersignatures of 2/, at least one of which belongs to an honest party. This honest party would
then have sent this countersignature to everyone in Step 2. Since all honest parties see a countersig-
nature of z/, none of them would transmit a consistent SIGSET for x. Thus, there is no way that
P saw > n/2 consistent SIGSETs for z, contradicting the assumption that P outputs xp = 2 with
gradep = 2.

Rounds and Time. Clearly, the protocol takes 3 rounds. Round 3 is a “large round” that costs
50sec. The total time is 2 x 1 + 50sec = 52sec.
O

5 Protocol for Byzantine Agreement (for many bits) with ¢ < n/2
We first present a tightly scheduled version of Byzantine Agreement.

e (Super-Step 1) Sender S runs a {0, 1, 2}-graded broadcast of his input =. Each player P gets
xp together with a value gradep € {0, 1,2}. Each player P sets

by — 0 if gradep =2
P71 1 ifgradep <2

For K rounds, repeat the next three steps:
e (Super-Step 2) Each player P runs a {0, 1}-graded broadcast with input bp.

e (Coin) All players P interact, in one round, to generate a coin using the protocol of [?].
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e (Local Computation) If more than n/2 graded broadcasts (from Super-Step 2) resulted in a bit
b with gradep = 1, set bp = b. Else, set bp = coinp.

Go back to 2a.
e (Local Output Step) If bp = 0, output xp and if bp = 1, output L.

Proof. We prove completeness, soundness and analyze the running time.

Completeness (Validity). If the sender S is honest, then all honest players P obtains zp = zg and
gradep = 2 at the end of super-step 1. Thus, they all run super-step 2, with input bp = 0 and do not
change bp during the k iterations. Finally, once all k iterations are over, they will have bp = 0 and
thus will output zp which is equal to xs.

Soundness (Agreement). Consider any iteration ¢ of the loop at the end of which all honest play-
ers set bp to be the same bit. We first claim that for all honest players, bp will remain the same in all
subsequent iterations. This is because in iteration i + 1, they all start with the same bit and by the
property of {0, 1}-gradecast, all honest players will see > n/2 graded broadcasts with grade = 1,
meaning they will not change bp from then on.

We now want to bound the probability of disagreement at the end of the protocol. Let E; be the
event that in iteration ¢, all honest players set bp to be the same bit, and let E be the event that there
is an iteration where all honest players set bp to be the same bit. We now bound the probability
that £/ does not happen.

Pr[E;] = Pr[E;| bad leader | Pr(bad leader| + Pr[E;| good leader | Pr{good leader| > 1/2 - «

where « is the fraction of honest players.
Thus, the probability that none of the events E; happen is at most (1 — «/2)*. For an error
probability of €, then
k =log(1/e)/log(2/2 — a)

OPTIMISTIC ANALYSIS: if ¢ = 1/10'2 and a = 0.8 then k <= 12/0.222 = 54.

Rounds and Time. We first claim that super-step 2 and the coin step can be run concurrently for
a total of 2 rounds per iteration. These rounds require honest players to exchange single signatures
(so they are “short” rounds). The total is 3 4 2k rounds. The total time is 52 + 2k sec.
OPTIMISTIC ANALYSIS: for the numbers as above, the total time is 52 + 108 = 160sec.
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