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In January 2016, Britain’s Prime Minister 
David Cameron, wrote a piece in the Sunday 
Times pledging to bulldoze 100 of the United 
Kingdom’s “bleak”  postwar housing estates:

The riots of 2011 didn’t emerge from within 
terraced streets or low-rise apartment 
buildings. As spatial analysis of the riots 
has shown, the rioters came overwhelm-
ingly from these  post-war estates. Almost 
 three-quarters of those convicted lived 
within them. That’s not a coincidence.1

Cameron’s ideas echo the voices of the econ-
omists, sociologists, psychologists, and urban 
planners, who have long pondered the rela-
tionship between the physical appearance of 
a city and the health, education, mobility, and 
criminal behavior of its citizens. Neighborhood 
appearance has been shown to affect rates of 
alcoholism, obesity, and the spread of STDs. 
The relationship between physical appearance 
and criminal activity has been, perhaps, of the 
greatest interest. The Broken Windows Theory 
(BWT) of Wilson and Kelling (1982) pro-
poses a connection between the perception of 
urban disorder and criminal activity. In recent 
decades, the BWT literature has been character-

1 David Cameron. 2016. “I’ve put the bulldozing of sink 
estates at the heart of turnaround Britain.” Sunday Times, 
January 10. http://www.thesundaytimes.co.uk/sto/comment/
columns/article1654318.ece.  

ized by a vigorous debate among scholars, who 
have found evidence in support (e.g., Keizer, 
Lindenberg, and Steg 2008) and against the the-
ory (e.g., Sampson and Raudenbush 2004).2

However, the connection between the physi-
cal appearance of a city and the socioeconomic 
outcomes of its citizens has proved challenging 
to study, due to a lack of data on urban appear-
ance. To date, urban appearance has been eval-
uated with low throughput tools such as field 
surveys (Sampson and Raudenbush 2004) or 
virtual audits of urban imagery (Rundle et al. 
2011). These methods are  time-consuming and 
expensive, and cover a handful of neighbor-
hoods in a few cities at most.

I. Quantifying Urban Appearance

Imagine using street level images to survey 
the physical appearance of Manhattan for gener-
ating an “evaluative map.” Since Manhattan has 
roughly 72,000 city blocks, an evaluative map 
with a resolution of one data point per street 
segment would require scoring 72,000 images. 
Scaling that map to New York’s five boroughs 
would push the number of evaluations required 
to roughly one million. Now imagine wanting to 
create similar maps for tens of cities, at multiple 
time points, and for different evaluative mea-
sures (e.g., perceived safety, liveliness, accessi-
bility, etc.). Such a data generation effort would 
require evaluating millions of images; a number 
that is beyond what is possible through field sur-
veys or virtual audits.

The sheer number of data points needed to 
generate evaluative maps shows the need for 
automated surveys. To solve this problem, we 
propose to develop computer vision algorithms 

2 For a recent review of the literature on the connection 
between the physical appearance of a city and socioeco-
nomic behavior of its residents, see Naik et al. (2015). 
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that quantify urban appearance using street 
level images. Specifically, we describe our work 
on an algorithm that computes the perceived 
safety (or “Streetscore”) of streetscapes (Naik 
et al. 2014). We use this algorithm to create 
 high-resolution “evaluative maps” of perceived 
safety for 19 US cities by scoring more than one  
million images.

But what are these evaluative maps useful 
for? First and foremost, these evaluative maps 
allow researchers to explore the connection 
between the physical appearance of a city and 
the socioeconomic outcomes of its citizens, at 
an unprecedented resolution and scale. In addi-
tion, researchers have begun using these evalua-
tive maps to identify architectural constructs and 
urban planning policies that correlate with per-
ceived safety. Been et al. (2016) find that historic 
district designation in New York City correlates 
with higher Streetscore metric of census tracts, 
indicating that preservation policies are protect-
ing areas that people find more aesthetically 
appealing. Harvey et al. (2015) relate perceived 
safety to architectural constructs and show that, 
in New York and Boston, narrow streets with a 
high density of buildings are perceived as safer 
than wider streets with few buildings. Glaeser 
et al. (2015) demonstrate that the visual appear-
ance of a neighborhood is an adequate proxy for 
neighborhood income.

Next, we describe our method for computing 
perceived safety from street level imagery in 
detail, followed by an analysis of the socioeco-
nomic correlates of perceived safety using eval-
uative maps of 19 cities.

II. Data and Methods

We develop our algorithm for predicting per-
ceived safety using training data from Salesses, 
Schechtner, and Hidalgo (2013), a crowd-
sourced survey where participants repeatedly 
chose images from pairs in response to the ques-
tion: “Which place looks safer?” These images 
were selected randomly from New York, Boston, 
Linz, and Salzburg. Here we focus on the United 
States and only use images for Boston and New 
York. This dataset contains 4,109 images and 
208,738 pairwise comparisons provided by 
7,872 unique participants from 91 countries. We 
use the pairwise comparisons to assign a score 
for perceived safety between 0 and 10 to each 
image using the Trueskill  ranking algorithm 

(Naik et al. 2014). Visual inspection shows 
that the typical high scoring image contains 
houses or townhouses and streets lined with 
trees; while the typical low scoring image con-
tains parking lots, empty streets, and industrial 
buildings (Figure 1, panel C). The images and 
their Trueskill scores form the dataset for train-
ing a computer vision algorithm to predict the 
perceived safety of new streetscapes based on 
image features. We call the score for perceived 
safety of an image, Streetscore.

To train the algorithm, we create a compu-
tational representation of images. First, we use 
the Geometric Layout algorithm to classify pix-
els as belonging to one of the four categories: 
“Ground,” “Buildings,” “Trees,” or “Sky.” Next, 
we extract three different image features sepa-
rately for pixels in each of the four geometric 
classes: Texton histograms, CIELAB 3D color 
histograms, and GIST. In sum, we represent each 
image by a feature vector encoding its textures, 
colors, and shapes (Figure 1, panel B). Next, we 
use the aforementioned feature vectors to train 
a  ν-Support Vector Regression with a linear 
kernel ( ν-SVR) for predicting Streetscore. We 
validate the performance of the  ν-SVR model 
using  five-fold  cross-validation and obtain an R2 
of 57 percent. For more details on feature com-
putation and SVR training, we refer the reader to 
Naik et al. (2014).

We use the Streetscore predictor to score one 
million Google Street View images from 19 cit-
ies in the Northeast and Midwest of the United 

Street score = 5.2/10
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Figure 1.  Computer Vision to Predict the Perceived 
Safety of Street View Images
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States.3 For these cities we estimate the mean 
and standard deviation of the Streetscores in 
each census tract. These 19 cities cover 3,575 
census tracts according to the 2010 US census 
boundaries. In addition, we obtain the socioeco-
nomic characteristics of these census tracts from 
the American Community Survey (ACS) using 
the estimates for the years  2006–2010.

III. Relating Appearance to Demographics

Table 1 provides the descriptive statistics 
for Streetscore measures and socioeconomic 
 characteristics of census tracts from 19 cities. 
Table 2 shows the coefficients and standard 
errors from multivariate regressions decompos-
ing the average Streetscore of a census tract, 
and its standard deviation, into socioeconomic 
characteristics.4

The first column shows that the mean 
Streetscore has a robust positive correlation with 
population and a robust negative correlation 
with the area of the census tract, indicating that 

3 These cities are Albany, New York; Atlanta, Georgia; 
Arlington, Virginia; Baltimore, Maryland; Buffalo, 
New York; Charlotte, North Carolina; Chicago, Illinois; 
Cleveland, Ohio; Columbus, Ohio; Detroit, Michigan; 
Milwaukee, Wisconsin; Minneapolis, Minnesota; Newark, 
New Jersey; Philadelphia, Pennsylvania; Pittsburgh, 
Pennsylvania; Rochester, New York; Stamford, Connecticut; 
Worcester, Massachusetts; and Washington, DC.

4 We also ran these regressions by including city-level 
fixed effects, which show similar trends. So we omit these 
results to save space. 

the mean Streetscore rises with population den-
sity. This finding suggests that the  architecture 
of densely populated places is perceived as 
safer than the architecture of more sparse urban 
areas. This is related, but not identical to the 
Jane Jacobs (1961) idea of “eyes on the street.” 
Google Street View images are usually unpopu-
lated (they are often captured early in the morn-
ing). Therefore, the observed correlation is one 
with the architecture of the space rather than the 
density of people observed in the street level 
images—which is very low on average.

Other statistically robust results include 
a strong relationship between better urban 
appearance and higher income of residents. 
Interestingly, mean Streetscore is also correlated 
with the Gini index, indicating that physically 
attractive census tracts are also more unequal in 
terms of their income distribution. Additionally, 
we observe a statistically robust positive cor-
relation with college education, and the share 
of  African Americans, indicating that neigh-
borhoods with large populations of  African 
Americans have higher perceived safety of the 
physical environment once the effects of other 

Table 1—Summary Statistics (N = 3,575)

Mean SD Min Max

Panel A. Streetscore variables 
Mean Streetscore 5.628 0.485 3.399 7.798
SD of Streetscore 0.793 0.187 0 2.444

Panel B. ACS variables 
log population 3.434 0.398 0 4.166
log area 6.001 0.421 4.814 8.039
Share  African American 0.410 0.375 0 1
Share  college-educated
 adults

0.294 0.244 0 1

log median income 4.580 0.280 3.295 5.398
Gini index 0.438 0.0724 0.0330 0.701

Note: The ACS variables refer to socioeconomic indica-
tors at the census tract level obtained from the 2006–2010 
American Community Survey.

Table 2—Streetscore and Socioeconomic 
Characteristics

Mean
Streetscore

(1)

SD of
Streetscore

(2)

log population 0.497*** −0.034**
(0.031) (0.015)

log area −0.530*** −0.052***
 (0.018) (0.008)
Share  African American 0.204*** −0.048***

(0.022) (0.010)
Share  college-educated adults 0.248*** −0.077***

(0.050) (0.023)
log median income 0.684*** −0.017

(0.053) (0.025)
Gini Index 0.491*** 0.314***

(0.119) (0.055)

Observations 3,575 3,575
 R2 0.317 0.043

Notes: All results are from multivariate OLS regressions. 
Socioeconomic indicators at the census tract level are 
obtained from the 2006–2010 American Community Survey.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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socioeconomic characteristics are taken into 
account.

The second column shows the results from 
a multivariate regression between the standard 
deviation of Streetscore and socioeconomic 
variables. The standard deviation of Streetscore 
has significant but weak negative correlations 
with population, area, and college education. 
Most saliently, we find that the variation in 
perceived safety within a census tract rises sig-
nificantly with increasing income inequality, 
as measured by the Gini index. This indicates 
that income inequality and “visual” inequality 
go hand in hand, and that the evaluative maps 
produced by Streetscore could be used to cre-
ate proxies for a neighborhood or city’s level of 
income inequality.

In sum, we find that for our dataset, the aver-
age urban appearance of a neighborhood has a 
strong positive correlation with median income 
and population density, while the variation 
in urban appearance within a neighborhood 
has strong positive correlation with income 
inequality.

IV. Discussion and Future Directions

In this paper we summarized our work on a 
computer vision technique which is able to quan-
tify the physical appearance of streetscapes. But, 
this technique is not limited to  cross-sectional 
studies of urban appearance—it can also be used 
to study urban change. In Naik et al. (2015), 
the authors measure physical urban change by 
calculating the difference in Streetscores for 
images of the same location captured in 2007 
and 2014. This method enables the study of the 
connection between physical urban change and 
the socioeconomic characteristics of neighbor-
hoods. The authors use spatial regressions to 
show that neighborhoods that experience physi-
cal improvements are more likely to be densely 
populated by highly educated people.

Beyond correlations, we could also use 
Streetscores, together with instrumental vari-
ables or exogenous shocks—such as construc-
tion of  light-rail systems or parks—to analyze 
the causal effect of government spending on 
public goods on physical urban change. In such 
cases, the Streetscore algorithm could pro-
vide an accurate estimate of the physical urban 
change experienced by a neighborhood after the 
intervention.

Furthermore, there is potential for the use of 
street level imagery in studying urban life at a 
global scale with computer vision. Google alone 
has photographed more than 3,000 cities from 
106 countries in the past decade. Traditional 
field studies can be used to provide training data 
for computer vision algorithms, like Streetscore, 
which will be able to extrapolate even relatively 
small samples of survey data over large areas. 
Computer vision algorithms, therefore, could 
become an essential tool for conducting recur-
rent automated surveys of the living environ-
ment at low cost and high spatial resolution.
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