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Abstract. We give a formula for sy /, (1, g, a*,...) /s (1,q,4%,...), which generalizes a re-
sult of Okounkov and Olshanski about /4 /{4
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1. Introduction

For the notation and terminology below on symmetric functions, see Stanley [6] or
Macdonald [4]. Let u be a partition of some nonnegative integer. A reverse tableau
of shape u is an array of positive integers of shape p which is weakly decreasing
in rows and strictly decreasing in columns. Let RT(u,n) be the set of all reverse
tableaux of shape y whose entries belong to {1, 2,...,n}.

Recall that f)“ and f)“/ # denote the number of SYT (standard Young tableaux)
of shape A and A/ respectively, and /(i) denotes the length of p. Okounkov and
Olshanski [5, (0.14) and (0.18)] give the following surprising formula.

Theorem 1.1. Let A+ m, u+k with u C A and n € N such that [(n) <I(A) < n.
Then

m)y !
i S5 Y T A —cw)). (1.1)

A
f TERT(w,n) UEL

where c(u) and T (u) are the content and entry of the square u respectively, and
(my=mm—1)---(m—k+1).
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In this paper, we generalize the above result to a g-analogue. Our main result is
the following.

Theorem 1.2. Ler A and U be partitions with &t C A and n € N such that (i) <
(L) <n. Then

2
Sa/u (1’ 4.4 ’) _ Z qu—T(u) (1 _qlT(u)—c(u)) : (1.2)

2
sp(1,9,4%-..) TERT(y,n) UER

where the right-hand side is defined to be 1 when L is the empty partition.

2. Proof of the Main Result

For n € Z and k € N, we define [n] = 1 —¢" and denote by (n | k) the kth falling
g-factorial power, i.e.,

(nlk) =

n—1]---n—k+1], ifk=1,2,...,
1, ifk=0.

In particular, we use [k]! to denote (k | k), and [} ] = [k]![[z]_! q forn > k.

Let A and u be partitions with 4 C A and n € N such that I(u) <I(A) <n. We
define

@ =s1u(La.q*,...) J] In+c(w)]. 2.1)
ued/un

The following lemma is given in [6, Exer. 102, p. 551 and Lem. 7.21.1].

Lemma 2.1. Ler A and [ be partitions with it C A andn € N such that1(p) <I(A) <
n. Then we have

Ai+n—i :|:|n
i~ Wit
i [V,']! .
(b) H[n+c(u)]: ., where v; = A; +n—i.
uer it [ =1]!

(@) 13 /u,n(gq) = det Hl

i,j=1

Lemma 2.2. Let A and U be partitions with it C A andn € N such that [() <I(A) <
n. Then we have

n

S /u (1761, q27,..) _ det[(l,-—i—n—iL/Jj—i—n—j)][’j:l.

= 2.2
Sl(hcqua"') det[(&—i—n—ltn—])]z,ﬂ ( )
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Proof. By Lemma 2.1, we have

sau(Lasd-)  tyua@)
= n+clu
L)~ g Lrrew)

Ai+n—i "
der| [l

- Aitn—i H "LJ+”_
S Ftel|

—i+j -
det |:|: Ait+n—i :| [ +n— ]':|n
. Ai—pj—itj Hi JI: i, j=1

det H”ﬂ,’} [”—j]!szl

det[(Aitn—ilpi+n—
det[(Ai+n—iln—jl '

We first consider the denominator of the right-hand side of (2.2).

Lemma 2.3. We have
det[(l,-—!—n—iLn l] 1= <Hq’ DA ) H [li—lj—i—i-j]. (2.3)
1<i<j<n

Proof. For j =1,...,n— 1, we subtract from the jth column of the determinant on
the left-hand side the (j+ 1)th column, multiplied by [A; + j]. Then for all j < n, the
(i, j)th entry becomes

(Aitn—iln—j—D([Ait+j+1—i] = [Ai+]]). (24

In particular, the (1, j)th entry becomes O for j < n. Therefore, the determinant on
the left-hand side becomes

(H[M —Ai—1 +i]q’li> det[(Aiy1 +n—i—1|n—j— I)L =1
i=2
and then the result follows by induction.

The following lemma is almost the same as [5, Lemma 2.1], just lifted to the
g-analogue.

Lemma 2.4. Letx, y € Z withx+ 1 #y and k € N. Then we have

Olk+1) = (x+11k+1) iq—l(yu)(x—l[k_l)'

—¢ + qx+1 - =
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Proof. We have

k
(= +a™) Y g oI x—11k—1)

=0

I
N

(~¢ 7 +a ) oL 1Lk=1)

=0
k k

=Y Ol —1k=Dy ==Y L)~ Lk=Dx+1-1]
1=0 1=0
k+1 k

=Y OIDx—1+1Lk—1+1) =Y (I )x—1+1k—1+1)
=1 =0

=lk+1)—(x+1]k+1).

For two partitions g and v, we write 4 = v if y; > v; > ;1 foralli € N, or
equivalently v is obtained from u by removing a horizontal strip. Thus given a reverse
tableau 7 € RT(u, n), we can regard it as a sequence

u :u(l) Eli(z) = EIJ(HH) =0,

where () is the shape of the reverse tableau consisting of entries of 7' not less
than i.
Let /v be a skew diagram. We define

(xlu/v)= H [x—c(u)]. (2.35)

uep/v

This is a generalization of the falling g-factorial powers. Now we can give the proof
of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.2, it is equivalent to prove that

Y 1477 [Ar —c@)].  (2.6)

i, j=1 TERT(u,n) UM

det[(Ai+n—ilpj+n— ), _
det[(Ai+n—iln— j)*

Since Lemma 2.2 still holds when u ¢ A, in which case both sides of (2.2) are equal
to 0, we just assume /() < I(A) < nin (2.6). The proof of (2.6) is by induction on 7.
The case n = 0 is trivial, which is equivalent to the statement { = 1. For the induction
step (n > 0), it suffices to prove that

det[(Ai+n—ilpj+n— ),
det[(Ai+n—iln— ) ;_,

n—1 2.7)

y det[ (Al +n—1=ilvitn—1-j)|" 1
7V ), i,j=
v;” ( lLlJ/V) det[(liT—i—n—l—an—l— )]n 1

1(v)<n h=l

)
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where A1 denotes the partition obtained from A by removing A;.

To see the sufficiency, let T be the reverse tableau obtained from a given T €
RT(u, n) by removing all entries equal to 1 and decreasing remaining entries by 1.
Let v be the shape of 7!. Then we have v < u and / (v) < n. On the other hand,
given partitions v and g with v < g and I(v) < n, then for T € RT(v,n— 1), we
can uniquely recover T € RT(u, 1) from 7' in a reverse way. Thus for a fixed v with
v < uand (V) < n, we have

Y T4 ™™ A —cw)] (2.8)

TERT(1,n) UEH

shape(TT)=v

_ —1,1-TM(w) |41

= Y Ml e AL, - cw)]
TTERT(v,n—1) uev

¢ Maiey) Y a7 A, -]

TTERT(v,n—1)UEV

n—1

det[ (2 +n—1 —iij+n—1—j)]j_l
Sk (2.9)

det[(lT—i—n—l—an—l )L"jll

=g M lu/v)

here the last equality follows from induction hypothesis. By summing (2.8) and (2.9)
respectively over all partitions v with v < and (V) < n, we then obtain (2.6) from
(2.7).

Consider the numerator of the right-hand side of (2.7),

det[(Ai+n—iluj+n—j)). (2.10)

For j=1,2,...,n— 1, we subtract from the jth column of (2.10) the (j + 1)th col-
umn, multiplied by (41 — 1+ j | 4j — fjy1 +1). Then for all j < n, the (i, j)th
entry of (2.10) becomes

(Aitn—ilpjr+n—j—D((A— 1 +j+1—ilg;—pjr+1)
— (M= Mjsr+J LM — i + 1))
In particular, the first row of (2.10) becomes
(0,...,0, (A +n—1]uy)).

We can now apply Lemma 2.4, where we set

2.11)

x=M—p+j—1 k=pj—pj, y=k—-Hj+j+1-i
Then (2.11) becomes
—(/'L,‘—Fn—l'“vlj_,_l—i-n—j—1)[11—7Li—|-l.—l]qliil“lf*lJr'iJrlii

Hji—Hj+1 (2.12)

g 'O (x—11k=1).
=0
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Letv; =1+ ;. Since

@ — gt =g A — i+ i— 1],
(x—llk=1)= (A —Vj+j—1luj—vy),
WL = (hi—pjrr+j+1—=ilvi— ),
(Aitn—ilgjp+n—j—D)=R+n—ilvi+n—j—1),

(2.12) becomes

. . ”j
_[)Ll —Ai+i— 1]q/1i*#j+1+j+l—z Z qﬂjﬂ*"j(/ll —vi+j—1lpj— vj)

Vi=Hj+1
“(Ai+n—ilvij+n—j—1).

Expand the determinant (2.10) by the first row,

(A +n—1|py)det | [ —Aig + g0 Y g7V
Vi=Hj+1

(2.13)

-(M—vj—kj—lLuj—vj)(l,url—kn—i—lij—i—n—j—l)
i j=1

For any chosen value of v; (1 < j <n—1) in the range from p; | to u;,
v = (V,...,Vy—1) is a partition, and we have v < u. Furthermore, when
v (1 < j<n—1)ranges from u;j; to i;, v ranges over all partitions with v < u
and /(v) < n. Therefore, (2.13) equals

(Ai+n=111) Y, det[[xl—zi+1+i]qli+1+j—i—v,-
v=u
s (2.14)
n—1

(=it = T = v (i s n—i=Tlvidn—j=1[

For the determinant in (2.14), we can extract A1 — Ay + i]q’“’“’i from the ith
row and extract ¢/ Vi (A} — v;+ j— 1| pj— v;) from the jth column by multilinearity
for 1 <i, j <n—1.Then (2.14), which is equal to (2.10), becomes

n—1 n—1
(H[M —Ait1 +i]qli*‘> Y < qw) (A lu/v)
1

i=1 vu j=

R (2.15)

-det[(Aip1+n—i—1|vi+n—j— 1)]:’;i1
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On the other hand, by Lemma 2.3 we have

det[(Ai +n—iln—jli ;=

- (2.16)
:H([M A1 +ilg t+l)det[(l,+1+n—l—1Ln—]—l)]”1

i=1

Combining (2.15) and (2.16) together, we then obtain (2.7), which implies Theo-
rem 1.2.

Theorem 1.1 can be recovered from Theorem 1.2 by setting g = 1. To show that,
we need the following result given in [6, Prop. 7.19.11].

Lemma 2.5. Let |A/i| = m. Then

Y7 g
sﬂ,/u (13q7q27"'): [m]‘ 9

where T ranges over all SYTs of shape A /|, and maj(T) is the major index of T.

Proof of Theorem 1.1: Divide both sides of (1.2) by (1 —¢)/#l and then set g = 1.
Then the right-hand side of (1.2) becomes

Y I1 % . (2.17)

TERT(p,n) 4EN
Since
= fHE,
q=1

quaj(T)
T

when T ranges over all SYTs of shape A/, we know by Lemma 2.5 that

sau (L, q....)
(1 _Q)‘”‘sl(la q, qzv--')

L g

(L= q)Hm— k) gy g |
(m) fA/H
V.

where T} and 75 range over all partitions of shape A /i and A, respectively. Combin-
ing (2.17) and (2.18) together, we then obtain Theorem 1.1.

q=1

(2.18)

1

Corollary 2.6. The rational function

Sl/u (17 qa qza"')
(1 —q)‘mSl(l, q, qza--')

is a Laurent polynomial in g with nonnegative integer coefficients.
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Proof. Given T € RT(l, n), if Az (,) < c(uo) for some ug € 1, then

I1 [Arw —c(w)] =o0. (2.19)

uey

In fact, while u moves from right to left along rows of 7', Ay, is weakly decreasing,
and c(u) is decreasing by 1 in each step. Let u; be the leftmost square in the row
containing uo. Since Ay(,,) > c(ur) and Ap(,) < c(uo), we have Ap(,,) = c(uz) for
some square up, which imphes Equation (2.19).

On the other hand, by Theorem 1.2 we have

sip (14, 4%-) Y [IaT. [Ar =]

(I_Q)‘u‘sl(laQaqzv“')_TeRTunuEu l_q

Then the result follows after omitting the sum terms that equal to O on the right-hand
side.

For the special case when p = 1, we give a simple formula for s3 ,1/(1 — q)sy
in Corollary 2.7 below. Before giving a combinatorial proof of this result, we first
introduce some notation.

The acronym SSYT stands for a semistandard Young tableau where O is allowed
as a part. Jeu de taquin (jdt) is a kind of transformation between skew tableaux
obtained by moving entries around, such that the property of being a tableau is pre-
served. For example, given a tableau T of shape A, we first delete the entry T'(i, j) for
some box (i, j). f T(i, j—1) > T(i— 1, j), we then move T (i, j — 1) to box (i, j);
otherwise, we move T'(i — 1, j) to (i, j). Continuing this moving process, we eventu-
ally obtain a tableau of shape A /1. On the other hand, given a tableau of shape A /1,
we can regard (0, 0) as an empty box. By moving entries in a reverse way, we then
get a tableau of shape A with an empty box after every step. For more information
about jdt, readers can refer to [6, Ch. 7, App. I].

The following result was first obtained by Kerov [2, Thm. 1 and (2.2)] (after
sending ¢ — ¢~ ') and by Garsia and Haiman [1, (1.15), Thm. 2.3] (setting t = ¢~ ')
by algebraic reasoning. For further information see [3, p. 9].

Corollary 2.7. We have

san (Lg, ¢
q (2.20)
TENIER e MU

Proof. We define two sets in the following way:
Ty.y1 ={(T,k)|T is an SSYT of shape 1 /1, and k € N},
T) ={(T,u)|T is an SSYT of shape A, andu € 1 }.

Since we can rewrite (2.20) as

sin(Lad.) Yd=s(lq.4. ) Y ¢",
i>0 ued
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it suffices to prove that there is a bijection ¢: T) — T /1, say @(T, u) = (T, k), such
that |T'| 4 c(u) = |Ty| + k, where |T'| and |Tj| denote the sum of the entries in 7 and
Ty, respectively.

We define ¢ in the following way. Given (T, u) € Ty, let k = T (u) + c(u). To
obtain Ty, we first delete the entry 7'(u) from 7', and then carry out the jdt operation.
Since T is an SSYT, we have k > 0, and thus the definition is reasonable.

On the other hand, given (T, k) € Ty /1, we carry out the jdt operation to T step-
by-step in the reverse way. Denote by u, the empty box and 7; the tableau obtained
after ¢ steps. If we get an SSYT by filling u, with k — c(u;) in 7;, then we call i, a
nice box.

We first show that a nice box exists. For the sake of discussion, if (i, j) is not a
box of a tableau 7', then we define T(i, j) = —ecif i <0 or j <0, and T (i, j) = +oo
if i > 0 and j > 0. The existence is obvious if the initial empty box u is nice. If
there is no integer ¢ such that k — c(u,) is less than the adjacent entry left or not
greater than the adjacent entry above in T;, then by filling the last empty box u,, with
k —c(uy,), we get an SSYT, which implies that u,, is a nice box. Otherwise, let ¢
be the smallest integer such that k — c(u,) is less than the adjacent entry left or not
greater than the adjacent entry above. Then we claim that u,_; is a nice box. Assume
that u, = (i, j). Since T;_; and T, satisfy the conditions of SSYT except for the
empty box, we have Tt—l(iv Jj— 1) <T- (la J) < 7;—l(i_ L, Jj+ 1) ifu_y = (l_ L, J),
and 7;—1(1._ 17]) < 7;—1(1.7 J) < 7}—1(1+ L, j— 1) ifup | = (laJ_ 1) In the first
case, we have k —c(u;) < T,_1(i, j), thus k—c(u—1) =k —c(u)) — 1 < T,_1(i, j) <
T,_1(i—1, j+1). In the latter one, we have k — c(u;) < T;_1(i, j), so k—c(u;—1) =
k—c(u)+1<T_1(i,j) <T—1(i+1, j—1). By assumption, k — c(u,_1 ) is not less
than the entries left and greater than the entry above in 7;_;. Therefore, we get an
SSYT by filling u,_; with k— c(u,—1) in T;_; in both cases, which completes the proof
of the existence.

Next we show the uniqueness of the nice box. Let u = (i, j) be the first nice box
and let T be the corresponding SSYT. If there exists another nice box u’ = (i’, j'),
and T’ is the corresponding SSYT, then we have i’ > i and j' > j. Since T’ is an
SSYT, we must have T'(i’, j') > T'(i, j) +i’' —i. Since T is an SSYT, we have
T'(i,j) > k+i—jwhen j' = j, and T'(i, j) > k+i— j when j’ > j. In either case
we get a contradiction, since 7'(i’, j') = k+ i’ — j’ by the definition of 7.
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