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How to Catch a Tiger: Understanding Putting
Performance on the PGA TOUR
Douglas Fearing, Jason Acimovic, and Stephen C. Graves

Abstract

Existing performance metrics utilized by the PGA TOUR have biases towards specific styles
of play, which make relative player comparisons challenging. Our goal is to evaluate golfers in a
way that eliminates these biases and to better understand how the best players maintain their
advantage.

Through a working agreement with the PGA TOUR, we have obtained access to proprietary
“ShotLink” data that pinpoints the location of every shot taken on the PGA TOUR. Using these
data, we develop distance-based models for two components of putting performance: the
probability of making the putt and the remaining distance to the pin conditioned on missing. The
first is modeled through a logistic regression, the second through a gamma regression. Both
models fit the data well and provide interesting insights into the game. Additionally, by describing
the act of putting using a simple Markov chain, we are able to combine these two models to
characterize the putts-to-go for the field from any distance on the green for the PGA TOUR. The
results of this Markov model match both the empirical expectation and variance of putts-to-go.

We use our models to evaluate putting performance in terms of the strokes or putts gained per
round relative to the field. Using this metric, we can determine what portion of a player’s overall
performance is due to advantage (or loss) gained through putting, and conversely, what portion of
the player’s performance is derived off the green. We demonstrate with examples how our metric
eliminates significant biases that exist in the PGA TOUR’s Putting Average statistic. Lastly,
extending the concept of putts gained to evaluate player-specific performance, we show how our
models can be used to quickly test situational hypotheses, such as differences between putting for
par and birdie and performance under pressure.

KEYWORDS: golf, putting, logistic regression, gamma regression, Markov model
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1 Introduction 
 

The sport of golf has an extremely rich tradition, with origins dating back to at 
least the 15th century (Cornish, 1993).  Other popular sports, such as baseball, 
basketball, and American football, have developed loyal followings of fans who 
pore over statistics on a regular basis.  But, statistical analysis of the game of golf 
has lagged. 

The game of golf is well-suited to such analysis.  Much like baseball, the 
game of golf breaks down into a sequence of well-defined discrete events, that is 
the shots taken.  Unfortunately, golf analysis currently suffers from a few 
significant drawbacks.  The first is that data officially reported by the PGA TOUR 
is limited to a small number of aggregate statistics including Drive Distance, 
Drive Accuracy, Greens in Regulation, and Putting Average.  The second issue is 
that the statistics that are reported do not do a particularly good job of 
differentiating golfer performance.  For example, there is no way to tell whether a 
golfer’s low Putting Average is due to exceptional putting performance or equally 
impressive performance on approach shots.  The third issue is that the reported 
individual statistics are heavily biased by the difficulty of the courses the golfer 
has played, and professional golfers play in different sets of tournaments over the 
course of the year. 

Our work is focused on putting, which accounts for approximately 40% of 
the strokes taken.  In order to develop a truer performance metric for putting, we 
attempt to address the latter two concerns mentioned above: distinguishing putting 
performance and controlling for green difficulty.  Based on a working agreement 
with the PGA TOUR, we have analyzed six years of ShotLinkTM shot tracking 
data for thirty of the top courses on the PGA TOUR.  From this data, we have 
developed two statistical models for analyzing the key aspects of successful 
putting: 1) making the putt, and 2) leaving it close when missing.  We 
demonstrate that when combined using a simple Markov model, these two 
independently trained models explain the vast majority of expected putting 
performance for the field of PGA TOUR golfers. 

Additionally, we use this Markov model to define a putting performance 
metric, putts gained per round, based on the concept of shot value described in 
Section 1.3.  By applying adjustments to our two statistical sub-models, we are 
able to account for the fact that PGA TOUR tournaments vary significantly in 
both the challenge of the putting greens and the quality of the field of golfers 
competing.  These adjustments allow us to perform a direct comparison between 
golfers who have played in different sets of tournaments.  Conveniently, 
calculating putts gained per round also allows us to determine each player’s 
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performance off the green.  That is, of the difference between a player’s round 
score and the round scoring average for the field, we can determine what portion 
corresponds to putting performance, with the remainder coming off the green. 

Last, we demonstrate how we can use our combined, adjusted Markov 
model to analyze various putting situations.  First, we evaluate and compare 
golfer performance on par versus birdie putts.  The benefit of using our model for 
this question is that it allows us to directly assess the difference in terms of 
scoring impact.  Next, we use our model to analyze golfer performance under 
pressure during the last round of each tournament.  Based on the underlying 
statistical model, we evaluate and analyze the confidence intervals around these 
results. 

 

1.1 The Game of Golf 
 

A PGA TOUR golf tournament consists of four rounds played over four days 
(usually Thursday through Sunday).  Each day, the hole is moved to a different 
location on each of 18 greens.  After the second round, typically, the players with 
the 70 best scores make “the cut,” and advance onto rounds 3 and 4.  The winner 
of the tournament is the player with the lowest cumulative score over the four 
days of the tournament.   

Until now, golfers have been evaluated by a limited number of metrics.  
One metric of interest to golfers and fans is greens in regulation (GIR).  To reach 
the green in regulation, the golfer must reach the green within “par minus 2” 
strokes.  For example, on a par 3 hole, the golfer must reach the green in one 
stroke from the tee to have it considered a green in regulation.   The metric most 
commonly used to evaluate putting specifically is Putting Average (PA).  This is 
the average number of putts a golfer takes when he reaches the green in 
regulation.  A typical professional Putting Average is around 1.7 putts per green 
in regulation.  We show later that this metric is biased to favor golfers with better 
approach shots.  

 

1.2 Strokes-to-Go and Shot Value 
 

A large vocabulary has grown on the golf course to attempt to describe the worth 
of particular shots.1  Birdies, eagles, and albatrosses are good; shanking, skulling, 
and chunking are not.  There are shots named after conservative republicans and 
liberal democrats (think about shots erroneously flying right or left, respectively).  

                                                 
1 Pennington, Bill.  “Golf’s Colorful Language Goes with Any Green.” New York Times 11 May 
2009: D7. 
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But despite this extensive and colorful vocabulary, there exists no widespread 
method of objectively evaluating how good a good shot is, or how bad a bad shot 
is.  Building on the work of Landsberger (1994) and Broadie (2008), we explicitly 
quantify the value of an individual shot. 

We use the term strokes-to-go to refer to the expected number of strokes it 
takes to get from a particular location on a particular hole to reach the hole itself.  
Here, expectation is taken over the field of PGA tour professionals.  This differs 
slightly from previous definitions in that the baseline is based on the field of PGA 
TOUR golfers rather than on a scratch golfer (cf. Broadie 2008).   

As outlined in Broadie (2008), the value of an individual shot can be 
calculated by comparing the strokes-to-go before the shot with the strokes-to-go 
after the shot.  On average, we would expect strokes-to-go to decrease by one 
with each shot taken.  Any decrease more than this is a good shot and any 
decrease less than this a bad shot.   

shot value = strokes-to-goBefore – strokes-to-goAfter - 1 

 

As an example, let’s look at the par 4 14th hole at Quail Hollow, illustrated in 
Figure 1. 

 
 

 
Figure 1: Example of a hypothetical golfer's shots on the 14th hole at Quail Hollow. 

 
 

2

3

Hole

Tee

Source: Quail Hollow Championship Website
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For this hole, the expected strokes-to-go from the tee is 4.1 (regardless of 
the fact that the course designers set par at 4).  We would expect the average score 
on this hole to be 4.1 were it to be played by a field of average PGA golfers.  A 
hypothetical golfer might drive the ball off the tee to a place on the fairway where 
the strokes-to-go is 3.2.2  (See Location 2 in the figure.)  The strokes-to-go before 
the shot was 4.1 and after the shot 3.2, so that shot was worth (4.1 – 3.2 – 1 =) -

0.1 strokes.  The value is less than zero, implying it was not a good shot.  He then 
hits the ball onto the green about 15 feet from the hole (Location 3 on the figure).  
From our model, we know the expected strokes-to-go for this location on the 
green is 1.8, so the golfer has just picked up (3.2 - 1.8 – 1 =) 0.4 strokes.  In an 
excellent putt, he then manages to sink this 15-footer.  This final putt has a shot 
value of (1.8 – 0 – 1 =) 0.8.  In all, he’s gained (-0.1 + 0.4 + 0.8 =) 1.1 strokes on 
this hole, relative to the expectation of the field of PGA tour golfers.  We could 
have just as easily calculated this by comparing his actual strokes (3) to the 
average strokes for the hole among PGA TOUR golfers (4.1).  But the benefit of 
the shot value metric is that we know exactly where he gained or lost strokes.  
Our hypothetical golfer had a great putt (picking up 0.8 strokes), a good approach 
shot (picking up 0.4 strokes), and a worse-than-average drive (losing 0.1 strokes).   
These values are summarized in Table 1. 

 
 
 

 

 

Table 1: Example of shot values of a hypothetical golfer's shots on the 14th hole at Quail Hollow. 

 
 
The putting model described in this paper predicts strokes-to-go for any 

position on the green, for any player, and for any hole.  Subsequently, since we 

                                                 
2 Although this paper does not include a model for strokes-to-go off the green, we have developed 
a model to predict strokes-to-go from anywhere on a golf course including from bunkers, the 
rough, and the fairway.  All values off the green for this example are hypothetical and for 
illustrative purposes. 

Shot 

Location Strokes-to-Go

Shot value of the 

stroke taken from 

this location

Tee 4.1 -0.1

2 3.2 0.4

3 1.8 0.8

Hole 0 NA
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are focusing solely on the green, we refer to this value as putts-to-go.  Knowing 
the shot value of every putt allows us to compare player putting performance in a 
fair, unbiased way. 

 

1.3 ShotLink
TM
 Dataset 

 
In 2001, IBM and the PGA TOUR teamed up to introduce an advanced data 
collection system known as ShotLink.  Using about 250 volunteers per 
tournament, ShotLink captures the ball location for every shot taken on the PGA 
TOUR.  When a ball lands on the golf course, volunteers point a survey laser at it 
to pinpoint its location and elevation to within 1 cm on the green and within 1 foot 
on the fairway.  Simultaneously, walking scorers use handheld devices to capture 
non-locational data about each ball, such as quality of lie, player, ground slope, 
score, etc.  For example, on the final round of the 2008 Crowne Plaza Invitational 
at Colonial Country Club, Phil Mickelson’s drive on the 18th hole took him to a 
location in the rough 140 yards from the hole and ten inches below it.  On his 
second stroke, he hit the ball 137 yards onto the green, landing him 9 feet 3 inches 
from the hole laterally and 3/16 of an inch above the hole vertically.  He went on 
to make this 9 foot putt for birdie winning the tournament and $1.098 million 
dollars.   

There are 45 PGA TOUR events per year, each held at a different course.  
In this paper we focus on 30 courses.3  These include the tournaments with the 
best qualities of field as measured by the World Golf Rankings of their 
participants.  The dataset on which we base our analysis includes every putt on 
these thirty courses from 2003 to 2008, approximately 2 million rows of data.  
This roughly corresponds to [100 players] * [6 years] * [30 courses] * [4 rounds 
per tournament] * [18 holes per tournament] * [about 1.6 putts per hole].  These 2 
million putts were taken by more than 1000 distinct players.  In order to validate 
our model, we hold out 15% of these putts as a test set. 

 

 

                                                 
3 Annandale Golf Club, Bay Hill Club, Brown Deer Park Golf Club, Cog Hill Golf and Country 
Club, Colonial Country Club, Congressional Country Club, Doral Resort and Country Club, East 
Lake Golf Club, Firestone Country Club (South Course), Harbour Town Golf Links, La Cantera 
Golf Club, Magnolia Golf Club, Montreux Golf and Country Club, Muirfield Village Golf Club, 
Plantation Course at Kapalua, Quail Hollow Country Club, Riviera Country Club, Torrey Pines 
(South Course), TPC Boston, TPC Deere Run, TPC Las Colinas, TPC River Highlands, TPC 
Sawgrass, TPC Scottsdale, TPC Southwind, TPC Sugarloaf, Waialae Country Club, Warwick 
Hills Golf and Country Club, Westchester Country Club, and Westin Innisbrook – Copperhead. 
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1.4 Literature Review 
 

Golfers and statisticians have been trying to model the game of golf for decades.  
Although analysis has covered modeling everything from total score (see for 
example, Brown, 2007) to the impact of doubling the hole size (Landsberger 
1998, Bansal and Broadie 2008), the green has been the most prolific area of 
study.  Data from tournaments and controlled putting experiments have been 
collected since the 1960s.  Cochran and Stobbs (1968) measured every ball 
location for every round for 6 holes in the Dunlop Masters Tournament at Royal 
Birkdale in 1964.  They used this data to plot the sigmoidal relationship between 
distance and probability of holing-out as well as the monotonically increasing 
relationship between average number of putts versus starting distance.  While the 
scale has changed since then, the shape of the plots has not changed much over 
the last 45 years.   Soley (1977) investigated the relationship between the starting 
distance of putts that missed and the distance remaining to the pin.  He collected 
data on the 25th, 50th, and 75th percentiles of distances-to-go from missed putts, 
finding a roughly linear relationship between starting distance and remaining 
distance quartile for first putts longer than 11 feet. 

While these early texts represent important advancements, many of them 
concentrate on understanding the empirical data.  More recent works, on the other 
hand, have started to build parametric models that not only predict the outcomes, 
but whose parameters give insight into the game itself.  Hoadley (1994) presented 
a model in which error entered the putting process both in the initial angle of the 
putter and in the intended distance (both errors were modeled as normal 
distributions).  Tierney and Coop (1998) took the alternate path of modeling the 
final position of the ball as a bivariate normal distribution centered in back of the 
hole with asymmetrical “x” and “y” errors (the distance error is more severe than 
the side-to-side error).  Carnahan (2002) carried out a controlled experiment for 
which “vintage potables …[were]….offered as prizes” in which he attempted to 
quantify the effect of slope, distance, and break.  Although he mentions logistic 
regression as a possible next step (which is unpublished as far as we know), his 
analysis focuses primarily on determining if break and slope significantly affect 
the probability of holing-out, and reporting the hole-out percentage of the 
different distances in the experiment.   

Pope and Schweitzer (2010) predict the probability of making the putt 
using a logistic regression model.  The explanatory variables include functions of 
distance as well as dummy variables for eagle, birdie, par, bogey, and double 
bogey situations.  Their findings support the hypothesis that players try harder and 
take more risks on putts for par as opposed to putts for birdie, even though it is the 
cumulative score over the entire tournament that determines their positions and 
earnings.   
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Landsberger (1994) attached a value to individual strokes for his “Golf 
Stroke Value System.”  On the green, the value of a stroke is the difference in 
expectation between the starting and ending position of the ball.  Broadie 
developed this idea further in 2008 with his idea of “fractional par,” which is the 
expected number of strokes remaining for a scratch golfer from anywhere on the 
course.  He then uses fractional par to value individual shots, where the value of a 
stroke is the beginning fractional par minus the ending fractional par minus 1. 
Both of these models are based on empirical data.   

In terms of looking at professional golf metrics and trying to rank players 
in an accurate way, less work has been done.  Cochran and Stobbs (1968) remark 
on the biases of the Putting Average metric.  Larkey and Smith (1998) discuss 
some of the shortcomings of other current golf metrics, and the need for 
improvement.  This work is a follow up of Larkey’s (1994) earlier work on 
ranking professional golfers by skill.  He had identified the difficulty in ranking 
players who do not all play in the same tournaments.  Larkey develops a metric 
based on a player’s earnings relative to purse size as a starting point for measuring 
skill (to normalize for inflation).  Connolly and Rendleman (2008) also emphasize 
the importance of including player skill in their work on the role of luck and 
streaky play in golf.  They use as data professional golfers’ aggregated golf scores 
per round of golf. 

 

1.5 Contributions 
 

The primary contribution of our work is the development of a new putting 
performance metric, putts gained per round, that eliminates the most significant 
biases inherent in existing PGA TOUR putting statistics including Putting 
Average.  We subsequently develop a simple model to predict strokes-to-go off 
the tee and use this to evaluate off-green performance.  For both our on-green and 
off-green models, we develop an iterative algorithm that allows the full 30 
tournaments worth of data to be considered in a computationally efficient fashion.  
In addition, we show that by applying the concepts of putts gained more broadly, 
many interesting questions can be answered about the game of golf.  We believe 
that incorporating putts gained per round into the reported PGA TOUR statistics 
would not only help existing fans better understand the game, but would also 
generate new interest in the sport.   
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2 Statistical Modeling 
 

In this section, we describe our statistical modeling process and the resulting 
models.  In the first three subsections, we develop the statistical models that 
provide the core of our subsequent analysis.  First, we model the probability of 
holing out, that is, of making the putt, using a logistic regression.  Next, assuming 
the putt is missed, we model the conditional distribution of distance-to-go using a 
gamma regression.  Third, using a simple Markov model, we combine the holing 

out model with the distance-to-go model to estimate the distribution of putts-to-go 
for the field of PGA TOUR golfers. 

The two regression models, holing out and distance-to-go, utilize distance 
and simple transformations of distance (i.e., logarithm and polynomials) as the 
primary covariates.  Thus, we ignore features such as green speed and the 
contours of the green.  In Section 2.4, we argue that although these features are 
statistically significant, they are practically irrelevant for our purposes because 
their exclusion does not introduce any systematic biases when measuring and 
comparing putting performance. 

Though we feel it is safe to exclude green-specific features in our model, 
this does not mean we can ignore green differences entirely.  As mentioned 
previously, different golfers play in different tournaments with different putting 
greens and corresponding difficulty levels.  Thus, in order to effectively compare 
putting performance either between players or situations, we need to control for 
this variation.  To do so, we introduce adjustments for green difficulty into our 
two regression models.  In order to separate the impacts of green difficulty and 
quality of field, we need to simultaneously consider adjustments for player skill 
level.  We describe this process and its benefits in Section 2.5. 

Lastly, for practical relevance our approach needs to be computationally 
tractable to allow for inclusion all of the PGA TOUR events.  In Section 2.6, we 
describe an iterative training procedure for estimating the green and player 
adjustments.  This procedure allows us to consider segments of the dataset 
independently, thus dramatically improving performance.  We use this approach 
to include 30 courses in the results we report throughout the paper. 

 

2.1 Holing Out Model 
 

As reviewed in Section 1.4, the probability of holing out has been discussed in the 
literature.  For many questions, an empirical analysis of this probability against 
distance is sufficient as the data are remarkably stable, up to 60 feet or more.  In 
Figure 2, we plot the empirical probability of holing out versus starting distance.  
This plot is based on 30 golf courses, and starting distances are bucketed into two-
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foot intervals.  The starting distance point used for each bucket in the plot is the 
empirical mean of the starting distances within that bucket.  

   

 
Figure 2: Empirical probabilities of holing out plotted against putt distance. 

 

 
We desire a parametric model of holing out for two reasons: to smooth out 

the curve in areas in which the data are sparse, as with long distance putts, and, 
most important, to analyze additional impacts on holing out probabilities like 
green difficulty and quality of field.  With these goals in mind, a binomial logistic 
regression model is a natural choice.  For our first model, we include only an 
intercept term and five, distance-based terms corresponding to the logarithm of 
distance and a fourth-order polynomial of distance.  Thus, we write the 
probability of one-putting as: 

 

 ( )2 3 4
0 1 2 3 4 5

1
log 

1 1[ | ]
d d d d d

P Y d e
β β β β β β− + ++ + +

−
 = = +    

(1) 

 
where Y is the number of putts-to-go and d is the distance to the pin.  In Section 
2.5, we include additional dummy variables to incorporate the effects of green 
difficulty and quality of field.  The decision to include the fourth-order 
polynomial and natural logarithm of distance was determined through 10-fold 
cross validation (Hastie, Tibsharani, and Friedman 2001).    
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The parameters are fit in order to maximize the likelihood of observing the 
training data, which is equivalent to minimizing the deviance (McCullagh and 
Nelder 1989).  The fitted values for these parameters, along with the 
corresponding Wald test z-statistics and p-values, are listed in Table 2.  Each of 
the parameters is significantly different from 0 at an extremely small significance 
level.  This model leads to a reduction in deviance from 2,199,471 for the null 
model to 988,732 for the model with 5 parameters, which is also extremely 
significant.  In Figure 3, using these fitted parameter values, we plot the model 
against the empirical results averaged over two foot-buckets.  Based on a visual 
inspection, it is clear that the model fits the empirical data well. 

 
 

 

Table 2: Fitted parameters of holing out logistic regression model.  
 

 
Figure 3: Empirical probabilities of holing out compared to fitted logistic regression model. 

Estimate Standard Error z-statistic p-value

(Intercept) 7.31E+00 2.48E-02 294.71 < 2E-16

Logarithm distance -5.58E+00 4.59E-02 -121.61 < 2E-16

First-order distance 6.76E-01 1.28E-02 52.99 < 2E-16

Second-order distance -1.97E-02 5.21E-04 -37.80 < 2E-16

Third-order distance 2.93E-04 1.02E-05 28.66 < 2E-16

Fourth-order distance -1.62E-06 7.13E-08 -22.71 < 2E-16
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2.2 Distance-to-Go Model 
 

In this section, we are concerned with where the ball comes to rest if the putt 
misses.  That is, if a professional golfer misses a putt from distance d, what is the 
distribution of distance-to-go, the remaining distance to the pin?  In Figure 4, we 
note a strong, roughly linear relationship between putt distance and the mean of 
distance-to-go.  Soley (1977) describes a similar trend for each of the quartiles of 
distance-to-go.  Note that beyond 80 feet this relationship starts to break down 
due to the small number of matching observations. 

 

 
Figure 4: Empirical mean of distance-to-go conditional on missing, plotted against initial putt 

distance. 

 
Regarding the data, there are two points worth noting.  First, the empirical 

standard deviation of distance-to-go is increasing relative to putt distance, as 
displayed in Figure 5, with a roughly constant coefficient of variation.4  Second, 
distance-to-go is strictly positive, with a positively skewed distribution and a 
strictly positive mode that is typically between 2 and 3 feet from the hole.  For 
example, in Figure 6 we chart the empirical distribution of distance-to-go for 10-
foot, 20-foot, 30-foot, and 40-foot putts.  With this in mind, we immediately rule 
out an Ordinary Least-Squares (OLS) regression since the assumptions of 
homoscedasticity and normally-distributed errors are violated. 

                                                 
4 The coefficient of variation equals the standard deviation divided by the mean. 
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Figure 5: Empirical standard deviation and coefficient of variation of distance-to-go 

conditional on missing plotted against initial putt distance. 
 

 

 

 
 

 

Figure 6: Empirical distributions of distance-to-go conditional on missing for initial putt distances in 

the one-foot buckets centered at 10 feet, 20 feet, 30 feet, and 40 feet. 
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A gamma regression model, one of the standard, generalized linear 
models, is an appropriate choice for data with a constant coefficient of variation 
and error terms that are approximately gamma distributed (McCullagh and Nelder 
1989).  The gamma distribution, like our data, is strictly positive, positively 
skewed, and peaked away from 0, at least for appropriate values of the shape 
parameter.  For a generalized linear model, such as a gamma regression, the link 
function determines the functional relationship between the linear-in-parameter 
regression function and the response variable.  For instance, if a generalized 
model has a log link function, the linear-in-parameter regression function predicts 
the natural logarithm of the mean of the response variable.   In our testing, an 
identity or log link function fits the data equally well.  We choose to report on the 
results utilizing a log link for two reasons: the log link maps the strictly positive 
distance-to-go to the real domain of the linear-in-parameter regression function; 
and the log link enables a nice interpretation of the results, which we discuss 
further in Section 2.5.  As with our holing out model, we consider only an 
intercept and distance-related terms in our set of independent variables.  In this 
case, we utilize a second-order polynomial of distance instead of a fourth-order 
polynomial.  Additionally, a gamma regression model requires us to fit the shape, 
k, of the gamma distribution.  Thus, for the distance-to-go model, the fitted 
parameters include the coefficients of the logarithm of distance, the second-order 
polynomial of distance, and the shape, k, of the gamma distribution.  We write the 

density function of distance-to-go, ( | ; , )f z d kβ , as follows: 
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In Equations 2 and 3 above, 
dµ represents the conditional mean of 

distance-to-go from distance d, ( | ; , )f z d kβ  is the equation for the gamma density 

with shape k and scale µ d k , and Γ(·)  is the gamma function.  As with the holing 

out model, the decision to include the second-order polynomial and natural 
logarithm of distance was determined through 10-fold cross validation.   

As with the logistic regression, we estimate these parameters to minimize 
the model deviance.  The estimates for these parameters, along with the robust 
standard errors and t-values, are listed in Table 3. 5   Using these parameter 

                                                 
5 Although we recognize that using t-tests to determine significance of independent variables in a 
model with non-normal errors is only an approximate approach, we are nonetheless comfortable 
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estimates, we plot the mean and standard deviations from the fitted model against 
the empirical results in Figure 7 and Figure 8.  In Figure 9, we similarly plot the 
conditional distribution of distance-to-go based on our model against the 
empirical distributions for a sample of initial putt distances.  As with the holing-
out model, we see a close fit between our distance-to-go model and the empirical 
data.  

 

 
Table 3: Fitted parameters of distance-to-go gamma regression model. 

 
 
 

 

Figure 7: Empirical mean of distance-to-go conditional on missing compared to fitted gamma 

regression model. 

                                                                                                                                     
concluding that the coefficients are significant because their standard errors are more than an order 
of magnitude smaller than their coefficient estimates. 

Estimate Standard Error t-value p-value

(Intercept) 9.5E-01 9.6E-03 99 < 2E-16

Logarithm distance -3.5E-01 6.6E-03 -53 < 2E-16

First-order distance 4.6E-02 6.3E-04 73 < 2E-16

Second-order distance -1.6E-04 5.8E-06 -28 < 2E-16

Shape (k ) 2.132 0.004
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Figure 8: Empirical standard deviation of distance-to-go conditional on missing compared to 

fitted gamma regression model. 

 
 

 
Figure 9: Empirical distributions of distance-to-go conditional on missing for initial putt distances in 

the one-foot buckets centered at 10 feet, 20 feet, 30 feet, and 40 feet compared to fitted gamma 

regression model. 
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2.3 Putts-to-Go Model 
 

In this section, we combine our holing-out logistic regression model with our 
distance-to-go gamma regression model to produce a Markov model of putts-to-

go.  Although we require only the expected putts-to-go for each distance in order 
to calculate the performance metrics, we desire the distribution of putts-to-go in 
order to calculate confidence intervals around these results.  With this in mind, in 
Figure 10 and Figure 11 we plot both the empirical mean and standard deviation 
of putts-to-go for each initial putt distance.  It is interesting to note that between 0 
feet and 10 feet, fewer than 1% of holes played are 3-putted by a professional 
golfer.  Thus, we can roughly consider the putts-to-go as a Bernoulli trial in this 
range.  This explains the peak in standard deviation around 7 feet, at which the 
likelihood of one-putting or two-putting is each approximately 50%.  Between 10 
feet and 30 feet, the likelihood that a professional golfer will 2-putt a hole 
increases rapidly, while the chance of 3-putting remains relatively low.  This 
explains the corresponding dip in standard deviation.  The standard deviation 
begins to rise again beyond 30 feet as the proportion of 3-putts increases at a 
steady rate.  This non-monotonic behavior of the standard deviation is due to the 
discrete nature of the data. 
 

 

 
Figure 10: Empirical mean of putts-to-go plotted against initial putt distance. 
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Figure 11: Empirical standard deviation of putts-to-go plotted against initial putt distance. 

 

 
Although a multinomial logistic regression or Poisson regression would 

model the discrete data directly, we instead choose to take an approach that more 
closely represents the physical act of putting.  With the holing out and distance-

to-go models at our disposal, we describe the process of putting through a simple 
Markov chain.  The state space is the positive real line representing the distance to 
the hole combined with an absorbing state, H, representing the hole.   From any 

state d
+∈R , the probability of transitioning to state H is equal to the holing out 

probability, and the probability density associated with transitioning to state 

z +∈R  is equal to the probability of missing the first putt times the density 
represented by the distance-to-go model.  In terms of the Markov model, the 
probability of reaching the hole in n putts from distance d corresponds to the 
probability of first reaching the absorbing state, H, in exactly n transitions from 
state d.  More formally, we have: 
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where, as above, Y is the number of putts, d is the starting putt distance, z is the 

conditional distance-to-go, and ( | )f z d  is the gamma density function. 

This model requires two key assumptions.  First, a putt that starts on the 
green ends either in the hole or on the green.  For professional golfers, this is a 
very reasonable assumption, as only 0.036% of putts in the ShotLink data set 
ended up off the green.  Second, we need to satisfy the Markov property, which in 
our context states that the probability of reaching the hole in n-putts from a given 
distance is independent of the previous putts the golfer has taken on the hole.  For 
individual golfers, we would expect the model performance to degrade somewhat 
as the number of putts taken previously is correlated with the skill level of the 
golfer.  This concern is addressed to an extent by the adjustments we make to our 
model in Section 2.5.  Additionally, the Markov property suggests that from the 
same distance a second putt should be just as difficult as a first putt.  In fact, as we 
show in Section 3.3, the second putt is consistently easier than the first putt.  We 
choose not to model this directly in order to maintain the simplicity of the model 
as the basis for an easily interpretable putting performance metric. 

Using Equations 1, 3, and 4, we can easily calculate the mean and standard 
deviation of putts-to-go.  These results are plotted against the empirical values in 
Figure 12 and Figure 13.  Additionally, in Figure 14, we plot the probabilities of 
reaching the hole from distance d within n putts against the empirical proportions.  
Our model suggests that even at 100 feet, the probability of requiring 4 or more 
putts to reach the hole is less than 3.5%. 

 
 

 

Figure 12: Empirical mean of putts-to-go compared to fitted Markov model. 
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Figure 13: Empirical standard deviation of putts-to-go compared to fitted Markov model. 
 
 
 
 

 

Figure 14: Empirical "Within n putts" probabilities compared to estimates based on fitted 

Markov model. 
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2.4 Considering Additional Features 
 

In our efforts to build a performance metric for putting, we have made decisions 
about which features to include in our model and which to exclude.  These 
decisions are driven by the goal of creating a simple model, but also of including 
enough features to allow for the unbiased evaluation of putting performance. 

Features that affect putting (and therefore can introduce bias into any 
putting metric) can be thought of as residing in two groups.  The first group 
contains features that are relatively consistent for a given hole.  These include 
grass type, grass length, hole difficulty and terrain, and to some extent weather.  
Because every golfer does not play every hole (in fact, golfers get to choose in 
which tournaments they play), it is necessary to correct for this.  A golfer who 
always plays on courses with fast, tougher greens should not be penalized over the 
golfer who chooses to play on slower, easier greens.  In Section 2.5, we describe 
how we correct for individual hole difficulty to address this first source of bias.  

The second group of potentially bias-inducing features differs from putt to 
putt, even within a single green.  The most obvious is distance.  In fact, our 
motivation for creating a better putting metric is driven in part by the observation 
that some golfers consistently putt from shorter distances than others, as we 
demonstrate in Section 3.1.  This makes the popular Putting Average metric 
ineffective for comparing putting performance.   

Another potentially bias-inducing feature in this category is slope.  It is 
conventional wisdom among the golfing community (and supported by our 
analysis) that uphill putts are easier to make than flat putts, and that flat putts are 
easier to make than downhill putts.  If some golfers have the skill to consistently 
place the ball downhill of the pin more often than their peers, then their putting 
metrics may look inflated because, for a given distance, they are actually often 
facing easier (uphill) putts.  However, if all golfers have about the same 
distribution of uphill versus downhill putts, we can safely exclude this feature and 
still argue that our putting metric is fair and unbiased.  In fact, we show that it is 
the case that there is an insignificant difference in the distribution of uphill versus 
downhill putts for all golfers. 

To test the hypothesis that players’ slope distributions are similar, we look 
at a sub-sample of ten courses from our overall sample of 30.  For these courses, 
we bucket the putts into one-foot increments by distance.  For each bucket, we run 
an OLS regression on the corresponding subset of data with slope as the 
dependent variable and player as the independent variable.  Slope is defined in the 
conventional sense as elevation of the pin above the ball divided by the distance 
from the ball to the pin.  (Note that slope is negative if the ball is above the pin.)  
The F-statistic from this regression, then, provides us with the means to test the 
null hypothesis that “All players’ slope coefficients are equal.”  For distance 
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buckets farther than 3 feet from the hole, regressions on all distance subsets, save 
one, fail the F-test.6  Although the 8- to 9-foot bucket indicated a statistically 
significant difference, we find it unlikely that player performance differs at this 
distance while being less significant at every other distance from 3 to 24 feet.  
Thus, we conclude there is not sufficient evidence to believe that slopes vary 
significantly from player to player beyond 3 feet.7 

For observations 3 feet and closer, the regressions show that some players’ 
coefficients are statistically significant.  However, practically, these players’ 
coefficients are irrelevant because (i) the magnitude of the effect is so small, (ii) 
golfers almost always make these short putts, regardless of exogenous factors 
such as slope, and (iii)  only a small number of golfers have statistically 
significant slope coefficients.     

For the subset of golfers whose slope coefficients are statistically 
significant (about 20 out of 600 golfers), their ability to consistently place the ball 
downhill from the pin improves their probability of holing out at 3 feet from about 
95.4% to 95.8%.  Under the assumption that putters sink their balls in either 1 or 2 
putts from this distance, this implies that their expected putts-to-go improves from 
1.046 to 1.042.    This equates to a potential bias of 0.04 putts per round 
(assuming that about a third of all putts are taken from within three feet, and that 
there are about 1.6 putts per green).  As we will see later in section 3.1, the order 
of magnitude of the standard deviation of putts gained per round is 0.1, over 
twice the size of this potential bias.   

In addition to linear slope, second order contours such as hills and dips 
also have some effect on a golfer’s ability to hole out.  However, these 
complicated contours are beyond the scope of this analysis. This resulting paucity 
of features has the benefit of making the model easier to execute and understand, 
without sacrificing our goal of an unbiased putting metric.  

 

2.5 Green Difficulty and Quality of Field 
 

As discussed previously, variation in green difficulty levels is an important factor 
to consider when comparing player performance.  A 10-foot putt on a slower, 

                                                 
6 The resulting p-values were 0.00, 0.00, 0.00, 0.25, 0.07, 0.06, 0.17, 0.13, 0.00, 0.52, 1.00, 0.31, 
0.64, 0.74, 0.33, 0.49, 0.13, 0.07, 0.21, 0.15, 0.20, 0.29, 0.69, and 0.20 for the 0- to 1-foot, 1- to 2-
foot, ..., 23- to 24-foot buckets, respectively.  
7 The slope data is not exactly normally distributed within each distance bucket.  Therefore, we 
also performed the non-parametric Kruskal-Wallis rank sum test on the slope data.  The results of 
this test were similar to those for the F-test.  With the rank-sum test, for most distance buckets 
beyond four feet the null hypothesis that “All players have the same slope” failed at the 5% level, 
except for the 8- to 9-foot bucket and 10- to 11-foot bucket. 
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level green is considerably easier than a 10-foot putt on a fast, highly-contoured 
green.  Rather than consider the specific attributes of the green in our model, we 
adjust the individual parameters of our two statistical models on a hole-by-hole 
basis.  An advantage of this approach is that it does not require a description of 
the green’s physical layout.  However, it creates a new challenge to be addressed: 
to separate green difficulty from quality of field.  As we have mentioned before, 
each tournament is played by a different set of PGA TOUR professionals.  Thus, 
if we only adjust the model parameters for each hole, it is unclear whether the 
adjustments capture the difficulty of the green or the putting ability of the golfers 
who played the corresponding tournament.  To develop a true reading of the hole-
specific parameter adjustments, we must simultaneously fit both hole-specific and 
player-specific parameter adjustments.  We do this by adding hole-specific and 
player-specific dummy variables to the model.  Equation 5 below lists the hole 
and player-adjusted logistic regression function with a logit link for the 

probability of making a putt, 1( )P Y = , by player p on hole h from distance d, where 

pn  and 
hn  represent the number of putts that match the corresponding player or 

hole in the training data.  Equation 6 below lists the hole- and player-adjusted 
gamma regression function with a log link for mean distance-to-go, µd, 

conditioned on a miss by player p on hole h from distance d, where pnγ  and 
hn γ  

represent the number of missed putts that match the corresponding player or hole 

in the training data.8  The indicator variables 
{ }conditionI  equal 1 if the condition is 

true and 0 otherwise.  Thus, a player receives an adjustment to a model parameter 
only if that player has a large number of observations.  The more observations a 
player has, the more parameters will be adjusted.  For a player with very few 
observations, the parameters will be identical to the general model parameters.  
Note that Equations 5 and 6 are similar to Equations 1 and 2, with additional 
terms added corresponding to player skill and hole difficulty.  Each of these 
equations ignores the impact of pin placement on the hole under the assumption 
that variations in difficulty due to pin placement are averaged out over the course 
of multiple rounds’ and years’ worth of play. 
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8In adding player and hole specific adjustment terms, we assume that player performance and hole 
difficulty are relatively stable for the 6-year period spanned by our data. 
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We determine the appropriate parameters to adjust for each hole and 

player by using our 15% holdout sample to protect against over-fitting the data.  
More specifically, the problem that we face is determining for each hole or player 
which parameters from the base model described in Sections 2.1 and 2.2 should 
be adjusted.  If we adjust all parameters, including the logarithm term and full 
polynomial, we are likely to over-fit the data, as this would be equivalent to 
training separate models on each subset of the data.  If we adjust too few, we are 
leaving biases in the model that should be addressed.  Thus, our desire is to find 
threshold observation counts above which the data supports the corresponding 
adjustment.  For example, for player-specific adjustments to the logistic 
regression model, we adjust the intercept term for players who have taken more 
than 2,000 putts and the logarithm of distance term for players who have taken 
more than 8,000 putts.  Note that traditional statistical tests, such as a Chi-squared 
test, can be used to determine whether individual parameter estimates are 
significant.  However, these tests are sensitive to outliers.  A player with 1 
observation who makes an extraordinary 60-foot putt would receive his own 
adjustment parameter, whereas a player who has thousands of observations and is 
slightly (but surely) better than his peers could receive no adjustment. 

Although there are other equally valid approaches, we choose to consider 
this problem in a staged fashion to limit the computational burden.   That is, we 
determine the observation count threshold for adjusting the intercept parameter 
before determining the threshold for the first-order distance parameter, and we 
calculate the thresholds for the hole-specific adjustments prior to the player-
specific adjustments.  Thus, the first adjustment we consider is hole-specific 
adjustment to the intercept parameter for both statistical models.  Because our two 
statistical models are trained independently, there is no need to require any 
ordering between them, and, because each adjustment introduces more 
complexity, we require the thresholds to be monotonically increasing.  Thus, the 
threshold for adjusting the intercept parameter will be lower than the threshold for 
adjusting the first-order distance parameter.   

As mentioned above, in order to determine the appropriate threshold for 
each parameter we utilize the out-of-sample deviance on the withheld 15% test 
sample.  Ideally, we would calculate the out-of-sample deviance for separate 
models trained using each possible threshold value, but this is not feasible for 
computational reasons because each model takes between hours and days to train 
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on the full data set, and the possible threshold values range from 50 to 10,000.  To 
address this issue, we complete the following steps. 

 
1. We train the model without the parameter adjustment and calculate the 

out-of-sample deviance for each hole or player in the data set, sorted by 
the number of matching observations, descending.  
 

2. We train the model with the parameter adjustment, and a threshold value 
equal to the threshold of the previous parameter plus 50 (or 50 in the case 
of the first parameter).  As in the previous step, we then calculate the out-
of-sample deviance for each hole or player in the data set and sort the 
results according to the number of matching observations descending. 
 

3. We approximate the total out-of-sample deviance for each possible 
threshold value by using the out-of-sample deviance from the second 
model for each hole or player above the threshold and the out-of-sample 
deviance from the first model for each hole or player below the threshold. 
 
With this procedure, calculating the approximate out-of-sample deviance 

for each possible threshold value requires the model to be trained only twice.  
Plotting this approximate out-of-sample deviance against each possible threshold 
value provides a roughly convex curve for all the parameters we evaluated.  For 
each parameter, we choose a threshold value for our final model that 
approximately minimizes the out-of-sample deviance in this plot.  There is still a 
significant amount of noise in the results.  Thus, we do not focus on choosing the 
true minimum, but rather on choosing a subjectively reasonable threshold that is 
close to this minimum. 

A sample of these plots is provided in Figure 15 and Figure 16.  The first 
figure compares the estimated deviance plots that correspond to the hole first-
order distance and player intercept parameter adjustments for the gamma 
regression.  In the hole first-order distance plot, the deviance decreases slightly 
before flattening out and then starting to increase at around 1,200 observations.  
In this case, we choose to set the observation count threshold to 1,000.  For the 
player intercept plot, the deviance steadily increases as the threshold value 
increases, thus we keep the observation count threshold at 50.  The second figure 
compares the estimated deviance plots that correspond to the hole log-distance 
and player log-distance and parameter adjustments for the logistic regression.  In 
the hole log-distance plot, the deviance steadily decreases as the threshold value 
increases.  Thus, we do not adjust the corresponding parameter.  For the player 
log-distance plot, the deviance flattens out around 8,000 observations before 
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beginning to increase again.  In this case, we choose to set the observation count 
threshold to 8,000. 

 

 

Figure 15: Estimated out-of-sample deviance plots for the hole first-order distance 

adjustment (left) and player intercept adjustment (right) for the gamma regression model.  
 
 

 

Figure 16: Estimated out-of-sample deviance plots for the hole log-distance adjustment (left) 

and player log-distance adjustment (right) for the logistic regression model. 
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In Table 4 and Table 5, we provide the thresholds for adjusting each of the 
listed parameters along with the number of matching observations.  Parameter 
adjustments that are not supported by the data are not listed in these tables.  In the 
logistic and gamma regression models, we adjust the hole intercept term for all 
540 holes, for which the threshold listed corresponds to the minimum number of 
observations (rounded down to the nearest 50).  Note that for the gamma 
regression model we adjust the first-order distance parameter for the player, 
whereas for the logistic regression model we adjust the parameter for the log of 
distance term.  For the player-specific adjustments, we tested both the log-
distance parameter and first-order distance parameter for each model. 

 
 

 
Table 4: Hole and player-specific parameter adjustment thresholds for holing out logistic 

regression model. 
 
 

 

Table 5: Hole and player-specific parameter adjustment thresholds for distance-to-go gamma 

regression model. 
 
 
At the beginning of this section, we mentioned that the purpose of adding 

the player-specific adjustments is to tease out the quality of field effects from the 
hole-specific adjustments.  In order to complete this task, we need to normalize 
the player-specific parameter adjustments so that 0 represents an average quality 
of field across all of our tournaments.  We do this by forcing the sum of the 
player-specific parameter adjustments weighted by the corresponding observation 

Logistic Regression

Observation 

Count Threshold

Number of 

Parameter 

Adjustments

Number of 

Matching 

Samples

Hole Intercept 750 540 1,644,998

Player Intercept 2,000 272 1,410,646

Player Logarithm 8,000 28 248,738

Gamma Regression

Observation 

Count Threshold

Number of 

Parameter 

Adjustments

Number of 

Matching 

Samples

Hole Intercept 300 540 640,525

Hole First-Order 1,000 439 573,130

Player Intercept 50 566 629,519

Player First-Order 1,000 237 517,088
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counts to equal 0.  For instance, for the player-specific intercept adjustment of 
either model, we first calculate the weighted average of the estimated parameters: 

0
0ˆ
ˆ

pp

p

w n N
β

β=∑ , where in  is the number of observations for player p and N is the 

total number of observations.  Next, we subtract this value from each of the 

player-specific intercept terms, 
0

0 0 ˆ
ˆ ˆ

p p
w

β
β β= − , and add it to the base intercept 

term, 
0

0 0 ˆ
ˆ ˆ w

β
β β= + .  Note that this normalization does not change the result for 

either the logistic or gamma regression functions, because we have added and 
subtracted the same value.  Thus, the estimated likelihood of our original model is 
maintained.  We follow the same approach for the player-specific adjustments to 
the first-order and logarithm parameters.  For ease of interpretation, we also 
normalize the hole-specific adjustments so that 0 represents a green of average 
difficulty.  All parameter estimates reported subsequently are based on this 
normalization scheme. 

One nice feature of the gamma regression adjustments with the log link 
function is that they are more easily interpretable.  For instance, in the case of the 
player-specific parameter adjustments, we can rewrite the mean distance-to-go 

from Equation 2 as follows: 
2

0 1 0 1 2 3
( {) log }p p d d d d

d e e
β β β β β βµ +++ += , where the first term 

represents a player-specific scaling factor relative to the overall mean distance-to-

go.  For example, Tiger Woods has an estimated intercept adjustment of 0 pβ =

0.3878 and first-order distance adjustment of 1 pβ = -0.0044.  This means that 

when Tiger misses a putt from 20 feet, we would expect him to end up 5% closer 

to the hole than the average across the field (i.e. 1 - 0 3878 20 0 0044( . * . )e − = 0.05). 
In Table 6 and Table 7, we provide sample parameter adjustments for two 

players, John Huston and Brent Geiberger, and two holes, the first hole at 
Sawgrass and the ninth hole at Bay Hill. 9   In order to visualize how these 
adjustments affect our models, in Figure 17 and Figure 18 we plot the adjusted 
curves against the normalized field averages.  Notice that Brent Geiberger is a 
better putter overall, as his logistic regression curve lies below the mean and his 
gamma regression curve lies above it, leading to a smaller than average putts-to-

go. 

 

 

                                                 
9 Note that the coefficients in these tables are based on the field-adjusted model, which was 
normalized as described earlier in this section. 
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Table 6: Coefficient adjustments for the logistic regression holing out model.  
 
 
 

 
Table 7: Coefficient adjustments for the gamma regression distance-to-go model. 

 
 

 
Figure 17: Comparison of two player adjustment effects for the fitted logistic regression (left), gamma 

regression (center), and Markov (right) models. These adjustments assume each player is facing an 

average hole. 

  
 

Logistic Regression (Intercept)

Logarithm 

distance

First-order 

distance

Second-order 

distance

Third-order 

distance

Fourth-order 

distance

Baseline for normalized model 7.32 -5.573 0.67 -0.019 0.0003 -1.6E-06

(Adjustments to Baseline)

John Huston -0.11 0.005

Brent Geiberger 0.11 0.005

TPC Sawgrass Hole 1 -0.10

Bay Hill Hole 9 0.19

Gamma Regression (Intercept)

Logarithm 

distance

First-order 

distance

Second-order 

distance

Baseline for normalized model 0.93 -0.342 0.04548 -0.0002

(Adjustments to Baseline)

John Huston 0.10 -0.00149

Brent Geiberger -0.11 0.00085

TPC Sawgrass Hole 1 0.11 -0.00005

Bay Hill Hole 9 -0.15 -0.00005
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Figure 18: Comparison of two hole adjustment effects for the fitted logistic regression (left), gamma 

regression (center), and Markov (right) models.  These adjustments assume an average golfer is facing 

each hole. 

 

2.6 An Iterative Training Approach 
 

After adding the hole-specific and player-specific dummy terms and interaction 
terms described in the previous section, training the model becomes a significant 
computational challenge due to the number of data columns for each observation.  
All of our models are trained and evaluated in the statistical computing language 
R.10  In R, training the final model directly on 30 courses exceeds the 8 GB of 
RAM in our computational environment because each observation requires 2,632 
columns of data due to the adjustment terms.  Ideally, we would like to be able to 
train the model for all tournaments available within the ShotLink data set.  To 
address this, we have utilized an iterative approach to training our model. 

Algorithms that fit generalized linear models typically optimize all 
coefficients simultaneously in an iterative fashion until the relative improvement 
in the model deviance is below some threshold (e.g., 0.000001%).  Instead of 
optimizing all 2,632 coefficients simultaneously, we train the model on a small 
subset of coefficients at a time.  Thus, in a given overall iteration, our algorithm 
performs multiple sub-iterations optimizing over disjoint subsets of the 2,632 
coefficients.   In each of these sub-iterations, we use the current estimates for the 
coefficients outside of the subset to calculate an offset that is subtracted from each 
observation’s response variable.  Then we fit the generalized linear model using 
the adjusted response variable and the subset of coefficients of interest.  The 
algorithm then moves on to the next subset of coefficients, and the next, until 

                                                 
10   R Development Core Team (2008). R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 
http://www.R-project.org. 
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every coefficient has been updated.  This completes a single overall iteration.  As 
with the traditional approach, our algorithm iterates until the relative 
improvement in model deviance is below some threshold (0.000001%), at which 
point it terminates.  

Using this approach, we are able to train the model on 30 courses’ worth 
of data in less than two days per model.  The performance improvement is due to 
the fact that, by optimizing across a subset of the coefficients at a time, we need to 
consider only the subset of the data that corresponds to those coefficients.  Note 
that this procedure does not affect the optimality guarantees, or lack thereof, for 
the original problem because the procedure is equivalent to a nonlinear, 
directional, local search.  That is, if the original likelihood function is concave in 
the region of interest, either procedure will converge to the maximum likelihood.  
The other interesting feature of this approach is that approximate convergence 
occurs extremely quickly.  Table 8 and Table 9 list the resulting model deviance 
for the first five iterations of this procedure as well as the final model deviance for 
the logistic and gamma regression respectively.  We chose to report on five 
iterations, because five training iterations can be completed in under an hour for 
each model.  The improvement in deviance for the logistic regression from the 5th 
to 27th iteration is just 0.002%, whereas the improvement in deviance for the 
gamma regression from the 5th to 178th iteration is just 0.014%.  These results 
suggest that in a practical setting, the model could be incrementally updated as 
new data are available by applying just a few iterations of this procedure. 

 

 
Table 8: Convergence data for iteratively training 

the logistic regression model. 

Table 9: Convergence data for iteratively training 

the gamma regression model. 

 
 

Logit 

Iteration

Cumulative 

Duration

Logit 

Deviance

0 988,732

1 0:09:58 985,577

2 0:18:46 985,557

3 0:27:51 985,546

4 0:36:43 985,537

5 0:45:31 985,530

27 4:08:45 985,511

Gamma 

Iteration

Cumulative 

Duration

Gamma 

Deviance

0 323,376

1 0:10:30 314,471

2 0:20:52 314,433

3 0:31:13 314,427

4 0:41:33 314,423

5 0:51:46 314,419

178 30:13:49 314,376
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3 Results 
 

In Section 3.1, we use the field-adjusted putts-to-go model described above to 
evaluate putting performance.  We use the concept of shot value as described in 
Section 1.2 to evaluate the stroke gain associated with each putt taken.  We 
aggregate these values for each player to calculate and compare each player’s 
putts gained per putt and per round.  In Section 3.2, we use putts gained per 

round to determine each player’s off-green performance.  To do this, we calculate 
the field-adjusted scoring average for each hole using an OLS regression model.  
This allows us to determine the total strokes gained, which can be described as the 
sum of the putts gained and the off-green strokes gained. 

In Section 3.3, we use the player-adjusted putts-to-go model to evaluate 
situational putting performance.  First, we evaluate the difference in putting 
performance on putts for birdie relative to putts for par.  We show that although 
there is a statistically significant difference between the two, the magnitude of this 
difference in terms of a player’s overall score is much smaller than has been 
previously suggested.  Lastly, we evaluate putting performance on the final round 
of play in the aggregate and for Tiger Woods to test for the impact of 
psychological pressures. 

 

3.1 Putts Gained 
 

In Section 1.2, we defined the concept of shot value, the strokes gained or lost on 
a particular shot (i.e., shot value = strokes-to-goBefore – strokes-to-goAfter - 1).  
Using the field normalized, hole-specific expected putts-to-go function as a 
baseline, shot value (or putt value) allows us to calculate the quality of each 
individual putt of each player.  Averaging this shot value across all putts of a 
particular golfer, we develop the metric putts gained per putt: 
 

 

1

1
,

pTotalPutts

p ip

ip

putts gained per putt putt value
TotalPutts =

− − − = −∑  

 
 

where p represents the player in question and putt valueip is the shot value of 
player p’s ith putt.  This putts gained per putt metric is unbiased and corrected for 
hole difficulty. 

The metric putts gained per round  is similar to the above, but instead of 
being normalized by the total number of putts taken the metric is normalized by 
the number of rounds played: 
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1

1 pTotalPutts

ip

i

p

p

putts gained per round putt value
TotalRounds =

− − − = −∑  

 
where, again, p denotes the specific player.  Note that this is equivalent to 
multiplying putts gained per putt by the average number of putts the player takes 
in each round.  Although there is no guarantee that ordering players by these two 
different metrics will provide identical rankings (because players’ putts per round 
averages may differ), in practice, the rankings are very close.  In fact, the top 19 
putters ranked by each method are identical, and the maximum difference in rank 
between the two methods is 5 golfers, or 1.5 percentiles.  We use putts gained per 

round to evaluate players going forward over putts gained per putt because the 
former is more intuitive and its impact on a tournament’s outcome is clearer.  

As desired, putts gained per round is a less biased way of judging putting 
skill than Putting Average (PA).  Recall from the introduction that Putting 
Average is the average number of putts a golfer takes on greens reached in 
regulation (i.e., reached in no more than (par – 2) strokes).  This metric is also 
sometimes known as Putts Per Green in Regulation (PPGIR), and it is the most 
popular metric by which golfers’ putting skills are judged.  However, Putting 
Average can be biased by the quality of golfers’ approach shots.  Golfers whose 
first putts are closer to the hole will have lower Putting Averages, even if they are 
not better putters.  Alternatively, great putters may have terrible Putting Averages 
because they start farther from the hole, on average, but actually make amazing 
putts from these longer distances.  The metric putts gained per round corrects for 
this bias by explicitly correcting for the distance of each putt.  In addition, putts 

gained per round corrects for green difficulty, so that sinking a 10-foot putt on a 
difficult green is valued more than doing the same on an easy green.  

The advantage of putts gained per round over Putting Average can be 
demonstrated through a simple example.  Consider two golfers, Ernie Els and 
Stephen Leaney.  Ernie Els is ranked 15th in Putting Average (5th percentile), but 
is ranked 283rd in putts gained per round (88th percentile).  On the other hand, 
Stephen Leaney is ranked 191st in Putting Average (59th percentile), but 28th in 
putts gained per round (9th percentile).  Table 10 shows the putting statistics and 
rankings of each player. 

 

 

Table 10: Comparison of Ernie Els’ and Stephen Leaney's performance using two putting performance 

metrics. 

Player

Number of 

Rounds Played

Putting 

Average 

 Percentile

Putts Gained 

per Round  

Percentile

Putting 

Average   

Putts Gained 

per Round 

Stephen Leaney 264 59% 9% 1.79 0.26

Ernie Els 212 5% 88% 1.75 -0.63

32

Journal of Quantitative Analysis in Sports, Vol. 7 [2011], Iss. 1, Art. 5

DOI: 10.2202/1559-0410.1268

Brought to you by | Massachusetts Institute of Technology - MIT Libraries
Authenticated | 18.101.8.220

Download Date | 3/9/14 5:50 AM



 
 

 
 

As discussed earlier, an hypothesis for the discrepancy between these two 
golfers’ rankings between the Putting Average and putts gained per round metrics 
is that Ernie Els starts closer to the hole, on average, meaning that his putts are 
easier.  This would inflate his Putting Average rank.  By this same hypothesis, we 
would expect Stephen Leaney’s average first putt distance to be farther than the 
average golfer’s.  In fact, this is the case.  Figure 19 shows the cumulative 
distribution function for first putt distance for Ernie Els, Stephen Leaney, and the 
average for the field of golfers.  These distributions and averages consider only 
those first putt distances for which the golfer reached the green in regulation, 
since Putting Average considers only these putts.  Ernie Els’ first putt on average 
is 20.0 feet, almost two feet closer to the hole than the average first putt distance 
across the field, which is 21.8 feet.  On the other hand, Stephen Leaney’s average 
first putt distance is 23.0 feet, more than a foot farther from the hole than the 
average.   

Although at first glance, Ernie Els may appear to be a great putter by the 
Putting Average metric, the data seem to indicate that his true skill is on the 
approach.  Actually, he is a worse-than-average putter with respect to putts gained 

per round.  After correcting for distance and green difficulty, we find that 88% of 
his peers putt better than he does.  

 
 

 

Figure 19: Empirical cumulative distribution of Ernie Els’ and Stephen Leaney's first putt distances 

for greens reached in regulation. 
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An additional benefit of putts gained per round is that it is utilizes all 
available putting data.  Putting Average includes only those putts for greens 
reached in regulation, excluding putts made by golfers who took at least an extra 
stroke to get to the green.  Because it excludes putts on greens not reached in 
regulation, approximately 30% of all putts taken, and the corresponding 
information these putts provide, Putting Average has a higher intrinsic error or 
variability. 

Table 11 and Table 12 show the top twenty putters ranked by each metric.  
The first table ranks the top 20 golfers by Putting Average.  The second table 
ranks the top twenty players with respect to putts gained per round.  Notice the 
large discrepancy between the rankings.  Aside from Tiger Woods, who is first in 
both rankings,  no other golfer has the same ranking using either metric, and many 
golfers’ ranks differ by a large amount.     

   
   

 

Table 11: Top 20 putters ordered by the PGA TOUR's Putting Average statistic for golfers 

with at least 50 rounds of play. 

 
 

Player

Number of 

Rounds 

Played

Putting 

Average 

  Rank

Putts Gained 

per Round  

Rank

Putting 

Average   

Putts 

Gained per 

Round 

Putts Gained per 

Round Standard 

Deviation

Tiger Woods 230 1 1 1.71 0.69 0.12

Greg Chalmers 136 2 31 1.73 0.25 0.15

Aaron Baddeley 303 3 5 1.74 0.53 0.10

Fredrik Jacobson 248 4 3 1.74 0.56 0.11

Nathan Green 197 5 4 1.74 0.55 0.12

Scott Verplank 316 6 76 1.74 0.06 0.10

Tim Clark 296 7 54 1.74 0.15 0.10

Vijay Singh 387 8 218 1.75 -0.36 0.09

Aaron Barber 79 9 300 1.75 -0.83 0.20

Vaughn Taylor 301 10 57 1.75 0.14 0.10

Padraig Harrington 134 11 45 1.75 0.17 0.15

Stewart Cink 375 12 7 1.75 0.49 0.09

Bob Heintz 111 13 60 1.75 0.13 0.17

David Toms 268 14 50 1.75 0.16 0.11

Ernie Els 212 15 283 1.75 -0.63 0.12

Brian Gay 388 16 23 1.75 0.28 0.09

Ben Crane 273 17 9 1.75 0.44 0.11

Brenden Pappas 206 18 103 1.75 0.00 0.12

Darren Clarke 107 19 8 1.75 0.45 0.17

Jim Furyk 310 20 101 1.75 0.00 0.10
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Table 12: Top 20 putters ordered by putts gained per round for golfers with at least 50 rounds of play. 

 
 
 
Using the putts gained per round, we are also able to determine the 

statistical significance between any two golfers’ putting skill.  For instance, Tiger 
Woods’ performance is two standard deviations above every putter not in the top 
10, and 9 standard deviations above Vijay Singh’s putts gained per round. 

We assert that putts gained per round is a more accurate metric than 
Putting Average.  Due to its lack of bias, intuitive interpretation, and ease of 
calculation, we suggest that putting skill should be evaluated with respect to putts 

gained per round rather than Putting Average. 
We can also use putts gained per round to evaluate putting performance 

on a tournament-by-tournament basis.  For example, Table 13 lists the top 10 
tournament performances with respect to putts gained per round.  As above, we 
restrict our analysis to only golfers with at least 50 rounds of play, and we include 
only golfers who played all rounds of the tournament (i.e., made the cut). 

 

 

Player

Number of 

Rounds 

Played

Putting 

Average 

  Rank

Putts Gained 

per Round  

Rank

Putting 

Average   

Putts 

Gained per 

Round 

Putts Gained per 

Round Standard 

Deviation

Tiger Woods 230 1 1 1.71 0.69 0.12

David Frost 113 60 2 1.77 0.67 0.16

Fredrik Jacobson 248 4 3 1.74 0.56 0.11

Nathan Green 197 5 4 1.74 0.55 0.12

Aaron Baddeley 303 3 5 1.74 0.53 0.10

Jesper Parnevik 315 47 6 1.76 0.50 0.10

Stewart Cink 375 12 7 1.75 0.49 0.09

Darren Clarke 107 19 8 1.75 0.45 0.17

Ben Crane 273 17 9 1.75 0.44 0.11

Willie Wood 72 92 10 1.77 0.42 0.20

Brad Faxon 246 30 11 1.76 0.41 0.11

Dean Wilson 356 58 12 1.77 0.39 0.09

Jay Delsing 132 52 13 1.77 0.38 0.15

Jay Haas 149 22 14 1.75 0.38 0.15

Steve Stricker 237 26 15 1.75 0.37 0.11

Scott McCarron 197 62 16 1.77 0.37 0.13

Zach Johnson 313 41 17 1.76 0.37 0.10

Daniel Chopra 312 25 18 1.75 0.36 0.10

Stephen Ames 304 40 19 1.76 0.36 0.10

Bob Tway 309 54 20 1.77 0.31 0.10
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Table 13: Top 10 tournament level performances with respect to putts gained per round.  
 
 
In 2003, Hal Sutton finished third at the MCI Heritage played at the 

Harbour Town Golf Links, but his putting performance over the four rounds of 
play was extraordinary.  In the first round, Sutton gained just over 5.1 putts on the 
field.  In the second round, he gained 1.6 putts on the field, but followed that up 
by picking up 3.4 putts in round 3.  In the last round, Sutton gained almost 5.9 
putts on the field, exceeding his already spectacular mark in round 1.  As a point 
of reference, in our 2003–2008 data set, fewer than 1 out of every 400 rounds 
played resulted in a golfer gaining more than 5.0 putts in a round.  Hal Sutton 
accomplished this feat twice in a single tournament, with Fredrik Jacobson being 
the only other golfer to do so (in the seventh-ranked tournament level putting 
performance).  Over the course of the tournament, Sutton gained at least half a 
putt on 22 different holes, including making one putt from 53 feet (gaining 1.22 
strokes on the field) and two putts from just over 24 feet (gaining 0.94 and 0.92 
strokes).  As these results suggest, analyzing putts gained can provide an 
interesting backdrop for putting performance on a tournament-by-tournament, or 
even round-by-round basis.  

3.2 Off-Green Performance 
 

Once we determine each player’s total strokes gained, we can use our model for 
putts gained to calculate how many strokes are gained off the green (i.e., total 
strokes gained minus putts gained).  The challenge is that for consistency, the 
total strokes gained should be calculated relative to the same average field of 
PGA TOUR professionals as putts gained.  Strictly averaging the number of 

Rank Player Course Name Year

Putts Gained 

per Round

1 Hal Sutton Harbour Town GL 2003 3.97

2 Ben Crane TPC Sugarloaf 2003 3.39

3 Aaron Baddeley Bay Hill Club 2005 3.27

4 David Peoples TPC Southwind 2003 3.14

5 Marc Turnesa Annandale GC 2008 3.09

6 Jay Haas TPC Sawgrass 2003 3.09

7 Fredrik Jacobson Muirfield Village GC 2007 3.05

8 Scott McCarron TPC Scottsdale 2003 2.99

9 Dean Wilson Quail Hollow CC 2007 2.99

10 Geoff Ogilvy TPC Sawgrass 2003 2.98
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strokes taken for each hole is insufficient because it would incorporate biases 
based on each tournament’s quality of field. 

To address this issue, we perform an OLS regression to predict the number 
of strokes taken for each player’s hole of play.  In this model, the independent 
variables we include are an intercept term, the distance from the tee to the pin, a 
dummy variable for each player, and a dummy variable for the interaction of each 
hole with the day of play.  We utilize the interaction of the hole with the day of 
play in order to pick up day-specific effects such as weather.  We include the 
distance from tee to pin to provide stability for tournaments with fewer daily 
observations.  The full linear regression function is described in Equation 7: 

 
 
 [ ] 0 1 0 0E p hddY β β β β+ + +=  (7) 

 
where Y represents the strokes-to-go from the tee for player p on hole and day 
combination hd.  After normalizing the model using the same technique as 
described in Section 2.5, we estimate the expected scoring average for each hole 
and day of play based on an average quality of field.  By using the same 
adjustment and normalization approach, we ensure that this corresponds to the 
average quality of field utilized by the two putting regression models.  Lastly, we 
calculate the strokes gained for each hole of play by subtracting the expected 
scoring average from the player’s hole score.  As with putts gained, we choose to 
report off-green strokes gained using a per round average because the top 20 
golfers remain the same regardless of whether we normalize by the number of 
strokes taken or the number of rounds.  As with putts gained, we recommend off-

green strokes gained per round due to its value as a more easily interpretable 
metric. 

In Table 14, we provide the breakdown of putts gained per round and off-

green strokes gained per round for the top 20 golfers as measured by total strokes 
gained per round.  The most interesting thing to note regarding these results is that 
there is significant variation in how the best golfers pick up strokes on the field.  
For instance, it is interesting to compare Tiger Woods and Vijay Singh, two elite 
PGA TOUR golfers, over the 6-year period.  Tiger excels due to his all-around 
performance, whereas Vijay is the top player off the green, but his putting 
performance is well below average.  Another observation is that all the top twenty 
golfers are better than average off-green performers, but roughly a third are worse 
than average putters.  This suggests that bad putting can be salvaged by great 
performances off the green, but not the other way around. 
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Table 14: Top 20 golfers as measured by total strokes gained per round for golfers with at least 50 

rounds of play. 

 
 
Extending the previous section’s discussion of Hal Sutton’s putting 

performance in the 2003 MCI Heritage, we can now look at his off-green 
performance in the same tournament.  Over the course of the four rounds of the 
tournament, Sutton lost 6.1 strokes to the field off the green compared to the 15.9 
strokes he gained on the green.  Sutton finished the tournament just 1 stroke 
behind the leaders Woody Austin and Davis Love III, with Love III winning the 
subsequent playoff.  Assuming a field-average performance of 0 strokes gained 
off the green, Hal Sutton would have won the tournament by 5 strokes.  The 
differences between Sutton’s 6.1 strokes lost off the green and the 6.2 and 5.4 off-
green strokes gained by Austin and Love III, respectively, cancel out most of 
Sutton’s putting gains.  Even the best putting performance can still result in a 
tournament loss. 

 

Player

Number of 

Rounds Played

Strokes Gained 

per Round Rank

Strokes 

Gained per 

Round

Putts 

Gained per 

Round

Off-Green 

Strokes Gained 

per Round

Tiger Woods 230 1 3.22 0.69 2.53

Vijay Singh 387 2 2.29 -0.36 2.65

Jim Furyk 310 3 2.03 0.00 2.03

Phil Mickelson 243 4 1.94 0.19 1.74

Ernie Els 212 5 1.85 -0.63 2.48

Adam Scott 220 6 1.77 0.08 1.69

Sergio Garcia 259 7 1.52 -0.67 2.20

David Toms 268 8 1.43 0.16 1.27

Retief Goosen 214 9 1.40 -0.44 1.84

Stewart Cink 375 10 1.39 0.49 0.89

Padraig Harrington 134 11 1.37 0.17 1.19

Kenny Perry 358 12 1.36 -0.28 1.65

Darren Clarke 107 13 1.35 0.45 0.90

Robert Allenby 303 14 1.32 -0.34 1.66

Scott Verplank 316 15 1.31 0.06 1.24

Jay Haas 149 16 1.27 0.38 0.89

Luke Donald 255 17 1.23 -0.06 1.29

Stephen Ames 304 18 1.22 0.36 0.86

Anthony Kim 117 19 1.22 0.01 1.21

Zach Johnson 313 20 1.14 0.37 0.78
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3.3 Situational Putting Performance 
 

An additional benefit of our putts-to-go model is that it allows us to evaluate 
situational putting performance by comparing the putts gained in each situation 
relative to player-specific baselines.  That is, by building our Markov model using 
player-specific transition probabilities based on the models with player 
adjustment terms, we are able to determine player-specific putts-to-go 
expectations for each putt taken.  For instance, from nine feet on the tenth hole of 
Quail Hollow, Tiger Wood’s expected putts-to-go is 1.54 and Vijay Singh’s 
expected putts-to-go 1.59.  This baseline explicitly controls for the difficulty of 
the green and the quality of the putter, unlike the expected putts-to-go for the 
field described in Section 3.1.  Next, by aggregating the putts gained relative to 
these player-specific baselines, we can calculate player-specific putts gained per 

putt for each situation. 
We illustrate this approach by analyzing two situational putting 

breakdowns: putting performance on putts for birdie as compared to putts for par, 
and putting performance on the fourth round of play.  The benefit of our approach 
is that once player-specific putts gained have been calculated for each putt taken, 
new situational analyses require only aggregating these values.  Thus, our 
approach makes it easy to test new hypotheses without having to train additional 
models.  Additionally, this approach allows us to calculate the impact of 
situational effects on the golfer’s total score based on the difference between the 
putts gained per putt, using the standard deviations to determine the significance. 

Pope and Schweitzer (2010) have demonstrated that there is a significant 
difference in putting performance between par and birdie putts.  The conclusion 
of the paper is that the difference in behavior between birdie and par putts costs 
golfers on the order of 1 putt per tournament.  In Table 15, we estimate the putts 

gained per putt on putts for birdie as well as putts for par, resulting in a difference 
of 0.014 putts gained per putt.  On average, golfers make 11.3 putts for birdie per 
round.  Thus, this difference corresponds to a loss of 0.64 strokes per tournament, 
which is similar to the magnitude estimated by Pope and Schweitzer. 

 
 

 
Table 15: Comparison of putts gained per putt on par and birdie putts. 

Putt Count
Putts Gained per 

Putt

Putts Gained per 

Putt Deviation

For Birdie 756,643 -0.00741 0.00023

For Par 914,652 0.00673 0.00014

Difference 0.01414 0.00027
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  An alternative hypothesis also investigated is that this difference is instead 
due to the difference between first putts and following putts.  This line of 
reasoning suggests that first putts are more difficult because the golfer has no 
information about the break of the green and less control over the secondary 
characteristics of the putt.  For instance, if a 10-foot first putt is the result of a 
100-yard approach shot, the golfer has less control over the exact location on the 
green.  A 10-foot second putt, on the other hand, is likely to be from a more 
desirable location, for instance, downhill of the hole, because it is the result of a 
more controllable shot (i.e., the first putt).  To test this hypothesis, we perform a 
similar analysis as above, this time splitting the data into first putts and 
subsequent putts.  The results are listed in Table 16. 

  
 

 
Table 16: Comparison of putts gained per putt on first putt and following putts. 

  
Although there is a significant difference in putts gained per putt for both 

cases (Table 15 and Table 16), the larger difference in the second case suggests 
that this may be the more significant effect.  To tease out these two correlated 
effects, we perform an OLS regression to predict putts gained with an intercept 
term as well as indicators for first putts and birdie putts as independent variables, 
restricting the data to only putts for par or birdie.  Table 17 summarizes the fitted 
parameters of this regression.  Based on these parameters, the estimated 
difference between birdie and par putts is 0.0054 putts gained per putt, or 
approximately 0.2425 strokes per tournament.  This supports the conclusion that 
professional golfers behave differently with respect to putting for birdie or par, 
but suggests that the magnitude of the effect is much smaller than previously 
estimated. 

In addition, the above results violate the Markov assumption underlying 
Equation 4, which we used to generate the putts-to-go baselines.  To address this 
issue, we could extend the Markov chain state space to include the putt number 

Putt Count
Putts Gained per 

Putt

Putts Gained per 

Putt Deviation

First Putt 1,182,012 -0.00561 0.00018

Follow-on Putts 752,185 0.01216 0.00010

Difference 0.01777 0.00021

40

Journal of Quantitative Analysis in Sports, Vol. 7 [2011], Iss. 1, Art. 5

DOI: 10.2202/1559-0410.1268

Brought to you by | Massachusetts Institute of Technology - MIT Libraries
Authenticated | 18.101.8.220

Download Date | 3/9/14 5:50 AM



 
 

 
 

(e.g., first, second, third) and/or the putt score (e.g., putt for a birdie, par, bogey).  
We leave this to future research as a potential improvement over the current 
model. 

  

 

Table 17: Fitted parameter of OLS regression to analyze impact of first putts and birdie putts. 

 
 
Next, we consider putting performance on the fourth round of play: 

Sunday, the last day of a tournament.  In particular, we are interested in 
determining whether putting performance suffers due to psychological pressure.  
To that end, in Table 18 we first compare player-specific putts gained per putt in 
the third round versus the fourth round.  The results indicate that the difference is 
insignificant as compared to the deviations of either the third or fourth round 
estimates.  Still, the lack of a significant difference does not exclude the 
possibility of psychological factors because many players in the fourth round are 
out of contention by the time the round begins. 

   

 
Table 18: Comparison of putts gained per putt on putts in the 3rd round and 4th round of play. 

 
Thus, we next restrict our focus to the players that are in contention.  We 

say golfers are in contention if they end the third round of play within six strokes 
of the leader.  This corresponds to approximately 10 golfers per tournament.  
Using this definition, in Table 19 we divide fourth round putting performance by 
comparing players in contention against those who are out of contention.  Under 
this segmentation of the data, we find that players who are in contention tend to 
mildly underperform those who are out of contention, but the magnitude of this 
effect is smaller than the deviation of the in-contention putts gained per putt 

Estimate Standard Error t-value p-value

(Intercept) 0.0130 0.0005 28.7350 < 2E-16

First Putt Indicator -0.0154 0.0007 -22.3420 < 2E-16

Birdie Putt Indicator -0.0054 0.0007 -8.1850 2.71E-16

Putt Count
Putts Gained per 

Putt

Putts Gained per 

Putt Deviation

3rd Round 359,079 0.00237 0.00027

4th Round 353,979 0.00246 0.00027

Difference 0.00009 0.00038
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estimate.  Note that even if this difference was statistically more significant, it 
would correspond to a loss of just 0.07 strokes per tournament.  Thus, it seems 
that, at least in aggregate, professional golfers are relatively immune to the 
pressures associated with the fourth round of play. 

 
 

 
Table 19: Comparison of putts gained per putt during the 4th round when the player is in or out of 

contention. 

 
 Along a similar vein, we can use this approach to evaluate the fourth 

round play of individual golfers.  For instance, a common perception is that one of 
Tiger Wood’s strengths is his ability to close out the final round.  At least with 
regards to putting, this is easy to test using our model.  In Table 20, we break 
down Wood’s putts gained per putt by round of play.  These results suggest that 
Wood’s best round of putting is in fact the second round, and that his fourth round 
performance is very close to his player-specific expectation, namely, 0.69 strokes 
better than the field. 

   

 
Table 20: Comparison of Tiger Wood's putts gained per putt for each round of play. 

 
 Note that the purpose of these analyses is not to make unassailable claims, 

but rather to illustrate the simplicity of performing these tests using the model we 
have developed.  As should be apparent, there are many other questions of a 

Putt Count
Putts Gained per 

Putt

Putts Gained per 

Putt Deviation

In Contention 46,918 0.00194 0.00073

Out of Contention 307,061 0.00254 0.00029

Difference 0.00060 0.00079

Putt Count
Putts Gained per 

Putt

Putts Gained per 

Putt Deviation

1st Round 1,614 0.00036 0.00386

2nd Round 1,589 0.00847 0.00395

3rd Round 1,654 -0.00293 0.00375

4th Round 1,671 -0.00022 0.00380
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similar nature that would benefit from the application of our approach.  At a 
minimum, this approach provides a method for quickly evaluating which 
questions would benefit from further investigation. 

4 Conclusion 
 

In this paper, we analyze putting performance on the PGA TOUR.  Our analysis 
builds off of two generalized linear models that describe the process of putting: a 
logistic regression to predict the probability of making the putt, and a gamma 
regression to predict the distribution of distance-to-go when the putt misses.  Each 
of these models fits the empirical data exceedingly well.  Additionally, we 
develop a Markov chain modeling approach that utilizes these fitted regressions to 
derive an estimated distribution of putts-to-go.  The success of this model is made 
possible by the ability of our gamma regression to accurately predict not only the 
mean, but also the distribution, of distance-to-go. 

We adjust our models to control for green difficulty and player skill level 
simultaneously.  A unified approach is necessary in order to separate green 
difficulty from each tournament’s quality of field.  Considering all of these 
adjustments at once vastly increases the computational burden associated with 
training the model.  Thus, we develop an algorithm that allows these models to be 
trained with reduced memory requirements and improved performance. 

These efforts allow us to develop an enhanced putting performance metric, 
putts gained per round, and demonstrate its benefits over Putting Average, the 
most commonly reported putting statistic.  Due to its lack of bias, ease of 
interpretation, and computational tractability we believe that the PGA TOUR 
should add putts gained per round to its set of reported statistics.  Once the 
expected putts-to-go plot has been derived (perhaps using complex mathematical 
machinery), calculating putts gained per round requires nothing more than the 
plot for each hole and the distance of each putt taken.  We hope that improved 
performance metrics such as this will help the PGA TOUR develop a diehard 
statistical following much like other popular sports.  Combined with off-green 

strokes gained per round, our analysis of putting performance suggests that there 
are multiple ways to succeed in professional golf.  Unfortunately for the 
competition, Tiger Woods excels at all of them, making him very difficult to 
catch. 
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